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A compendium of T-stress solutions

Abstract:

The failure of cracked components is governed by the stresses in the vicinity of the
crack tip. The singular stress contribution is characterised by the stress intensity factor
K, the first regular stress term is represented by the so-called T-stress.

T-stress solutions for components containing two-dimensional internal cracks and edge
cracks were computed by application of the Boundary Collocation Method (BCM).
The results are compiled in form of tables, diagrams or approximative relations.

In addition a Green's function for T-stresses is proposed for internal and external
cracks which enables to compute T-stress terms for any given stress distribution in the
uncracked body.

Eine Sammlung von T-Spannungs-Lésungen

Kurzfassung:

Das Versagen von Bauteilen mit Rissen wird durch die unmittelbar an der Rif3spitze
auftretenden Spannungen verursacht. Der singulare Anteil diese Spannungen wird
durch den Spannungsintensitatsfaktor K charakterisiert. Der erste regulare Term wird
durch die sogenannte T-Spannung beschrieben.

Im vorliegenden Bericht werden Ergebnisse fur Bauteile mit zweidimensionalen
Innenrissen sowie Aul3enrissen mitgeteilt, die mit der "Boundary Collocation
Methode" (BCM) bestimmt wurden. Die Resultate werden in Form von Tabellen, Dia-
grammen und Naherungsformeln wiedergegeben.

Zusatzlich wirden Greensfunktionen fur Innen- und Aul3enrisse angegeben. Diese er-
lauben die Berechnung des T-Spannungsterms fir beliebige Spannungsverteilungen in
der ungerissenen Struktur.
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1 Introduction

The fracture behaviour of cracked structures is dominated by the near-tip stress field. In

fracture mechanics, interest focusses on stress intensity factors, which describe the singular
stress field ahead of a crack tip and govern fracture of a specimen when a critical stress inten-
sity factor is reached. Nevertheless, there is experimental evidence (e.g. [1-3]) that also the
constant stress contributions acting over a longer distance from the crack tip may affect

fracture mechanics properties. Sufficient information about the stress state is available, if the

stress intensity factor and the constant stress term, the T-stress, are known.

While stress intensity factor solutions are reported in handbooks for many crack geometries
and loading cases, T-stress solutions are available only for a small number of test specimens
and simple loading cases as for instance pure tension and bending.

Different methods were applied in the past to compute the T-stress term for fracture mecha-
nics standard test specimens. Regarding one-dimensional cracks, Leevers and Radon [4] made
a numerical analysis based on a variational method. Kfouri [5] applied the Eshelby technique.
Sham [6,7] developed a second-order weight function based on a work-conjugate integral and
evaluated it for the SEN specimen using the FE method. In [8,9] a Green's function for T-
stresses was determined on the basis of Boundary Collocation results. Wang and Parks [10]
extended the T-stress evaluation to two-dimensional surface cracks using the line-spring
method.

In earlier reports the T-stress term for single edge-cracked structures [11] and for double-edge
cracked plates [12] were communicated. In [13] the computations were extended to internal
one-dimensional cracks.

In the present report all the T-stress solutions are compiled. Most of the results were obtained
with the Boundary Collocation Procedure and with the Green's function technique. Therefore,
these methods are described in detail in Sections 2-4. Section 5 contains solutions for internal
cracks and Section 6 represents results for edge cracks.



2 T-stress term

The complete stress state in a cracked body is known if a related stress function is known. In
most cases, the Airy stress functi®dns an appropriate tool which results as the solution of

AAD =0 2.1)

For a cracked body a series representatiorbfevas given by Williams [14]. Its symmetric
part can be written in polar coordinates with the crack tip as the origin
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whereo* is a characteristic stress and W is a characteristic dimension. The geometric data are
explained by Fig2.1.

From this stress function the x-component of the stresses respit8 at

o o= _ZAHEPV_VXQLM (2n +2?r>])(_2]l-’]+ D_ Z4A*“ %g(n*ﬂ) (2.3)

The term with coefficienfy is related to the stress intensity fadtpby

K, =o*FJm (2.4)
with the geometric function F
F=Av18/a , a=alW (2.5)

The term with coefficienA*, represents the total constamntstress contribution appearing at
the crack tip (x=a) of a cracked structure

o] =-40* A, (2.6)

X|x=a
This total x-stress includes stress contributions which are already present at the location x=a
in the uncracked bodyy?, and an additional stress term which is generated by the crack

exclusively. This contribution of the crack is called the T-stress and given by



T=-40* A, -0 (2.7)

The total x-stress component is also of interest for fracture mechanics considerations. This
may give rise to defining an additional T-term, T', by

T'=T+0Q =-40* A, (2.8)

Fig. 2.1Geometrical data of a crack in a component.

Leevers and Radon [4] proposed a dimensionless representation by the stress biaxiflity ratio

_TJma _ T 2.9)
K, oO*F '

B

Taking into consideration the singular stress term and the first regular term, the near-tip stress
field can be described by

K
O = 27|'1a fi (@) +0o;, (2.10)
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wheref; are the well-known angular functions for the singular stress contribution.






| METHODS

For the determination of T-stress solutions the following methods were applied:

» Westergaard stress function
*  Williams (Airy) stress function
* Boundary Collocation method
* Green's function method

 Principle of superposition.

The methods are outlined in Sections 3 and 4.



3 Green's function for T-stress

3.1 Representation of T-stresses by a Green's function

As a consequence of the principle of superposition, stress fields for different loadings can be
added in the case of single loadings acting simultaneously. This leads to an integration repre-
sentation of the loading parameters and was applied very early to the singular stress field and
the computation of the related stress intensity factor by Buckner [15]. Similarly, the T-stress
term can be expressed by an integral [6-9]. The integral representations read

K, :}h(x, ao,(x dx, T:j’t(x, a)o,(x) dx (3.1)

where the integration has to be performed with the stressdield the uncracked body

(Fig.3.1). The stress contributions are weighted by a weight fundtjah dependent on the
locationx where the stress, acts.

Fig. 3.1Crack loaded by continuously distributed normal tractions (present in the uncracked body).

The weight function& andt can be interpreted as the stress intensity factor and as the T-term
for a pair of single forceB acting at the crack face at the locatigr{Fig.3.2), i.e. the weight
functions {, t) are Green's functions fé& andT. This can be shown easily. The single forces
are represented by a stress distribution

0(x) = £ 5(x =%, (3.2)



whered is the Dirac Delta-function arlis the thickness of the plate (often chosen t®be
1). By introducing these stress distribution into (3.2) we obtain

Pl P
Kp = 5 [0 %) (X @ die 0, ) (3.3a)

_P sk _P
T, = B‘!)’é(x %) I(Xx @) dx Bt(xo,a) (3.3b)

i.e. the weight function terntgxp,a) andt(xy,a) are the Green's functions for the stress inten-
sity factor and T-stress term.

3.2 Set-up of the Green's function

3.2.1 Asymptotic term

In order to describe the Green's function, a separation is made consisting of & term
representing the asymptotic limit case of near-tip behaviour and a correctiotytewhich
includes information about the special shape of the component and the finite dimensions,

t=t,+t (3.4)

corr

Fig. 3.2 Situation at the crack tip for asymptotic stress consideration.

In order to obtain information on the asymptotic behaviour of the weight or Green's function,
we consider exlusively the near-tip behaviour. Therefore, we take into consideration a small
section of the body (dashed circle) very close to the crack tip (Fig.3.2). The near-tip zone is
zoomed very strongly. Consequently, the outer borders of the component move to infinity.



Now, we have the case of a semi-infinite crack in an infinite body. If we load the crack faces
by a couple of forces P at locatisax,<<a, the stress state can be described in terms of the
Westergaard stress function [16]:

P 1 |b

Z=— — , Z=E&+i 3.5
nmz+b\z ¢+in (3.5)

The regular contribution to the stress functiorgj$ ¢ 0)

P 1 |z
R e 3.6
“ mz+b\b (36)
from which the regular part of the x-stress component results as
o,=Rez-yIm(dz/d) O o,|_,=ReZ}| 3.7)
P JX-a
o =ReZ =, X'>a 3.8
%10l y=o e[ reg} |y=o 1T (X=X} a- x (3.8)
The constant x-stress term, i.e. the regular x-stress @tis then given by
O = ——lim — VXA (3.9)
TIx-0 Tx-a(X'=X)Wa— X
and the Green's function reads
0 t, = - lim— X2 (3.10)

mx-a(x-x)va- x

From (3.9), the T-stress can be derived for a couple of forces for a semi-infinite crack in an
infinite body, namely

forx<a
= EO : (3.11)
o forx=a
Let us consider the crack loadipgto be represented by a Taylor series with respect to the
crack tip as
dp 2

PO)= A~ (@- x)+% ‘;Xf (a-x)? .. (3.12)

X=a X=a

The corresponding T-stress contribution, resulting from the asymptotic part of the Green's
function, is given by



p 1
T, =[t,(X,a X)o(X) dx=—-—0 lim 3.13
o = [o(x,2 903 0|, im s q(xx)m (3.13)
with the remaindeR containing integrals of the type
a _ n-1/2
I, :I&dx , n21 (3.14)
) X=X
which yield (see e.g. integral 212.14a in [17])
n-1 v\
| =25 BTX) grvwz y gruzy, Va-Jx-a (3.15)
&2n-1-% \/§+ X—a
Consequently, the limit value is
limvx-al, =0 O R=0 (3.16)

and the ternily is exclusively represented by the first integral term in (3.13). Integration of
this term results in

1 1 ad
lim+X-a I|m -a arcta =
P, fim VX Ixx)’—ax Pl fim VX B—ﬁ %
—a U
_— =, lim gr arctanwfﬁ 0=~ P, (3.17)
Vi X' - a|:| a |:| -
0 T,=-f,.=-0,_ (3.18)

3.2.2 Correction terms for the Green's function

3.2.2.1 Edge cracks

By the considerations made before, only the asymptotic part of the x-stress is derived. Since a
small region around the crack tip was chosen, the component boundaries were shifted to infi-
nity. Now, a set-up has to be chosen for the weight function contribiggipwhich includes

the finite size of the component.

Let us assume the difference between the complete Green's fuificfi@md its asymptotic
partty(b) to be expressible in a Taylor seriestisa-x— 0

o
dbz b=0

ot

ton (D) =t(b) - t,(b)= f(b= O+% b +... (3.19)

1
b+1

b=0




Then the complete Green's function can be written as
t=t,+ Z C,(1-x/ a)" (3.20)
v=1

If we restrict the expansion to the leading term, we obtain as an approximation
X
tD%+CQ——§ (3.21)
a

A simple procedure to determine approximative Green's functions is possible by determina-
tion of the unknown coefficients in the series representation (3.20) to known T-solutions for
reference loading cases [9]. The general treatment may be shown for the determination of the
coefficient C for an approximative weight function representation according to (3.21).

Let us assume the T-terfp of a centrally cracked plate under pure tensigpho be known.
Introducing (3.21) into (3.1) yields

T :aolt(x, a) dx= GO! t dx+ o, qo(l— X @ dx 00§~1+ %Q (3.22)
and the coefficient results as

0
C= 2 EL+ LD (3.23)
all o,U

Knowledge of additional reference solutions Taallows to determine further coefficients.

3.2.2.2 Internal crack

The derivation of an approximate Green's function for internal cracks is similar to those of
edge cracks. Due to the symmetrxatO, the general set-up must be modified. An improved
description that fulfills eq.(3.19) and is symmetric with respert@is

t=t, + Z C,(1-x/1a)" (3.24)
v=1
with the first approximation
t Ot, + C(1- x*/ &) (3.25)

In this case, the coefficie@ results from the pure tension case as

c- 2RI

=— (3.26)
2al o,0
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4 Boundary Collocation Procedure

4.1 Boundary conditions

A simple possibility to determine the coefficiedsandA* is the application of the Bounda-

ry Collocation Method (BCM) [18-20]. For practical application of eq.(2), which is used to
determineA; andA*y, the infinite series for the Airy stress function must be truncated after
the Nth term for which an adequate value must be chosen. The still unknown coefficients are
determined by fitting the stresses and displacements to the specified boundary conditions. The
stresses result from the relations

2

Gr_}@ 100 (4.1)
& r?op

o’P

O, = 57 4.2)
100 10°

Ty =™ (4.3)

p raodp

The displacements read in terms of the Williams stress function

Zntf[(n+4v_%)cos(n_%)l’ - (n-3%)cosh+3 ¥ I

E n=0

2+ f[(n ~)sin(n+2)p - (n-4v +2)sin(n-1 ) |+

£
+1+_V i A*ngrﬁgﬂ[( n+4v —2cosng — (n+ 2)cos(n+ 2y ] (4.4)
> At

A* g [(n+2sin(n+2¢ —(n— 4+ Jsin np] (4.5)

n

E

(v=Poisson ratio), from which the needed Cartesian component results as

U, = ucosg — Vv sinp (4.6)

11



Fig. 4.1Node selection and boundary conditions for an internally cracked disk.

In the special case of an internally cracked circular disk of rdjitise stresses at the boun-
daries are:

0,=7,=0 (4.7)

along the quarter circle. Along the perpendicular symmetry line, the boundary conditions are:

u, = const. - N, =0 (4.8a)

T, =0 (4.8b)
About 100 coefficients for eq.(2) were determined from 600-800 stress and displacement
equations at 400 nodes along the outer contour (symbolized by the circles in Fig. 4.1). For a
selected number oN@-1) collocation points, the related stress components (or displacements)
are computed, and a system oN2{) equations allows to determine up tiN2{) coeffi-

cients. The expenditure of computation can be reduced by the selection of a rather large
number of edge points and by solving subsequently the then overdetermined system of
equations using a least squares routine.

In the case of the edge-cracked rectangular plate of Widlémd hight # (Fig. 4.2) the
stresses at the border are

0,=0,1,=0 for x=10 (4.9a)
o,=0% 1,,=0 for y=H (4.9b)
0,=0,1,,=0 for x=W (4.90)

12
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Fig. 4.2 Collocation points for the edge-cracked rectangular plate

and in the case of the Double-edge-cracked plate (Fig. 4.3) it holds

0,=0,717,=0 for x=10 (4.10a)
o,=0% 1,=0 for y=H (4.10b)
?yX =0, 1,,=0 for x=W (4.10c)
|
| <8
a) | b) |

Fig. 4.3Double-edge-cracked plate a) geometric data, b) half-specimen with symmetry boundary conditions.

13



4.2 Boundary Collocation procedure for point forces

The treatment of point forces at the crack face in case of a finite body is illustrated in the
following sections for a circular disk with an internal crack loaded by a couple of forces at
y=0. In order to describe the crack-face loading by concentrated forces, we superimpose two
loading cases. First, the singular crack-face loading is modelled by the centrally loaded crack
in an infinite body described by the Westergaard stress function

_Pa_ 1

M zZ-4&

The stresses resulting from this stress function disappear only at infinite distances from the
crack. In the finite body, consequently, the stress-free boundary condition is not fulfilled. To
nullify the tractions at the outer boundaries, stresses resulting from the Airy stress function,
eq.(2.2), are added which do not superimpose additional stresses at the crack faces. The basic
principle used for such calculations, the principle of superposition, is illustrated in more detail

in the Appendix.

z (4.11)

The stresses causedbgre

o,=ReZ-ylmZ' (4.12)
o,=ReZ+ylmZ (4.13)
T, =-YyReZ (4.14)

dzZ_ Pa 2Z7-4&
dz 1 (2 - &)°%?

with Z'= (4.15)

Fig.4.4 Coordinate system for the application of the Westergaard stress function to a finite component.

14



For practical use it is of advantage to introduce the coordinates shown in Fig.4.4. The fol-
lowing geometric relations hold

z=rexp(i¢), z-a=rgexpid,), z+a= 1, expi, ) (4.16)
r=yx>+y’, tang=y/x (4.17a)
n=y(x-a)+y’, tanp,=y/(x- a) (4.17b)
=Jx+a)’+y?, tang, = y/(x+ a) (4.17¢)

_ Pa 1 1
ReZ = nr\/E cosp +3¢,+39, ) (4.18a)
IMZ=-—"2_sin@+36,+36,) (4.18b)
I’1r2
-__ED 2 2 3 3
ReZ'= - rr2)3’2 SS@,+9,)- - (12)3,2005(2¢+ P, +50, )] (4.18c)

'——R—sm 29, +0,)- (12)MS|n(2¢+%¢1+%¢2)§ (4.180)

o/lo 1

T/o
05 '[rq)

Or

0O 01 0.2 03 04 05
b/TT

Fig.4.5Normal and shear tractions created by the stress function (4.11) along the fictitious disk conpour (for
see Fig4.4),0*=P/(TR).

15



The stress functio? provides no T-stress term as will be shown in 5.5.5. Nevertheless, the
equilibrium tractions at the circumference act as a normal external load and may produce a T-
stress. Radial and tangential stress components along the contour of the disk for a crack with
a/R=0.4 are plotted in Fig.4.5.

16



5 Principle of superposition

The procedure necessary for the computations addressed in Section 4.2 is illustrated below. A
disk geometry may be chosen. Figure 5.1 explains the principle of superposition for the case
of T-stresses. Part a) shows a crack in an infinite body, loaded by a couple oPforbesT-

stress for this case is denotedTasFirst we compute the normal and shear stresses along a
contour (dashed circle) which corresponds to the disk. We cut out the disk along this contour
and apply normal and shear tractions at the free boundary which are identical with the stresses
computed before (Fi§.1b).

Fig. 5.11llustration of the principle of superposition for the computation of T-stresses for single forces.



The disk loaded by the combination of single forces and boundary tractions exhibit the same
T-term To. Next, we consider the situation b) to be the superposition of the two loading cases
shown in part c), namely, the cracked disk loaded by the couple of forces (with TFstké¥s

and a cracked disk loaded by the boundary tractions, having the Txters represented by

part d), the T-term of the cracked disk is the differéeRe&—AT. If the sign of the boundary
tractions is changed, the equivalent relation is given by part e).

18



I RESULTS

The following sections contain numerical solutions for the T-stress term and the Green's func-
tion. The problems are subdivided in:

* Internally cracked components,
- cracks in infinite bodies,
- circular disk with internal crack,

- rectangular plate with internal crack.

» Edge-cracked components,
- rectangular plate with edge crack
- edge-cracked circular disk,

- cracks ahead of notches.

» Components with multiple edge cracks
- double-edge-cracked rectangular plate,
- double-edge-cracked circular disk,

- array of deep edge cracks.

19



6 Crack in an infinite body

6.1 Couples of forces

The T-stress term resulting from a couple of symmetric point forces (seé.Eigcan be
derived from the Westergaard stress function [16] which for this special case reads

2P vai - x

z=5" (6.1)
T (22 - X)W 1-(al 2°

(note that eq.(3.5) is the limit of this relation for-xa). The real part of (6.1) gives the x-
stress component fors0

_ _2P a’-x* X
Gx|y=0 - qu} T (X'Z—XZ)\/XZ— 22 (6.2)

Its singular part

_2P val 2
0 T a?-x*Jx-a

(6.3)

X,Sing
provides the well-known stress intensity factor solution
K =Ilim\2n(x-a) o, = \/Ei (6.4)
X' a T laZ _ X2

Then, the regular stress term reads

_2P (@ - x*)X—Jal2(X*- X X+ a

GX re (65)
T80l y=0 T (XIZ_XZ)\/XZ_aZ\/az_ XZ
and for the T-stress term it results
[0 for x<a
T=limo, reg = O ; B (6.6)
o for x=a

20



Fig. 6.1Crack in an infinite body loaded by symmetric couples of forces.

6.2 Constant crack-face loading

In the case of a constant crack-face pressereonst (Fig. 6.2), the stress function reads

0z ]
Z=pg———"10 (6.7)
Wz2-a> [

resulting in the x-stress of

5 X s 6.8)

Fig. 6.2Crack in an infinite body under constant crack-face pressure.

The T-stress term results as

T=-p . (6.9)

as found for the small-scale solution (3.18).

21



7 Circular disk with internal crack

7.1 Constant internal pressure

The crack under constant internal pressure (Fig. 7.1) has been analyzed with the Boundary
Collocation method. T-stress data are shown in Fig. 7.2 and Table 7.1.

Fig. 7.1 Circular disk with internal crack under constant presguned equivalent problem of disk loading by
normal tractions at the circumference.

T

(1-a) |

0.2 T

-04r1

_1(1 L 1 L 1 L 1 L 1 L
0O 02 04 06 08 1
a

Fig. 7.2T-stress and geometric functiérfor the stress intensity factor for an internal crack in a circular disk.
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a=a/R| T/o-(1a) | T/o-(1) | B-(1-a)*?
0 -1.00 0.000 -1.00
0.1 -0.919 -0.019 -0.952
0.2 -0.864 -0.064 -0.909
0.3 -0.820 -0.120 -0.862
0.4 -0.776 -0.176 -0.807
0.5 -0.728 -0.228 -0.744
0.6 -0.675 -0.275 -0.676
0.7 -0.615 -0.315 -0.608
0.8 -0.552 -0.352 -0.550
0.9 -0.485 -0.385 -0.509
1.0 -0.413 -0.413 -0.50

Table 7.1 T-stress for an internally cracked circular disk with constant crack-face pressurel (falae= 1
extrapolated); fol andT see eqgs.(2.7) and (2.8).

The T-values in Table 7.1 were extrapolatedto 1. Within the numerical accuracy of the
extrapolation, the limit values are

1

Li’rplT/a*(l—a) :ILnJlT/o*( 1-0 D—0413=—ﬁ (7.1)
and for the biaxiality ratio
im pi-a 02 (7.2)
The T-stress terms can be approximated by
T/o= -1+a -234a°+ 420° - 3326"+ 0982 (7.3)
l1-a
T = -2.34a” + 427131—_33264 + 0982 (7.4)

The stress intensity factor solution (found in the BCM-computations) is in good agreement
with the geometric function [9]

K 1-050+1687%%- 2674+ 32027 - .18988

F =
o Jm Vi-a

(7.5)
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7.2 Disk partially loaded by normal tractions

A partially loaded disk is shown in Fig.7.3a. Constant normal tractigrese applied at the
circumference within an angle o§.2

Fig. 7.3 a) partially loaded disk, b) diametral loading by a couple of forces.

The total force in y-direction results from
y
P, = ZanJ’ Rcosy 'dy = 20, Rsiry (7.6)
0
The x-stress teri’, normalised t@*, is shown in Fig. 7.4.

From the limit casg - 0, the solutions for concentrated forces (see Fig. 7.3b) are obtained as
represented in Fig. 7.5.

The T-stres3 ' can be fitted by

T _-41-a)+76770* - 160168°+ 87994 - . 110849
g* 1-a

(7.7)

Since the stresses in the uncracked disk under diametral loading by the couple ¢t &veces

(o 4 o 4E?
Iyo 41 Toqe % soyR (7.8)
o* (1+¢&9) o (1+&9)
with o* defined as
Py
O‘*:ﬁ, (79)
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: ,ﬁnlls
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-3.5]
4

O 02 04 06 08 1
a

Fig. 7.4T-stress for a circular disk, partially loaded over an angleg (et Fig. 7.3a).
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Fig. 7.5T-stress for a circular disk loaded diametrically by concentrated forces (Fig. 7.3b). T-stress results
including partially distributed stresses with an anglg=of16 (squares) and exact limit casesde0.
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T can be computed froif'

T _31l-a)+ 76770* - 160168°+ 87994 - . 1108(49_ 4a?

7.10
o* 1-a (1+a?)? (7.10)
or expressed by a fit relation
_ _ 2 _ 3 4
T ~3(1-a)+2899" - 6175@°+ 25438°+ 00847 7.11)
o* l-a
In this case, the limit values are (at least in very good approximation)
: : T
ImT/o*(1-a) =lim T/o*(1-0 0-06480-———— (7.12)
-2

7.3 Central point force on the crack face

A centrally cracked circular disk, loaded by a couple of forces at the crack center, is shown in
Fig.7.6. For it, the T-stress was calculated by Boundary Collocation computations.

Fig. 7.6 Circular disk with a couple of forces acting on the crack faces.

The T-stress data obtained with the BCM-method according to Section 4.2 are plotted in Fig.
7.7 as squares. Together with the limit value (7.12) the numerically found T-values were fitted
by the polynomial

— 2 _ 3 _
L _ 4197 + 54661 11499 .0764%7 (7.13)
o* 1-a

This relation is introduced into Fig.7 as the solid line.

26



P

0 02 04 06 08 1
a

Fig. 7.7 T-stress for an internally cracked circular disk with a couple of forces acting in the crack
center on the crack faces. Symbols: Numerical results, solid line: fitting curve.
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8 Estimation of T-terms with a Green's function

8.1 Green's function with one regular term

In order to estimate T-stresses, an approximate Green's function according to egs.(3.25) and
(3.26) may be applied. A Green's function with only one term was derived according to
Section 3.2.3 using the case of constant crack-face pressasethe reference loading case.

In this rough approximation the T-term results as

T= C}(l— X1 a&)o, (R dxo, ;"@ (8.1)

2a

This section now deals with a check of the accuracy of the approximate Green's function by
comparing the results of the set-up (3.25) with T-stress solutions found by application of the
Boundary Collocation procedure.

First, the case of concentrated forces=ad (see Fig. 7.6) is considered. The couple of central
forces reads in terms of the Dirddunction B=1)

o,(x)= gé(x) (8.2)

Introducing this and (7.4) into (8.1) leads to

0
T=£EI.+T—“D (8.3)
4dall o,U
T _3m -2340+ 4270% - 332&°+ 09824 _ P
— = , O%=— (8.4)
o* 4 1-a R

The result is plotted in Fig. 8.1.

As a second example, the diametral tension test is considered (see Fig. 7.3b). Introducing the
stress distribution for a diametral tension test, eq.(7.8), into (8.1) yields, after numerical inte-
gration, the T-stress shown in Fig. 8.2.
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Fig. 8.1 T-stresses for an internally cracked circular disk, loaded by a couple of forces at the crack
faces (see Fig. 7.6) estimated with a 1-term Green's function (dashed curve) compared with results
from BCM-computations (solid curve).
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Fig. 8.2 T-stresses for an internally cracked circular disk, loaded by a couple of diametral forces at
the free boundary (see Fig. 7.3b) estimated with a 1-term Green's function (dashed curve) compared
with results from BCM-computations (solid curve).
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From these two examples we can conclude for this first degree of approximation that the
application to continuously distributed stresses gives significantly better results than the
application to strongly non-homogeneous stresses as in the case of single forces at the crack
faces. The reason for this behaviour is the fact that in the reference loading case (constant
crack-face pressure) the load was also distributed homogeneously. In both cases the deviations
increase with increasing relative crack sizeThis makes evident that the Green's function
needs higher order terms for larger

8.2 Green's function with two regular terms

In order to improve the Green's function, the next regular term is added. Consequently, the
Green's function expansion reads

t=t,+C,(1- 2/ &)+ G(1- ¥/ &)> (8.5)

As a second reference loading case we now use the solationthe internally cracked disk
with a pair of single forceB at the crack center (see Fig. 7.6).

Introducing the two reference stresses
P
o,=const O, = Eé(x) (8.6)

into eq.(3.1) and carrying out the integration provides a system of two equations

2a 8a

T1/0'1=_1+?C1+EC2 (87a)
Tz/o*:§cl+§c2 (8.7b)

(o*=P/(Rm)) from which the coefficients result as

_EH+LE_8 T2

_ 8.8a
< 2all] o,0 Rmo* ( :
15 EL T, 0 T,
C,=-—+-LO+10—2 8.8b
> 2ald o,0 Rmo* (6:5)
or by
— 2 -
c - 1 -6.86220 + 18105@ 22018+ .93229 (8.8¢)

R 1-a
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1419020 - 14 626r° + 212854° - .98147
R l1-a

C, = (8.8d)

With the improved Green's function the diametral tension specimen was computed again
using eq.(7.8). The result is plotted in Fig. 8.3. It becomes obvious that in this approximation
the agreement is significantly better for lange

L
(1-a)
o

Ny

'40 02 04 06 08 1
a

Fig. 8.3 T-stresses for an internally cracked circular disk, loaded by a couple of diametral forces at
the free boundary (see Fig. 7.3b) estimated with a 2-terms Green's function (dashed curve) compared
with results from BCM-computations (solid curve).
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9 Rectangular plate with internal crack

The geometric data of the rectangular plate with an internal crack are illustrated in Fig.9.1.

3

bhiadd

LhEdNbA

2w
TYYVYYYTI YTy

(0]
Fig. 9.1 Rectangular plate with a central internal crack (geometric data).

9.1 T-stress for pure tensile load

The plate under uniaxial load (tensile stresses at theyentl$d) shows naoy-component in
the uncracked structure. Consequently, the quaniiti@sd T' are identical. T-stress results
obtained by BCM-computations are shown in Fig. 9.2a and entered into Table 9.1.

a=a/W | HW=0.35| 0.50 | 0.75 | 1.00 | 1.25

0 -1.0 -1.0 -1.0 -1.0 -1.0
0.1 -0.97 -0.96| -0.92] -0.91 -0.9
0.2 -0.95 -0.92| -0.88 -0.86q -0.8p
0.3 -0.766 -0.855 -0.85 -0.809 -0.7]7
0.4 -0.455 -0.743 -0.80 -0.796 -0.716
0.5 -0.110 -0.619 -0.738 -0.692 -0.6%6
0.6 0.145 -0.504 -0.64Y -0.620 -0.596
0.7 0.215 -0.400 -0.5483 -0.5% -0.5B
0.8 0.13 -0.291 -0.45 -0.46 -0.4y
0.9 -0.10 -0.25| -0.38] -0.41- -0.43
1.0 -0.413 -0.413 -0.413 -0.413 -0.413

Table 9.1 T-stress term, normalized 3&(1-a), for
different crack and plate geometries.
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Fig.9.2 Internal crack in rectangular plate, a) T-stress, b) biaxiality ratio.

The biaxiality ratio, defined by eq.(2.9), is plotted in Big¢b and additionally given in Table
9.2.
For a long plateH/W>1.5) the biaxiality ratigd can be expressed by

ﬁD_ng: (9.1)

a=aW | HW=0.35| 050 | 0.75 | 1.00 | 1.25

0 -1.0 -1.0 -1.0 -1.0 -1.0

0.1 093 | -0.95| -0.955 -0.955 -0.9p
0.2 0801 | 0874 -0.9d -09]1 -0.995
0.3 0558 | -0.744 -0.843 -0.860 -0.8%8
0.4 -0.291 -0.591 -0.764 -0.803 -0.805
0.5 -0.063 -0.443 -0.672 -0.734 -0.749
0.6 0.075 | -0.324 -0.57% -0.661 -0.693
0.7 0.008 | 0241 -0.483 -0.598 -0.645
0.8 0.055 | 0179 -0.418 -054 -0.5P
0.9 -0.1 -0.2 -0.41 0.5 -0.54
1.0 -0.5 -0.5 -0.5 -0.5 -0.5

Table 9.2 Biaxiality ratio, normalized a8 (1-a)*? for
different crack and plate geometries.
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10 Edge-cracked rectangular plate

10.1 Rectangular plate under tension

2H

Fig. 10.1Edge-cracked rectangular plate under tensile loading.

a=a/W | HW=15| 0.75 0.50 0.40 0.30 0.25

0 -0.526 -0.526| -0.526/ -0.526 -0.526 -0.526
0.1 -0.452 -0.452| -0.444 -0.432 -0.416 -0.400
0.2 -0.374 -0.373| -0.334 -0.270  -0.084 0.143
0.3 -0.299 -0.282| -0.148 0.03C 0.44p 0.890
0.4 -0.208 -0.175 0.040 0.31C 0.91p 1.536
0.5 -0.106 -0.070 0.167 0.473 1.16p 1.898
0.6 0.006 0.032 0.220 0.49( 1.14p 1.8%2
0.7 0.122 0.134 0.234 0.404 0.86p 1.347
0.8 0.232 0.240 0.268 0.324 0.52# 0.740
0.9 0.352 0.356 0.364 0.372 0.37p 0.390
1.0 0.474 0.474 0.474 0.474 0.474 0.4494

Table 10.1aT-stress for a plate under tensiowT1-a/W¥.
For a long plate (H/\&1.5) the T-stress is
T _-0526+ 064+ 02048%+ 07%6° - .079@4+ . 01966

o

(1-a)*
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The related biaxiality ratio is fitted by

-0.469+ 01414 + 1438%+ 007HF- .1618%+ . 086D
h= a
a=a/W | H/W=1.5 0.75 0.50 0.40 0.30 0.25
0 -0.469 -0.469 -0.469 -0.469 -0.469 -0.469
0.1 -0.444 -0.444 -0.429 -0.406 -0.363 -0.322
0.2 -0.381 -0.379 -0.314 -0.232 -0.062 0.087
0.3 -0.307 -0.288 -0.137 0.024 0.30p 0.516
0.4 -0.212 -0.177 0.037 0.254 0.60b 0.856
0.5 -0.106 -0.069 0.157 0.404 0.814 1.091
0.6 0.006 0.031 0.209 0.444 0.88bH 1.244
0.7 0.117 0.128 0.223 0.377 0.75b 1.092
0.8 0.217 0.226 0.252 0.305 0.48D 0.618
0.9 0.321 0.325 0.332 0.341 0.34B8 0.346
1.0 0.423 0.423 0.423 0.4243 0.428 0.443

Table 10.1b Biaxiality ratiop in the formpB(1-a/W)*2.

10.2 Rectangular plate under bending load

HHHAAG
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W

 —
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2H

RN

Fig. 10.2Edge-cracked rectangular plate under bending loading.
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For a long plateH/W=1.5) the T-stress is

T _ -0526+ 248h - 3558°+ 26384 - .092a@6

U_b A-ay (10.2a)
with the bending stress, defined by
o(x)=0o,(1-2x/ W) (10.3)
The related biaxiality ratio is fitted by
B= —-0.469+ 1048% + 2595° - 66G6° + .62@f- .2478 (10.2b)
Ji-a
a=a/W | HW=15| 0.75 0.50 0.40 0.30 0.25
0 -0.526 -0.526| -0.526/ -0.526 -0.526 -0.526
0.2 -0.150 -0.148| -0.114 -0.061 0.09p 0.292
0.3 -0.039 -0.024 0.080 0.2272 0.55p 0.940
0.4 0.044 0.067 0.224 0.424 0.87B8 1.333
0.5 0.099 0.124 0.283 0.493 0.96#4 1.439
0.6 0.133 0.150 0.269 0.438 0.84p0 1.291
0.7 0.151 0.158 0.217 0.314 0.574 0.87
0.8 0.158 0.158 0.174 0.204 0.30p 0.436
0.9 0.140 0.142 0.150 0.164 0.16P 0.146
1.0 0.113 0.113 0.113 0.113 0.11B 0.133
Table 10.2a T-stress for a plate under bendingT1-a/W¥.
a=a/W | HW=15| 1.00 0.75 0.50 0.40 0.30

0 -0.469 -0.469| -0.469 -0.469 -0.46P -0.469
0.2 -0.198 -0.20 -0.194 -0.138 -0.06[7 0.091
0.3 -0.059 -0.057| -0.036 0.107 0.26p 0.527
0.4 0.075 0.077 0.113 0.341 0.56p 0.907
0.5 0.187 0.191 0.233 0.495 0.77p 1.189
0.6 0.275 0.278 0.326 0.53¢6 0.816 1.305
0.7 0.337 0.338 0.353 0.481 0.68p 1.135
0.8 0.376 0.375 0.378 0.416 0.48) 0.711
1.0 0.302 0.302 0.302 0.302 0.30p 0.302

Table 10.2bBiaxiality ratiof in the formB(1-a/W)"2
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Fig. 10.3T-stress for an edge-cracked plate or bar in tension and bending
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Fig. 10.4 T-stress under tensile and bending loadings.
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Fig. 10.5Biaxiality ratio in the fornf3(1-a)"? for tension.

Green's function

t(x) =t + G(l- X/ @+ G(1- ¥ §

or

T=-0,

with the coefficient$; andC; given in the following tables.

X:a+(:l}ay(x)(1— x/ @ dx+ Q}Uy( Y(1- A ¥ dx

a=a/W | H/W=15| 0.75 | 0.50| 0.40 | 0.30
0.2 2.531 2.015 253 4.78 8.1p
0.3 1.456 1.30g 4.00 6.53 11.74
0.4 1.167 1.792 493 8.33 1513
0.5 1.728 2112 5.71 9.46 18.67
0.6 3.167 3.417 6.04 10.21 21.60
0.7 6.204 6.4224 8.0% 11.78 23.31

Table 10.3 Coefficient G-W for the Green's function, eq.(10.4).
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a=a/W | H/W=15| 0.75 | 0.50 | 0.40| 0.30

0.2 2.438 3.234 337 150 0.8p
0.3 1.714 2.28q 0.980 0.82 1.5p
0.4 1.417 1.167 092 146 3.81
0.5 0.864 1152 1.44 3.1/ 5.9p

0.6 0.437 0.879 281 5.00 8.2B
0.7 0.789 1.034 33§ 593 10.11
Table 10.4 Coefficient G-W for the Green's function, eq.(10.4).

10.3 Edge-cracked bar in 3-point bending

F
thickness: t
T ty
woo
l 2
= 2
~ 2L ™

Fig. 10.63-point bending test.

Method: Green's function, using expansion with two regular terms, eqgs.(10.4) and (10.5).
Stresses normal to the crack plane given by Fi#an

_ _3YPL_4P & sinh(mW /2)= mW/2cosh(mW/2), o coshiny )

AWt 4 mW + sinh(mwW)

_4P & mysinh(mW/2)
tL 4 mW+sinh(mW)

cos(mx)sinh(my)

_4P & cosh(MW {2 - MW /2 sinh(MW /2 )cos(Mx )sinh(My )
tL & sinh(MW )- MW
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4P & Mycosh(MW /2)
- cos(Mx ) cosh 10.6
tL sinh(MW )- MW (Mx) My ) ( )

m= 2%1 M = (2n wLL Dt
o* = 3F>2L
Wt
a=a/W | L/W=10 5 4 3 2.5 2

0 -0.526 | -0.526| -0.52¢6 -0.526 -0.526 -0.5p6
0.1 -0.29 | -0.289 -0.287 -0.285 -0.283 -0.2B1
0.2 -0.146 | -0.142 -0.140 -0.137 -0.134 -0.130
0.3 -0.038 | -0.037 -0.03y -0.036 -0.035 -0.0B4
0.4 0.042 0.041] 0.040 0.038 0.037 0.0B5
0.5 0.096 0.092] 0.090 0.08f 0.085 0.082
0.6 0.129 0.125( 0.123 0.12p 0.117 0.1}3
0.7 0.147 0.144{ 0.142 0.13p 0.137 0.1B3
0.8 0.147 0.145| 0.142 0.13p 0.136 0.1B3
0.9 0.134 0.132 0.131 0.12p 0.137 0.1p5

1 0.113 0.113| 0.113 0.11283 0.113 0.113
Table 10.5 T-stressT/o*(1-a/W)? for the edge-cracked bar in 3-point bending.

a=a/W | L/W=5 4 3 2.5 2
0 -0.469 | -0.469 -0.469 -0.460 -0.449
0.1 -0.332| -0.332 -0.331 -0.331 -0.330
0.2 -0.194| -0.191 -0.189 -0.187 -0.185
0.3 -0.058| -0.058 -0.058 -0.057 -0.0%6
0.4 0.072| 0.071 0.068 0.06f 0.044
0.5 0.178| 0.175 0.171 0.168 0.144
0.6 0.262 | 0.259] 0.255 0.25p 0.244
0.7 0.325| 0.322] 0.317 0.314 0.3(¢7
0.8 0.35 | 0.344| 0.33§ 0.332 0.3%26
0.9 0.337| 0.334) 0.332 0.33p 0.347
1 0.302 | 0.302| 0.302 0.302 0.3(32

Table 10.6 Biaxiality ratio in the forn3(1-a/W)“? for
the edge-cracked bar in 3-point bending.
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Fig. 10.7T-stress and biaxiality ratio for 3-point bend tests.

10.4 The Double Cantilever Beam (DCB) specimen

Pr
;

a

P

W

Fig. 10.8 Double-Cantilever-Beam specimen.

The biaxiality ratio} obtained for the DCB (Fig.0.8) is found to be independentafV if
a/W < 0.55. For d/a < 0.5 the biaxiality ratio can be described by the relation [11]

% D0.681% + 00685 (10.7)

Using the stress intensity factor solution
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K, :\/%P%+0.68§ (10.8)

yields for the T-stress

_ BK, 12 a/d+ 068
= 0 =
Jm Vmd 0684/a+ 00685

(10.9)

10.5 Couple of opposite point forces

An infinitely long strip with a single edge crack is considered (Fig. 10.9). A pair of opposite
point forces generates stresses in the plane of the crack.

thickness: t

P

Fig. 10.9Edge cracked strip with opposite concentrated forces.

Method: Green's function using expansion with two regular terms, eqgs.(10.4) and (10.5).

The stresses normal to the plane of the craglkare given by [21]

- 4P J.sm.hu—ucosmcos2ux coslzuydu—
mWtd  sinh2u+ 2u w W

0

_ AP 2y - sinhu coszux sinhzuydu (10.10)
mwtd W sinh2u+2u W W
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a=a/W | x/W=0.1| 0.2 0.5 0.7 1.0 15
0.2 -0.355 0.273 0.143 0.054 0.00p 0.0p
0.3 -0.541 | -0.027| 0.209 0.119 0.03# 0.041
0.4 -0.561 | -0.169| 0.226 0.159 0.058 0.042
0.5 -0.558 | -0.213| 0.226 0.171 0.06p 0.043
0.6 -0.565 | -0.180| 0.225 0.16( 0.058 0.042
0.7 -0.576 | -0.046| 0.219 0.127 0.03f 0.041

Table 10.7 T-stress Tg* for the edge-cracked strip under opposite concentrated forces.

where o*=—
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10.6 Rectangular plate with thermal stresses

A long rectangular plate with a parabolically distributed temper&@ure

o= 4@05% - @%gé (10.11)

is considered, which causes a stress distribution

X2

[P X 0
UYZU*%_4W+4W , O*:aTGOE (1012)
with E = Young's modulus andy = thermal expansion coefficient. The stress distribution is
shown in Fig. 10.10a. Introducing this stress distribution into eq.(10.5) and using the approxi-
mate Green's function (3.21), (3.23) yields the T-stress

T 2

U U
T 20 oA+ gt a(1-a)-2 (10.13)
o* 3 O

o, 3

whereT; is the reference T-stress solution for pure tension with tensile siy¢aken from
Table 10.1 or from eq.(10.1). The related stress intensity factor soKitiobtained with the
weight function given in [9], has been entered additionally in Fig. 10.10b.

b
1 a) 0.6 )
olo™ | K T
0.4r
K
05F TIg™ |
0.2
0
0
0.2r
05 | 015 | 1 044 | 0:5 | 1
x/W a/W

Fig. 10.10a) thermal stresses in a rectangular plate,
b) stress intensity factor and T-stre€'ss K/(a*W"?).
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The biaxiality ratio represented in Fig. 10.11 was computed from the T-stress solution
eg.(10.12) and the stress intensity factor soluKoiharge positive biaxiality ratios are ob-
vious for deep cracks. This is the consequence of the low stress intensity fact@8\frear

0.8.

30

20T

0 0.5 1
a/W

Fig. 10.11Biaxiality ratio for thermal stresse given by eq.(10.11).
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10.7 Partially loaded rectangular plate

A plate loaded by a constant stress over a rdngeshown in Fig. 10.12. The related T-stress
termsTy and the biaxiality ratios are entered into Tables 10.8-10.15.

r O

(0}
THH

' 2H

B

=X

w

AL

Fig. 10.12 Partially loaded edge-cracked rectangular plate.

a=a/W | dW=0 | 0.25 0.5 0.75 1.0

0.3 0 -0.196| -0.364 -0.501 -0.6(8
0.4 0 -0.072| -0.199 -0.372 -0.597
0.5 0 0.123| 0.0920 -0.102 -0.419
0.6 0 0.461| 0.660, 0.468 0.04p
0.7 0 1.199( 190| 1.806 1.33)f

Table 10.8 T-stressTy/o* for H/W=1.25.

a=a/W | dW=0 | 0.25 0.5 0.75 1.0

0.3 0 -0.174| -0.36Q -0.515 -0.6(6
0.4 0 -0.042| -0.193 -0.3883 -0.570
0.5 0 0.157| 0.117] -0.409 -0.449
0.6 0 0.522| 0.680, 0.474 0.051L
0.7 0 1329 1.959 1917 1.36p

Table 10.9 T-stressTy/o* for H/W=1.00.
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a=a/W | dW=0| 0.25 0.5 0.75 1.0
0.3 0 -0.094| -0.333 -0.524 -0.571
0.4 0 0.098| -0.113 -0.369 -0.495
0.5 0 0.348| 0.251f -0.039 -0.2947
0.6 0 0.703| 0.808 0.560 0.19p
0.7 0 1.456( 2.0520 2.011 1.48p

Table 10.10 T-stressly/c* for H/W=0.75.

a=a/W | dW=0| 0.25 0.5 0.75 1.0
0.3 0 0.257| -0.119 -0.31y -0.299
0.4 0 0.722] 0.457, 0.13¢ 0.11p
0.5 0 1.157| 1.195 0.783 0.66p
0.6 0 1.614| 2.007] 1.668 1.37p
0.7 0 2.250] 3.174, 3.007 2.59B

Table 10.11 T-stressly/c* for H/W=0.50.
a=a/W | dW=0.25| 0.5 0.75 1.0
0.3 -0.156 | -0.184 -0.225 -0.311
0.4 -0.045 | -0.0771 -0.124 -0.2113
0.5 0.056 0.026] -0.024 -0.145
0.6 0.142 0.122| 0.073 0.00p
0.7 0.209 0.213] 0.160 0.11p

Table 10.12 Biaxiality ratio(1-a/W)"? for H/W=1.25.

a=a/W | dW=0.25| 0.5 0.75 1.0
0.3 -0.138 | -0.181 -0.230 -0.3(6
0.4 -0.026 | -0.074 -0.129 -0.2Q9
0.5 0.071 0.032] 0.026 -0.132
0.6 0.154 0.124] 0.073 0.00B
0.7 0.227 0.205] 0.1671 0.11B

Table 10.13 Biaxiality ratio(1-a/W)"? for H/\W=1.00.
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a=a/W | dW=0.25| 0.5 0.75 1.0
0.3 -0.071 | -0.164 -0.23% -0.284
0.4 0.059 -0.044 -0.12%5 -0.176

0.5 0.153 0.068| -0.009 -0.099

|
B

0.6 0.209 0.149| 0.086 0.03
0.7 0.251 0.216| 0.173 0.12

Table 10.14 Biaxiality ratiof(1-a/W)"? for H/\W=0.75.

a=a/W | dW=0.25| 0.5 0.75 1.0
0.3 0.166 -0.054 -0.13% -0.136
0.4 0.378 0.158| 0.043 0.03f

0.5 0.488 0.329] 0.1791 0.15¢

D
P

0.6 0.466 0.355| 0.24§ 0.20
0.7 0.386 0.332] 0.261 0.22

Table 10.15 Biaxiality ratiof(1-a/W)"? for H/\W=0.50.

An example of application of this loading case may be demonstrated for a platé/With
1.25 loaded by a couple of point fordesit several locationd/W as illustrated in Fig. 10.13a.
The evaluation of the related T-stress term is explained in Fig. 10.13b.

A o) b)
o
d -~q—

U
* -

<—d2

2H 2H
Ha‘# Ha‘J

Ty

Fig. 10.13Computation of T-stresses in plates loaded by a couple of point forces.
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First, we determine th&/o*-values for two values; andd, with d; =d-e andd, =d+¢ (€ «d)
by interpolation of the tabulated results applying cubic splines. The normaPasagven by

P=0o*(d,—d)t (10.14)

(t = thickness). The T-stress for this case is

e - Tu[. - sz_hH (10.15)
P *  g* * o*U(d,-d)

and for the case @k, d; - d (€ - 0)

L0l P

i (10.16)
a(d /' W) Wit

In Fig. 10.14 the T-stresses are plotted as a function of the relative cracka@kgth

6

I a/lW
PI(W) 4L 0.7
2
0
2
4 o

0 02 04 06 08 1
d/W

Fig. 10.14T-stress caused by a couple of forces acting at locafidiV=1.25).

These results can be used to compute the T-stress for any given distribution of normal
tractionso, at the ends of the plate

W
T= iJ’Lan(x) dx , o*= i (10.17)
WJ o+ Wt
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If a smooth distribution of normal tractions acts at the ends of the plate it is of advantage to
rewrite eq.(10.17) and to apply integration by parts. This leads to

T YT do
T=—Ag¢g - [—< —dx. 10.18
O'* n|x:d:W ‘!)‘O.* dX ( )

As an example the T-stress for bending was computed from (10.18). The results for two
values ofH/W are shown in Fig. 10.15 (circles) together with the data of Table 10.2 (curves)
which were obtained directly from BCM-computations. The agreement is good.

0.4
T a-gf ! H/W=0.5
Ob

0.2

0.75
0
-0.2
-0.4
Bending

'0'60 02 04 06 08 1

a

Fig. 10.15Comparison of bending results obtained with eq.(10.18) (circles) and with BCM (curves).
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11 Edge-cracked circular disk

Edge-cracked circular disks are often used as fracture mechanics test specimens, especially in
case of ceramic materials [22][23]. Figure 11.1 shows the geometric data.

Fig. 11.1Geometric data of an edge-cracked circular disk.

11.1 Circumferentially loaded disk

A circular disk is loaded by constant normal tractiopglong the circumference (loading as
in Fig.7.1)

o,=const, T=0 (11.2)
In this case it holds [9]
A* (1-a)*=-011851=C*, , a=a W (11.2)
and, from eq.(2.7)
T 0474
—=—(4A*,+) =— -1 11.3
O_n ( 0 :D (1_a)2 ( )

The value C§, occurring in eq.(11.2) is identical with the coefficient of Wigglesworth's [24]
expansion for the edge-cracked semi-infinite body.

With the stress intensity factor solution
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11215
K, =o FJm , |:=m (11.4)

the biaxiality ratio results as

04227

B Ve -089171-q) (11.5)

11.2 Diametrically loaded disk

11.2.1 Load perpendicular to the crack

The Green's function method may be applied here to the diametrically loaded edge-cracked

disk (Fig. 11.2).

P

Fig. 11.2Diametrically loaded circular disk.

Using eq.(11.3) as the reference T-stress solution the coeffiCiémt the Green's function,
represented by egs.(3.22) and (3.23), follows as

0.9481

=———, a=alD 11.6
a(l-a)? (11.6)
Consequently, the T-stress can be computed from

0.9481 .
= doay @R, 0) do-o,| , p=xla (11.7)
0

As an application a disk of unit thickness is considered, which is diametrically loaded by a
pair of forcesP. The forces may act perpendiculary to the crack plane. In this case the stresses

are given by
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g, 4

Fzm_l’ §=x/R,R=D/2 (11.8)
O, A=) L _P (11.9)
or T R+-97* T m |

as illustrated in Fig. 11.3. Introduciog in eq.(3.22) yields the T-stress term

* D 2
g 094807 4 - 2harctardi- S0+ 22 -5 - - Sh0 | (1110)
l-a)(a/ R R R R R R x=a
3k
x |
olo” | Gy
1k
0
1T Ox
0 0.2 0.4 0.6 0.8 1
x/D
Fig. 11.3Stresses along the x-axis in a diametrically loaded disk.
The stress intensity factor results from [15] as
K, :J'h(x, a)o, dx (11.11)
0

whereh is the fracture mechanics weight function. In case of an edge-cracked disk a represen-
tation is given in [9], i.e.

0 O
h(x, a) = \/%% +Dy/1- p + D,(1- p)*? + D, (1- p)“g (11.12)

with the coefficients

D, = (L5721+ 2410@ - 0896% - .143a1)/( -1 )*?
D, = (0.4612+ 05972 + 07466 + .22181)/( —In)*? (11.13)
D, = (-0.2537+ 04358 — 028%f° - .05853)/( -In)*?
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By consideration of the total x-stress (crack contribution and x-stress component in the un-
cracked body), one can define the additional biaxiality ratio
g=TY®" (11.14)
KI
The T-stress and the stress intensity factor result in the biaxiality ;@,tﬁ’)SNhich are shown
as curves in Fig. 11.4.

In addition to the Green's function computations, the biaxiality ratios were directly determined
with the Boundary Collocation method (BCM) which provides the coeffichégtand by

eq.(2.8) the quantity Tror the situation af diametrical loading. The results - expressq?ﬂ by

are entered as circles. An excellent agreement is obvious between The BCM results and those
obtained from the Green's function representation. This is an indication of an adequate de-
scription of the Green's function by the set-up eq.(3.22) using only one regular term.

-1.5

0 02 04 06 08 1
a/D

Fig. 11.4Biaxiality ratio for an edge-cracked circular disk diametrically loaded by a pair of forces; lines:
e(.(11.10), circles: BCM-results.
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11.2.2 Brazilian disk (edge-cracked)

thickness t

P

Fig. 11.5Brazilian disk test with edge-cracked disk.

The circumferential stress component in an uncracked Brazilian disk has been given by Erdlac
(quoted in [25]) as

_2P0L_ (1-pcos9)sifO® _ (1+pcosO)sifo O
" nR% (1+ p? — 2pcos® ¥ (1+p2+2pcose)2%

g,=0 p=r/R (11.15)

Using eq.(11.7) the T-stress can be determined. The T-stress term, evaluated for several
relative crack depths a/W and several an@las compiled in Table 11.1, the biaxiality ratio

in Table 11.2.

o=a/2R| ©=116 | T1U8 4 38 | 716 | 102

0 0 0 0 0 0 0
0.05 2.671 1.086) 0.359 0.21p 0.191 0.1p4
0.1 0.933 1.466| 0.713 0.46Dp 0.415 0.4p1
0.2 -1.687 0.194| 1.068 0.97p 0.937 0.9p2
0.3 -2.319 | -1.099 0.691 1.328 1.438 1.4%6
0.4 -2.546 | -1.824 -0.078 1.23p 1.517 1.6p1
0.5 -2.744 | -2.310 -0.896 0.518 0.952 1.1p4
0.6 -3.050 | -2.814 -1.906 -1.153 -0.9%9 -0.894
0.65 -3.290 | -3.163 -2.72f -2.637 -2.662 -2.475
0.7 -3.637 | -3.683 -4.08p -4911 -5.196 -5.207

Table 11.1 T-stressl/o* for the Brazilian disk testof=2P/(TR)).
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For the determination of the total x-stress at the crack tip (i.e. the determinafidh tbe
radial stress component has to be included, which was also derived by Erdlac

_2P0L_(1-pcosO )(coD -p ) _ (1+pcosO )(co® +p j0

o TIR % (1+ p® - 2pcos® ¥ (1+ p® +2pcosO ¥ (11.16)
a=a/l2R| ©=1/16 | T8 4 38 | 71716 /2

0 -1.229 -1.23| -1.22| -1.23 -1.283  -1.230
0.05 -0.874 -1.081 -1.148 -1.184 -1.155 -1.155
0.1 -0.259 -0.793 -1.028 -1.069 -1.0Y7 -1.080
0.2 0.614 -0.079 -0.681 -0.865 -0.899 -0.910
0.3 1.011 0.441| -0.286 -0.611 -0.681 -0.702
0.4 1.155 0.686 0.023 -0.338 -0.424 -0.462
0.5 1.149 0.726 0.189 -0.088 -0.153 -0.1474
0.6 1.037 0.641 0.25¢ 0.11 0.092 0.0$4
0.65 0.948 0.574f 0.277 0.20 0.192 0.1B8
0.7 0.841 0.502 0.302 0.27 0.242 0.2f2

1 0.423 0.423| 0.423 042 0.423 0.4%23

Table 11.2 Biaxiality ratio(1-a/D)"? for the Brazilian disk test.

1/2
B1-a)
1F T1/16
T1/8
05T
/4
0
05F 37178
T2
-1

15002 04 06 08 1

a/D

Fig.11.6Biaxiality ratioB(1-a)"? for the Brazilian disk testj =a/D.
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11.2.3 Disk with thermal stresses

In a thermally loaded circular disk the stresses in the absence of a crack consist of the circum-
ferential stress componeny, and of the radial stress distributian The two stress com-
ponents can be computed from the temperature distrib®(Qrwith r = D/2-x (see e.qg. [26])

01 ® 1" D
=a.E -— 11.17
o, =0, %E'([@rdr 2‘([ E ( )
a EELROrdH ! r(ardr GE (11.18)
g, = s - :
[} T DRZ{ rz‘([ |:|

with the thermal expansion coefficieat. The temperatures found e.g. in [23] can be ex-
pressed by

o(r) = 60§+ Bzgﬁg 4 B@rﬁgé (11.19)

with the maximum temperature occurring in the centre of the disR) The related stresses
are given by

5_ 0
o, =a Eo,B, +_ 3 g%g B4§—§ 0 (11.20)
g 6 LURHUE
4
o =a,E0,GF BZ@ r—zﬁ @ % (11.21)
For a typical stress distribution in a thermally heated disk one can conclude from curves plot-

ted in [23]
a¢:—0*§— %g %%g

4

ar:—a* %g Qﬂ 0 (11.23)

wherec* is the circumferential tensile stressratR. The stresses are and shown in Fig. 11.7.

(11.22)

o4O

na O
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Fig. 11.7Stress distributions in a thermally heated disk.

When eq.(11.7) is used, the thermal stresses result in the T-stress

(11.24)

X=a

Oraf  a O
T 0-015800* 0250 - £ - 8-,
g-R R B

Including theoy-stress, present already in the uncracked disk, it results with eq.(2.8)

T T 0o,
_— =+

o* o* o*

(11.25)

T/lo* 2]
TI/O_* 15T
K/O_*Dl/z 1

0.5

0 02 04 06 038

a/D

Fig. 11.8Stress intensity factor and T-stress for a disk under thermal loading.

58



The two T-stresses are plotted in Fig. 11.8 together with the stress intensity factor computed
with the weight function for the edge-cracked disk.

The biaxiality ratio3 and the effective biaxiality ratiﬁ’ , defined by eq.(11.14), are plotted in

Fig. 11.9. Very high3-values occur foe/D > 0.6. The main reason is the very small stress
intensity factor which disappears at approxima#ély=0.7.

0

0O 02 04 06 08 1
a/D

Fig. 11.9Stress intensity factdg, biaxiality ratio 3, and effective biaxiality ratig3 , defined by eq.(11.14).
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12 Cracks ahead of notches

Special specimens contain narrow notches which are introduced in order to simulate a starter
crack. This is for instance the case in fracture toughness experiments carried out on ceramics.
A plate with a slender edge notch of depthis considered. A small crack of lengthis
assumed to occur directly at the notch root with the ralid$he geometrical data are illustra-

ted in Fig. 12.1.

Fig. 12.1A small crack emanating from the root of a notch.

In the absence of a crack the stresses near the notch root are given by

2K(a,) R+¢&

Oy T Tm(R+28) R+2¢

2K(a) &

75T n(R+ 28) R+ 2

(12.1)

(for & see Fig. 12.1) as shown by Creager and Paris [26]. The qu&fat)yis the stress inten-
sity factor of a crack with same lengihas the notch under identical external load

K(a,) = 0* F(a,)/ma, (12.2)

with the characteristic stresg® and the geometric functioR. The stresses resulting from
eq.(12.1) are plotted in Fig. 12.2. The solid parts of the curves represent the regir (0
R/2) where higher order terms are negligible. A small crack of lehgthconsidered which
emanates from the notch root (Fig. 12.1).
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o/o

g /R

Fig. 12.2Stresses ahead of a slender notch computed according to Creager and ParigJ®@éH@.5 andR/W
= 0.025.

Under externally applied load the coefficients of the stress function were calculated with
BCM applying the outer fiber bending stress as the reference stress, i.e.

6M
0*=0,=—— 12.4
v (12.4)
with specimen widthV, thickness and bending mome. The coefficientA, is related to

the stress intensity factél by
K, =o*F()Jmr, F()=18N/ 1 A (12.5)

with the geometric functiofr. The T-termT', eq.(2.8), results directly from the coefficient
A*o. In Fig. 12.3 the ternT' is plotted versus/W the relative for several notch depths
Additionally, the "long crack solution” given by eq.(10.2) is introduced as solid curve. This
curve represents the T-stress for an edge crack of total length/.

Results obtained under tensile loading are plotted in Fig. 12.4. In this case the characteristic
stress is identical with the remote tensile stmss$.e.0* = 0p. In this representation the solid
line is described by eq.(10.1).

For the limit casé/R- 0 the T-stress can be determined from the solution for a small crack in
a semi-infinite plate with a tensile stress identical with the maximum normal sifgss
occurring directly at the notch root

om=m*ﬁmf§ (12.6)
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Directly at the free surfacé € 0) it holdso, =0 and, thereforel' =T for //R - 0. It can be
concluded

— _ Tplate

TO - Té/RaO - % amax (127)

o a-0
% = _4(A*0) plate,a - 0 =-0526 (128)
a-0
and, consequently,

T a0
— =-1052F — 12.9
p () R (12.9)

It becomes obvious from eq.(12.9) that for slender notches very strong compressive T-stresses
occur in the limit casé/R — 0. The limit valuedy for tension and bending, indicated by the
arrows in Figs. 12.3 and 12.4, are entered in Table 12.1.

In Fig. 12.5 both the bending and the tensile results are plotted in a normalised representation.
From Fig. 12.5b we can conclude that the deviation between the T-stress term for the
crack/notch configuration and the long-crack solufidr{with the crack assumed to have the

total lengthapt+/) is negligible for//R>1. The drastic decrease Tnfor //R — 0 must occur

within the range 0 €/R< 0.2.

T'/o'* 1t
05
|
o= | |
| vTO vTo vTo vTO
0553 04 05 06
a/wW

Fig. 12.3T-stress for a small crack ahead of a slender notch in bending, computed with the Boundary
Collocation Method foR/W = 0.025. Solid line: long-crack solution.
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B T T
0.3 0.4 0.5 0.6
a/lW

Fig. 12.4T-stress for a small crack ahead of a slender notch in tension, computed with the Boundary Collocation
Method forR/W = 0.025. Solid line: long-crack solution.

1[5 @og0 BBHE O © 1.02F
ATreI I ATreI
0.81 1
067 0.98
0.4r 0.96
a) : b)
0.2 0.94r
0 N 1 N 1 N 1 N 1 N 1 N 1
0 1 2 3 0 1 2 3 4
?IR ’IR

Fig. 12.5T-stress in a normalised representatidp, = (T -To)/(T*- Tp), T*=long-crack solution; circles: tension,
squares: bending.

a/W | To/o* (bending) | To/o* (tension)
0.3 |-4.11 -6.05

0.4 |-5.28 -8.91

0.5 |-7.01 -13.31

0.6 |-9.86 -20.74

Table 12.1Limit values for the T-stress terf/R — 0).
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13 Array of deep edge cracks

Figure 13.1 shows an array of periodical edge cracks. BCM-computations were performed for
an element of periodicity for the special case of a constant remote tensilecstiElss
boundary conditions are given by constant displacemeiaisd disappearing shear stresses
along the symmetry lines, i.e.

od
v=——; 17,.,=0 for y=+d/2 13.1
£ o y (13.1)

(E'=E for plane stress arffl = E/(1-v) for plane strainE = Youngs's modulus; = Poisson's
ratio) as illustrated in Fig. 13.2. The coefficidtip is shown in Fig. 13.3a as a function of the
ratio d/a for different relative crack lengthhs= a/W. The result can be summarised as

A*,=0148, d/a< 15 (13.2)

o

— 1

Haﬂ

— 1

W

Fig. 13.1Periodical edge cracks in an endless strip.

The coefficientd is plotted in Fig. 13.3b in the normalised form

A, = 6ANTW/ d (13.3)
For all valuesx=a/W investigated it was found

A, =1000+ 0002 (13.4)
resulting in the stress intensity factor solution

K, =od/2 (13.5)
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(see e.g. [27]). The T-stress tefrhis

T'=-05920 (13.6)
and the biaxiality ratiq~3 according to eq.(11.14) results as

B=-1484/a/d (13.7)
1=0 v=const

ylk

a) b)
* _~
111
AO AO
0.16 [ ’
0.148 1.05T7
* 7 1.00
EOE'E” 9 q
1k a8 ;
0.14r
o 04 L o 04
alWw @ 05 0.95 alW ® g5
0O 0.6 t 0 06
0'120 0.5 1 1.5 O'90 0.5 1 15
d/a d/a

Fig. 13.3a) Influence of the geometric data on the first regular term of the Williams stress fukigtioh
CoefficientA in the normalisationA = 6 A,V W/ d.
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14 Double-edge-cracked plate

okl e
|
|
— ‘ ———
*a# \ Fa*

|
SIEREAREAR

Fig. 14.1 Double-edge-cracked rectangular plate

a=a/W [H/W=15| 1.25 1.00 0.75 0.50 0.35
0.0 -0.526 | -0.526f -0.52¢ -0.526 -0.526 -0.5%6
0.1 -0.530 | -0.530f -0.53(
0.2 -0.532 | -0.528| -0.527
0.3 -0.532 | -0.520( -0.514 -0.4783 -0.257 0.293
0.4 -0.528 | -0.503| -0.440 -0.282 0.25p 1.546
0.5 -0.522 | -0.464| -0.314 0.044 1.058 3.135
0.6 -0.510 | -0.409( -0.153 0.483 2.20P 5.2¢
0.7 -0.49 -0.32 0.023 0.969 3.68 8.13

Table 14.1 T-stress Ta* for the Double-edge-cracked plate in tension.

For the long plateH/W=1.5) the relations hold within0u <0.7

T/0o=-0526- 0043% + 0044d4° + .012194 (14.1)
B =-0.469- 007104 + 01198° + .028af (14.2)
and for the quadratic platelfW=1)

T/0=-0526+ 01804 - 27244°*+ 95966 - .63883 (14.3)
B =-0469+ 0122% - 12256° + .606268 - .44983 (14.4)
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a=a/W [H/W=15| 1.25 1.00 0.75 0.50 0.35

0.0 -0.469 | -0.469| -0.469 -0.46 -0.469  -0.449
0.1 -0.475 | -0.470[ -0.464

0.2 -0.476 | -0.465| -0.45]

0.3 -0.472 | -0.453| -0.419 -0.33f -0.144 0.194
0.4 -0.460 | -0.425 -0.343 -0.18 0.12pD 0.545
0.5 -0.440 | -0.379| -0.237 0.02§ 0.43p 0.930
0.6 -0.408 | -0.318| -0.11C 0.284 0.84p 1.3q47
0.7 -0.364 | -0.228| 0.016 0.571 1.424 1.943

Table 14.2 Biaxiality ratiof3 for the Double-edge-cracked plate in tension.
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15 Double-edge-cracked circular disk

Fig. 15.1Double-edge-cracked disk.

Figure 15.1 shows the double-edge-cracked disk.The T-stress under loading by constant
circumferential normal tractions,, is shown in Fig. 15.2 together with the biaxiality rdiio

In contrast to the single-edge-cracked disk the relative crack length is defined herets/
(R=D/2).

0.5 0.4
0.25T 0.2
0 0
-0.25 -0.2
-0.5¢ -04

07502 04 06 08 1 % 02 04 06 08 1

a a
Fig. 15.2T-stress and biaxiality ratio for the double-edge-cracked circular disk under circumferential normal
tractions.
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a Tl/on B a-C
0 |[-0.526 | -0.469| 0.9481
0.2 |-0.401| -0.316| 1.199
0.3 |-0.298 | -0.224| 1.405
0.4 |-0.171| -0.125| 1.658
0.5 [-0.023 | -0.016| 1.954
0.6 [0.136 | 0.095 | 2.273
0.7 {0.290 | 0.194 | 2.580

0.8 | 0.425 | 0.260 | 2.850

Table 15.1T-stress, biaxiality ratio and coefficient for the Green's function.
Loading: constant circumferential normal tractions

The T-stress entered into Table 15.1 can be expressed by

L —-0526+ 04022y + 09104° + .14406 — . 16874 (15.1)
o

n

For the Green's function under symmetrical loading the same set-up is chosen as used for
single-edge-cracked components, namely, expressed in the integrated form

T= Cj’(l— X o, (R deo| (15.2)

with the parameter C entered into Table 15.1 and fitted £0.8 by the polynomial

C= §(0.9481+ 08043 + 18207+ .28843 - . 33747) (15.3)

thickness t

P

Fig. 15.3Brazilian disk test with double-edge-cracked specimen.
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Using the Green's function and the stress distribution given by egs.(11.15) and (11.16) the T-
stress was computed for the Brazilian disk test with double-edge-cracked disks. Table 15.2
contains the data for several angBeésee Fig. 15.3)

a=a/R | © =132 W16 8 4 38 | 7116 | 12
0 0 0 0 0 0 0 0
0.1 2.400 2.671 1.086 0.35p 0.215 0.191 0.184
0.2 -1.946 0.900 1.453 0.711 0.438 0.413 0.399
0.3 -2.951 -0.917 | 0.094p 0.958 0.711 0.6p6 0.439
0.4 -3.185 -1.884 | 0.081 1.018 0.946 0.907 0.993
0.5 -3.226 -2.370 | -0.716 0.86f 1.129 1.142 1.143
0.6 -3.190 -2.610 | -1.31y 0.55f 1.229 1386 1.967
0.7 -3.100 -2.703 -1.72 017y 1232 1.4%9 1.531
0.8 -2.955 -2.688 -1.95 -0.179 1.148 1.493 1.908

Table 15.2 T-stressl/c* for the Brazilian disk testof=2P/(TR)).
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