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Abstract 

Quantum mechanics is spectacularly successful on the technicallevel but the meaning of its 
rules remains shrouded in mystery more than seventy years after its inception. Quantum­
mechanical probabilities are often considered as fundamentally different from classical 
probabilities, in disregard of the work of Cox (1946) - and of Schrödinger (1947) - on 
the foundations of probability theory. One central question concerns the superposition 
principle, i. e. the need to work with interfering wave functions, the absolute squares 
of which are probabilities. Other questions concern the relationship between spin and 
statistics or the collapse of the wave function when new data become available. These 
questions are reconsidered from the Bayesian point of view. The Superposition principle 
is found to be a consequence of an apparently little-known mathematical theorem for 
non-negative Fourier polynomials published by Fejer (1915) that implies wave-mechanical 
interference already for classical probabilities. Combined with the classical Hamiltonian 
equations for free motion, gauge invariance and particle indistinguishability the theorem 
yields all basic features of quantum mechanics - wave-particle duality, operator calculus, 
uncertainty relations, Schrödinger equation, and quantum statistics - which demystifies 
the quantum formalism to quite some extent. 

Der Satz von Riesz und Fejer: Fehlendes Bindeglied zwischen 

Wahrscheinlichkeitstheorie und Quantenmechanik 

Z usarnrnenfassung 

Technisch gesehen ist die Quantenmechanik ungemein erfolgreich, aber mehr als siebzig 
Jahre nach ihrer Entstehung erscheinen ihre Regeln immer noch rätselhaft. Quantenme­
chanische Wahrscheinlichkeiten werden oft angesehen als wesentlich verschieden von klas­
sischen Wahrscheinlichkeiten, ungeachtet der Arbeiten von Cox (1946) - und auch von 
Schrödinger (1947) -über die Grundlagen der Wahrscheinlichkeitstheorie. Eine zentrale 
Frage betrifft das Überlagerungsprinzip, d. h. den Zwang mit interferierenden Wellenfunk­
tionen zu arbeiten, deren Betragsquadrate Wahrscheinlichkeiten darstellen. Andere Fragen 
betreffen die Beziehung zwischen Spin und Statistik oder den Kollaps der Wellenfunktion 
bei Bekanntwerden neuer Daten. Diese Fragen werden vom Bayesschen Standpunkt aus 
neu erörtert. Das Überlagerungsprinzip ergibt sich als Folgerung aus einem offenbar wenig 
bekannten, von Fejer (1915) veröffentlichten Satz über nichtnegative Fourier-Polynome, 
welcher wellenmechanische Interferenz bereits für klassische Wahrscheinlichkeiten bedingt. 
Kombiniert man ihn mit den klassischen Hamilton-Gleichungen für kräftefreie Bewegung, 
Eichinvarianz und Nichtunterscheidbarkeit von Teilchen, so liefert er alle Grundzüge der 
Quantenmechanik,- Welle-Teilchen-Dualität, Operatorkalkiil, Unschärferelationen, Schrö­
dinger-Gleichung und. Quantenstatistik - was den Quantenformalismus weitgehend ent­
mystifiziert. 



TABLE OF CONTENTS 

1. Introduction 

2. The Riesz-Fejer Theorem and Quantum Mechanical Probabilities 

3. Free Partide with Uncertain Initial Location 

4. Introduction of Forces via Local Gauge Transformation 

5. Angular Momentum and Spinors 

6. Indistinguishable Particles: the Spin-Statistics Relationship 

7. EPR Entanglement and Bell Inequalities 

8. The Basic Rules of Probability Theory in Quantum Mechanics 

9. Summary 

Appendix: Proof of the Riesz-Fejer Theorem 

Acknowledgments 

References 

1 

1 

3 

7 

9 

11 

12 

14 

17 

19 

20 

21 



1 

1. INTRODUCTION 

Quantum mechanics is usuaily introduced either axiomaticaily, with states of phys­
ical systems represented by vectors in Hilbert space, or historicaily, showing how crucial 
experiments led theoreticians like Planck, Einstein, Bohr and Sommerfeld to a first form 
of quantum theory, and how Heisenberg, Schrödinger, Pauli, Dirac, Feynman and others 
succeeded, with much trial and error, in establishing the rather general and consistent 
quantum mechanics as we know it today. In neither approach does quantum theory look 
completely compelling from a logical point of view. There are nagging questions up to 
this day, at least for some: why microphysical systems behave sometimes like particles and 
sometimes like waves, about the exact meaning of the complex wave functions, about their 
collapse when measurements are made, about the role of the observer or his consciousness, 
about the unexpected interference and quantization phenomena, about the different statis­
tics for fermions and bosons, etc. Others insist that such questions were either answered 
long ago, or that they are meaningless, or that in view of the great practical success of 
the theory any doubts are out of place. At least there is consensus that superposition 
and interference of waves plays a key role, with wave intensities that can be interpreted 
as probability densities. Dirac (1973), for instance, said "I believe that this concept of the 
probability amplitude is perhaps the most fundamental concept of quantum theory." 

In view of the debate about the interpretation of quantum mechanics, still going on 
seventy years after its inception, it is quite astonishing that there is a mathematical theo­
rem, proved and published weil before quantum mechanics was developed, that raises the 
status of the superposition principle from puzzling empirical discovery to unquestionable 
mathematical property possessed by ail inherently positive distribution functions such as 
beam intensities or probability densities. The theoremwas published by L. Fejer (1915) in 
Hungarian and German -languages in which most founding fathers of quantum mechanics 
were fuily conversant (J. von Neumann and E. Wigner spoke both)- yet it went unnoticed. 
Equaily remarkable is the fact that the discoverers of the theorem, F. Riesz and L. Fejer, 
never seemed to realize its importance in science. There is not the slightest hint of its 
usefulness in electrodynamics, communication theory, and especially quantum mechanics 
even in a rather late edition of the book by Riesz and Sz.-Nagy (1973) containing a proof 
of the "Fejer-Riesz lemma". In the foilowing sections it will be argued that this theorem 
can be regarded as a missing link between probability theory and quantum mechanics, 
permitting derivation of ail the main featmes of quantum mechanics in a rather inevitable 
logical chain of fairly simple arguments. Quantum mechanics can thus be considered as 
an especially powerful extension of ordinary probability theory, useful also for other than 
space-time processes, as has been conjectured e. g. by C.F. von Weizsäcker (1975) who 
wrote "I propose the view that general or abstract quantum theory is a general theory 
of probabilities and nothing else" . Many features of quantum mechanics may have been 
unexpected but with the key provided by Riesz and Fejer they are not inexplicable. · 

2. THE RIESZ-FEJER THEOREM AND PROBABILITIES 

In 1915 L. Fejer, weil known for his work on Fourier series, published a proof due to F. 
Riesz of the foilowing theorem (see Appendix): Each real, non-negative Fourier polynomial 
( truncated Fourier series) of order n (maximal wave number n) can be expressed as the 
absolute squc.re of a complex Fourier polynomial of at most the same order, 

n n 

0::; p(x) = L C/eilz =I Lak eikzl2 = l'l/l(:z:)l2' (1) 
1=-n k=O 
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where the complex Fourier polynomial '1/J( x) is completely unrestricted, in contrast to 
the Fourier polynomial p( x) which is restricted by the requirements of reality ( c_z = ci) 
and non-negativity. Our notation anticipates the rather obvious application to quantum­
mechanical probability densities, p, and probability wave functions, '1/J, without excluding 
application to other inherently positive quantities such as intensities of classical energy­
canying waves. The coefficients ak are Fourier transforms of the wave function '1/J( x ). 
Fourier techniques are most convenient whenever wave or particle propagation constrained 
by initial or boundary conditions is to be described, and they are especially powerful if 
they permit free use of Fourier expansions, unhampered by reality and non-negativity 
conditions~ Constraints such as point sources, slits, scatterers, etc. define, together with a 
wave equation for the Fourier components, eigenvalue problems whose eigenfunctions are 
all those waves which are possible under given experimental circumstances. 

As the wave function '1/J( x) for given p( x) is determined only up to a phase factor we 
may define it by 

n 

2:::: ak eikx := einx/2'1/J( X) (2) 
k=O 

and introduce modified coefficients 

(3) 

The resulting Fourier transform pair 

n/2 

l( ) 1 ~ ikx 
'I.{J X = .J27r L.,; 'Pk e , 

k=-n/2 

(4) 

'Pk = -- dx '1/J(x) e-tkx, 1 1... . 
.J27r _..,. (5) 

has the especially convenient symmetric form commonly used in quantum mechanics. The 
wave functions thus defined are 

n = 0, 
1 

'1/J( x) = ~<>::'Po, 
y271" 

n = 1, "''( ) 1 ( -ix/2 + +ix/2) 
'f' x = .J27r 'P-112 e 'P+1/2 e ' 

n = 2, '1/J(x) = ~ ( 'P-1 e-ix +'Po+ ~+1 e+ix)' 

(6) 

Although p( x) has 27!" periodicity and the sum in Eq. 2 likewise, the same is true only for 
wave functions for even n. Those for odd n have 471" periodicity, hence 

.r { o, 2, 4, ... 
10r n = 

1, 3, 5, ... 
(7) 

The reason for the plus-minus sign appearing after one full period is, of course, the phase 
factor einxf 2 pulled out in Eq. 2. As will become clearer below it leads to the spin-statistics 
relationship and to the Bose-Einstein and Fermi-Dirac statistics of quantum mechanics. 
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Integration of the Fourier polynomial p( x) over one period yields 

(8) 

(Parseval's theorem). Ifwe interpret this as a total probability we find that any continuous, 
periodic probability density l'ljl(x )12 in x-space is related via Fourier transformation to 
discrete probabilities IIPk 1

2 in a dual k-space - periodic x entails quantized k. 
In classical as weil as quantum mechanics (infinite) Fourier series occur naturally 

when spatial rotations are studied with their obvious 27r periodicity. In other cases like 
spatial translation it is customary to introduce Fourier series by the familiar device of the 
periodicity box. We note that 
( a) infinite Fourier series can be approximated by finite Fourier polynomials to any desired 

accuracy if only the order n is chosen high enough; 
(b) a smooth transition to Fourier integrals describing arbitrary nonperiodic processes 

is achieved if the periodicity box is made bigger and bigge:r relative to the physical 
system considered. 

In view of these uneventful generalizations one may consider the Riesz-Fejer theorem as 
equivalent to the wave-mechanical Superposition principle: Probability densities as inher­
ently non-negative quantities can be represented as absolute squares of wave functions that 
in their turn can be expressed as linear Superpositions of orthogonal functions. In Eq. 1 
the orthogonal functions represent standing waves in a ( one-dimensional) periodicity box. 
Other possible orthogonal bases - spherical waves, angular momentum eigenfunctions etc. 
- can be invoked by unitary transformations. An immediate consequence is quantization: 
periodic probability density functions in one space are accompanied by discrete probabili­
ties in a dual space, both spaces related by Fourier transformation of the wave functions. 
A further consequence is the appearance of two families of eigenfunctions with 27r and 
47r periodicity ( for bosons and fermians ). All this is just part of Fourier theory, valid 
for all periodic non-negative functions, in particular for all probability densities, not only 
quantum-mechanical ones. 

Histo:rically the Superposition principle had been established first, as a puzzling em­
pirical feature of the quantum world, before M. Born recognized that the absolute square 
of the wave function can be interpreted as a probability density. If, on the other hand, 
one sta:rts with probabilities, the Superposition principle, far from puzzling, appears as a 
theorem, applicable not only in quantum mechanics but also to nonquantal probabilities 
and signal intensities ( cf. e. g. W. Fell er 1966 on L2 theory and especially L. Cohen 
1995 on time-f:requency analysis). The much discussed role of the phases of the super­
posed functions seems to be simple: They are needed for a faithful reproduction of the 
non-negative probability density p( x) in Eq. 1. We shall see below that they also define 
possible forces. 

3. FREE PARTICLE WITH UNCERTAIN INITIAL LOCATION. 

Let us consider a classical particle. Its energy as a function of its position r and 
(generalized) momentum p is given by the Hamiltonian H = H(r, p, t); its motion is 
determined by Hamilton's canonical equations 

(9) 
dp 8H 
-dt =- 8r · (10) 
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For given initial phase space coordinates, {r(O), p(O)}, one obtains the trajectory in phase 
space, {r(t),p(t)}, by integration ofthe canonical equations, fort< 0 as weil as fort> 0. 
If the initial coordinates are uncertain, lying somewhere in a phase space domain D(O), 
there is a multitude of possible trajectories. At time t the possible values of r( t) and p( t) 
lie in a domain D(t) that has the same size as D(O): The canonical equations imply zero 
divergence in phase space, 

3 

L ( 8 dr · 8 dp · ) __ J+ __ J -o 
8r· dt äp· dt -

j=l J J 

(11) 

(Liouville's theorem, valid already separately for each pair Tj, Pj ). More generaily the ini­
tial unce:rtainty may be described by a continuous probability density. In thermodynamics 
one is accustomed to assign joint probabilities for position and momentum of the particle 
but if one considers probability distributions ("ensembles") of particle trajectories in or­
dinary space some care is required. If the physicaily ailowed trajectories r( t) are specified, 
at least in principle, it is enough to assign position probabilities at some particular time. 
Those for other times can then be deduced from the r(t), and the velocity or momentum 
distributions, too. 

Let us consider a time-rlependent spatial probability density p(r, t) = 1'7jl(r, t)IZ in a 
periodicity box so large that the Fourier polynomials of the Riesz-Fejer theorem can be 
replaced by Fourier integrals. The resulting wave function and its Fourier transform, 

'7jl(r, t) = (27r)-3/2 j d3k <p(k, O) e+i(kr-wt), 

<p(k, t) = (27r)-3/2 J d3r '7jl(r, 0) e-i(kr+wi)' 

(12) 

(13) 

both normalized to unity, are superpositions of plane waves propagating with phase veloc­
ities w I k in directions kl k. Note that we applied the Riesz-Fejer theorem to the temporal 
as weil as to the spatial dependence of the probability density in ordinary space. In general 
the frequencies for different wave lengths will diifer, w = w(k ). The best estimates (und er 
quadratic loss) of positions and wave vectors are given by the expectation values 

{r(t)) = j d3r J'7jl(r,t)J
2

r = j d3k<p(k,t)* ~~<p(k,t), 

{k(t)) = jd3k J<p(k,t)J
2

k = jd3r'1j!(r,t)*~'1j!(r,t). 
zär 

(14) 

(15) 

Obviously l<pl 2 is the probability density in k-space corresponding to the probability den­
sity 1'7jll 2 in the dual r-space. Furthermore, the factor k in k-space is tobe replaced by the 
operator -iä I är in r-space, and the factor r in r-space the operator i8 I äk in k-space, as 
application of the operators to the functions e±ikx produces the required integrands. A 
direct consequence are the commutation relations in either r or k space, 

(16) 

Similarly one finds that for averaging purposes w is equivalent to the operator i8 I 8t in r 
as weil as in k space, 

J ·a j ·a 
{w) = d3r '7jl(r, t)* ~t '7jl(r, t) = d3 k <p(k, t)* ~t <p(k, t). (17) 
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The familiar wave-mechanical uncertainty relations for Fourier transforms that follow from 
the Cauchy-Schwarz inequality are 

1 
ßr· ßb > -6 .. , 

J 3-233' (j, j' = 1, 2, 3) ' 

where D.rj and D.kj' are standard (root-mean-square) errors (see e. g. Cohen 1995 ). 

(18) 

From Eqs. 14 and 15 one finds in k representation the expectation values (best 
estimates under quadratic loss in the language of decision theory, cf. Fröhner 1997) for 
the position and the wave vector 

(r(t)) = J d3
k<p(k,O)* (~~ <p(k,O) + <p(k,O):~ t) = (r(O)) + (:~)t=O i, (19) 

(k(t)) =I d3 k <p(k, O)*k<p(k, 0) = (k(O)) ' (20) 

which obviously describes linear translation with constant group velocity (ßw/ßk). As ex­
pected, wave packets constructed of undistorted plane waves can move only along straight 
lines, so they describe free particles not infl.uenced by forces. 

So far we used only (Fourier-Riesz-Fejer) wave theory but now we can establish contact 
with Hamiltonian particle kinematics. We identify the motion of the wave packet with 
the expected motion of the particle and compare the wave-mechanical ( classical) time 
derivatives 

d(r) = (aw) 
dt 8k ' 

(21) 
d(k) 
--=0, 
dt 

(22) 

and the expectation values that follow from Hamilton's canonical equations for a ( classical) 
free particle, 

d(r) = ( ßH) 
dt ßp ' 

(23) 
d(p) 
--=0, 

dt 
(24) 

for the same spatial probability distribution (12) (or the same ensemble of possible tra­
jectories ). Evidently one can take k <X p and w <X H ( disregarding a possible additive 
constant for H- for p such a constant is excluded by isotropy). Denoting the common 
proportionality constant by 1i we get de Broglie's particle-wave transcription, 

H = 1iw, (25) p = 1ik' 

and, from Eq. 17, Heisenberg's quantum-mechanical uncertainty relations, 

1i 
ßr· ßp·· > -6· ., 

3 3 - 2 33 ' (j,j' = 1,2,3)' 

(26) 

(27) 

replacing Liouville's theorem, Eq. 11. The equality sign applies if both the spatial and 
the momentum probability density functions are three-dimensional Gaussians. A sharply 
peaked spatial density implying a diffuse momentum density means particle-like behavior 
of the wave packet. On the other hand the behavior is wave-like if the momentum is weil 
defined but not the location. Whether a particle or a wave description is more appropriate 
depends on the state of information about the particle. It is not the particle but the wave 
packet encoding this information that exhibits wave-particle duality. 
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This is the crucial point where Planck's quantum of action, h, enters the scene, tying 
together two classical formalisms, Hamiltonian particle mechanics and the Fourier-Riesz­
Fejer wave mechanical extension of probability theory, whereby quantum mechanics is 
ushered in. The decisive new feature is that in the probabilistic description of a particle 
with uncertain coordinates the momentum distribution is fully determined by the position 
distribution and vice versa, via unitary (Fourier) transformation of the wave function. As a 
consequence of this rather special entanglement - the wave function is Fourier transformed 
rather than the probability density - and of the finite value of h, the accuracy with which 
the momentum can be specified is limited by the accuracy of the location. Empirically 
h is found to be a natural constant, not merely a formal proportionality factor that can 
be made arbitrarily small. This clashes with the use of joint probability distributions 
for particle positions and momenta in statistical mechanics, and limits the phase space 
concept to situations where 1i can be treated as negligibly small. 

Expectation values of physical quantities that depend on both r and p can be calcu­
lated from '1/J or cp with the appropriate operators. For example, the best estimate of the 
orbital angular momentum with respect to the origin, r = 0, is 

(28) 

Caution is required, however. The employed operators must be Hermitean (self-conjugate) 
in order to produce real expectation values as is required for physical observables. For 
the orbital angular momentum there is no problern but other products of noncommuting 
operators are not Hermitean. For example, if one wants to calculate the expectation value 
(r · p) one must use the operator (r · p + p · r)/2 with p = -i1i8/8r =-in\!. 

As mentioned already a conspicuous consequence of the introduction of probability 
waves and operator calculus by means of the Riesz-Fejer theorem is quantization. It is 
characterized by the existence of eigenvalue equations with discrete eigenvalues. The most 
important eigenvalue problems are, of course, those defined by the Schrödinger equation, 

H'I/J =ih'I/J, (29) 

together with initial or boundary conditions. This central equation of quantum mechanics 
follows from Eq. 17 with H = nw (and the notation ~ := 8'1/J/Bt). With H(r,p,t) in 
operator form (p = -in V) it is the wave equation determining the time evolution of 
'ifl(r, t) and of its Fourier transform cp(k, t). In this sense it is the wave-mechanical analog 
of Hamilton's particle equations (9) and (10). lf '1/J is an eigenfunction with eigenvalue E 
one has (H) = E and (D..H) 2 = (H2

) - (H) 2 = 0: The predicted energy is E without 
uncertainty. 

Similarly, if '1/J tends towards an eigenfunction of the momentum operator -in V with 
eigenvector p the momentum uncertainty goes to zero while the position uncertainty be­
comes infinite. The limit, with 'ifl(r) cx: exp( ip •r /Ii ), is a useful idealization for a particle in 
a beam, but in practice the momentum cannot be quite sharp since the beam dimensions 
and thus the position uncertainty may be huge compared to the particle dimensions but 
not really infinite ( which perhaps could be taken as a hint that physical particles are not 
really mathematical points, and that Ii, Planck's quantum of action, may have something 
to do with their finite size ). Quite generally, whenever '1/J is one of the eigenfunctions of 
some operator, the variance of the conesponding physical quantity vanishes. 
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4. INTRODUCTION OF FüRCES VIA LOCAL GAUGE TRANSFORMATION 

So far we have considered Superpositions of plane waves and found that they corre­
spond to spinless free particles whose Hamiltonian is Ho = p 2 /2m in the nonrelativistic 
case. We can generalize to accelerated motion, i. e. to forces. Let us assume that the 
spatial probability density for accelerated motion, p = 1'1/11 2

, coincides with that for free 
motion, Po = l'l/lol 2 , at time t = 0. At this time the wave functions can only differ by a 
phase factor. We must therefore have 

'1/!o = 'ljle-iAej1ic, (30) 

where the phase is written in a form that is convenient for our purposes. The real "gauge 
function" A cannot be a mere constant but must depend on r and t if p is ever to differ 
from p0 • Inserting Eq. 29 into the nonrelativistic Schrödinger equation for free motion, 

Ho'!fo = -1
-( -i1i V?'!fo = i1i-Jo, 

2m 

one finds for the distorted wave packet 

(31) 

(32) 

We conclude that the nonrelativistic Schrödinger equation for a particle infl.uenced by 
forces must have the general form 

(33) 

where a real scalar <} and a real vector A have appeared. We recognize them as the scalar 
and vector potentials of the electromagnetic force field, and e as the particle charge that 
specifies how strongly the particle responds to the field. The form of the Schrödinger 
equation is invariant under "local gauge transformations of the first kind" of the wave 
function, 

(34) 

in combination with "gauge transformations of the second kind" of the electromagnetic 
potentials, 

A -4 A' = A + VA , 

<} -4 <}' = <}- ~l. 
c 

(35) 

(36) 

N either probabilities nor observables can depend on the arbitrary gauge function A. This 
means that '1/1, A, <} are merely auxiliary formal quantities, in contrast to the given prob­
ability density p and the measurable electric and magnetic field strengths 

1 . 
E =-V<}- -A, 

c 
B=VxA. 

(37) 

(38) 
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Operators for observable quantities may, for the same :reason, contain spatial and temporal 
derivatives only in the gauge invariant combinations 

. eA eA -z1i V - - = p - - , 
c c 

+i1i!_ - e~ = H- e~ . 
8t 

(39) 

(40) 

Canonical quantities like p or p 2 j2m are obse:rvables only if no forces act, Newtonian 
quantities like mv = (p-eAjc) or mv2 /2+ V(r) always. Time derivatives ofexpectation 
values for observables can be calculated after the pattern 

d . . 1 
-d (r} = ('1/Jirl'l/J} + ('1/Jirl'l/J} + ('1/Jirl'l/J} = (r + .:;-(rH- Hr)}. 

t z1i 
( 41) 

With the Hamiltonian of Eq. 33 (and r = o) one finds readily for the most important 
observables ( cf. Yang 1976) 

d 1 e 
dt (r} = (v} m (p- ~A} ' ( 42) 

d 1 
dt(mv} =e(E+

2
c(vxB-Bxv)}, (43) 

d mv2 e 
dt(-2-} =z(v·E+E·v}, ( 44) 

d mv2 e 
dt ( T +V} = Z(v · Et + Et · v} . ( 45) 

Eq. 42 gives the relationship between velocity and generalized momentum. The foilowing 
equations show that any acceleration is due to the Lorentz force, that the kinetic energy is 
changed by the electric but not by the magnetic field, and that the total energy is changed 
only by the time-dependent part Et of the electric field, while the static part, Eo = E- Et, 
gives rise to the potential energy, 

V= -e J~ dr' · Eo(r'). ( 46) 

( Only static forces can define a potential energy.) 
lt is remarkable that the mere existence of an arbitrary phase of the wave function 

Ieads unambiguously to the electromagnetic interaction and thus to the Lorentz force as 
the only possible infl.uence on the motion of a spinless charged particle. Although we 
demonstrated this for nonrelativistic particles only, it is easy to see that it must be true 
for relativistic particles, too: Hamilton's equations of motion hold for relativistic as weil 
as nonrelativistic Hamiltonians, and the concept of position uncertainty at a given time 
remains viable, with ail consequences. Any Hamiltonian depends on the momentum by 
definition, therefore the corresponding wave equation, whether relativistic or not, must 
contain spatial and temporal derivatives only in the gauge invariant combinations ( 39) 
and ( 40) (see Kobe 1978) . The Klein- Gordon and Dirac equations are examples ( cf. e. 
g. Dirac 194 7) . In any case, gauge invariance and electromagnetic fields show their basic 
simplicity and inevitability most clearly in the relativistic formalism. The strategy of 
deriving the form of an interaction from phase arbitrariness is due to H. Weyl (1919) as 
weil as the term gauge invariance. More recently it has been employed for the construction 
of the electro-weak theory and of quantum chromodynamics (cf. e. g. Griffiths 1987). 



9 

5. ANGULAR MOMENTA AND SPINORS 

All spatial probability wave packets exhibit angular periodicity, p(2?r + a) = p(a), 
around any fixed axis in ordinary space. This implies discrete angular momentum eigen­
values and the possibility to expand the wave function in terms of the corresponding 
eigenfunctions, viz. spherical harmonics, '1/J(r, t) = l::t,m atm ( r, t)J'r(n). In order to ex­
plore the consequences consider a physical system, whose total angular momentum is due 
to the orbital motion of abound spinless particle, for instance a hydrogen-like atom ( with­
out spin). Let R be the center-of-mass position of the whole system and r the position 
of the bound particle relative to R. If the system has expected spin 1 (in units of n) all 
expansion terms with .e ::j:. 1 vanish and the eigenfunction expansion is 

w(R,r, t) = '1/J+(R, t)X+(r) + '1/Jo(R, t)xo(r) + '1/1-(R, t)x-(r) 

= ux(R, t)e(r) + uy(R, t)n(r) + uz(R, t)((r) ( 47) 

with 

Uz = '1/Jo, ( 48) 

and 

( 49) 

The vector (e,n,() is seen to behave like (:z:,y,z) under coordinate transformations, i. e. 
as a polar vector, and the vector u = ( Ux, Uy, Uz) likewise, since the wave function must 
remain unchanged. For a beam of randomly oriented spin-1 atoms left and right handed 
circular polarisation must be equivalent, 

(50) 

and also all Cartesian coordinates of u which implies (u) = 0 for the mean vector, and 

(51) 

for the variances. With the linear relations ( 48) one obtains equal probability densities 
for all three orientation eigenstates, 

(52) 

As a consequence a beam of randomly oriented particles is split into three equally intense 
components in any field that acts differently on the three angular momentum eigenstates, 
as does for example the inhomogeneous magnetic field, B, of a Stern-Gerlach magnet. Its 
force, F = V(m· B), is proportional (a) to the field gradient and (b) to the component of 
the magnetic moment, m, and therefore also of the orbital angular momentum, r X p, along 
the direction of the field gradient. For any orientation of the magnet the wave function 
can be expanded in terms of three spherical harmonics which cause the wave packet to 
exhibit three observable eigenvalues of the angular momentum orientation. Contrary to 
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common belief this quantization is not restiicted to quantum systems. Simply because of 
the 27r periodicity of rotations in ordinary space it must be true for all spatial probability 
distributions with finite extension. No matter what experimental method one employs to 
measure the angular momentum, and no matter how one orients the applied force field, 
the possible (probability-weighted) internal motions always seem to conspire in such a way 
that the wave packet as a whole behaves as ij the angular momentum were quantized. This 
is true although we have not constrained them except by demanding rotational periodicity 
and a bound system. 

The averages over the internal coordinates :z:', y', z' that we encountered here are more 
easily calculated with 3-component "spinors". We introduce a complete system of basis 
spinors, 

lo) 
Xo = l ~ , x-= G). (53) 

whose orthonormality conditions (in obvious notation) are 

(We assume the radial function f( r') to be normalized appropriately.) In spinor notation 
the wave function is a three-component spinor, too, 

(

1/J+(r, t)) 
W(r,, t) = 'ifJ+(r, t)X+ + 1/Jo(r, t)xo + '1/J_(r, t)x- = 1/Jo(r, t) , 

1/J-(r, t) 
(55) 

normalized by 

(56) 

where the dagger denotes the Hermitean conjugate. In essence the spinor notation re­
places the wave function W(r, r', t) by three wave functions '1/Jm(r, t) which are originally 
the coefficients of an eigenfunction expansion in the space of the intrinsic coordinates. 
Otherwise the intrinsic coordinates themselves are no Ionger visible. In a similar way one 
can describe systems with expected integer spins 2, 3, ... (cf. e. g. Hund 1954). For 
all of these the wave function has 21r angular periodicity which ensures the same for the 
probability density. 

We have, however, not exhausted all possibilities yet. As we have seen ( cf. Eq. 7) the 
condition p(27r + a) = p( a) is not only fulfilled if 'I/J(27r + a) = +'1/J( a ), with 27r periodicity, 
but also if 'I/J(27r + a) = -1/J( a ), with 47r periodicity. Therefore another family of possible 
spins ( or representations of the rotation group) exists, with half-integer eigenvalues, 1/2, 
3/2, ... , as discovered by E. Cartan long before the inception of quantum mechanics (see 
Cartan 1937 ). The usual two-component spinor formalism for particles with spin 1/2 is 
the exact analog of the three-component formalism introduced here for systems with spin 
1. (We took spin 1 as an example because it allows to demonstrate explicitly, without 
need to go beyond the concept of trajectories or orbits with orbital angular momentum, 
how the spinor formalism accounts for internal degrees of freedom.) 
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Fig. 1 - Probability density distributions for two indistinguishable particles ( schematic ): ( a) 
initial state, (b) state after interchange without rotations, ( c) state with parallel polar axes, 
(d) state with restored azimuths, (e) final state, indistinguishable from (a). 

6. INDISTINGUISHABLE PARTICLES: THE SPIN-STATISTICS RELATIONSHIP 

So far we have considered probability distributions for single particles only. The 
generalization to several particles looks Straightforward but if the particles are indistin­
guishable there are nontrivial consequences. If two equal particles collide, for instance in 
proton-proton scattering, one must allow for two alternatives: Any registered outgoing 
particle may either be the incoming beam particle or, with equal probability, the target 
particle. Let us assume that there are two particles, labeled by 1 and 2, at center-of-mass 
positions Ra and Rb, with intrinsic coordinates ra and rb, respectively. Without informa­
tion about conelations between them the maximum entropy principle (Jaynes 1957, 1983) 
directs us to assign independent probability densities, 

If the particles are not distinguishable, 'ljJ1 and 'I/J2 must be the same function of the 
intrinsic polar coordinates but the orientations of the intrinsic coordinate frames may 
di:ffer. Let the polar angles di:ffer by {) and the azimuths by <p, as indicated in Fig. 1 (a). 
We can write the wave function as 

(58) 

Interchange of the particle positions but not of the orientations results in 

(59) 

with mixed-up orientations as indicated in Fig. 1 (b ). The orientations can be restored 
by the rotations indicated by anows in Figs. 1 (b ), ( c) and ( d): First make the polar 
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axes parallel by letting {)b --t {)b- {) = rJa, so that the wave function becomes, in obvious 
notation, 

(60) 

Next rotate both wave packets about the polar axes to get the correct azimuths. With 
'Pb --t 'Pb+ 27r - tp = 'Pa + 27r and 'Pa --t 'Pa + tp = 'Pb one finds 

Finally rotate the polar axis of the particle at Rb through the angle {) which gives 

w(Rb, iJb, 'Pb, Ra, iJ a, 'Pa + 27r) = 'lf(Rb, iJb, 'Pb )'lf(Ra, {) a, I{Ja + 27r) 

= ±'lf(Rb,rb)'lf(Ra,ra)· (62) 

The absolute square is now again the same as initially, Eq. 57, and the configurations 
shown in Figs. 1 ( a) and 1 ( e) are indistinguishable. Evidently exchange of two indistin­
guishable particles and restoration of the orientations involves a full rotation of one of the 
particles around its intrinsic polar axis which changes the sign of the wave function if the 
spin is half-integer (Eq. 7, see also Feynman 1987). Adding the wave functions for the 
two alternatives "no exchange" and "exchange" one obtains the total wave function for 
two indistinguishable particles. In abbreviated notation it is 

~(1, 2) = 'l/1(1, 2) ± 'l/1(2, 1) .r { bosons, 
10r • 

fermwns. 
(62) 

It might be thought that probabilities should have been added rather than wave functions 
but the final result turns out to be the same if there are only two possible alternatives 
(see Eq. 83 below). We have thus obtained the spin-statistics relationship in its siruplest 
form: Wave functions for systems of indistinguishable particles with integer spin must 
be symmetric in all particle coordinates, including spin coordinates, which entails Bose­
Einstein statistics, whereas wave functions for particles with half-integer spin must be 
antisymmetric, which entails Fermi-Dirac statistics. The spin-statistics relationship is 
widely believed to be inexplicable without relativity and quantum field theory. Here 
it appears, however, as a nonrelativistic consequence of the two different periodicities 
admitted for wave functions in ordinary space by the Riesz-Fejer theorem. 

7. EPR ENTANGLEMENT AND BELL INEQUALITIES. 

In the spin version of the famous Einstein-Podolsky-Rosen (1915) thought experiment 
one considers a particle with spin zero that decays into two equal particles :fl.ying apart 
in opposite directions, each with spin 1/2. Because angular momentum is conserved, the 
spins of the two particles must be antiparallel, o-1 = -o-2 • If one of the spin components 
of particle 1 is measured with a Stern-Gerlach magnet as pointing up, the same spin 
component ofparticle 2 is immediately known tobe pointing down (which can be confirmed 
experimentally ). This is a logical inference and has nothing to do with spooky superluminal 
action at a distance. More generally, one finds that the covariance of arbitrary spin 
Coordinates (a · o-1 ) and (b · o-2 ) is given by 

((a · u1)(uz · b)) = -a · b =- cos(a, b) , (64) 
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where a and b are unit vectors along two arbitrary analyzer di:rections. This result is 
obtained quantum-mechanically with the singlet state (total spin zero) described by the 
antisymmetric fermion wave function (for the two discrete possibilities "spin up" and "spin 
down" of the two particles) 

( 65) 

and the spin coordinates by Pauli matrices (see e. g. Hund 1954, Griffiths 1987), 

-i) ( 1 0 ) } 
0 j' 0 -1 j 

(1=1,2). (66) 

The description is the same for any o:rientation of the coordinate frame. The subscripts 1 
and 2 refer to particles 1 and 2, and the subscripted matrix operators act only on column 
vectors (spinors) with the same subscript. Expectation values are to be calculated as 

( ... ) ::: W t ... W which yields 

( 66) ( 68) 

( 69) 

(similarly for band u2). So the spin projection on any unit vector a has expectation value 
zero with unit variance, while the expectation value ofthe squared spinangular momentum 
is (ui)(~)2 = ~(~ + 1)n?. The covariance of the two spin projections considered is given 
by Eq. 64 as already mentioned. 

It is often claimed that the covariance (64) cannot be obtained classically, or at 
least not together with spin quantization. Its con:firmation by experiment is then taken 
as evidence that the spin coordinates cannot exist simultaneously before a measurement 
reveals one of them, in accordance with N. Bohr's epistemological ( Copenhagen) interpre­
tation (1935) of quantum mechanics but at variance with the ontological view of Einstein, 
Podolsky and Rosen (1935) . Since, however, the quantum-mechanical result (64) does not 
contain Planck's constant one expects a classical derivation to be feasible. Let us therefore 
consider the spin u1 = -u2 as an ordinary vector for which all orientations are equally 
probable. Expectation values are then to be calculated as 

-100 !+1 d( cos '!?) 12~ dcp ( ... ) = d<71 p( <71) - ••• ' 
0 -1 2 0 27r 

(70) 

where p(<71) is the probability density ofthe length <71 = ju1 j ofboth spin vectors and '!?, 
cp are polar angle and azimuth of u 1 • Without any difficulty one :finds 

(71) 

which, with (ui)/3 = 1 (cf. Eq. 69), is equal to the quantum-mechanical result. Hence 
the correlation measurements alone do not rule out the ontological viewpoint, i. e. re­
ality of unobserved spin components. Our conclusion is not changed if we also take spin 
quantizatior. into account. It, too, follows already classically from the 27r periodicity of 
rotations as we have seen. Therefore the reality of unobserved spin coordinates need not 
be questioned. A temptation to introduce hidden variables exists only if one tries to treat 



14 

the spin eigenvalues, +1/2 or -1/2, measured along a and b, as if they were actual spin 
coordinates of the particles rather than global properties of the wave packet encoding 
incomplete information about them. The inequalities derived by Bell (1964) from these 
premises are, in fact, contradicted by experiment. Hidden variables do not seem to be 
needed for an understanding of the correlations if one distinguishes clearly between the 
particles themselves and information about them - the natural variables of the problem, 
spin coordinates, are enough. 

The common misunderstanding to interpret measurable expectation values as true 
values is fostered mainly by the unfortunate and misleading use of the word "state" in 
quantum mechanics for what is actually "information about the state" of a physical sys­
tem, in particular about its preparation, and also by futile attempts to endow probability 
amplitudes with physical properties while paying lip service to Born's probability inter­
pretation. The ingenious and elaborate experimental checks on increasingly complicated 
correlations between particle spins or photon polarizations ( cf. e. g. Aspect et al. 1995) 
look often more like attempts to check the Riesz-Fejer theorem than like investigations of 
the physics. One is reminded of experiments proposed earlier in this century to check other 
mathematical consequences of Fourier theory, for example the existence of side bands in 
amplitude-modulated beams of optical or radio waves (see. Jaynes 1991). 

8. THE BASIC RULES OF PROBABILITY THEORY AND QUANTUM MECHANICS 

Quantum mechanical "operator-valued" probabilities are often said to differ funda­
mentally from "ordinary" ones, in disregard of the work of R.T. Cox (1946) who proved 
that any scheme ofinductive inference (reasoning in the face ofuncertainty) must be eithe:r 
equivalent to ordinary probability theory or inconsistent, with probabilities understood as 
encoding incomplete information on a numerical scale of plausibility or rational expecta­
tion, in the tradition of J. Bernoulli and P.S. Laplace (and W. Reisenberg 1930 ). Cox 
proved this by demonstrating that for any formal system of inference obeying the rules 
of ordinary Aristotelian logic the most general consistency conditions can be cast in the 
form of two functional equations whose solutions are the basic sum and product rules 

P(A)C) + P(Ä)C) = 1, (72) 

P(AB)C) = P(A)BC)P(B)C) = P(B)AC)P(A)C), (73) 

from which probability theory unfolds. (A and B represent propositions such as "the coin 
shows head" or "the energy is larger than 2 MeV", AB means "both A and B are true", 
Ä means "A is false", and P(A)C) denotes the probability of A given C. Our notation 
indicates that all probability assignments are conditional, based either on empirical or 
theoretical information or on assumptions C. The two forms ofthe product rule refl.ect the 
symmetry AB= BA.) E. Schrödinger (1947) auived independently at similar conclusions. 
Criticism that Cox had assumed differentiability of his probability functions was met by 
L. Renyi (1954) who gave a proof without this assumption. It appears that any claim 
of an essential difference between ordinary and quantum probabilities must overcome the 
obstacle of Cox's proof. 

An immediate consequence ofthe two forms ofthe product rule (73) is Bayes' theorem 
in its simplest form, 

P(A)BC) = P(B)AC)P(A)C) 
P(B)C) . 

(74) 
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This theorem is fundamental to scientific reasoning. It provides nothing less than a formal 
rule jor updating of knowledge with new evidence, or learning from observations. Suppose 
we are interested in some hypothesis A (for instance about the value of a half-life) to 
which one can assign an initial probability ("prior") P(AIC) (from nuclear systematics 
or previous half-life measurements, with C specifying isotope and decay type). Suppose 
further that we receive new data B ( counts ), and that we also have a theoretical model of 
the experiment (involving the exponential decay law, counting statistics, and experimental 
details such as geometry, source specifications and counter efficiency) from which we can 
calculate, for arbitrary half-life A, the "likelihood" P(BIAC) ofobserving the data B. The 
updated probability ("posterior") is essentially proportional to the product of likelihood 
and prior, P(BIAC)P(AIC), the denominator in (74) acting merely as a normalization 
constant. Updating can be repeated whenever new data become available, the old posterior 
becoming the new prior in each step. It should be understood that the historical terms 
"prior" and "posterior" have a logical rather than a temporal meaning. They simply mean 
"without" and "with" the new data taken into account. It should also be understood that 
probabilities are not relative jrequencies although frequency estimates can be derived from 
them (see e.g. Jaynes 1983, Fröhner 1997). 

In order to see how these rules apply in quantum mechanics let us look at a system 
described by spatial wave amplitudes '1/Jr or, alternatively, by momentum wave amplitudes 
ft?k, so that the state vector is, in the bra-ket notation of Dirac (1947), 

(75) 
r k 

where Ir) and lk) are orthonormal base vectors in position and momentum space ( {rlr') = 
Drr'' (klk') = Dkk') spanning complete base systems. The sumover all probabilities, 

(76) 
r k 

is consistent with the sum rule (72) as long as we work either with the r or the k description. 
Intercalation of the completeness relations l:r lr)(rl = 1 and l:k lk)(kl = 1 produces a 
mixed form of the normalization condition, 

LL(Wir){rlk)(kiW) = LLRe ~t'k(rlk)'I/Jr = LLP(r,kiW) = 1. (77) 
r k r k r k 

The summand F(r,kiY!) looks like the joint probability distribution of r and k in so far 
as it readily yields the correct marginal distributions P(riW) = I'I/Jrl 2 and P(kiW) = l~t'k 12 

if summed over k or r, and also correct expectation values for observables. It is not a 
true probability distribution, however, as it can assume negative values (Margenau and 
Hill1961), like other expressions that have been proposedas joint distributions (e. g. by 
Wigner 1932). 

In fact, there is no room for a joint distribution. The wave functions '1/Jr and lt'k can 
be considered as coordinates of the same unit vector lW) in two coordinate frames differing 
by a "rotation" with the unitary matrix having elements (rlk), 

'1/Jr = (riW) = L (rlk)rpk , (78) ft?k = (kiW) = L {klr )'1/Jr . (79) 
k r 

(These are, of course, the Fourier transforms (14) and (15) in Dirac notation). The wave 
amplitudes for k are therefore completely determined by those for r, given the elements 
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(rlk) of the unitary matrix of Fourier transformations. Taking the absolute square of the 
spatial probability amplitude (78) one ftnds with (79) 

I1/Jrl2 = L('lflk)(klr)(rlk')(k'l'lf) 
k,k' 

(80) 
k k k'<k 

Summation over ail alternatives r produces :Er I1/Jrl2 = :Ek I'Pk 12 , the cross terms with k =j:. 
k' cancelling each other. These interference terms are commonly considered as a hailmark 
of quantum mechanics, not present in classical probability theory. Our equations are, 
however, purely classical in so far as k has not been replaced yet by p = lik. Furthermore, 

Eq. 80 is completely analogous to the expression x't x' = x t 0 t Ox that is valid for a real 
vector and a rotation described by an orthogonal matrix 0, and contains analogous cross 
terms. The often repeated statement that in classical probability theory, in case of two 
mutuaily exclusive alternatives A and B, the probability of one of them being true is given 
by 

P(A + BIC) = P(AIC) + P(BIC)' (81) 

whereas quantum mechanics demands 

11/J(AIC) + 1/J(BICW = 11/J(AICW + 11/J(BICW + 2 Re (1fJ(AIC)*1fJ(BIC), (82) 

is correct but does not reveal any essential di:fference between ordinary and quantum 
mechanical probabilities. What it does show is the di:fference between probability theory 
without and with utilization of Fourier techniques andin particular Riesz-Fejc:h-type prob­
ability wave functions, or with and without L 2 theory ( cf. Feiler 1966 ). If B = Ä, i. e. if 
we sum over the complete set of ( two) alternatives, the interference term is absent as in 
Eq. 76 and there is no di:fference at all: Schrödinger's cat (1935) is either dead or alive 
with perfectly ordinary probabilities. Superposition of live and dead cat occurs only on 
the level of the auxiliary probability waves (Fourier components) introduced by way of the 
Riesz-Fejer theorem. We conclude that the basic sum rule (72) is valid also for quantum 
mechanical probabilities, with 

P(AIC) + P(ÄIC) = 11/J(AIC) + 1/J(ÄICW = 11/J(AICW + 11/J(ÄICW. (83) 

Thus one can add either probabilities or wave functions if there are only two possibilities. 
The :final result is the same. This justifies what we did when we added the wave functions 
for the two alternatives "no exchange" and "exchange" of two indistinguishable particles 
to :find the total wave function ( 63 ). 

What about the product rule? Suppose we open the box enclosing the cat and Schrö­
dinger's deadly contraption, measure the cat's heart beat and :find it normal. Knowing 
the conditional probabilities P(BIA) = 1 and P(BIÄ) = 0, where A stands for "alive" 
and B for "beat noticeable", we can apply Bayes' theorem and infer that the cat is alive: 
P(ÄIBC) <X P(BIÄ)P(ÄIC) = O, hence P(AIBC) = 1 (where C stands for "contraption"). 
Bayes' theorem and thus the basic multiplication rules (73) are seen to work in quantum 
mechanics as weil, with 

P(ABIC) = 11/J(AIC)x(BICW (84) 

for uncorrelated system coordinates A and B ( as in Eqs. 4 7 and 58). 
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Finally, with our understanding of Bayesian updating there is nothing strange about 
the "collapse of the wave function" when new data are taken. Their utilization by means 
of Bayes' theorem inevitably changes all prior probabilities to posterior ones. As this is 
not a physical but a logical process, questions about its sudden (superluminal) occurrence 
throughout physical space do not arise. It is perfectly all right to reason even backwards 
in time if the new evidence is relevant to the past. N or seems there to be much need for 
a special measurement theory as expounded for instance by Omnes (1994). 

We conclude that traditional probability theory can be extended by means of the 
Riesz-Fejch superposition theorem, without violation of the basic sum and product rules 
from which it unfolds, hence without violation of Cox's consistency conditions, and that 
the resulting probability wave theory turns out to be essentially the formalism of quantum 
mechanics inferred by physicists with great effort from the observation of atomic phe­
nomena. From the Bayesian point of view the nature and interpretation of probabilities 
in traditional probability theory, probability wave theory and quantum mechanics need 
not be considered as different, although the mathematics of probability waves is richer, 
comprising superposition and interference with all algebraic consequences. 

9. SUMMARY 

The formalism of quantum mechanics, in the traditional axiomatic or historical pre­
sentation, looks mysterious. It emerges naturally, however, if one treats position and 
momentum uncertainties for classical point particles wave-mechanically, by means of the 
Riesz-Fejch superposition theorem, which by the way dispels any doubts about the lin­
earity of the theory. The theorem permits unrestricted use of Fourier series - the proper 
tool for dealing with temporal and spatial constraints - in a way that guarantees non­
negativity of all probabilities. All the basic features of quantum mechanics are obtained 
readily - wave-particle duality, operator calculus and commutation rules, uncertainty re­
lations, Schrödinger equation, periodicity-related quantization of angular momenta and 
other physical quantities, etc. Moreover, elementary requirements for possible forms of 
the arbitrary phases of probability amplitudes lead unequivocally to the correct form of the 
electromagnetic interaction. The spin-statistics relationship for indistinguishable particles 
is a logical consequence of the natural periodicity of spatial rotations. Planck's quantum of 
action appears automatically, as a "blurring" parameter. The nonlocality (instantaneous 
collapse of the wave function throughout physical space if new information is taken into 
account) follows from strict adherence to Born's interpretation of I"P 12 as a probability den­
sity in combination with the Bayesian scheme for the updating of knowledge. There is no 
reason to doubt that physical quantities, such as the spin coordinates in the spin version 
of the Einstein-Podolsky-Rosen experiment, have a reality independent of the observer, 
in obvious contrast to eigenfunction expansions and eigenvalues that reflect his choice of 
measurement and thus of his preferred reference frame. From this viewpoint quantum me­
chanics Iooks much like an error propagation formalism for uncertainty-afflicted physical 
systems that obey the classical equations of motion. Di:fficulties already present in Hamilto­
nian mechanics, for instance with the infinite electromagnetic self-energy of charged point 
particles, must then also be expected in quantum theory. 

The formalism is holistic, taking into account all probability waves fitting into a given 
experimental setup, and thereby the ensemble of all possible trajectories, as becomes es­
pecially clea:r· in R. Feynman's path integral formulation ( cf. Feynman and Hibbs 1965). 
For a given path, r = r( t), the momentum p is not independent of r but related by differ­
entiation along the path, in contrast to statistical mechanics where joint distributions are 



18 

postulated for r and p without questioning mutual compatibility, and then extrapolated 
in time by integration. The two interfering cylindrical waves ernerging with equal phases 
from the two slits in the particle version of Young 's double slit experiment do not indicate 
that the electron can pass both slits simultaneously but only that two slits are open for 
it and we do not know through which one it will go. A comparison with experiment re­
quires that observables such as relative frequencies are estimated from probabilities (see 
J aynes 1983, Fröhner 1997). The statistical samples, for instance the number of regis­
tered particles in typical diffraction experiments are so large that relative frequencies and 
probabilities hardly differ numericaily. In this sense an observed Young diffraction pattern 
shows the probabilities rather directly (see the results of Möilenstedt and Jönsson 1959 
for an early realization). In other cases, especiaily in high-energy physics, the number 
of observed events may be quite smail (as small as one) but probability theory and thus 
quantum mechanics remain applicable, with the only difference that estimated root-mean­
square errors become larger, hence predictions more uncertain. Quantum mechanics can 
thus be understood as a powerful extension of ordinary probability theory, particularly weil 
suited for dealing with ensembles of classical paths, or chains of events, fitting into given 
experimental configurations. 

Quantum mechanics treats positions and momenta in symmetric fashion. Our expo­
sition emphasized probabilities for particles and deduced wave-like behavior for spatiaily 
extended wave packets (states of information). One could, it seems, equaily weil consider 
light waves and deduce the particle-like behavior of photons. The formal symmetry may 
be misleading, however. The location aspect appears to be more natural for massive par­
ticles for which the generalized momentum (wave length) is not gauge invariant as we 
saw. For the massless photons it is just the particle aspect (weil defined position) that is 
problematic while for radio waves or radar pulses the wave aspect seems natural. A related 
question is whether it is necessary to quantize also the electromagnetic field. The elec­
tromagnetic field intensities are positive definite quantities like the probability densities 
for electrons, so the Riesz-Fejer theorem is applicable. Actually, Fourier techniques and 
the superposition principle were applied routinely to electromagnetic field strengths and 
potentials long before quantum mechanics appeared on the scene. Such problems belong 
to quantum electrodynamics and will not be further discussed here. As far as ordinary 
quantum mechanics is concerned it should have become clear that it can be demystified 
to quite some extent with the Riesz-Fejer theorem. The question seems not so much "how 
can it be like that?" but rather "could it be otherwise?" 

What remains mysterious is the irreducible uncertainty enforced by the empirical finite 
and universal value of Planck's quantum of action. That its value is the same for electrons, 
nucleons, photons etc. is not surprising since their mutual interactions must conserve en­
ergy and momentum. In fact, E.T. Jaynes (1972) found that action is conserved, too, as a 
consequence of probability conservation, i. e. that there is an integral of motion which can 
be identified with n, if a spinless hydrogen-like atom is coupled to a ( classical) electromag­
netic field in a cavity. The role of 1i as a limit to the attainable information and control 
in microphysics has been clear ever since Reisenberg (1930) discussed his uncertainty re­
lations: Partide trajectories and orbits are always affected by a non-removable minimum 
blur. As finite particle size would produce a similar blur, one is tempted to ask if quantum 
mechanics can perhaps be viewed as a kind of minimum information (maximum entropy) 
generalization of probabilistic Hamiltonian mechanics from mass points to particles with 
finite extension (spatial distribution) and internal motion (momentum distribution, spin). 
How this conjecture fits in with others, such as zitterbewegung or superstrings, remains 
tobe seen. 
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APPENDIX: PROOF OF THE RIESZ-FEJER THEOREM 

The proof presented by L. Fejer (1915) as due to F. Riesz, and also contained in the 
book by Riesz and Sz.-Nagy (1953) , is given here in slightly different notation. Consider 
the real Fourier polynomial 

n 

p( x) = p( x )* = L c1 eila: , (Al) 
1=-n 

Defining the polynomial g(z) as 

(A2) 

one can write p( x) = e-nia: g( eia:) or, as the polynomial p( x) is non-negative, 

(A3) 

The polynomial g( z) is of degree 2n if Cn f. 0, so that g( 0) f. 0. If Zk is a solu tion of 
g(z) = 0, 

g( Zk ) = c~ + ... + Cn zfn = 0 , (A4) 

then 1 j zj, is another solution, 

(A5) 

One concludes that each root Zk inside the unit circle is accompanied by another root l/zj, 
outside, with equal multiplicities of the roots inside and the accompanying ones outside. 
(Remember that Zk = 0 can be excluded.) Eq. A3 shows that there are no solutions on 
the unit circle if the polynomial is definitely positive - which we may assume without loss 
of generality as we can always add a small positive quantity E and let it vanish eventually. 
Thus one has 

n 1 
g(z) = Cn IT(z- Zk)(z- -) 

z* 
k=l k 

(A6) 

( where not all the Zk are different if there are multiple roots ). For z = eia: one obtains 

(A7) 

which is the absolute square of a Fourier polynomial of the same order as p( x) so that one 
can write 

n 

p(x) = L czeila: = j'lft(x)J2' -7r < X ::; 7r ' (AB) 
1=-n 

( a ar bitrary) . (A9) 

This completes the ( constructive) proof that each non-negative real Fourier polynomial 
can be written as the absolute square of a complex one of (at most) the same order (same 
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highest harrnonic ). The cornplex Fourier polynornial is rnathernatically rnore convenient 
and rnore flexible because it is not subject to the non-negativity requirernent and contains 
an arbitrary phase. 
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