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Abstract

The two-point correlation technique and the invariant theory are used to study the tur-
bulence closure for dissipation correlations in turbulent natural convection. Analytically,
an equation for the dissipation rate of turbulence kinetic energy is derived. The struc-
ture of this equation is analysed by using direct numerical simulation data (DNS) of
turbulent Rayleigh-B�enard convection in air and sodium and of internally heated nat-
ural convection. The local homogeneity assumption is found to hold for the two-point
velocity correlations and is used to simplify the analytical equation. For the two-point
temperature-velocity correlation, on the other hand, it is shown that this assumption is
not valid for Rayleigh-B�enard convection.

Using the DNS data, the anisotropy of the Reynolds stresses in natural convection is
quanti�ed in the anisotropy invariant map. A new model is proposed for the sink term
in the dynamic equation for the dissipation rate which is based on the invariants of the
anisotropy tensor of the Reynolds stresses. A model is also proposed for the buoyancy
production term, which is of special importance in pure natural convection 
ows. For the
dissipation correlation in the equation for the turbulent heat 
ux a model is proposed
which is consistent with that for the buoyancy production term in the dissipation equa-
tion. Both models developed do properly account for wall e�ects without any explicit
wall corrections, but involving only the 
uid Prandtl number and the ratio of turbulence
thermal to mechanical time scale.
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Nomenclature

aij anisotropy tensor of Reynolds stresses, Eq. (5.2)
A� heat 
ux anisotropy invariant, Eq. (5.27)
D channel height
D� viscous destruction in the dissipation equation, Eq. (4.1)
II second order invariant, Eq. (5.3)
III third order invariant, Eq. (5.4)
F invariant function, Eq. (5.17)
g gravity
G buoyancy production in k-equation, Eq. (5.23)
Gr Grashof number, Gr = Ra=Pr or Eq. (2.5), respectively
J invariant function, Eq. (5.18)
k turbulent kinetic energy, k = 1

2
uiui

L invariant function, Eq. (5.19)
p pressure
qv volumetric heat soure
Pet turbulence Peclet number, Eq. (2.7)
Pr Prandtl number, Eq. (2.2)
P j
� production term in the dissipation equation (j = 1; 2; 3; 4), Eq. (4.1)

P�b buoyant production term in the dissipation equation, Eq. (4.5)
R turbulence time scale ratio, Eq. (5.25)
Ni number of mesh cells in xi-direction (i = 1; 2; 3)
Ra Rayleigh number, Eq. (2.1)
RaI internal Rayleigh number, Eq. (2.3)
Ret turbulence Reynolds number, Eq. (2.6)
Tb buoyant production term in the �h-equation, Eq. (5.1)
Ts sink term in the �h-equation, Eq. (5.1)
TW wall temperature
Ui components of the mean velocity (i = 1; 2; 3)
ui components of the 
uctuating velocity (i = 1; 2; 3)
u0i components of the 
uctuating velocity at point B
u0 velocity scale used for normalisation, u0 = (g��TWD)

1=2

Xi periodicity length in xi-direction (i = 1; 2)
xi coordinates in horizontal (i = 1; 2) and vertical (i = 3) direction
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Greek symbols

� 
uid thermal di�usivity
� thermal expansion coe�cient
�ij Kronecker symbol
� Laplace operator (�x = @2=@xl@xl)
� dissipation rate, Eq. (3.7)
�h homogeneous part of the dissipation rate, Eq. (3.7)
�ij dissipation tensor, Eq. (1.3)
�ij;h homogeneous part of the dissipation tensor, Eq. (3.6)
�i� dissipation term in the ui�-equation, Eq. (1.4)
�� dissipation of temperature variance, Eq. (5.26)
� 
uctuating temperature
� mean temperature
� 
uid thermal conductivity
� 
uid kinematic viscosity
�k coordinate for two-point correlation function
�� pressure term in the �-equation, Eq. (4.1)
� 
uid density
� mechanical turbulence time scale, � = k=�
�� turbulence thermal time scale, �� = �2=(2��)
� viscous destruction in the �-equation, Eq. (4.1)
 coe�cient of the sink term in the modeled �-equation, Eq. (5.12)
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1 Introduction

Computational 
uid dynamics and computational heat and mass transfer are emerging as
major tools for solving 
ow problems encountered in engineering applications. To ensure
the physical and technical relevance of the numerical results, reliable modelling of turbu-
lence is of outstanding importance. In the Research Center Karlsruhe for example, the
Computer code FLUTAN [25] is developed for single-phase thermo and 
uiddynamical
problems in two and three dimensions. To extend the �eld of applicability of the code to

ows in
uenced or dominated by buoyancy, an improved turbulence model for buoyant

ows (TMBF [3]) was developed and implemented in the FLUTAN code.

In engineering computer codes, statistical turbulence models based on Reynolds-averaging
of the governing instantaneous equations are used to account for the e�ect of turbulence
on 
ow and heat transfer. In sophisticated statistical turbulence models approxima-
tions of the full transport equations for the unknown turbulent stresses and turbulent
heat 
uxes are solved. In analytical form, the equations describing the evolution of the
Reynolds stresses uiuj and turbulent heat 
uxes �ui are given by:

@uiuj
@t

+ Uk
@uiuj
@xk

+ ujuk
@Ui

@xk
+ uiuk

@Uj

@xk

+
@uiujuk
@xk

+
1

�
[uj

@p

@xi
+ ui

@p

@xj
] + 2 �

@ui
@xk

@uj
@xk

� ��xuiuj = 0; (1.1)

D�ui
Dt

=
@

@xk

(
�
@�

@xk
ui + ��

@ui
@xk

� �uiuk

)
� uiuk

@T

@xk
� �uk

@Ui

@xk
� gi��2

� �

�

@p

@xi
� (� + �)

@�

@xk

@ui
@xk

: (1.2)

The two terms in frames in equations (1.1) and (1.2) represent the dissipation correlations
of the Reynolds stresses

�ij = �
@ui
@xk

@uj
@xk

(1.3)

and of the turbulent heat 
ux rates, respectively:

�i� = (� + �)
@�

@xk

@ui
@xk

: (1.4)

Both, �ij and �i� are unknown. As they represent important sink terms in the above
equations, adequate modelling of both dissipation correlations is of special relevance for
reliable 
ow prediction. However, modelling of these dissipation terms is in particular
di�cult because of a lack of adequate data for the validation of the fundamental closure
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assumptions. With the development of advanced numerical simulation techniques, it is
nowaday possible to test various closure assumptions directly against a direct numerical
simulation (DNS) database. While such databases are even with todays computer power
available only for low turbulence intensities, they nevertheless allow for a signi�cant
progress towards the development of improved turbulence closures.

Based on the two-point correlation technique, �rst introduced by Chou [2] and subse-
quently improved by Kolovandin & Vatutin [15], Ye [32] and Jovanovi�c, Ye & Durst [12]
derived analytically an equation describing the dynamics of the dissipation correlation
of the Reynolds stresses. They used direct numerical simulation data for a variety of
turbulent shear 
ows to analyse the structure of this equation and to investigate in detail
closure assumptions for the dissipation rate.

For 
ows in
uenced or dominated by buoyancy it is recognized that turbulence modelling
requires special care [8]. The in
uence of the molecular Prandtl number Pr, the turbu-
lence thermal to mechanical time scale ratio R, and the turbulence Reynolds number
Ret has to be carefully considered in order to obtain accurate and more universal models
[26, 28]. While the investigations of Ye [32] and Jovanovi�c et al. [12] are restricted to
DNS data for isothermal 
ows, it appears promising to apply their method to investi-
gate and develop closure assumptions for the turbulent dissipation rate for pure natural
convection 
ows. This is the subject of the present contribution.

In section 2 we present the natural convection 
ows under investigation, as there are
the Rayleigh-B�enard convection and the convection in a horizontal 
uid layer heated
internally by a volumetric heat source. For Rayleigh-B�enard convection the DNS data
of W�orner & Gr�otzbach [28] for air and sodium are used, while for the internally heated
convection the DNS data of W�orner, Schmidt & Gr�otzbach [22, 30] are utilized. In
section 3, the two-point correlation technique is introduced and the dynamic equation
which governs the dissipation rate of turbulent kinetic energy in buoyant 
ows is analysed.
In section 4, the assumption of local homogeneity which is used to simplify the derived
equation of the dissipation rate is veri�ed for the two-point velocity correlations by use
of the DNS data. In section 5, based on the invariant theory introduced by Lumley &
Newman [19], new models for the sink term and the buoyant production in the dissipation
rate equation are derived. Important parameters of the new models are the 
uid Prandtl
number and the time scale ratio R. In section 6, the results obtained in section 5 are
used to develop a consistent model for the dissipation term �i� in the equation for the
turbulent heat 
uxes ui�.
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2 Turbulent natural convection

To analyse the structure of the analytically derived equation for the dissipation rate � of
turbulence kinetic energy, DNS data of two types of pure natural convection 
ows are
utilized. The 
ows considered are the Rayleigh-B�enard convection and the convection in
an internally heated 
uid layer, which are shortly introduced in the next two subsections.
Subsequently, some details of the TURBIT computer code and the DNS data are given.

2.1 Rayleigh-B�enard convection

The Rayleigh-B�enard convection is a simple physical model to investigate heat transfer
phenomena by natural convection [16]. The 
uid is enclosed in an - from a theoretical
point of view - in�nite horizontal channel which is bounded vertically by two rigid isother-
mal walls separated by distance D, see Figure 2.1. The lower wall with temperature TW1

is heated and the upper wall with temperature TW2 is cooled, i.e. �TW = TW1�TW2 > 0.

Physically, the Rayleigh-B�enard convection is characterized by two non-dimensional num-
bers. These are the Rayleigh number

Ra =
g��TWD

3

��
(2.1)

and the Prandtl number

Pr =
�

�
: (2.2)

Here, � = kinematic viscosity, � =thermal di�usivity, g =gravity, and � = thermal
expansion coe�cient. The ratio between Rayleigh number and Prandtl number represents
a further dimensionless number, known as the Grashof number Gr = Ra=Pr.

X1

X2
D

TW2

TW1

x1

x3 x2

g

q

q

Figure 2.1: Sketch of geometry and heat 
ux for Rayleigh-B�enard convection.
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2.2 Internally heated convection

The natural convection in a horizontal 
uid layer which is internally heated by a homo-
geneous volumetric heat source qv is of interest to geophysics, to astrophysics, as well
as to some special applications of nuclear engineering [17]. The geometry is sketched in
Figure 2.2. In the present study, the lower and upper wall are isothermal and obey the
same temperature, i.e. TW1 = TW2. Due to the volumetric heat source the temperature in
the layer exceeds the wall temperatures. However, the maximum temperature di�erence
�Tmax across the layer is not known a priori. Therefore, instead of using the Rayleigh
number de�ned by Eq. (2.1) an internal Rayleigh number RaI is de�ned, which does not
involve any temperature di�erence, but is based on the volumetric heat source:

RaI =
g�qvD

5

���
: (2.3)

Here, � is the thermal conductivity. The internal Rayleigh number RaI is related to the
external Rayleigh number Ra via RaI = Ra=Da, where Da is the Damk�ohler number

Da =
qvD

2

��Tmax
: (2.4)

Finally, for internally heated convection the de�nition of the Grashof number is

Gr =
RaI
PrDa

: (2.5)

X1

X2
D

TW2

TW1

x1

x3 x2

g

q1

q2

qv

Figure 2.2: Sketch of geometry and heat 
ux for internally heated natural convection.
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2.3 Computer code TURBIT

The results of the direct numerical simulations to be analysed in the present study were
computed with the TURBIT code [5]. It solves the three-dimensional time-dependent
conservation equations for mass, momentum, and thermal energy for a Newtonian 
uid.
The formulation is for an incompressible 
uid, where the Boussinesq approximation is
employed for the buoyancy force. The equations and variables are non-dimensionalised
by the following quantities: channel height D, velocity u0 = (g��TwD)

1=2, time D=u0,
pressure �u20, and temperature di�erence �Tmax. The discretisation is by a �nite volume
method, where second order central di�erences de�ned on a staggered grid are used for
both, the convective and di�usive terms. The time integration method, which involves
the solution of a Poisson equation for pressure, is of second order for the convective and
of �rst order for the di�usive terms.

To account for the in�nite horizontal extension of a 
uid layer, TURBIT allows for the
use of periodic boundary conditions in x1- and x2-direction. It is important to choose the
non-dimensional periodicity length X1 and X2 (normalised by D) large enough so that
the computational domain covers all the physically relevant macroscopic length scales.
On the other hand, in a direct numerical simulation the mesh width must be �ne enough
to resolve even the smallest scales of turbulence. Details about these mesh requirements,
about the initial conditions, the simulation strategy, and the veri�cation of the DNS data
by experiments can be found for the simulations of the Rayleigh-B�enard convection in
[27] and for the internally heated convection in [22, 30]. In these papers also the patterns
and dynamics of the convective layers are discussed in detail.

For the present investigations, statistical quantities evaluated from the three-dimensional
time-dependent DNS data are of main interest. Therefore, the averaging procedure used
to compute statistical data from the DNS results is shortly explained. For the geometry
and boundary conditions used in the direct numerical simulations, statistical data are
homogeneous with respect to the horizontal directions. For this reason, the statistical
evaluation of a quantity � is performed by ensemble averaging of the DNS data over
horizontal planes. In addition, the data are averaged over time. Typically 10 to 40
di�erent datasets are used, each corresponding to a certain problem time. Of course,
only such datasets are taken into account for which a steady state of global statistical
quantities has been identi�ed.

2.4 Direct numerical simulation data

In the present report DNS data [31] for Rayleigh-B�enard convection in air (Pr = 0:71)
and sodium (Pr = 0:006) at di�erent Rayleigh numbers but similar Grashof numbers are
utilized. The relevant parameters of the simulations are listed in Table 2.1, where also
one simulation of internally heated convection (Pr = 7) is included.
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Pr Ra Gr X1;2 N1 N2 N3 Ret Pet
0.006 6,000 106 8 200 200 31 497 3
0.006 12,000 2� 106 8 250 250 39 1081 6.5
0.006 24,000 4� 106 8 250 250 49 2240 13
0.71 381,000 5:4� 105 7.92 180 180 32 109 76
0.71 630,000 8:9� 105 7.92 200 200 49 154 107

RaI
7 108 4:1� 105 4 160 160 55 4 28

Table 2.1: Simulation parameters for Rayleigh-B�enard convection and internally heated
convection.

The DNS results will be used to interprete the turbulent dissipation rate. To quantify the
turbulence intensity of the di�erent simulations, in Table 2.1 two dimensionless numbers
which are suitable for this purpose are also included. These are the turbulence Reynolds
number

Ret =
k2

��
(2.6)

and the turbulence Peclet number

Pet =
k2

��
= Pr �Ret; (2.7)

where k = 1

2
uiui is the turbulence kinetic energy. The values given in Table 2.1 for

Ret and Pet are at channel midwidth, i.e. x3 = 0:5. For liquid sodium the values of
the turbulence Reynolds number are quite high. However, the very low values of the
turbulence Peclet number indicate that the temperature �eld is governed by the high
thermal conductivity and is predominantly regular. For the internally heated convection
Ret is rather low. Therefore, the DNS results of this simulation will not be used for
model development. However, they will be used to check the application range of the
models developed on the basis of DNS data for Rayleigh-B�enard convection.
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3 Statistical interpretation of the dissipation rate �

The procedure for treating the dissipation correlations is based on the application of the
two-point correlation technique that was originally developed by Chou [2] and subse-
quently re�ned by Kolovandin & Vatutin [15].

3.1 Two-point correlation technique

A new coordinate system relative to two arbitrary points A and B, as shown in Figure
3.1, is de�ned in order to separate the e�ects of local character from the large-scale 
uid
motions:

�k = (xk)B � (xk)A; (3.1)

(xk)AB =
1

2
[(xk)A + (xk)B]: (3.2)

The partial di�erential operators at points A and B as function of (xk)AB and �k are
given as follows [10]:

 
@

@xk

!
A

=
1

2

 
@

@xk

!
AB

� @

@�k
; (3.3)

Figure 3.1: Coordinate system used to de�ne the two-point correlation functions.
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; (3.4)
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@xk
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=
1
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@xk@xk

!
AB

� @2

@�k@�k
: (3.5)

Applying the operator (3.5) to the velocity 
uctuation product at two points, (ui)A(uj)B,
taking the average and setting �k equal to zero, we obtain:

�ij = �
@ui
@xk

@uj
@xk

=
1

4
��xuiuj � �(��uiu0j)0: (3.6)

The trace � of this tensor is:

� = �ss = �
@us
@xk

@us
@xk

=
1

4
��xusus| {z }

inhomogeneous

� �(��usu0s)0| {z }
homogeneous

: (3.7)

The prime 0 in Eq. (3.6) and Eq. (3.7) indicates a value for the two-point correlation
function at point B ((ui)A(uj)B = uiu0j) and the subscript 0 represents the zero separation
� = 0 between the two points. Equation (3.7) is due to Kolovandin & Vatutin [15].

3.2 Homogeneous and inhomogeneous part of �

According to Eq. (3.6), the tensor �ij is composed of an inhomogeneous part 1

4
��xuiuj

and a homogeneous part ��(��uiu0j)0. Jovanovi�c et al. [12] used DNS data of forced
turbulent channel 
ow [20] and computed both parts of � according to Eq. (3.7). The
results are given in Figure 3.2, where x+2 is the non-dimensional wall distance. It was
obtained that the inhomogeneous part of �ij takes a half of the total dissipation rate at
the wall and disappears remote from the wall.

In Figures 3.3 - 3.5 we show the vertical distribution of the homogeneous and inhomoge-
neous part of � calculated from the DNS data for Rayleigh-B�enard convection in air and
sodium. Because of the symmetry of the pro�les, only the results in the lower half of the
channel are shown, i.e. 0 � x3 � 0:5. While the near-wall distribution of the grid points
in the direct numerical simulations of the Rayleigh-B�enard convection is �ne enough to
resolve the viscous and thermal boundary layers, Figures 3.3 - 3.5 show that it is not �ne
enough to calculate the detailled near-wall behaviour of the terms in Eq. (3.7). Never-
theless, the tendency of the distributions of homogeneous and inhomogeneous part of �
for Rayleigh-B�enard convection is similar to that obtained from DNS data for turbulent
channel 
ow. The inhomogeneous part of �ij is of importance near the wall but vanishes
far away from the wall.
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Figure 3.2: Distributions of homogeneous and inhomogeneous part of �. Results of Jo-
vanovi�c et al. [12]. DNS data of forced turbulent channel 
ow [20].

Figure 3.3: Distribution of homogeneous and inhomogeneous part of �. DNS data of
Rayleigh-B�enard convection (Pr = 0:71, Ra = 381; 000).
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Figure 3.4: Distribution of homogeneous and inhomogeneous part of �. DNS data of
Rayleigh-B�enard convection (Pr = 0:006, Ra = 6; 000).

Figure 3.5: Distribution of homogeneous and inhomogeneous part of �. DNS data of
Rayleigh-B�enard convection (Pr = 0:006, Ra = 24; 000).
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3.3 Wall behaviour of �ij

The wall behaviour of the tensor �ij can be also analysed by expanding a Taylor series
near the wall for the instantaneous quantities:

u1 = a1x3 + a2x
2
3 + � � � ;

u2 = b1x3 + b2x
2
3 + � � � ;

u3 = c2x
2
3 + � � � :

9>=
>; (3.8)

With the above expansions, the velocity auto-correlations can be written as:

u21 = a21x
2
3 + � � � + � � � + � � � ;

u22 = b21x
2
3 + � � � + � � � + � � � ;

u23 = c22x
4
3 + � � � :

9>>=
>>; (3.9)

From equation (3.8) and the de�nition of �ij one obtains for x3 ! 0 the result:

�11 = �a21 + � � � + � � � + � � � ;
�22 = �b21 + � � � + � � � + � � � ;
�33 = 4�c22x

2
3 + � � � ;

�ss = �(a21 + b21) + � � � + � � � + � � � :

9>>>>=
>>>>;

(3.10)

The inhomogeneous part of � near the wall can be read:

1

4
��x(usus) =

1

2
�(a21 + b21) + � � � : (3.11)

A comparison of Eq. (3.10) for �ss with Eq. (3.11) reveals that the inhomogeneous part of
� contributes to half of the dissipation rate � at the wall. This analytical result con�rms
the result obtained from the channel 
ow DNS data for the wall behaviour, shown in
Figure 3.2. However, the near wall grid resolution of the DNS data for Rayleigh-B�enard
convection is not su�ciently �ne to show this wall limiting behaviour, see Figures 3.3 -
3.5.

3.4 Dynamic equation for �h

As shown in section 3.1, the dissipation correlation �ij of the Reynolds stress uiuj can be
decomposed into two parts. The inhomogeneous part is known by second order turbulence
closure. Therefore, we need to consider only the homogeneous part �ij;h = ��(��uiu0j)0.
A dynamic equation for �ij;h can be derived by applying the operator ��� to the dynamic
equations for the two point velocity correlation (ui)A(uj)B and taking the limit �k ! 0
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(see [12]). Since the components of the dissipation tensor �ij can be analytically inter-
preted in terms of its trace �ss and the second-order velocity correlation uiuj [2, 15], we
are interested only in the contracted form of the equations. It reads as follows:

�� @
@t
(��usu0s)0 � �Uk

@

@xk
(��usu0s)0 = �[(��uku0s)0 + (��usu0k)0]
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+
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!
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+ ��gs[(���u0s)0 + (��us�0)0]

+
�

2

@

@xk
[(��usuku0s)0 + (��usu0su

0

k)0]

+�[��
@

@�k
(usu0su

0

k � usuku0s)]0 +
�

2�

@

@xs
[(��pu0s)0 + (��usp0)0]

��
�
[��

@

@�s
(pu0s � usp0)]0 � 1

2
�2�x(��usu0s)0 � 2�2(����usu0s)0: (3.12)

Chou [2] has shown that this complicated equation can be simpli�ed, if the assumption
of local homogeneity for the small scale structure of turbulence is applied. With this
assumption the following properties which are valid for homogeneous turbulence can be
used (see [10]):

usu0k = uku0s; (3.13)

usu0su
0

k = �usuku0s; (3.14)

pu0s = �usp0: (3.15)

Di�erentiating equations (3.13) - (3.15) and setting � = 0, we obtain the following rela-
tions:

(
@

@�
usu0k)0 � (

@

@�
uku0s)0 = 0; (3.16)

(��usu0su
0

k)0 + (��usuku0s)0 = 0; (3.17)

(��pu0s)0 + (��usp0)0 = 0: (3.18)

Substituting equations (3.16) - (3.18) into Eq. (3.12), we get the approximate equation
for the homogeneous part of the dissipation rate �h = ��(��usu0s)0:
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@xk
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@

@xk
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@2

@�l@�k
usu0s

!
0

@Uk

@xl
� 2�

 
��

@

@�k
usuku0s

!
0

+
1

2
��x�h � 2�2(����usu0s)0: (3.19)

Jovanvovi�c et al. [12] used the DNS data of turbulent channel 
ow [20] to test the
validity of the assumption of locally homogeneous turbulence. They found that away
from the wall equation (3.16) and (3.18) can be used. However, the applicability of the
assumption of local homogeneity for the second-order derivatives of the triple correlation,
Eq. (3.17), could not be justi�ed because of the lack of the appropriate correlations from
the simulation database. Hence they kept the term �

2

@
@xk

[(��usuku0s)0 + (��usu0su
0

k)0] in
the governing equation of �h.

The term ��gs[(���u0s)0+(��us�0)0] in Eq. (3.19) accounts for the in
uence of buoyancy.
In isothermal 
ows, this term does not appear and thus it was not considered in [12].
For homogeneous turbulence, similar to Eq. (3.15) and Eq. (3.18) the relations

�u0s = �us�0 (3.20)

and
(���u0s)0 + (��us�0)0 = 0 (3.21)

should hold. Thus, provided that the assumption of local homogeneity for small scales
of turbulence is also valid for two-point temperature-velocity correlations, the above
buoyancy term should vanish. In the next section, the DNS data for turbulent Rayleigh-
B�enard convection will be used to test the validity of the assumption of locally homo-
geneous turbulence for both, the two-point velocity correlations of third rank and the
two-point temperature-velocity correlations.
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4 Validation of the approximate equation for �h

In section 3, the assumption of local homogeneity was introduced in order to simplify the
derived equation for �h. However, the validity of this assumption for the Rayleigh-B�enard
convection has still to be shown. In particular, there are two main open questions which
need to be clari�ed and which will be addressed in this section by utilizing the DNS data
for Rayleigh-B�enard convection. These questions concern the validity of the assumption
of local homogeneity for the derivatives of (i) two-point velocity correlations of third rank
and (ii) of two-point temperature-velocity correlations. To perform this task, we �rst give
the exact transport equation for � derived from the Navier-Stokes equations [24]:

D�

Dt
= �2� @ui

@xl

@uk
@xl

@Ui

@xk| {z }
P 1
�

�2� @ui
@xk

@ui
@xl

@Uk

@xl| {z }
P 2
�

�2�uk @ui
@xl

@2Ui

@xk@xl| {z }
P 3
�

�2� @ui
@xl

@uk
@xl

@ui
@xk| {z }

P 4
�

�2��gi @�
@xl

@ui
@xl| {z }

P�b

�� @

@xk
[uk

@ui
@xl

@ui
@xl

]| {z }
T�

�2�

�

@ui
@xl

@2p

@xi@xl| {z }
��

� 2�2
@2ui
@xl@xn

@2ui
@xl@xn| {z }

�

+��x�| {z }
D�

: (4.1)

In Eq. (4.1), the terms P 1
� - P 4

� belong to the production of �. The other terms on the
right-hand side of Eq. (4.1) represent the buoyancy production P�b, the turbulent di�usion
(T� + ��), the viscous destruction � of �, and the viscous di�usion D�. In section 4.3,
these terms are computed from the direct numerical simulation data and the results are
used to analyse the contribution of each term in the approximate equation for �h.

4.1 Two-point velocity correlations of third rank

In order to determine the applicability of the local homogeneity assumption for the
derivatives of two-point velocity correlations of the third rank, i.e. to test the validity of

(��usuku0s)0 + (��usu0su
0

k)0 ' 0; (4.2)

the following correlation is considered by means of the two-point correlation technique:

�
@

@xk

@ui
@xl

@ukui
@xl

=
1

4
�
@

@xk
�xuiukui � 1

2
�
@

@xk
[(��u0iukui)0 + (��uiu0ku

0

i)0]: (4.3)

If the assumption of local homogeneity is valid, equation (4.3) can be approximated as
follows:

�
@

@xk

@ui
@xl

@ukui
@xl| {z }

Tl

' 1

4
�
@

@xk
�xuiukui| {z }
Tr

: (4.4)
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Figure 4.1 shows the comparison between the two terms Tl and Tr in Eq. (4.4). The result
supports the validity of the approximation given by Eq. (4.4) except for a few points in
the vicinity of the wall.

4.2 Two-point temperature-velocity correlations

Using the two-point correlation technique, the buoyant production P�b of � can be written
as

P�b = �2��gi @�
@xl

@ui
@xl

= �1

2
��gi�x�ui + ��gi[(���u0i)0 + (��ui�0)0]: (4.5)

If the temperature-velocity correlation is locally homogeneous, then

(���u0i)0 + (��ui�0)0 ' 0 (4.6)

and P�b can be approximated as

P�b ' �1

2
��gi�x�ui: (4.7)

The DNS data of Rayleigh-B�enard convection with the largest turbulence Peclet number,
i.e. air with Ra = 630; 000 and Pet = 107 at x = 0:5, are chosen to test approximation
(4.7). Figure 4.2 shows a comparison between the data for P�b obtained from the direct
numerical simulation and the right-hand side of relation (4.7). It appears that the as-
sumption of local homogeneity for the two-point temperature-velocity correlations is not
applicable here. This is probably due to the rather low value of the turbulence Peclet
number. However, while the turbulence Reynolds number is only a factor Pr�1 � 1:4
higher than Pet, the statistical state of the small structure of the velocity �eld is, at least
away from the wall, found to be locally homogeneous (see section 4.1).

4.3 Budget of the approximate equation for �h

As a result of the analysis in section 4.1, the derivatives of the two-point velocity cor-
relations of third rank are neglected in Eq. (3.19). Those are usually interpreted as the
turbulent transport in the � equation. The derivatives of the two-point temperature-
velocity correlation in Eq. (3.19), however, are kept because the assumption of local
homogeneity is not valid for this term. From the DNS data, all terms in the transport
equation for �, Eq. (4.1), and for �h, Eq. (3.19), can be computed. The budgets gained by
this procedure for the DNS data of Rayleigh-B�enard convection in air (Ra = 381; 000) are
shown in Figure 4.3 (a,b) for Eq. (4.1) and for Eq. (3.19), respectively. With exception of
the �rst few grid points close to the wall, the derived equation (3.19) balances the data
reasonably well.
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Figure 4.1: Distribution of correlation Tl and Tr computed from the DNS data for
Rayleigh-B�enard convection in air (Ra = 381; 000, Pr = 0:71).

Figure 4.2: Distribution of P�b and right-hand side of Eq. (4.7) computed from the DNS
data for Rayleigh-B�enard convection in air (Ra = 630; 000, Pr = 0:71).
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Figure 4.3: Budget computed from DNS data (Ra = 381; 000, Pr = 0:71). (a)
Budget of � Eq. (4.1): ||, P 1

� + P 2
� + P 3

� ; - - -, P 4
� ; { { {, P�b; {{ {{ {{,

T� + ��; 4, D�; �, ��; �, sum of all terms. (b) Budget of Eq. (3.19):
||, T1 = �2�[��(@=@�k)(usuku0s)]0; - - -, T2 = 1=2��x�h; { { {, T3 =
�2�2(����usu0s)0; {{ {{ {{, T4 = ��gs[(���u0s) + (��us�0)]; �, sum of all
terms.
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5 Modelling of the approximate equation for �h

In fully developed turbulent Rayleigh-B�enard convection the long-time averaged mean
velocity is zero, i.e. Ui = 0. As a consequence, in the approximate equation (3.19) for
the homogeneous part of the turbulent dissipation rate all terms containing Ui drop out,
and the equation simpli�es to the form

@�h
@t

' ��gs[(���u0s)0 + (��us�0)0]| {z }
Tb

�2�2(����usu0s)0 � 2�

 
��

@

@�k
usuku0s

!
0| {z }

Ts

+
1

2
��x�h:

(5.1)

In this section, models for the two remaining important closure terms for pure natural
convection will be developed, as there are (i) the sink term Ts and (ii) the buoyant
production term Tb. To prepare the development of these models, in the next subsection
we �rst give an introduction to the invariant theory, and subsequently present the new
models.

5.1 Anisotropy invariant map

In order to quantify the anisotropy and to de�ne the state of turbulence, Lumley &
Newmann [19] introduced the anisotropy tensor for the Reynolds stresses

aij =
2uiuj
k

� 1

3
�ij (5.2)

and its second and third scalar invariants

II = aijaji; (5.3)

III = aijaikajk: (5.4)

Here, k = 1

2
usus is the turbulent kinetic energy and �ij is the Kronecker delta tensor.

The relationships between II and III are for axisymmetric turbulence

II =
3

2
(
4

3
jIIIj)2=3 (5.5)

and for two-component turbulence

II =
2

9
+ 2III: (5.6)

By both invariants the anisotropy invariant map (AIM) is de�ned, as shown in Figure 5.1.
In the AIM, all physically realizable turbulence is de�ned [18].
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Figure 5.1: Anisotropy invariant map of Reynolds stress. �, DNS data for forced channel

ow (Mansour et al. 1988). Ret ' 240 in the channel center.

Using the DNS data for turbulent channel 
ow [20] and the present DNS data for
Rayleigh-B�enard convection, the anisotropy invariant maps for aij are shown in Fig-
ures 5.1 - 5.3. In these �gures, each marker corresponds to a certain wall distance x+2
or x3, respectively. The upper boundary of the AIM is described by Eq. (5.6) and char-
acterises two-component turbulence, where one velocity component is zero. Invariants
corresponding to positions very close to the wall locate near this boundary. In this case,
the Reynolds stress component normal to the wall is negligible near the wall. The right-
hand and left-hand boundaries of the AIM represent axisymmetric turbulence. With
increasing wall distance, the data of the invariants follow these boundaries and tend
towards isotropic turbulence (i.e. II = III = 0) in the center of the channel.

For Rayleigh-B�enard convection in air, the anisotropy invariant map is shown in Fig-
ure 5.2 for the two di�erent Rayleigh numbers, Ra = 381; 000 and Ra = 630; 000. Start-
ing close the wall (x3 � 0), the invariants II and III follow the left-hand boundary of
the AIM. For x3 � 0:2 (and x3 � 0:8, respectively) II and III are almost zero, and thus
the turbulence is almost isotropic. With further increase of the wall distance x3 ! 0:5,
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Figure 5.2: Anisotropy invariant map for Rayleigh-B�enard convection in air (Pr = 0:71).
�: Ra = 381; 000 (Ret = 109); +:, Ra = 630; 000 (Ret = 154).

the invariants change their location in the AIM and now follow the right-hand boundary.

The invariants for Rayleigh-B�enard convection in liquid sodium are shown in Figure 5.3
for the Rayleigh numbers Ra = 6; 000 and Ra = 12; 000. For positions away from the
wall, the invariants locate near the right-hand boundary of the AIM. In general, the
invariants reside near the right-hand boundary of the AIM, if two of the components of
uiuj are nearly equal while the third one is larger. For the left-hand boundary, the third
component is smaller while the other two components are about equal.

To explain the location of the invariants II and III in the AIM for Rayleigh-B�enard
convection in air and sodium, we have to discuss statistics of the velocity �eld and
mechanims of the convective heat transfer. In Rayleigh-B�enard convection in air at the
Rayleigh numbers considered, the vertical pro�les of u21 and u

2
2 are almost identical, and

the trace components of the Reynolds stress tensor behave as u21 � u22 > u23 in the range
0 < x3 < 0:2 and 0:8 < x3 < 1, while in the center of the channel u23 > u21 � u22 (see
page 78 in [27]). This is because in the simulations for Rayleigh-B�enard convection in air
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Figure 5.3: Anisotropy invariant map for Rayleigh-B�enard convection in sodium (Pr =
0:006). 4: Ra = 6; 000 (Ret = 497); �: Ra = 12; 000 (Ret = 1081).

the heat transfer is dominated by plumes, which intermittently release from the unstably
strati�ed thermal boundary layers at the top and bottom wall. After release from the top
or bottom wall, respectively, the plumes are accelerated in the isothermal core region by
buoyancy forces and eventually penetrate the boundary layer at the opposite wall with
high kinetic energy. There, due to the presence of the wall, the 
uid is redistributed
horizontally. The dynamics and convective structures are discussed in detail in [7].

For Rayleigh-B�enard convection in liquid sodium at Ra = 12; 000 in contrary, there are
still remainders of regular two-dimensional convection rolls [7], typical for slightly super-
critical Rayleigh-B�enard convection. However, superimposed to these large scale vortex
bands are highly turbulent small scales. For this reason, other than in air, the horizontal
velocity components are at those small value of Ra not yet isotropic and the vertical
pro�les of u21 and u22 substantially di�er in sodium, as well as they di�er from u23 [27].
For Rayleigh-B�enard convection in sodium, therefore, the anisotropy of the velocity �eld
as shown in the AIM is higher than that for air.
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Figure 5.4: Anisotropy invariant map of Reynolds stress for internally heated convection
(Pr = 7). RaI = 108, Ret = 4; �, 0 < x3 < 0:5; 4, 0:5 < x3 < 1.

Comparing the anisotropy invariant map of forced convection (Fig. 5.1) and Rayleigh-
B�enard convection (Fig. 5.2 and 5.3), one observes that the anisotropy of the Reynolds
stress tensor for Rayleigh-B�enard convection is smaller than that for forced convection
in both the near wall and bu�er region. This is expected, since there is no mean strain
in turbulent natural convection.

In Figure 5.4, we show the AIM for the DNS data of internally heated convection. For
vertical positions close to the wall 0 < x3 < 0:1 and 0:9 < x3 < 1, the invariants II
and III locate on the left-hand boundary of the AIM. In the center of the channel,
0:1 < x3 < 0:9, the anisotropy increases till x3 � 0:7 where it is maximal, and decreases
with further increase of x3. Note that in contrast to the Rayleigh-B�enard convection
for internally heated convection the 
ow and temperature �eld is not symmetric to the
channel center line [22, 30]. Nevertheless, the behaviour in the AIM described is quite
similar to that for Rayleigh-B�enard convection in air (Figure 5.2).

Antonia et al. [1] argued that there is no discernible Reynolds-number e�ect on the turbu-

22



lence states indicated by anisotropy invariant maps. However, the turbulence Reynolds
numbers they considered were not too di�erent (Ret � 240 and Ret � 390). Paying
attention to Ret in Figure 5.1 and Figure 5.3 it seems that for low turbulent Reynolds
numbers the invariants near the wall reside more close to the one-component turbulence
(the maximal physically possible value for II and III). Although this conclusion can
not be supported by Figure 5.2, the AIM in Figure 5.2 is quite di�erent from that in
Figures 5.1 and 5.3. However, if one compares the invariants in the region of the channel
center from Fig. 5.2 and Fig. 5.4, a turbulence Reynolds-number e�ect does exist. A
more detailed investigation should be carried out in the future to clarify this topic.

5.2 Model for the sink term

The appropriate modelling of the sink term in the dissipation rate equation is very
important, since it is one of the dominant terms. Using the invariant theory [19] and the
DNS data of turbulent channel 
ow at a small Reynolds number, the closure for the sink
term Ts in Eq. (5.1) was investigated in detail by Ye [32]. An equivalent method is used
here, however, for DNS data of pure natural convection.

Some limiting values of Ts at di�erent turbulent states, which were deduced by di�erent
researchers, were utilized in [32] to construct a model for Ts which is valid across the
entire anisotropy invariant map. These limiting values are

(Ts)1C = �1:4�
2
h

k
(5.7)

for one-component turbulence [19],

(Ts)2C = �0:0517
q
20Ret

�2h
k

(5.8)

for two-component turbulence,

(Ts)iso = �7
p
3

90
f�
�2h
k

(5.9)

for isotropic turbulence, and

(Ts)2C�iso = �1:2�
2
h

k
(5.10)

for two-component isotropic turbulence (see [32]). The model for the sink term in the
entire AIM is now, similar to [32], constructed by superposition of the sink term models
for two-component turbulence (Ts)2C and axisymmetric turbulence (Ts)axi

Ts = (1� F )(Ts)2C + F (Ts)axi = � �
2
h

k
: (5.11)

The coe�cient
 = (1� F ) 2C + F axi =  (Ret; II; III) (5.12)
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is given by

 2C = [0:02 + 0:03 exp(�Ret)]
q
20Ret (5.13)

 axi = 1:4 + L(
7
p
3

90
f� � 1:4); III > 0 (5.14)

 axi = 1:2 + L(
7
p
3

90
f� � 1:2): III < 0: (5.15)

Here, the decay function f� proposed by Coleman & Mansour [4] is used:

f� =
54
p
3

7
[1� 0:222 exp (�0:336

q
Ret)]: (5.16)

The parameter F equals unity when the stress �eld is axisymmetric while it is zero in
two-component turbulence [32]:

F =
J2

L

(
F = 0; by two-component-turbulence
F = 1; by axisymmetric and isotropic turbulence

(5.17)

J = 1� 9(
1

2
II � III); (5.18)

L = 1� 9[
3

4
(
4

3
jIIIj)2=3 � III]: (5.19)

It is found that the function F can match the stress �elds for two-component turbulence
and axisymmetric turbulence quite good for the present simulation data. Expressions
(5.14) and (5.15) are identical to the model derived in [13]. In equation (5.13) for  2C
a modi�cation factor [0:02 + 0:03 exp(�Ret)] �tted from the present DNS data is added
here to take account of the in
uence of the turbulence Reynolds number.

The approximate form of Ts (Eq. 5.11) is tested by using the DNS data for Rayleigh-
B�enard convection. The data presented by circles in Fig. 5.5 are evaluated from the
numerical simulation, where fourth order derivatives are required (see [12]). In general,
the results in Fig. 5.5 show a good agreement between the evaluated and the predicted
data. In the near wall region, where large gradients of the statistical quantities exist,
the spatial discretisation is not �ne enough to calculate the high order derivatives with
high accuracy. Therefore, close to the wall in Fig. 5.5 the data scatter. In general, the
comparison of the model for the sink term Ts with the exact sink term evaluated from
the DNS data shows a good agreement for Rayleigh-B�enard convection in both, air and
sodium.

5.3 Model for the buoyant production term

Let us now consider the second term in the dynamic equation (5.1) for �h which needs
closure, i.e the term

Tb = ��gs[(���u0s)0 + (��us�0)0] (5.20)
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Figure 5.5: Distribution of sink term Ts. ||, Eq. (5.11); �, value evaluated from DNS
data (Ts = T1 + T3, see Fig. 4.3(b)).

This term contributes to the buoyant production P�b, which is in equation (4.5) decom-
posed in

P�b = �2��gi @�
@xl

@ui
@xl

= �1

2
��gi�x�ui + Tb: (5.21)

As shown in section 4.2, the two-point temperature-velocity-correlations are not locally
homogeneous and therefore the term Tb is not zero and needs modelling. Due to Eq.
(5.21), in second order modelling of the turbulent heat 
uxes the formulation of an
accurate model for Tb represents at the same time a closure for the buoyant production
P�b.

Theoretically, a dynamic equation for (��ui�0)0 or (���u0i)0 and thus for Tb can be derived
by using the two-point correlation technique, as it was done for (��uiu0j)0. However, such
an equation will be di�cult to simplify, since, according to the study in section 4, the
assumption of local homogeneity can not be used for the temperature �eld, at least for
the present turbulence Peclet numbers. Hence, another approach is needed to develop a
model for the buoyant production Tb in the dissipation equation.

For the closure of Tb it is assumed that the derivatives with respect to � can be expressed in
terms of a single-point second order correlation �us. Using the scaling analysis proposed
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by Tennekes & Lumley [24] the buoyant production in Eq. (5.1) can be approximated by

Tb = ��gs[(���u0s)0 + (��us�0)0] ' C�3
�h
k
G; (5.22)

where

G = ��gsus� (5.23)

is the buoyant production term in the k-equation. In the literature, the coe�cient C�3

is usually adopted as a constant or it is corrected, depending whether the buoyant shear
layer is horizontal or vertical [21]. An in
uence of the 
uid Prandtl number is not taken
into account. This is, however, a major drawback, as can be argued by considering the
dissipation term �i� in the transport equation for the turbulent heat 
ux ui�,

�i� = (� + �)
@ui
@xl

@�

@xl
: (5.24)

Comparing the de�nitions of �i� and P�b it appears, that both terms involve the same

correlation of derivatives, namely @ui
@xl

@�
@xl

.

In the appendix the analytical transport equation for �i� is given. From this equation it
can be concluded that �i� is clearly in
uenced by the Prandtl number. In practice, more
sophisticated models for �i� already account for the e�ect of the 
uid Prandtl number
(see e.g. the model of Shikazono & Kasagi [23]) . Thus, it is appropriate to consider C�3

as function of Prandtl number. In addition, similar to the model in [23] for �i�, in the
model for P�b to be developed C�3 shall be a function of the ratio of turbulent thermal
and mechanical time scale R, de�ned as

R =
��
�
=

�2

2��

�

k
: (5.25)

Here, �� is the thermal dissipation rate

�� = �
@�

@xl

@�

@xl
(5.26)

Using DNS data for Rayleigh-B�enard convection in di�erent 
uids for di�erent Rayleigh
numbers, W�orner & Gr�otzbach [6, 27, 28] analysed the e�ect of Prandtl number and
turbulence level on the turbulence time scale ratio R. In Figure 5.6 pro�les of R are
given only for the simulations relevant to the present study. At the walls, for isothermal
wall condition R just takes the value of Pr. For air, the overall value of R is about
0:85, which is the value usually adopted in turbulence modelling. However, Figure 5.6
shows that it is not appropriate if a constant value of R is used for Pr 6= 1. For Pr � 1
the temperature boundary layer is quite thicker than the velocity boundary layer, and
the time scale �� for the temperature 
uctuations is smaller than � for the velocity

uctuations. Therefore the time scale ratio R decreases with decreasing Prandtl number.

26



Figure 5.6: Distribution of R. �, Ra = 381; 000, Pr = 0:71; 2, Ra = 630; 000, Pr = 0:71;
4, Ra = 6; 000, Pr = 0:006; ?, Ra = 24; 000, Pr = 0:006.

With increasing turbulence level the thickness of the temperature boundary layer will be
reduced, which results in an increase of the time scale ratio R.

In order to obtain R in the application of such models, the extra information about the
thermal dissipation rate �� of the temperature variance �2 is required. This information
is obtained by solving a transport equation for ��. This implies, however, an additional
computational expense. It can be avoided by introducing the heat 
ux anisotropy invari-
ant

A� =
ui� � ui�
ujuj � �2

(5.27)

instead of R. The parameter A� was used e.g. by Haroutunian & Launder [9] to model ui�
for free buoyant shear 
ows. However, it is di�cult to �nd appropriate general functions
in terms of A�, which can account for the wall e�ects in the models for P�b or ui�. In the
present approach, therefore the time scale ratio R is used instead of A�.

The new model proposed here for the buoyant production Tb in Eq. (5.1) reads:

Tb = ��gs[(���u0s)0 + (��us�0)0] '
�
Pr

R

�0:7 �h
k
G: (5.28)

Herein, the term (Pr=R)0:7 is obtained by �tting the DNS data for Rayleigh-B�enard
convection. A comparison between the model results from Eq. (5.28) and the results
evaluated from the DNS data is shown in Figure 5.7. The proposed form for Tb agrees
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Figure 5.7: Distribution of buoyant production term Tb. ||, model of Eq. (5.28); �,
DNS data Ra = 381; 000, Pr = 0:71; 4, Ra = 24; 000, Pr = 0:006; 2,
Ra = 6; 000, Pr = 0:006.

well with the DNS data except for a few points in the region near the wall. In total, the
new model for P�b is expressed as follows:

P�b ' �1

2
��gi�x�ui +

�
Pr

R

�0:7 �h
k
G: (5.29)

In the following, we compare the new model for the buoyant production in the dissipation
equation with models already available in literature. Rodi [21] introduced a 
ux Richard-
son number to account for the in
uence of the direction of the buoyant shear layer on the
production term in the � equation. For a horizontal channel the corresponding buoyancy
production term can be written as:

P�b = �2��gi @�
@xl

@ui
@xl

' 1

5
C�1

�

k
G; (5.30)

and for a vertical channel:

P�b = �2��gi @�
@xl

@ui
@xl

' C�1
�

k
G; (5.31)

where C�1 = 1:44. Conventionally, the coe�cient C�1 is the same as is used in the model
for the production term by the mean velocity �eld

P 1
� = �C�1

�ukus
k

@Us

@xk
: (5.32)
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According to Rodi, in the horizontal case P�b is only one �fth of that one in the vertical
channel. Ince & Launder [11], however, preferred the following form

P�b = �2��gi @�
@xl

@ui
@xl

' C�1
�

k
G (5.33)

rather than Eq. (5.30).

The pro�les predicted for P�b by models (5.30), (5.33), and (5.29) are compared with
the analytical term P�b computed directly from the Rayleigh-B�enard DNS data for air
(Ra = 381; 000) in Figure 5.8 and for sodium (Ra = 24; 000) in Figure 5.9. For air, Rodi's
model underestimates P�b strongly, but Ince & Launder's model overestimates P�b in the
center of the channel, see Fig. 5.8. For liquid sodium, both models give too high values
in the channel center and too low values in the near wall region, see Fig. 5.9. However,
the data calculated from the present model, Eq. (5.29), agree overall very well with the
DNS data.

For the internally heated natural convection, the present model results in an overesti-
mation of P�b while the models of Rodi and Launder result in an underprediction, see
Figure 5.10. However, in this case the overall maximum turbulence Reynolds number
is only about four. Besides this quantitative disagreement, there is also a qualitative
disagreement. While in the range 0:1 < x3 < 0:2 the DNS data show a small but positive
P�b, all models predict negative values in this range. This failure is caused by the fact
that in all models the buoyant production is directly proportional to the turbulent heat

ux. In the range 0:1 < x3 < 0:2, however, the turbulent heat 
ux is negative, see
[22, 30]. Therefore, negative values of P�b are predicted by the models, which means that
buoyancy does not act to produce dissipation but to destroy it. Obviously, as the DNS
data show, this is unrealistic and the models need to be improved to account for this
phenomenon.
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Figure 5.8: Comparison of models for P�b. Rayleigh-B�enard convection in air (Ra =
381; 000, Pr = 0:71). - - -, Eq. (5.30); |||, Eq. (5.33); ||, Eq. (5.29);
�, DNS data.

Figure 5.9: Comparison of models for P�b. Rayleigh-B�enard convection in sodium (Ra =
24; 000, Pr = 0:006). - - -, Eq. (5.30); |||, Eq. (5.33); ||, Eq. (5.29);
�, DNS data.
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Figure 5.10: Comparison of models for P�b. Internally heated convection (RaI = 108,
Pr = 7). - - -, Eq. (5.30); |||, Eq. (5.33); ||, Eq. (5.29); �, DNS data.

5.4 Budget of the modelled equation for �h

With the models developed in section 5.2 and 5.3, the closed equation for the homoge-
neous part of the dissipation rate takes the form:

@�h
@t

'
�
Pr

R

�0:7 �h
k
G�  

�2h
k
+
1

2
��x�h: (5.34)

An examination of the model quality can be performed by computing the budget of the
closed equation using the DNS data. Here, this is done for Rayleigh-B�enard convection
in air at Ra = 381; 000. For fully developed convection, the rate of change term on the
left-hand side of Eq. (5.34) is zero. Therefore, the sum of all terms on the right-hand side
should be zero, too. Figure 5.11 presents the distribution of these terms as well as their
budget, computed by summing up all terms. It can be seen that the buoyant production
term Tb is positive in the channel center, where it almost balances the sink term. Close
to the wall, where Tb is small, the sink term is balanced by the viscous di�usion (last
term on r.h.s of Eq. (5.34)), which takes high positive values inside the viscous boundary
layer. While the imbalance in the near-wall region is somewhat large, Figure 5.11 in
general shows only a small imbalance across the channel.
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Figure 5.11: Terms in the budget Eq. (5.34) deduced from the DNS data (Ra = 381; 000,
Pr = 0:71). - - -, Ts calculated from Eq.(5.11); { { {, 1=2��x�h; {{ {{ {{, Tb
calculated from Eq. (5.28); �, sum of all terms.

5.5 Components of the dissipation tensor

For full second order turbulence modelling, the components of the dissipation tensor
are required. Based on the two-point correlation technique and invariant theory, the
following partition of the dissipation tensor was proposed in [13, 32]:

�ij =
1

4
��xuiuj + (�� 1

2
��xk)

�
1

3
(1� A)�ij + A

uiuj
2k

�
; (5.35)

� =
1

4
��xusus + �h; (5.36)

A = (1� F ) + 9[
3

4
(
4

3
jIIIj)2=3 � III]F : (5.37)

Eq. (5.35) represents a linear relation between the anisotropy tensor of the dissipation
and the anisotropy tensor of the Reynolds stress. The invariant function A (see [32]
for the detailed derivation) is also the model coe�cient for the non-buoyant production
term in the �h-equation, which was not considered here because in Rayleigh-B�enard
convection it is zero. In Figure 5.12, results are presented for �11; �22 and �33 calculated
from model (5.35) by using the DNS data for �h and uiuj of Rayleigh-B�enard convection
in air (note that here �ij = 0, if i 6= j). While for �11 and �22 a very good agreement
between the results from Eq. (5.35) and the values for �11; �22 evaluated directly from the
DNS data is obtained, the model performance for �33 is not fully satisfactory.
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Figure 5.12: Distribution of the diagonal components of the dissipation tensor. Rayleigh-
B�enard convection in air, Ra = 381; 000. �, DNS data; ||, equation (5.35).
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6 Modelling of the heat 
ux dissipation term �i�

The dissipation term �i� is one of the unknown terms in the transport equations for the
heat 
uxes ui� (see Eq. (1.2)). For isotropic turbulence �i� is zero. In this case, the so
called pressure-scrambling term is the only sink term in the ui�-equation. However, in
buoyant 
ows which always are more or less non-isotropic �i� can be an important sink
term. Kawamura & Ohsaka [14], for example, perform direct numerical simulations of
turbulent heat transfer in channel 
ow for various Prandtl numbers ranging from 0.025
to 5. They �nd that the dominant sink term in the turbulent heat 
ux equation is
the pressure-scrambling term in case of Pr > 0:2, while for smaller Prandtl numbers
�i� is overwhelming. For Rayleigh-B�enard convection in liquid sodium at Ra = 24; 000
DNS data show that �i� is the dominant sink term, and that it far exeeds the pressure-
scrambling term [28]. Thus, appropriate modelling of �i� is very important for buoyant

ows, especially at low Prandtl or Peclet numbers.

6.1 Interpretation of �i� by the two-point correlation technique

In correspondence to the statistical interpretation of the dissipation correlations in the
equations of second-order moments uiuj, the dissipation correlations in the equations of
the turbulent heat 
uxes ui� can also be expressed as sum of an inhomogeneous and a
homogeneous part:

�i� = (� + �)
@�

@xl

@ui
@xl

=
1

4
(� + �)�x�ui| {z }

inhomogeneous

�1

2
(� + �)[(���u0i)0 + (��ui�0)0]| {z }

homogeneous

: (6.1)

In turbulent Rayleigh-B�enard convection the turbulent heat 
uxes in the horizontal di-
rections are zero and only u3� exists. Therefore, in the following only �3� is investigated.
Figures 6.1 - 6.3 display the distribution of the inhomogeneous and homogeneous part of
�3� for Rayleigh-B�enard convection in air (Ra = 381; 000) and sodium (Ra = 6; 000 and
Ra = 24; 000). The values of �3� go to zero at the wall, which can be also obtained by ex-
panding the instantaneous quantities in a Taylor series near the wall. Far away from the
wall the inhomogeneous part of �3� can be expected to tend to zero for high turbulence
Peclet numbers. However, for low turbulence Peclet numbers it does not vanish even in
the center of the channel, see Figs. 6.2 and 6.3. This behaviour is quite di�erent from
that of the inhomogeneous part of the dissipation of turbulence kinetic energy, compare
with Figs. 3.3 - 3.5.
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Figure 6.1: Distribution of �3�. DNS data of Rayleigh-B�enard convection in air (Ra =
381; 000), Pet = 76.

Figure 6.2: Distribution of �3�. DNS data of Rayleigh-B�enard convection in sodium
(Ra = 6; 000), Pet = 3.
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Figure 6.3: Distribution of �3�. DNS data of Rayleigh-B�enard convection in sodium
(Ra = 24; 000), Pet = 13.

6.2 Model for �i�

In the previous section the dissipation term �i� was decomposed into two parts. The
inhomogeneous part is related to ui� which is known by second-order moment closure.
Therefore, only the homogeneous part which is expressed as a function of two-point
correlations must be modeled. A corresponding dynamic equation, like the equation for
�h, can be derived theoretically. However, this equation is more complicated than that
for �h and can hardly be simpli�ed.

In fact, a model for �3� can be obtained by using results of section 5.3. Comparing the

de�nition of P�b and �i�, one notices that both terms contain the same correlation
@�
@xl

@ui
@xl

.
Hence, �i� should be modelled consistent to P�b by using an equivalent closure assumption.
Since the homogeneous part of the above correlation was obtained, the model for �i� can
be easily expressed as:

�i� ' 1

4
(� + �)�x�ui +

1

2
(1 +

1

Pr
)
�
Pr

R

�0:7 �h
k
ui�: (6.2)

The dissipation term �3� is calculated via Eq. (6.2) and is compared in Fig. 6.4 with
the value of �3� computed directly from the DNS data. As can be seen, a very good
agreement is achieved by model (6.2) for di�erent 
uids (i.e. Prandtl numbers) and
di�erent turbulence levels.
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Figure 6.4: Distribution of �3�. || Eq. (6.2), DNS data: Pr = 0:006: ? Ra = 24; 000;
4 Ra = 12; 000; 2 Ra = 6; 000; � Pr = 0:71, Ra = 381; 000.

6.3 Comparison with models from literature

In this paragraph we compare the new model for �i� with models available in literature.
Based on isotropic and homogeneous shear turbulence, Shikazono & Kasagi [23] developed
a model for �i� which incorporates the e�ect of the Prandtl number. The model was also
modi�ed to be applicable to wall turbulence:

�i� =
�
1 + Pr

2Pr

�

k
ui� +

1 + Pr

2Pr

�

k
uk�nink

�
fw

+

(
C�f�1f�2f�w

1 + Pr

2
p
Pr
p
R

�

k
ui�

)
(1� fw);

fw = exp[�Cw1

p
J ]; Cw1 = max[4; 0:6Pr3=4];

f�1 = 1� exp(�10r); r =
CR=R + 1p
RetfII2

;
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"
1;

1

1:2

p
Prp
R

#
; f�2 = min

"
6

p
Prp
R
; 1;

p
Rp
Pr

#
;

f�w = min
�
1;
CR

R
+ Cs

q
Ret

�
: (6.3)

Here, ni is the wall normal unit vector. The coe�cients take the values CR = 0:7 and
Cs = 0:1. J is the invariant function de�ned by Eq. (5.18) and fw changes from unity
(at the wall) to zero (far away from the wall). The functions fw and f�w account for wall
e�ects.
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W�orner & Gr�otzbach [29] proposed the following model for pure natural convection which
is, however, valid only far away from the wall:

�i� = exp(�0:0007(Ret + Pet))
1 + Pr

2
p
Pr
p
R

�

k
ui�: (6.4)

The factor exp(�0:0007(Ret + Pet)) was used to account for the molecular e�ects and
the value 0.0007 was �tted against DNS data of Rayleigh-B�enard convection at various
Prandtl and Rayleigh numbers.

For Rayleigh-B�enard convection in air, the pro�les for �3� predicted by the three models
according to Eq. (6.3), Eq. (6.4), and Eq. (6.2), are shown in Figure 6.5. All models give
similar results in the center of the channel. However, in the near wall region the new
model, Eq. (6.2), gives the best performance.

In Figure 6.6(a-c) the results for Rayleigh-B�enard convection in sodium are given. The
model of Shikazono & Kasagi, Eq. (6.3), strongly overestimates �3� in the channel center.
It seems that Eq. (6.3) is not suitable for pure natural convection, especially for 
ows
with quite small Prandtl numbers. The model of W�orner & Gr�otzbach, Eq. (6.4), agrees
well with the sodium DNS data for Ra = 6; 000 and Ra = 12; 000 in the center of the
channel but gives too low values for Ra = 24; 000, see Fig. 6.6(c). In the wall and bu�er
regions both models, Eq. (6.3) and Eq. (6.4), can not predict correct values of �3�. This
ist not surprising for the model of W�orner & Gr�otzbach which does not involve any
wall correction. While, on the other hand, the model of Shikazono & Kasagi contains a
wall correction formulated for forced convection, the present results show that it is not
appropriate for pure natural convection 
ows. For sodium at very small Peclet numbers
the present model, Eq. (6.2), underestimates �i� a little in the center of the channel, see
Figure 6.6(a) for Ra = 6; 000. A further modi�cation in the model for the homogeneous
part of �i� should therefore be introduced in the future, in order to incorporate the
in
uence of the Peclet number.

From experience in turbulence modelling it is well known that the 
ow in the wall region,
where strong anisotropy appears, is usually di�cult to be treated. Invariant functions
are used more and more to construct wall correction factors, e.g. fw in Eq. (6.3), and
for closure of the sink term of the dissipation rate discussed in section 5. However, it
might not be appropriate to use the invariant functions of the velocity �eld also in the
temperature �eld. The decomposition of �i� based on the two-point correlation technique
(see Eq. 6.1) results in an inhomogeneous part of �i� which accounts perfectly for the wall
e�ect, as it is seen in Fig. 6.5 and Fig. 6.6.

For internally heated natural convection, where the turbulence Reynolds number is very
small, the new model overestimates �3�, see Figure 6.7. Model (6.4) gives a good predic-
tion in the range 0:2 < x3 < 0:8. For x3 � 0:2 all three models fail to predict correct
values of �i�. The negative values of ui� in this range result in the negative values of �i�
which are physically not correct, compare with the DNS data in Fig. 6.7.
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Figure 6.5: �3� for Rayleigh-B�enard convection in air (Pr = 0:71). (a): Ra = 381; 000,
(b): Ra = 630; 000. || Eq. (6.2), - - - -; Eq. (6.4), { { {; Eq. (6.3), �; DNS
data.
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Figure 6.6: �3� for Rayleigh-B�enard convection in sodium (Pr = 0:006). (a): Ra = 6; 000,
(b): Ra = 12; 000, (c): Ra = 24000. || Eq. (6.2), - - - -; Eq. (6.4), { { {;
Eq. (6.3), �; DNS data.
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Figure 6.7: Distribution of �3� for internally heated convection (Pr = 7; RaI = 108). �;
DNS data, ||; Eq. (6.2), - - - -; Eq. (6.4), { { {; Eq. (6.3).

41



7 Conclusions

In this report the closure of the equation for the turbulent dissipation rate, which was
developed earlier based on the two-point correlation technique and invariant theory for
shear turbulence, is investigated by means of direct numerical simulation (DNS) data of
turbulent Rayleigh-B�enard convection in air and sodium and of internally heated natural
convection.

The validity of the assumption of local homogeneity for the small scale turbulence, which
is used to simplify the analytically derived equation for the turbulent dissipation rate, is
tested for Rayleigh-B�enard convection. It is shown that for the derivatives of two-point
velocity correlations of third rank the assumption can be used, but not for the derivatives
of the two-point velocity-temperature correlation of second rank.

The DNS data for Rayleigh-B�enard convection and internally heated natural convection
are plotted in the anisotropic invariant map (AIM). It is found that the anisotropy of the
Reynolds stresses for turbulent natural convection is weaker than that for wall bounded
turbulent shear 
ow. A clear turbulence Reynolds number e�ect can be seen from the
results in the anisotropic invariant map. Based on the AIM, a model is developed for
the sink term in the dynamic equation for the homogeneous dissipation rate. The model
results are in good agreement with the DNS data.

For turbulent natural convection, the buoyant production term in the dissipation rate
equation is also of importance. Up to now, the model for the buoyant production term
P�b in the �-equation and the model for the dissipation term �i� in the ui�-equation
were always developed in di�erent ways, though both closure terms involve the same
correlation. A new consistent model for both, P�b and �i� is developed, where the Prandtl
number and the turbulence time scale ratio R are the main parameters. The new models
proposed provide accurate predictions for fully developed Rayleigh-B�enard convection in
air and sodium and do properly account for the in
uence of the Prandtl number and the
turbulence level, as well as for wall e�ects. As compared with other models in literature,
the new model is relatively simple and does not involve any complicated wall correction
formulations. The models developed for P�b and �i� can be easily put into use in CFD
computer codes, e.g. in the FLUTAN code, to improve the turbulence modelling features
for strongly buoyant 
ows.

For further investigations, the models developed should be tested or improved by using
further DNS data of di�erent types of turbulent natural convection, e.g. internally heated
convection with di�erent Rayleigh numbers. For the DNS data of the internally heated
convection investigated in the present study (RaI = 108), the turbulence Reynolds num-
ber is quite low (Ret ' 4). These DNS data might be useful for studying low-Reynolds
number e�ects, however, it is a matter of opinion whether it is meaningful to constrain
the model by such small Reynolds numbers, since in practical applications the turbulence
Reynolds number is much higher.
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Appendix: Transport equation for the heat 
ux dissi-

pation term �i�

For incompressible buoyant 
ow with the use of the Boussinesq approximation the equa-
tions for 
uctuating velocity and 
uctuating temperature read as follows:
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To derive the equation for �i�, �rst equations (A.1) and (A.2) are di�erentiated by @=@xl:
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Multiplying equation (A.3) by @�=@xl and equation (A.4) by @ui=@xl, one obtains:
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Adding equation (A.5) and (A.6) and using the mass conservation law results in the
following equation:
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Considering the transformation
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multiplying Eq. (A.7) by (� + �) and averaging Eq. (A.7), the exact equation for deter-
mining the dissipation term �i� is obtained:
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This equation is more complicated than the equation for �. Until now �i� is usually
modelled by using a simple form with empirical parameters. However, one should try to
ensure that the proposed form is a physically plausible substitute for the real process.

Looking into the term T2, one obtains that
@�
@xl

@ui
@xl

depends also on the 
uid Prandtl num-
ber, if � 6= �. Therefore, for Pr 6= 1 a Prandtl number in
uence should be incorporated

into the model for @�
@xl

@ui
@xl

. The correlation � @�
@xl

@�
@xl

which represents the temperature dis-

sipation �� in the transport equation for �2 appears also in the term T1 in Eq. (A.9). It
seems that in future, analyses for every term in Eq. (A.9) should be carried out in detail
in order to obtain a more accurate model for �i�.
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