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Abstract: 
Only the knowledge of the convective-diffusive heat transport phenomena in laminar 
and turbulent MHD fiows enables an adequate design of heat transfer units ( e.g. 
liquid metal cooled fusion blankets) or the development of MHD controlled processes. 
This report presents an experimental and numerical study of the heat transfer in a 
fiow of a reetangular duct with electrically conducting walls exposed to an uniform 
transverse magnetic field B, oriented parallel to two walls. The heat fiux q produced 
by a radiation heater is perpendicular to B. Both, the integral quantities (pressure 
drop, Nusselt number Nu) as weil as the local ones (temperature at fiuid-wall inter­
face, velocity, temperaturein the fluid) are measured. The parameters investigated 
are: Hartmann number 0 ::::; M ::::; 5000, Reynolds number 0 ::::; Re ::::; 1.3 · 105 and 
Peclet number 0 ::::; Pe ::::; 2900 . 
The measured pressure drop agrees with the analytic one for two-dimensionallaminar 
duct fiows for nearly all parameters. Only for M ::::; 350 and Re ;::: 7 · 104 higher values 
are obtained. The critical Reynolds number Recrit where the pressure drop of the 
MHD fiow is negligibly small compared with an ordinary hydrodynamic fiow (OHD) 
is found tobe given in the investigated configuration by the relation Recrit = 100 · M. 
Regarding the velocity distribution and the temperature distribution within the duct, 
which are measured using a temperature-potential probe (TEMPO), an excellent 
agreement between experiment and calculation is found for laminar MHD fiows. The 
wall Nusselt number of the MHD fiow is due to the high velocity jet at the walls 
paralleltoB about 30% higher compared to an ordinary hydrodynamic fiow. At high 
M and for large Re and Pe the same heat transfer characteristics as in a laminar MHD 
fiow is found because the thermal boundary layer has not left the viscous laminar 
sublayer of the jet and thus the heat transfer is still based on pure heat conduction 
in this sublayer. If the duct is long enough or the parameter constellation is chosen 
properly so that the thermal boundary layer exceeds the viscous sublayer of the jet 
the heat removal is enhanced by a factor of 2 compared to a laminar MHD fiow. 
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lVIHD Strömung und Wärmeübergang in einem Rechteckkanal 

Z usarnrnenfassung: 
Lediglich eine profunde Kenntnis des Wärmeübertragungsverhaltens laminarer und 
turbulenter magnetohydrodynamischer (MHD) Strömungen erlaubt eine adäquate 
Auslegung von Wärmeübertragern, zum Beispiel von Flüssigmetallblankets, oder eine 
Steuerung industrieller Verfahren durch den Einsatz von MHD Effekten. 
In diesem Bericht wird die experimentelle und numerische Untersuchung einer MHD­
Strömung in einem Rechteckkanal mit elektrisch leitenden Wänden vorgestellt. Ein 
äußeres konstantes Magnetfeld B steht senkrecht auf der Kanalachse und ist eben­
falls senkrecht zum Wärmestrom q, der von einem Strahlungsheizer erzeugt wird. Im 
Kanal werden sowohl integrale Größen wie der Druckverlust und die Nusselt-Zahl aber 
auch lokale Größen, zum Beispiel die Temperatur an der Fluid-Wand-Grenzfläche, die 
Geschwindigkeit und die lokale Temperatur ermittelt. Der untersuchte Parameter­
bereich umfaßt: Hartmann-Zahlen 0 ~ M ~ 5000, Reynolds-Zahlen 0 ~ Re ~ 1.3·105 

und Peclet- Zahlen 0 ~ Pe ~ 2900. 
Der gemessene Druckverlust stimmt mit der analytischen Lösung für eine zweidi­
mensionale MHD in nahezu dem gesamten untersuchten Parameterbereich überein. 
Lediglich für Hartmann-Zahlen M ~ 350 und Re ~ 7 · 104 wird ein höherer Druckver­
lust ermittelt. Beim Überschreiten einer kritischen Reynoldszahl Recrit von Recrit ~ 
100 · M entspricht der MHD-Druckverlust dem einer turbulenten hydrodynamischen 
Rohrströmung. Die Temperatur- und Geschwindigkeitsverteilung im Kanal, die mit 
einer kombinierten Temperatur- und Geschwindigkeitsmeßsonde (TEMPO) ermit­
telt wurde, stimmt mit den berechneten Werten für eine laminare MHD-Strömung 
überein. Die Nusselt-Zahl an der Wand ist bei MHD-Strömungen aufgrundder wand­
nahen Geschwindigkeitsüberhöhungen (, den sogenannten Seitenwandjets), die sich 
an Wänden parallel zum Magnetfeld ausbilden und direkt dem Wärmestrom ausge­
setzt ist, um ca. 30% größer als in einer hydrodynamischen Strömung. Bei großen M 
und sehr großen Re entspricht der Wärmeübergang der turbulenten MHD Strömung 
dem Wärmeübergang wie er auch in einer laminaren Strömung ermittelt wird. Der 
Grund dafür ist, daß die thermische Grenzschicht sich noch im Bereich der viskosen 
laminaren Grenzschicht befindet und somit leistet lediglich die molekulare Wärmeleitung 
einen Beitrag zur Wärmeübertragung. Bei bestimmten Parameterkonstellationen 
oder bei hinreichend langen Kanälen wächst die Grenzschicht in den Bereich der 
turbulenten Seitenwandschichten hinein. Durch den turbulenten Quertransport des 
Fluids wird der Wärmeübergang gesteigert. Die Wärmeübertragungsverbesserung 
kann um den Faktor 2 höher sein als bei einer laminaren MHD-Strömung. 
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Chapter 1 

Introduction 

Liquid metals are often considered as coolant for an efficient heat removal of thermally 
high loaded surfaces because of their high thermal molecular conductivity. There­
fore, they facilitate rather simple geometries of heat transfer units. In the fusion 
technology the use of Lithium or Lithium alloys as coolants of the plasma facing 
structure, called the blanket, offers additionally the breeding of Tritium the 'fuel' for 
fusion. But, if an electrically conducting fluid flows in the strong, fusion plasma con­
fining, magnetic field B it experiences a body force opposing the fluid motion. This 
body force known as Lorentz force arises from the electric currents J induced by the 
fluid motion, according to the cross product v x B, and interact themselves with the 
magnetic field B. The magnitude of the Lorentz force is determined by the electric 
conductivity both, of the fluid and the wall. The interaction of these vector fields 
velocity, magnetic field and electric current density forms magnetohydrodynamics 
(MHD), which yields velocity distributions, turbulence structures and pressure fields 
unknown in ordinary hydrodynamics ( OHD). Consequently, any optimization of in­
dustrial fabrications processes by means of MHD has to focus on the named vector 
fields, which involves in addition to OHD not only the molecular thermo-mechanical 
properties of the system fluid/wall, but also the electric properties. 
Similarity considerations for the heat transfer of a magnetohydrodynamic duct flow 
result in the following five dimensionless parameters, the magnetic Reynolds number 
Rm, the Hartmann number M, the interaction parameter N, the Peclet number Pe, 
and the wall conductance ratio c: 

~ aoB5 Voa awtw 
Rm = J-lav0a; M = aBoy (pv); N = pvo ; Pe = 7; c = --;;:;;-· (1.1) 

Here, f-l, a, p, v, K are the magnetic permeability, the electric conductivity, the 
density, the kinematic viscosity and the molecular heat diffusivity of the fluid; a is a 
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characteristic length of the duct cross-section; O'w and tw are the electric conductivity 
and the thickness of the duct walls; B0 is the magnetic field strength and v0 the 
average velocity in the duct. 
The magnetic Reynolds number Rm expresses the ratio of the magnetic field induced 
by the currents to the externally applied magnetic field and is assumed to be negligibly 
small. The field Bo can be assumed tobe constant. The Hartmann number M and 
the interaction parameter N weight the electromagnetic force to the viscous and the 
inertial forces, respectively. For fusion typical applications usually M and N are of 
the order 102

- 105 , see Holroyd&Mitchell (1984). The classical Reynolds number 
Re can be obtained by the relation M 2 IN. An energy balance leads to the Peclet 
number which describes the ratio of the convective to the diffusive heat transport. 
Liquid metals are characterized by small Prandtl numbers Pr ( Pr = v I K) of the order 
10-3 -10-2 so that the Peclet number varies in the field of fusion technology typically 
from 101 - 103. Since the magnitude of the induced electric currents significantly 
infl.uences the pressure drop in a duct the wall conductance ratio c, which describes 
the electric conductivity of the wall compared to that of the fluid, is as small as 
possible with values of 0( 10-2 - 10-1 ). 

Before outlining some results for MHD flows in reetangular ducts which have been 
obtained in the past by numerous authors, some characteristic phenomenological 
aspects are discussed. 

Consider the flow in a reetangular duct as shown in figure 1-1a. The duct consists 
of two walls aligned with the magnetic field and two walls being perpendicular to 
the magnetic field. The fluid flows in positive x-direction inducing an electric field, 
which is proportional to v x B. The resulting potential difference drives an electric 
current ], which interacts with the magnetic field producing the Lorentz force ( J x B) 
opposing the fluid motion. 
Order of magnitude estimates by Holroyd&Walker (1978) and Grinberg (1985) show 
that at high Hartmann numbers and interaction parameters the MHD flow in a 
reetangular electrically conducting duct develops quite fast, namely in a length ldev of 
the order 0("" 11 .Jc) afterentering the homogeneaus magnetic field region. However, 
this hypothesis is up to now not experimentally proved. 
A characteristic feature oftwo-dimensional MHD flows in reetangular ducts at M » 1 
isthat most of the ducts cross-section is occupied by a core flow, which is of slug flow 
type. In this core a balance of pressure forces and Lorentz-forces exists. Between the 
core and the walls boundary layers appear both different in form and extension. At 
walls perpendicular to B, named Hartmann walls, the Hartmann layers appear. These 
layers arerather thin with a thickness of 8H of 0(1IM). There, the pressure forces 
·and the Lorentz forces are acting against the viscosity of the fluid. At wallsparallel to 
the magnetic field, called side walls, the side layers are present. Within these layers 
Lorentz-forces play to the first order no role. The thickness of the side layers 8s scales 
with 8s"" 1IVM. Different to the Hartmann layers, which are characterized by an 
exponential decay of the velocity towards the wall, in the side layers high velocity 
jets are possible, which depend only on the ratio of the Hartmannwall conductance 
to the side wall conductance, i.e. eH and es. Even a flow reversal within these side 
layers is possible as reported by Hunt (1965). The flow rate carried by the side layers 
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is 0 ( 1) and can be higher than that of the core fl.ow. Two analytically calculated 
velocity profiles for the duct geometry studied in the experiment are shown in figure 
1-1b, c. 
The layer structure of fully developed MHD fl.ows has been shown in principle by Hunt 
et al. (1969) and Branover et al. (1978a). Since the scaling of these layers depends 
strongly on the Hartmann nurober M their measurements have been restricted to 
relatively small Hartmann numbers M ;S 50. 
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Figure 1-1 (a) Schematics and coordinate system of the duct studied. The mesh 
imbedded in the figure shows the computational mesh being used in the numerics. The 
profiles of the mean streamwise velocity in the figures (b) and ( c) are calculated for 
es= 0.0714 and es= 0.0119 and for the Hartmann numbers M = 4940 (b), M = 350 
(c). 

Although a large scientific community is investigating isothermal MHD fl.ows in quite 
complex geometries it is noteworthy that only a few works, mostly theoretical ones, 
about MHD heat transfer mechanisms are published. An analytic solution for the 
heat transfer in a laminar 2D MHD pipe fl.ow has been given by Gardner (1967) for 
a very specific set of boundary conditions. An overview over the heat transfer in 
laminar 2D-MHD duct fl.ows for different duct geometries, electric wall conditions 
and thermal poundary conditions is given in the book of Blums et al. (1987). This 
book focuses mainly on the analytical formulation of solutions of the heat transfer in 
MHD boundary layers, which is the most important problern due to the complexity of 
these layers compared to the slug fl.ow profile present in the core. Unfortunately most 
MHD heat transfer duct fl.ow problems in reetangular geometries with electrically 
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conducting walls can not be solved analytically so that numerical methods have to 
be applied, see e.g. Bühler (1993). 

In most technical applications however, the fiow is thermally developing before reach­
ing the outlet of the heated section. Similarity considerations yield that the thickness 
of the thermal boundary layer Oth scales with Oth "" 1/ ~. Consider now a duct fiow 
with a Feelet number Pe = 104 and duct dimensions of approximately 0.1m in the 
geometry shown in figure 1-1. If we scale the Peclet number with the heated length, 
namely the x-coordinate, the fiow is thermally developed if the thermal boundary 
layer has reached the opposite side. This results in a thermal development length of 
0(10m)! This simple estimate demonstrates the necessity for the detailed study of 
thermally developing fiows. 

In figure 1-2 a sketch of the growth of the developing thermal boundary layer with the 
viscous MHD side wall layer is shown. The high velocity jet in the side layer which 
carries an 0(1) fiow rate allows an excellent heat removal from the wall compared to 
a hydrodynamic fiow. So the Nusselt numbers attainable in laminar MHD fiows are 
higher than in laminar OHD fiows. 

@B 

ooooooooodo 
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V 
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Figure 1-2 a) Sketch of the development of the thermal boundary layer in the duct in 
dependence of the Reynolds number. b.) This subgraph shows the mechanisms of the 
destruction or conservation of vortices under the influence of the magnetic field. 
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In order to explain the heat transfer mechanisms properly it is necessary to under­
stand the dynamics of the MHD fl.ow in detail especially if it gets turbulent, because 
here also MHD reveals featuresnot present in OHD. 

Despite the fact that magnetic fields have a stabilizing effect on the fl.ow of conduct­
ing fl.uids, the fl.ow in most ducts are turbulent, especially in heat transfer units. An 
approach to describe the turbulent fluid motion in MHD fl.ow in reetangular ducts is 
elaborated by Cuevas et al. (1996, 1997). There, the fl.ow regimes are investigated 
using a coinposite core-side layer spectral collocation method which resolves except . 
for the Hartmann layers each fl.ow domain. The turbulent velocity profiles are ob­
tained using an iterative scheme in which the turbulence is introduced through an 
eddy viscosity model. The results obtained reveal features also found in the present 
experiment. 
Nevertheless, also disagreements appear and a closed MHD turbulence model is still 
lacking. The reasons are quite obvious. First, integral and locally reliable measure­
ments of turbulent MHD fl.ows even in simple geometries do not exist. Second, MHD 
fl.ows are highly anisotropic, which arises from the anisotropic character of the electro­
magnetic forces. If only the local turbulence structure like the formation and decay 
mechanisms of vortices in MHD-fl.ows would be known, a first step towards the devel­
opment of a semi-empirical description of the isothermal turbulent MHD transport 
phenomena could be made. Right now, only the model of Cuevas et al. (1997), which 
is also extended to the turbulent heat transfer (1997b) shows satisfactory results. 
Within this article the authors focus only on the description of the characteris­
tic features of magnetohydrodynamic turbulence. Further information about the 
experimentally found specific phenomena of MHD-turbulence the experimental re­
sults are reported in the articles of Kolesnikov&Tsinober (1972), Lielausis (1975), 
Reed&Lykoudis (1978), Reed&Picologlou (1989). Still unsatisfactory theoretical at­
tempts to describe the phenomena being observed in the experiments are given in 
Branover (1978a), Davidson (1995), Sommeria&Moreau (1982). The given references 
are of elective nature and by far not complete; an overview with cross references may 
be taken from Moreau (1990) and Tsinober (1989). 

Consider a shear fl.ow as appearing in the side layer jet of a MHD duct fl.ow (see 
figure 1-1b or figure 1-22a). If the shear stress, expressed by r, which is proportional 
to ßv / ßz exceeds a certain value, vortices are generated. In MHD fl.ows at high 
Hartmann numbers the structure of these vortices is in principle two-dimensional. 
(However, slight three-dimensional time dependent fl.ow patterns may appear in the 
regions where the core-fl.ow matches the wall adjacent boundary layers. However, an 
experimental evidence is not available yet.) The axis of the large vortex is aligned 
with the magnetic field lines. The reason why MHD fl.ows tend to form such a 2D 
structure can be easily explained by the figures 1-2b and 1-2c. 
Let us consider first a vortex as shown in figure 1-2b with the rotation axis being 
parallel to B. Due to the interaction of v and B within the vortex an electric potential 
is induced, in which iso-velocity lines are iso-potentiallines. Since the induced currents 
are azimuthal, the current paths automatically close on themselves. The azimuthal 
torque destroying the vortex disappears if the gradient of the angular momentum in 
direction of B is zero. Physically, this arises because the possible electric current 
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points radially outwards and is independent of z. By syrnrnetry, this current has no 
means of recirculating and so the cross-product of the azimuthal velocity and B is 
exactly balanced by a radial gradient in the electric potential. However, near the 
top and bottom of the vortex the current can return through regions of small or zero 
swirl. 
The resulting in- and outward fiow at the boundaries gives rise to a reversed azimuthal 
torque which in turn creates a positive angular momentum in previously stagnarrt 
zones. So there is an exchange of swirl and motion perpendicular to B stretching 
the vortex in direction of magnetic field lines. This is finally limited in a duct fiow 
by the Hartmann walls, in which the current loops can close and viscous dissipation 
becomes important. An energy analysis shows that the Joulean losses of the vortex are 
minimized if the velocity perpendicular to the magnetic field in the vortex disappears, 
so that the vortex behaves like a rotating rigid body. 

Consider next a vortex with an axis normal to B. The velocity field induces due to 
the orientation of B an electric current j, which interacts itself with B leading to a 
Lorentz-force distorting and finally destroying the vortex. 
A detailed analysis of the temporal and spatial development of vortices and how 
they are damped by means of the magnetic field is extensively described by Davidson 
(1995). Here, the authors repeat and analyze shortly the main statements of this 
article. 

• The Lorentz force destroys kinetic energy but does not alter the net linear 
and angular momentum of the fluid. Resulting from this the pressure drop in 
turbulent MHD duct fiows differs not significantly from laminar one even for 
low interaction parameters as M » 1. 

• The Lorentz-force tends to direct the fiow in such a way that the relative dissi­
pation continually falls. This however, is realized by elongating the fiow along 
magnetic field lines. 

• The spreading of momentum and vorticity along field lines is essentially a dif­
fusive process. 

By now it is unclear at which parameters primary vortices appear and the fiow gets 
unstable. A dimensional analysis irnrnediately shows that Hartmann nurober, inter­
action parameter and ,in case of electrically conducting walls, the wall conductance 
ratio of the Hartmann walls eH are the leading parameters. In fact, measurements in 
a conducting reetangular duct performed by Reed&Picologlou (1989) demonstrated 
that the side wall jets get instable exceeding a critical Reynolds number. But, the 
time dependent fiow domain in their measurements is confined to the side wall re­
gion whereas the core fiow remains laminar. Moreover, in contradiction to the book 
of Branover (1978b) they found that the onset of instability is only marginally de­
pendent on the Hartmann number if M » 1. A similar result is also found in our 
measurements, see §4.1, where a weak dependence of the critical Reynolds number 
on M is shown. 
A linear stability analysis which is directly related to the experiment mentioned above 
has been performed by Ting et al. (1991). The result of the analysisisthat the side 
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wall jet is instable for a critical Reynolds number Recrit = 343, which is one order 
of magnitude lower than found in the experiments. The critical Reynolds number 
predicted is independent of M. The disagreement between analysis and experiment 
is based on the different shape of the side layers, which is an input parameter in the 

analysis. There, the analytically calculated velocity profile for M >> 1 is used as base 
solution for the perturbations, whereas in the experiment such a shape of the velocity 
profile has not been found. 

In this report the laminar and turbulent MHD fiow in a reetangular duct with thin 
conducting walls exposed to a uniform magnetic field B and an applied heat fiux q 
perpendicular to the magnetic field Bis investigated for the following parameters: 

• 0 ::; M :S 5 · 103 
; 

• 0 ::; Re ::; 1.3 · 105 
; 

• 0 ::; Pe ::; 2900. 

The aim of this paper is to investigate the hydraulic properties of the investigated 
test module in terms of 

• pressure gradient dpjdx as a function of M and N; 

• velocity distribution u in fiow direction within the liquid as a function of M 
andN. 

The heat transfer from the wall and within the liquid is investigated for the leading 
parameters. Therein, the specific features of turbulence in MHD are outlined. The 
report is organized in such a way that in section §2.1 the problern is formulated andin 
the paragraph §2.2 the solution methods and specific strategies are explained. After 
the description of the experimental setup in §3 the obtained results are discussed for 
the isothermal MHD fiow in §4.1. Subsequently in §4.2, the heat transfer in the MHD 
fiow is discussed. An attempt to extrapolate the heat transfer results to a blanket 
design is made in §4. Finally, the conclusions are drawn. 





Chapter 2 

Formulation and Analysis 

2.1 Formulation 

The investigated duct flow has a reetangular shape as shown in figure 1-1. The 
dimensionless equations governing the MHD flow in the inductionless limit as Rm ~ 0 
are the conservation of : 

• momentum 

1 ( 87! ~ ) ~) 1 ~ ~ ~ 
N ßt + ( V . V V = - Vp + M2~ V + j X B ' (2.1) 

• energy 

(ae ) Pe ßt + (7!. V) e = ~e, (2.2) 

• mass 
(2.3) 

• charge 
~ 

V· j =0, (2.4) 

• and Ohm's law 
~ ~ ~ 

j=-V<P+jxB. (2.5) 

Here, v, t, p, j, B, 8 and <P derrote the dimensionless velocity, the time, the pressure, 
the electric current density, the magnetic induction, the temperature difference and 
the electric potential scaled with the values vo, afvo, ao-voB5, o-voBo, Bo, (iJ. ·a)f>.. 
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and avoBo, respectively. llT is a characteristic temperature difference. Here, llT is 
the difference between the average inlet temperature and the average temperature at 
the measurement position. 
The magnetic field is assurned tobe uniform and constant. Moreover, for simplicity 
a non-buoyant flow is considered so that the molecular properties of the liquid like 
the density p, the kinematic viscosity v, the specific electric conductivity 0', the heat 
capacity Cp and the heat conductivity .A are constant with respect to space and time. 
As a result of this assurnption the temperature 8 acts like a passive scalar. Finally, an 
order of magnitude estimate shows that the Ohrnie heating is negligible in electrically 
well conducting liquids. This enables us to decouple the current density J from the 
energy equation. 

The boundary conditions on the walls are the non-slip condition, 

iflw = 0, 

and the thin-wall condition, see e.g. Walker (1981) 

(2.6) 

---;+~ 2 ( J · n = c\l..L <I>w, 2.7) 

where fi is the unity vector normal to the walland 'V..L denotes the projection of the 
gradient on the wall surface. The thin-wall condition describes the balance of charge 
in the conducting duct walls. The currents (J · fi) leaving the fluid to the wall enter 
this balance as a source term. If the fluid is in perfect electrical contact with the 
duct walls, that means there is no contact resistance across the fluid-wall interface, 
the potential of the wall and that of the adjacent fluid are equal, i.e. 

<I> = <I>w, (2.8) 
at the interface. At the inlet and the outlet of the test section a fully developed 
two-dimensional MHD-flow is assurned. 

Regarding heat transfer, the same conditions as in hydrodynamics are applied. For 
a given constant heat flux of q perpendicular to the magnetic field the temperature 
condition reads 

88 . an =q. (2.9) 

If the heat conducting wall is of finite thickness the highest temperatures appear at 
the outside of this wall. This temperature 8w,o can be calculated with the relation 

1 . 
8w,o = 8w,i +Bi q, (2.10) 

where 8w,i is the dimensionless temperature at the fluid-wall interface and Bi is the 
Biot number, which is defined by 

B . Awa (2 ) 
~ = Atw. .ll 

Finally, the flow is assurned to be fully developed both at the inlet and at the outlet. 
Consequently, the electric current in flow direction is zero. The derivatives of the 
velocity vanish x-direction and also the pressure gradient keeps constant. 
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2.2 Analysis 

As mentioned in the formulation the temperature is a passive sealar if buoyant effeets 
are negleeted. Assuming a fully developed two-dimensional (2D) fl.ow at the inlet 
and the outlet the veloeity /pressure-field and the temperature field ean be separately 
investigated. The following strategy is used to ealeulate the laminar heat transfer in 
a reetangular duet: 

• The velocity field is ealculated using an analytieal solution valid for 2D MHD 
fl.ows. 

• A non-equidistant mesh in all eoordinate direetions is generated with a eom­
mereially available program paekage. 

• The values for the veloeity are interpolated on that mesh. 

• The heat transport in both wall and fluid is ealeulated on the mesh for the 
given boundary eonditions using the eommercial program paekage F I D AP. 

In the following two subseetions . the main features of the MHD program and the 
numeries being used are shortly deseribed. Further information may be taken from 
the Iiterature eited. 
For the OHD duet fl.ow, whieh is also presented, a different proeedure is used. The 
solution is obtained eompletely numerieally using the F I DAP program paekage. The 
results ealculated are displayed in the seeond subseetion of this ehapter. 

2.2.1 Analytical 2D-MHD duct flow 
The veloeity and pressure field of the two-dimensional fully developed MHD fl.ow 
in the studied geometry is treated by means of an analytie solution presented by 
Molokov (1993). Here the main features of this solution are outlined: 

• The applied magnetie field B is supposed tobe strong, i.e. M ~ 1; 

• the magnitude of the wall eonduetanee ratio of the side wall es is arbitrary, 
including the limiting eases of insulating and perfeetly eondueting walls; 

• the Hartmannwalls are mueh better eleetrieally eondueting than the adjaeent 
Hartmann layers, i.e. eH ~ 1/M, in order to keep the side layer solution 
traetable by means of analytieal methods. 

The analytie solution of the 2D MHD-fl.ow whieh is obtained using the methods of 
matehed asymptoties. This method is based on the ealeulation of the velocity and 
the indueed magnetie field. It yields the following result for the fl.ow rate in the side 
layers Q s for a reetangular duet whieh is symmetrie with respeet to the plane x - z : 

(2.12) 
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with ßj = (j + 1/2)7r and "/j = vlßi72. The pressure gradient dp/ dx behaves: 

dp = d [d (1 + CH) + vfsM ~ 1 ] -
1 

dx CH ~ ßJI2 
( 1 + es"(jVJVi) 

(2.13) 

where the aspect ratio of the duct d is given by d = 2a/(2b), and 2b is the width of 
the duct perpendicular to B. 
Three different limiting cases should be outlined: 

• If es ~ 1/ VM, which is known as core- flow-approximation (see Molokov&Bühler 
1994), equation 2.13 asymptotes to the well known pressure gradient formula: 

dp 1 

dx = ( 1 1 2 ) · +-+-
eH 3des 

(2.14) 

Since it is often necessary to check in the numerical codes the fiow rate carried 
by the side layers is given here analytically by: 

1 
(2.15) 

Qs = [ ( 1 ) 2]· 
3 · es · 1 + eH + d 

• From equation 2.14 it is clear that if es --t 0 the eore- flow- approximation 
is not Ionger valid. Instead for es = 0 the following pressure drop relation is 
obtained 

dp d ·eH - = --;-__ ....::.;,;__7""'" 

dx ( d + 2c;eHVM) ' 
(2.16) 

where c; = 0.299. 

• If in addition the Hartmann walls are much better conductors than the side 
layers ( VM ·eH ~ 1) the resistance for the electric current is mainly determined 
by the side layer and the pressure gradient correlation reduces to the formula 
given by Hunt (1965), 

(2.17) 

This means that for this specific case the pressure gradient is independent of 
eH and the Hartmannwalls act like perfect conductors. Additionally, the core 
velocity is of O(M-112) and the side layers carry all volume fiux. 

2.2.2 Numerical analysis 
The calculation of the heat transfer in a laminar MHD flow has been performed com­
pletely three-dimensional with the F I D AP program package using the analytically 
evaluated MHD-velocity profile as an input. Due to the rather thin MHD bound­
ary layers a non-equidistant mesh has been generated in the yz-plane, see figure 1a, 
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whereas the grid in flow direction is equidistant. The number of grid points per unit 
length used in the coordinate direction x, y and z of the fluid domain are 16, 32 and 
16. 
Since the heat conductivity of stainless steel and the fluid is of similar magnitude, 
heat can be transported within the wall in flow direction and opposite to it. In the 
experimental setup the ratio is Asteelf ANaK = 0.684. Due to this 0 (1) value the 
fluid is especially heated upstream by the upstream heat diffusion within the wall. 
Therefore, the temperature in the plane x = 0 is not zero especially for low P e and 
Re numbers. This leads to the following two consequences: 

• The computations arenot limited to the heated area 0 ~ x ~ 12.5. They are 
extended to negative x-direction as well as to x ~ 12.5. In order to restriet the 
calculation time the chosen computational domain is -3 ~ x ~ 15.5. 

• Since the wall contributes also to the heat conducted in all directions the wall 
has to be integrated in the calculation. The discritisation of the mesh in x and 
y direction is the same as for the fluid domain. In z-direction however, three 
equidistant spaced grid points are used. 

Because the laminar MHD velocity profile is used as input, only the energy equation 
(2.2) has tobe solved for both the solid and the liquid domain. 
In order to compare the heat transfer characteristics of the MHD flow with that of 
an ordinary hydrodynamic flow, reference calculations have been performed for the 
hydrodynamic laminar and turbulent flow. Both calculations have been performed 
also completely three-dimensionally but now using an equidistant mesh. Both, the 
laminar and the turbulent flow calculation has been performed for the whole test 
section length, i.e. for -16.7::; x::; 30. Due to the restricted storage capacity of the 
used work station (about 125MB RAM) the flow domain has been split-up into three 
parts, which overlap each other by two characteristic lengths a. As inlet condition 
for the test part (flow domain 2) from -3 ::; x ::; 15.5 the results obtained for flow 
domain 1 are used; the same holds for flow domain 3. 

Consider first the laminar flow: 
The flow is assumed tobe of slug flow type at x = -16.7. The dimensionless tem­
perature there was chosen to be zero. The non-slip condition is applied at all walls 
and all walls except for the heated regions have been assumed to be adiabatic. 

In the turbulent OHD flow the situation is more complicated. The calculation pre­
sented for the turbulent OHD-flow is based on the k- c- turbulence model, which 
is described in appendix A briefly. 





Chapter 3 

Experimental setup 

The experiments have been performed in the MEKKA-facility of the Forschungszen­
trum Karlsruhe. Here only abrief overview of the experimental facility is given. A 
more detailed description may be taken from Barleon et al. (1996). 
The magnet used in the experiment is a normal conducting water-cooled magnet 
with a maximum magnetic field strength of 2.0 Tesla. The reetangular gap has the 
dimensions 168mm x 480mm. The test section has been located in such a way that 
the magnetic field strength shows deviations of less than 1% along the test section 
of interest. The mapping of the absolute magnetic induction of the field in the plane 
y = 0 is shown in figure 3-1. 

A centrifugal pump with a pressure head of 0.9MPa at a fl.ow rate of 22m3 /h circulates 
the eutectic sodium-potassium alloy N a22 K 78 ( melting point -11 o C) at temperatures 
below 250°C. The thermophysical properties of this alloy have been described in detail 
by O'Donell et al. (1989). In the investigated temperature range (T ~ 50°0) N aK 
has a Prandtl number of Pr = 0.024. An additional electromagnetic pump is used 
for the high temperature wetting procedures above 250°C and also for very low fl.ow 
rates. During a wetting procedure at 350°0 impurities on the steel surface, such as 
oxygen or alloy components are dissolved in the N aK and extracted by cold traps. 
With this procedure a perfect electrical contact between the structural material and 
the fluid without contact resistance is ensured. 
The dissipated energy is removed by an oil-cooled double tube heat exchanger. The 
fl.ow rate is measured simultaneously by a gyrostatic mass fl.ow meter and by an 
electromagnetic fl.ow meter in order to have two independent measurement principles. 
Both agreed throughout the measurements with an accuracy of 0.5%. The entire loop 
can be moved on rails tagether with the test section along the axis of the magnet. 

The test channel has a reetangular cross-section with an aspect ratio 2 : 1 and a 
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Figure 3-1 Magnetic field distribution of the magnet in the plane y = 0. The magnetic 
field strength B is given in Tesla and ~B = O.lTesla. 

characteristic length a of 40mm. A sketch with all dimensions scaled with a is shown 
in figure 1-1. Allwalls consist of stainless steel, which are welded by electron beam 
welding. The Hartmann walls, being perpendicular to B, are 1mm thick correspond­
ing to a wall conductance ratio eH of eH = 0.0119, whereas the side walls being 
aligned with B, consist of 6mm thick plates which yields to es = 0.0714. 

Twelve thermocouples are embedded in the side wall in groves directly at the fiuid­
wall interface at three different axial positions, namely at the entrance of the heater 
(81 at x = 0), in the middle of the heated section (82 at x = 6.25) and also at the 
outlet of the heated section (83 at x = 12.5). These thermocouples are counted as 
an array Tmn,i, where the first index denotes the axial position in x-direction ( 81, 
82 or 83). The secend index n specifies the location in y-direction (1, 2, 3 or 4) and 
the subscript 1i 1 indicates a sensor at the fiuid-wall interface. 

A similar set of 12 thermocouples is embedded in the side walls at the outside facing 
the radiation heater. The numbering is analogaus to the fiuid-wall thermocouples 
with the exception of the index 1 o' instead of 1 i 1 indicating that these sensors are 
located at the outside. The exact spatial location and the definition of the indices 
may be taken from figure 3-2a. All thermocouples have an outer diameter of 0.5mm 
and are made of the pairing copper-constantan. Because for this combination the 
Nernst-Ettingshausen effect remains small, see Kollie et al. (1977). 
The heat fiux is produced by a radiation heater consisting of 5 heating rods each 
having an active length of 500mm and being powered by 2k W. The heater is ca­
pable attaining a maximum heat fiux of 25W/cm2

• A sketch of the heater and its 
installation on the test section is shown in figure 3-2b. The heat fiux is determined 
both by measuring the electrical power input and subtracting the heat losses and by 
a heat balance between inlet and outlet of the test section. In order to determine 
the average inlet and outlet temperatures at both ends a copper integrator has been 
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Figure 3-2 a) Geometry and location of the measurement positions of the test section. 
Pressure tabs are indicated with 'P'; the thermocouples imbedded at the fluid-wall­
interface are marked by 'i'. The TEMPO probe is traversed in the plane y = 0 at Sl 
(x = 0), S2 and S3. b.) Cut through the radiation heater with the attached test section. 
c.) Sketch of the TEMPO probe. 
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used. Within these copper integrators, through which the whole fluid fl.ows, three 
thermocouples are distributed over the cross section. In order to keep the heat losses 
small the whole test section has been thermally insulated. Due to this very effective 
insulation the heat losses of the test section are negligibly small. 
In the side walls at three different locations pressure taps with an inner diameter 
of 2mm are installed. The pressure taps are named by Pi, where 'i' specifies the 
measurement position in x-direction as the figure 3-2a shows. 
In order to measure both velocity and temperature distribution in streamwise direc­
tion in the plane y = 0, a combined temperature-potential probe (TEMPO) has been 
used. The probe is traversed by a stepping motor. The probe shaft has a diameter of 
3mm and is electrically insulated by a painting. The two sensing tips have distances 
of lmm from each other and their steel housing has an outer diameter of 0.5mm. 
Within the steel tubes an electrically insulated Cu-CuNi thermocouple is embedded 
in order to measure the local temperature. A sketch of the TEMPO probe is shown 
in figure 3-2c. 



Chapter 4 

Results and Discussion 

Within this chapter the experimental results are presented and compared with the 
numerical calculations. This section is organized as follows: 
First, the isothermal MHD-fl.ow is discussed and afterwards the heat transfer aspects. 
The subchapters deal first with the irrtegrill quantities like mean pressure which can 
be measured without introducing a probe in the fluid. Afterwards, the velocity dis­
tributions are discussed in dependence on the governing parameters Re, M and N. 
Within the presentation of the velocity field, the stability of the MHD-fl.ow as well 
as the turbulence characteristics is discussed, since the kinematics of the fl.ow field 
determines the heat transfer. Finally, the temperature distribution within the duct 
and the temperature at the fl.uid-wall interface are investigated. 

4.1 The isothermal flow 

4.1.1 The pressure distribution 
For engineering purposes the pressure lasses within the piping network of a heat 
transfer unit network are of major importance. In MHD fl.ows with M » 1 the 
pressure lasses depend mainly on the Hartmann number M. For high magnetic 
fields (M » 1) it is known from a number of experiments (e.g. Branover (1986), 
Kirillov et al. (1995), Stieglitz et al. (1996), Stieglitz&Molokov (1997)) that the 
pressure drop scaled with the electromagnetic pressure ( ao-voB5) is even independent 
of the interaction parameter N. If we scale the pressure with the dynamic pressure 
(p = pj(pu2)) the pressure gradient in a MHD fl.ow at high M is proportional to 
~p rv 1/vo. 
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In figure 4-1 the dimensionless pressure gradient (\lp = dpjdx) scaled with the 
electromagnetic pressure for the MHD duct fiow in a Hartmann nurober range of 
611:::; M:::; 4954 is shown as a function of the interaction parameter N. For N » 1 
the measured pressure gradients nearly coincide with the calculated ones. The de­
viations between the measurements and the analytical solution are in a range of 
approximately 5%. At high Hartmann numbers, i.e. M 2:: 103 , the dimensionless 
pressure gradient remains constant in the whole range of investigated interaction 
parameters. 
At a Hartmann nurober of M = 103 and interaction parameters less than 60 the 
pressure distribution leaves the domain where the fiow is dominated by electromag­
netic forces. In this low interaction parameter range the viscous dissipation starts to 
compete with the Joules dissipation, which is expressed by an increasing pressure gra­
dient. The figure 4-1 demonstrates that the inertialess range, which is only governed 
by electromagnetic-viscous interaction, is shifted towards higher N as the Hartmann 
nurober decreases. 
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Figure 4-1 Measured pressure gradient \lp as a function of the interaction parameter 
N for different Hartmann numbers 611 :::; M :::; 4954. The lines indicate the analytically 
calculated values. ( 0, -) M = 4954; (0, - - -) M = 2453; ( Q, - · -) M = 1069; 
(.6, · · .. ) M = 800; (*,- · ·- ··) M = 611. 

The fiow domain in which inertia, viscosity and electromagnetic effects balance each 
other is highly non-linear, compare Molokov et al. (1994), and can be described by 
the following equation. 

(4.1) 

As the Hartmann number is further decreased down to values of M ~ 7 4 the inertia­
less fiow domain can not be found in the experiment, see figure 4-2. The reason is 
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that in the high interaction parameter range the pressure decreases to values which 
can not be resolved by the used pressure transducers. 
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Figure 4-2 Measured pressure gradient \lp as a function of the interaction parameter 
N for different Hartmann numbers 74 :::; M :::; 411. The lines indicate the analytically 
calculated values. ( 0, -) M = 410; (0, ---) M = 224; (Q, - ·-) M = 150; (6, 
.... ) M = 103; ( *, -· · -.. ) M = 7 4. 

From an engineering point of view it is interesting to find the transition point between 
MHD and OHD. In OHD, the pressure drop in a piping is expressed by the friction 
parameter A which is defined by 

A- b.p DH }:_ 
- ~u2 L f' 

where D H is the hydraulic diameter given by the relation 

D _ 4·Area 
H- circumferrentiallength 

(4.2) 

(4.3) 

Herein, L is the length over which the pressure difference b.p is measured and f is 
a form factor, which takes into account the aspect ratio of the duct. For the duct 
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investigated f is 0.922 in the laminar flow regime and f = 1 in the turbulent flow, see 
Zierep&Bühler (1991). For laminar OHD flows, ,\ is given by the Poiseuille relation 
,\ = 64 · f / Re,whereas in turbulent flows different relations valid for the different 
Reynolds number regimes appear see equations 404 and 4.5 

0.3164 
,\ -

4
Vlfe for (2320 <Re< 105

); (4.4) 

~ - 2lg (Re~- 0.8) for (105 <Re< 3 · 106
). (4.5) 

Relation 4.4 is called the Blasius Relation, where in the literature the implicit equa­
tion 4.5 is called Prandtl Equation. 

From the pressure drop relations of MHD controlled flow, see eq. 2.13, and the 
OHD controlled flow the power laws for the friction coeffi.cient ,\ as a function of 
the hydraulic Reynolds number can be easily deduced. In pure MHD controlled 
flows as well as in laminar OHD flow the friction coeffi.cient ,\ scales with ,\ rv Re-1. 

In a turbulent OHD flow in the Blasius regime the friction coefficient scales with 
,\ ""Re-714 . 

In figure 4-3 the friction coeffi.cient ,\ is drawn as a function of the Reynolds number 
for different Hartmann numbers. The figure shows that with increasing Re the fric­
tion coeffi.cient tends towards the values calculated for turbulent OHD flows. For a 
Hartmann number of M = 103 and Reynolds numbers Re ;::: 105 the pressure drop 
for a MHD fiow coincides exactly with the one of a turbulent hydraulic flow. 

If the Hartmann number is further decreased down to about M ~50, the transition 
Reynolds number, at which the pressure drop of MHD and pure OHD controlled 
flows meat each other, decreases. In figure 4-4 the friction parameter ,\ is shown as a 
function of the Reynolds number for a successive decrease of M. The measurements 
could not be continued to smaller Hartmann numbers than M ~ 50 because of the 
resolution of the pressure transducers. For the transition Reynolds number in the 
measured range of parameters the following fit is obtained: 

Retransition ~ 100 · M. (4.6) 

Of course, from a physical point of view the transition Reynolds number must depend 
on M, because the magnetic field strength determines both the velocity profile and 
the current density causing the pressure drop. The proportionality factor in equation 
( 4.6) of 100 found in the experiment must depend on the wall conduction ratios of 
the duct. 

However, in this context it should be emphasized that only the friction coeffi.cient 
,\ of a MHD flow (M > 0) is the same as the one of the OHD flows. But the flow 
structure or, more explicitly, the turbulence structure within the eddies of a turbulent 
flow may be completely different between OHD and MHD. 
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Figure 4-3 Measured friction coefficient >. as a function of the Reynolds number Re. 
(0) M = 1069; (0) M = 800; (0) M = 611; (6) M = 410; (v) M = 224; (*) 
M = 103; (-) Blasius relation; (- · -) laminar OHD flow. 
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Figure 4-4 Measured friction coefficient ,\ as a function of the Reynolds number Re. 
The lines indicate the relations known in OHD. ( 0) M = 103; (D) M = 84; ( 0) 
M = 74; (6) M =52; (*) M = 0; (-) Blasius relation; (--) laminar OHD flow. 

4.1.2 The velocity distribution 
All velocity profiles shown in this subsection have been recorded in the plane y = 0 
with the TEMPO-probe. The probe is traversed in z-direction from -0.4 ~ z ~ 
0.45. 
In the first measurements the location of the probe in x-direction is varied in order 
to study the influence of the developing length. The coordinate x* = 0 marks the 
beginning of the region, where the magnetic field deviates less than 1% from the 
constant field. 

In figure 4-5 the time averaged velocity in streamwise direction is shown as a function 
of z for different x* and the same set of parameters M, N. The core-velocity measured 
for each x* -position coincides nearly exact with the analytically calculated value. 
Nevertheless, the velocity profile changes slightly in x*- direction. The width of 
the side layer observed experimentally at each x*-location is larger than the width 
calculated for a fully developed two-dimensional MHD fiow. Moreover, as the fiow 
proceeds in x*-direction the side layer width seems to grow. This effect is most 
clearly expressed in the local velocity minimum of the side layer jet. This minimum 
moves towards the duct centre as x* increases. 
In figure 4-6 the local minimum of the velocity near the wall is shown as a function of 
x*. The position at which this minimum appears, further named 8d, obeys approxi­
mately to the power law 8d "' x*-0·32 . The exponent found in the experiment is close 
to the value -1/3 which has been also been detected in inertial fiows in previous 
experiments, see Stieglitz et al. (1995). This results indicate that the fiow is not fully 
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Figure 4-5 Streamwise velocity v in the plane y = 0 as a function of the lateral 
coordinate z for different x*. Boundary conditions: M = 4797, N = 1604, Re = 17808. 
(0) x* = 4.0; (D) x* = 7.125; (0) x* = 10.25; (6) x* = 13.375; (*) x* = 16.25; 
(-) calculation fully developed flow. 

developed even for more than 16 characteristic length after entering the homogeneous 
field. 
It also demonstrates that only pressure measurements for determining the fully de­
veloped fiow may lead to misleading results. Nevertheless, since the changes in the 
fiow profile are not essential for x* > 4 in the subsequent sections the fiow is assumed 
hydraulically developed. 

The velocity profiles being discussed in the following have all been recorded at x = 12 
or in terms of x* at x* = 16.25 in the plane y = 0. First, the velocity profiles for the 
highest Hartmann number ( M = 4840) are discussed. 
In figure 4-7 a the velocity is shown as a function of z for different interaction para­
meters N. The core velocity found in the experiments at all interaction parameters 
agrees within 2% with the analytically calculated values. Moreover, also the infiection 
type velocity profile at the transition of the core fiow matehing the side layer is found. 
Nevertheless, the local minimum of the velocity in the experiments is not located at 
the same position as calculated by the analytical solution. Even for the highest in­
teraction parameters measured ( N = 12248) the velocity minimum is shifted towards 
the duct centre. This experimental result coincides with the observations of Reed 
and Picologleu (1989). However, with gradually decreasing Reynolds numbers the 
local velocity minimum moves only slowly towards the analytically calculated posi­
tion. The magnitudes of the velocity extrema, i.e. peak velocity of the jet and local 
velocity minimum, found in the experiment agree rather well with the analytical so­
lution. Unfortunately, for the highest Hartmann number investigated the decay of 
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Figure 4-6 Distance of the local velocity minimum from the wall 8d as a function of 
x* forM= 4797, N = 1604 andRe= 17808. (0) measurement; (-)fit; (- -) 
calculation fully developed flow. 

the velocity towards the wall could not be measured because the width of the side 
layer at this high M is smaller than resolution of the probe (i.e. distance between 
the sensing tips of the probe). 

For N ~ 3454 (Re~ 7.5 ·103) the shape of the velocity profilealters only marginally 
with N (Re). The fl.ow in this Reynolds nurober regime is laminar both in the side 
layer and the core, see §4.1.3 stability. As the Reynolds nurober is increased further 
the side layer width increases, because the side layer is turbulent in that Reynolds 
nurober regime. 

For Re ~ 1.8 ·104 the shapes of the velocity proffies are similar to the laminar profiles, 
because the turbulence intensity is quite low. Thus, the turbulent deviations of the 
velocity does not contribute significantly to the mean velocity proffie. 

As the Reynolds nurober exceeds Re = 1.8 · 104 the side layer is stretched further, 
see figure 4-8. The width of the side layer thickness 88 as a function of the Reynolds 
nurober is shown in figure 4-7b. In this Reynolds nurober regime also the shape of 
the side layer velocity proffie is modified due to the turbulent velocity oscillations. 
The quite large velocity fl.uctuations expressed by a turbulence intensity Tu of up to 
Tu ~ 0.2 fills up the local velocity minimuro in the side layer. For Re = 7.4 · 104 

the velocity minimuro almost diminishs. The structure of the turbulence developing 
in time-dependent l\1HD-fl.ows will be briefl.y discussed in §4.1.3. A more detailed 
analys~ is given in the report of Burr (1997).The side layer stretching as a function 
of the Reynolds nurober is also found in the calculations of Cuevas et al. (1996, 
1997). But, the shape of the velocity proffies calculated differs to the experiment. 
The major differences occur especially in the transition region of core to side layer. 
Unfortunately, the scaling of the side layer thickness with the Reynolds nurober is 
not calculated. 
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Figure 4-7 a.) Streamwise velocity v in the plane y = 0 as a function of z for different 
N at M = 4840.(o) N = 12248 (Re= 2550); (D) N = 6947 (Re= 4496); (0) 
N = 3454 (Re= 9043); (~) N = 1649 (Re= 18943); (-) calculation fully developed 
flow. 
b.) Relative width of the side layer as a function of the Reynolds number Re. The solid 
line represents a fit through experimental data and obeys (Os- 8s,min )/8s,min"" Re1 . 

The thickening of the side layer is caused by electromagnetic-inertial interaction. In 
centrast to other MHD-flow phenomena, where the flow is governed by electromagnetic­
inertial interaction -see theoretical work of Hunt&Leibovich (1967) and Cuevas et. 
al (1996,1997) and experiments by Stieglitz et al. (1996)- the relative growth of the 
side layer thickness 8 s scales here approximately with Re1. A side layer thickening 
has been also measured in the experiment of Reed&Picologlou (1989). 
The values presented up to now are the time averaged values. The potential gradient 
between the two tips of the probe, which is proportional to the velocity, is averaged 
over 16 seconds. It turned out in the measurements that the flow near the inflection 
points of the side layers becomes unstable. The transition from steady to time de­
pendent turbulent flow takes place if a critical Reynolds number is exceeded as it is 
known from shear flow instabilities in classical OHD. This topic will be discussed in 
the next subsection. 

So far the physical aspects of the flow have been only discussed for the highest 
investigated Hartmann number. 
As shown in § 1 and in the figures 4-9a-c the velocity profile is strongly dependent 
on the Hartmann number. Especially the side layer width increases with decreasing 
Hartmann number. In figures 4-9a-c the velocities v areplottedas a function of z for 
three different Hartmann numbers, M = 2420 (a), M = 1219 (b) and M = 518 (c) 
and different interaction parameters N. 
Figure 4-9a shows that for the highest interaction parameter at M = 2420 the maxi­
mum of the side layer jet is experimentally observed. However, agairr the width of the 
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Figure 4-8 Velocity v as a function of z for different N at M = 4840. Legend: (<>) 
N = 12248 (Re= 2550); (D) N = 1716 (Re= 18203); (0) N = 843 (Re= 37054); 
(6) N = 540 (Re = 57845); (*) N = 420 (Re = 74372); (-) calculation fully 
developed flow. 

side layer is larger than calculated analytically. The measured peak velocities are of 
the same magnitude as the calculated peak velocities. As the velocity is increased the 
side layer thickens but the characteristics of the profile, expressed by a local velocity 
minimum remains up Reynolds numbers Re ::; 1.68 · 104 . If the velocity is further 
increased (N decreasing) the velocity profile is smoothed and finally for N = 206 
no local velocity minimum is found. The reason should be the same as detected for 
M = 4840. 
The figures 4-9b and 4-9c present also the velocities as a function of z at different 
interaction parameters for M = 1219 and M = 518. With decreasing Hartmann 
numbers the agreement between measurements and analytic solution for the side 
layer velocities gets better. At all Hartmann numbers (M::; 1220) the core velocity 
coincides with the calculated values. 
Fora Hartmann number of M = 518 in all measurements the velocity decay towards 
the side wall is resolved in the experiments. The deviations between experiment and 
analysis does not exceed more than 15%. 

4.1.3 Stability of the MHD-flow 
A view on the velocity profiles for different Hartmann numbers M = 350 -+ 4840 
(figure 4-10) reveals that the velocity gradients increase as M increases. Therefore, 
the onset of instabilities is likely expected for higher Hartmann numbers than for 
lower ones, because the velocity gradients ßv / ßz increase with growing Hartmann 
numbers. 
The aim of this report is neither the detailed investigation of the turbulence structure 
nor the determination of the neutral stability of the fiow. N evertheless, the tur bulence 
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Figure 4-9 Velocity v as a function of z for different N and M. 
(a) M = 2420: (o) N = 3724 (Re = 2097); (D) N = 1809 (Re = 4316); (0) 
N = 877 (Re= 8904); (.6) N = 464 (Re= 18829); (*) N = 206 (Re= 37906); (-) 
calculation fully developed flow. 
(b) M = 1219: (o) N = 52 (Re = 38101); (D) N = 26 (Re = 76202); (-) 
calculation fully developed flow. (c) M = 518: (o) N = 95 (Re= 3766); (D) N = 16 
(Re= 22360); (-) calculation fully developed flow. 
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intensity of the flow has been recorded and a sensitivity study on the stability of the 
velocity profile in main flow direction has been performed. 
The turbulence intensity Tu, which is defined as 

~ Tu= . 
u 

(4.7) 

It is built like in OHD (, see e.g. Zierep (1982)) and is a measure of the magnitude 
of the fluctuations compared to the mean flow. 

In figure 4-11 the turbulence intensity is plotted versus the z-coordinate for several 
interaction parameters at a Hartmann number M = 4840. 
For N > 3439 (Re < 8372) no fluctuations of the velocity in streamwise direction 
are observed. At M = 4840 and N = 3439 the first fluctuations were recorded at 
the z-position were the highest velocity gradient (z = 0.4) in mean flow direction 
appears. At all other measurement positions, however, the flow remains laminar 
and the turbulence intensity measured there (Tu ~ 2%) is the background noise of 
the system. It exists one maximum of the turbulence intensity Tu. At the second 

- inflection point of the velocity profile the shear stress is not so high that it leads to 
a measurable creation of vortices. 
If the velocity is further increased the turbulence intensity increases, too. Moreover, 
an additional maximum of the turbulence intensity appears. It is marked for the 
curve 0 ( N = 1. 723 · 103) in figure 4-11 by the large circle. 
A Fourier-transform ofthe streamwise velocity fluctuations at two different z-locations 
of the duct gives an explanation of the appearance of two peaks in the turbulence 
intensity. In the figures 4-12a, b the Fourier transforms ofthe probe signals are shown 
as a function of the frequency f for two different positions z = 0.35 and z = 0.45 
and for a Hartmann number of M = 4840 and an interaction parameter of N = 843. 
At both positions the characteristic frequency of the signal is about 20 Hz and the 
shape of the frequency spectrum is similar. A detailed analysis of the time dependent 
signal reveals, that the peak appearing atz= 0.35 is directed in negative streamwise 
direction. As a consequence of this analysis some conclusions on the geometrical 
shape of the vortices can be drawn. The vortices are detaching from the side layer, 
where the highest velocity gradients appear and they are rotating counterclockwise. 
In a more detailed study by Burr (1997) this shape of the vortex is verified. He used 
a four pole probe, which is capable to measure also the spanwise velocity component. 

At even lower N (higher velocities), i.e. for N ~ 103, the relatively sharp second 
extremum of the turbulence intensity disappears. At these lower interaction parame­
ters a large region with a high turbulence intensity appears. The reason is that the 
turbulence structure is not as defined as at lower velocities and vortices of different 
shape and rotation velocity detach from the side layer. Thus, a broader region of 
high turbulence intensity is formed. If N is further decreased the domain of high 
turbulence intensity' grows. The growth in z-direction corresponds to the growth of 
the side layer as shown in figure 4-8. This region of high turbulence intensity may 
be the reason why the velocity gradients in the side layer in the time averaged sig­
nals previously discussed gets weaker for low interaction parameters. In any case the 
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Figure 4-10 Calculated velocity v as a function of z for varying Hartmann numbers M. 

0.0 0.1 0.2 0.3 0.4 0.5 
z 

Figure 4-11 Measured turbulence intensity Tu as a function of z for different N at 
M = 4840. (o) N = 3439 (Re= 8372); (D) N = 1723 (Re= 18203); (0) N = 843 
(Re = 37054); (6) N = 540 (Re = 57845); (*) N = 420 (Re = 74372); (-) 
calculation fully developed flow. 
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Figure 4-12 Fourier transform of the velocity signal as a function of the frequency for 
M = 4840, N = 843 at the positions z = 0.35 (a) and z = 0.45 (b). 

high turbulence intensity is the reason for the gradual disappearance of the velocity 
minimum in the side layer jet. 

Although the turbulence intensities found in the near wall region are quite strong the 
turbulence intensities in the core-flow are nearly zero. It seems that the turbulent 
structures produced by the MHD-shear flow do not penetrate into the core flow and 
there is no momentum transfer to the core flow. 

Finally, let us focus our discussion on the stability of the MHD flow in dependence 
of the Hartmann number M. In figure 4-11 it has been demonstrated that the first 
instabilities occur, where the highest velocity gradients in main flow direction appear, 
similar like a shear flow instability in ordinary hydrodynamics. 
In the book of Branover (1978b) the laminar-turbulent transition in reetangular ducts 
is analyzed and the following empirical formula for the laminar-turbulent transition 
is given: 

Recrit = (215 - 85 · e-0.
35'ß) · M, (4.8) 

where ß is the aspect ratio. This relation is valid if M » l.For the test section 
investigated (ß = 2) the mentioned condition gives: 

Recrit = 172.79 · M. (4.9) 

However, Branover does not take into account the wall conductivity. He mentions that 
the wall conductivity does not affect the stability. Recent investigations performed 
by Bühler (1996) demonstrate that especially the damping of the vortices is strongly 
dependent on the conductivity of the Hartmann wall. A detailed analysis shows that 
the characteristic decay time Tof a vortex in a transverse magnetic field is given by 
the relation: 
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1 
T = ---:-:-:-----,--

(~+ ~:·;). 
(4.10) 

An increasing conductivity of the Hartmann wall Ieads therefore to shorter decay 
times and shifts at the same Hartmann number the laminar turbulent transition to 
lower interaction parameters. Thus, even an empirical correlation should take into 
account the conductivity eH of the Hartmann walls. 
Another attempt to define the critical Reynolds number in a MHD duct fl.ow with 
electrically conducting walls has been made by Rossant (1976). He defined the critical 
Reynolds number to be dependent on the square root of the Hartmann number in 
the way: 

Recrit = K · VM, (4.11) 

where K is a constant depending on the wall conductance ratios of the wall. However, 
this attempt to describe the laminar turbulent transition in the high Hartmann num­
ber range leads to results being in contradiction with the experiments of Reed and 
Picologleu (1989), Burr (1997) and the present experiments. The relationship 4.11 
suggests that the critical Reynolds number increases with increasing Hartmann num­
ber, which is not found in the experiments at high Hartmann numbers. Nevertheless, 
in the lower Hartmann number range the relationship 4.11 fits the experimental data 
obtained in the experiment of Rossant. 

The stability of the MHD side layer jet in a reetangular duct has also been investigated 
by means of a linear stability analysis by Ting and Walker (1991). Perturbations 
were applied to the analytically calculated side layer solutions. The results of neutral 
stability analysis were compared to an experiment of Reed and Picologleu (1989). 
The critical Reynolds number found in the analysis has been one order of magnitude 
too small and the fl.uctuation frequency has been by the same order too high. The 
reason for disagreement may be that the side layer thickness in the experiment was 
significantly larger than assumed in the analysis. Reed and Picologleu (1989) found 
that the onset of the instability is insensitive to the Hartmann number as long as 
M » 1. The evolution and the final state of the instability is strongly dependent on 
M. 
This variety of partly contradictory results reveals the necessity to study this transi­
tion more carefully. 

The spectral density distribution (performed by a Fourier analysis) has been measured 
and a first appearance of a peak merging out of the noise was taken as a begin 
of turbulence. This method of averaged spectra has the advantage of a definite 
determination of the appearance of a time dependent fl.ow. 

The neutral stability measurements in the midplane (y = 0) revealed the result 
displayed in figure 4-13. Since the shape of the side layer velocity profile is mainly 
determined by the Hartmann number M, the location of the first instabilities is a 
function of z. As detected in the present and previous experiments, the slope of 
the M -shaped side layer velocity profile acts as a generator of the instabilities. With 
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Figure 4-13 ( a) Measured critical Reynolds number Recrit ( o) for laminar-turbulent 
transition as a function of M in a reetangular duct with thin electrically conducting walls. 
The dotted line indicates the stability Iimit obtained by the exponential fit. 
(b) Measured z-position at which smallest Recrit appears as a function of M. 

increasing Hartmann nurnber the slope äu/ äz increases and thus the critical Reynolds 
nurober decreases. Although the generation of vortices is favored with increasing 
Hartmann nurnber the Hartmann damping of the vortices at the Hartmann walls 
also increases with the Hartmann nurnber. These two effects are counteracting and 
competing with each other. The experimentally measured critical Reynolds number 
is shown in figure ~ 13a. With a fitting procedure based on the minimum of the least 
squares the following relation 

(
1210- M) 

Recrit = 7150 + 2970 · e 1500 (4.12) 

is obtained. This relation is plotted in figure ~13a as a solid line. Resulting from the 
fit the critical Reynolds nurnber decays proportional to e-M and tends forM~ oo to 
Recrit = 7150. However, in our experiment equation 4.12 is only valid for eH » 1/ M 
and M » 1. 
It would be worthwhile to define a stability limit of MHD duct fiows in ducts with 
thin electrically conducting walls. As already outlined, the infl.uencing parameters 
are the generation of vortices, which are determined by the steepness of the velocity 
profile scaling with VM, and the damping of the vortices by electromagnetic viscous 
dissipation scaling with the characteristic decay time of a vortex. 
According to the Hartmann nurnber dependence of the side layer velocity profile the 
z-position where the first instabilities occur must also depend on M. Thus with de­
creasing Hartmann number this position must move towards the duct center because 
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the side layer thickens and, therefore, the position of maximuro shear stress moves in 
the same direction. The experimental results displayed in figure 4-13b confirm this 
consideration. 

4.2 Measurements with heat transfer 

All heat transfer measurements have been performed in a measurement matrix in 
which the Hartmann nurober M is varied in four steps M = 0, 1197, 2417, 4993 and 
the Reynolds nurober Re in eight steps Re ~ 2.4 · 103 , 4.8 · 103 , 9.5 · 103 , 1.9 · 104 , 

3.8 · 105, 5.7 · 104 , 7.9 ·104 , 1.2 ·105 in order to cover the whole fusion blanket relevant 
parameter range. 
The presented subchapters are organized as follows: 
First, the velocity measurements are presented so far as they complete the picture of 
the isothermal flow previously presented. Furthermore, the temperature distribution 
within the liquid metal is discussed since it is strongly related to the turbulence 
structure within the fluid. Finally, the wall temperatures at the fluid/wall-interface 
are discussed and compared to the nuroerical results obtained with the model and 
compared to the data calculated for slug-flow, which has been assuroed in design 
calculations for the liquid metal cooled blankets. 

4.2.1 Velocitydistribution 
Although the velocity distribution has been measured in case of isothermal flow the 
measurements have been repeated for the conditions in which the test section is 
heated. 
The experimental results for the heated wall show only marginally differences in the 
midplane y = 0 compared to the isothermal flow. Consequently, buoyant effects play 
no role in MHD flows with M » 1 in the Reynolds nurober range Re= 2.4 · 103 -

1.2 · 105 (or Pe = 6 ·101 - 2.88 · 103). Therefore, the asstimption is justified that the 
temperature is acting as a quasi-passive scalar which has been made in the modelling. 
In figures 4-14a-f the velocity profiles for the investigated Hartmann nurobers (1197 ::::; 
M ::::; 4993) and Reynolds nurobers are displayed as a function of z. 
The figures show that at each investigated Hartmann nurober the velocity profiles 
are modified with decreasing interaction parameters. As N decreases the side layer 
width grows and also the local velocity minimum is shifted towards the duct centre. 
The increase of the velocity therefore leads to a smoothing of the profile. 
The turbulence intensity is coupled to the shape of the velocity profile. Since the 
deviations in the velocity profiles between the isothermal and the non-isothermal 
flows are negligibly small also the turbulence intensities measured show the same 
behavior. The turbulence intensity is responsible for the momenturo transfer within 
the fluid and thus it determines the heat flux transported. 
Due to this aspect we discuss the measured turbulence intensity distribution in con­
text with the temperature distribution within the liquid, in order to explain the heat 
transfer mechanisms within the fluid. 
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4.2.2 Temperature distribution within the liquid 
The heat transfer relations lmown from OHD contain usually a pressure drop cor­
relation, which takes into account the momentum transport. In OHD the pressure 
drop correlation indicates the degree ofturbulence (Blasius or Prandtl type) and thus 
describes integrally the turbulence structure. Here, we also investigate a forced con­
vection fiow. Therefore, also the temperature distribution within the fluid depends 
mainly on the velocity and turbulence structure within the liquid. 

In order to outline the different heat transfer behaviors of MHD and OHD fiows we 
first discuss the laminar heat transfer. The laminar heat transfer is based on pure 
heat conduction in z-direction. 

Laminar OHD fiows are characterized by a parabolic velocity profile (Poiseuille-fiow), 
where the highest velocity appears in the ducts center and the fiow velocity decays 
monotonically towards the wall. In MHD fiows in ducts with thin electrically con­
ducting walls, however, the highest fiow velocity is located near the side walls, see 
e.g. figures 1-1b, c in §1. Now, if the side wall is heated the heat fiux removed from 
the wall is determined by the fiow rate adjacent to the heated wall. The fiow rate 
near the side wall in the MHD fiow is higher than in the laminar OHD fiow at the 
same Reynolds number Re, because in the MHD fiow a high side wall velocity jet 
exists. Consequently, heat fiux removable in a laminar MHD fiow is higher than in 
the same OHD fiow. This is expressed by a lower dimensionless fiuid-wall interface 
temperature e. 
In figure 4-15 the calculated temperature 8 of an OHD fiow (-) and a MHD fiow 
(- -) at a Reynolds number Re= 2.34 ·103 areplottedas a function of z. Since the 
fiow rate of the MHD fiow adjacent to the heated wall is higher compared to OHD 
the dimensionless temperatures at z = 0.5 are lower, which supports the previous 
consideration. Due to the lower core velocity of the MHD fiow the temperature 
gradient across the duct in z-direction is higher as in OHD, which is also confirmed 
by the figure 4-15. 

In the experiment for the OHD fiow at low Re the temperature distribution revealed 
a different result, see symbols <:; in figure 4-15. The explanation for this behavior 
is quite simple. At the Reynolds number investigated in the OHD fiow buoyant 
effects play a significant role. If one calculates the relevant Grashof number Gr 
(Gr = (l:lpgd3)j(pv2 )) a value of 3.05·108 is obtained, which is already in the unsteady 
turbulent buoyant convection regime. The infiuence of buoyancy in the OHD fiow is 
clearly expressed in the figure 4-15 by the smooth temperature distribution. 
For higher Hartmann numbers ( M ;::: 102

) buoyant effects are suppressed by elec­
tromagnetic damping. Thus, buoyant effects play no Ionger a significant role in the 
experiment. (The reason for the strong electromagnetic damping of convectional mo­
tion in this case is that the gravity vector and the magnetic field vector are parallel.) 
The convection pattern which would evolve due to the applied heat fiux would lead 
to a vortex motion in which the vortex axis is perpendicular to the magnetic field. 
However, such a vortex is damped at most by the Hartmann breaking. As a result 
these vortices are suppressed by the mechanisms explained in §1. 

At Hartmann numbers M > 0 and the same Reynolds number Re = 2.34·103 as in the 
OHD case the measured and the calculated temperature distributions agree at least 
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Figure 4-15 Temperature e as a function of z in the plane y = 0 at X= 12 for different 
M in a laminar flow with Re = 2.34 · 103 . The lines indicate the calculated values, 
whereas the symbols denote the experimental values. (-, <>) M = 0 OHD; (- -, 0) 
M = 1197; (· · .. , D) M = 4993. 

qualitatively. The measured temperatures show in the side wall region approximately 
20% lower values than the calculations. 
Finally, as the Hartmann number increases, the heat transfer also increases which is 
expressed by lower fiuid-wall interface temperatures. The reason for this isthat with 
increasing Hartmann number M the velocity jet becomes larger and, additionally, the 
jet moves nearer to the heated wall. This result is both confirmed by the experiment 
as well as by the calculation as demonstrated by figure 4-15. 

In the following sequence of figures 4-16a-g, the Reynolds number at a fixed Hart­
mann number of M = 4993 is gradually increased. Simultaneolll3ly the turbulence 
intensity is recorded. 
For the highest investigated Hartmann number M = 4993 the fiow remains laminar 
up to Reynolds numbers of Re = 7.8 ·103. Consequently, the temperature distribution 
measured in the plane y = 0 agrees rather well with the values calculated using the 
laminar model. 
A further increase of the Reynolds number leads to first instabilities appearing at the 
position where the highest velocity gradients exist, see grey marked circle in figure 
4-16c. The core fiow, however, remains laminar. The appearance of a turbulent fiow 
motion within the thermal boundary layer enhances the spanwise heat transfer. But, 
the tur bulence intensities found for Re < 1. 5 · 104 are quite small (in the range of 5%) 
and, therefore, do not lead to a significant enhancement of the heat exchange between 
core and side layer. Therefore, the measured temperature distribution agrees quite 
well with the calculated one. 
lf the Reynolds number is increased gradually to values of Re > 1.5 · 104

, the tur­
bulence intensity increases. Additionally, a second peak of the turbulence intensity 
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near the other infiection point of the velocity profile appears. This peak is located 
at the position where the side layer matches the core (see circle in figure 4-16d). 
The high turbulence intensities, which exist within the thermal boundary, lead to a 
significantly increased transverse heat exchange between the side layer jet and the 
laminar core flow. This enhanced heat transfer originating from the turbulent flow 
motion is expressed by higher fluid temperatures in the core flow than calculated 
with the laminar model. Correspondingly, the increased heat transfer leads to lower 
fluid temperatures in the side layers and at the fluid wall interface at z = 0.5 than 
predicted by the laminar model. 
For Reynolds numbers Re> 3 · 104 the transverseturbulent heat transfer leads even 
to a plateau of the temperature as the experimental results show in the figures 4-16e, 
f. The effectivity of the turbulent flow motion with respect to the heat transfer is 
expressed by the fluid temperature near the wall which is about 50% lower than the 
value calculated using the laminar model. This means that the turbulent flow motion 
in the wall adjacent region leads to a heat transfer enhancement by a factor of 2. 

If the Reynolds number is further increased to values of Re > 105 , the turbulence 
intensity also grows. Additionally, the region of turbulent flow motion increases. 
Correspondingly, the laminar core flow domain gradually shrinks. But, the measured 
temperature distribution does not reveal an enhancement of the heat transfer. More­
over, as figure 4-16g shows, the measured values of the dimensionless temperatures 
nearly coincide with the data calculated for a laminar heat transfer. The reason for 
this behavior is that with increasing velocity the thermal boundary layer decreases. 
At the X-position and at the Reynolds number Re= 1.2 ·105 the thermal boundary 
layer is approximately of the size of the laminar sublayer of the side wall jet near 
the wall. In this laminar sublayer the heat transfer is governed by pure heat conduc­
tion and even if the turbulence intensity in the side layer is quite high it does not 
contribute to this heat transfer process. 

In the figures 4-17-4-19 the same variation of the flow velocity is performed for other 
levels of the Hartmann numbers investigated, namely M = 2417, M = 1197, and 
M = 0 (OHD flow). 
In case of M > 0 and non-laminar flow the turbulence level at the same Reynolds 
decreases as M decreases, because the velocity gradients of the side layer jet get 
smaller. As a result the transverse heat transfer for low Hartmann numbers is weaker 
than for higher Hartmann numbers. The decrease of the heat transfer with descending 
M is expressed by higher fluid-wall interface temperatures. In the experiment the 
same behavior is found as a comparison of the graphs 4-16f, 4-17f, 4-18f and 4-19f 
demonstrates. 
Nevertheless, the measured temperatures of the turbulent MHD flows near the wall 
are still lower than the values calculated using a laminar MHD flow model. The 
computational results of the laminar MHD temperature distribution are embedded 
in all figures in form of a line. 

In order to compare the heat transfer of a turbulent OHD duct flow with a turbulent 
MHD flow the measured and calculated temperature distribution in a turbulent OHD 
flow are shown in figure 4-19. As mentioned in §2 the temperature distribution has 
been calculated with the k- c:-model. 
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Figure 4-16 Temperatures 8 ( o) and turbulence intensity Tu ( 0) as a function of z in 
the plane y = 0 for different Re (N) at M = 4993. The lines indicate the calculated 
temperature values for a laminar flow. (a) Re = 2493 (N = 13329); (b) Re = 4736 
(N = 7018); (c) Re= 9533 (N = 3487); (d) Re= 19484 (N = 1706); (e) Re= 38787 
(N = 857); (f) Re= 59892 (N = 555); (g) Re= 117873 (N = 282). 
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Figure 4-17 Temperatures 8 (<>) and turbulence intensity Tu (0) as a function of z in 
the plane y = 0 for different Re (N) at M = 2417. The lines indicate the calculated 
temperature values for a laminar flow. (a) Re= 2472 (N = 3151); (b) Re = 4856 
(N = 1604); (c) Re= 9273 (N = 840); (d) Re= 18242 (N = 427); (e) Re= 38752 
(N = 201); (f) Re= 54092 (N = 144); (g) Re= 78679 (N = 99); (h) Re= 125632 
(N = 62). 
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Figure 4-18 Temperatures e (o) and turbulence intensity Tu (0) as a function of z in 
the plane y = 0 for different Re (N) at M = 1197. The lines indicate the calculated 
temperature values for a laminar flow. (a) Re = 2471 (N = 773); (b) Re = 4752 
(N = 402); (c) Re= 9504 (N = 201); (d) Re= 18369 (N = 104); (e) Re= 37459 
(N = 51); (f) Re = 57891 (N = 33); (g) Re = 76416 (N = 25); (h) Re = 119401 
(N = 16). 
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Figure 4-19 Temperatures 8 (o) as a function of z in the plane y = 0 for different Re 
for an OHD flow ( M = 0). The lines indicate the calculated temperature values for 
an OHD flow. (a) Re= 2673; (b) Re= 4763; (c) Re= 9173; (d) Re= 18046; (e) 
Re= 37481; (f) Re= 57956; (g) Re= 77190; (h) Re= 119600. 
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Generally, the heat transfer in turbulent MHD fiows is larger than in turbulent OHD 
fiows at the same Reynolds number, which can be explained by the higher fiow rate 
near the side wall region. 
The infiuence of the Hartmann nurober on the heat transfer can be summarized: 

• As M increases, the magnitude of the side layer jet increases and the side layer 
moves towards the heated wall. This increases the velocity gradient near the 
walls. 

• As M increases the side layers becomes destabilized. This leads to a higher 
tur bulence intensity Tu with increasing M. The tur bulence intensity level in 
MHD fiows at the same Reynolds nurober ( Re > 3 · 104 ) near the heated wall 
is higher than in corresponding OHD fiows. 

• The turbulent structures in MHD fiows are large scale structures, which act in 
transverse direction over larger distances than the turbulence structures being 
present in OHD fiows. 
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4.2.3 The wall temperatures 
The temperatures at the fiuid-wall interface serve from an engineering point of view 
the most interesting results since the results obtained there determine the achievable 
heat fiux removable from the wall. As described §lmost heat transfer problems are 
thermally developing. Unfortunately, for such developing fiows of fiuids with low 
Prandtl numbers no heat transfer correlations are given in engineering textbooks. In 
technical systems usually the correlations for thermally fully developed fiows are used 
as a conservative assessment, because the Nusselt numbers in developing fiows are 
higher than in already developed fiows. The Nusselt number Nu is the inverse of the 
dimensionless interface temperature 8, i.e. Nu= 1/(Twau- Tbuzk)· 
In figures 4-20a-f the dimensionless fiuid-wall interface temperatures 8ms,i of an OHD 
fiow in the plane y = 0 are plotted as a function of x for several Reynolds numbers 
Re. 
Both, the calculated and the experimental results reveal that the upstream heat fiux 
in the structural material for each Reynolds number Ieads to a temperature at x = 0 
different from zero. This effect decreases as Re increases because the heat removal 
:from the wall grows with higher velocities. The reason for the upstream heating of 
the fluid is that the heat conductivities of the fluid and the wall and the wall are 
comparable. 

The fiuid-wall interface temperatures 8m3,i for a laminar OHD fiow in the experiment 
agree qualitatively with the numerically calculated values, see figure 4-20a. Quanti­
tatively, however, deviations of about 25% are found. As previously discussed these 
deviations originate from buoyancy effects present at low Re. 
As Re increases, the fiuid-wall interface temperatures decrease both due to the higher 
average fiow velocity and due to the turbulent transport of heat towards the core of 
the flow. Nevertheless, the interface temperatures calculated with the k- c -model 
and the standard constants agree rather well with the measured values throughout 
the whole Reynolds number range investigated. 

How is the interface temperature changed if MHD is involved? 
Let us first discuss the temperature distribution of the laminar fiow. In figure 4-21a 
the dimensionless temperature at the fiuid-wall interface along the x-axis is shown 
for the Reynolds number of Re = 2276 and different Hartmann numbers. 
A comparison of the calculated values for a laminar OHD (- ·-) fiow with the laminar 
MHD fiows for M = 1197 (- -) and M = 4993 (-) and the same heat fiux shows 
that in MHD fiows the heat transfer is enhanced. 
Comparing the both MHD fiows Ieads to the result that with increasing Hartmann 
numbers the heat removal :from the hot wall also increases. Generally, MHD fiows in 
the configuration investigated show lower wall temperatures than OHD fiows because 
the formation of high velocity side layer jets in MHD fiows enhance the fiow rate near 
the hot wall. 
The experimental results shown in the figure 4-21a partially confirm the explanation 
for small x- values. However, at a larger axial distance, i.e.e if x > 6, a critical 
temperature difference is exceeded, which causes in addition to the forced convection 
a buoyant flow. This Superposition Ieads for x > 6 to an increased heat transfer in 
the OHD flow. 
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Figure 4-20 Fluid-wall interface temperature em3,i in the plane y = 0 as a function 
of x for a hydrodynamic turbulent flow. The lines (-) indicate the values calculated 
with the k- €- model. (a) Re= 2273, (Pe =59); (b) Re= 4763, (Pe = 121); (c) 
Re= 9173, (Pe = 240); (d) Re= 18046, (Pe = 488); (e) Re= 37481, (Pe = 962); 
(f) Re= 77719, (Pe = 1913); (g) Re= 119060, (Pe = 2816). 
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Figure 4-21 Fluid-wall interface temperature E>m3,i in the plane y = 0 as a function 
of x for different Re. The lines indicate the calculated values for OHD flow (- · - ), 
M = 1197 (- -) and M = 4993 (-). The experimental data are displayed by symbols 
OHD (o), M = 1197 (D) and M = 4993 (0) . (a) Re= 2276. (b) Re= 3.7 · 104 . 

In the case of turbulent fiows the situation is in principle the same as figure 4-21b 
shows. The curve ( -·-) shows the calculated wall temperature along x foraturbulent 
OHD-fiow at a Reynolds number of Re = 3.7 · 104 . The other two curves present 
the results of the temperature distribution obtained for a laminar MHD-profile at 
the same Reynolds number. The computational results demonstrate that even if the 
MHD fiow at such high Reynolds numbers would be laminar the heat transfer is 
increased compared to a turbulent OHD fiow. 

At the Reynolds nurober Re= 3.7 · 104 , however, the MHD fiow is also turbulent. 
The experimental results, which are marked by symbols in the figure 4-21b, show that 
MHD turbulence enhances the heat removal from the hot wall. The dimensionless 
wall temperatures measured are for all Hartmann numbers significantly lower than the 
results of the laminar calculations. With increasing Hartmann number the deviations 
between the laminar calculation and the experimental values increase. Thus, an 
increasing M leads to a technically usable heat transfer enhancement. If we compare 
the experimental results of MHD fiow (M = 4993) with the OHD fiow shown in figure 
4-21b the MHD fiow shows a Nusselt number being nearly twice as high as the OHD 
fiow. 

In the figures 4-23 to 4-25 the fiuid-wall interface temperatures 8m3,i along x are 
shown for increasing Reynolds numbers at three different Hartmann numbers. In 
each subgraph the symbols indicate the experimentally obtained data, whereas the 
fulllines present the calculated data using a laminar MHD fiow at the same Reynolds 
number as an input. The dotted lines also drawn in each graph show the tempera-
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ture distribution which would be obtained for a slug fiow type velocity profile. The 
temperature distribution for a slug fiow velocity profile is shown, because this model 
has been widely used in the past for fusion blanket designers due to the lack of 
experimental results. 

The fiuid-wall interface temperature distributions calculated a slug fiow velocity pro­
file shows at all Hartmann numbers and Reynolds numbers investigated higher wall 
temperatures than the calculations with the correct MHD velocity profile. Moreover, 
the temperatures obtained with the slug fiow velocity assumption are by far higher 
than the experimental data. Therefore, the slug fiow assumption represents in any 
case a may be too conservative assessment for liquid metal cooled fusion blanket 
designs. 

In case of laminar MHD fiows (Re ~ 9 · 103) a good agreement between numerically 
calculated and experimentally obtained data is found. As the figures a-c in the 
graphs 4-23-4-25 shows both the temperature rise and the temperature decay are 
quite well predicted. A quite more surprising result of the figures 4-23-4-25 isthat in 
the Reynolds number range 9 ·103 ~Re~ 1.8 ·104 andRe~ 8 ·104 the experimental 
and the theoretical results also agree quite well, although the MHD fiow is far of 
being laminar. The reason in both. cases is the behavior of the dynamical ( viscous) 
and thermal boundary layers. In the low turbulent Reynolds number range the 
turbulence intensities which are responsible for the transverse transfer of heat are 
quite low. Therefore their contribution to the heat transfer is quite small. Due to this 
no remarkable differences between the turbulent and the laminar case appear. This 
effect gets more and more pronounced as the Hartmann number decreases because 
the velocity gradients get smaller and consequently the turbulence level falls. 

At high fiow velocities (large Re > 105) the thermal boundary layer at the end of 
the heated length ( x = 12.5) has not penetrated into the region of high turbulence 
intensity. It is still within the laminar subregion of the viscous side layer jet. There, 
however, the heat transfer is governed by laminar heat conduction. Consequently, 
the heat transfer is not enhanced by the turbulent fiow motion. 

As the Hartmann number decreases the side layer width increases. Therefore, the 
length in x-direction at which a significant enhancement by turbulent fiow motion 
can be expected, also increases. 
From figure 4-22 a measure of the quality of the heat transfer can be taken. 
In the case of laminar conductive heat transfer in the MHD fiow the temperature 
distribution along x can be expressed by a self-similar solution scaled with xj Pe. 
This means that at a constant Hartmann number (fixed laminar velocity profile) 
and a given Pe the temperature at the fiuid-wall interface is uniquely given at each 
X-position. For a Hartmann number of M = 4997 and laminar heat transfer the 
calculated values are shown in figure 4-22. As one can see from this figure the laminar 
heat transfer splits off in three regions. 

• Region I for xj Pe::; 3 · 10-3 where the fiuid-wall interfacetemperaturein the 
calculation obeys the relation 8m3,i"" (x/ Pe)0·63 . Here, the thermal boundary 
layer has not penetrated into the region where turbulent fiow motion appears. 
Therefore, the heat transfer is based on laminar heat transport. The experiment 
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shows in this range an good agreement with the calculation. A fit through the 
experimental data yields the following proportionality: 

( 4.13) 

• In the intermittent region 11 turbulent heat transport measured in the exper­
iments leads to an enhanced heat transfer compared to laminar fiows as the 
figure 4-22 shows. A fitting procedure for the experimental data based on the 
last minimum squares leads to the relation: 

(4.14) 

• Finally, in region 111 at low Reynolds numbers ( high Pe) the heat transfer is 
based on conduction (laminar heat transfer). The calculation leads there to the 
following proportionality 8ma,i"' (xjPe) 0·33 • The fit through the experimental 
data shows a nearly perfect agreement in the exponent. The fit result is: 

(4.15) 
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Figure 4-22 Fluid-wall interface temperature 8ms,i in the plane y = 0 as a function of 
xj Pe for a MHD flow in a reetangular duct with thin electrically conducting walls at 
M = 4993. The lines indicate the values calculated for the heat transfer in a laminar 
MHD flow . (o) Re= 2493; (6) Re= 4736; (Y') Re= 9532; (D) Re= 19461; ([8]) 
Re= 38832; (EB) Re= 59357; (0) Re= 117872. 
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Figure 4-23 Fluid-wall interface temperature 8m3,i in the plane y = 0 as a function of 
x at M = 4993. The lines (-) indicate the values calculated for a laminar flow; ( -
-) calculation for a slug flow type velocity profile. (a) Re= 2493, (N = 13329); (b) 
Re= 4736, (N = 7018); (c) Re= 9532, (N = 3487); (d) Re= 19461, (N = 1708); 
(e) Re= 38832, (N = 856); (f) Re= 59357, (N = 560); (g) Re= 78768, (N = 422); 
(h) Re= 117872, (N = 282). 
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Figure 4-24 Fluid-wall interface temperature 8ms,i in the plane y = 0 as a function 
of x at M = 2417. The lines (-) indicate the values calculated for a laminar flow; ( 
- -) calculation for a slug flow type velocity profile. (a) Re= 2472 (N = 3151); (b) 
Re= 4856 (N = 1604); (c) Re= 9273 (N = 840); (d) Re= 18242 (N = 427); (e) 
Re= 38752 (N = 201); (f) Re= 54092 (N = 144); (g) Re= 78679 (N = 99). 
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Figure 4-25 Fluid-wall interface temperature 8m3,i in the plane y = 0 as a function 
of x at M = 1197. The lines (-) indicate the values calculated for a laminar flow; ( 
- -) calculation for a slug flow type velocity profile. (a) Re= 2471 (N = 773); (b) 
Re= 4752 (N = 402); (c) Re= 9504 (N = 201); (d) Re= 18369 (N = 104); (e) 
Re = 37459 (N = 51); (f) Re = 57891 (N = 33); (g) Re = 76416 (N = 25); (h) 
Re= 119401 (N = 16). 





Chapter 5 

Impact on self-cooled blankets 

The aim of this chapter is to assess the thermohydraulic performance of the self­
cooled liquid metal blanket using the experimental results obtained in the present 
experiment. The most critical channel is the first wall channel, since it has the 
highest temperature rise, is facing the highest heat fiux and experiences the strongest 
volumetric heating. 

The actual material properties limit the allowable temperature of the first wall to 
about 550°C in case of ferritic steel and to 750°C for vanadium alloys. The maximum 
temperature at the wall/liquid metal interface has to be maintained approximately 
100°C lower in order to limit corrosion of the structure material by the liquid metal. 
For an effective electricity production the bulk temperature of the coolant at the 
blanket outlet should be higher than 400°C. The coordination of these contrasting 
requirements form the actual design task. The design limitations can be expressed 
in terms of an upper and lower limit for the coolant channel pressure load to ensure 
structural integrity and sufficient fiow rate for heat removaL The thermohydraulic 
boundary conditions for a DEMO reactor arising from these conditions are listed in 
table 5.1. 

61 
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DEMO specification unit Lithium 

magnetic field strength T 5.00 

first wall heat flux Wcm2 50.00 

flow length along first wall {half outboard) m 4.00 

characteristic first wall duct dimension ( a) -m 0.066 

max. fluid interface temperature at first wall ·c 490 

average fluid temperature ·c 350 

thickness of first wall mm 8.00 

average flow velocity in first wall coolant duct ms-1 1.50 

max. temperature rise at first wall ·c 159 

pressure drop in first wall using FCI MPa. 1.424 

Table 5.1: Thermohydraulk conditions of a self-cooled Lithium blanket for DEMO, 
see Malang et al. (1995). 

The experimental results obtained can be applied to improve self-cooled liquid metal 
blanket designs with first wall cooling in poloidal direction. The schematics of the 
flow path as well as the cross-section of a self-cooled liquid metal cooled blanket 
proposed by Hua and Gohar (1994) or John et al. (1991) is shown in figures 5-1a-c. 
In order to reduce the amount of coolant systems compared to hybrid concepts like the 
WCLL (see Giancarli, 1994) or the Dual-Coolant Concept (see Malang et al. 1993), 
in which two fluids are used, these more advanced blanket concepts take advantage of 
only one fluid as coolant and breeder. The most preferred option for liquid metals in 
such concepts is Lithium. Lithium offers a higher Tritium breeding ratio, the ability of 
a controlled shut down in case of a leak towards the plasma chamber, because Lithium 
stabilizes the plasma. Although, due to the high solubility of Tritium within Lithium 
increases the Tritium inventory of a reactor, this high solubility retains Tritium within 
Lithium in case of LOCA (loss of coolant accident). One of the largest disadvantages 
of Lithium is the high reactivity of Lithium with other structural materials and with 
air and water, which demands the development of sophisticated materials. 
Due to the arrangement of the blanket in the reactor most of liquid metal flows 
perpendicular to the magnetic field in poloidal direction. Therefore, these concepts 
are called poloidal concepts. 
In the upper outboard blanket the coolant is fed from the top via a manifold to the 
rear ducts, flows downward, is turned by 180° in the first wall ducts. There, it flows 
poloidally upwards. The downfiow in the rear channels can be kept low due to the 
low volumetric heating in this region. The velocity in the first wall channels has 
to be much high er· in order to avoid an unacceptable temperature rise at the fluid 
wall-interface along the flow path. 
To take advantage of the turbulence generation by side wall jets as shown in §4.2 the 
first wall has to be flat and oriented parallel to the magnetic field. 
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Figure 5-1 ( a) Schematics of the liquid meta I flow path in a self-cooled poloidal blanket. 
(b) Arrangment of self-cooled outboard blankets in a TOKAMAK. (c) Cross-sectional 
cut through a poloidal self-cooled liquid meta! blanket. 
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Figure 5-2 ( a) Flow channel insert (FCI) fitted loosely in a massive steel strucutre. (b) 
Direct electrically insulating coating. 

Estimates have shown, that self-cooled blankets in Tokamaks with high magnetic field 
strength (-foreseen are at least 5 Tesla for the DEMO reactor-) and with lithium or 
lead-lithium as breedermaterial are hardly or even not feasible without any electrical 
decoupling of the load carrying walls from the coolant. If the walls in such a blanket 
concept would consist of only the bare steel structure the MHD pressure drop would 
exceed the maximum allowable material stress by far. Therefore, two kinds of an 
electrical insulation are being developed in the fusion program. 
One is realized by so-called "Flow Channel Inserts" (FCI). These inserts are fabri­
cated by sandwiehing a thin ceramic layer between thin steel sheets ( thickness about 
0.5mm) which are welded at all edges. The FCI 's are fitted loosely into the ducts. 
Appropriate slits allow a pressure equalization between the bulk flow and gap flow of 
the duct wall. A schematics a Flow channel insert is shown in figure 5-2a. It has the 
advantage that the direct contact between the electrically insulating ceramies and the 
liquid metal is avoided so that local crack of the ceramies does not lead to a system 
failure. The drastically lower pressure drop in duct with FCI 's is based on the fact 
that all electric currents induced in the flow short circuit within the fluid or the thin 
wall of the FCI. Thus the current density in the fluid is reduced and therefore also 
the pressure drop. The wall conductance ratio accounting for the pressure drop is 
that of the thin FCI steel walls. 
The viability of FCI 's has already been demonstrated in an experiment at fusion 
relevant Hartmann numbers by Barleon et al. (1989, 1991). The experimental results 
showed an excellent agreement with the theoretically predicted values. 

The other kind of insulation is based on direct coating the duct surface with insulating 
ceramic materials which is in contact with the liquid metal. Compared with the FCI 
technique the pressure drop calculated for a DEMO reactor is drastically smaller (5.9 
bars for a direct coating to 40.7 for the FCI technique for the Dual-Coolant Concept, 
see Malang&Tillack (1995)). However, only small cracks within the insulation layer 
can change the pressure drastically to higher values, because the currents can short­
circuit then within the rather thick walls of the structural material. The requirements 
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for an electrically insulating layer in the ducts of a fusion blanket are: 

• compatibility with PbLi or Lithium, 

• ability of self-healing of local defects in order to maintain fiow characteristics, 

• high electric resistance during the whole blanket lifetime at high neutron fl.uxes. 

Due to these large requirements the development of a direct coatings is still an ongoing 
task. 

Studies showed that using lithium as liquid and the FCI technique the MHD pressure 
drop under DEMO conditions can be kept in tolerable limits if the blankets are divided 
into two halfs as shown in figure 5-1b. These studies were conducted assuming laminar 
slug fl.ow not taking into account the improvement of heat transfer by the side wall 
jet and the hereby induced turbulence. 
These effects can reduce the velocity of the liquid metal in the front channel needed to 
keep the temperature at the first wall interface in the acceptable limit of at maximum 
450°C. 

Due to the high neutron fl.ux and the heat fiux at the first wall the FCI there covers 
only the two Hartmann walls and the second wall. In all other parts of the blanket 
the FCI 's correspond to the technique shown in figure 5-2a. At the first wall the FCI 
considered is to be open. Because the first wall is 8mm thick the wall conductance 
ratio at the first wall is c = 0.048 for Lithium. All other relevant thermohydraulic 
data for the MHD heat transfer calculations are given in table 5.2. 

Thermohydraulic MHD parameters unit 

walZ conductance ratio of Hartmannwalls [/] 0.003 

walZ conductance ratio of side walZ [/] 0.003 

walZ conductance ratio of first wall [/] 0.048 

Hartmann number [/] 28447 

Interaction parameter [/] 7357 

Reynolds number [/] 1.1 •1 ()5 

Prandtl number [/] 0.047 

Feelet number [/] 5265 

Table 5.1: Thermohydraulic boundary conditions for the MHD fl.ow in the first wall 
duct of a DEMO blanket. 

The calculated velocity profile of the MHD fl.ow in first wall coolant duct at DEMO 
conditions is shown in figure 5-3. Due to the rather thick first wall the side wall jet at 
the first wall is drastically lower than at the second wall, where the calculation yield 
about 16 . But, due to the high Hartmann number the velocity gradients at this first 
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Figure 5-3 Calculated MHD velocity profile in the first wall coolant ducts of a poloidal 
self-cooled DEMO blanket. M = 2.84 · 104 , c = 0.003, Cfirstwall = 0.048. 

wall jet are of the same order of magnitude than in the experiment presented here. 
Thus, as Reynolds number and velocity gradients in the present experiment andin 
the first wall ducts of a self-cooled Lithium blanket at DEMO conditions are of the 
same magnitude a turbulent fiow motion is more than likely. 
If we now extrapolate the experimental results on a self-cooled poloidal Lithium 
blanket and use instead of the slug fl.ow profiletherelevant MHD profile at DEMO 
conditions, we obtain an heat transfer enhancement of 30%. Or in other terms, we 
can reduce the fl.ow velocity ab out 30% ( and thus the pressure drop about 30%) in 
order to get the same temperature rise as in the slug fl.ow model. 

If we additionally take into account turbulent fl.ow motion we have to split the fl.ow 
in the regions, where turbulence Ieads to an enhancement of heat transfer and where 
not. 
For xj Pe < 3 ·10-3 (Region I), which corresponds in DEMO to a length of about lm 
no additional heat transfer enhancement can be expected, since the thermal boundary 
layer has not reached the turbulent fl.ow domain. For 3 · 10-3 ~ xj Pe ~ 2 · 10-2 

(Region II ,according to figure 4-22), which corresponds to a length of 7m (!) a heat 
transfer enhancement of a factor 2 compared to the slug fl.ow assumption is very 
likely. This length of 7m is more than the splitted blanket is long. 
Combining both effects from Region I and II a total heat transfer enhancement of 
86% compared to slug fl.ow can be assessed. 
Or vice versa, maintaining the same temperature rise as in the slug fl.ow design the 
fl.ow velocity can be reduced and thus, the pressure drop in the first wall coolant 
ducts can be reduced. Even with the reduced velocity the fl.ow will be turbulent. 



Chapter 6 

Conclusions 

The heat transfer in a magnetohydrodynamic (MHD) fiow has been studied in a 
reetangular duct with thin electrically conducting walls exposed to an externally 
applied constant magnetic field B oriented perpendicular to the ducts axis. Hartmann 
numbers and Reynolds numbers are investigated in the following range: M = 0 -t 

5 · 103 Re = 2 · 103 
-t 1.2 · 105

. The investigation includes both the isothermal fiow 
and the non isothermal case. In the non-isothermal configuration one wall of the duct 
which is aligned with the magnetic field is heated. The heat fiux is perpendicular 
to the magnetic field and perpendicular to the main fiow direction. Experimental 
results of the MHD fiow are compared to the ordinary hydrodynamic (OHD) fiows 
at the same hydraulic parameters. Further, the experimental MHD and OHD results 
are compared to numerical calculations. 

First, the results for the isothermal fiow are summarized. 
For Hartmann numbers M ~ 103 and N ~ 60 the measured pressure gradient is 
independent of the interaction parameter. It coincides within a few percents with the 
values calculated for two-dimensional MHD fiows. At lower M and N the inertia­
less limit, governed by electromagnetic-viscous interaction is left and higher pressure 
gradients are obtained. For Hartmann numbers M ~ 102 andRe~ 105 the pressure 
gradient corresponds to the ones known from turbulent OHD. The Reynolds number 
Recrit where the pressure gradient is no Ionger affected by MHD is approximately 
Recrit ~ 100 · M. 

Probe measurements within the fluid reveal that the velocity profile is not fully de­
veloped even for more than 16 characteristic length afterentering the homogeneaus 
magnetic field region. The side layer thickness 8d increases along the fiow direction 
x approximately according to the power law 8d rv x-113 , which is characteristic for 
MHD fiows governed by electromagnetic-inertial interaction. 
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Regarding the core velocity, a perfect agreement between calculated and measured 
data has been found for all M and N investigated. Also the shape of the velocity pro­
files correspond qualitatively to the calculated ones as long as the MHD flow remains 
laminar. The side layer velocities measured, however, are smaller than predicted and 
the side layers are thicker even for the laminar MHD flow. 
If the Reynolds nurober is increased to values Re ;:::: 8 · 103 at a Hartmann nurober 
M = 4840 the side layer gets unstable and velocity fluctuations appear. The velocity 
fluctuations are confined to the region of the side layers and do not penetrate into 
the core flow. As the Hartmann nurober decreases the critical Reynolds nurober for 
laminar-turbulent transition increases because the velocity gradient within the side 
layer responsible for the onset of fluctuations gets weaker. The turbulence intensities 
grow in magnitude with increasing Re at a constant M. The turbulence intensity, 
however, alters its shape in different Reynolds nurober regimes. At a constant Re 
and decreasing Hartmann nurober the turbulence intensity decreases in magnitude. 

In case of the non-isothermal flow the following results are obtained: 
The velocity profiles and the turbulence intensities measured in the isothermal and 
the non-isothermal campaigns differ only marginally for any parameter set investi­
gated. Thus, the temperature acts as a passive scalar in the studied setup as long 
as M >> 1. Both, the calculated and the measured temperatures in the fluid near 
the wall in the laminar MHD flows are lower than in laminar OHD flows at the same 
Reynolds nurober, because MHD flows form high velocity jets near walls aligned with 
the magnetic field. The measured temperature distributions of the laminar MHD 
flow within the fluid agrees quantitatively with the nuroerically predicted values. 
The temperatures measured in the MHD flow for any parameter set investigated are 
significantly smaller than the values predicted by the slug-flow model, which has been 
used in the design calculation of liquid metal fusion blankets. Increasing Hartmann 
numbers lead to higher side wall velocity jets and, therefore, to lower temperatures 
at the fluid-wall interface of the heated wall. Thus, an increasing magnetic field 
strength increases the heat transfer (, but also requires higher pumping power!). At 
the same Reynolds numbers laminar MHD flows show higher N usselt nurobers than 
their laminar OHD counterparts. 

If the MHD flow gets turbulent three different heat transfer regimes appear at a 
Hartmann nurober of M = 4993. 

• For only weak turbulence levels, where the turbulence intensity in the side wall 
region is less than 0.1 (Re:::; 1.8·104), the temperature distribution corresponds 
to the ones for conductive heat transport. Nevertheless, the temperatures mea­
sured and calculated are in any case lower than those measured and predicted 
foraturbulent OHD flow. Thus, the heat transfer rates in laminar MHD flows 
are higher than in OHD. 

• If the Reynolds nurober is further increased an intense heat transfer from the 
hot wall towards the core flow is measured and the heat transfer enhancement 
found in the measurements is a factor two higher than calculated with the 
laminar models. 
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• A further increase of the Reynolds nurnber, however, does not lead to an in­
creased heat transfer because the thermal bormdary layer has not penetrated 
into the region of highly turbulent flow and thus the heat transfer is still gov­
erned by conduction. 

The splitting into three regions of heat transfer is characteristic for thermally develop­
ing flows. The experimental results revealed that a drastic heat transfer enhancement 
compared to a laminar MHD flow is only obtained in a small bandwidth of Reynolds 
numbers. Nevertheless, the heat transfer rates of both laminar and turbulent MHD 
fiows are in all cases higher than that of OHD flows at the same Re. They are dras­
tically larger than the values calculated using the slug flow model, which formed the 
basis for many previous blanket design calculations. Properly chosen flow conditions 
can increase the heat transfer by a factor of 2. 
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Appendix A 

The k-E Model 

The k- c model has been used to calculate the turbulent OHD fl.ow and heat transfer 
in the investigated geometry. Here, a brief overview with the constants used is gieven. 
Due to the non-linearity of the governing equations for a time-dependent fl.ow a 
temporal averaging process introduces correlations between the fl.uctuating velocities 
uv, uw, vw in the momentum equation (2.1) and the temperature fl.uctuations uT, vT 
in the energy equation (2.2). Physically, these correlations represent the transport 
of momentum and heat due to the fl.uctuating motion. The velocity correlations 
act like a stress on the fluid and is, therefore, called the Reynolds stress tensor. It 
characterizes the effect of turbulent eddy behavior on the mean fl.ow. Similarly the 
temperature-velocity-correlation is a turbulent heat fl.ux. In most fl.ow regions the 
turbulent stresses and fl.uxes are much larger than their laminar Counterparts. The 
extended equations for the mean values of velocity, pressure and temperature can 
only be solved when the turbulence correlations can be determined in some way. A 
turbulence model must be introduced which approximates the correlations in some 
manner, typically by expressing them in terms of mean-flow quantities. The most 
widely used approach to modeling the Reynolds stresses is the eddy viscosity concept, 
which assumes that the components of the Reynolds stresses are proportional to the 
mean velocity gradients, i.e. 

U·U· = flt (o· ·U + O· ·u). 
t J p t"J J,t (A.l) 

The proportionality factor /lt is termed the eddy viscosity and is unlike the molecular 
quantity of the viscosity p,. In a similar way a turbulent thermal conductivity At can 
be introduced in a way that 

).. _ Cpflt 
t- p ' rt 

(A.2) 
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where Prt is the turbulent Prandtl number. In the classical k- c- turbulence model 
the turbulence field is characterized in terms of two variables, the turbulent kinetic 
energy k which is defined by 

1 
k = -uiui, 

2 
(A.3) 

and the viscous dissipationrate of the turbulent kinetic energy c given by 

(A.4) 

Typical turbulent eddy velocity and length scales ( denoted by Ut and Zt) may be 
characterized as Vk and k1.5 / c. An extension of this dimensional reasoning also 
leads to an expression for f.Lt in terms of the characteristic scales of the turbulent 
eddies 

k2 
f.Lt rv -. (A.5) 

c 
Thus, the turbulent eddy viscosity f.Lt is directly related to k and c. A transport 
equation for k can be obtained from the Navier-Stokes equations by a sequence of 
algebraic manipulations. This transport equation contains a number of unknown 
correlations. A second transport equation for c can also be derived from the N avier­
Stokes equations. Application of a number of modeHing assumptions simplifies these 
two equations to the well known equations of turbulent kinetic energy and viscous 
dissipation of the k- c- turbulence model, see e.g. Jischa (1982). If all algebraic 
relations are introduced the eddy viscosity is given by 

(A.6) 

and seven empirical constants Prt, O"k, O"E, cm, c1 , c2 and es. Since the aim of the 
present experiment is not to determine the constants of the turbulence constants the 
standard set of constants given by Rhodi (1985) has been used in the calculations, 
which reads to 

Prt = 0.9; O"k = 1; O"E = 1.3; Cm = 0.09; c1 = 1.44; c2 = 1.92; es = 0.8. (A.7) 

The choice of this constants may be problematic in the turbulent fiow regime for 
Re ~ 104 because buoyant effects can not be neglected in the experiment in that 
regime. However, the physical effects leading to disagreements between experimental 
and theoretical results will be highlighted in the discussion. 

Finally, the inlet distribution of k and c must be set in the calculation as an initial 
condition. As initial values for k and c at the entrance of the duct (x = -16.7) 
the · values k = 5 · 10-3 and c = 5 · 10-3 where set at each grid point of the whole 
duct cross-section except for the wall region. The chosen values for k and c assume 
homogeneaus turbulence. These values are proposed by Rhodi (1985) as starting 
conditions forahomogeneaus grid turbulence. The assumption of homogeneaus grid 
turbulence is justified for the investigated test section, because at the entrance of the 
test section a fiow straighteuer is installed. 
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