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Abstract 

In a joint of different materials thermal stresses occur after a change of the tem­
perature in relation to the joining temperature. Here graded material joints are 
studied. Graded material joints possess a continuous transition of the material 
parameters between the layers. 
In a graded joint the thermal stresses, caused by a homogeneaus change of tem­
perature are calculated analytically based on the plate theory. The influence of 
the layer thicknesses of the different layers on the thermal stresses is examined, 
as weil the influence of the transition function which describes the distribution 
of the material parameters in the graded layer. 
A method for stress optimization in a three-layer joint is presented. 

Thermospannungen in einem gradierten 
Mehrschichtverbund 

Zusammenfassung 

In einem Verbund von verschiedenen Materialien treten bei einer Änderung der 
Temperatur gegenüber der Fügetemperatur thermische Spannungen auf. Hier 
werden im Besonderen gradierte Werkstoffverbunde untersucht. Gradierte Werk­
stoffverbunde weisen einen kontinuierlichen Übergang der Materialparameter zwis­
chen den einzelnen Schichten auf. 
Die thermischen Spannungen, die in einem Gradientenwerkstoff durch eine homo­
gene Tempraturänderung entstehen, werden anhand der Plattentheorie analytisch 
berechnet. 
Der Einfluss der Schichtdicken der verschiedenen Schichten auf die Thermospan­
nungen wird untersucht, des weiteren der Einfluss der Übergangsfunktion, die 
den Verlauf der Materialparameter in der gradierten Schicht beschreibt. 
Ein Verfahren zur Spannungsoptimierung in einem Dreischichtverbund wird beschrieben. 
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1 Introd uction 

In a dissimilar materials joint, thermal stresses occur after a homogeneaus change 
of temperature due to the different thermal expansion coefficients. One possibility 
to change or reduce thesethermal stresses is the introduction of a graded layer. In 
a graded layer or a Functionally Graded Material (FGM), the material properties 
follow a continuous transition function. In a joint, there are two areas where a 
FGM may be beneficial. At the free edge of the interface the stress singularities 
disappear [1]-[3]. Outside the free edge region, a redistribution of the stresses 
occurs, which was shown in several investigations [4]-[6]. In this paper, the effect 
of the thickness of the graded layer as well as of the transition function in the 
functionally graded material on the stress in a three layers joint will be studied. 
Some ideas for the optimization of the stresses in the joint are presented. 
Four different combinations of materials in the joint will be investigated to see 
the effect of the materials' data on the results. The material data of the four 
combinations are given in Table 1. The Poisson's ratio is assumed to be constant 
(v = 0.3) in all layers. The effect of v on the stresses will be discussed in the 
next section. 

oi 0 A J T/" I como. 1, u a 2, \..:r a a 1, 1 
-
~ fl\. a2, w--1 

1 200 100 5 10 
2 1000 200 1 10 
3 100 200 5 10 
4 10 200 5 10 

Table 1.: The four materials combinations. 

The first materials combination is assumed to be a combination of a ceramic layer 
with a metallic layer. The second joint is a combination of diamond with steel. 
The materials combinations of the third and fourth joint are chosen arbitrarily 
to see the effect of the ratios EI/ E2 . In these joints, the Young's modulus of 
the first layer is smaller than that in the second layer. The ratio in the third 
combination is EI/ E 2 = 0.5 and in the fourth combination E 1 / E 2 = 0.05. 

2 Calculation of the stresses in FGM 

For the calculation of the stresses in a joint, the following assumptions were made: 

• perfect bonding between the layers, 

• material properties independent of the temperature, 

• homogeneaus change in temperature, 
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• Young's modulus and thermal expansion coefficient in the graded layer fol­
low the same transition function. 

The stresses are calculated for an infinite plate in x- and z- directions, which 
correspond to the stresses in the center of a finite joint. The thickness of the 
plate is H. Figure 1 shows the geometry and coordinate system for a three layers 
joint. 

Figure 1: Geometry and coordinate system of a three layers joint. 

It is assumed that in y- direction CJy = 0. The problern is symmetric for the x­
and z- direction, so O'x = O'z and C:x = C:z. For a circular curvature of the joint, 
the strain c:x(Y) is given as: 

y 
C:x(Y) = co + R (1) 

where c:0 is a constant which describes the constant strain of the joint, R is the 
radius of the curvature. 
Following the Hooke's law and Eq.(1), we have: 

E(y) ( y ) 
O'x = 1 _ v(y) (c:o + R) - a(y)l:lT , (2) 

where l:lT is the change of temperature from a reference temperature T0 , where 
all stresses are zero. 
Todetermine the unknown parameters Rand c:0 in Eq.(2), the equilibrium equa­
tions of the system should be used. Forthis problern there is no externalload and 
constraint. Therefore, the equilibriums of forces and momentums at the plane 
x =const require: 

(3) 
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loH ax(y)ydy = 0, (4) 

where H = h1 + h2 + h3 . Insertion of Eq.(2) into Eqs.(3) and (4) yields: 

{H E(y) ( y ) lo 1 _ v(y) (co + R) - a(y)!J.T dy = 0, (5) 

loH [ 1 ~~ly) ( (co + ~) - a(y)!J.T)] ydy = 0. (6) 

There are now two equations for R and c0 . If co is eliminated from these two 
equations, we get: 

--y y - --y y -- y 

R = fH E(y)a(y)LlTdy {H E(y)ydy _ {H E(y)a(y)!J.Tydy {H E(y)dy' (7) 

lo 1 - v lo 1 - v lo 1 - v lo 1 - v 

(lo
H E(y) d )2 loH E(y) 2d loH E(y) d 

o 1-v o 1-v o 1-v 

With this R the value of co can be determined from: 

loH 1 ~~ly) [a(y)L\T- ~] dy 
co = 

{H E(y) d 
lo 1 - v(y) y 

(8) 

The stress in the range far away from the free edges can now be calculated ana­
lytically from Eqs.(2), (7) and (8). 

If we assume v = const, Eq.(7) can be simplified as: 

(J,H E(y)ydy) 
2

- J,H E(y)y2dy J,H E(y)dy 

R = {H {H {H {H 
lo E(y)a(y)!J.Tdy lo E(y)ydy- lo E(y)a(y)!J.Tydy lo E(y)dy 

(9) 

For a linear transition function through the whole layer (for 0 ~ y ~ H), E(y) 
and a(y)!J.T can be written as: 

E(y) = ay + b, (10) 

a(y)!J.T = cy + d. (11) 

Corresponding to Eqs.(10) and (11), the integrals in Eq.(9) read: 

lo
H a 

E(y)dy = -H2 + bH, 
0 2 

(12) 
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{H a b 
Jo E(y)y2dy = 4H4 + 3H3, 

loH E(y)a(y)~Tdy = ~c H3 + ad; bc H2 + bdH, 

{HE( ) ( )~T d = ac H4 ad + bc H3 bd H2 lo y a y y y 4 + 3 + 2 · 

Inserting the Eqs.(12) - (16) into Eq.(9) yields: 

R = { (~H3 + ~H')'- ( ~H' + ~H') (~H' +bH)} / 
j { ( ~ H 3 + ad ; bc H 2 + bdH) ( ~ H 3 + ~ H 2

) -

( a
4
c H4 + ad ; bc H3 + b: H 2

) ( ~ H2 + bH) } . 

Simplifying Eq.(17) gives: 

R= ~. 
c 

From Eqs.(18) and (8): 
co = d 

is obtained. 
With the known Rand co, it follows from Eq.(2): 

CJx = ~~~ ((d + cy)- (cy + d)) = 0. 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

This means that in a linear graded material with the joint containing one graded 
layer only, the stress in the whole joint is always zero. In fact, it is only essential 
that a follows a linear transition function, the distribution of E may be arbitrary. 
This can be proved easily with an arbitrary function for E and a linear function 
for a in Eq.(9). The integrals in Eq.(9) can be written as: 

loH E(y)dy = A (21) 

loH E(y)ydy = B (22) 

loH E(y)y2dy = c (23) 
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loH E(y)a(y)l:lTdy = cB +dA 

loH E(y)a(y)l:lTydy = cC + dB 

Inserting the Eqs.(21) - (25) into Eq.(9) yields: 

B 2 -CA 
R = -,------,------:--:-~-=-=--:-

(cB + dA)B- (cC + dB)A 

This also Ieads to: 

R _! - ) 

c 

co = d, 

and 

3 Transition functions 

(24) 

(25) 

(26) 

The distribution of the material properties in the graded layer can be described 
with a transition function. In this paper, four different transition functions are 
considered: 

fct. 1 : M(y) = M1 

fct. 2 : M(y) = M2 - (M2 - MI) h1 + h3 - y 
h3 

ht + h3- y 
( )

2 

fct. 3 : M(y) = M2 - (M2 - M1) h
3 

y- ht 
( )

2 

fct. 4 : M(y) = M1 - (M1 - M2 ) h
3 

where: 
M(y) : material properties, Young's modulus orthermal expansion coefficient in 
the graded layer, 
M1 : material properties of the first material, 
M2 : material properties of the second material. 

Function 1 represents the case of a non-graded joint with the material properties 
of material 1 in the 'graded' layer. The distribution of the Young's modulus for 
the different transition functions is shown in Fig. 2. 
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Figure 2: Distribution of Young's modulus for the different transition functions. 

The Poisson's ratio v is assumed to be constant = 0.3 in all layers. In [7] it is 
mentioned that the influence of v on the stresses is small. 
For a linear transition function in the FGM and materials combination 1, Fig. 
3 shows the stress at y = 0, y = h1 , y = h1 + h3 and y = H for a joint with 
h1 = h3 = 0.1H, 0.2 < v1 < 0.4 and v2 = 0.3. Fig. 4 shows the same stresses 
for materials combination 3, Fig. 5 shows the stresses for another combination, 
with the Young's modulus as in combination 1, but a 1 = 10 * 10-6 I K and a 2 = 
5 * 10-6 I K, i.e. a 1 > a 2 . It can be seen that in the range of 0.25 :::; v :::; 0.35 the 
difference of the stresses with that of v = constant = 0.3 is less than 5 %. 
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Figure 3: Influence of v on the thermal stresses for materials combination 1. 
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Figure 4: Influence of v on the thermal stresses for materials combination 3. 
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4 Effect of the layer thicknesses on the thermal 
stresses 

A three layer joint with the material properties of combination 1 (see Table 1) 
is considered. Due to a homogeneaus change of temperature, thermal stresses 
occur. In the three layers joint the following geometry is chosen: 

• the top layer consists of material 1 with the height h1 , 

• the middle layer is a FGM with the height h3 , 

• the bottom layer is made of material 2 with the height h2 , 

and h1 + h2 + h3 = H. In this three layers joint the stress a x depends on the 
material properties, the transition function in the FGM and the thickness ratios 
hi/ H, h2/ Hand h3 / H. 

As an example, Figure 6 shows the distribution of ax for a joint with hi/ H = 0.1 
and h3 / H = 0.1 for !:1T = lOOK. It can be seen that at the upper surface 
(y = 0) the stresses corresponding to the functions 2 - 4 are higher than for the 
non-graded function 1. However, at the interface (y = 0.2) the stresses are lower 
for the graded cases. Another effect of the gradiation is the smooth transition of 
the stresses at the interface. According to Mortensen and Suresh [8], this has a 
beneficial effect. The possible reason of such an effect has been discussed in [9]. 

60 

40 

«! 20 
0.. 
:::iE 

~ 0 

·20 

·40 

0.0 

Iet. 4 

i \ \ __.fet. 1 

:: \ \ 
·, \ I 
·, \ I 

)~~\ 
Iet. 3 \\\ 

0.1 0.2 0.3 

y/H 
0.4 0.5 

Figure 6: Stresses ax for the different transition functions. 
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Now, the effect of the thicknesses of the three layers and the transition functions 
on the stresses will be studied. The stress O'x at different positions (y = 0, y = 
h1, y = h1 + h3) is shown in Figures 7- 9 for varying thicknesses h1, h2 , h3 and 
for different transition functions. In these figures the x-axis represents hd H and 
the y-axis is h2/ H. Along the diagonal between hd H = 1 and h2/ H = 1 there 
is h3 = 0 and for lines parallel to the diagonal there is h3 = constant. Therefore, 
all possibilities of the geometry can be found in this h1 - h2 plane. The stress 
O'x is shown in the form of isolines. Function 1 is not shown here, because it is 
equivalent to a two layers joint. 
The Figures 7 - 9 can be used for the optimization of the stresses in a three layers 
joint, if the geometry of the joint can be varied. 
A favorable transition function to minimize the stress at a given position is de­
pendent on the materials combination and geometry. If the thickness of the layers 
can be changed, it is possible to find the best combination of thicknesses and the 
transition function for a given optimization criterion and materials combination. 
As an example, it is assumed that the optimization criterion is compressive stress 
on the upper surface of material 1 (y = 0). From Figure 7a it can be seen that 
for function 2 with h2/ H < 0.3 and h1 arbitrary, or hd H > 0.3 and h2 arbitrary, 
the stresses at the upper surface are compressive; for function 3 (see Figure 7b) 
with ht/ H > 0.25, h2 arbitrary, the stresses at the upper surface are compressive; 
for function 4 (see Figure 7c) with hd H < 0.5, h1 arbitrary, or hd H > 0.25, h2 

arbitrary, the stresses at the upper surface are compressive. 
The ranges of h1 and h2 , in which the stresses at the upper surface are compres­
sive, are dependent on the transition function and materials combination, which 
can be determined easily from analytical calculations. For this criterion, function 
4 is the best one, which provides the largest range of hd H and h2 / H where 
surface stress is compressive. Another optimization criterion may be that at the 
interface the absolute values of the stresses should be small, for which Figures 8 
and 9 can be used. For the interface y = h1, function 2 is the best one and for 
the interface y = h1 + h3 , the result is dependent on the ratio of hd Hand h2/ H. 
There is no general result for the optimization of the stress in a three layers joint 
with FGM. 
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Figure 7: ax at the upper surface (y=O) for (a) function 2, (b) function 3, 
( c) function 4. 
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Figure 8: CJx at the first interface (y=ht) for (a) function 2, (b) function 3, 
( c) function 4. 
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Figure 9: ax at the second interface (y=h1 + h3 ) for (a) function 2, 
(b) function 3, ( c) function 4. 
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5 Stress-free surface with a tailored transition 
function 

Another optimization criterion would be the requirement of a stress-free surface 
(i.e. ax = 0 at y = 0). For this purpose, a new type of transition function is 
chosen: 

(27) 

where n is a variable. With the exponent n, it is possible to obtain different 
shapes of the transition function (see Figure 10). 

«< 
g; 150 . 
w 

100 

n=1/100 

n=1/5 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 
y/H 

Figure 10: The distribution of Young's modulus for different n in Eq.(27). 

By varying n, it is possible to satisfy the above requirement. 

5.1 Stress optimization for the first materials combination 

Figure lla shows the values of n found for all possible joint geometries, with 
which ax is equal to zero at y = 0 for materials combination 1. In areas, in which 
no isolines are shown, it is not possible to obtain a stress-free surface by using the 
transition function given in Eq.(27). However, using another type of transition 
function, this may be possible. The point on the diagonal, where all isolines 
intersect, is the point, at which the stress at the upper surface is zero for a two 
layers system (because h3 equals zero on the diagonal). At the point h1 = h2 = 0, 
a value of n = 1 is always found (see also Figures llb- 17). At this point, the 
joint is a single layer with h3 = H. In such a graded layer with a linear transition 
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function (i.e. n = 1), the stress in the whole layer is always zero (see Eq.(20)). 
Figure llb shows the n, which fulfills the requirement of ax(Y = h1) = 0. Figure 
12 shows the n for ax(Y = h1 +h2) = 0 (Fig. 12a) and ax(Y = H) = 0 (Fig. 12b). 
In general, the favorable transition function in the FGM can be found for a given 
requirement. Of course, this transition function is not universal. 
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o.2--o'l.,. 
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··~ :c 

·lf1r ......... 0.5 
.c 

0.25 ;-!~"~" 
·ll! iii 

"':" '? 0 0 "' ~ nrrn 
"": "" q q " . 
.. - foj " "' l!! 

:c ? 0.5 

0.25 

0.25 0.5 0.75 1.0 0.25 

(a) h/H (b) 

Figure 11: Exponent n for the cases of (a) ax(Y = 0) = 0 and 
(b) ax(Y = h1) = 0 (combination 1). 
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Figure 12: Exponent n for the cases of (a) ax(Y = h1 + h3) = 0 and 
(b) ax(Y = H) = 0 (combination 1). 
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5.2 Optimization for the second materials combination 

As another example, stress optimization for the second materials combination 
(see Table 1) is considered. This joint is a combination of diamond and steel. 
Here also transition functions are searched, which fulfill the requirement of zero 
stress at some points of the joint for a variation of the layer thicknesses h1 , h2 

and h3 . Figure 13a shows the values of n, which fulfill the requirement of ax(Y = 
0) = 0 and Figure 13b shows n for ax(Y = ht) = 0. Figure 14 shows the n for 
ax(Y = h1 + h3) = 0 (Fig. 14a) and ax(Y = H) = 0 (Fig. 14b). 
In Table 1, it can be seen that the ratio of the thermal expansions coefficient is 
different for materials combination 2 ( ai/ a 2 = 0.1) and the other combinations 
( ad a 2 = 0.5). In the following it will be proved that this difference has no 
influence on the area, where a fitting transition function can be found, nor does 
it influence the values of n. As transition function for a: 

a(y)t::.T = a1t::.T- (a1 - a2)t::.T f(y), 

is used, with f(y = h1) = 0 and f(y = h1 + h3) = 1. 

With Eq.(28), the integrals in Eq.(9) read: 

with: 

with: 

loH E(y)dy = A, 

loH E(y)ydy = B, 

loH E(y )y2dy = c, 

loH E(y)a(y)t::.Tdy = a1t::.T A- (a1 - a2)t::.T F, 

F =loH E(y)f(y)dy, 

loH E(y)a(y)t::.Tydy = a1t::.TB- (a1 - a2)t::.TG, 

G =loH E(y)f(y)ydy. 

Inserting the Eqs.(29) - {33) into Eq.(9) yields: 

R = 1 B2
- CA 

t::.T(a1- a2) AG- FB 

17 
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(30) 

(31) 

(32) 

(33) 

(34) 



with: 
B2 -CA 

R'= AG-FE' 

From Eqs.(34) and (8): 

c:0 = a1~T- (a1 - a2)~T (~ + A~') (35) 

is obtained. From Eqs.(2), (34) and (35) the stress at any point y can be calcu­
lated by 

= E(y) (G( -B + Ay) + F(C- By) J( )) ( _ )~T 
O'x 1 - v(y) ß2- CA + y al a2 . (36) 

If CJ(y) = 0 is assumed at an arbitrary point of y = y, from Eq.(36): 

F(C- Bi;)+ G(-B +Ai;)=!(~) 
B 2 - CA y. (37) 

can be obtained. This means that the searched function f (y) is independent of 
a1 and a2. 
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Figure 13: Exponent n for the cases of (a) O'x(Y = 0) = 0 and 
(b) O'x(Y = h1) = 0 (combination 2). 
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5.3 Optimization for the third materials combination 

In the third combination (see Table 1), the Young's modulus of the top layer 
is smaller than that of the bottom layer. The ratio is EI/ E2 = 0.5. Here also 
transition functions are searched, which fulfill the demand of zero stress at some 
points of the joint for a variation of the layer thicknesses h1, h2 and h3 • Figure 15a 
shows the values of n, which fulfill the requirement of (jx(Y = 0) = 0 and Figure 
15b shows n for (jx(Y = h1) = 0. Figure 16 shows the n for (jx(Y = h1 + h3 ) = 0 
(Fig. 16a) and (jx(Y = H) = 0 (Fig. 16b). 
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Figure 15: Exponent n for the cases of (a) (jx(Y = 0) = 0 and 
(b) (jx(Y = h1) = 0 (combination 3). 
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5.4 Optimization for the fourth materials combination 

The stress optimization for the fourth materials combination (see Table 1) is 
considered. In this combination, the Young's modulus of the top layer is much 
smaller than that of the bottom layer. The ratio is EI/ E2 = 0.05. Here also 
transition functions are searched, which fulfill the demand of zero stress at some 
points of the joint for a variation of the layer thicknesses h11 h2 and h3 • Figure 17a 
shows the values of n, which fulfill the requirement of ax(Y = 0) = 0 and Figure 
17b shows n for ax(Y = h1) = 0. Figure 18 shows the n for ax(Y = h1 + h3 ) = 0 
(Fig. 18a) and ax(Y = H) = 0 (Fig. 18b). 
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Figure 17: Exponent n for the cases of (a) ax(Y = 0) = 0 and 
(b) ax(Y = h1) = 0 (combination 4). 
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Figure 18: Exponent n for the cases of (a) CJx(Y = h1 + h3 ) = 0 and 
(b) CJx(Y = H) = 0 (combination 4). 
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6 Conclusions 

The results have shown that the possibility to redistribute the stresses strongly 
depends on the ratio of the thickness of the graded layer to the other layers. For 
very thin graded layers, a redistribution of the stresses is nearly impossible, for 
thicker graded layers it is possible to optimize stresses for some combinations of 
materials and layer thicknesses. 
The method to reduce the stresses to zero at some special points in the joint 
can be applied in a wide range of material and geometry variations. Comparing 
the results for different materials combinations, it becomes evident that the areas 
where a favorable transition function can be found are very similar. If we compare 
the Figures lla, 13a, 15a and 17a (surface stress is equal to zero), it can be seen 
that with an increasing ratio EI/ E2 the maximum value of h1 , where a fitting 
function can be found, decreases. In the same relation, the maximum h2 grows 
with increasing ratio EI/ E2 • In Figure 19, this correlation is shown. 
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Figure 19: Maximum hd H and h2/ H for which a stress-free surface can be 
obtained in dependence of EI/ E2• 

The areas of n for the other optimization points show a similar behavior. This 
can be explained by the equilibrium of forces: The higher the Young's modulus 
in the first layer is, the larger is the influence of the first layer on the equilibrium 
of forces. Therefore, the stresses at the surface can also be reduced to zero with 
a smaller h1 . 

In a graded joint the stress value is proportional to the difference of the thermal 
expansion coefficient of the top layer and the bottom layer. It should be noted 
that this is also valid for a multi-layered joint. 
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In a pure graded material, i.e. the joint has one graded layer only, if the transition 
function for the thermal expansion coefficient a is a linear function, the stress at 
any point is always zero, independent of the transition function of the Young's 
modulus E. 
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