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lVIHD fl.ows in thick-walled ducts 

L. Bühler 

Abstract 

The magnetohydrodynamic fl.ow in ducts with infinitely thick walls is investi­
gated.. The fl.ow is evaluated. by an asymptotic analysis valid for strong magnetic 
:fields. The solution for current and potential in the wall is obtained. by the so­
lution of an integral equation. For the special case of a circular pipe the results 
are con:firmed. by the use of conformal mapping. It is found that in circular pipes 
the velocity pro:file is of slug type. In square ducts high-velocity jets are possible. 
Thesejets may be located. along the diagonal or along the side walls if the diagonal 
or the side walls are aligned. with the magnetic :field, respectively. The pressure 
drop depends essentially on the conductivity of the walls and may be considerably 
lower than in perfectly conducting ducts. 



l\1HD Strömungen in dickwandigen Kanälen 

L. Bühler 

Zusammenfassung 

Magnetohydrodynamische Strömungen in Kanälen mit unendlich dicken Wänden 
werden mittels asymptotischer Berechnungen für starke Magnetfelder untersucht. Die 
Lösung für den elektrischen Strom und das elektrische Potential in der Wand wird auf 
die Lösung einer Integralgleichung zurückgeführt. Für den Sonderfall eines Kreisrohres 
können die Ergebnisse anhand konformer Abbildungen überprüft werden. Man findet 
im Kreisrohr ein kolbenförmiges GeschwindigkeitsprofiL In quadratischen Kanälen sind 
starke Geschwindigkeitsüberhöhungen möglich. Diese befinden sich lokalisiert in engen 
Bereichen, entweder entlang der Diagonalen oder entlang von Seitenwänden, sofern das 
Magnetfeld parallel zur Diagonalen oder parallel zu den Seitenwänden ausgerichtet ist. 
Der Druckverlust hängt wesentlich von der Leitfähigkeit der Wände ab und kann Werte 
erreichen, die erheblich niedrigen sind, als die in perfekt leitenden Kanälen. 
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1 Introduction 

Liquid-metal blankets for nuclear fusion reactors under current investigation use the 
liquid metal Li or the alloy LiPb as breeding materials. According to actual designs 
the liquid breeder is supplied to the blanket through relatively small channels drilled in 
very thick steel plates. Even if the overall velocity in the blanket required for a Tritium 
removal is small, the velocities in the supplying channels can reach considerable values. 
Due to its electric conductivity the fluid exerts strong interaction with the magnetic 
field.applied for the fusion plasma confinement. In the moving fluid electric currents are 
induced which generate Lorentz forces opposing the flow and thus create the main part 
of pressure drop. One method to keep the pressure drop within acceptable limits is to 
reduce the electric currents by choosing thin duct walls with high Ohrnie resistance for 
the closure of the current loops. U nfortunately this is in contradiction with the current 
engineering design and thus motivates the present analysis. 

In the past, magnetohydrodynamic (MHD) channel flows have been investigated 
within the scope of self-cooled fusion blankets. In order to reduce pressure drop, the 
metallic walls have been designed as thin as possible and a number of results for flows 
in such ducts with thin walls are available. Far from being complete, some of these 
works should be mentioned here for a short overview. Chang and Lundgren (1961) 
already present solutions in thin-walled conducting ducts with arbitrary cross section, 
including the special case of a circular duct previously considered by Shercliff (1956). 
For reetangular ducts the papers by Hunt (1965) and Walker (1981) are among the 
most cited works in this field. The latter theory has been extended to account for 
flows in reetangular ducts with variable cross section in the same paper. MHD flows 
in non-uniform fields, in bends, in multiple, electrically coupled channels or in general 
geometries and magnetic fields have been considered e.g. by Ting, Hua, Walker and 
Picologlou (1993), Moon, Hua and Walker (1991), Molokov and Bühler (1994), Molokov 
(1993), Bühler (1994). 

Up to now, flows in ducts with thick conducting walls have been estimated conserv­
atively as if the duct walls had infinite conductivity. By this assumption the potential 
inside the walls is uniform and has nottobe determined during the analysis. The flow 
becomes of slug type and, in appropriate scales (see later in this paper), the pressure 
drop reaches unity. 

The present work will show that for wall conductivities comparable tothat of fluid 
the pressure drop will be roughly the half as predicted by the conservative approach. If 
the wall conductivity is smaller than that of the fluid, even smaller values for pressure 
drop are possible. The velocity distribution in ducts with finite conductivity may deviate 
considerably from that predicted by the conservative estimates. Calculations show that 
high-velocity side layer jets along walls aligned with the magnetic field are possible. This 
has not been expected (by the author and not predicted by the conservative approach) 
but becomes obvious by considering the problern in detail. For square ducts diagonally 
aligned with the magnetic field internal high velocity layers are found. In both cased 
the layers are relatively thin, even if their thickness and flow rates are on the order one. 

3 



2 Formulation 

The stationary, fully developed flow of an electrically conducting fluid within a strong, 
externally applied uniform magnetic fi.eld By is governed by the equations for conser­
vation of momentum 

M-2V 2v + j x y = \lp, (1) 

mass 
\J• V= 0, (2) 

charge 
"V· j = 0, (3) 

and Ohm's law 
j = -"Vcjl+v x y, (4) 

where y is the unit vector in magnetic fi.eld direction and v, j, cP and p represent the 
velocity, electric current density, electric potential, and pressure scaled by the reference 
quantities v0, av0B, voB L, and avoB2 L, respectively. The reference value for the velocity 
is chosen as the mean value and L is a characteristic dimension ofthe duct cross section. 
In dimensionless units the duct extends in magnetic fi.eld direction over a length of 2 
( see fi.gure 1) . 

The only nondimensional group is the Hartmann number 

M=BL ~. V pv 
(5) 

The electric conductivity of the fluid (J, the density p, and the kinematic viscosity v 
are assumed to be constant. The square of the Hartmann number gives the ratio of 
electromagnetic and viscous forces. 

At the fluid-wall interface r there is no-slip, continuity of wall-normal currents and 
potential, 

v=O, } 
j . fi. = jw·fi., on r 
cP = cPw, 

(6) 

if there is no contact resistance between fluid and wall. The unit normal to the wall is 
denoted by fi..The subscript "w" indicates properties in the wall. 

It is assumed in the following analysis that the wall material is conducting. Currents 
which leave the fluid enter the wall and create there a potential distribution according 
to 

jw=-(Jw"VcPw, (7) 

where (Jw stands for the ratio of wall to fluid conductivity. The wall is assumed tobe 
much thicker than the dimension of the duct cross section. Currents close their circuit 
on distances of the order one, decaying quickly at !arger distances from the duct center 
so that 

jw --7 0 as r = y'y2 + z2 --7 oo. (8) 

For a defi.nition of coordinates see fi.gure 1. 
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Figure 1: Sketch of the duct cross section. The y coordinate coincides with the direction 
of the magnetic field. The flow direction is along x and points into the normal direction 
of this figure. The scale is chosen such that the maximum and minimum position in 
y are ±1. The fluid-wall interface r may be split into the parts Y(z)± connecting the 
points A and E or into the parts Z (y) ± connecting C and G. 
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3 Analysis 

Fully developed flows are characterized by a uniform pressure gradient 'V p = - K, a 
unidirectional velocity v = ux and vanishing derivatives of other variables along the 
duct axis. The governing equations in the fluid reduce to 

(9) 

Conservation of charge requires that 

(10) 

In the wall the currents are given by 

(11) 

If the Hartmann number is large, M » 1, the flow exhibits distinct subregions. One 
is the core where viscous effects are unimportant. The flow is governed here by a balance 
between the driving pressure gradient and by the breaking Lorentz forces. The other 
subregions are the viscous layers near the duct walls. At walls where the magnetic field 
has a significant normal component normal to the wall the viscous layers are called the 
Hartmann layers. Their thickness scales as 8H,...., M-1. Along walls which are perfectly 
aligned with the magnetic field layers of different quality appear. They are known as 
side layers or as parallellayers with typical thickness 88 ,...., M- 112 (see e.g. Hunt (1965), 
Walker (1981)). For reetangular ducts with thin conducting walls the side layers can 
carry an 0 (1) portion of flow rate at very high velocities proportional to M 112 (. If the 
duct walls approach perfectly conductance these side layer jets disappear .. Other types 
of near-walllayers are found in circular ducts near the sides where the magnetic field 
is tangential to the duct wall. These layers are called here the Roberts layers. Their 
thickness scales as 8R ,...., M-113 while their extension along field lines is ZR ,...., M- 213 

Roberts (1967). It is known that these layer do not affect the solution in the core and 
in the Hartmann layers at leading order. Therefore, they arenot considered in detail in 
the following analysis. 

All variables are split into the core values plus additional contributions by the viscous 
Hartmann layers 

(v,j,<f>) = (v,j,l/>)c + (v,j,4J)H + (v,j,</>) 8 • (12) 

Subscripts "c", "H" and "s'' denote fluid variables in the core, in the Hartmann layers 
and in the side layers, if the latter ones are present in the problern under consideration. 

3.1 The Hartmann layers 

Firstly, the discussion focuses on the description of the flow in the viscous Hartmann 
layers. With the stretched coordinate in the Hartmann layer 

rJ = ±M (y - Y±) with Y± on r (13) 
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the equations (9) reduce to 

(14) 

as M ----? oo. The variables Y± denote the y-positions of the upper and lower fluid-wall 
interface r. Since the viscous contributions have to vanish when approaching the core 
as 'f/ ----? -oo the solutions satisfying all other boundary conditions read 

(15) 

The velocity decays exponentially from the core value to zero when approaching the wall. 
The electric potential is uniform across the Hartmann layer. To the leading order of 
approximation there is no viscous correction to this variable. Therefore, the boundary 
conditions for electric potential can be applied directly to the core variables in the 
further analysis. If O"w » M-I, when the duct walls are much better conducting than 
the Hartmann layers the viscous corrections to the currents vanish as well, izH = jyH = 0, 
up to the leading order of approximation. 

3.2 The duct wall 

In the subsection above it has been shown that there are no viscous corrections to the 
electric core variables at leading order. Therefore, the core values can be directly applied 
at the duct wall if M » 1 and O"w » M-1 . Under these assumptions the current density 
in the fluid core is uniform and already known from the inviscid ( or the outer) solution 
of equation (9a) as 

icz = K. (16) 

If the duct is assumed to be symmetric with respect to y = 0, equation(lO) leads to 

icy = 0. (17) 

In the wall the charge conservation and Ohm's law lead to the Laplace equation 

(18) 

Instead of directly using this equation a streamfunction 'ljJ for currents is introduced first 
to explain the main ideas of the following analysis. In terms of 'ljJ the components of 
currents read 

iwz - -O"wßzifJw = -Kßy'lj;, 

iwy - -O"wßyif;w = Kßz'l/J, 

and of course, the Laplace equation \12'1/J = 0 holds. 

(19) 
(20) 

At the fluid-wall interface the current streamfunction in the wall takes the values as 
inside the duct, 

'ljJ = -y on r. (21) 

At large distances the currents vanish 

'ljJ = 0 as r ----? oo. (22) 
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A very effi.cient way in solving the wall solution is by introducing the complex po­
tential F 

(23) 

depending on the complex variable e = z + iy ( i = .J=T). The solution for the electric 
potential <Pw is obtained from equation (23) as 

K 
cPw = -cp. 

Uw 
(24) 

The variables 'lj; and cp are unique for any pressure drop or wall conductivity and depend 
only on the geometry of the duct. 

It is possible to construct a suitable solution for current in the wall by distributing 
singularities ( Sources and sinks dF = - 2~ q ( s) ln ( e - er ) ds ) along the d uct surface 
where q (s) ds is the source/sink intensity. The solutions which will be derived below 
have direct physical meaning only inside the wall. Inside the domain which is occupied 
by the fluid the solutions give "artificial" values which are created by the fact that some 
"artificial" current is flowing inside the fluid domain between the sources at one side 
and the sinks at the other side. 

The overall solution for the complex potential becomes determined by the integral 

F = - ;7r i q ( 8) ln [e - er ( 8)] d8. (25) 

The complex coordinate e is that of arbitrary points in the wall while er stands for 
points on the fluid-wall interface r, denoted by the parameter s; (0::::; 8::::; 1). Note, the 
solution of F in the wall is independent of the wall conductivity as long as the wall 
is much better conducting than the Hartmann layers, if Uw » M-1. The unknown 
source/sink intensity has to be determined using the equations (21, 23, 25) by the 
solution of the integral equation 

-y = -Im { eo} = - 2~ Im { i q ( s) ln [eo - er ( s)] ds} , with eo on r. ( 26) 

With the value of eo on r the equation displayed above has to be integrated with care 
to avoid singularities. 

1 {1so-e 11 } Im { e (So)} = - lim Im ( ... ) ds + ( ... ) ds for e (So) on r 27r e--+0 0 so+e 
(27) 

The equation (25) displayed above is valid in the whole wall. The potential at the 
fluid-wall interface is obtained for values of e on r. With this result the electric boundary 
conditions for the fluid are entirely prescribed. 

3.3 The core 

Finally, the flow in the core is investigated in more detail. The equation (9c) leads 
directly to the result that the potential in the fluid core is a linear nmction along 
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magnetic field lines fixed at the walls by the wall potentials 4Jw± which lie on the same 
magnetic field line. The values of 4Jw± can be calculated directly using equation (24) 
with y = Y±· For any y symmetric duct j 11 vanishes so that 1Jc = 4Jw+ = 4Jw-. 

The equation (9b) determines the core velocity 

Uc = K (1 + a;/ßzcpc). (28) 

If the duct walls are perfectly conducting the velocity becomes uniform in the whole 
cross section. For walls with a finite conductivity a variation of the core velocity with 
the z coordinate is possible. 

For a determination of the pressure drop the equation (28) has to be integrated over 
the whole cross section. This leads to the pressure drop given by 

(29) 

where 
f~1 [cp (z+)- cp (z-)] dy . 

a = 1 , Wlth Z+ (y) , z_ (y) on r. 
f_1 [z+- z_] dy 

(30) 

The parameter a which has been introduced for convenient notation has the order unity, 
and depends on the shape of the duct. One can identify the well-known result that in 
perfectly conducting ducts the pressure gradient becomes unity as aw ---+ oo. However, 
if the duct wall has a finite value of conductivity (as usual in engineering applications) 
the pressure drop becomes much lower. The conductivity of the metal walls and of 
the fluid are of the same order of magnitude. This reduces the pressure drop to the 
half value of that in perfectly conducting ducts but even larger reductions are possible 
depending on aw. This result is most important for applications in fusion engineering, 
where pressure drops in thick-walled ducts have been overestimated in the past by the 
values as expected in perfectly conducting ducts. If the duct walls are not infinitely 
thick there is an additional reduction of pressure drop due to a further increase of the 
Ohm's resistance in the wall. 

3.4 The side layers 

During the last subsections solutions for :MHD fl.ows in ducts of any arbitrary symmetric 
cross section has been derived. It has been assumed that the core is entirely surrounded 
by Hartmann layers at all walls. This restriction excludes the analysis from being applied 
to reetangular ducts which have one pair of walls aligned with the magnetic field. In 
such reetangular ducts another type of near-wall boundary layer is found, called the 
side layer. The side layers of thickness 88 "' M- 112 appear along walls aligned with the 
magnetic field. They are present at walls near z+ and z_, at the right and left side of 
the duct. With the stretched side layer coordinate 

( = ±M112 (z- Z±) with Z± on r (31) 

the equation (10) with equations (9b, 9c) lead immediately to the equation determining 
the side layer contribution of the potential; 

(32) 
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Toward the core the solution has to match smoothly the core values, <Ps = ßc <Ps = 0 as 
( ---+ -oo. At the side wall the potential is equal to the side wall potential, </Je+ <Ps = <Pw 
at ( = 0, and the condition ßc <Ps = -M-112uc at ( = 0 ensures no slip. The equation 
above with corresponding boundary conditions is valid if the duct walls are much better 
conducting than the side layers, when Uw >> M-112• 

The general solution for <Ps which satisfies the boundary condition at the Hartmann 
walls and the matehing condition towards the core is 

(33) 

with 

ßk = ~k1r and ak = /ßJ2 for k = 1, 3, 5, ... (34) 

The velocity is obtained from Ohm's Law using U 8 = M112ßc <Ps as 

The coeffi.cients are obtained by applying the boundary conditions at ( = 0. 

(36) 

(37) 

The Ak are the Fourier coeffi.cients of the difference between the side wall and the core 
potential, the values ak (Ak +Bk) are the Fourier coeffi.cients of M- 112 times the core 
velocity Uc. The solution above has been derived here for the side wall at z+· Similar 
expressions can be obtained for other side wall as weil. 

The flow rate carried by one side layer is obtained via an integration of Ohm's law 
across the layer thickness. The integral flow rate in the layer Us (y, Z±) is defined as 

(38) 
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4 Applications 

In the following subsections results are derived for the flow in a circular duct and in 
square ducts. Having most general applications in mind, the integral equation (26) 
determining the source/sink distribution q (s) is solved numerically. For the special 
case of a circular duct numerical results are confirmed by analytical ones which may be 
obtained using conformal mapping. 

The duct contour is approximated by a finite number n of piecewise linear line ele­
ments .D.ri with endpointsei-l and ei· Within one surface element the source intensity, 
further called qi, is assumed tobe constant. With these assumptions a finite part of the 
complex potential is determined by an analytical integration of the equation (25) along 
D.rias 

(39) 

The entire complex potential is finally approximated as the finite sum 

(40) 

The variables .D.ew,i-l and D.ew,i stand for the differences between an arbitrary position 
ew inside the walland the endpoints of the line element ei-l and ei· The complex distance 
between the endpoints of the line element is measured with .D.ei,i-1 = ei-ei-l· With 
these definitions the integral equation (26) leads to an X n linear algebraic system for 
the unknown qi. 

(41) 

with 

(42) 

The possible singularity during the solution of the integral equation (see equation 
(27) )does not occur within this procedure. 

In the following the theory described above is applied to some geometries commonly 
used in engineering. One is the circular tube. The other is the square duct with firstly, 
one diagonal aligned with the field and secondly, with one pair of walls parallel to the 
field. 

4.1 Circular pipes 

Results for current streamlines and isolines of wallpotential for a circular pipe 

(43) 

are shown in the figures 2a and 2b. Currents that leave the duct at z+ close their path 
in the wall along circles with the z axis as a tangent. Isolines of potential form an 
orthogonal set to the current streamlines. 
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Figure 2: Isolines for current function (a) and potential (b) for the :MHD fl.ow in a 
circula.r duct with infinitely thick walls. Current lines and isopotentiallines in the wall 
a.re circles with the x and y axis as a tangent at the origin. 

The results described just above rnay be explained using conforrnal rnapping. Sup­
pose that the solution for core current is known inside the circula.r pipe and given by 
the complex potential 

F = cp' + i'lj; = - z - iy inside r, (44) 

then the solution of the problern by conforrnal rnapping is as follows: The physical plane 
is the plane 6 = z + iy. The fluid dornain 161 < 1 inside the circle rnay be rnapped to 
the left half-plane in e2 by the conforrnallinea.r rational rnapping (see figure 3) 

(: _6+1 
"'

2
- 6 -1' 

(45) 

All points on r in 6 a.re rnapped to the points on the y2 axis. The points A-H in both 
planes illustrate clearly how the rnapping is perforrned. The origin 0 and the infinitely 
fa.r point in 6 a.re transformed to the points -1 and 1 in 6, respectively. The solid 
straight lines inside r representing the core solution in 6 a.re mapped to the parts of 
circles shown as solid lines in the left half of e2 • It is now possible to identify the core 
solution for streamfunction on the y2 axis as 

(46) 

It was the previous airn to find a source distribution on r. Sources and sinks a.re mapped 
to sources and sinks of same intensity 

dy2 
q (s) ds = q (y2) dsds. (47) 
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Figure 3: Gonformal mapping of a circular duct. The inside and outside of the duct is 
mapped to the left and to the right half-plane, respectively. The fiuid-wall interface r 
becomes the y2 axis. Current streamlines for the core solution are drawn as solid lines. 
The dashed lines are the solution in the wall. 
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Sources axe now located on the y2 axis releasing one half of their intensity to the right, 
the other half to the left just by symmetry. The change in streamfunction along y 
determines the source intensity .. 

q (Y2) = 2d'lj; 
dy2 

Combining the equations ( 46, 47, 48) one can evaluate the source distribution 

q (s) = 4'7l"COS (21rs). 

(48) 

(49) 

This is an important result since this analytic solution of the integral equation (26) can 
be used to verify the numerical procedure. 

By symmetry the streamlines in the left half-plane (solid) and those in the right 
half-plane ( dashed) must be symmetric with respect to the y2 axis. That fact leads 
graphically to the solution inside the wall (the right half-plane in 6). Note that sources 
between G and C lead virtually to an inversion of the current direction inside the duct 
producing there a potential distribution <p = z. The virtual electric potential inside the 
fluid domain is given then by cp = K <p. At the fluid-wall interface the virtual potential 
corresponds to the physical value of potential since it has the same value as the potential 
at the wall c/Jw = K<p on r. The back transformation given by the inversion of equation 
( 45) maps the dashed lines to the wall solution in the physical space, shown as dashed 
lines in the e1 plane. 

Using the symmetry in the e2 plane one can find that F (6,inside) = -F (e2,outside), 
where 6,outside = -6,inside, and on back transformation 

1 
el,outside = ' . l,inside 

(50) 

The solution in the wall is determined by the inversion at the unit circle of core current 
streamlines with the complex potential given by F ( 6,outside) = - F ( 6,inside). 

F = <p+i'I/J = l. 
z+~y 

(51) 

During the mapping interior points at the fluid wall interface axe mapped to points on 
the Y2 axis. By the transformation of the right half-plane to the outside of the circle 
these points axe mapped, together with their negative value of potential <p1

, exactly to 
their original position if the y1 coordinate would be reversed. For y symmetric ducts 
as considered here this is not a problem. Therefore, in any case the potential on r is 
known and given by 

<p = -<p' = z. (52) 

Note, the solution obtained here results simply in the complex dipole F = 1/ z and 
corresponds to the solution of the inviscid flow initiated by a moving cylinder. 

Results for the MHD core solution then are 

<{Je= z, } 
Uc = 1, 
a = 1. 

(53) 
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The core potential becomes simply a linear function along z. The core velocity is uniform 
and a is one. 

It is known (see e.g. Chang and Lundgren (1961)) that in circular pipes with thin 
conducting walls or in ducts with perfectly conducting walls the velocity profile is of 
slug fiow type in the whole core. Here, the slug fiow profile in the core remains even if 
the duct walls are infinitely thick with finite conductivity. 

The results discussed above do not apply, however, for ducts with sharp corners like 
reetangular ducts. The interior of ducts with polygonal cross section may be mapped of 
cour:se by the Schwarz-Christoffel transformation to one half-plane with all corners on 
one of the 6 axes. During the back transformation of the other half-plane to the exterior 
of the polygon the images of the corners not necessarily are mapped back to their initial 
position. Therefore, the a priori statement 'Pc = z does not apply and one has to expect 
interesting phenomena near sharp corners of ducts. The transformation of polygons 
involves fictive sources and sinks (logarithmic singularities near the corners). One has 
to expect that such singularities are refiected in the core solution for reetangular ducts. 
For references on conformal mapping see e.g. Betz (1964), Milne-Thomson (1974). 

4.2 Square duct, diagonally aligned with the field 

For the first example of a square duct the orientation is chosen with the diagonal of 
nondimensional length of 2 aligned with the magnetic field. Current streamlines and 
isolines of potential in the wall as well as in the cross section are displayed in figure 4. 
They are qualitatively similar to those obtained around a circular duct as just discussed 
in the previous subsection. Here, however, the isolines deviate clearly from circles, 
especially near the fiuid-wall interface. Inside the cross section one can observe a con­
centration of isolines of potential near z = 0. The potential gradient profile along z is 
shown in figure 5. The profile of potential gradient 8z'Pc can be interpreted directly 
as the profile of core velocity since Uc = K (1 + a;;/8z'Pc)· There is a possibility of an 
internal jet fiow near z = 0. The velocity in the jet may exceed that of the mean fiow by 
orders of magnitude. Interna! jets as observed here are unknown from Iiterature about 
MHD duct fiows. The reason for such jets is a discontinuous source/sink distribution 
along the tangential direction s. Approaching the point y (z) on r near z = +c as 
€ ~ 0, the source intensity increases monotonically. Beyond z = 0 for z = -€ the 
intensity of the sinks must balance the sources, q ( €) = -q ( -€). At z = 0 the variation 
of q is not continuous. The strong increase in magnitude of the source/sink intensity 
near z = 0 is responsible for the formation of the internal jet. The internal jet is created 
by the solution of potential inside the walland is therefore independent in width and 
magnitude of the Hartmann number. 

On the other hand, a reversed fiow near the sides at Z± = ±1 becomes possible 
if the wall conductivity falls below a certain value. With the highest resolution used 
( n = 1000) a value of 8z'Pc (z±) = -0.867 was obtained. Therefore, reversed fiow is 
expected to occur if O"w < 0.867. The coeffi.cient a for the pressure drop correlation 
becomes a = 1.187. 
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Figure 4: Isolines for current function (a) and potential (b) for the MHD fiow in a square 
duct with infinitely thick walls. The duct is diagonally aligned with the magnetic field. 
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Figure 5: Plot of ßzi.{Jc versus z for the fiow in a square duct diagonally aligned with 
the field. From this plot one gets a good impression about the velocity profile which is 
given by Uc = K (l + (J';;/ßz<pc)· There is a possibility for a reversed fiow near the sides 
if the wall conductivity (J'w is smaller than a specifi.c value. Near z = 0 an internal jet is 
created. 
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Figure 6: Isolines for current function ( a) and potential (b) for the MHD fl.ow in a square 
duct with infinitely thick walls. Two side walls of the duct are aligned with the magnetic 
field. 

4.3 Square duct, side walls aligned with the fi.eld 

The next example is the fl.ow in a square duct, of which one pair of walls is aligned 
with the magnetic field. The current streamlines and isolines of potential in the wall 
andin the cross section are displayed in figure 6. The uniform current density created 
by the fl.ow inside the duct enters the side wall. Near the sides, the currents change 
immediately their direction to close within the wall. If there is a y component of current 
in the wall this current creates a variation of potential along magnetic field lines. This 
becomes visible by considering isopotentiallines near the sides. Some start and end at 
the same side wall, indicating that there is a higher /lower potential near y = 0 than near 
the Hartmannwalls y = ±1. In the core, however, the potential remains uniform at the 
value as on the Hartmannwall at y = ±1, z = ±1. This fact leads to a jump of potential 
ßcp8 = KO':;;/ß<p8 = lc/Jw- c/Jcl across the side layers, giving rise to a high-velocity jet 
along the side wall. It has been shown that the fl.ow rate carried by the side layer is 
already given, if the potential jump across the layer is known. 

K 
Us = -ß<p8 at Z = ±1. 

O'w 
(54) 

Results for ß<p8 are displayed in figure 7. The side layer jet here is more of elliptic shape 
than of parabolic one as it is the case for thin conducting walls. The total fl.ow carried 
by both layers is Us,total = 2.13K/O'w. 

The fl.ow in the core Uc = K (1 + 0';;/ßz<pc) is determined by the potential gradient 
ßz'Pc which is shown in figure 8. There is a possibility of a new type of high-velocity jet 
along side walls even within the inviscid core. A strong variation of core velocity with 
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Figure 7: Jump of potential tl.<p8 across the side layer giving rise to high-velocity jets 
with flow rate U8 = Kßcp8 • For poor conducting walls the flow in the layers reaches 

Uw 

order unity 

z is possible if the current density in the wall adjacent the fluid/wall interface varies 
along z. The strongest variation occurs of course near the corner, where a discontinu­
ous source/sink distribution along s is needed to create the required electrical current 
conditions for the wall solution. Inviscid or inner layers have been observed for thin 
conducting ducts in a number of references (see e.g. Walker (1981), Bühler (1998)). 
In these references the inviscid layers are generated by an exchange of current between 
the thin conducting Hartmann walls. The conductivity of those Hartmann walls, spec­
ified by the wall conductance ratio c = uwt with the nondimensional wall thickness t 
determines the thickness of the mentioned layers. The thickness there is determined as 
8invicid ~ c112• Inviscid layers may appear also in reetangular ducts in the presence of a 
contact resistance between the fluid and the wall (Bühler and Molokov (1994)). In that 
case the inviscid layer thickness 8invicid ~ ( M / K) 

1
/

2 depends on the Hartmann number 
M and the nondimensional contact resistance K. Bühler and Molokov (1993) argued 
that the discrepancy between classical experiments and theories for duct flows in weil 
conducting channels (see the review published by Branover (1978) p 84-85) may have 
been created by a contact resistance between the fluid and the duct walls. The present 
analysis now suggests a second possible explanation namely the finite conductivity of 
the relatively thick walls used in those experiments .. 

In contrast, here, the conductivity of the wall or the Hartmann number M have no 
influence on the thickness of the observed inviscid layer. The thickness is on the order 
unity and affects a significant fraction of the core. The conductivity plays a role in so 
far as it determines the magnitude and flow rate which is proportional to Kfuw. 

The total flow rate carried by the core becomes Uc = K ( 4 + 2. 67 u.;;; 1) • As u w becomes 
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Figure 8: Variation of ßz'Pc along z. The potential gradient determines the core ve­
locity as Uc = K (1 + a;;/ßzcpc)· For moderate or small values of aw the core exhibits 
significantly higher velocities near the side walls than near the z = 0. 

small, aw << 1, the fl.ow carried by the core approaches 1.25 times the fl.ow carried by 
the jets along the side walls. The pressure drop coefficient a finally becomes a = 1.19. 
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5 Conclusions 

The MHD fiow in ducts with very thick walls has been investigated. Such ducts are 
elements of currently designed liquid-meta! blankets for fusion reactors. The results 
have been obtained by the solution of an integral equation determining in a first step 
the complex potential for current inside the wall. The fiow has been calculated using 
asymptotic methods valid at large Hartmann numbers M. For strong magnetic fields, 
M » 1, the fiow exhibits a core where viscous effects can be disregarded. The inviscid 
core. is surrounded by thin viscous layers called the Hartmann layers if there is a wall 
normal component of the magnetic field across these layers. Their thickness scales as 
8H f'J M-1• Near walls which are perfectly aligned with the field viscous side layers with 
typical scales 88 f'J M-112 appear. 

For circular ducts the potential becomes a linear function of the transverse coordinate 
and the fiow is of slug type. 

For square ducts where one diagonal is aligned with the magnetic field a high-velocity 
jet near the aligned diagonal is found. Such internal jets are unusual in known solutions 
of MHD duct fiow problems. 

For square ducts with one pair of walls aligned with the magnetic field high-velocity 
jets occur near the side walls. It is surprising that such jets exist even if the side walls 
are infinitely thick. The side layer jets are formed by two contributions. One part is 
created by the viscous correction to the core solution near the side wall just as in ducts 
with thin walls. The other part of the side layer jets is similar to the internal jet for 
case of the diagonal alignment and is part of the inviscid core. Even if these jets seem 
to be relatively thin their dimension is created by the characteristic dimensions of the 
duct and is therefore on the order unity. 

It has been shown that for all ducts shapes discussed here the pressure gradient can 
be correlated by a simple formula 

( -1 )-1 K = 1 +o-w a , (55) 

where O"w corresponds to the ratio of wall to fluid conductivity. The parameter a is 
near unity and depends only on the shape of the duct. This result is most important 
since in the past the MHD pressure drops in thick-walled ducts have been estimated by 
the pressure drop as in perfectly conducting channels. In engineering applications O"w 

is rather unity than being infinite. This Ieads to a pressure drop approximately half as 
high as the old estimates or even lower. 
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