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Abstract 

This is a fundamental analytical and numerical study of the thennodynamic aspects of 

energy conversion during the sudden thennal interaction between melt particles that are initially 

dispersed through a body of saturated liquid water. The study is constituted as a sequence of 

models that proceed from the simplest toward the more complex. In the first model it is shown 

that the immediate thennal contact between water and bot surface leads to high supercritical 

pressures, and prevents the fonnation of steam at the interface. The pressure decays, and 

steam fonns as the time increases. Steam is incorporated in the second model, where each melt 

particle is a sphere coated by a steam annulus and immersed in water. The mixture expands in 

one direction, away from a plane wall, and the calculated efficiency is in the range 10-1_ 1Q-3. 

This conclusion is reinforced by a subsequent model, where the mixture expands in a space 

with cylindrical or spherical symmetry. The mixture occupies only a portion of the water 

volume, and expands against the remaining body of water. In the final phase of the study the 

heat transfer irreversibility of the process is isolated and calculated by assuming that the thennal 

interaction occurs in the absence of fluid motion. Exergy analysis shows that the second-law 

(exergetic) efficiency is approximately equal to the ratio of melt mass divided by the water mass 

in the local mixture, mrnfmw, when this ratio is considerably smaller than 1. The effect of fluid 

motion and fluid-flow irreversibility is included in the final model, which accounts for the 

escape of the expanding mixture through cracks in the confining vessel. Overall, the study 

shows how the heat-transfer irreversibility reduces the efficiency to values much smaller than 

1, and places a new emphasis on the local measurement of the mass ratio mm/mw in future 

experimental studies. 
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Zum thermodynamischen Wirkungsgrad der Energiekonversion während der thermischen 
Wechselwirkung zwischen heißen Partikeln, Wasser und Dampf 

Zusammenfassung 

Es handelt sich bei der vorliegenden Arbeit um eme fundamentale analytische und numerische 

Untersuchung der thennodynamischen Aspekte der Energiekonversion bei einer plötzlichen 

thennischen Wechselwirkung von heißen Schmelzepartikeln, die in der Anfangsphase mit einer 

Vorlage von gesättigtem Wasser vennischt sind. Die Untersuchung ist aufgebaut als eine Folge von 

Modellen, die vom einfachsten Fall bis zu komplexen Fällen fortschreitet. Im ersten Modell wird 

gezeigt, daß der plötzliche thennische Kontakt zwischen Wasser und heißer Oberfläche zu hohen 

superkritischen Drücken führt und so die Dampfbildung in der Wechselwirkungszone verhindert. Der 

Druck fällt dann ab, und es kommt zur Dampfbildung mit zunehmender Zeit. Im zweiten Modell ist 

der Dampf bereits enthalten; hier wird ).ede Schmelzepartikel dargestellt als eine von einem 

Dampffilm umgebene Kugel innerhalb der Wasservorlage. Die Mischung expandiert in eine Richtung, 

weg von einer ebenen Wand, und der berechnete Wirkungsgrad liegt im Bereich von I o·1 bis I o·3• 

Dieses Ergebnis wird untennauert durch ein weiteres Modell, bei dem die Mischung räumlich in 

Zylinder- oder Kugelgeometrie expandiert. Hierbei füllt die Mischung nur einen Teil des 

Wasservolumens aus und expandiert gegen die verbleibende Wassennenge. In der abschließenden 

Phase der Untersuchung wird die Irreversibilität des Wanneübergangs bei diesem Prozeß gesondert 

betrachtet und zunächst unter der Annahme berechnet, daß die thennische Wechselwirkung ohne 

Bewegung der Flüssigkeit erfolgt. Eine Exergie-Analyse zeigt, daß der exergetische Wirkungsgrad 

(Wirkungsgrad der Energiekonversion) nach dem 2. Hauptsatz näherungsweise gleich ist dem 

Verhältnis aus Schmelzemasse und Wassennasse in der lokalen Mischungszone m,Jmw, falls dieses 

Verhältnis deutlich kleiner ist als I. Der Effekt der Flüssigkeitsbewegung und der Irreversibilität des 

Flusses ist im abschließenden Modell berücksichtigt; dies ist von Bedeutung für das Ausströmen der 

expandierenden Flüssigkeit durch Risse in dem umschließenden Behälter. Insgesamt zeigt die 

vorliegende Untersuchung, wie die Irreversibilität des Wärmeüberganges den Wirkungsgrad der 

Energiekonversion auf Werte reduziert, die erheblich kleiner als I sind. Erneut wird die 

Notwendigkeit betont, daß bei zukünftigen Experimenten das lokale Massenverhältnis m..Jmw 

bestimmt werden sollte. 
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1 INTRODUCTION 

The sudden contact between two liquids at markedly different temperatures (e.g. water 

in contact with a molten metal, molten salt, magma, or oil) is a problern of fundamental 

importance in engineering and the environment [1]. In particular, this problern is relevant to 

the study of hypothetical accidents in light water nuclear reactors: according to a scenario in 

which the flow of cooling water to the reactor core is interrupted, the fuel and cladding could 

melt, and the molten material could flow into the reactor cavity where it could come into 

direct contact with water. The interaction between a very hot material and water is of great 

interest because it may trigger and energize steam explosions [2] that can cause containment 

failure with subsequent release of radioactivity into the environment. 

Reviews of current progress in this research field are provided by Corradini et al. [3] 

and Berthoud [4]. According to the scenario described by Berthoud [4], for a !arge scale 

steam explosion to occur the molten material must first mix coarsely with the coolant 

(water). This "premixing" phase is characterized by a time scale of ls and a melt length 

scale of 1 cm. In the second phase, the premixed state may be destroyed by a sudden event 

(a trigger), leading to a fine fragmentation and dispersion of the molten material. This 

sudden thermal contact is accompanied by rapid heat transfer, pressurization, wave 

propagation, and expansion. 

The work described in this report was conducted in three distinct phases. In the first, we 

focused on the sudden interaction of a small droplet of the finely fragmented molten 

material and water. The main objective was to deterrnine the pressure and time scales Of the 

thermal and mechanical effects, and the time-evolution of the interaction in the earliest 

stages. This work is described in Section 2. 

In the second phase, we considered a one-dimensional layer containing a uniform 

mixture of fine hot particles, steam and liquid water. The mixture expands because of the 

volumetric generation of steam. At the same time, the mixture is accelerated away from the 

surfaces with which it comes in contact. The mixture is modeled as a conglomerate of 

spherical drops of molten material that are distributed uniformly throughout a finite-size 

body of water. Steam annuli develop around the spherical drops as time increases. The 

focus of this study was on the efficiency of energy conversion during the expansion of the 

mixture (Section 3). 

We continued the study of expanding melt-and-water rnixtures by conducting numerical 

simulations in three additional geometries (Section 4 ): cylindrical mixture volume 

immersed in a cylindrical water pool, plane mixture layer held under a layer of pure water, 

and hemispherical rnixture volume at the bottom of a much larger water pool. The objective 

was to document the relation between the conversion efficiency, the various dimensions of 

the system (particles, mixture volume, water pool), and the directions in which the mixture 

expands. 
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One result that emerges several times in Sections 3 and 4 is that the conversion 

efficiency is generally low, in the 10-3-1Q-2 range. The time and motion (expansion) scales 

arealso small. This led to redefining the melt-water interaction problern in Section 5: we 

assumed that the mixture does not move, hence all the irreversibility is due to the transfer of 

heat across larg~ temperature differences. In this third phase of our work we used the 

method of exergy analysis, and were able to verify further the origin of the low efficiencies 

determined numerically in the second phase. 

2 INTERACTION BETWEEN A HOT SURFACE AND WATER AT 

SUPERCRITICAL PRESSURES 

2.1 Phenomenological Model 

The first step in the modeling of the thermal interaction between molten material and 

water is to assess whether a vapor film (steam) is present from the beginning between the 

solidifying material and the liquid water. For this purpose, consider the one-dimensional 

geometry shown in Fig. 1, where molten material at the solidification temperature (Tm) 

makes contact at the time t = 0 with a body of water at atmospheric pressure (Po) and 

saturation temperature (To). During the first infinitesimal time step ~t, the material 

develops a solid crust of thickness A. The next step is to examine if during ~t the water 

space develops a thin layer of vapor of thickness Ö. 

Energy conservation requires that the latent heat of solidification released by the molten 

material during ~t be matched by the latent heat of vaporization of water, i.e., 

Ps hsf A = P hfg Ö, (1) 

where hsf and hfg are the latent heats of the material (solidification) and, respectively, water 

(evaporation). At the very beginning, i.e., at t = o+, the temperature distribution is linear 

across both ')... and ö, so the continuity of heat through the solid-vapor interface is 

T -T0 = kv s Ö ' (2) 

where k8 and kv are the thermal conductivities of the solid material and steam. The solid

vapor surface temperature T 8 is obtained by eliminating the ratio AI Ö from Eqs. ( 1) and 

(2); this Ieads to 

= (3) 

where Bis the dimensionless group of properties 
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(4) 

The order of magnitude of B is found by substituting in Eq. (4) the properties of the 

solidified material and water. The molten material consists approximately of a mixture of 

Al2 03 (87% by weight), FeO (5%), MgO (5%) and Fe (3%), cf. Huber et al. [5], with the 

following properties: Ps = 3770 kg I m3, hsf = 1090 kJ I kg at Tm= 2313 K, and ks = 6 

W Im K. For the properties of water we take p = 1000 kg I m3, htg = 2260 kJ I kg at To = 

373 K, and kv = 0.1 W Im K (steam at 1000 K). Substituting these values into Eq. (4) 

shows that B = 109 >> 1. Using this value of B in Eq. (3) leads to the conclusion that the 

interface temperature is essentially the same as the solidification temperature, T s = 2295 K = 
Tm. 

.......,...11--- Molten material ---llilloo~l..a---- Water ------~Eii\!ll!ooa-

vapor 

t=~t 

-'A 0 X 

Figure 1. The interface between molten material and water under the assumption that a 

steam layer (Ö) is present. 
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To estimate the initial interface pressure Pi, we note that at t = o+ (i.e., before the body 

of water moves to the right in Fig. 1) the steam layer of thickness o must contain the same 

mass as a liquid water layer of thickness o 

ö 

J py(x) dx = po· 
0 

(5) 

On the left side of this equation we model the steam as an ideal gas, Pv = Pi I Rv T(x) with 

Rv = 0.46 kJ I kg K, and with linear temperature distribution 

(6) 

Equations (3) through (6) can be combined to obtain 

(7) 

Substituting the respective numerical values into Eq. (7) yields Pi= 1.6 X 104 bars. This 

pressure estimate is almost two orders of magnitude greater than the critical pressure of 

water (221 bars) and therefore invalidates the original assumption that at t = o+ the surface 

of the molten material is coated by a layer of steam (Fig. 1). 

The preceding estimate of Pi was based on the simplifying assumption that the steam

water interface temperature remains at T sat = 373 K. lf we relax this assumption and 

account for the Clausius - Clapeyron relation 

(8) 

then T sat will rise as the steam pressure rises. Linearizing Eq. (8) by setting hfg I (Tsat Vfg) 

= a (where a = constant) and integrating the resulting expression Ieads to 

(9) 

where a = 0.0026 barsiK and To = 373 K. Furthermore, we may assume that Pi >> Po and 

therefore neglect Po on the left side of Eq. (9). Eliminating Pi between Eqs. (7) and (9) 

yields a transeendental equation for T sat that can be solved numerically to obtain T sat = 

1890 K. The steam pressure Pi that corresponds to this value of Tsat is approximately 400 

bars, cf. Eqs. (7) or (9). Once again, the interface pressure is supercritical, which shows 

that the assumption made so far, cf. Fig. 1, is physically implausible. 
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The preliminary analysis presented above suggests the model shown in Fig. 2. This 

model no Ionger contains steam at the interface between the solidifying material and water. 

The interfacial water is initially single-phase liquid, and, because of mass conservation [c.f., 

Eq. (5)] its pressure is initially supercritical but then decays in time, as the liquid water is 

accelerated outward. 

r=O 

Hot surface, T8 

r dr 

R 

Body of water 

P(r, t), T(r, t), 

p(r, t), u(r, t) 

Figure 2. Spherically symmetric model of molten material surrounded by single-phase 

water at supercritical pressures. 
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Although Fig. 2 depicts a spherically symmetric geometry, the mathematical model 

described in the next section covers not only this geometry but also the plane (cartesian) 

geometry depicted in Fig. 1. The molten material (liquid and solid) is assumed isothermal 

at the constant temperature T = T s of the interface r = Rs. At the time t = 0, the surface 

makes contact with a body of water of outer radius R at atmospheric pressure Po and 

saturation temperature To. The water remains a single-phase liquid throughout the time

rlependent heat and fluid flow processes modeled in the following. 

2.2 Mathematical Model 

The dimensionless equations for the conservation of mass, momentum and energy in 

cartesian or spherical Coordinates are 

where 

and where S is defined as, 

aQ aF 
df + dr =O, 

cr::::pS; 

(j ü 

F= (jü2 +te , 

(j ü fit 

1t =PS; 

_ { I, for cartesian coordinates 
S= 

r2, for spherical coordinates 

(10) 

(11) 

(12) 

(13) 

In the momentum equation, a represents the dimensionless radial velocity of the water. In 

the energy equation, et and fit represent the total specific energy and the total enthalpy, 

respectively, i.e., 

(14) 

The dimensionless variables appearing in Eqs. (11) through (14) are defined as follows: 

r= ~; 
s 

ü = u . 
-(Po I Po)l/2 ' 
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In Eqs. (15) and (16), Po is the water density at the outer radius R (where, by assumption, P 

=PoandT=To). 

Equations (10) and (11) have the same form as the quasi-one-dimensional 

homogeneaus Euler equations for flow through a channel of non-constant cross-section S, 

written in conservative form [6]. The quantities of interest for our phenomenological model 

are the pressure, density, and velocity waves that propagate away from the interface. Since 

these waves involve time scales that are much shorter than the time scales for viscous and 

diffusion effects, the latter can be neglected. Thus, in the momentum equation, the viscous 

diffusion terms are neglected in accordance with the numerical study of Huang and Bau [7]. 

Furthermore, the thermal diffusion terms are neglected in the energy equation everywhere 

except at the Rs interface. 

The initial conditions state that the interface is isothermal and the water body is 

motionless and isobaric at t = 0, i.e., 

T= Ts, at T = 0 and r = 1; 

ü= 0, at T = 0 and 1 < r < R.; (17) 

P= Pi, at T = 0 and r = 1; 

where Pi is the initial interface pressure whose numerical value of 1.28 X 1Q4 is discussed in 

the opening paragraph of the next section. The corresponding boundary conditions are 

T= TS' at r = 1; 

T= 1' at r=R; 

(18) 

ü= 0, at r=l and f = R; 

P= 1' at r=R; 

The isothermal surface condition at r = 1 is justified by the numerical example given after 

Eq. (4), which showed that the interface temperatureisnot changed appreciably by the 

sudden contact with water. As we will show in section 2.4 , this condition is also justified 

by the brevity of the process simulated numerically, because during such a short time 

(-10-6 s) the solidification of the malten material (r < 1) is insignificant. 

-7-



2.3 Numerical Method 

Our numerical work was guided by the Iiterature on the simulation of heat and fluid 

flow in compressible fluids such as water at supercritical pressures. A general reference on 

the mathematical formulation involving real gas effects is Melnikoff and Plohr [8]. For 

example, Steiner and Gretler [9] studied the propagation of spherical and cylindrical shock 

waves in real gases. For the real gas model they used an equation of state in a general form, 

and in the numerical method they relied on the method of characteristics. Glaister [10] 

studied the flow of a real gas through a duct with variable cross-section by using an 

equation of state and an upwind scheme. Huang and Bau [7] described the propagation of 

planar thermoacoustic waves in a semi-infinite medium by using a linearized model in the 

limit of small perturbations. Related studies were conducted by Drikakis and Tsangaris 

[11], Murakami and Imashita [12], and Toumi [13]. 

The problern is initialized by assuming that an infinitesimally thin layer of heated water 

at supercritical pressure is formed at the interface before any wave propagation begins. The 

initial interface pressure Pi follows from an analysis identical to the one presented in Eqs. 

(5) through (7) except that this time the heated "gas" layer is considered to contain waterat 

supercritical pressure and at a temperature near T8 . These considerations yield Pi = 1.28 x 

1 Q4, and this value was used as the initial interface pressure for most of the numerical 

calculations reported here. The effect of using a different Pi value was also investigated 

(Fig. 5). The need to state the pressure condition is a characteriistic of the present model: if 

the effect ofthermal diffusion were included in the model then the initial pressure could be 

computed as apart of the solution process, as shown by Huang and Bau [7]. We could not 

use the same method as Huang and Bau, because their approach was suited for a linear 

model and small pertubations. The present model is nonlinear, and the relative changes are 

large. 

Equations ( 18) indicate that two types of boundary conditions are required for the 

computational domain depicted in Fig. 2. The far field condition does not require special 

treatment. To implement the wall condition of zero velocity we used a reflective wall 

procedure called the "ghost cell" [6, 14]. Figures 3b and 3c shows the ghost cell at the 

boundary r = Rs, with cell R on the right (i.e., on the surface facing the water). Its mirror 

image, cell L, is placed to the left of the boundary, and the respective unknowns are subject 

to the conditions 

(19) 

In Eqs. ( 19), CL and CR are the respective speeds of sound. The lower part of Fig. 3 shows 

the staggered grid of the Roe scheme [15, 16], where "imax" is the total nurober of grid 
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points. When the heated water layer was modeled as an ideal gas, the boundary conditions 

were also treated by using Riemann invariants (Fig. 3a, cf. Osher and Chakravarthy [17], 

Hemker and Spekreijse [ 18]); the solution obtained this way was practically 

indistinguishable from that obtained using the ghost cell method. 

The literatme on numerical methods for solving compressible flow problems with 

strong interactions recommends the use of total variation diminishing (TVD) higher order 

upwind schemes. There is a need for an accurate representation of the waves (i.e. less 

dissipation) and a robust numerical scheme that is as simple as possible. These 

recommendations hold not only for ideal gas simulations (with both constant and variable 

cross-sections [6, 15, 19, 20]), but also for real gas simulations [21-26]. We tried two such 

schemes for solving the Euler system (10): a TVD MacCormack scheme [6], which is 

simpie and fast, and a TVD second order flux splitting scheme based on Roe averages. 

Because of the sudden thermal contact between water and the hot surface, the TVD 

MacCormack scheme in spherical coordinates generates spurious oscillations of non

negligible amplitude. Forthis reason, we solved Eq. (10) using a second order scheme 

with flux limiters and approximate Riemann solvers (see, e.g., Roe [15] and Sweby [19]). 

Equation (10) is written in nonconservative form as 

()Q ()Q 
ai + A ar = 0' 

(20) 

where Ais the Jacobian matrix of the system. Next, we introduce Roe's averaged matrix A 

defined through the relations 

(21) 

and 

()F 
A = ()Q for (22) 

Roe's method begins with a first order upwind scheme in which the numerical flux is 

taken as 

where 

* F ("" X )i+ I 12 F ("" X )i+ 112 F . 1/2 = . + ""-' . m . = · I - ""-' · m.._ · 1+ I . J .,...L,j I+ . J -r-K, J 
J J 

ml+l.f2 = (A.-:- ilY.)i+l/2 
-r-L,j J J ' 

<I>k.+ 1,12 = ('A-r Ll y ·)i+ 112 
' J J J 

(23) 

(24) 

In Eqs. (23) and (24) the quantitites Xj's form the matrix of the right-side eigenvectors and 

are defined by A Xj = 'Aj Xj, so that 
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Figure 3. (a) Boundary condition treatment in the case of ideal gas and Riemann invariants. 

(b,c) The ghost cell and the staggered grid for the Roe upwind approximate Riemann solver. 
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1 

fi (25) 

K 

In Eq. (24) Aj are the eigenvalues, and A.; = {A.J ±I Ai I)/ 2 are the positive and, respectively, 

negative parts of the eigenvalues. The variation of the characteristic variables between the 

states "L" and "R" is AY = X-1 AQ, where 

! {An - crcAo) 

ßY=j_ c2 ß~- A1t 
.... 2 

c ! (A7t + crcAü) 

(26) 

and the overbars and carets refer to cell and, respectively, Roe averages. Roe's method 

permits stable expansion shocks because it does not satisfy the entropy condition [6]. This 

feature was eliminated by using an augmented numerical diffusion for the first order 

scheme. 

It is well known that frrst order accurate schemes suffer from numerical diffusion, while 

classical higher order schemes exhibit spurious oscillations around points of discontinuity in 

the solution [6, 19]. The second order TVD scheme, however, yields both high resolution 

and solutions without oscillations. To take advantage of these properties, we applied Roe's 

method to develop a second order TVD by using flux extrapolation together with the anti

diffusive flux limiters (Roe [15]) 

and 

(28) 

where Bis the limiter function. We tried severallimiters and found that Roe's limiters, B = 
max [min (lxl, 21yl), min (21xl, lyl), y], performed best for our problem. The second order 

TVD numerical flux and conservative variables [~. ~ ü, ~ et; see vector Q, Eq. (11)] 

become: 

F ~, second order _ F ~, frrst order + [X. (b . _ b ·)]i+ 1/2 
J,t+ 1/2 - J,t+ l/2 J L,J R,J (29) 

(30) 
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This second order TVD scheme is stable as long as the Courant - Friederieb - Lewy (CFL) 

condition .1. t < .1. r 2 /(I "-maxI .1. r) is fulfilled (Hirsch [6]), where Amax is the maximum 

eigenvalue and thermal diffusion was assumed negligible. 

Ideal gas model. The TVD scheme was applied to two models of water behavior at 

supercritical pressures: ideal gas and real gas. In the ideal gas case, the quantity Kin Eq. 

(25) was set equal to ~02 . The Roe averaged matrix A was constructed based on averages 

weighted by the square root of the densities, namely 

(31) 

(32) 

Real gas model. The main difficulty encountered when implementing the real gas 

model for water is in writing the Jacobian matrix to determine the Roe-averaged state. Our 

approach was based on Vinokur's [21] extension of Roe's method for real gases. The 

equation of state tobe specified is P = P (p, e), where e = p e is the internal energy per unit 

volume. We used the derivatives 

(aP) x = ap -e' (33) 

and expressed the speed of sound in terms of x. K and the specific enthalpy fi, 

2 -c =x+ Kh, (34) 

Finally, in Eq. (25) we substituted K = 0
2 

I 2- ~I 1(, where the carets denote Roe's averaged 

state. 

For the equation of state we used data interpolated from steam tables [27]. It is known 

thanhe discontinuous changes that occur in the vicinity of the liquid-vapor interface require 

a careful selection of the interpolation procedure. For example, using tensor product splines 

(for spline under tension [28]) to interpolate over the entire ranges of pressure and 

temperature becomes too expensive when the interpolation procedure is called often in the 

code. Therefore we used a local monotonic interpolation method [29, 30] to eliminate any 

possible oscillation, or to preserve the local monotonicity of the data interpolated. This 

algorithm constructs a C 1 monotonic piecewise cubic interpolant for monotonic data. The 

thermodynamic properties we interpolated this way were p = p(P, T), h = h(P, T), s = s(P, 

T) and c = c(P, T). 
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The TVD numerical scheme provides values for the conservative variables Q, rather 

than the primitive variables density, velocity and pressure. The pressure and temperature 

were computed at each time step by solving a system of nonlinear equations using a 

continuation method [31, 32]. Convergence tests were conducted by varying the number of 

spatial steps (divisions, mesh size) under the stability restriction CFL = 0.95 imposed by the 

numerical scheme, where CFL = I Amax I !1t/ M. For example, in the case of Rs = 10 mm in 

spherical coordinates, the calculated time t when the interfacial pressure reached the critical 

pressure was 0.0722, 0.0874 and 0.0853 as imax was set equal to 100, 200 and, 

respectively, 500. The results reported in this paper were obtained using imax = 200, for 

which the physical size of !1r falls in the range 2.5 - 5 ~m. 

We tested the code for one-dimensional calculations of the Riemann problern with 

different initial data (cf. Hirsch [6]). Furthermore, in the limit of small perturbations, i.e. 

when the surface temperature was sufficiently low, we found that the results are 

qualitatively consistent with the simulations reported recently by Huang and Bau [7]. The 

code was run on a Silicon Graphics Indigo Station 4010. 

2.4 Results 

We simulated numerically the time-dependent water pressure, temperature, radial 

velocity and density in the vicinity of the hot surface. Starting with the ideal gas 

formulation, we carried out the numerical simulations for the heat and fluid flow process as 

long as the interfacial water layer remained a single phase liquid above the critical pressure. 

The following values were kept fixed in all the simulations: Ts = 2300 K, To = 373 K, Po= 

105 Nlm2, Pi= 1.28 x 109 NI m2, Rv = 0.46 kJ I kg K and "{= 1.4. 

Ideal gas model. Figure 4 shows a representative sample of the numerical results 

obtained in spherical coordinates for R8 = 10 mm. The pressure distribution (Figure 4a) 

shows that the surface pressure decreases in time as the thickness of the pressurized water 

layer increases. The pressure curve for t = 0.0874 ( or t = 2.1 x 10--6 s) corresponds to the 

moment when the interface pressure (P at f = 1) reaches the critical pressure (P = 221 ). 

The pressure decay phenomenon is accompanied by the formation of a high temperature 

wave that propagates outward (Fig. 4b) creating a layer of colder water behind it. The 

velocity profile is nearly triangular (Fig. 4c), with a peak that corresponds roughly to the 

radial position of the temperature wave. The velocity maximum increases in time. The 

density (Fig. 4d) is relatively high in the entire pressurized layer. The density maximum 

decays in time and propagates outward: its radial position is approximately the same as that 

of the T and ü maxima. 

Figure 5 reviews the pressure history at the surface f = 1, showing again that the 

pressure decays very rapidly initially, and that the approach to the critical pressure is 

considerably more gradual. The curves are terminated when P is equal to the critical 
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Figure 4. The water pressure (a), temperature (b), radial velocity (c) and density (d) 

distributions in the vicinity of the hot surface (Rs = 10 mm, ideal gas, spherical 

coordinates). 
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pressure. The two curves in Figure 5 also show the effects of changing the value of the 

initial pressure at the interface. The final timet (when P is equal to the critical pressure) 

increases slightly (from 0.0874 to 0.1) as the initial pressure Pi changes from 1.28 x 104 to 

1.6 X 104. 

The effect of changing the hot surface radius Rs and the system of coordinates (i.e., 

spherical vs. cartesian) is illustrated in Fig. 6. Spherical coordinates were used for Rs = 1, 5 

and 10 mm, and cartesian coordinates for Rs = 10 mm. We found that there is practically 

no difference between the results for Rs = 10 mm in spherical and cartesian coordinates. 

The four frames of Fig. 6 show that the waves have larger amplitudes when the sphere 

radius is small (Rs = 1 mm). The choice between spherical and cartesian coordinates 

matters when the dimension of the solidifying material is small. The corresponding 

pressure history at the surface is shown in Fig. 7: again, the behavior at small Rs in 

spherical coordinates is different, as the pressure starts to decay earlier. 

p 

2xlo4 ~------------------~------------------~ 

-- ... -
0 

0 0.04 

-
t 

Pi - 1.6x104 

--------- Pi - 1.28x104 

--------- -

0.08 

Figure 5. The pressure history at the surface (Rs = 10 mm, ideal gas, spherical 

Coordinates), and the effect of the initial interface pressure. 
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Figure 6. The effect of the system size (Rs) on the water pressure, temperature, velocity and 

density distributions (ideal gas, t = 0.0874). 
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Real gas model. We also performed numerical simulations using the real gas model 

for water, i.e. the actual properties of water at high temperatures and high pressures. 

Figures 8a through 8d show the evolution of pressure, temperature, velocity and density for 

a simulation with Rs = 10 mm, in cartesian coordinates. The features of the respective 

waves are similar to those shown in Figures 4a through 4d regarding both the trends and the 

respective orders of magnitude. 

A quantitative comparison between the real-gas and ideal-gas simulations is presented in 

Figures 9a through 9d, where all the curves correspond to the time t = 0.0138 in 

simulations with Rs = 10 mm in cartesian coordinates. These figures show that the ideal

gas results anticipate within a factor of order 1 the results based on the more exact (and 

more expensive) real-gas modeling. Nevertheless, differences between the two sets can 

result. For example, in Fig. 9b the temperature behind the thermal wave is higher in the real 

p 
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Figure 7. The effect of the system size on the pressure history at the surface (ideal gas). 
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Figure 8. The water pressure (a), temperature (b), radial velocity (c) and density (d) 

distributions in the vicinity of the hot surface (Rs = 10 mm, real gas, cartesian coordinates ). 
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gas case. This effect is expected since, although the wall heat flux is the samein both cases, 

the real-gas entropy is smaller because in a real gas there exists a pseudo-grid (grid 

determined by the interaction forces) between molecules. In the space occupied by the wave 

the ideal-gas temperature is higher because the kinetic energy of the molecules is not 

dissipated through intramolecular interactions. 

Finally, Fig. 10 presents a comparison between the surface pressure histories produced 

by the real-gas and ideal-gas simulations. The ideal-gas model overestimates the time of 

approach to critical pressure. The ideal-gas pressure is higher (see also Fig. 9a) because at 

the molecular Ievel the pressure is proportional to the nurober of collisions between 

molecules. That nurober is higher when attraction and repulsion forces are absent, as in an 

ideal gas. Furthermore, the speed of propagation of the pressure wave is higher in an ideal 

gas since the interaction forces in a real gas amount to a resistance that must be overcome. 

This is consistent with Fig. 10, which shows that the time required for the interfacial 

pressure to become critical is Ionger in the real gas case (T = 0.16) as compared to the ideal 

gas case (T = 0.0874). 

The correct order-of-magnitude predictions obtained using the ideal gas model are 

important because the implementation of the real gas model is difficult. For example, the 

interpolation of water properties (this section) or the use of a real-gas equation of state (as in 

Steiner and Gretler [9]) requires additional numerical procedures that increase the 

computational time and may cause convergence problems. 

2.5 Closing Comments 

This numerical study has presented the thermal and fluid flow interaction between water 

and a hot surface, when the initial interfacial pressure is supercritical. The sudden contact 

generates temperature, pressure and density waves that propagate away from the surface 

with the same speed, which is a resultant of the characteristic speeds. Only in the limiting 

case of small perturbations (linear model) do the waves propagate with the speed of sound. 

The interfacial pressure decays in time and drops below the critical pressure at a time of 

order t - 0.08, which corresponds physically to 1 o-6 s. To continue the description of this 

phenomenon to Ionger times, the single-phase water model used in this paper must be 

replaced by a model with phase change (steam) in the vicinity of the hot surface. 

We modeled the wateras a single-phase inviscid fluid that behaves either as an ideal gas 

or as a real gas with properties taken from steam tables. We found that the numerical 

results based on the ideal-gas formulation are in good qualitative agreement with the results 

based on the real-gas formulation. The quantitative agreement between the respective 

results is within a factor of order 1. This agreement is relevant to future work on extending 

to Ionger times the study of the interaction between water and a hot surface, because the 

modeling of water at high T and P as an ideal gas is considerably more cost efficient. We 
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Figure 9. Comparison between real-gas and ideal-gas simulations with Rs = 10 mm in 

cartesian coordinates. 
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also found that the choice between working in spherical coordinates and working in the 

simpler cartesian coordinates is important: when the size (R8) of the hot object is small, 

accuracy demands the use of spherical Coordinates. 

3 EXPANSION OF A MIXTURE OF HOT PARTICLES, STEAM AND 

LIQUID WATER 

In this section we examine the fundamental thermodynamic aspects of energy 

conversion during the expansion of a mixture containing saturated liquid water and droplets 

of high-temperature molten material. The mixture expands because of the volumetric 

generation of steam. At the same time, the heat released by the molten material is converted 

partially into mechanical energy. The objective is to show how the irreversibility due to 

intense heat transfer acts toward decreasing the energy conversion efficiency. 

3.1 Mathematical Formulation 

The expanding body of steam, water, and molten material is assumed to be mixed: the 

three-phase mixture is composed of a large number of spherical eiemental systems of the 

p 

ideal gas 

0 0.01 0.02 

t 

Figure 10. Comparison between the real-gas and ideal-gas simulations of the pressure 

history at the surface (Rs = 10 mm, cartesian coordinates). 
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type shown in Fig. 11 a. Each eiemental system consists of a spherical drop of molten 

material coated by a layer of steam and immersed in liquid water. At every point in time, 

the eiemental systems are distributed uniformly throughout the rnixture. The melt radius rm 

is a specified parameter. The steam radius is time-dependent, r
8
(t). The spherical 

symmetry of each eiemental system is preserved until adjacent steam layers touch, Fig. llb. 

The heat transfer from the molten material to the steam and the steam-water interface 

drives the evaporation process that, in an aggregate sense, is visualized by the expanding 

mixture. In the simplest application of the model, the mixture occupies a one-dimensional 

layer adjacent to a solid wall, Fig. 12, and is initially at rest. The mixture expands and is 

accelerated away from the wall. To model the behavior of the mixture, we consider a 

sample of mass 

m = mm + m8 + mw, (35) 

and note that the amount of molten material (~) does not change during the expansion. In 

time, some of the liquid water inventory (mw) changes into steam (m8). In the beginning 

(t = 0), the amount of water (all in liquid form) is mwo and this quantity does not change 

during the process so that 

ms + mw = mwo = constant. (36) 

water 

(a) (b) 

Figure 11. (a) Spherical eiemental system and (b) time when adjacent steam layers touch. 
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We assume that there are N droplets of molten material distributed uniformly 

throughout m. The volumes occupied by the melt, steam and liquid water in the volume of 

the mixture sample m are, respectively 

(37) 

where Pw and Ps are the density of liquid water (constant), and the density of steam 

averaged over the steam volume V s· The amount of molten material ( density Pm) present 

in the sample is 

(39) 

To calculate the instantaneous density of the mixture we write p = m I V, where V is the 

volume of the sample, V = V m + V s + V w. The result can be expressed as a specific 

volume 

where the melt mass fraction E is a specified constant, E = mm Im, or 1 - E = mwofm. 

Because Ps<< Pw• a simpler alternative to Eq. (40) is 

(41) 

Equations (40,41) show that the specific volume p-1 increases with r8 , and, as the analysis 

will show, rs increases with time. The order of magnitude of the time when the Fig. 11a 

scenario ends can be estimated with the cubic model of Fig. 11 b, in which the steam layers 

just touch. lt can be shown that the volume averaged mixture density at the moment 

depicted in Fig. 11 b is 

p=0.476pw+0.524pm[(rmlri(t-p5 1pm)+P5 1Pm]· (42) 

In other words, the validity of the model expires at the timet when p(t) of Eq. (40) drops to 

the value given by Eq. (42). In the latter, the second term is smaller than the first, because 

Ps <<Pm and (rm I r8)3 << 1. Since the initial density of the mixture is comparable with 

Pw. we anticipate that the Fig. 11a scenario will end when p drops to about half of its 

original value. This is equivalent to saying that the scenario ends when the equivalent radius 
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of the interstitialliquid water assigned to the eiemental system becomes of the same order 

as the steam radius. 

The equation for the conservation of mass in the volume averaged mixture is 

(43) 

where y points away from the solid wall, and v(y, t) is the volume averaged velocity in the y 

direction, Fig. 12. The mixture thickness L(t) increases in time. The mixture density is in 

general a function of both t and y. If viscous effects are assumed negligible, the momentum 

equation is 

p ( av + v av) = _ aP 
at ay ay ' (44) 

where p(y, t) is furnished by Eq. (40). The conservation of the original mass inventory 

provides the constraint for calculating L(t): 

Lo L(t) 

J p (y, 0) dy = J p (y, t) dy . (45) 
0 0 

The problern formulated so far consists of four equations [Eqs. (40), and (43) - (45)] 

for five unknown functions (p, v, P, L, r8). We close the problern by accounting for energy 

conservation during the steam generation process in the element of Fig. 11. That element is 

actually more complicated, as shown in Fig. 13, because, in time, the molten material 

develops a solid crust. The question is whether all the complications of this configuration 

are important in predicting the variation of r8(t). Order of magnitude calculations based on 

the dimensions listed in Table 1 show that: (i) The effect ofthermal radiation from Tm to 

T s is greater than the effect of direct conduction through the steam when rm exceeds the 

order 0.1 mm. (ii) The solid-crust outer temperature Tm is nearly constant (time-

t=O t 

Figure 12. One-dimensionallayer occupied by the expanding mixture. 
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independent) and almost equal to the original (solidification) temperature of the molten 

material. (iü) The thermal inertia of the solid ernst is negligible because its Stefan number 

is approximately 0.03. (iv) The thermal inertia of the steam is not negligible because the 

steam JaJcob number Cp (Tm- T8) Ihrgis approximately equal to 2. (v) The time-dependent 

conduction into the liquid water is negligible because the pressure changes are such that the 

changes in the interface (saturation) temperature T8 are small. 

These characteristics, justify the following model for the steam generation process (cf. 

Fig. 13): (a) Time-independent surface temperature (Tm) at r = rm. (b) Steam layer with 

thermal inertia and temperature T(r, t). (c) Steam-water interface with time-independent 

temperature (T8) at r = r8• (d) The steam behaves as an ideal gas with known constants (cp, 

R), and spatially uniform pressure P(t). According to this model, the radial heat transfer 

and steam motion at a radius r inside the steam annulus are govemed by 

liquid 
water 

Figure 13. The four-layer structure of the eiemental system of Fig. lla. 
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(46) 

(47) 

In Eq. (47) the steam thermal conductivity is a strong function of temperature, k(T). By 

eliminating the rhs of Eq. (46) between Eqs. (46) and (47), and integrating away from r = 

rm where the radial steam velocity u is zero, we obtain 

( c P I R J P r 2u = k r 2 
( ()T I dt) - km r ~ ( ()T I dr )r m , (48) 

where km= k (Tm). Equation (48) delivers the velocity distribution u(r, t) when the steam 

temperature distribution T(r, t) is known. 

3 1 = f> 
1.5 

2 
rs 3 

0 30 60 

Figure 14. The effect of the assumed constant pressure P on the history of the outer steam 

radius, for the dimensions listed in Table 1. 
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The thermal boundary condition at the inner interface is T(rm, t) =Tm· At the liquid 

water interface we have a balance between the heat transfer (radiation and conduction) from 

the steam side and the latent heat of the vaporized liquid, 

(49) 

where Ps is the steam density at saturation (T 8), and 

Equation (50) is based on the enclosure model with two gray surfaces of emissivities Ern 

and E8 • The initial condition is r8 (0) = rm. 

3.2 Numerical Method 
The numerical solution to the rsCt) problern represented by Eqs. (47)-(49), and the 

compact presentation of this solution are aided by the use of the dimensionless variables 

(51) 

(52) 

where Po is the reference (atmospheric) pressure. Equations (47)- (49) become 

(53) 

(54) 

(55) 

where A, B, C and ks are the constant dimensionless groups 
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Equation (53) was obtained by integrating Eq. (47) from the inner surface (r =I) to the 

outer surface {r = r 5). The initial and boundary conditions are r s = I at t = 0, 

T= I at r= l,and T=Ts(<<l)atf=rs. 

The numerical method consisted of approximating the mass and momentum Eqs. (9, 

10) by finite differences [33], in combination with numerical integral solutions for 

r 8(t), il (r, t) and T (r, t) inside the steam annulus. We assumed that the steam 

temperature distribution behaves as 

~ a 1 (t) a2 (t) a3 (t) 
T=-~-+-2-+-3-' 

r r r 
(57) 

where the first term on the right side corresponds to the known (exact) shape of the T 

solution in a spherical annulus with uniform density and negligible thermal inertia (e.g. Ref. 

34, p. 35). The second and third terms account for the effect of steam thermal inertia. The 

time-dependent coefficients (a 1, a2, a3) are determined by fitting Eq. (57) to the boundary 

conditions (55), r 8(0) = 1 + E, and T(l,t) = 1. The Iocal T vaiue furnished by Eq. (57) is 

substituted into Eq. (54) to deterrnine the local radial velocity il (r, t). Finally, the T and il 

values are substituted into Eq. (53) to obtain r 
8
(t). The analytical detaiis of this algorithm 

are omitted for brevity. The integration across the steam thickness is based on the 

trapezoidai rule with specified accuracy (relative error less than 10-4). The r s value at the 

next time step is obtained by using forward Euler time discretization. The moving line 

r = r s is always on the grid: this feature is preserved by using a front-tracking procedure 

and a time dependent grid spacing. 

The numerical procedure is completed with the adoption of a correiation for the thermal 

conductivity of steam, k = k I km, where km and Tm are listed in Table 1. The following 

curvefit of the steam k data is particularly accurate in the range 1500-2300 K (cf. Ref. 35, 

p. 649) 

k {f) = 0.002 x exp { 6.2 f). (58) 

We account for the thermal conductivity at lower temperatures (near the steam-water 

interface) by using instead ofEq. (58) the correct value ks = 0.025 W/m Kat T8 = 373 K, 

which is the same as writing that k
5 

= 0.0195. 

The specified algorithm is sufficient for determining T, il, and finally r s for each 

eiemental system, provided the steam pressure P is specified. Indeed, the pressure P effects 

the coupling between the evoiution of the eiemental system and the flow of the rnixture. In 

general, in the geometry of Fig. 12 the mixture pressure is a function of both y and t. For a 

given P(y, t) value, the eiemental algorithm would deliver the next value of r
8 

and, via Eq. 
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(40), the local mixture density to be substituted back into the mixture flow Eqs. (43, 44). 

This coupling is greatly simplified when the mixture pressure variation across the layer 

thickness L is negligible relative to P0 suchthat the function P(y, t) may be approximated by 

the constant P0 in the eiemental system algorithm. In such a case the eiemental algorithm 

has tobe solved only once foreachtime step, and the histories r8(t) and p(t) hold at every 

Ievel y in the expanding mixture. 

This simplification opportunity makes it necessary that we study the effect of the 

assumed time-independent pressure on the results generated by the eiemental algorithm. 

The pressure effect is feit through p8, cp, hfg and T 8, however, the most strongly affected 

are p8 and cp. It can be shown that, in dimensionless form, this effect is condensed in the 

way in which A and B vary with the assumed P constant. Figure 14 shows that although 

the steam radius is smaller when P is larger, the P effect is negligible when the P values are 

restricted to the range 1 < P $ 1.5. We shall see that the pressure variation across the 

mixture layer is even less pronounced, such that the use of the constant P = 1 is justified in 

all the eiemental system results exhibited in this paper. 

Table 1. Sample of physical dimensions and calculated 

dimensionless parameters. 

k = m 1.28 Wlm K Pm = 3600 kg I m3 

k = s 0.025W lmK Pw = 1000kglm3 

Po= 1.013 bar CJ = 5.67 X lQ-8 

r = m 1mm W lm2K4 

R= 0.462 kJ I kg K A = 0.61 
T = m 2295 K A1 = 5.38 

T = s 373 K B = 0.262 

e= 0.15 C= 0.2 
e = m 0.8 D = 0.017 
e = s 0.8 k8 = 0.0195 

The time derivative of the r s history of Fig. 14 is the water interface velocity illustrated 

for P = 1 in Fig. 15. In this case the history is tracked until t- 60 when adjacent steam 

annuli touch (Fig. 11 b ). At that time the water velocity is 0.12 mls. Relevant to this 

calculation is the question of whether the water kinetic energy should have been included in 

Eq. (55). The complete form of this equation is 
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B ~2~ (af) ~ 2 dr s [ (dr s)2
] 

1 + cr;2 - A r sk s ar l\ = r s dt 1 + D dt (59) 

where the term containing D represents the water kinetic energy effect, where D = Pw (R 

km T m)2 I 2p 8 hfg (cpPorm)2. For the physical dimensions used in Table 1 the D value is 

0.017. We performed the r s(t) calculations of Fig. 14 using both Eqs. (55) and (59), and 

found no discernible difference between the two sets of results. In the case when the D 

effect was included, the numerical method led to a third order equation for dr s I dt, which 

was solved at each time step based on the bisection method with 10-6 accuracy (Ref. 36, p. 

353). 

We also found that the r s(t) solution does not change when in the assumed steam 

temperature function (57) the third denominator ( r 3) is replaced with r 0·
5
. This finding 

shows that the integral method of treating the space 1 < r < r s is robust, and that the 

behavior of the T profile (57) is captured by the known limiting solution (the a1/f term). 

Continuing the description of the quantities that can be calculated at the elementallevel, 

we see in Fig. 16 the history of the heat release from the sphere of malten material. The 

instantaneous heat transfer rate q is due to two contributions, conduction from the melt to 

the adjacent steam 1ayer, and radiation from the melt to the water front, 

dr 
s 

dt 

0 30 -t 
Figure 15. The steam-water interface velocity in the eiemental system of Fig. 14. 
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where 

(61) 

The total heat transfer rate drops rapidly to an early minimum, and then becomes practically 

constant. The radiation contribution increases and reaches a plateau, while the conduction 

contribution (q- Clrad) drops to a negligible level. 

3.3 Energy Conversion 

The eiemental algorithm developed in the preceding section can be combined with the 

volume averaged mixture model in any flow geometry. The link is provided by the density 

history p/pw = p (t), which is obtained by substituting the calculated function r 8(t) into 

Eq. (40). One example is shown in Fig. 17, which shows that the calculations end at the 

time t = 51 when the density p drops to approximately half of its original value (Fig. 11 b ). 

The density history p (t) is combined with Eqs. ( 43, 44 ), which acquire the 

dimensionless form 

10~----------------------------------------. 

-

-

q -

-

-

-

-

s-
=~ -qrad -

-

-

-

-

-

-

0 I I I I I I I I I I I I I I I I I I I 

0 5 10 
-t 

Figure 16. The heat released by the malten material in the eiemental system afFig. 14. 
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ap av 
a1 + P ay = o, (62) 

(63) 

where 

y=y/rm, v=vcpPorm/(RkmTm), E=pwR2 k~T~/(c~P~r~). (64) 

and y is measured away from the wall (Fig. 12) to the free surface y = L(t), where [ = 

L0 I rm. Equations (62) and (63) were solved for v (y, t) and P(y, t) using a second-order 

accurate discretization scheme. The dependent variables P and v were evaluated at different 

grid points: specifically, P was evaluated at the half distance between two adjacent points 

were the v values were defined. This method leads to an increase in accuracy without 

requiring grid refinement [33]. 

-p 

0 30 60 -t 

Figure 17. The mixture density history corresponding to the eiemental system (Fig. 14 ). 
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The p and v fields were used to calculate the kinetic energy inventory of the mixture, 

2 ( r Lco 1 - _ 2 _ ) - -
KE=pw Vscale V(t) Jo 2pv dy I L(t) (65) 

where V(t) is the mixture volume, and the velocity scale is given in Eq. (64), Vscale = R ~ 

Tm I (cp P0 rm). We then compared KE(t) with the heat transferred out of the molten 

spheres during the same time interval t, 

Q = Q (t) r~ P0 N cp IR, (66) 

where N is the number of spheres of molten material present in the initial mixture volume 

sample, V0 = L~. Note that the volume sample is a layer of thickness L0 covering a wall 

unit area LÖ. The number N is proportional to E, and follows from the E definition shown 

under Eq. (40), 

N = 3e V0 Pw I (4n r~ Pm). 

In Eq. (66), the heat release history is provided by Eq. (60) via 

t 
Ql(cPIR)P0r~N= Q(t)= J qdt, 

0 

(67) 

(68) 

and Q[J] is the corresponding dimensional value. Finally, the energy conversion efficiency 

is calculated as 

11 = KE/ Q • (69) 

We expect smalln values because most of the exergy released by the molten droplets is 

destroyed by heat transfer in the very small temperature gaps ( or very steep temperature 

gradients) between molten material (Tt) and liquid water (T8). The time-dependent energy 

conversion process is monitared numerically until the steam annuli of adjacent molten 

droplets touch, which corresponds to the time when L(t) grows to approximately twice the 

initial thickness Lo, or when the mixture density decreases to about half of its original value, 

Fig. llb. 

3.4 Discussion 

In this section we present the results in dimensional (physical) terms, while 

indicating in the insets the dimensions that were assumed given at the start of the 

calculations. As noted earlier, the pressure in the steam annuli was assumed uniform at 

Po in order to decouple the r8(t) calculation from the pressure field of the mixture. 

Figure 18 shows that the local velocity increases almost linearly away from the solid wall 
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(y = 0), and the free surface velocity [v at y = L(t)] is nearly constant during the time 

interval 0.18 ms < t < 7.6 ms. This feature is also evident in Fig. 19, which shows the 

evolution of the layer thickness, L(t). Figure 19 also shows that the mixture 

expansion becomes faster as the molten mass fraction E increases. 

The effect of varying the mass fraction of molten material while holding the 

other parameters fixed is illustrated further in Figs. 20 and 21. The Evalues 0. 15, 0.225 

and 0.3 correspond to N = 10, 15 and 30, respectively. The kinetic energy acquired by the 

mixture (Fig. 20) increases considerably as E increases: this effect is feit especially at 

long times. The energy conversion efficiency (Fig. 21) is less sensitive to changes in E; 

in fact, the sensitivity decreases as E increases to values of order 0.3. 

Figure 22 documents the effect of increasing the size of the system (Lo) when the 

molten droplet size (rm) and mass fraction (E) are fixed. The Lo values (10, 15 

and 20 mm) correspond, in order, to N = 10, 22 and 40. The efficiency increases by one 

order of magnitude as the mixture thickness increases by a factor of 2. This is a very 

important conclusion, which says that large (thicker) mixture systems are more efficient 

as converters of heating into mechanical energy. 

1.5 

3.4 ms 7.6 ms 
v [m/s] 

1.0 

0.5 
rm=1mm 

L0 =10mm 

P=Po 

E = 0.15 

0 

0 10 
y [mm] 

Figure 18. The evolution ofthe local mixture velocity. 
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20~-------------------------------------. 

0.225 0.15 

E =0.3 
L [mm] 

15 

r =1 mm m 

La= 10 mm 

P=Pa 

10 

0 2 4 6 8 
t [ms] 

Figure 19. The effect of the mass fraction of molten material on the evolution of the 

thickness of the one-dimensional mixture layer. 

KE [J] 

0.006--.----------------,-----

E=0.3 

0.004 

0.225 

0.002 

0 2 4 6 

r =1 mm m 

La =10 mm 

P=Pa 

t [ms] 
8 

Figure 20. The effect of the mass fraction of molten material on the kinetic energy of the 
mixture sample of initial volume L~. 
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0.1 

0.01 

0.1 1 

L0 =10 mm 

P=P0 

0.3 
~--

0.225 

0.15 = E 

t [ms] 
10 

Figure 21. The effect of the mass fraction of malten material on the energy conversion 

efficiency. 

11 0.1 

0.01 

0.1 

r =1 mm m 

P=Po 

E = 0.15 

10mm 

t [ms] 
10 

Figure 22. The effect of the thickness of the mixture layer on the energy conversion 

efficiency. 
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The effect of varying the radius of the molten droplet (rm) is illustrated in Figs. 23 and 

24. The remaining parameters are fixed at the values of the example of Fig. 18. For 

example, the radii 0.5, 1 and 1.5 mm correspond to N = 80, 10 and, respectively, 3 in the 

unit mixture volume L~. In Fig. 23 we see that the expansion is considerably faster when rm 

is small. This is a direct consequence of the effect of heat transfer enhancement: the fixed 

amount of molten material (E) has a better thermal contact with its surroundings when its 

length scale (rm) is small. The end of each line in Fig. 23 indicates the time when the 

validity of the model expires (Fig. 11 b ). 

The thermodynamic efficiency of the heating and expansion process is reported in Fig. 

24. The efficiency decreases almost as t-1, and then reaches a plateau close to the time when 

adjacent sphere annuli come in contact. Figure 24a shows that if 11 is plotted against the 

dimensionless time t the size of the molten sphere has a relatively small effect at small 

times. At large times, the efficiency is lower when rm is smaller. The same results are 

plotted in Fig. 24b with the real time on the abscissa. This figure reinforces the conclusion 

drawn based on Fig. 23: the process is faster when rm is smaller. 

25~--------------------------------------~ 

L [mm] 

0.1 mm 

20 
1 mm 

1.5 mm 

Figure 23. The effect of the size of the molten droplet on the evolution of the thickness of 

the mixture layer. 
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E = 0.15 
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E = 0.15 
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(b) 
t [ms] 

Figure 24. The effect of the size of the molten droplet on the energy conversion efficiency. 
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In Fig. 25, we tested the assumption that the steam annulus pressure can be decoupled 

from the mixture pressure in the time-dependent simulation of the mixture expansion 

process. In this test we continued to assume that the elemental-system steam pressure (P, 

constant) is decoupled from the mixture pressure field P(y, t), however, this time we 

assigned values between 1 and 1.2 to the constant eiemental pressure P. 

Figure 25 shows that the estimated efficiency decreases as assumed P constant 

increases. This conclusion is important, because it means that the P = 1 value used to 

generate Figs. 14- 24 is the most conservative choice that can be made with respect to 

anticipating the efficiency. In the actual mixture, Pis always 1 near the free surface, and 

only slightly higher near the solid wall. For example, in the run documented in Fig. 14, the 

pressure reached the maximum value P = 1.007 at t = 0.3 ms. In conclusion, in the present 

simulations the use of the uniform pressure assumption (with P = 1) was justified for 

calculating r s(t). 

1o-1 

rm =1 mm 

L0 =10 mm 

E = 0.15 

11 10-2 

P= 1 

1.2 

10-4~----~--~~~~~~~----~--~~~~~~ 

0.1 1 

t [ms] 

Figure 25. The effect of the assumed constant eiemental pressure on the energy conversion 

efficiency. 
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4 EVOLUTION OF A FINITE-SIZE MIXTURE IMMERSED IN A WATER 

POOL 

In this section we continue to describe numerically the time evolution of an expanding 

mixture of hot spherical particles, steam and water. The mixture expands against a body of 

water, in which it is immersed (Fig. 26). The numerical procedure is based on moving 

finite element (MFE) procedure. The fluid particles, distributed throughout the domain, are 

moved in time in a Lagrangian manner to simulate the change of the domain configuration. 

Three configurations are studied numerically: cylindrical mixture volume immersed in a 

cylindrical water pool, plane mixture layer heldunder a layer of water, and hemispherical 

mixture volume at the bottarn of a much larger water pool. 

4.1 Mathernatical Forrnulation 

Consider a mixture of malten material, water and steam. The mixture is immersed in 

a water pool, Fig. 26. In time, the heat transfer from the malten material causes the 

evaporation of some of the liquid water. The steam volume increases and the mixture 

volume expands in time. The expanding mixture acts like a piston that pushes the water 

pool. This is a moving boundary problem: one of the unknowns is the shape of the 

mixture domain (or mixture-water interface) during the expansion process. For the analysis 

of the moving boundary problern we apply the well known principle of "following the 

particle motion." The time derivatives of the objective function (velocity potential) in the 

moving frame are expressed in terms of the time derivatives of the function in the fixed 

frame tagether with a term arising from the velocity of the frame itself. In this problern the 

frame velocities are not prescribed but are to be generated by the method. 

The problern is formulated in terms of the unknown velocity potential function <I> for 

irrotational compressible flow. The mass conservation equation for the domain presented in 

Fig. 26 requires, 

(70) 

where S(t) is the source term, which is a function of time 

s ( t) = - _!_ ~ (71) 
p a t 

The velocity field follows from the general representation of an irrotational field, 

~=V<~> a~ 

The source term S(t) of Eq. (70) is unknown. To solve the problem, this term must be 

known a priori as a function of time in the mixture domain. In the water, which is 

assumed incompressible, this term is zero. 
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The eiemental mixture model is the same as in section 3.1: for clarity, we repeat the 

key assumptions here. The mixture is composed of a number of N eiemental systems. 

Each eiemental system consists of a spherical melt droplet with a specified radius (rm). 

surrounded by a sphericallayer of steam and immersed in liquid water, Fig. lla. The steam 

radius is time-dependent, r8(t). The volumes occupied by the melt, steam and liquid water 

in the volume of one eiemental mixture system are given by Eqs. (37) and (38), where mwo 

is the initial mass of the water (all in liquid form) and m8 is the steam mass. The density of 

the water is Pw. while p is the density of the steam averaged over the steam volume V 8• 
s 

The instantaneous density of the mixture can be calculated from 

1 r1 
H ----------------------~~----------~ PI 

z 

I 

water 
volume 

I 
Hm r - - - - - - - -~ 

I 

1 mixture 1 
I 

1 volume 1 
I 
I 
I 
I 
I 

D 

Figure 26. Two-dimensional space in which a cylindrical mixture volume is immersed in a 

water pool. 
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m + m + m 
p = V m + Vs +V w 

m s w 

(73) 

The result can be expressedas a specific volume, Eq. (40), where the melt mass fraction e 

= mm Im is a specified constant. The order of magnitude of the time when the Fig. 11a 

scenario ends can be estimated with the cubic model of Fig. 11 b: at this time the steam 

annuli become tangent. The volume averaged mixture density at this moment is given by 

Eq. (42). 

The steam radius r8(t) can be calculated using the model described in connection with 

Fig. 13. According to this model, the radial heat transfer and steam motion inside the steam 

annulus are governed by mass and energy conservation equations (46, 47). By eliminating 

the right side of Eq. (46) between Eqs. (46) and (47), and integrating away from r = rm 

where u is zero, we find Eq. (48). In this equation the steam thermal conductivity k is a 

function of temperature and km = k (Tm). At the liquid water interface the balance between 

the heat transfer (radiation and conduction) from the steam side and the latent heat of the 

vaporized liquid yields, cf. Eqs. (49, 50), where Psis the steam density at saturation (T8). 

Equations (46}-(50) are sufficient for determining T, u, and, finally, r8 for each 

eiemental system, provided the steam pressure P is specified. The initial and boundary 

conditions are r8 = rm at t = 0, T =Tm at r = rm and T = T8 at r = r8 • The thermal 

conductivity of the steam is correlated to the temperature cf. Eq. (58), where T is expressed 

in kelvin. The analytical details of the algorithm are omitted for brevity. The r8 value for the 

next time step is obtained from Eqs. (49, 50) by using a forward Euler time discretization 

scheme. The moving front r = r8 is considered in the algorithm by using a time dependent 

grid spacing preserved by front-tracking procedure. The calculated r8 values and Eq. (40) 

provide the mixture density p(t) and the source term, Eq. (71). 

4.2 Method of Solution 

For the fixed (Eulerian) frame we solved the boundary value problern (70) of the 

axisymmetric domain of Fig. 26 by using the Galerkin finite element method with frrst-order 

triangular elements. We assumed that the mixture and the surrounding water are 

immiscible, and both fluids (mixture, water) are inviscid. With reference to the system of 

Coordinates shown in Fig. 26, Eq. (70) can be written as 

(74) 

where S(t) is the source term: 
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S(t) = - _!_ dp in the mixture 
p dt 

S(t) = 0 in the water 

The Galerkin residual method was executed in the following steps: 

1. Divide the domain D (mixture and water) into nel triangular elements. 

2. Assurne that over each finite element ci> varies as 

3 

cl>e (r,z) = "N (r,z) cl>e L..J a a 
a= I 

where Na are the shape functions. 

3. Satisfy the criterion that the residue must be zero, which yields 

where 

(b[ + c?) (b 1 b2 + c1 c2 ) (b1 b3 + c 1 c3) 

(b~ + c~) (b2 b3 + c2 c3 ) 

Note that Ae is the eiemental triangular area 

and the coefficients (ai, bj, Ci) are shorthand for 

where i, j and k represent the local eiemental triangle indexes, Fig. 26, and 
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(81) 

The factor 

rc = J J r2 d Ae (82) 
oe 

is approximated by the centroidal value 

r = _!_ (r. + r. + rk) 
C 3 I J 

(83) 

4. Assemble the eiemental equations, to obtain the overall system of equations. 

5. Solve the general system of equations using the Choleski decomposition direct 

method. 

Consider two successive time steps, t and t + M, and assume that a fluid particle 
I I , , I I , 

moves from (r, z) to (r, z ). In the movmg frame, the new coordmates (r, z) are obtamed 

from a truncated Taylor series expansion about (r, z, t) [37], 

· Dr 
r=r+~t-

Dt 

. Dz 
z=z+~t

Dt 

(84) 

(85) 

where D I Dt denotes the Lagrangian time differentiation. The time increment is calculated 

at each time step from the Courant-Friedrichs-Lewy (CFL) condition. Sirnilarly, at the new 

time step the new velocity potential function can be approximated as 

, D<I> 
<I>=<I>+~t

Dt 

The Lagrangian derivatives of r and z are 

Dr d<I> Dz d<l> 
-=v =-
Dt r dr 

-=V= 
Dt z dZ 

(86) 

(87) 

After the velocity potential values are determined at each node of the triangular mesh, the 

velocities Vr and Vz are computed on each triangular element, 
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(88) 

(89) 

In these equations A e denotes the element area. The velocity potential is assumed to have a 

linear variation on each element, and consequently, the velocity components in each triangle 

are constant. The velocities appearing in the Lagrangian derivatives of r and z are the 

velocities at the mesh nodes 

(90) 

where llel denotes the number of elements adjacent to each mesh node. The Lagrangian 

derivative of the velocity potential function is 

(91) 

The first order Eulerian derivative <I>t = d<I>/d t can be found by differentiating Eq. (74) 

with respect to time 

(92) 

The time derivative of the source term S(t) is known. The finite element algorithm is 

repeated one more time in order to compute <I>t at the mesh nodes. Worth noting is that the 

global matrix assembled for solving the linear system of equations for <I> is identical to the 

global matrix for <I>t. 

4.3 Results in cylindrical coordinates 

The algorithm was used to simulate the evolution of several mixture-water systems. 

The parameter that varied was the radius of the hot spheres (melt droplets) contained in the 

mixture volume. The physical dimensions and parameters that were held fixed are 

presented in Table 1. The variationintime of the mixture density, which is necessary for 

the calculation ofthe source term, is presented in Fig. 27. The radius rm was set at 0.5, 0.1 

and 0.05 mm. We fixed the relative amount of hotmaterial (E = 0.15). Figure 27 shows 

that the mixture expansion is considerably faster when rm is small. The end of each curve 

indicates the time when the validity of the eiemental volume model expires, that is when the 

adjacent steam layers touch (Fig. llb). 
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For subsequent calculations it was convenient to curve-fit with exponential 

polynomials the numerical data obtained for the mixture density: 

n 

p 1 . 1 = ""' c. exp (-A.. t) 
una yt1ca ."-' 1 1 

i= I 

(93) 

An accurate fit is obtained with n = 2. The accuracy is defined as 

(94) 

where L2 is the euclidean norm of vector solutions, and Er is of order l0-4. The agreement 

between Panalytical and the numerical p data is very good, as illustrated in Fig. 27. The 

coefficients calculated for the density function (93) are 

rm = 0.5 mm: c1 = 473.85 c2 = 645.96 A.1 = 455.73 

rm = 0.1 mm: c1 = 480.91 c2 = 636.72 A.1 = 2255.3 

rm = 0.05 mm: c1 = 458.11 c2 = 661.37 A. 1 = 4657.8 

1000 

0.1 mm 
500 

0 
0 1 2 

Figure 27. The time-evolution of the mixture density. 
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For the configuration of Fig. 26 we assumed the following dimensions: mixture 

radius Rm = 10 mm, mixture height Hm = 10 mm, pool radius Rp = 40 mm and pool 

height Hp = 40 mm. A coarse triangular mesh was first constructed as shown in Fig. 28a 

(number of elements ne = 800; number of nodes nn = 441 ). In order to increase the 

accuracy of the solution without increasing the order of the interpolating polynomial, the 

initial mesh was refined automatically in the code. The refined mesh is presented in Fig. 

28b (ne = 3200, nn = 1681). We studied the convergence by comparing the solutions 

obtained on the coarse grid and on the refined grid. Two other meshes having different 

node indexing are shown in Figs. 28c and 28d. The correctness of the algorithm and the 

convergence were also tested using thesefinite element meshes. 

The boundary conditions for <I> relative to the domain shown in Fig. 26 are 

c:pk = c:pk-1 on r 
I 

(96) 

(97) 

where n is the boundary normal and k denotes the time step. The boundary conditions for 

<l>tare 

(98) 

(99) 

During the expansion the number of mesh elements remains unchanged, while the 

node coordinates and the triangular element areas change. Figure 29 shows the mesh state 

at the end of the expansion process, where for better illustration the entire cross section of 

the pool is shown. The velocity distribution in the domain (mixture and water) is presented 

in Fig. 30 for the case rm = 0.05 mm, at the end of the expansion process (t"" 0.4 ms). The 

maximum velocity is approximately 4 rnls, and occurs at the mixture-water interface. 

Additional simulations showed that the velocities are smaller when the particle size rm is 

!arger. 

A three-dimensional representation of the constant vector potentiallines is shown in 

the upper part of Fig. 31. These lines were obtained after solving the global system of 

equations, and were drawn by using a two-dimensional interpolation for the nodal potential 

values. The velocities are proportional to the gradient of the potential. The vector 

representation of the velocity is shown in the lower part of Fig. 31. The vector moduli are 

proportional to the actual velocity. Figure 31 was drawn for the malten radius rm = 0.05 

mm. We controlled the step size by enforcing the Courant-Friedrichs-Lewy condition [38] 
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u 
max 

(100) 

where the Umax is the maximum velocity at the preceding time step, and Lls is the 

maximum distance covered by the fluid particle during one time step. 

4.4 Energy conversion 

An important aspect of the expansion process is the efficiency with which the energy 

released by the hot spheres is converted into kinetic energy in the moving mixture and 

water. The kinetic energy acquired by the entire system is 

(101) 

. -· ... -

Figure 29. The deformed mesh at the timet= 4 ms, for fm = 0.5 mm, Rm = 10 mm, Hm = 

10 mm, Rp = 40 mm and Hp = 40 mm. 
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where net is the total number of triangular elements used for domain discretization, pe is the 

density on each element and ve is the eiemental velocity. The kinetic energy is associated 

with elements (not with mesh nodes), and is constant in each element. The total kinetic 

energy is obtained at each time step from Eq. (101). The total volume is V(t) = 1t Rp2 Hp, 

where the pool radius Rp and pool height Hp are functions of time because of the moving 

boundaries. The total kinetic energy histories are shown in Fig. 32 for the first 0.4 ms of 

the process. 

The heat transfer rate was calculated for each hot sphere. First, the instantaneous heat 

transferrate q is due to two contributions, conduction from the rm sphere to the adjacent 

steam layer, and radiation from the sphere to the water front, 
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Figure 30. The velocity distribution in the mixture and water domain when the steam annuli 

touch (Fig. 11 b ). 
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(102) 

The total heat release from the hot sphere is 

t 

Q = f qdt (103) 
0 

Figure 33 shows the Q(t) function and how it is affected by changes in fm· Finally, the 

conversion efficiency is obtained by writing 

KE 
1l = NQ (104) 

The number of hot spheres N contained in the given mixture volume follows from the 

definition of the mass fraction Ern, 

0.15~-------------------------------------. 

KE [J] 

0.1 

0.05 

0.1 mm 

0.5 mm 

0 0.2 0.4 

t [ms] 

Figure 32. The time-evolution of the total kinetic energy. 
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N = Ern Pw 7t R~ Hm 
Pm (47t /3) r~ 

(105) 

The time evolution of the conversion efficiency is shown in the Fig. 34. The 

efficiency is higher at the start of the expansion process, and decreases sharply as the time 

increases. The particle size rm has an important effect on the efficiency: 11 increases when 

rm decreases. In other words, the energy conversion process is more efficient, and the KE 

inventory of the mixture is larger, when the contact area between the hot material and the 

surrounding water is larger. 

In Fig. 35 we show another set of results that document the effect of increasing the 

relative size of the water pool (Rp, Hp). The mixture dimensions are held fixed at rm = 0.1 

mm, Rm = 10 mm and Hm = 10 mm. The effect of the water pool is relatively weak: the 

energy conversion efficiency decreases at a decreasing rate as the surrounding water pool 

becomes larger. 

4.5 One-dimensional configurations 

The preceding results refer to the configuration of Fig. 26, where the mixture 

expanded simultaneously in two directions, z and r. We studied the same phenomenon in 

two simpler configurations, which are shown in Fig. 36. In these configurations the 

expansion is unidirectional, vertically away from the wall in Fig. 36a, and radially away 

from the center of the hemispherical mixture volume in Fig. 36b. If we continue to curve

fit the eiemental results for the density history cf. Eq. (93), then the solution for the mixture 

Velocity field can be developed analytically. For brevity, we report only the results for 

energy conversion efficiency, in order to document the effect of changing the configuration 

of the mixture and water system. 

In Fig. 37 we show the results for a mixture layer characterized by rm = 0.1 mm, Hm 

= 10 mm and E = 0.15. The height of the water pool increases from 10 mm to 50 mm and 

at the same time the efficiency increases. This means that unlike the two-dimensional space 

(Fig. 35), in Fig. 36a the water layer plays the role of an accelerated mass, and this translates 

into a less irreversible conversion process. The time dependence of 11 is the same as in 

Figs. 34 and 35, i.e., approximately as t -I. 

Figure 38 shows the behavior of the energy conversion efficiency in the hemispherical 

configuration of Fig. 36b in the limit RP I Rm --7 oo. The mixture is characterized by E = 
0.15, rm = 0.1 mm and Rm values in the range 10 mm- 50 mm. For example, when Rm = 

25 mm the number of hot particles contained in the hemispherical mixtun.~ volume is 

3. 25 x 105 . The efficiency decreases in time as t-1, and increases as Rm increases. 
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4.6 Closing comments 

In this section we documented the evolution of mixtures of hot particles, steam and 

water, when such mixtures are surrounded by liquid water. The method of solution is 

based on MFE in a Lagrangian manner. The algorithm is very economical compared to 

space-time finite element methods in which we deal in fact with a three-dimensional 

problern for a two-dimensional one. The only extra cost in our method consisted of solving 

one additional equation. The equation for the derivative of velocity potential function is 

easily solved by using Galerkin FEM one more time. 

In this phase of our work the focus was on the thermodynarnic inefficiency of the heat 

transfer process. For example, Figs. 34, 35, 37 and 38 showed that the efficiency is 

generally of the order of 1 percent when the time scale is of the order of 1 ms. We 

documented the effects associated with changing the dimensions of the hot particles, 

mixture volume and water pool. The eiemental model of Fig. 11, in which hot particles and 

water are assumed dispersed through a finite-size volume before the expansion begins, 

places the process described in this paper at times Ionger than those associated with sudden, 

thermoacoustic effects [7, 39]. Future numerical studies may consider what happens at 

even Ionger times, specifically, after the moment depicted in Fig. llb. In this final regime 

the volume of the expanding mixture will be dominated by steam. 

0.0015-.----------------------, 

Q [J] 

0.001 

rm= 0.5 mm 

0.0005 

0.1 
0 -k~-=r===r=::::;==;r==r=T=:;;:::::r:::;;;;;:;;:;;:;;:;~;:;;;;;;;;;;;;;;;~~~ 0. 05 

0 0.2 0.4 

t [ms] 

Figure 33. The time-evolution of the heat released from one hot sphere. 
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5 IRREVERSIBILITY DUE TO SUDDEN HEA T TRANSFER IN A 

STATIONARY MIXTURE 

The work described in this section is based on the idea that before the melt and water 

mixture begins to expand, it achieves a state of mixing en masse, which occurs at constant 

volume. The melt particles are distributed throughout the mixture, and are effectively 

cooled to an "equilibrium" state that later serves as starting point for the expansion process. 

During thermal mixing in the absence of fluid motion, a portion of the useful energy 

(exergy) of the melt and water system is destroyed. The calculation of this portion is the 

subject of this section. Other losses such as fluid friction and additional heat transfer, which 

occur subsequently during expansion, will add themselves to the destroyed exergy 

calculated in this section. Consequently, the energy conversion efficiency ( or exergetic 

efficiency) described in this section is an upper bound for the efficiency of the actual, 

complete mixing and expansion process. lt is a relative upper bound because it accounts for 

1~------------------------------------------~ 

0.1 

0.01 

0.1 mm 

0.001 

0.5 mm 

0.1 1 10 

t [ms] 

Figure 34. The energy conversion efficiency for the systems described by Figs. 30-33. 
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Figure 35. The effect of the size of the water pool on the energy conversion efficiency. 

HP '\1 

water volume water 

Hm 

:L 
L- Rm 
0 r 
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Figure 36. One-directional configurations: (a) vertical expansion, and (b) radial expansion. 

-56-

1 

RP 



w-~-.--------------------~ 

w-3 

10-s ~ ~ 
. I I I I I I ! r 

0.01 0.1 
t [ ms] 

Figure 37. The effect of water pool size on efficiency in the configuration of Fig. 36a. 
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Figure 38. The effect of mixture volume size on efficiency in the configuration of Fig. 36b. 
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the most important source of thermodynamic irreversibility: the heat transfer from melt to 

water when the temperature difference between the two is the greatest. 

This section represents a departure from the line of inquiry that was followed 

consistently in Sections 2-4. The new feature is that motion and expansion are ruled out. 

Another feature is that the calculation Ieads to a single efficiency value, which depends only 

on the initial parameters of the melt and water combination. In Sections 3 and 4, the 

calculations shed light on the early stages in the history of the energy conversion efficiency, 

which is a function of time as the mixture expands. 

5.1 Model 

The purpose of the following analysis is to evaluate the energy conversion efficiency ( or 

irreversibility) associated with the mixing of an amount of malten material (mm) with an 

amount of saturated liquid water (mw) in a fixed volume (Fig. 39). The malten material is 

initially superheated at the temperature Tj. During the mixing process it experiences, (i) 

sensible cooling down to the solidification point Tm, (ii) solidification at Tm, and (iii) 

sensible cooling to a final equilibrium temperature, Te· During the same process, the (Po) 

to the final conditions P e and Te· 

The equilibrium pressure and temperature are dictated by the first law of 

thermodynamics for the total mass (mm + mw) as an isolated system, 

(106) 

and the volume constraint for the water mass 

Pw,i = Pw,e (107) 

In these equations Um, Uw and Pw are the specific internal energies of the two components, 

and the density of water. Equations (105) and (106) are sufficient for determining Pe and 

Te. Built into Eq. (107) is the assumption that the volume fraction occupied by firn does 

not change. Consequently, we model mm as an incompressible substance with constant 

specific heat (cm) from Ti toT m• latent heat of solidification U8f, and constant specific heat 

(c 8) from Tm toTe. The specific energy changeshownon the left side of Eq. (106) 

becomes 

(106') 

where it has been assumed that the solidification has been complete, i.e., Te ~ Tm· 

For the water component we expect P e and Te to represent a state of high pressure and 

temperature, most likely in the supercritical pressure domain. For the left side of the liquid

vapor dome, that is, during the process (i) -7 (e) executed by the water mass mw, we use 

the latest compilation of water thermodynamic properties [27]. We proceed at constant 
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density into the compressed liquid states, cf. Eq. (107), namely, Pw,e = 958 kg I m3
, and 

reach states ( e) of increasing pressure (P e) and temperature (Te), as the specific energy 

(uw,e) at that state increases. This evolution is reported in Figs. 40 and 41, where the curves 

were fitted to data interpolated from the tables of Haar et al. [27]. In each case the curve 

starts from the initial state of water, which is saturated liquid at atmospheric pressure (uw,e 

= 419 kJ I kg). In the ranges indicated in Figs. 40 and 41 the Te [K] and Pe [bar] values are 

accurate within 0.5 percent and, respectively, 0.95 percent. 

The specific entropy curve (Fig. 42) was obtained similarly, and is accurate within 0.93 

percent. How far we travel to the right on the curves of Figs. 40 - 42 depends on the mass 

ratio mrn I mw and the initial state ofthe melt, cf. Eq. (106). We return to this aspect at the 

end of Section 5.2. 

5.2 Efficiency 

The system (mrn + mw) is surrounded by saturated liquidwaterat atmospheric pressure 

Po. Accordingly, we regard Po and T o = Tsat (Po) as environmental state (i.e., restricted 

dead state [40]) in the following exergy estimates. The energy conversion efficiency of the 

process (i) ~ (e) is best represented by the exergetic (second law) efficiency 

exergy at state ( e) 
11 = 

exergy at state (i) 
(108) 

The exergy at state (i) is due only to firn, because mw is initially at the environmental state. 

To estimate the nonflow exergy of the melt Em,i we imagine a reversible work production 

process in three parts, with heat rejection to T o: 

T I 

( i ) ... ( e ) 

Figure 39. The constant-volume mixing of specified amounts of water (mw) and molten 

material (mrn). 
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1. Sensible cooling from Ti toT m: 

W, = m" c", ( T, - Tm- T0 In ;J (109) 

2. Solidification at Tm: 

(110) 

3. Sensible cooling from Tm to Te: 

Te [ K] 

1500~--------~------------~------------~ 

1000 

500 

1000 

Pw =958 kg/m3 

2000 3000 

Uw,e [ kJ /kg ] 

Figure 40. The temperature variation at constant density in compressed liquid water. 
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(111) 

In sum, the initial exergy of the system is 

3m,i = W I + W 2 + W 3 (112) 

At the end of the process, in the thermally mixed state (e), the exergy still held by the 

melt is 

(113) 

P e [bar] 

105 ~----------------------------------------~ 

4 
10 

10 

1000 2000 

Pw =958 kg/ m 3 

3000 

Uw e [ kJ/kg] , 

Figure 41. The pressure variation at constant density in compressed liquid water. 
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where it has been assumed that the solidification is complete (Te ::::; Tm). For the water mass 

at state (e) we use the nonflow exergy [40] with respect to saturated liquid at T0, 

The last term in the square brackets is zero because the specific volume (or density) does 

not change from (i) to (e), cf. Eq. (107). Putting everything together, we conclude that the 

efficiency is 

(115) 

Sw e [ kJ /kg] 
' 
6~------------------------------------------, 

5 

4 

3 Pw=958 kg/m3 

2 

1000 2000 3000 

Uw e [ kJ/kg] 
' 

Figure 42. The entropy variation at constant density in compressed liquid water. 
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The following 11 calculations are based on the constants 

T0 = 373 K 

Ti= 2600K 

Cm = 1.32 kJikgK 

Usr = 1067 kJ I kg 

P0 = 105 NI m2 

Tm= 2313 K 

c.:: 1 kJikg K 

cw = 4.03 kJ lkg K 

(116) 

The calculation begins with combining Eqs. (106) and (108) with Fig. 40. The result is the 

relationship between uw,e and mmlmw, which is displayed in Fig. 43. This monotonic 

relation is used next to convert the uw ,e abscissas of Figs. 40 - 42 into abscissas 

representing the "design" parameter mm/mw. In this way all the quantities that appear on the 

right-hand side of Eq. (115) can be calculated as soon as the mass ratio is specified. The 

end result of this calculation is the efficiency shown as a solid line in Fig. 44. 

Uw,e [ kJ /kg] 

3500~------------------------------------~ 

2500 

Pw=958 kg/m3 

1500 

500 

0 0.2 0.4 0.6 0.8 

Figure 43. The specific internal energy of liquid water in the final state (e), as a function of 

the mass ratio. 
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5.3 The Small Melt Mass Fraction Limit 

It is possible to anticipate analytically the behavior of the efficiency 11 in the Iimit of 

small melt mass fraction, mmlmw --1 0. In that Iimit the equilibrium temperature Te 

approaches To, and most of the energy change experienced by mm from Ti toTe (-To) is 

due to the sensible cooling of the solid [e.g., Eq. (118)]. Over the temperature interval Ti

To, we define the equivalent specific heat of mm as a single-phase substance, cm, by setting 

the sensible-heat change cm (Ti - T o) equal to the actual energy change: 

(117) 

Using the data listed in Eqs. ( 116) we find, in order, 

Figure 44. The exergetic efficiency as a function of the mass ratio. 
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- kJ kJ 
Cm = (0.170 + 0.479 + 0.871) - = 1.52-

kg kg 
(118) 

which shows that the value of cm is indeed dominated by the sensible cooling of mm as a 

solid, from Tm to T O· 

In the same limit (Te ~ To), we model the water mass mw as an incompressible 

substance with the specific heat Cw. Equation (106) attains the explicit form 

Similarly, Eqs. (112)- (114) become 

Substituting Eqs. (119)- (121) into the efficiency definition (115) we find 

~=(1+ ~J 't - 1- ln 't e e 

t. - 1 - 1n t. 
1 1 

where 

T. 
't· = _1 

1 T 
T 't = _e 

e T 
0 0 

The first law [Eq. (119)] provides another relation between J..l and 'te, 

suchthat 11 is solely a function of J..l (or the mass fraction mmlmw), 

(119) 

(120) 

(121) 

(122) 

(123) 

(124) 

(125) 

(126) 

Solving by trial and error Eqs. (123) and (125) for 'ti = 2600 K I 373 K ~ 7, we complete 

the following table: 
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0.1 

0.02 

0.01 

1.545 

1.118 

1.059 

0.299 

0.081 

0.042 

0.265 

0.053 

0.027 

The function 11(mmlmw) described by Eqs. (123) and (125) has been added to Fig. 44. In 

the Iimit j..l ~ 0 this function behaves as 

1 (ti - 1)
2 

m 
11 = - 1-l = 4.44j..t = 1. 68 ____!l!._ 

2 'tj - 1 - 1n 'tj mw 
(127) 

This shows that when mmlmw is small the exergetic efficiency is of the same order of 

magnitude as the mass ratio mmlmw. In the opposite Iimit, when the order of mmlmw is 

greater than 1, the efficiency 11 approaches 1. 

5.4 The Effect of the Choice of Dead State 

Exergy calculations depend on the choice of dead state [40]. In Sections 5.2 and 5.3 the 

dead state was taken as the initial pressure and temperature of the water (Po, To), with the 

thought that the "environment" surrounding the system of Fig. 39 is infinite and made out 

of liquidwaterat Po and To. Another plausible choice of dead state is represented by the 

atmospheric conditions 

T. = 298 K (128) 

In this case the efficiency formula ( 115) must be modified because the initial exergy of 

the water mass (Bw,i) is no Ionger zero. The complete definition is 

exergy at state ( e) öm,e + öw,e 
11 = = 

exergy at state (i) öm,i + Bw,i 
(129) 

where 

(130) 

Bw,e = mw [ue- u.- T. (se- s.) + P. (ve- v.)] (131) 

and ( u., s., v.) represent water properties evaluated at P. and T.. The initial and final 

exergies of the melt mass are, cf. Eqs. ( 109)-( 113), 
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3",; = m".c",(T;-Tm-T,In;J+mmu.r(l-;J (132) 

+ mm c, ( T ", - T, - T, In ~: J 

(133) 

The solid line in Fig. 45 shows the result of combining Eqs. (129)-(133), and using the 

P. and T. values and the rest of the data listed in Eqs. ( 116). The dashed line reproduces 

the efficiency calculated in Sections 5.2 and 5.3 based on P 0 = 105 NI m1 and T 0 = 373 K. 

The figure shows that the choice of dead state temperature has only a minor effect, which 

becomes visible when mmlmw is of the order of 10-2 or smaller. Relevant is also the 

observation that the dead state used in Sections 5.2 and 5.3 leads to an efficiency estimate 

that is higher (i.e., more conservative) than the efficiency calculated in this section. 

1~----------------------------------------------. 
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0.1 ,.,; 
/. 
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/ 
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0.01 / 

/ 
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P* = 1 atm T* = 293 K 
0.001 

0.001 0.01 0.1 1 10 
mmlmw 

Figure 45. The effect of the choice of dead state temperature on the exergetic efficiency. 
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We verified the new 11 result plotted in Fig. 45 by repeating its calculation based on the 

analytical model outlined in Section 5.3. Tostart with, the equivalent specific heat of the 

melt is cm = 1.50 kJ I kg instead of 1.52 kJ I kg. This conclusion follows from 

substituting T* = 298 Kin place of To in Eq. (117). Next, Eqs. (131)-(133) are replaced by 

(134) 

(135) 

(136) 

According to Eq. (130) in which vi =v., the initial exergy ofthe water is 

(137) 

where K = 34.11 kJ I kg. Finally, by substituting Eqs. (134)-(137) into the efficiency 

definition (129) we obtain 

(138) 

where 

T. 't __ , 
i- T. 

T 't = _e 
e T. 

(139) 

The relation between 'ti and 'te is provided by the first law, which is written as in Eq. (125). 

The efficiency 11 calculated based on Eq. (138) is shown as a dashed line in Fig. 46. 

The solid line shows the corresponding result developed earlier in this section using the 

tabulated data for water (see also the solid line in Fig. 45). There is good agreement 

between the two 11 calculations-the same Ievel of agreement that we saw earlier in Fig. 44, 

where the dead state was different. In conclusion, we can use with confidence all the 11 

results presented in Section 5. 

5.5 The Effect of Melt Superbeat 

One question that was raised more than once during this project is whether the model 

should account for the fact that the melt is at a temperature Ti above the melting point Tm· 

We are able to answer this question based on the no-flow model used in this section. 

Figure 47 shows how the efficiency curve responds to the disappearance of melt superheat. 
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Figure 46. Accuracy test for the efficiency formula (138). 
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Figure 47. The small effect of the melt superheat (Ti> Tm) on the exergetic efficiency. 
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Both curves were generated with the analytical model and dead state of Section 5.4. The 

dashed curve corresponds to superheated melt (Ti = 2600 K), while the solid curve results 

from assuming that the melt is saturated liquid (Ti = Tm = 2313 K). The figure shows that 

the change in the 11 value is relatively small throughout the mm I mw range considered in 

Section 5. 

6 EFFICIENCY OF MELT-WATER INTERACTION WHEN THE MIXTURE 

EXPANDS WITH FLOW RESISTANCE 

6.1 Model 

In this section we introducein the model the effect that was ruled out in the preceding 

section: the flow of the expanding mixture, and the resistance encountered by this flow. 

Consider a vessel containing a mixture of an amount of molten material (mm) and an 

amount of water (mw). Initially the molten material is heated at the temperature Ti, and the 

temperature of the water before mixing is To. In time, the temperature of the molten 

material decreases because of heat transfer to water. During the same process, the water 

temperature T w and the pressure P increase. 

During the expansion process the mixture is ejected through openings in the vessel 

structure. We model these openings as a nurober of exit ports as shown in Fig. 48a. Inside 

the vessel (BL), the instantaneous thermodynamic state is spatially uniform. Bach 

infinitesimal volume element contains molten material and water in the same proportion as 

the total volume (Fig. 48b ). 

In every volume element the cooling of the molten material (~mm) is balanced by the 

heating of the water mass (~mw). If we neglect the kinetic energy of water and molten 

material inside the vessel, the first law of thermodynamics for the eiemental volume is 

where c is the equivalent specific heat of mm as a single-phase material. The c value 
m m 

was defined and calculated in Eq. (118). Assuming the water behaves as an ideal gas, we 

have 

P (t) = p RT 
w w 

(141) 

where P and Pw are the water pressure and the water density respectively. Using Eq. (141), 

the vessel volume constraint can be written as 
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B 

.,, [m Im RT (t)] 
1 = m (t) m w + w 

w p p (t) 
m 

(142) 

where we have assumed a spatially uniform distribution of the components of the mixture. 

The instantaneous Volumetrie distribution of water mass is 

"' m m = _::!:!..._ 

w BL 
(143) 

where B is the vessel base and L is its length, Fig. 48a. Mass conservation requires 

dm"' "' cr 
__ w=-m-V 

dt w L 
(144) 

In this equation V is the mean velocity of the ejected material, and cr ( << 1) is the area 

reduction ratio, i.e., cross-sectional area of all the outlet ports divided by the vessel base 

area. The mixture flow is driven by the pressure drop 

K "' ( m J 2 P (t)- P = - m 1 + __m_ V 
o 2 w m 

w 

(145) 

Vessel Tm(t) 

P(t) Llmm 

mixture T· I 

- -

Llmw 
To, Po t.(b) 

1.,. L--_,.... 

(a) (b) 

Figure 48. Model of expanding melt-water mixture with flow resistance at the outlet. 
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where K represents the pressure loss coefficient. 

In summary, the analytical model consists of four equations [namely Eqs. (140), (142), 

(144) and (145)], which must be solved for four unknowns Tw, m"', P and V as functions 
w 

oftime. 

6.2 Solution 

The water temperature T wC t) is obtained explicitly from Eq. (140) 

dTw 
--= 

dt 
(146) 

where the ratio 11 = ~mmcm I ~mwcw is constant. Solving Eq. (146) subject to the initial 

condition T w = T o at t = 0 yields 

where 

8 ( t) = 1 + a [ 1 - exp ( -t)] 

t= t h~A(1+f..l) 
c ~m 

m m 

Equation (142) can be arranged in the form 

where 

b = mmlmw Po 
Pm . RTo' 

'" RT0 M= ffiw--
Po ' 

The dimensionless form of Eq. (144) is 

where 

dM -
-= -M·V 
dt 
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Po 

(147) 

(148) 

(149) 

(150) 

(151) 



(152) 

The equation that remains-Eq. (145)--can be written as 

(153) 

where the constant c is given by 

(154) 

To summarize, Eqs. (147), (149) and (153) can be solved for e, p and V as functions of 

time. The following results are based on integrating Eq. (151) in time by using Runge

Kutta method. 

6.3 Efficiency 

The chief objective of this study is to calculate the energy conversion efficiency 

kinetic energy of mixture through the exits 
11 = initialexergyofthesystem = -.::.-i 

KE 
(155) 

where 8. is the initial exergy of the melt and water system. The kinetic energy (KE) 
I 

generated by the expanding mixture is a function of time, and is calculated as follows. The 

instantaneous mass flow rate through all the outlet ports is m = p V cr B. The 
out 

instantaneous rate at which kinetic energy is imparted to the outflowing stream is 

m _!_ V 2 
. Integrating this quantity from the time t = 0 until the time t we obtain the total 

out 2 
kinetic energy produced by the system: 

l
t 1 

KE = -p cr B V 3 d t 
02 

(156) 

The initial exergy 8 i is due to mm alone, because the water is initially at the 

environmental state. For the molten material we use the single-phase equivalent model, Eq. 

(120), 
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3. = m c (T. - T
0 

- T
0 

ln _:s_J 
1 m m 1 T 

0 

(157) 

The calculated equivalent specific heat c = 1. 52 k J I k g corresponds to the properties 
m 

listed in Eqs. (116): The efficiency definition (155) can also be written as 

T]= (1+mwfmm)KEI 

c m (Ti - T 0 - T 0 ln T )T 0 ) 

(158) 

where KEt is the kinetic energy per unit mass of mixture: 

KE =- V 3 dt 0' lt 
I 2L 0 

(159) 

The integral ( 159) was evaluated using the trapezoidal rule. 

6.4 Results 

The numerical results illustrate the influence of the physical parameters on efficiency. 

Emphasis is placed on the effects of the particle radius rm, the mass ratio mmlmw, and the 

area contraction ratio cr. The radius rm is proportional to &um/ M: 

(160) 

Figure 49 shows the evolution of the velocity of the ejected mixture. The velocity reaches a 

peak at a time that is shorter when rm is smaller. The corresponding kinetic energy 

production is shown in Fig. 50. The KE1 value increases in time, and is higher when rm is 

smaller. The efficiency 11 has the sametime behavior as KEt, which can also be anticipated 

from Eq. (158). 

The results of Figs. 49-51 were generated by holding the following parameters fixed: 

mm I mw = 0.2, cr = 0.01 and L = 1m. The effect of varying the mass ratio mm I mw is 

illustrated in Figs. 52-56. The velocity, kinetic energy and efficiency decrease 

correspondingly as mm I mw decreases. The water temperature approaches its final value 

during the time interval associated with the velocity peak (Fig. 54). The pressure reaches a 

peak at the sametime scale, as shown in Fig. 55. Generally, pressures are lower when the 

relative amount of bot material (mm I mw) is smaller. 
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The effect of changing the area reduction ratio is documented in Figs. 57-60. The 

velocity reaches a maximum value at a time that is smaller when a is greater. The maximum 

velocity is higher for the smaller a values as shown in Fig. 57. The kinetic energy per unit 

mass, KE1o has a sharp slope in time when the area reduction is greater (Fig. 58). The 

maximum KE1 values are higher for smaller a values and the time corresponding to this 

maximum is higher when a is smaller. The pressure Ievels are higher when a is smaller, 

and the process slows down as shown in Fig. 59. The pressure peak occurs later in time 

when a decreases. As mentioned earlier the efficiency 11 has the same behaviour as KE1 

and its variation is represented in Fig. 60. 

The size of the system (L) has an important effect which is documented in Figs. 61-64. 

The velocity, kinetic energy and pressure increase when L is higher. Their maximum values 

occur later in time if the system size is larger. The changing of area reduction a and system 

size (L) do not affect the water temperature variation. This feature is visible in Eqs. (147)

(148). 

7 CONCLUSIONS 

In this project we considered the thermodynamic aspects of the energy conversion 

process during the sudden thermal interaction between melt particles that are initially 

dispersed through a body of water. This work and its presentation have been evolutionary: 

they began with the simplest model of what occurs at the surface-water interface at the start 

of time (section 2), and continued with more complex models that recommended themselves 

in light of the conclusions that emerged based on the simpler models (sections 3-6). For 

detailed conclusions, the reader is directed to the end of each section and, in particular, to 

sections 2.5, 3.4 and 4.6. In this closing section we review the main points covered in each 

section, and focus in greater detail on the message delivered by the entire study and, 

especially, sections 5 and 6. 

In section 2 we showed that the immediate thermal contact between water and a very hot 

surface leads to high supercritical pressures at the interface. The pressure decays to 

subcriticallevels during a time of order 1o-6 s, when steam forms at the interface. Beyond 

this stage, the interaction is characterized by heat transfer across a growing and expanding 

layer of steam. This new feature-the steam-was incorporated in the dispersed mixture 

model of section 3, in which each hot particle was modeled as a sphere surrounded by a 

steam annulus and immersed in saturated liquid water. The mixture was one-dimensional, 

i.e., it expanded in one direction, away from a plane wall (Fig. 12). Through the numerical 

implementation of the model we wee able to document the effects of the most important 

physical parameters (e.g., particle size, melt mass fraction, mixture volume size) on overall 

mixture quantities such as maximum velocity and pressure, and energy conversion 

efficiency. For the physical parameters that were considered numerically, the efficiency fell 
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Figure 49. Tbe ejection velocity as a function of time and bot particle size. 
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Figure 50. Tbe specific kinetic energy as a function of time and bot particle size. 
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Figure 51. The energy conversion efficiency as a function of time and hot particle size. 
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Figure 52. The effect of the mass fraction on the ejection velocity. 
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Figure 53. The effect of the mass fraction on the specific kinetic energy. 
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Figure 54. The effect of the mass fraction on the mixture temperature. 
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Figure 55. The effect of the mass fraction on the mixture pressure. 
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Figure 56. The effect ofthe mass fraction on the energy conversion efficiency. 
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Figure 57. The effect of the area reduction ratio on the ejection velocity. 
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Figure 58. The effect of the area reduction ratio on the specific kinetic energy. 
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Figure 59. The effect of the area reduction ratio on the mixture pressure. 
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Figure 60. The effect of the area reduction ratio on the energy conversion efficiency. 
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Figure 61. The effect of the system size Oll the ejectioll velocity. 
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Figure 62. The effect of the system size Oll the specific kinetic ellergy. 
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Figure 63. The effect of the system size Oll the mixture pressure. 
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Figure 64. The effect of the system size oll the ellergy collversioll efficiellcy. 
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in the range 1 o-t - 1 o-3. The efficiency was defined as the ratio of the total kinetic energy 

acquired by the mixture mass, divided by the total heat transferred from melt to water. 

A more realistic model of the dispersed mixture model was implemented in section 4. 

The melt-steam-water mixture could expand in a space with cylindrical or spherical 

symmetry. The water volume was not occupied entirely by dispersed melt particles. In 

other words, the dispersed mixture was restricted to a small portion of the water pool, and 

expanded against the remaining amount of pure water. The numerical results, and the effect 

exhibited by physical parameters such as the melt particle size, strengthen the conclusions 

reached based on the unidrectional model of section 3. 

In section 5 we departed from this line of inquiry, and focused purely on the effect of 

heat transfer irreversibility, which is by far the primary reason why the energy conversion 

efficiency is so much smaller than 1. We isolated the heat transfer irreversibility by 

assuming that the thermal interaction occurs without motion of fluid. We performed this 

portion of the study by using exergy analysis, in fact, this is the first time that exergy 

analysiswas applied to the problern of energy conversion processes with regard to nuclear 

reactor safety. In section 6 we brought fluid motion (fluid-flow irreversibility) back into the 

model, by accounting for the escape of the expanding mixture through cracks in the 

confining vessel (Fig. 48). 

The exergy analysis of the melt-water thermal interaction makes two contributions to the 

current view [4,41] on the ceiling value for the efficiency of energy conversion. First, exergy 

analysis Ieads to relatively simple (and, in some cases, analytical) estimates of the exergetic 

efficiency without requiring any assumption regarding the subsequent process in which the 

melt-water mixture expands. Because of their inherent irreversibility, all subsequent processes 

are bound to decrease the efficiency below the Ievels reported in Figs. 44-47. 

The second contribution of exergy analysis is that it reveals the important role that is played 

by the mass ratio mm/mw. This local parameter deserves to be monitored closely in future 

experiments. As shown in Figs. 44-47, when the order of magnitude of the mass ratio is less 

than 1, the efficiency is of the same order as the mass ratio. This is an extremely important 

result, because the melt-water interaction Ieads to steam explosions only if the melt is mixed 

volumetrically with large amounts of water, which are required for rapid steam generation. In 

other words, steam explosions are associated with the mm/mw << 1limit, and this means that 

the corresponding efficiency is orders of magnitude smaller than 1. For example, in the 

experiments documented in ref. [ 42] the ratio of the total melt and water masses at the start of 

the experiment was between 1 and 2 percent. The melt/ water mass ratio in the actual 

interaction zone is highly time dependent, and decreases in time. 

The conclusion that Tl ..... mm/mw << 1 is important when viewed on the background of the 

current Iiterature on thermodynamic models of melt-water interaction. The most influential 
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modelwas the first [43], in which it was assumed that the mixed state (e) ofthe present model 

(Fig. 39) is followed by a reversible and adiabatic expansion executed by the water. The latter 

is illustrated as the process (e)-(2) in Fig. 65. The Hicks and Menzies model has led to 

efficiencies of the order of 30 percent, which are practically independent of the mass ratio 

mm/mw. This is why the 30-percent efficiency is mentioned in the Iiterature without any 

reference to the value of mm/mw. For example, Turland and Dobson [ 41] remind us that the 

efficiency is given by the expression 1- (Po/P2)(k-l}/k:, where Pe and Po are the end pressures 

(Fig. 65) and k = cp/cv in the ideal gas model used for water. If we substitute Pe/Po- 10 and k 

= 1.18 into this expression we obtain an efficiency of0.3. 

It pays to take an even closer look at the Hicks and Menzies model by using the notation 

employed in section 5. In Fig. 65 it is assumed that mm is an incompressible substance that 

remains single-phase from Ti toTe. The specific heat of this substance is Cm. The water 

behaves as an ideal gas with constant specific heats cp and Cv during the entire process (i)-(e)

(2). According to this model, the frrst-law analysis of the process (i)-(e) yields 

(161) 

where ~ = mmcm/(mwcv) and 'ti = Ti/To. The work performed on the environment by mw 

during the reversible and adiabatic expansion (e)-(2) is 

(i) (e) (2) 

Figure 65. Model in which the water content expands isentropically and adiabatically beyond 

the thermal mixing modeled in Fig. 39. 
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W- = mwRTe [1- ( Jl + 1 )(k-1)/k] 
e 2 k- 1 Jl 'ti + 1 

(162) 

The 30-percent efficiency mentioned above is defmed by dividing W e-2 by the initial excess 

energy of the melt, mmcm (Ti - To). We make the observation that in view of the present 

exergy analysis it is more appropriate to define the Hicks and Menzies efficiency based on the 

initial exergy, which is all due to the melt at state (i), Si= mmcmTo('ti- 1-ln 'ti): 

(163) 

This expression has been plotted in Fig. 66 for k = 1.3. Through the heat capacity ratio Jl, 
the mass ratio mm/mw has practically no effect on Tl" when mm/mw << 1. As pointed out by 

1 

- 'tj = 8 \ 1~ \ 
~ 

k=l.3 
0.1 I I I I I I I I 

0.01 0.1 1 

Figure 66. The energy conversion efficiency according to the model of Fig. 65. 
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Hall [44], the high values maintained by 11" in this range are due to the unrealistic assumption 

that the water expands isentropically from (e) to (2). This observation served as a starting 

point for more recent models [ 44, 45] that brought the efficiency curve down to values and 

trends comparable to those of Figs. 44-47 in the limit mm/mw << 1. Once again, exergy 

analysis led us not only to the theoretical ceiling, but also did away with the need to model the 

processes that may occur beyond state (e). Exergy analysis served the additional purpose of 

reminding us that the proper efficiency definition is the exergy-based Eq. (108), and that the 

definitions of efficiencies such as 11" vary in accordance with the assumed features of the 

model. 
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