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Abstract 

Within the framework of the European Fusion Technology Programme, the Karlsruhe 
Research Centre (FZK) has been charged with the development of the primary 
vacuum pumping system for the International Thermonuclear Experimental Reactor 
ITER. To support the design and operation of the cryopump, an experimental 
campaign for pump component testing was started at the TITAN test facility available 
in FZK. The primary objective was to investigate, under ITER-relevant conditions, the 
pumping speed of the designed cryosorption panels coated with activated carbon. 
The experiments performed at TITAN allow to determine the relationship between the 
pumping speed of the gas, the gas Ioad and the pressure during pumping. The 
pumping speed strongly depends on the arrival rate of the gas, the geometry of the 
pumping system, the cold surface, the type of sorbent used, the temperature and the 
gas Ioad. 

ln order to quantify the geometry impact on the measured pumping speed in the 
molecular flow regime, the Monte Carlo method was applied. To analyse the rarefied 
gas flow in the TITAN test facility, the general Monte Carlo code MOVAK3D was 
employed. A series of Simulations was performed to determine the conductance of 
the entire TITAN vacuum structure, to evaluate the capture probability depending on 
the panel pumping characteristics, to gain an insight into the relative pressure 
variation within the structure and finally to study the influence of panel arrangement 
on the TITAN overall pumping performance. 

As a result of this analysis, the two most important integral characteristics of the 
TITAN pumping system the transmission probability and the capture probability could 
be evaluated. lt could be demonstrated that the conductance of the TITAN structure 
components (the integral transmission probability amounts to 0.1) causes a 
significant decrease of the measured pumping speed as compared to the potential 
pumping speed of the panel. The capture probability was shown to be strongly 
dependent on the gas sticking coefficient of the charcoal sorbent material. The 
maximum value attainable for the sticking coefficient equalling unity was estimated to 
be 0.0915 for the structure with the quilted panel and 0.085 for the structure with the 
circular panel. The simulations confirmed that the pressure in the pump is reduced by 
approximately one order of magnitude, relative to the pressure in the vacuum 
chamber. Additionally, for the panel in quilted geometry, the contribution to the overall 
capture probability by the rear and front panel side was quantitatively estimated for 
different panel incline to the gas entry plane. 

Moreover, an analytical formula describing the dependence of the capture probability 
on both the sticking coefficient and the transmission probability was derived for the 
TITAN geometrical configuration. A method to determine the sticking coefficients 
from the measured quantities was proposed and successfully applied. The results for 
pure helium were compared with those for helium/hydrogen mixtures to illustrate and 
discuss potential difficulties of pump operation. 



Monte Carlo Analyse für die Tieftemperaturanlage TITAN 

und deren Pumpcharakteristiken 

Kurzfassung 

Im Rahmen des 'European Fusion Technology Programme' werden bei FZK 
Entwicklungsarbeiten für das primäre Vakuumpumpsystem des Fusionsreaktors 
ITER durchgeführt. Für die Auslegung und den Betrieb der Kryopumpe wurden in 
einer unterstützenden Versuchsreihe Komponenten an der Anlage TITAN getestet. 
Das primäre Ziel dabei war es, das Saugvermögen der mit Aktivkohle beschichteten 
Kryosorptionspanels unter ITER-relevanten Bedingungen zu ermitteln. Die TITAN­
Experimente erlauben die Bestimmung des Zusammenhangs von Saugvermögen, 
Gasbeladung und Druck während des Pumpens. Das Saugvermögen hängt dabei 
vom Durchsatz des zu prozessierenden Gases ab, von der Geometrie des 
Pumpsystems, von der kalten Pumpfläche, vom Typ des Sorbentmaterials, von der 
Temperatur und von der Gasbeladung. 

Um den Einfluß der Geometrie auf das gemessene Saugvermögen im molekularen 
Strömungsbereich quantitativ zu ermitteln, wurde die Monte Carlo Methode 
verwendet. Die verdünnte Gasströmung in der TITAN-Anlage wurde mit dem Monte 
Carlo Code MOVAK3D modelliert. ln einer Reihe von Simulationsrechnungen sollte 
der Leitwert der wesentlichen Vakuumbauelemente von TITAN und die Abhängigkeit 
der Einfangwahrscheinlichkeit vom Betriebszustand des Panels bestimmt werden. 
Darüber hinaus sollten die relativen Druckunterschiede innerhalb der Anlage und der 
Einfluß der Panelanordnung auf das Pumpverhalten untersucht werden. 

Als Hauptergebnis der Monte Carlo Analyse wurden die beiden wesentlichen Be­
triebscharakteristiken der TITAN-Anlage, nämlich die Durchtrittswahrscheinlichkeit 
und die Einfangwahrscheinlichkeit ermittelt. Dabei zeigte sich, daß der niedrige inte­
grale Leitwert der TITAN-Einbauten (Durchtrittswahrscheinlichkeit von 0.1) das ge­
messene Saugvermögen im Vergleich zu dem Saugvermögen direkt am Kryopanel 
deutlich herabsetzt. Die Einfangwahrscheinlichkeit hängt stark vom Sticking-Koeffizi­
ent (der Haftwahrscheinlichkeit) am Aktivkohlematerial ab. Der maximale Wert, der 
bei einem Sticking-Koeffizienten von Eins erreicht wurde, beträgt 0.0915 für die 
Geometrie mit einem Rechteckpanel in 'Quilted design' und 0.085 bei der Verwen­
dung eines kreisrunden Panels. Ferner zeigten die Simulationsrechnungen, daß der 
Druck über der pumpenden Fläche ungefähr eine Größenordnung kleiner ist als in 
d~r Meßebene. Außerdem wurde für den Fall des Rechteckpanels quantitativ be­
rechnet, wie sich die gesamte Einfangswahrscheinlichkeit des Panels für verschie­
dene Anstellwinkel relativ zur Strömungsrichtung auf die verschiedenen Panelseiten 
verteilt. 

Darüber hinaus wurde für die TITAN Geometrie ein geschlossener Ausdruck 
hergeleitet, der es ermöglicht, die Abhängigkeit der Einfangwahrscheinlichkeit vom 
Sticking-Koeffizienten und der Durchtrittswahrscheinlichkeit zu ermitteln. Eine 
Methode zur Ableitung von Sticking-Koeffizienten aus den Meßgrößen wurde 



entwickelt und erfolgreich angewendet. Die Ergebnisse für reines Helium und 
Helium/Wasserstoff-Mischungen wurden verglichen, um mögliche kritische 
Betriebszustände herauszufinden. 
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1 lntroduction 

Within the framewerk of the development of the primary vacuum pumping system for 

ITER, a conceptual study for the prototype cryopump was accomplished and the 

model cryopump has already been designed. lts suitability to fulfill the ITER relevant 

conditions will be investigated experimentally in the near future. Prior to the 

construction of the prototype cryopump, an extensive testing programme had to be 

carried out in order to assess the pumping performances of the pump test 

components. For this purpose, a versatile test facility, TITAN {Tief-Iemperatur­

Adsorptio.!}). was set up at the Central Engineering Department of the Karlsruhe 

Research Centre (FZK). 

The TITAN experimental facility represents a shielded cryopump installed in the test 

vessel. A cylindrical vacuum vessel of 700 mm diameter and 2200 mm height (free 

volume 0. 76 m3
) is designed as a measuring dome in compliance with the 

PNEUROP standard for vacuum pump testing [1]. To fulfill the requirements of the 

"constant pressure method" for deriving the pumping speed from the measured 

throughput and pressure, the gas is admitted centrally and vertically downwards into 

the lower part of the vessel from a tube of 70.3 mm inner diameter bent through a 

right angle. The cryopump consists of a cryopanel which is covered on one or both 

sides with an activated charcoal (Chemviron SCII) sorbent material, fixed to the 

metallic substrate of the panel by an inorganic cement (Thermoguss 2000). To 

minimise heat Ioads on the panel, caused by thermal radiation through the pump 

inlet, a LN2 pool-cooled 106° chevron baffle, copper-made and blackened, was 

installed. The panel and the baffle are accomodated in the pump housing. The shield 

maintained at 80K is incorporated on the inside. The baffle is screwed to the bottarn 

of a cylindrical annular LN2 recipient and kept at 80K by heat conduction. The panel 

is placed in the centre of the 80K volume which is covered from the top by a copper 

plate. 

ln order to assess the pumping performance of a recommended cryopanel design 

under the ITER-relevant conditions, an extensive experimental testing programme 

was performed at the TITAN facility du ring the last five years. lts principal goal was to 

determine the pumping speed of the selected cryopanels which should be able to 

pump down the plasma exhaust gas components, such as the hydrogen isotopes 

(protium, deuterium and tritium), helium and impurities. The key scaling parameter 

involved in the transfer from component test results to the ITER pump is the specific, 

i.e. related to the panel surface, pumping speed of about 1 1/(s·cm2) at a maximum 
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specific gas Ioad of about 0.23 (Pa·m3)/cm2
, corresponding to 900 s pumping time, 

except for pure helium, where the operation times are limited [2]. 

ln the TITAN facility two different cryosurfaces were investigated: 

• the circular adsorption panel (1186 cm2 pumping surface), bolted to the bottom of 

the centrally placed LHe bath container, arranged orthogonally to the gas flow 

direction, 

• the reetangular adsorption panel (3500 cm2 pumping surface) in quilted design 

geometry ( 0.35 m x 0.5 m, channel pitch 50 mm}, which is foreseen for the ITER 

primary cryopump, installad in parallel to the gas flow direction. 

Dosage rates of the gas can be varied from 2.5·1 o-3 (Pa·m3)/s to 1.69 (Pa·m3)/s (at 

273, 15K) employing three mass flow controllers connected in parallel. The range of 

pressurestobe measured extends over 12 decades, i.e. from 10-7 to 105 Pa. Such a 

large pressure interval can be covered only by the use of various instruments with 
overlapping pressure ranges (see [1] for details). The gas pressure is measured in 

the lower part of the test vessel, 410 mm below a LN-cooled baffle. The measuring 

gauge tube is linked with the vessel by an aperture. The pumping speed is 

determined according to the flow meter method using the PNEUROP standard dome 

and it is derived as a quotient of throughput and pressure during the gas-admitting 

phase. Thus, the measured pumping speed can be expressed as a function of the 

gas Ioad or the pressure du ring pumping, respectively. 

Various measurements of the pumping speed for the pure gases (helium, hydrogen 

and its isotopes protium and deuterium) were carried out at the TITAN facility for the 

two panel arrangements mentioned above. The gas Ioad on a panel was gradually 

increased by increasing the flow rates in a stepwise manner. The comparison of the 

pumping speed evaluated from the experimental results as a function of the gas Ioad 

on a panel revealed discrepancies depending on the panel geometry. ln particular, 

the specific pumping speed for the quilted panel was found to be significantly smaller 

(by a factor of 2.95) than the corresponding one for the circular panel. 

The pumping speed of the TITAN structure depends in a complex manner on the 

admittance rate of the gas, the pumping characteristics of the system and the cold 

surface, the type of sorbent used, the temperature and the gas Ioad. Therefore, it 

became necessary to assess the impact of all these factors, including the geometry 

of the entire experimental facility on the pumping speed. The influence of flow rate 

and flow regime as weil as of the temperature on the panel pumping performance 
was discussed extensively in [3]. The present study is exclusively concerned with the 
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quantitative evaluation of the geometry impact on the pumping characteristics of the 

TITAN facility. 

The TITAN experimental setup operates in the molecular and in the transition flow 

regimes. The molecular flow exists at pressures lower than 1 o-3 Pa at the pump in Iet. 

ln such rarefied state of a gas (Knudsen number Kn >> 1 ), the gas particles (atoms 

and molecules) virtually interact with the wall only and not with each other: Forthis 

reason, the kinetic theory of an ideal gas creates a sufficient basis for the theory of 

molecular flow. ln the model of ideal gas, the particles are considered as point 

masses, exerting no force upon each other and merely colliding elastically with the 

structure walls. The physical properties of a gas at rest, such as pressure, density, 

temperature, specific heat capacities can be described quantitatively using the 

Maxwell distribution function for the particle velocity. For the analysis of gas flows at 

the macroscopic or molecular Ievei, the Boltzmann equation with a vanishing collision 

term provides an adequate mathematical model. At a lower degree of gas rarefaction 

(Kn <<1 ), the intermolecular collisions must be taken into account additionally. 

Therefore, in case of the transition flow regime the discrete particles or molecular 

model is governed by the general Boltzmann equation with a non-zero collision term. 

The Boltzmann equation is not amenable to analytical solution for non-trivial 

problems, and it causes overwhelming difficulties for conventional numerical 

methods. However, the discrete structure of the gas at the molecular Ievel enables to 

overcome these difficulties through direct simulation of the physics of the flow rather 

than mathematical modelling. 

ln the absence of intermolecular collisions, collision-less flow fields may be formed by 

superimposition of a free stream and the reflected molecules, involving multiple 

reflections from a surface. This class of problern is ideally suited for a probabilistic 

method called the test-particle Monte Carlo method. The great advantage of the 

Monte Carlo method is that it provides an efficient technique for studying the 

molecular gas flow in arbitrary complex vacuum structures. The Monte Carlo 

approach was chosen to predict the behaviour of a TITAN pumping system and 

successfully applied to analyse its pumping characteristics. 

Monte Carlo simulations of the particle flow in the TITAN structure were carried out 

with the existing general-purpose Monte Carlo code MOVAK3D [4]. An objective of 

the simulations was to deliver an estimate for the lass in pumping speed due to the 

combined effects of the different TITAN structural components taking into account 

their actual geometry. 
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2 Estimation of integral characteristics of a vacuum system by 
the Monte Carlo method 

The test-particle Monte Carlo method for the analysis of collision-less flow in vacuum 

systems involves the setting up of a mathematical representation of the vacuum 

structure to be studied, the attributing of physical properties to each component of 

the structure and then the using of a fast computer to simulate the history, i.e. the 

behaviour of a large number of gas molecules within the structure. This procedure 

which involves multiple surface reflections is based on tracing the trajectories -

random walks- of individual molecules from the point of their introduction into a given 

structure to the point of their leaving the structure or being captured by a surface 

within the structure. The probability of a molecule passing through a structure or 

being captured depends on its initial direction at the entry surface, on the direction 

into which it is scattered at any intersection point with the internal walls and the 

absorption rate. ln particular, this probability is independent of molecular speed and 

there is no need to consider the distribution of this quantity. From the recorded 

number of interactions of the molecules with each surface element (so-called scores) 
the basicintegral characteristics ofthe vacuum system can be evaluated [5]: 

• The transmission coefficient which defines the probability that the particle, 

passing through the inlet opening of the structure exits through its outlet opening 

and is equal to the ratio of the number of outgoing to the number of incoming 

partielas 

• the backscattering coefficient which defines the probability of emergence in the 

reverse direction from the part under consideration and is equal to the ratio of the 

number of molecules backscattered to the inlet opening to the number of 

molecules which have entered the structure 

• the capture coefficient which defines the probability that a particle incident at a 

reference cross-sectional surface of a structure will be captured by the 

cryosurface and is numerically equal to the ratio of the number of molecules 

which were captured, i.e. remained in the structure, to the number of molecules 

that have entered. 

These three coefficients can be estimated using scores, based on a suitable amount 

of histories sampled during the course of the simulation. The costs of the 

computation of 105 or 106 particle random walks are negligible, such that a four-figure 

accuracy is obtained readily. Another advantage of the Monte Carlo method is the 

ease, by which it is able to deal with a very complex flow geometry. Thus, the 
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pumping characteristics of an arbitrary complicated geometrical structure can be 
evaluated from the simulation results. 

A PASCAL implementation of this method, called MOVAK3D [6], originally written to 

support the geometrical optimisation of the vacuum ducts of fusion reactors, has 

been applied here to analyse the TITAN experimental facility. 

3 An overview of the Monte Carlo Code MOVAK3D and its 
main features 

The Monte Carlo code MOVAK3D requires a detailed geometry specification of the 

structure, a definition of the physical properties of each surface and an appropriate 

set of parameters increasing the efficiency of the simulation run. MOVAK3D treats an 

arbitrary three-dimensional configuration which, however, must be suitably 
decomposed into the pre-defined elements [6]: Triangles, parallelograms, circles, 

squares with hole, hexagons and octagons with hole or so-called units: Pipe, elbow, 

cold trap, tapered pipe and branching pipe. To these basic geometry elements the 

surfaces of revolution, such as spheres, cylinders, cones and rings can be attached 

by a circular ring or another joining element with a hole. 

To every specified surface one of the following physical properties must be assigned: 

Source (point, surface, isotropic or anisotropic including a beam source), absorber 

(black or grey), diffuse scatterer (with a cosine distribution of the emitted particles ), a 

mirror-like reflector. Additionally, the structure may be subdivided by the control 

surfaces into exclusive volumes which enable to check the local molecular flow, to 

calculate relative pressures and to reduce the computational time. ln the course of a 

simulation, MOVAK3D randomly chooses among the specified sources the first and 

the subsequent source surfaces, the spatial coordinates of the source particle 

emission and its flight direction. To each source particle an appropriate weight is 

assigned. Then, the possible collision point with the nearest wall is calculated, 

assuming that the particle path is piecewise linear. lntermolecular collisions are not 

taken into account. 

The implemented models for the gas-surface interactions are based on diffuse, 

specular and a simplified accommodation model. Specular reflection is perfectly 

elastic with the molecular velocity component normal to the surface being reversed, 

while those parallel to the surface remain unchanged. ln the diffuse reflection the 

velocity of each molecule after reflection is independent of its initial velocity. 

However, the velocities of the reflected molecules as a whole are distributed in 

accordance with the Maxwellian distribution for molecules that are directed away 
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from the surface. Equilibrium diffuse reflection requires both the surface temperature 

and the temperature associated with the reflected gas to be equal to the gas 

temperature. ln the case of specular reflection, the gas may have a stream velocity 

parallel to the surface, and a specularly reflecting surface is functionally identical to 

the plane of symmetry. The accommodation model represents the most common 

generalisation of the diffuse model so far, as the incident and reflected molecules are 

allowed to have different temperatures. An indication of the extent, to which the 

reflected molecules have their temperature adjusted towards that of the surface is 

given by the thermal accommodation coefficient. The range of the accommodation 

coefficient extends from zero for no accommodation to unity for the complete thermal 

accommodation. ln this model, the non-diffuse reflection is represented by assuming 

that some fractions of the molecules are reflected specularly, while the remainder is 

reflected diffusely. However, this model cannot reproduce the molecular beam data 
that have been obtained for particular cases [7] and there is no justification for the 

implicit assumption that the result should lie between the Iimits set by complete 

diffuse and complete reflection. Therefore a more general empirical model is needed. 

lf the particle impinges on an absorbing surface, it may be fully or "partially" 

absorbed. ln the latter case, the particle weight is reduced and the amount of 

reduced weight is attributed to the particle weight deposited on the surface. This 

procedure may Iead to a very small particle weight, practically not giving any 

significant contribution to the final result. Tracing such particle further on would 

extend enormously the computational time on one hand and increase the variances 

on the other. Therefore, the Russian roulette option was made available to eliminate 

such cases from the further considerations by removing a particle or doubling its 

weight. The amount of particles to be considered in one simulation run is problem­

dependent. Care must be taken regarding the sufficient accuracy of the final results, 

since they have a statistical nature and are biased with a statistical uncertainty (see 

chapter 9). The MOVAK3D code yields an output Iist with the balance table, 

containing the deposited particle weights for each absorbing surface. 

A serious drawback of the program is the separate determination of the particle path 

in the global and local Cartesian coordinate system. The local coordinates are 

superimposed when surfaces of revolution are incorporated in the geometrical model 

in order to simplify their mathematical description. lf the model contains surfaces of 

revolution, the definition of the reference plane for the local coordinate system is 

required. The normal to the plane must be collinear with the axis of rotation. When 

both the flat surfaces and the surfaces of revolution are used, the tracing of a particle 

is interrupted on the reference plane. The particle random walk (which may be 

described in an arbitrary geometry) begins on the source side as seen from the 

6 



reference plane. The particle pathway is recorded up to a common cross-section 

control surface lying on the reference plane. As soon as a particle crosses this 

surface, its intersection point coordinates and directional vector components are 

transformed to a new coordinate system. They serve as the initial point and direction 

for further partiele tracing in the forthcoming geometry. An inverse transformation of 

the new generated pathway is not done; thus, the reference to the previous 

coordinate system is lost completely. This strategy was adopted to save storage 

area. However, it implies a severe Iimitation to the geometry description: The flat 

surfaces like parallelograms and triangles cannot be embedded into any solid of 

revolution. This was the main reason why it was decided to depict the whole 

geometrical structure of TITAN in global Cartesian geometry, representing cylindrical 

surfaces as prisms with an octagonal cross-section. lt was proved that this 

approximate treatment of the structure geometry has no significant influence on the 

final results. 

ln MOVAK3D, only one type of gaspartielas can be considered in one simulation run. 

This means that gas mixtures cannot be treated explicitly. Nevertheless, in many 

cases the behaviour of a gas mixture can be predicted by simulating the flow of each 

mixture component separately and then summing up the results in an appropriate 

way. This method, however, has a limited range of application, since the absorption 

rates for the different gas components must be independent of each other. 

Gas-gas interactions arenot simulated, as a gas velocity distribution is not modelled. 

A radiation heat Ioad on surfaces may be predicted by considering the generated 

partielas as photans and all surfaces of the structure as fully absorbing sources with 

the emission density proportional to the emission density of a black radiator (­

T\urtace. where T denotes the temperature of the surface ). The weight of partielas 

deposited on a particular surface will then be proportional to the thermal Ioad 

transmitlad to the surface, whereas the partielas emitted from each surface give an 

estimation of the energy lasses. 

4 Geometrical model of the TITAN structure for the analysis 
with MOVAK3D 

The Iayout of the TITAN facility is shown in Fig. 1. The corresponding geometry 

model of the TITAN structure created for the MOVAK3D code is illustrated in Fig. 2. 

The model structure consists of four components: The PNEUROP dome, a baffle and 

a cryopanel embedded into an 80K volume. Camparisan between the original and 

the model structure shows that all relevant TITAN components that have a strong 

impact on the flow of gas molecules through a system were taken into account. The 
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Figure 2. Geometry model of the TITAN facility with the quilted panel in the 
MOVAK3D code. 
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chevron baffle throttles the conductance to the pump and, hence, influences 

significantly the pumping performances of the whole system. A cryopanel with its 

peculiar sticking coefficients for different gas species obviously determines the 

overall pumping probability. Finally, due to the external arrangement of the ionisation 

gauges connected to the test vessel and a reduction of the passage area between 

the PNEUROP dome and the baffle, the segment of the PNEUROP dome must be 

considered additionally. 

The upper segment of the PNEUROP dome (diameter 0=700 mm, height H=410 

mm) was included into the MOVAK3D model. lt was represented as a channel with 

an octagonal cross-sectional area. The particle source was located at the segment 

bottom. Thereby, the reference plane for the pumping speed determination was 

placed exactly at the height where the pressure is measured. lt was assumed that 

the spatial distribution of gas particles emitted from the source surface is uniform and 

the angular distribution of particle emission direction is isotropic. 

The chevron baffle had to be modelled quite precisely in order to achieve a proper 

estimation of its conductance. The chevron baffles are opaque for light rays 

transmitted on a straight line in any direction, i.e. no molecule can pass through them 

without colliding with the walls of their internal structure. The baffle consists of 

straight V-shaped plates, inclined at an angle of 53° to the vertical (Fig. 3a) and 

spaced from each other by a distance of 19 mm. The plates cross the circle of their 

enclosure; thus, their lengths differ with their positions. The diameter of the baffle 

opening is 527 mm, the baffle thickness is 50 mm and the wall thickness of the V­

profiles is 3 mm. ln the MOVAK3D model an equivalent octagonal baffle enclosure 

replaced the circular one. The plate lengths were adequately determined via a 

FORTRAN program, additionally written for this purpose. Thus, 26 V-profiles of 

varying length could be included into the model of the baffle (see Fig. 3b). The shape 

of each plate is reconstructed using 10 parallelograms. They are orientated in such a 

way that only the external surface of the plate can diffusely reflect impinging gas 

molecules. 

An important component in the assembly is the cryopanel. The test panel in quilted 
design has the dimensions 500 mm x 350 mm, which roughly corresponds to the 

panel geometry foreseen for the prototype pump. The test panel is modelled as being 

composed of six parallelograms: The first two represent the panel front and the rear 

surface, and the remaining four, significantly smaller, the other boundary surfaces. ln 

the determination of the panel thickness, the copper layer, the sorption material layer 

and the bonding cement were taken into account. All six surfaces are considered to 
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be absorbers. The quilted geometry was neglected in the MOVAK3D model. The 

cryosorption panel is embedded into the centre of the 80K volume. 

The 80K environment is simulated in MOVAK3D by a prism with an octagonal cross­

section (radius of an inscribed circle 582 mm, height 678 mm) closed from the top. 

Thus, 8 parallelograms and 8 triangles bound the 80K volume. lnward orientated 

sides of the walls are defined as diffuse reflectors. 

The four components described above were put tagether in a series arrangement. ln 

this sequentially connected set, the cross-sectional area of the baffle is smaller than 

both the cross-sectional areas of the PNEUROP dome and of the 80K volume. To 

reproduce the structure of the TITAN facility, 441 spatial points, 104 triangles and 

198 parallelograms were needed. 

For the TITAN facility with a circular panel two different MOVAK3D representations 

were developed (see Fig. 4). The first included the surfaces of revolution, whereas 

the second one consisted of flat surface elements only. The aim of this apparent 

redundancy was to estimate the influence of the geometrical representation on the 

calculated system characteristics. lt occurred to be negligibly small. 

5 Specification of the computational task 

The measurements in TITANare related to the vacuum chamber, thus, the measured 

pumping speed represents the effective pumping speed and not the net one related 

to the pumping cryosurface. Since a series of components is inserted between the 

panel and the vacuum chamber, the pumping speed S over the chamber must drop 

as compared to the corresponding pumping speed value Sp over the pump. 

lf the conductance C is added to a system with a known pumping speed Sp, then by 

means of the well-known reciprocal addition equation [8] 

1 1 1 
-=-+-s sp c 

(5.1) 

is obtained. 

This equation can be expressed in another form as 

(5.2) 
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which shows explicitly the decrease of the pumping speed ratio S/Sp due to the ratio 

C/Sp between the conductance of the system and the pumping speed of the pump. 

This relationship is represented in Fig. 5. lt can be seen that when the values of the 

conductance and of the pumping speed of the pump are equal, only 50% of the 

pumping speed are exploited in the vacuum vessel. ln order to use 80% of the 

pumping speed, the ratio C/Sp must be 4, while for the ratio C/Sp=0.1 only 10% of the 

pumping speed of the pump are utilised in the vacuum enclosure. This implies that if 

the conductance of the components introduced between the panel and the vessel is 

the factor limiting the pumping speed, enlarging the pumping panel area will bring no 

advantage. 
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Figure 5. S/Sp as a function of C/Sp. 
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Conductance and pumping speed are associated with the description of gas flows in 

volumetric terms [9]. This is convenient for the basic computations, if the heat 

transfer effects are negligible and the gas quickly accommodates to the temperature 

of the vessel or a pumping duct. The mass flow can be measured in units of 

throughput Q such as mbar-1/s at a fixed temperature. Throughput simply is a product 

of the pressure p and the volume flow of the gas S for any given location (cross­

sectional plane) in the flow passages. 
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(5.3) 

Two distinct geometries exist, in which the flow parameters are mutually associated 

as in Eq. (5.3), 

• the orifice geometry 

and 

• the pipe flow geometry. 

ln case of the orifice, the pressure is measured far away from the orifice. The gas 

flow conductance of the orifice is an inverse measure of its resistance to the flow and 

determines the pressure drop at a given mass flow: 

C=_9_ 
ßp 

ßp = P1- Pz 

(5.4) 

where p1 and P2 are upstream and downstream pressures, respectively. lf p2 is much 

smaller than p1, we may speak of the orifice speed 

when p1 << p2 (5.5) 

As already mentioned, p1 is not associated with the vicinity of the orifice, but with an 

upstream location where the gas conditions may be considered to be isotropic. 

ln the case of pipe flow, pressure and speed are related to the same cross-sectional 

plane. ln molecular flow, the conductance of the pipe is defined as the flow through 

the pipe divided by the differential pressure across the pipe. When a conductance is 

physically measured in the experiment, it is normally done by placing the component 

between two !arge volumes and measuring the flow as weil as the pressure in both 

volumes. This conductance determination includes the pressure drop across the pipe 

as weil as the pressure drop across the exit. Thus, corrections must be made to 

account for these pressure differences. 

The TITAN structure combines both types of geometry. The components of TITAN 

are connected in series. The resulting complex pumping system has sections with 

15 



decreasing as weil as with increasing cross-sectional areas. Thus, care must be 

taken in calculating the total conductance. lt has long been recognised that the 

conductance of the component itself depends not only on the geometry of that 

component, but also on the geometry of the adjacent components. ln particular, a 

conductance of a baffle depends on whether it exits to a large volume, to a 

component having the same diameter or to a component with an intermediate 

diameter. Therefore, it is important to determine the conductance of the entire 

structure of the TITAN facility rather than to combine the conductances of its single 

components using the addition theorem of reciprocal conductances. This can be 

done only by the Monte Carlo method. 

The conductance depends on the arrangement and the dimensions of structure 

components on one hand and on the type and temperature of the gas on the other. ln 

the molecular flow regime, the conductance is theoretically characterised by the 

transmission probability. The transmission probability w represents the fraction of 

molecules entering and actually passing through the structure. A fraction (1-w) of 

incident partielas is scattered back and leaves the structure through the entrance 

surface. The aim of the MOVAK3D calculations is to obtain a quantitative estimation 

of the influence of structure geometry on the conductance. This is achieved by the 

determination of the transmission probability of the apparatus up to the upper section 

of the 80K volume containing the panel. 

The pumping effectiveness of the TITAN structure strongly depends on its overall 

capture probability. The knowledge of the capture probability is especially useful in 

practical considerations, since it allows to associate the pumping speed S of the 

whole system (i.e. the measured quantity) to a suitably chosen reference cross­

sectional area. The capture probability accounts for the actual structure geometry as 

weil as for the pumping performance of the panel. lt comprises the gas sticking 

coefficient defined as the probability that an incident gas molecule remains on the 

panel surface. 

Cryosorption pumps are not continuous-throughput pumps. The pump gas is not 

exhausted to the atmosphere, but kept inside the pump. The gas remains in the 

pump either as a thin film (one or a few monolayers thick) having the density of a 

liquid or as a deposit resembling snow or frost. lt may also be sorbed inside the 

pores of the sorbent material or at its outer surface. Because of saturation effects, 

the pump has to be regenerated or degassed occasionally. The amount of the 

pumped gas and the required period between regeneration govern the design at the 

extreme ends of the vacuum pressure scale. ln the TITAN facility the pumping 

surfaces provided have to pump down different gases, some of which are pumped as 
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a result of condensation and some due to sorption. ln particular, for helium which is 

pumped by sorption, the pumping speed will decrease as the surface coverage 

increases. The pumping speed depends on the arrival rate of the gas, the capture 

probability and the area of the cold surface. The arrival rate of the gas in turn 

depends on its molecular weight and temperature. Moreover, the pumping speed for 

heliumwill also depend on the amount of previously pumped gas on a surface. The 

pumping speed for a gas mixture may not only depend on the total amount of 

previously pumped gas, but also on the sequence, with which different gases have 

been introduced into the pump (i.e. the loading history). Thus, for the analysis of the 

TITAN pumping system performances, the following factors are of primary 

importance: 

1. Conductance of the whole TITAN vacuum structure and its constitutional parts. lt 

is to be determined on the basis of the calculated transmission probabilities. 

2. Capture probability which permits to express the pumping speed as a function of 

the gas sticking coefficient, cryosurface area and the conductance. 

3. Fluctuation of the gas pressure within the system. 

4. The influence of the geometry of the cryopump on the pumping speed. ln 

particular, the dependence of the capture probability on the panel incline with 

respect to the gas flow direction. 

The analysis of the cryopanel pumping performance should additionally comprise: 

1. Evaluation of the sticking coefficients of the panel from the experimental data and 

the calculated transmission and capture probabilities 

• for the quilted panel 

• for the circular panel 

2. Numerical investigation of the saturation point of helium pumping, employing the 

MOVAK3D special modelling option which allows to account for decreasing 

sticking coefficients with increasing gas Ioad on the panel. 
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6 Presentation and discussion of the Monte Carlo simulation 
results 

ln the MOVAK3D simulations, the entrance area (eight triangles representing an 

octagonal cross-section of the PNEUROP dome) was defined as a source surface 

window with a uniform spatial distribution of emitted particles and an isotropic 2n 

distribution of their flight directions. The vacuum boundary conditions were imposed, 

i.e. the backscattered particles which cross the entrance area while leaving a system 

cannot return to it. For particles that are reflected from the walls, a cosine reemission 

distributionwas chosen, with the reflection coefficient equal to 1. At pressures below 

1 o-3 Pa and at the temperature 293K, the mean free path of H2 and He, is larger than 

1 m and, thus, exceeds the dimensions of the system. Therefore, the mean free path 

of the gas molecules was set to infinity for the calculations. 

6.1 Pumping system characteristics 

Part of the Monte Carlo simulations performed was devoted to the estimation of 

integral characteristics of the TITAN pumping system and its constitutional parts. The 

fundamental property of the integral characteristics is the universality which they 

provide for the quantitative description of vacuum-system components. This property 

facilitates the formal mathematical approach and the interpretation of experimental 

results. 

6.1.1 Transmission probability 

For the transmission probability calculation, an open structure with an inlet area Actome 

and an outlet area Apump was considered. ln accordance with the vacuum boundary 

conditions, both the inlet and the outlet were defined as absorbing surfaces with an 

absorption rate, denoted a, equal to 1. This assumption corresponds to the nature of 

the problem. Particles which cross the outlet area cannot come back into the system, 

they are lost, i.e. eliminated by absorption on the outlet surface. 

The transmission probability w for the whole TITAN vacuum structure with the inlet 

Actome at z=?OO mm and the outlet Apump at z=1312 mm (i.e. from the pressure 

measurement Ievei up to the panel) calculated with MOVAK3D for 200 000 particles 

amounts to 0.1. The estimated intrinsic transmission probability of the chevron baffle 

is 0.19. 
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6.1.2 Capture probability 

For the determination of capture probability the entire structure including the pumping 

surface must be investigated. The panel removes the gas molecules by cryosorption 

and/or cryocondensation with a specific pumping speed depending on the sticking 

coefficients. Hence, in the MOVAK3D input model the panel surfaces must be 

defined as black or grey absorbers. The pumping characteristics of the panel are 

considered through the absorption rate "a", which represents the gas sticking 

coefficient. The absorption rate depends on the type of gas pumped. lt can be 

regarded as a constant over the whole simulation run, as in case of hydrogen 

isotopes, the sticking coefficient of which remains constant du ring the whole pumping 

process. This assumption, however, is no Ionger adequate when helium is pumped, 

since the sticking coefficient for helium is decreasing with increasing gas Ioads. To 

take this into account, the absorption rate must be expressed as a function of the 

relative molecular cavarage on the surface. 

The capture probability c is defined as the ratio of the amount of partielas fixed by the 

adsorbing surface to the amount of partielas impinging on the previously chosen 

reference surface lying within the structure. The sticking coefficient a is the ratio 

between the number of partielas sticking to the cryosurface and the number of 

partielas impinging on it. The difference between the capture probability and the 

sticking coefficient becomes apparent when noticing the fact that the sticking 

coefficient characterises the interaction between the gas molecules and the 

cryosurface only, whereas the capture probability refers to the whole structure 

containing the cryosurface as its component. Therefore the capture probability must 

be a function of both, the sticking coefficient which becomes equivalent to an 

absorption rate of the panel surfaces in the considered MOVAK3D simulations and 

the transmission probability of the system. 

Fig. 6 shows the capture probability c for different values of the sticking coefficient. 

They were obtained by performing six independent computational runs with 1 0 000 

historiss each. As expected, the capture probability reaches its maximum value for 
a=1. For smaller absorption rates of the panel surface the capture probability also 

decreases until it vanishes for a=O. 

The maximum capture probability calculated from 200 000 historiss for the structure 

with a quilted panel amounts to 0.0915, whereas for the structure with a circular 

panel the corresponding value is 0.085. The smaller capture probability for the latter 

is caused by the smaller cryosurface area as compared to the area of the quilted 

panel and the gap between the panel boundary and the walls of the 80K shielding. 

Due to the gap, gas molecules can pass to the upper part of the 80K volume and 
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the gap, gas molecules can pass to the upper part of the 80K volume and from there, 

aftermultiple reflections, they are partly scattered back to the PNEUROP dome. 
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Figure 6. Capture probability of the TITAN structure versus the gas sticking 
coefficient. 

6.2 Conductance 

The conductance C depends on the structure shape (through the transmission 

probability w), on its inlet cross-sectional area (A) and on the type and temperature of 

the gas. ln the molecular flow regime the conductance is independent of the pressure 

and is given by [1 0] 

V C=AW-
4 

whereas in our case: A =Ädame ; 

(6.1) 

v/4 is the x-component of the average gas velocity, as derived from the Maxwell 

distribution 

v = 36.38 /f [m/s] 
4 ~M 

(6.2) 

T is the gas temperature in K 

M is the molecular weight (in g/mol) 
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Since the conductance depends on velocity, it will vary with the species of gas 

(molecular weight) and temperature proportionally to (T/M)0
·
5

• The value v/4 is 

numerically equal to the surface-related volume flow rate V/ A which passes through 

a reference surface or to the maximum surface-related pumping speed S/A of an 

(ideal) pump for the gas having the temperature T. 

6.3 Net pumping speed 

The effective pumping speed S can be expressed as the maximum pumping speed 

related to the entrance area Actome multiplied by the capture probability c. The panel 

pumping speed Sp is the maximum panel pumping speed multiplied by the sticking 
coefficient a ( see [1 0]) 

V 
S = C Adome 4 

Thus, 

Eqs. (6.3) and (6.4a) combined with Eqs. (5.1) and (6.1) give 

1 1 1 ---- = ----+ ----
V V 

c Adome 
4 

a Apanel 4 
V 

W Adome 4 

(6.3) 

(6.4a) 

(6.4b) 

(6.5) 

lf it is assumed that the temperature of all TITAN structure units is constant, the 

influence of the geometry on the pumping performance can be studied directly. 

Uniform temperature implies a constant x-component of the mean gas velocity in the 

whole structure. 

Thus, 

1 Adome 1 1 
-= x-+-
c Apanel a w 

(6.6) 
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a 
C=-­

a 
D+­

w 

D = Adome 

Apanel 

(6.7) 

Eq. (6.7) combines the Iosses of the pumping speed due to the geometry (wand D) 

and the pumping probability of the panel (a) with the common quantity c. Therefore, it 

quantifies the impact ofthe whole TITAN structure on the pumping speed. lt allows to 

calculate explicitly the capture probability for a given sticking coefficient and a known 

transmission probability of the structure. ln particular, for the TITAN facility with the 

quilted panel: 

a 
C=-----

1.0996+10a 
(6.8) 

Eq. (6.8) delivers an excellent reliability check of the MOVAK3D code. Thus, it is 

interesting to make a direct comparison between the estimated capture probabilities 

(MOVAK3D) and the analytically calculated exact values. This is illustrated in Fig. 7. 
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Figure 7. Comparison between the capture probability calculated from Eq. (6.8) and 
MOVAK3D results. 
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The agreement is very good within the uneertainty Iimits of the Monte Carlo 

ealeulation. 

The eoneepts outlined above are suffieient for basic interpretation of the pumping 

speed performanee eurves. 

6.4 Relativepressure 

The MOVAK3D eode allows to introduee into the strueture eontrol surfaces whieh 

may serve to seore partielas erossing them and, thus, to eontrol the loeal flow. The 

seores ean be used to ealeulate the pressure in the vieinity of the control surfaee. 

The ineidenee or partiele flow rate density I, defined as the number of partielas 
impinging on unit area of a surfaee in unit time, is given by [1 0] 

where n=NN denotes the partiele number density and 

m0 the particle mass ( in grams) 

Consequently, the pressure on a surfaee is given by 

(6.9) 

ln aeeordanee with (6.9), a ratio of pressures P1 and P2 measured on two differently 

situated surfaees A1 and A2 for an isothermal apparatus is 

P1 N1 · A2 = __:...._..=.... 

P2 N2 · A1 
(6.10) 

where N1 and N2 denote the number of partielas impinging on a surfaee A1 and A2 , 

respeetively. However, this proeedure Ieads to the pressure dependenee on the flow 

direetion. ln ease this effeet is not desired, it is advisable to use three eontrol 

surfaees erossing eaeh other at right angles at the point of interest within a strueture. 

Relative pressures were ealeulated for three different surfaees plaeed inside the 

TITAN strueture at the high z1 =1100 mm, z2 = 1310 mm and z3 =1814 mm, 

respeetively. The first eontrol surfaee was loeated under the baffle, the second inside 

the 80K volume right under the panel and the third just above the panel (see Fig. 8). 

Results of the MOVAK3D ealeulation performed by analysing 500 000 histories are 

eomprised in Tab.1 and the eorresponding relative pressure variation is illustrated in 

Fig. 9. 
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Figure 8. Location of the control surfaces in the TITAN facility for the relative pressure 
calculation. 
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Pressure ratio Relative pressure 

P:YPm 0.085 

P2IPm 0.15 

P1IPm 0.95 

P2IP1 0.16 

P:YP1 0.09 

P:YP2 0.57 

Table 1. Relative pressure derived from MOVAK3D results. 

lt can be seen that the pressure in the pump (on the 3rd control surface) decreases by 

one order of magnitude relative to the pressure in the PNEUROP dome. 

Pump/above panel 

pressure P3 

Pumpfunder panel 

pressure P2 
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Figure 9. Fluctuation of the relative pressure in the TITAN pumping structure. 
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6.5 Capture probability depending on panel incline 

A series of calculations has been carried out to investigate the effect of panel 

inclination with respect to the main gas flow direction. The objective of this study was 

to assess how the two panel sides contribute to the overall capture probability under 

different panel incline angles. The panel position was varied from the vertical 

arrangement to the horizontal one. The angle of inclination was changed from 0 to 90 

degrees in 10 discrete steps (see Fig. 10). The sticking coefficient was chosen equal 

to unity in all simulation runs. 

rotation 
axis 

' 

I .0/ 

j----- ---

1 

I ...• : .................................................................................... . 

panel rear 
side 

panelfront 
side 

Figure 10. Schematic drawing of the cryopanel with the rotation axis. 

ln Fig. 11 the total capture probability obtained by simulating 100 000 histories is 

plotted versus the inclination angle of the panel. lt can be seen that the capture 

probability of the TITAN geometry exhibits no discernible dependence on the panel 

configuration. However, the contributions by two different panel sides to the overall 

value differ significantly with the panel position. The number of gas molecules which 

may hit the rear decreases with increasing panel slope as depicted in Fig. 12. This 

can be utilised to optimise the pumping speed performance by trying to separate the 

gases by their adhesion mechanisms, keeping the front side of the panel uncoated 

and, thus, providing a condensation surface, and only coating the rear with sorbent 

material [11]. 
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Figure 11. Overall capture probability versus panel incline with respect to the main 
gas flow direction. 
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6.6 Panel pumping performance 

Gas molecules impinging on a panel solid surface can be fixed due to two different 

mechanisms, adsorption or condensation. Especially in the case of adsorption, 

interaction between gas molecules and the foreign molecules of the substrate takes 

place and the interaction rate decreases with growing coverage. Because the 

adsorbent becomes saturated once a certain degree of surface cavarage has been 

reached, only adsorbents of high adsorption capacity can be considered for practical 

applications. ln the TITAN facility the sorption panel was coated with activated 

charcoal for pumping helium. For practical purposes, the ITER machine demands a 

certain pumping speed value to guarantee for a maximum allowable pressure 

(especially helium partial pressure) in the torus. However, to judge the underlying 

physics of the cryosorption process, it would be favourable to have a universal 

parameter which describes the interaction between the gas molecule and cold 

surface more neatly because pumping speed still depends on the molecular mass of 

the gas (see Eqs. 6.2 and 6.4). The sticking coefficient is such a feasible parameter. 

lt decreases with rising temperature of the sorption panel and rising gas temperature; 

it decreases with increasing coverage and rising intake pressure. 

For basic interpretations within the Iimits of our simplified modal, the sticking 

coefficients can be estimated from the experimental results. 

7 Evaluation of sticking coefficients 

The sticking coefficients can be derived directly from the measured pumping speed, 

provided the transmission probability is known. 

The measured pumping speed is determined according to the AVS Recommended 

Practice as [9] 

s = Q 
meas p _Po 

(6.11) 

where Q is the flow rate (throughput) and Po is the "ultimate" pressure prior to the 

experiment. Thus, the measured pumping speed refers to the inlet plane of the 

pump. Consequently, the capture probability as given by Eq. (6.3) must be related to 

the pump entrance (baffle) surface area Abaffle· Substituting Abaffle for ~ome into Eq. 

(6.3) gives 
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s c(a) = meas 
V 

Abaffle X 4 

(6.12) 

Further, the following relationship between the capture probability, the transmission 

probability and the sticking coefficient can be derived considering a system 

consisting of two components (the baffle and the pump) connected in series [ 1 0] 

1 1 1 
-=-+--1 
c W 12 a 

from which follows 

1 
a = 1 1 

---+1 
c w12 

(6.12a) 

(6.12b) 

The transmission probability w12 of the shielded pump with the quilted panel 

contained in the TITAN structure was determined by the MOVAK3D calculations. lt 

amounts to 0.1667. The smaller value of this combined transmission probability as 

compared with the calculated baffle transmission probability of wbaffle =0 .19 is caused 

by the geometical arrangement of the quilted panel which is not orthogonal to the 

main flow direction. 

ln order to validate the theoretical value, additional experiments were performed. To 

evaluate the transmission probability pumping speed tests were made with nitrogen 

whose sticking coefficient at LHe-cooled charcoal is weil known to be aN2=1.0 [1 0]. ln 

this case, according to Eq. (6.12a), the combined transmission probability w12 

becomes equal to the capture probability and can be derived directly from the 

measured data (Eq. (6.12)). 

Two measured pumping speed curves for nitrogen are depicted in Fig. 13. The first 

curve illustrates the pure molecular flow regime with constant values for pumping 

speed, whereas the second refers to the transition flow with increasing pumping 

speed. Judging from the low pressure pumping speed Iimit of about 3.5 m3/s (at 

reference temperature of 273.15 K) the value w12=0.141, lying within the bounds of 

the maximum measurement uncertainty of about 20 % (calculated by the error 

propagation analysis), will finally be obtained for the transmission probability. 
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Figure 13. Measured pumping speeds for nitrogen with the panel in quilted geometry. 

Thus, from Eq. (6.12b) results 

1 
0=---

1 --5.0 
c 

(6.12c) 

The capture probability for the shielded pump with the circular panel can be 

calculated using the formula [ 1 0] 

1 (6.12d) C=-------
Abaffle + 1 -1 

Apanela W baffle 

by substituting a=1. ln this case slightly lower capture probability w0
12 of 0.156 is 

obtained. 

At the TITAN facility, an extensive test campaign- comprising both panel types-was 

performed to assess the pumping characteristics for ITER-relevant gases and gas 
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mixtures. As discussed above, the pumping of the pure hydrogens and inert gases at 

LHe-cooled activated charcoal is based on sticking coefficients which are very close 

to unity [1 0], except for helium which offers significantly smaller sticking coefficients. 

The sticking coefficients of helium were evaluated for the panel in quilted geometry 

according to Eqs. (6.12) and (6.12b), using the recent experimental results. They are 

plotted in Fig. 14 as a function of the surface coverage relative to the maximum gas 

Ioad. The sticking coefficients for the circular panel determined according to Eqs. 

(6.12) and (6.12d) are shown for comparison as weil. 
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Figure 14. Helium sticking coefficients versus relative coverage obtained from the 
measured pumping speed. 

7.1 lnvestigation for pure helium gas 

The cryosorption pump has no constant pumping speed for helium, since, as already 

mentioned, the sticking coefficient a. depends on the relative surface coverage 

(referenced to the maximum gas Ioad). The value of a. drops as the surface coverage 

increases, at first slowly (for a coverage lower than 0.2), then more rapidly, until it 

becomes zero at the maximum coverage value of 1 (cf. Fig. 14). ln order to consider 
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this phenomenon in the MOVAK calculations, an option with variable sticking 

coefficients must be chosen while specifying the features of panel surfaces. 

Within the MOVAK code, the behaviour of the sticking coefficient depending on the 

mean molecular coverage can be approximated by choosing a pre-defined shape 

function [6], whose parameters must be properly adjusted to fit the curve previously 

determined from the experimental data. Available shape functions cover a wide 

range of basic curves and include square root, linear, quadratic and partial linear 

functions. For the first three, only one additional input parameter must be provided. 

Todetermine a partiallinear shape, four additional factors f0, f1, f2 , f4 must be set up. 

Factor f0 is identical to the highest sticking coefficient at the relative coverage of 0. 

Fora relative coverage of 1, the sticking coefficient is always 0. Factor f1 equals the 

value of relative coverage, at which the sticking coefficient is f0xf2 . Moreover, a very 

practical S-shaped fit can be used, which is based on the polynomial representation 

y(x)=f0 ( axn -bxm) (6.13) 

with m,nd1 ,20], f0 e [0,1]. 

and y(x)=f0 for x=O 

The application of the latter requires the definition of three parameters f0 ,m and n. As 

before, f0 is the highest possible value of the sticking coefficient for fresh regenerated 

panel. Constants a and b result from the boundary conditions. 

A maximum molecular coverage on the absorbing surfaces is to be specified by the 

user. This figure represents the highest possible weight that may be deposited on all 

absorbing surfaces with variable sticking coefficients. ln other words, when in course 

of the simulation the weight deposited on all surfaces with a variable sticking 

coefficient will attain this value, the saturation point (maximum coverage) will be 

reached and the relative coverage will be set to one. Balance tables in the 

MOVAK3D output Iist contain the percentage of the maximum molecular coverage 

achieved for all surfaces defined as absorbers with variable sticking coefficients. This 

additional information may be useful in the prediction of the saturation point of the 

adsorbent for a given geometrical configuration. 

Togainan insight into the characteristics of the helium pumping process, a series of 

four MOVAK3D simulations was performed, employing variable sticking coefficients 

as given in Fig. 14. To approximate the functional dependence of Fig. 14, an S-shape 

function furnished with suitable parameters was chosen. A batch of 100 000 He gas 

molecules was emitted in each simulation run. The batch restart modewas activated. 
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This allowed to transfer the results of one Monte Carlo run to the subsequent 

simulations, hence, making the simulations dependent on each other. The simulation 

series began with the fresh, regenerated panel (relative coverage 0), the first batch 

scores were analysed and the results were recorded. ln the following runs, the 

relative coverage was updated and the absorptionrate was recalculated. The capture 

and the backscatter probability were estimated as weil. The calculated capture 

probability vs. the relative molecular coverage of the panel is depicted in Fig. 15. lt is 

clearly shown that the change of the capture probability when varying the sticking 

coefficient is less than proportional. 
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Figure 15. Helium pumping. Capture probability ofthe TITAN structure versus the 
relative molecular coverage. 

7.2 lnvestigation for helium-containing mixtures 

An experimental investigation on helium-containing gas mixtures was performed to 

gain more information about the influence of helium in a mixture. The ITER plasma 

exhaust gas is composed of one major component (H2, D2, DT, He, depending on the 
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operation mode) plus additional impurity fractions (CH4, C02, CO, H20, 02 etc.). 

Therefore, the systematic investigation was not made with pure H2 or 02, but with so­

called H2-base and 02-base mixtures, respectively; the base mixture consisted of 

96.2 mol-% of H2 or 02 and 3.8% ITER-typical impurities. However, the tests 

revealed that the influence of the impurities is negligible in their low-content range. 

The detailed pumping speed results have been reported elsewhere [3, 12]. 

ln Fig. 16, the derived sticking coefficient curves for pure helium and 4 pseudobinary 

mixture compositions measured with the quilted panel under LHe cooling conditions 

are given as a function of gas Ioad. Gas Ioad and pumping speed are referenced to a 

temperature of 273 K; the composition is indicated in mol-%. For ITER, the maximum 

He content is specified to be 10% [2]. lt becomes obvious that the sticking coefficient 

of the pure hydrogens is drastically reduced when helium is present in the mixture. 

However, this deteriorating influence of helium is less critical for mixtures with 

deuterium than it is for protium. The figure also illustrates that in the composition 

range investigated the overall sticking coefficient of a protium/helium mixture may 

even become smaller than that of pure helium, whereas the helium curve and the 

deuterium/helium mixture curves do not intersect. Nevertheless, the saturation point 

(maximum coverage) is very much the same of about 0.6 (Pa·m3)/cm2 for all mixtures 

investigated. lt is shown that the resulting sticking coefficient curve for 

helium/hydrogen mixtures cannot be predicted by combining the pure gas properties 

according to their nominal composition ratio in the mixture. 
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Figure 16. Sticking coefficient curves derived from experimental pumping speed tests 
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This can be explained by the competitive sorption situation for the pumping of helium 

and hydrogen. As discussed in a previous paper [12], deuterium is partly condensed 

at the charcoal surface, whereas protium, and of course also helium, is almost only 

sorbed. Consequently, there is a strong competition for the active sorption sites at 

the charcoal surface, which is more intense for the combination protium and helium. 

The monitaring of the composition changes during pumping indicates that hydrogen 

is pumped to the disadvantage of helium. Consequently, this effect Ieads to a strong 

enrichment of helium [3, 13]. For the helium/deuterium mixtures, this does not affect 

the model calculation, as both species have practically the same mass number which 

is the only gas-typical parameter incorporated in the model. ln the case of the H2-

base/helium system, a maximum He enrichment of 70% was found. lf this real 

composition is considered in Eq. 6.12 for the derivation of the sticking coefficient, the 

capture probability is increased up to 1 0%, which Ieads to an increase in the sticking 

coefficient of about 20%. The sticking coefficient curves for both cases are compared 

in Fig. 17. However, the general conclusions drawn from Fig. 16 still remain valid. 
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8 Application Iimits of the test-particle Monte Carlo method 

The typical dependence of the measured pumping speed curves on the gas pressure 

at a variable flow rate is exemplified in Fig. 18 for deuterium tests at the LHe-cooled 
quilted panel [3]. The pumping speed decreases in the pressure range from 1 0-4 Pa 

until 6x1 o-3 Pa due to a Iimitation of diffusive mass transfer inside the charcoal pores 

and increases in the subsequent pressure interval up to 1.4x 10-1 Pa. At pressures in 

the latter range, the mean free path becomes comparable with the entrance aperture 

dimension of the cryopump and, therefore, the flow regime is in transition from 

molecular to viscous. ln this transition regime, the conductance to the pump is 

proportional to the pressure and Ieads to the conductance enhancement which may 

explain the results shown in Fig. 18. 
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Figure 18. Experimental pumping speed results for pure 0 2 and the LHe-cooled 
quilted panel as a function of pressure and adjusted flow rate. 

The geometry of the pump and its surroundings is not easily amenable to a 

quantitative estimation of the effects of pressure on the conductance, but an 

approximate linear dependence of conductance on pressure is observed in simpler 

geometries such as an aperture. 

ln the transition regime, it becomes necessary to compute typical intermolecular 

collisions in addition to the molecule-surface interactions [7]. This can only be done, 

if there is already the representation of the complete flow field. The distribution 
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function must be chosen for this representation and, as in the finite difference 

method, it must be stored at the number of locations in phase space. The classical 

Monte Carlo method therefore shares a major disadvantage of the finite difference 

method: An initial estimate must be made with respect to the distribution function 

over the whole flow field. A large number of the test particle trajectories are to be 

computed with the assumed distribution serving as a target gas for the computation 

of typical intermolecular collisions. An updated target distribution is then constructed 

from the history of the test or incident molecules. The process is continued until there 

is no difference between the target and the incident distributions. 

The alternative to the test-particle approach is to introduce a time variable and to 

follow the trajectories of a very large number of simulated molecules simultaneously 

in the computer. This method, called the direct-simulation Monte Carlo method, 

should be applied in the transition flow regime [7]. However, it requires the 

development of new calculation tools. 

9 Remarks on the Monte Carlo precision 

Monte Carlo results represent an average of the contributions by many histories 

sampled during the course of the problem. They are obtained by sampling possible 

random walks and assigning a score Xi to each random walk. Random walks typically 

will produce a range of scores depending on the calculated quantity and the variance 

reduction technique chosen. Thus, an important quantity is the statistical error or 

uncertainty associated with the result [14]. 

Suppose f(x) is the history score probability density function for selecting a random 

walk that scores x to the quantity estimated. The true answer (or mean) is the 

expected value of x, E(x), where 

E(x) = Jxf(x)dx is a true mean value. (8.1) 

The function f(x) is seldom known explicitly; thus, the Monte Carlo random walk 

process implicitly samples f(x). The true mean is then estimated by the sample mean 

(8.2) 

where Xi is the value of x selected from f(x) for the ith history and N is the number of 

histories calculated in the problem. The Monte Carlo mean x is the average value of 

the scores Xi for all the histories calculated in the problem. The relationship between 
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E(x) and x is given by the Strang Law of Large Numbers which states that if E(x) is 

finite, x tends to the Iimit E(x) as N approaches infinity. 

The variance of the population of x values is a measure of the spread in these values 

and given by 

(8.3) 

The square root of the variance is called the standard deviation of the population of 

scores. As with E(x), cr is seldom known but can be estimated by Monte Carlo as S, 

given (for large N) by 

and 

X2 =~ ~x~ 
N~ I 

(8.4) 

(8.5) 

The quantity S is the estimated standard deviation of the population of x based on 

the values of Xi that were actually sampled. The estimated variance of x is given by 

s~= s2 
X N (8.6) 

The estimated standard deviation of the mean x is given by S-. lt is important to 
X 

note that S- is proportional to 1/ JN, which is the inherent drawback of the Monte 
X 

Carlo method. To halve S-, four times the original number of historiss must be 
X 

calculated. The quantity can also be reduced for a specified N by making S smaller, 

reducing the inherent spread of the results. This can be accomplished by using 

variance reduction techniques. 

Error or uncertainty estimates for the results of Monte Carlo calculations refer to the 

precision of the result only and not to the accuracy. lt is quite possible to calculate a 

highly precise result that is far from the physical truth because, nature has not been 

modelled correctly. 

To define confidence intervals for the precision of a Monte Carlo result, the Central 

Limit Theorem of probability theory is used, stating that for large values of N and 

identically distributed random variables Xi with finite means and variances, the 

distribution of the resulting estimated means will be approximately normally 

distributed, with a true mean of E(x). lf S is approximately equal to cr, then 
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x - 8x < E(x) < x + 8x , - 68% of the time and (8.7) 

- -
x- 28- < E(x) < x + 28- , -95% ofthe time 

X X 
(8.8) 

from standard tables for the normal distribution function. Eq. (8.7) is a 68% 

confidence interval and Eq. (8.8) is a 95% confidence interval. 

10 Conclusions 

The pumping characteristics and performances of the TITAN test facility were 

extensively analysed in order to quantify the geometry impact on the measured 

pumping speed. Forthis purpose, the Monte Carlo Code MOVAK3D was employed. 

Three most important integral characteristics of the TITAN structure were estimated: 

The backscattering coefficient, the transmission and the capture probabilities. The 

method to calculate the sticking coefficients from the measured quantities was 

proposed on the basis of the analytical formula describing the dependence of the 

capture probability on the sticking coefficient and the transmission probability. 

The most important results of the Monte Carlo analysis can be summarised as 

follows: 

1. The transmission probability of the TITAN structure related to the cross­

sectional area of the PNEUROP dome amounts to 0.1. The transmission 

probability of the pump and the baffle connected in series is 0.167. As a 

consequence, significant Iosses occur in the measured pumping speed as 

compared to the panel pumping speed. 

2. The maximum capture probability (referenced to the PNEUROP dome) is equal 

to 0.0915 for the structure with the quilted panel. For the structure with the 

circular panel the maximum capture probability is 0.085. The capture probability 

related to the entrance area of the baffle reaches 0.167. 

3. The contributions by two different quilted panel surfaces (front and rear) to the 

capture probability vary with the panel position due to a changing exposition to 

the main direction of the gas flow. 

4. The pressure in the pump above the panel is reduced by one decade compared 

to the pressure in the PNEUROP dome. 
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5. The discrepancies which occurred between the measured specific pumping 

speed for the circular panel and the measured specific pumping speed for the 

quilted panel can be attributed to: 

• a relatively small increase of the measured pumping speed in the TITAN 

geometry with the quilted panel due to low conductance 

• a significant increase (factor 2.95) of the panel surface area. 

6. The maximum helium sticking coefficients found for the quilted panel geometry 

and for the circular panel geometry are almost equal. However, the dependence 

of the helium sticking coefficient on the gas Ioad is different for the two panel 

types investigated. 

7. The relative decrease in the helium sticking coefficient with rising gas Ioad does 

not fully affect the pumping speed, but is somewhat weakened. 

8. The sticking coefficient of hydrogens is drastically reduced, if helium is added 

and may even became smaller than that of pure helium. The degree of 

deterioration is strenger for H2 than for 0 2. 
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