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Magneto-convection in long vertical reetangular channels 

Abstract 

The buoyancy driven laminar magnetohydrodynamic fiow in long vertical channels 
is investigated. It is assumed that the channels have reetangular cross section with 
one pair of walls aligned with the strong magnetic field. The walls may have arbitrary 
electrical conductance. Using asymptotic methods, solutions are derived for general 
temperature distributions inside the ducts. Results are shown for different values of the 
control parameters. One finds the typical subregions for the fiow inside the duct, namely 
the inviscid core, surrounded by viscous Hartmann layers and side layers. The character 
of the solution inside these regions may deviate from what is expected by a comparison 
with the classical solutions for pressuredriven duct fiows. The main difference is that the 
fiow in the core not necessarily exhibits a two-dimensional behavior. Most surprising, 
however, is the fact, that high-velocity jets are observed for the firsttime along perfectly 
conducting side walls. These jets are able to carry a major part of the fiow rate. 

:MR:D Konvektion in langen vertikalen rechteckigen Kanälen 

Zusammenfassung 

In diesem Bericht werden magnetohydrodynamische Strömungen untersucht, die 
durch thermische Auftriebskräfte hervorgerufen werden. Es wird vorausgesetzt, daß die 
Kanäle einen rechteckigen Querschnitt aufweisen, wobei jeweils zwei Wände parallel zum 
Magnetfeld angeordnet sind. Mittels asymptotischer Verfahren werden Lösungen für 
allgemeine Temperaturverteilungen hergeleitet. Die Ergebnisse werden für verschiedene 
Werte der Kontrollparameter vorgestellt. Man findet die typischen Strömungsgebiete 
im Kanal, nämlich den reibungsfreien Strömungskern, der von viskosen Hartmann- und 
Seitenschichten umgeben ist. Verglichen mit klassischen druckgetriebenen Kanalströ
mungen ergeben sich hier unerwartete Lösungen. Der Hauptunterschied ist, daß der 
Strömungskern nicht notwendigerweise ein zweidimensionales Verhalten aufweist. Über
raschend ist vor allem die Tatsache, daß erstmals Jets mit hohen Geschwindigkeiten 
entlang von perfekt leitenden Wänden auftreten, die einen erheblichen Anteil des Volu
menstroms fördern. 
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1 Introd uction 

In currently investigated liquid-meta! (LM) blankets for fusion reactors the liquid meta! 
serves mainly as breeding material. The high fusion heat flux is removed from the 
blanket and from the plasma by separate cooling devices. This has some advantage in 
comparison to the self-cooled LM concepts where high velocities are required to remove 
the fusion heat by the LM-coolant. While in self-cooled blankets a high pressure head 
drives a forced flow which is very strong compared to buoyant effects, this is not the case 
for the separately cooled 1M-breeder concepts. It may happen that the flow induced by 
non-uniform thermal conditions now is the dominant one in the whole blanket element 
since the velocities caused by the forced flow are on the scale of a few millimeters per 
second. 

Within the scope of separately cooled LM-breeding blankets the buoyancy driven 
laminar flow of an electrically conducting fluid in very long vertical channels is investi
gated. It is assumed that the channels have reetangular cross section with one pair of 
walls aligned with the strong magnetic field, applied horizontally for the plasma con
finement. 

A review of buoyant convective MHD flows is given in the text book by Blums, 
Mikhailov and Ozols (1987). The example which is most closely related with the present 
work is the flow confined in a vertical channel formed by two electrically insulating plates 
of infinite extension. The magnetic field is perpendicular to these plates. The results, 
originally obtained by Gershuni & Zhukovitskii (1958, published in russian, cited by 
Blums et al. (1987)) show that the velocity scales with Gr / M 2 where Gr and M are the 
Grashof and the Hartmann number, describing the intensity of the buoyant forcing and 
the magnetic damping, respectively. For definition of these numbers see the next section. 
The stability ofthis basiclaminar solution has been analyzed by Takashima (1994). He 
finds for small Prandtl numbers, typical for liquid metals, that the laminar unidirectional 
flow becomes unstable at critical values of the Grashof number Gr c· The flow is strongly 
stabilized with higher intensity of the magnetic field. Increasing the Hartmann number 
hy a factor of four to M = 8 increases Grc by three orders of magnitude. Unfortunately 
Takashima does not give results for the parameters focussed in the present paper, where 
M may reach values of 103 - 104 but it can be estimated that the laminar flow may 
remain stable for Hartmann numbers typical for fusion applications. 

The academic problern of a flow between two vertical walls is extended in the present 
paper by introducing finite dimensions of the duct's cross section, as required in engi
neering applications. The walls are assumed to be thin, but they may have arbitrary 
electrical conductance. The temperature inside the ducts may take any value depending 
on internal heating and/or thermal boundary conditions. The direction of the heat flux 
is no Ionger restricted to the direction of the magnetic field as was assumed in the works 
cited above. It is further supposed that the flow remains laminar. Using asymptotic 
methods, solutions are derived for general temperature distributions inside the ducts. 
Results are shown for different values of the control parameters. One finds the typical 
subregions for the flow inside the duct, namely the inviscid core, surrounded by viscous 
Hartmann layers and side layers. It will be shown that character of the solution inside 
these regions may deviate from what is expected by a comparison with the classical 
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solutions for pressuredriven duct flows. The main difference isthat the flow in the core 
not necessarily exhibits a two-dimensional behavior. Most surprising, however, is the 
fact, that high-velocity jets are observed for the first time along perfectly conducting 
side walls. These jets are able to carry a major part of the flow rate. 

Magnetoconvective flows have been analyzed in the past for a number of other dif
ferent geometries. Moreau and coworkers Garandet, Albousiere and Moreau (1992), 
Albousiere, Garandet and Moreau (1993) as well as Ben Hadid, Henri and Kaddeche 
(1997), consider the case of a horizontal Bridgman configuration for crystal growth, 
while Walkerand co-authors focus on the cylindrical geometry typical for the Czochral
ski crystal puller Hjellming and Walker (1987), Hjellming, Tolley and Walker (1993), 
Khine and Walker (1994), Ma and Walker (1995), Ma and Walker (1996a), Ma and 
Walker (1996b). All cited references are using analytical methods of solution. They are 
all somehow related with applications in crystal growth. The fully numerical approach 
of Mößner (1996) and may be that of Ben Hadid and Henri (1997) should be consid
ered more as basic research in this field with no direct applications. The most general 
formulation of the problern of magnetoconvective flows may be found in the paper by 
Alboussiere, Garandet and Moreau (1996). 
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2 Formulation 

The problern considered in this paper is the flow which is caused by buoyancy in long 
vertical channels of reetangular cross section. The electrically conducting fluid is sub
jected to a strong, externally applied uniform magnetic field B = By, parallel to one 
(or two, if the cavity is closed) pair(s) of walls called the side walls of the duct. The 
gravitational acceleration g = -gx is aligned with the channels axis (see figure 1). 

2.1 Basic equations 

The stationary inductionless flow is governed by the equation of motion 

Gr ( "') "' 1 "'2 • A TA M 4 V • V V = -V p + M2 V V + J X y + X ' (1) 

and the conservation of mass 
\1 • V= 0. (2) 

Here, v = ( u, v, w) and j = (ju;, j 1" iz )denote the velocity and the electric current den
sity, scaled by the reference quantities v0 = p0ßgb.T I CJ B 2 and j 0 = CJVoB. T represents 
the difference between a the local temperature and a reference temperature T0 , scaled 
by a characteristic temperature difference D..T. The density of the fluid at temperature 
To is p0 , the thermal expansion coefficient according to the Boussinesq approximation is 
ß. The difference between the local pressure and the isothermal hydrostatic pressure (at 
T0 ) scaled by Lj0B is called p. The electric conductivity of the fluid is CJ and L stands 
for a typical length scale measured in the direction of the magnetic field. 

The non-dimensional parameters are the 

Hartmann number M = LB y' CJ I p0 v (3) 

and the 
Grashof number Gr = ßgb.TL3 lv2

• (4) 

The kinematic viscosity is denoted by v. The square of the Hartmann number gives the 
ratio of electromagnetic to viscous forces. The Grashof number quantifies the importance 
of buoyant effects. The velocity scale is given by the viscous scale IJ I L times Gr I M 2

, 

where the ratio Gr I M 2 corresponds to a Reynolds number. The ratio M4 I Gr is often 
called the interaction parameter. 

The current density is obtained by solving Ohm's law 

j=-"V4>+vxy, (5) 

with conservation of electric charge 

"V. j = 0. (6) 

The variable 4> is the electric potential, scaled by Lv0B. Equations similar to those 
displayed above have been used e.g. by Ma and Walker (1995), Ma and Walker (1996a) 
for calculations of magneto-convection during Czochralski crystal growth applications, 

5 



g 

Figure 1: Sketch of the channel geometry. The fiow exhibits a core in which viscous 
forces are negligible. The core is surrounded by the Hartmann layers (H) and by the 
side layers (S) at walls perpendicular and parallel to the magnetic field B. The corner 
regions are indicated by ( C). 
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while e.g. Albousiere et al. (1993), Alboussiere et al. (1996), Mößner (1996), Ben Hadid 
and Henri (1997) prefer seales different from these. 

The temperature distribution is governed by an energy balance 

(7) 

The quantity Q is the volumetrie heat source sealed by >.t::.T I L2 , eaused e.g. by viseous 
or Ohrnie dissipation or due to nuclear irradiation. The thermal eonduetivity of the 
fluid is >.. The 

Peclet number Pe =voLl K, (8) 

gives the ratio of conveetive to eonduetive heat flux. The thermal diffusivity is denoted 
by K,, 

The boundary conditions are the no-slip eondition at the duet walls 

V= Ü, (9) 

and the thin wall condition for eleetric eurrents 

(10) 

The subseript 'w 'denotes properties at the walland \7~ is the two-dimensional Laplacian 
in the plane of the wall. The constant c is called the 

wall conductance ratio c = Uwt . (11) 

The ratio of the electric wall to fluid conduetivity is Uw. The non-dimensional thiekness 
of the wallt is assumed tobe small, t « 1. Equation (10) ensures eharge eonservation 
in the plane of the wall; eurrents leaving the fluid enter the wall balanee as a souree 
term and ereate inside the wall a potential distribution. It is further assumed that there 
is no contaet resistance at the fluid wall interfaee so that the fluid potential 4> at the 
wall is equal to the wall potential. Note, n is the inward unit normal to the duct wall. 

The thermal conditions are 

T = Tw or n · \7T = -qw (12) 

for perfectly thermally conducting walls or for a given non-dimensional wall heat flux 

Qw· 

2.2 Simplifications 

The fluids under consideration are assumed to have exeellent heat conduction. This 
assumption is fairly valid for liquid metals or semiconduetors and leads to great sim
plifieations for the further analysis. With this assumption the conveetive heat flux is 
negligible if Pe « 1. The temperature distribution becomes independent of the flow and 
ean be caleulated in a first step by solving \72T = -Q with the eorresponding thermal 
boundary conditions. 

It is further assumed that the Hartmann number is sufficiently large, e.g. 

(13) 
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so that inertia effects can be neglected in the momentum balance. It is known, that 
at duct walls which are parallel to the applied magnetic field (here the y- direction) 
high-velocity jets with lvl """ ..,fM may occur. Velocities larger than 0 {1) are further 
possible for a poor conductivity of the duct walls. If this is the case, the above criteria 
has to be reconsidered. Then, M 4 » Gr (v ·'V) v is the restriction for inertia terms 
to be negligibly small. For application in fusion engineering M reaches values of 103-

104 so that the criterium for inertialess fiow is satisfied in most cases. The simplified 
equations now read: 

" 1 .,2 +. ~ TA 
V p = M2 V V J X y + X ' 

'V·v=O 

j=-'Vc/J+vxy, 

'V. j = 0. 

The boundary conditions are not affected by the simplifications. 

(14) 

(15) 

(16) 

(17) 

For very high values of M the fiow region splits into several distinct regions. The 
major part of the fluid domain is occupied by the core, in which viscous effects are 
negligible. In the core, the momentum is balanced between the pressure gradient 'Vp, 
the Lorentz force j X y, and the buoyant force Tx. Viscous effects become important 
within the near-wall boundary layers. The viscous layers near y = ±1, which are 
perpendicular to the applied magnetic field, are called the Hartmann layers. Their 
thickness scales with M- 1 . The Hartmann layers match exponentially the core solution 
with the no-slip condition at so-called Hartmann walls. The layers atz= ±bare called 
the side layers. Their thickness is M- 112 • It is well known from a number of classical 
papers about pressure driven MHD duct fiows that the side layers are capable ( under 
certain circumstances) to carry a significant fraction of the total fiow rate. The portion 
of fiow carried by the side layers depends essentially on the conductivity of the side wall 
c =es. For highly conducting side walls, c8 = oo, no volume fiux is carries by the layer. 
However, if the conductivity is finite, especially if es « 1, the fiow carried by the side 
layer reaches a magnitude of order one. This leads to high velocity jets with velocities 
on the scale of M 112 • 

The equations displayed above describe the problern completely. For the further 
analysis it is useful to introduce the vorticity w = (wx,Wy,wz) 

w='Vxv, (18) 

and to use equations derived from the basic conservation laws. With this notation the 
conservation of charge (17) tagether with Ohm's law (16) gives a relation between the 
y-component of vorticity and the electric potential 

Taking the curl of the momentum equation eliminates the pressure and yields 

~2 'V2w + 8yj - X. x VT = 0 . 
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For the further analysisallvariables are replaced by their core values plus additional 
viscous corrections. 

V V vh Va 
j j h ja 
w w Wh + Wa (21) --+ + p p Pa 
<P <P <Pa 
T T 

The subscripts 'h ' and 's ' denote the viscous corrections to the core solution in the 
Hartmann layers and in the side layers, respectively. To avoid a mass of subscripts the 
core variables are not explicitly denoted by a special index. If subscripts with capital 
letters 'H ' or 's ' are used, they indicate that the value is taken at the Hartmann or 
at the side wall. It is well known that across the Hartmann layers the pressure and the 
potential do not vary, Ph = <Ph = 0 in the leading order of approximation. While the 
core values depend on the coordinates ( x, y, z) , the viscous corrections in the Hartmann 
layers and in the side layers depend on a stretched wall normal coordinate rJ and (, 
respectively. These coordinates are defined during the following chapters. Their scale is 
motivated by the corresponding boundary layer thickness. 
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3 Analysis 

The analysis is performed, using matched asymptotics. In a first step the core solution 
is obtained. In a second step the core solution is matched with the solution in the 
Hartmann layers. Finally, the solution in the side layers is calculated. 

3.1 Core solution 

Considering the vorticity equation (20) in the outer limit as M ~ oo gives 

8y}x = 0, 8yjy = -8zT, 8y}z = 8yT. (22) 

Combining the second of these with the second component of Ohms law (16) leads to 

(23) 

The integration along magnetic field lines gives the potential distribution inside the fluid 

(24) 

where 

1 (ly 1Yl 111Yl ) T (x, y, z) = 2 _
1 0 

T(x, Y2, z)dy2dY1 - Y 
0 

T(x, Y2, z)dy2dY1 . (25) 

has been introduced for convenient notation. The tilde "~ " above a variable denotes 
the integration of the variable according to the equation (25). The part of the potential 
</JH, which is purely dominated by the solution at the Hartmannwalls is 

1 1 
</JH = 2 (1 + y) </J+ + 2 (1 - y) </J_ (26) 

with the new integration functions </J+ and </J_, the potential at the front and at the rear 
Hartmann walls, at y = 1 and y = -1, respectively. The first part gives the average 
potential due to the Hartmann solution, the second part results from currents along 
field lines which are exchanged between the Hartmann walls. Note, </JH is not constant 
along y with this definition. Equation (24) determines the solution within the fluid, 
supposing that the potentials at the Hartmann walls are known. For the y-symmetric 
case </JH = </J+ = </J_. 

The y- component of vorticity is obtained by introducing equation (24) in the equa
tion (19). 

(27) 

The symbol V'l stands for the two-dimensional Laplacian in the plane perpendicular to 
the magnetic field, at y = const. With the energy equation the vorticity component Wy 
becomes 

(28) 

The y- component of vorticity is determined by the solution at the Hartmann walls 
alone, if either there is no volumetric heat source or if the volumetric heating is uniform 
along z. 
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3.2 Hartmann layers 

Within the Hartmann layer a stretched coordinate rJ = M (1 - y) is introduced (here at 
the wall y = 1). Inserting this scale into the vorticity equation (20) yields the ordinary 
differential equation for the y- component 

(29) 

by considering the inner limit as M --+ oo. With the no-slip condition the solution 
becomes 

w11h = -w11e-fl , at y = 1 (30) 

The viscous correction vanishes towards the core as rJ --+ oo, but ensures no-slip at the 
Hartmann wall at rJ = 0. Similar relations can be derived for the velocity components 
parallel to the wall 

(31) 

Integrating the vorticity equation (20) along y and considering the inner limit as 
M--+ oo gives 

811 w11h + M jyh = 0 , at rJ = 0. (32) 

Note, Mjyh is 0 (1) for a reasonable balance of charge according to equation (17). Using 
the equations (30,19,23), the equation determining the wallpotential becomes 

(33) 

where 4J is used according to equation (24). The subscripts denoting the walls become 
'+' and '_ ', the sign at the right-hand side + and -, for the front wall and for the 
rear wall, at y = 1 and at y = -1, respectively. The new parameter e± = M-1 + C± 
measures the total conductance of the Hartmann walls and of the Hartmann layers. 
For the non-symmetric case the equation has to be evaluated at both Hartmann walls 
separately. 

(34) 

Here andin the following variables with an over-bar like 'i' denote average values along 
y. For the symmetric case the equation determining 4JH becomes with e+ = e_ = eH) 

(35) 

3.3 lmplications on the core solution 

With the equation (35) it is now possible to eliminate 4JH from the equation (28) and 
the vorticity component in the core, w11 , is determined by the temperature field only as 

(36) 
symmetric 

This equation shows the following two interesting limits: If the Hartmann walls are poor 
conducting, eH « 1 the first term on the right-hand side is dominant. The vorticity is 
determined by the y- average temperature. There is no variation of w11 along magnetic 
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field lines; the vorticity in the core is strictly two-dimensional even if the temperature 
field is three-dimensional. This result is not surprising. It corresponds with the well 
known fact that the core variables do not vary along magnetic field lines as observed 
in many pressure driven duct flows. More interesting, however, is the second limit, 
eH » 1. For well conducting Hartmann walls the vorticity component is Wy = Bz '\12T. 
It turns out that even if T does not vary along y the vorticity can (remember that f 
has been obtained from T via two integrations along y), especially if the volumetric heat 
release Q = - '\12T depends on z. 

The velocity distribution is obtained not by an integration of the vorticity field but 
by considering the Ohm's law. For the z- component, 

(37) 

the current Jz is replaced using the momentum equation in the x- direction 

BxP = -jz + T. (38) 

The potential is eliminated with the help of equation (24) and the velocity component 
u becomes 

U = -8xp + T + ßzzT + ßzcf>H· 

The z- component of velocity w follows in an analog way 

W = -8zp- BxzT- 8xcf>H· 

(39) 

(40) 

For the y-symmetric case, the velocity components in the plane perpendicular to the 
magnetic field are composed by two-dimensional parts -8xp + Bzcf>H or -82 p- Bxcf>H 
analog to pressure driven duct flows (there are no variations along y). In an i!lhomo
geneous temperature field there areadditional contributions, T + BzzT or -BxzT which 
now can cause variations of u and w along y. Even if the temperature is constant along 
y the function f and therefore the velocity exhibits a profile in this direction. For the 
non-symmetric case 1>H is a linear function along y. 

Using the velocity components given by equations (39,40) in the equation for conser
vation of mass, integrating along y, knowing that p does not vary along the integration 
path, leads to equation 

(41) 

This equation determines the pressure in the core. It is the same equation as for the 
flow in a porous medium. The pressure becomes independent of any fluid motion. It 
is simply given by the thermal stratification. Boundary conditions for pressure can be 
obtained from the equations (39,40) by integration along y. Note, the core velocity 
components u and w normal to the walls are not zero in general, since there may be an 
exchange of mass between the core and the neighboring side layers. The determination 
of their integral values requires the detailed consideration of the side layer solution. 

3.4 Side layers 

Side layers occur near walls which are aligned with the magnetic field. Their thickness 
is 0 ( M- 112

). This scale is known from a number of papers about MHD duct flows and 

12 



is therefore not explicitly derived here. With this knowledge the stretched side layer 
coordinate becomes 

(42) 

here, as an example for the right side layer at z = b. The inner limit of the vorticity 
equation (20) as M ~ oo leads to 

(43) 

Using the equation (19), MB,,<Ps = Wy8 , and replacing Jvs by -8v<Ps according to Ohm's 
law one finds the equation determining the potential in the side layers 

(44) 

This result confirms the proper scale for the side layer thickness as assumed just above. 
The boundary conditions for this equation are the following: If the Hartmannwalls are 
highly conducting, the side layer solution will not affect the potential at the Hartmann 
walls. <Ps = 0 at y = ±1. Towards the core the solution has to match asymptotically the 
core potential, <Ps = a, <Ps = 0 as ( -t oo. At the side wall the potential is equal to the 
wall potential, <P + <Ps = <Ps at ( = 0. The condition a, <Ps = - M- 112u at ( = 0, z = b 
ensures no slip at the side wall. This relation is valid if the side wall is much better 
conducting than the side layer, c8 » M- 112 • If this is the case, the core currents can 
pass through the side layer almost unchanged before they reach the side wall Uzs « 1). 

The general solution for <Ps which satisfies the boundary condition at the Hartmann 
walls and the matehing condition towards the core is 

(45) 

with 

(46) 

The function Hk(ßkY) represents the harmonic functions sin(ßky) and cos(ßky), if either 
k is even or odd. The coefficients are obtained by applying the boundary conditions at 
( = 0. 

L AkHk(ßky) = <Ps- <P = <Ps· 

L ak (Ak- Bk) Hk(ßkY) = M- 112u 

(47) 

(48) 

The Ak are the Fourier coefficients of the difference between the side wall and the core 
potential, the values ak (Ak -Bk) are the Fourier coefficients of M- 112 times the core 
velocity u. The relations above are derived here for one side wall at z = b. Similar 
expressions can be obtained for the other side walls as well. 

The flow rate carried by the side layer is obtained via an integration of Ohm's law 
across the layer thickness. The integral flow rate in the layer U8 (x, y, z = ±b) is defined 
as 

U8 = M- 1
/
2 ~~ U 8 d( = ±</J8 at ( = 0, Z = ±b. (49) 
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Mass exchange with the core, essential for the boundary conditions for pressure, occurs 
if the potential at the side wall varies along the wall. 

(50) 

The bars denote integral values along magnetic field lines. 
The side layer solution is entirely prescribed if the potential at the side wall4>8 and 

the core solution is known. While the velocities u and w and the core potential 1> have 
been already given in the equations (39,40 and 24), the potential at the wall is still to 
be determined. By using the thin wall condition at the side wall with equation (38) one 
obtains 

Jz = T - 8rcp = =fCs "V~1>s at Z = ±b. (51) 

At the junctions with the Hartmannwalls the potentials should be continuous, 1>H = 1>s 
at z = ±b, y = ±1. This yields for very long ducts with 8rcrc « 8yy the general solution 

(52) 

The side layer contribution to the potential and the flow rate in the side layer 1>s -
±U8 = 1>s - 1> become with equation (24) 

(53) 

For the special case of a perfectly conducting side wall, c8 --+ oo, the potential along 
the entire side wall is uniform, 4>8 = 1>H· The flow rate carried by the layer becomes 
simply 

(54) 

This is one of the most surprising results of this paper, since for the first time a jet with 
0 (1) mass flow rate is observed at a perfectly conducting side wall. In pressure driven 
duct flows the core potential near the side wall is uniform along y. There, side layer 
jets occur only at side walls with small conductivity, when a potential profile establishes 
along the side wall. Here, the situation is quite different. The buoyant effect inside the 
channel creates a potential profile in the core near the side wall. Even if the side wall 
potential is uniform there exists a potential difference between the wall and the core, 
driving the flow rate of order one along perfectly conducting side walls. Of course, a 
finite conductivity of the side wall would increase this jet again. It is further interesting 
to notice that for the buoyancy driven convection, the flow rate carried by the side layer 
is not directly related to the global solution inside the core. As displayed in the equation 
(54) the flow rate is determined by the thermal boundary condition only. If there is a 
heat input e.g. by the fusion heat flux, the jet is enhanced and the heat transfer from the 
wall to the fluid will be promoted. If there is a heat extraction at the wall ( as foreseen 
in actual blanket designs by separate cooling of the plasma facing first wall) the jet will 
reverse its direction. 
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4 Applications 

The results derived during the last chapters are applied to the problern of a very long 
vertical channel typical for poloidal elements of a fusion blanket. The channel may have 
open ends for the case when a forced pressure difference is applied to generate an average 
fiow though. However, one can imagine also situations when the ends are closed and 
the fiow inside the channel is purely buoyancy driven. For the first approximation it is 
assumed that the channel is long enough that a fully developed regime establishes within 
a significantly large region along the channel axis. Fully established fiow is characterized 
by a constant pressure gradient BxP = - K and vanishing derivatives Bx = 0 of all the 
other variables. The operators 'V~ and 'Vi become 8yy and ßzz, respectively. 

4.1 Isothermal flows 

As a first example the isothermal pressure driven fiow at T = 0 is considered. This 
is nothing new (see Walker 1981 Walker (1981)) but is presented here to validate the 
analysis. It is assumed that the duct is symmetric with respect to y = 0, i.e. both 
Hartmann walls have equal conductivity c+ = c_ = eH. The vorticity in the core 
vanishes according the equation (36), 

Wy = 0. 

The fiow is uniform in the whole core and given by the equation (39) as 

U = K +ßzcPH· 

(55) 

(56) 

The potential along the Hartmann wall is linear since ßzzcPH = 0 as given by equation 
(35). Charge conservation at the junctions between side walls and Hartmann walls 
CHßzcPH + cs8vc/Js = 0 (here at z = b, y = 1) determine the slope and cPH is obtained as 

cPH = KC[/ z. (57) 

The core velocity finally becomes 

u = K (1 +Ci/) (58) 

The fiow rates carried by the side layers are 

- 1 1 
U8 = -c-;1 K = 2 (1- y2

) c-; Kat z = ±b. (59) 

If the side walls are well conducting, c8 -t oo, there is no volume fiux carried by the side 
layers. Details about the structure in the layers can be seen by considering the leading 
order term of the side layer solution 

U8 ~ l61r-5/ 2 Kc-; 1/Me-cd; sina( cosßy, (60) 

where ß = 7f /2 and a = y1r /2. This solution demonstrates the magnitude of the 
side layer velocities, U 8 = 0 (Kc-; 1 M 112). The equation displayed above leads to the 
maximum value of velocity at y = 0, ( = y1r /2, this corresponds to a distance b - z = 
.j1r /2M from the wall. It shows also the possibility of partly reversed fiow e.g. in the 
range of 2y'ir < ( < 4y'ir. Towards the core as ( -t oo the side layer contribution 
vanishes exponentially. 
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4.2 Heat flux perpendicular toB 

The non isothermal problern considered now is determined by heat conduction through 
a vertical channel. It is assumed that a uniform heat flux crosses the duct between the 
isothermal walls at z = b and at z = -b, VT = z . The other walls are adiabatic. The 
temperature profile satisfies the conditions for symmetry with respect to y = 0. The 
temperature and the integral temperature function are given as 

- 1 ( 2 ) T = z, and T = 2' y - 1 z. (61) 

Note, here the temperature scale i::l.T is given by the temperature gradient times the 
characteristic length scale L. It is further assumed that there is no externally applied 
pressure gradient driving the flow; K = 0. It is then easy to show that for the given 
temperature field the velocity distribution is an odd function of z, while the potential 
will be an even one, ßz</J = 0 atz= 0. 

4.2.1 y-symmetric case 

The entire problern finally becomes y-symmetric if the conductivity of both Hartmann 
walls are equal, e+ = e_ = eH. The potential at the Hartmann wall becomes with 
equation (34) <PH = ~e],/z2 + az, when <PH = 0 is assumed at z = 0. The unknown 
integration constant a = 0 is obtained due to symmetry or by considering a global charge 
conservation J; j 2 dy- eHßz<PH = 0 at z = b. The Hartmann potential finally reads 

1 -1 2 </JH = 2,eH Z . 

The solution for the core potential is 

(62) 

(63) 

The core potential exhibits quite different distributions for the two limits eH -t 00 

and for eH « 1. In the first case the core potential has only a parabolic variation 
along magnetic field lines. In the other direction the potential is constant. This result 
does not correspond with the common view for MHD channel flows that for strong 
fields the core solution is 'projected' to the channel walls. The result, however, is 
obvious. The temperature gradient drives a rotational motion inside the duct. The 
upward fiow for z > 0 and the downward flow for z < 0 induce currents in negative and 
positive z-direction, converging towards the centerplane z = 0 from both sides. Charge 
conservation forces these currents to turn in the y- direction and to close their circuit 
via the Hartmann and the side walls. Along y the current density Jv increases linearly, 
leading to a parabolic potential distribution. The current path is plotted in figure 2. 
This solution is valid independently of any conductivity of the walls. 

On the other band, if eH « 1 the Variation of <P along z becomes much larger 
than the Variations along y so that the Hartmann potential gives a good picture if the 
potential even inside the duct. 
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Figure 2: Path of core currents for buoyancy driven convection with T = z. The currents 
leave the core and close their circuit via the walls or the viscous layers. 

The vorticity component Wy is obtained as 

Wy =Ci/+ 1. (64) 

It is uniform in the whole core. 
The only non- zero velocity component in the core is 

u = (Ci/ + 1) z; (65) 

the fiow in the core does not depend on the y- direction, even if the potential does. For 
the special case of perfectly conducting Walls, CH, Cs = 00 the Velocitydistribution in 
the duct is shown in figure 3 for M = 1000 and b = 1. 

The most surprising result is obtained when the solution in the side layers is con
sidered. The simplest case is that of perfectly conducting walls eH' Cs --+ oo. It is 
known from solutions for pressuredriven duct fiows that there are no high-velocity jets 
at perfectly conducting ducts. Here, however, such jets are found as outlined in the 
following. For c8 = oo the side wall potential is uniform along y and identical to that 
of the Hartmann wall at z = ±b. The viscous correction to the core solution simply 
becomes cp8 = ~ (1 - y2 ) at ( = 0 and the fiow rate carried by the layers is given as 

(66) 

This fiow rate is of the same order of magnitude as the fiow carried by the core. Con
sidering now only one half of the duct, z > 0, supposing that all walls are perfectly 
conducting, leads to the result, that the total fiow rate carried by this part of the duct 
is given by 

1: (1b wlz + U8 ) dy = b
2 + ~· (67) 
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Figure 3: Buoyancy driven velocity distribution in a perfectly conducting duct with 
T = z and M = 1000. 
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The first term on the right-hand side represents the flow in the core, the second one 
gives the magnitude of flow carried by the viscous side layer. This result shows clearly, 
that for highly conducting walls and for geometries with b < ..j2f3 the major part of 
the flow is carried by the side layer, a flow region which occupies only a minor fraction of 
the cross section. This may have significant implications on the design of heat transfer 
facilities in strong magnetic fields. 

Even more severe is the case, when the side walls have finite conductivity. The 
current density normal to the side wall is uniform and creates along the side wall a 
parabolic potential distribution. Jz = T = b = -cs8yyc/Js at z = b. With es < oo the 
viscous correction to the potential and the flow rate in the layer become 

(68) 

a value which, for small es, may exceed the flow in the core by orders of magnitude. AB in 
the previous section, details about the structure in the layer can be seen by considering 
the leading order term of the side layer solution 

U 8 ~ 161r-5
/

2 
( :s + 1) VMe-a( sin o{ cos ßy, (69) 

where ß = 7r /2 and a = /1f /2. This solution demonstrates the magnitude of the side 

layer velocities, U 8 = 0 ( .JM ( c~ + 1)). For highly conducting side walls the side layer 

velocity is proportional to .JM. This situation becomes even most pronounced, if the 
side wall conductivity is small, if es « 1. 

Such strange behavior finds the following explanation: Inside the core the fluid is 
driven by buoyancy similar to the hydrodynamic case of fiow in a porous medium. In 
the hotter part the motion is upward, in the colder part the motion is downward. Like 
in the porous medium, the fiow suffers from strong damping witch results in moderate 
velocities. In a porous medium the momentum of buoyant forces is balanced by viscous 
forces. In cantrast to this, the interaction with the magnetic field transfers mechanical 
into electrical power. The electric power is partly dissipated within the fluid of finite 
electric resistance, but part of it is conducted towards the side layer region. There, it 
may be partly recovered. This leads to the formation of the jet-like structure in the side 
layers. The core acts like an electrical power generator, the side layers like MHD pumps. 
The direction of the jet is determined by the sign of the potential difference between the 
core potential near the side wall and the potential of the side wall. It is a result of the 
core solution and is independent of the temperature distribution within the layer itself. 

4.2.2 Non y-symmetric case 

An interesting situation occurs if the channel is not symmetric with respect to y = 0, 
say one Hartmann wall is better conducting than the other; C_ » C+. Under this 
assumption the potential at the better conducting wall is uniform compared with the 
other potentials. For convenience one can chose the level of potential at this wall to 
cp_ = 28/i' = 2 at y = -1. The potential at the other Hartmann wall at y = 1 then is 
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calculated by the use of equation (34) 

(70) 

which leads to 

(71) 

The integration constant cf>c introduced above is the potential at the corner, at z = b, 
y = 1. It is determined by considering the solution for the potential at the side wall. The 
current entering the side wall is Jz = T = b according to equations (38). This current 
enters the side wall and creates there a potential distribution b = -8vvcf>s (see equation 
(51)). The solution of this equation finally determines the potential at the corner by 
the matehing conditions for the Hartmann and the side wall potentials cp+ = cf>s = cf>c, 
C+Bzc/>+ + cs8yc/>s = 0 at z = b, y = 1 and cf>s = cp_ = 2 at z = b, y = -1. 

cp = 2 C8 + b 
c c8 + J2{J;. tanh ~ 

y20+ 

(72) 

These results already show the following interesting limits: If the wall at y = 1 is well 
conducting the potential will find a parabolic distribution along z. On the other hand, 
if the conductance is poor there exists a possibility for a new type of exponential side 
layers with a width of the order C12

• Before a detailed discussion of this result the 
velocity in the core is calculated using the equation (39). 

The core velocity is given by 

sinh "J2C:z 
20+ u=z+(l+y) cf>c 

2yi'I[J;. cosh ~ 
y20+ 

(73) 

Even if the temperature is constant along y, the velocity profile does not reflect this 
behavior. The velocity is non-uniform in this direction. The most interesting velocity 
distribution is obtained for moderate conductivity of the Hartmann wall; say for C12 « 
1. Under this assumption the velocity profilein the core becomes 

1 cf>c lzl- b 
u ~ Z=F -(1 +y) ~exp ~' for z ~ 0. 

2 2 2 + 2 + 
(74) 

The flow rate carried by the convective motion in the hotter part of the core is obtained 
as 

t 11 udydz = b2 + _21c/>c (1- 1 b ) • 
Jo -1 cosh J2c+ 

(75) 

The results described above have show the possibility of a second type of MHD side 
layer. These side layers are a part of the inviscid core. Their thickness scales with the 
conductivity of the poor conducting Hartmann wall as c12

• Within these inviscid layers 
the velocity is a linear function along magnetic field lines. This is in cantrast to the 
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viscous side layers where the velocity profile has a parabolic shape along the side wall. 
Similar layers have been mentioned already by Walker (1981) for pressuredriven duct 
fiows with variable reetangular cross section. While Walker uses the terms outer and 
inner layers motivated by the mathematical procedure, in the present paper the terms 
inviscid and viscous layers are used, respectively to characterize the particular physics 
in each layer. 

One can imagine situations when almost all core fiow is carried by these layers, 
depending on the parameters used for the conductivity of the Hartmann wall. For 
c!-12 « 1, the inviscid layer may carry a signi.ficant fraction of the total fiow. This 
fraction is further called 2Üi and reads 

- C8 + b r;:;-
2Ui = cf>c = 2 f7)7r for y C+ « 1. 

C8 + y2v+ 
(76) 

The ratio of fiow carried by the inviscid layer to the fiow carried by the rest of the core 
may become really large if c8 and J(J';. aresmall compared with the half width b of the 
duct. 

In addition the viscous side layers arestill present. It is now interesting to compare 
the fiow rate in the inviscid layer with the fiow rate in the viscous layer. It can be shown 
that the fiow rate in the viscous layer is the same as for the y-symmetric case discussed 

one section above, 2Ü8 = ~ ( c~ + 1). For the comparison of fiow rates it is assumed 

that the Hartmann wall and the side wall are poor conductors, es, J(J';. « 1. Then, the 
ratio of fiow carried by the inviscid and the viscous layer becomes 

üi 3 
Ü8 = 

1 
+ j2c+ · 

c. 

(77) 

Depending on the parameters one can imagine situations when most fiow is carried 
by the uniform core or when most fiow is carried by the viscous and the inviscid layers. 
However, the inviscid layer will never carry more than 3 tim es the fiow of the viscous 
layer. These examples should shortly outline the high sensitivity of the fiow distribution 
inside the cross section to the electrical boundary conditions. 

One result of those described above is displayed in figure 4. for c+ = 0.05, Cs = 1. 
M = 1000. 

The inviscid layers become clearly visible near the side walls. The magnitude of 
velocity in the core is small near the highly conducting Hartmann wall at y = -1 but 
most pronounced near the poor conducting Hartmann wall. The non-symmetry with 
respect to y = 0 can be also seen by considering the current path in the core. For a 
low conductivity of the upper Hartmann wall most currents leaving the core enter the 
lower, perfectly conducting Hartmann wall. They close their circuit via the conducting 
side walls and enter the core again near z = ±1. Only a minor fraction takes the other 
path via the high resistance upper Hartmann wall. Increasing the conductivity of the 
upper wall increases this fraction and finally a symmetric situation as shown in figure 2 
is reached when c+ = 00. 
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Figure 4: Velocity distribution for buoyancy driven convection with T = z and 
M = 1000. The lower Hartmann wall is perfectly conducting, C_ = oo; the other 
conductivities are 0+ = 0.05, c8 = 1. One can observe the thicker inviscid layers near 

z = ±b. 
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Figure 5: Path of core currents for buoyancy driven convection with T = z and 
M = 1000. The lower Hartmann wall is perfectly conducting, C_ = oo; the other 
conductivities are C+ = 0.05, c8 = 1. The currents leave the core and close their cir
cuit preferentially via the highly conducting walls at y = -1 and at z = ±1. As the 
upper Hartmann wall conductivity increases the current pattern approached that of the 
symmetric case as already shown. 

4.3 Heat flux aligned with B 

For the second example the heat flux is turned by is 90° in the horizontal plane. The 
temperature gradient is now aligned with the magnetic field, "VT = y and the temper
ature and the temperature function become 

- 1 ( T = y, T = 6 y3 
- 1) . (78) 

The conductivity of both Hartmann walls are assumed to be equal, C+ = C_ = CH. 
The potential at the Hartmann wall at y = 1 is determined by equation (34). The 
temperature field is an odd function with respect to y = 0. This behavior is reflected on 
the potentials </J+ = -</J_. The solution for the potential </J+ becomes 

sinh v*; 
</J+ = cPc . h b H ' (79) 

sm :.rc;; 

when </J+ = 0 is assumed atz= 0. The integration constant <Pc introduced above is the 
potential at the corner, at z = b, y = 1. The core potential finally reads 

(80) 

Side layer jets occur only for side walls with a finite conductivity c8 < oo. The equation 
determining the potential at the side wall (51) is iz = y = -cs8Y!I<jJ8 • 

y- y3 
<Ps = cPcY + 

6 es 
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Continuity of electric currents at the corner finally determines <Pc as 

<P = ~ 1 
c 3 C8 + .jCi; coth Ä (82) 

If no external pressure difference is driving an average flow rate, the velocity is deter
mined using u = T + ßz<P· 

(83) 

and the velocity inside the core becomes 

U = y 1 + 'f'c V~H • 
( 

,1,. cosh~) 
/(J;; sinh :.,rc;; 

(84) 

The solution far away from the side walls takes, as expected, the same values as a flow 
between two vertical flat, infinite Hartmann walls. (see e.g. BlUms et al. (1987) p.167). 
The present result includes now the effects of a finite extend of the duct in the z-direction. 
It is remarkable that even if the temperature field is uniform along z, the velocity field 
may exhibit the strongest Variations in this direction. Thin, high-velocity side layer jets 
are formed, which may carry a significant fraction of the total flow rate. As an example 
the flow in a duct with M = 1000, eH = 0.05 and , Cs = 0.1 is displayed in figure 6. The 
flow pattern is qualitatively similar tothat obtained by Ben Hadid and Henri (1997) by a 
fully numerical simulation of MHD flow in a geometry related to a horizontal Bridgman 
device for crystal growth applications. Even if their electrical boundary conditions and 
the orientation of the magnetic field and the temperature gradient are different to the 
problern considered here, the main physical mechanisms should be the same. The main 
reason for a good qualitative agreement may be that the temperature gradient and the 
direction of the magnetic field are mutually perpendicular in their paper as well as in the 
present work. They had a temperature gradient aligned with the ducts axis which was 
oriented perpendicular to the direction of gravity. Here the axis is aligned with gravity, 
normal to the temperature gradient. It should be a straight forward exercise to recast 
their problern in the present notation, extending their results for nonconducting ducts 
to geometries with arbitrary conductivities. Moreover, the' present formulation gives 
the analytical relationship between the physical variables with no upper restriction on 
the Hartmann number while numerical solutions are currently restricted to Hartmann 
numbers in the range of 102 • 

The total flow rate in the hotter part of the duct, for y > 0 is obtained as 

(85) 

The first two terms on the right-hand side in this equation correspond to the flow rate 
carried by the core, the second gives the flow rate of the inviscid layer, and the last one 
gives the flow carried by the viscous layer. If the conductivities of the walls are small, 
say C8 , ~ « 1 all flow is carried by the viscous and the inviscid layers. The rest of 
the core is almost stagnant. The flow rate in both types of side layers may exceed that 
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Figure 6: Velocity distribution for buoyancy driven convection with T = y and M = 
1000. The conductivities of the walls are eH = 0.05, Cs = 0.1. One can observe the 
thicker invicid layers which are part of the core. Along the side walls the viscous layers 
exhibit strong velocity jets. 
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of the rest of the core if C8 becomes small or ~c becomes large. The flow distribution 
between the two layers is determined by 

J; Uidy 4 

fol UsdY = 1 + /§i' 
c. 

(86) 

The structure of the viscous side layer remains similar as for the case when the heat 
flux is perpendicular to the side walls, except that the cos (ßy) function is replaced by 
sin (ßy) and some coefficients change their values. The leading order term of the side 
layer solution is 

(87) 

where now ß = 7r and a = Ffi. This solution behaves similar along ( as that in the 
previous section. Along y the flow varies according to the odd function sinß1y. There 
is a flow in the x-direction for y > 0 and a reversed flow for y < 0 in the same layer. 

The electric currents which oppose the fluid motion in the core have to close via the 
side wall. Part of these currents flow from the front half of the side wall to the rear 
half, from y > 0 to y < 0. Another part leaves the side wall at y = ±1 and enters the 
Hartmannwalls or vise versa. For poor conducting walls the currents are limited by the 
resistance in the walls. The breaking effect by Lorentz forces is reduced and buoyant 
effects may create large velocities. If one of these walls is perfectly conducting, ~c' the 
potential at the corner vanishes. The currents and the flow rate in the core become 
0 (1) since the only current limiting resistance is that of the fluid itself. The current 
path for the example discussed above is shown in figure 7. 
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Figure 7: Current path for buoyancy driven convection with T = y and M = 1000. The 
conductivities of the walls are CH = 0.05, c8 = 0.1. The currents induced in the core 
partly enter the side walls along which they close from y > 0 to y < 0. The other part 
leaves the side wall and enters the Hartmann walls at y = ±1, z = ±b. This part of 
currents is distributed to the core across the Hartmann layers and is responsible for the 
formation of the inviscid part of the velocity jets. 
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5 Conclusions 

The buoyancy driven laminar MHD flow in long vertical channels of reetangular cross 
section has been investigated. Of particular interest for the present analysis was the 
horizontal orientation of the applied strong magnetic field, parallel to one pair of duct 
walls. Such geometries are typical for fusion applications in self-cooled or in separately 
cooled liquid metal blankets. 

The basic equations have been used in nondimensional form with a velocity scale 
proportional to the ratio of buoyant forcing to magnetic damping Gr / M 2

• With this 
representation the equations become uniquely valid with M as the only parameter. The 
wall conductance ratio c enters the problern via the boundary conditions as a second 
parameter. The magnetoconvective flow has been calculated using the inductionless 
approximation by applying asymptotic methods for high Hartmann numbers M. The 
integral temperature function T allows a compact representation of the analysis in closed 
form for any temperature distribution. 

One can identify the commonly known flow subregions: the inviscid core, where 
buoyant forces are balanced by Lorentz forces, the Hartmann layers with thickness of 
the order M-1 with a balance between Lorentz - and viscous forces, the side layers 
with thickness proportional to M-1/ 2 caused by a balance of the potential difference 
between the core and the side walls with the induced potential of the high velocity jets. 
In addition inviscid layers near the side walls are found which are part of the core and 
scale in thickness as c112 • The later ones are caused by a current exchange between the 
Hartmann walls and the core across the Hartmann layers. Nonzero currents through the 
Hartmann layers are a source of vorticity and responsible for large velocity gradients in 
these regions (compare e.g. Bühler and Molokov (1994)). In the isothermal case the 
results reduce to the well-known solution for pressure driven duct flows. Results for 
pure buoyancy driven flows are presented for the cases of a uniform heat flux through 
the side walls, T = z or through the Hartmann walls, T = y. 

The first example of a buoyant flow is most closely related to applications in fusion 
engineering, where the major heat exchange is via a walls aligned with the magnetic 
field, called the first walZ. In order to analyze the results quantitatively, the upward flow 
rate in the hotter part of the duct is considered. For walls relatively well conducting 
compared with the conductivity of the viscous layers, M-1 « CH, c~ « 1, the flow rates 
carried by the core and those carried by the viscous side layers become proportional to 
b2 /CH and to ib/cs, respectively. All currents induced in the core have to close their 
path via the Hartmann walls. The conductivity of these walls is still small compared to 
unity and thus the walls give an upper limit for the currents and Lorentz forces by their 
Ohrnie resistance. As a result, the flow rate in the core is proportional to Ci/ a value 
which may exceed that of order one, observed in perfectly conducting ducts. Moreover, 
high-velocity jets are formed along the walls at which the heat is transferred. These 
viscous jets carry a volume flux proportional to c:S 1

, favorable for heat transfer. For the 
case of perfectly conducting Walls, CH, Cs = 00 1 the flow in the core becomes 0 (1). 
The most surprising result, however, is the fact that even for perfectly conducting side 
walls a jet with order one flow rate remains. The velocities are proportional to M 112 

times the wall heat flux into the channel. Jets along perfectly conducting walls are not 
observed in classical pressuredriven duct flow problems. Here, for the first time, such 
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jets are found. Even if the velocities in the core are moderate those along perfectly 
conducting side walls are large. These results should stipulate again discussions about 
the feasibility of poloidal self-cooled fusion blankets. 

In currently investigated blanket concepts a number of ducts are combined in par
allel to form a torus segment. Some of these ducts have walls towards an insulating 
surrounding, others face conducting neighboring channels. This leads to non-symmetric 
conditions for the fiow inside those ducts, even if the thermal conditions suggest sym
metry. To analyze the effect of non-symmetry an extreme case has been chosen where 
one Hartmann wall is assumed to be perfectly conducting. For the same temperature 
distribution as discussed just above, T = z, the velocity in the core no Ionger remains 
uniform along magnetic field lines. The core itself forms layers near the side walls, here 
called the inviscid layers, in which a large amount of fiow may be carried. The thickness 
of these layers is proportional to C-!(2

, the finite conductivity of the other Hartmann 
wall. In addition to these inviscid layers the viscous ones are still present. 

The third example discussed does not have a direct relation with fusion applications 
since the heat fiux enters or leaves the channel via the Hartmann walls, T = y. Forthis 
temperature distribution one finds a linear velocity profilein the core along the magnetic 
field lines, u = y, far from the side walls. The result is in accordance with known 
solutions Blums et al. (1987). Near the side walls, again inviscid layers with thickness 
proportional to c~P and viscous layers of thickness of the order M- 112 are present. Both 
layers may carry the major fraction of fiow rate depending on the combination of the 
conductivity of the Hartmann and the side walls. 

The examples for which results are displayed in the present paper already show the 
large variety of possible fiow configurations. Examples including internal heating are 
not included in this work but covered by the present analysis. The analysis is performed 
here for long vertical channels in the frame of fusion applications. Nevertheless, it should 
be possible to apply the present ideas to other problems like the fiow in a long horizontal 
Bridgman configuration for crystal growth where similar phenomena are observed. 
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