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Abstract 

The conceptual and algorithmic framework solving numerically the time-dependent 
Maxwell-Lorentz equations on an unstructured mesh in two and three space dimen
sions is presented. Beyond a brief review of the applied charged particle handling 
based on advanced particle-in-cell techniques, a modern finite-volume scheme for the 
numerical approximation of the three-dimensional, time-dependent Maxwell equati
ons is introduced using unstructured grid arrangements. Furthermore, the algorithmic 
realization of the resulting numerical schemes is described in great detail. Apart from 
this, simulation results for typical benchmark problems computed with the particle 
treatment and Maxwell solver are presented, demonstrating the quality and properties 
as weil as the relevance and reliability of the applied numerical methods. 

EIN MAXWELL-LORENTZ LÖSER ZUR SELBSTKONSISTENTEN 
TEILCHEN-FELD SIMULATION AUF UNSTRUKTURIERTEN 

RECHENGITTERN 

Überblick 

Das Konzept und der algorithmische Rahmen zur numerischen Behandlung der zeit
abhängigen Maxweii-Lorentzgleichungen auf unstrukturierten Rechennetzen in zwei 
und drei Raumdimensionen wird vorgestellt. Die wesentlichen Ideen der auf un
strukturierte Gitter erweiterten Methoden zur Teilchenbehandlung, die auf fortge
schrittenen Particle-in-Cell Techniken beruhen, werden in knapper Form beschrie
ben. Weiterhin wird ein moderner Zugang zur numerischen Approximation der drei
dimensionalen, zeitabhängigen Maxwellgleichungen eingeführt, der in einem zeit
gemäßen, hochauflösenden Finite-Volumen Verfahren mündet. Darüber hinaus wer
den die Kernstücke der algorithmischen Umsetzung der abgeleiteten numerischen 
Schemata ausführlich erläutert und die vom Gittererzeugungsmodul bestimmte Da
tenstruktur zusammenfassend dargestellt. Simulationsergebnisse für typische Testpro
bleme, die mit den Teilchenbehandlungsmodulen und mit dem Maxweii-Löser erzielt 
wurden, runden den vorliegenden Bericht ab, und geben deutliche Auskunft über die 
Eigenschaft, Güte, Relevanz und Verläßlichkeit der benutzten numerischen Methoden. 
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Chapter 1 

lntroduction 

The goal of the present teclmical report is to proviele the user of the Maxwell
Lorentz simulationprogram KADI~D developed at the Institut für Neutronenphy
sik und Reaktortechnik (INR) -vvith more detailed infornmtions about the nume
rical methods, the approximation techniques and the implementation framework 
used in the program. The proposed Finite-Volun'le Particle-in-Cell (FV-PIC) 
:Maxwell-Lorentz solver calculates the time-dependent solution of the Iviaxwell
Lorentz equations in two and three space dimensions on unstructured meshes, 
rcspectively, and is up to second-order accurate in both space and time. 

The considered Iviaxwell-Lorentz model is constituted by the .Maxwell equa
tions in the vacuum and the usual laws of classical mechanics lmown as the 
Lorentz equations [13, 3, 22). The evolution of the electromagnetic fields inside 
a domain D is given by the full set of the Maxwell equations in the vaccum 

8tE- c
2\7x X B J (l.la) 

Eo 

8tB + \7x XE 0, (l.lb) 

\7a:. E 
p 

(l.lc) 
EQ 

\7 ·B X 0, (l.ld) 

where E, B, p and j respectively denote the electric field, the magnetic induction, 
the charge density and the current density. The electric permittivity Eo and 
magnetic permeability f.Lo of the vacuum are related to the speed of light according 
to Eof.Loc

2 = 1. 
The dynamics of the charged macro particle distribution inside the computa

tional domain is determined according to the Lorentz equations 

vk(t) , 

F(x~.;, v~,;, t) , 

(1.2a) 

(1.2b) 

where the particle index k runs over the total number Np of charges. The Lorentz 
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force 

(1.2c) 

on the charge Qk = NkQ with the mass .f./h = NklVI depends on the electroma
gnetic fields E and B at the actual position Xk and on the velocity Vk of the kth 

macro particle, calculated from the momentum Pk according to vk(t) = 11 fk(t{t) 
k/k ' 

with ry~ = 1 + ( E:c) 2 . Although Jy[k and Qk depend on the number Nk of elemen

tary constituents of a macro particle, it is noteworthy, tlmt this number cancels 
out in (1.2c) and, consequently, the motion of a macro charge is determined by 
Qjlvi, the ratio of charge and mass of a single constituent. 

The interaction of the charged particle distribution with the electromagnetic 
fields inside D is computed in a self-consistent manner: The charge and current 
density 

p(x, t) 

j(x,t) 

Np 

L Qk6 [x- xk(t)] 
k=l 

Np 

L Qkvk(Pk)6 [x- xk(t)] 
k=l 

(1.3a) 

(1.3b) 

are obtained from the phase space coordinates (xk, vk) of the entire ensen.tble of 
the macro charges. The electromagnetic fields calculated from the sources (1.3) 
redistribute the charged particles within the domain D via the Lorentz force 
(1.2c), yielding changed phase space coordinates, and from these, the new densi
ties are obtained. This complex interplay between fields and particles described 
by (1.1)-(1.3) is known as the non-linear Maxwell-Lorentz problem, the starting 
point for further numerical approximations. 

The organization of the present report is as follows: In Chapter 2, some 
remarks concerning the unstructured computational grids usually used as test 
meshes for the code development are first given. Afterwards, we briefiy recall the 
basic concepts and approximation techniques to come in useful for the 1mmerical 
solution of the Maxwell-Lorentz system. In Chapter 3, numerical results for some 
typical test problems are presented, demonstrating the quality and property as 
well as the relevance and reliability of the applied 1mmerical methods. In Chapter 
4, an overview of the implemented principal algorithms and resulting subroutines 
is given and the determinative data structure needed for the realization of these 
algorithms is sketched out in more detail. Finally, conclusive remarks and a short 
outlook of the further activities are made in Chapter 5. 

4 



Chapter 2 

N umerical Sehern es and 
Approximation Methods 

'üaditional techniques for sohring the IVIaxwell equations in the time domain 
rely on finite-di:fference (FD) methods [32]. Staggered grid FD schemes are used 
in different electromagnetic PIC simulation codes which are successfully applied 
to a multitucle of investigations relevant for the understanding of electrical and 
plasma clevices (see, e.g., [26, 27]). The FD approach is based on a Cartesian 
grid ancl may be extended to a structured boundary-fitted mesh consisting of 
quadrilateral grid zones by applying the FD scheme to the transformed equations 
[14]. To get more flexibility, especially, for the simulation of complexer geometries, 
in the present report, a FV approach for the Maxwell equations is proposed. 
This method based on high-resolution schemes originally developed for hyperbolic 
equations combines robustness at steep gradients with accurate resolution [17]. 
The coupling of the high-resolution FV :Maxwell solver with the PIC method is 
a new way of approximation in the context of self-consistent particle simulation 
in electromagnetic fields [22]. The numerical concept in its entirety forming the 
basis of the FV-PIC approach is schematically depicted in Figure 2.1. 

At each time step, the electromagnetic fields obtained from the numerical 
solution of the Maxwell equations on the computational mesh are interpolated 
to the actuallocations of the charged particles (Interpolation). According to the 
Lorentz force the charges are redistributed and the new phase space coordinates 
are computecl by solving numerically the usual laws of dynamics known as the 
Lorentz equations (Particle Pushing). To close the chain of self-consistent inter
play between particles and fields, the particles have to be located with respect to 
the computational mesh (Localization) in order to determine their contributions 
to the changed charge and current densities (Assignment). These updated den
sities are then the sources for the Maxwell equations in the subsequent iteration 
cycle. For more detailed informations concerning the FV-PIC approach we refer 
to [6, 22, 23, 24]. 
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FV-Method: grid-based 

Maxwell 
Equations 

' ' 
' ' ' 

Localization; ,Asslgnment 

- Fields) 

' ' ' ' ' ' ' ' 
Int~If16lation 

,<;Jeld; - Particles ) 

Lorentz 

Equations 

' 
' ' ' 

PIC-Method: mesh-free 

Figure 2.1: Particle-in-Cell iteration cycle. 

2.1 Computational Grid 

The necessity of a computational rnesh is founded on the nature of the PIC 
approach itself [3, 13, 22]. In essence, this approach circumvents the direct force 
calculation between charged particles by introducing a grid-based and a mesh-free 
numerical model: On the computational grid the spatial and temporal evolution 
of the electrornagnetic fields generated by all charges is determined, whereas 
the charged particles themselves are advanced in the continuous computational 
domain. 

\iVhen sahring numerically the time-dependent Maxwell problem, it is very 
important to possess an adequate computational mesh, which covers the geo
metry under consideration very properly. Especially, high quality simulations 
of electrical devices require an appropriate replica of the border of the device, 
where several kinds of physically and computationally motivated conditions can 
be applied. For our computational endeavor solving numerically the Maxwell
Lorentz problem in two and three space dimensions, we choose the most flexible 
concept, narnely, unstructured meshing techniques, which possess the property of 
the highest degree of freedom in mapping the relevant geornetry to the discrete 
image. Furthermore, grid generators based on triangulization (2D) and tetrahe
drization (3D) of the dornain are widespread and therefore usually ( commercially) 
available. 

Throughout the course of code developrnent and validation, we usually use a 
simple unit square for the two and a unit cube for the three-dimensional case as 
computational domains. To discretize these domains, we apply the rnesh genera
tor Modulef (see, for example, [10]). As an example, a typical unstructured mesh 
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used for two-clilnensional test calculations is depicted in Figure 2.2. 

Unstructured 20 test grid 

X 

Figure 2.2: The standard two-climensional computational clomain coverecl by an 
unstructurecl mesh. 
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2.2 A Finite-Volume Method for the Maxwell Equa
tions in the Time Domain on U nstructured Grids 

In this part of the report, we consider the vacuum :Maxwell equations for Carte
sian x = (x1, x2, x3) = (x, y, z) coordinates. The sometimes important cylinder 
symmetrical case X= (xl, X2, X3) = (z, r, e) is treated for completeness in Appen
dix C. 

Different forms of the :tviaxwell equations are usually used in computational 
electromagnetics ( CEM) and are reviewed, for instance, in [4, 29, 23) and thus 
will not be repeated here. The relevant formulation for the construction of FV 
methods is the conservation form of the Maxwell equations: 

3 
a'U "" 8.fi ( 'U) - + L..---- = q, 
at axi 

i=l 

(2.1) 

w hich is based on the time-depenclent equations ( 1.1a-b) only. Here, the vector 
'U of the electromagnetic quantities is composecl by the electrical field E ancl the 
magnetic incluction B ancl reacls as 

(2.2) 

The physical fluxes fi are given by 

]i('U) = JCi'U; for i = 1, 2, 3 , (2.3a) 

w here the block -structurecl matrices J(.i E IR 6 x 6 are definecl according to 

J(i = ( 0 
-c2 A1i ) ' (2.3b) 

Mi 0 

with 

M1~ 0 0 0 

) ,M, ~ ( 
0 0 1 

) ,MFO 
-1 n 0 -1 0 0 0 0 

1 0 -1 0 0 0 

(2.3c) 

The source term q of the time-clepenclent conservation equation ( 2.1) is indc
penclent of 'U and may be written as 

(2.4) 

where j = (j1,j2,j3)T is the current clensity. 
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2.2.1 Numerical Scheme 

The domain of computation D is partitioned into N non-overlapping cells clenotecl 
N 

by C( D = U Ci. The actual time level is computed accorcling to tn = nßt, 
'i=l 

where ßt is cleterminecl with respect to the CFL condition. The average value 
over the cell Ci at time t = i 11 of any integrable function h(x, t) is clenoted in the 
following by hi. Explicitly, this cell average is calculatecl from 

hi = 1~ l h(:c, i
11

) dV, (2.5) 

C; 

where 11j is the volume of Ci. 
In orcler to solve (2.1), we apply a splitting ansatz, which consists in conlpu

ting the following sequence of equations: First, we solve 

8·u(l) 

----at = q' (2.6a) 

with initial value u(l) ( t11
) = un. Then the solution of the homogeneaus conserva

tion equation 

(2.6b) 

is determinecl for the full time step size ßt with initial the initial clata u (2) ( t 11
) = 

u(l) (t11 + ~t). In the next step the orclinary differential equation 

avJ3 ) 
----af = q , (2.6c) 

is solved once again but now with initial value u(3
) (tn + ~t) = v(2

) (tnll) . By 

setting 

the value of u at the new time level tn+l is finally obtainccl. Thc integration of 

the ordinary equation (2.6a) over the space-time volume Ci x W\ tn + ~t] yields 

the exact equation 
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which will bc approximated according to 

(2) (1) ( ßt) ßt J ßt U· (tn) = U· tn +- = un +- q(x tn + -)dV 
! z 2 z 21~ ' 2 . (2.7a) 

C; 

In the same way, the approximation of equation (2.6c) can be performed, yielding 

(2.7b) 

Now, we consider the integration of the homogeneaus conservation equation (2.6b) 
over the space-time elernent Ci x [tn, tn+1

]. Applying Gauß;s theorem we obtain 
the exact evolution equation 

dSdt, 

where Si,a is the face a of Ci a.ncl Ji denotes the total number of faces of Ci. 

Furthermore, (nj )i,a is the jth component of the outwards directed unit normal 
at the face Si,o.. The direct approximation of this integral formulation yields the 
explicit FV scheme, usually written in the form 

(2.7c) 

Clea.rly, the FV scheme is completely defined if the numerica.l flux G~!1/2 is 
specified. The numerica.l flux itself is a. suita.ble a.pproximation of the physical 
flux through the bounda.ry fa.ce Si,a, which mea.ns: 

tn+l 

Gn+l/2 ~ ~ ;· J A · . u(2) (x t) dS dt 
z,a ßt z,a ' ' 

tn S;,u 

where the ma.trix Ai,a E IR6 x6 is given by 

3 

Ai,a = L_(nj)i,aiCj, 
j=l 

(2.8a.) 

(2.8b) 

a linear combina.tion of the consta.nt ma.trices ICj defined by (2.3b-c). The deter
mina.tion of this flux as a. function of the a.vera.ged qua.ntities ( u(2) )f is the item 
of the next Section. 
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2.2.2 Calculation of the Numerical Flux 

In this section we outline the path of approximations to obtain the numerical flux 
G~t1 12 . For that purpose, we apply the second-order accurate midpoint rule to 
th~ integrals (2.8a), yielding the first approximation 

Gn+l/2 L A ( n+l) i o ~ i,o i,o U ji,;Ji,o, t 2 , , (2.9) 

where ]l,!fi,o and Li,o denote the midpoint and area of the face Si,a, respectively 
(here and in the following we drop the superscript (2) for readability reasons). 
Obviously, the central point to establish the numerical scheme is the computation 

1 
of a suitable estimation of v,(l\ii,o, tn+2). For that, the typical space increment 
is denoted by ß.T and, furthermore, it is supposed that a first-order accurate 
approximation of the gradient of the kth con1ponent of v, at the ba.rycenter Bi of 
Ci is known at time tn: 

( n) OUJ,; ( n 
si kj ~ Öxj Bi, t ) with 1 ::::; k ::::; 6, 1 ::::; j ::::; 3 . (2.10) 

A truncatecl Taylor expansion with respect to t yielcls the sought function v.~,; at 
ji,;Ji,o and tn+l/2 

(2.11a) 

Here, the approximation of the time derivative can be replaced by the approxi
mation of the space derivatives of v.k as given by equation (2.6b): 

(2.1lb) 

Since the quatities uk are associated per definition with the barycenter Bi, a 
further Taylor expansion, now, with respect to x has tobe performed, yielding 

3 

( n) ( n) '""( )) OUk( n) ( 2) Uk jl,!fi,o, t = Uk Bi, t + L...t Bij1,1i,o j äx. Bi, t + 0 ßx , 
j=l J 

(2.11c) 

where (Bi]l,!fi,~)j is the .ith component of the clistance vector ßijl,!fi,~ seen in 
Figure 2.3 for the two-dimensional analogue of the considered three-dimensional 
case. \iVith the equalities 

(2.11d) 

(see Appendix C) and 

(2.11e) 
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we finally get an approximation [uk]n of the kth component of u(.fi.!Ji,co tn+~) , 

3 3 

[ukJ?,t = [uk]i + L_(Bi.JI.;J,i,~)j (si)kj- ~t L [Kj (si)j]k , 
j=l j=l 

(2.12a) 

which is second-order accurate in both tirn.e and space. Due to the fact, that Si,a 

Figure 2.3: Two neighboring cells Ci and Cv; u with the barycenters Bi and 
Bv and their common side Si 0 . with the midpoint .JI.![i a for the two-dim.ensional 

1,a , ' 

geometry. 

is also a face of the neighboring grid cell Cv;,o. of Ci (see Figure 2.3), a further 

second-order estimation [uk];~~ of uk(.fi.!Ji,a, tn+~) can be found: 

3 3 

[uk]~~ = [uk]~i,u + L_(Bv;,o..fi.;J,i,a)j (s~;,Jkj- ~t L [ Kj (s~;,Jj L 
j=l j=l 

(2.12b) 

These two second-order accurate approximations (2.12a)-(2.12b) are the initial 
values of the Riemann problem which is discussed in n1.ore detail in the next 
section. However, it is obvious that if thc slopes (s?)kj in (2.12a)-(2.12b) are 
set equal to zero, piecewise constant states are obtained and the order of the 
numerical scheme is reduced to one. 

2.2.3 Solution of the Rien1.ann Problem 

The further step to obtain the numerical scheme for the l\!Iaxwell equations is 
a combination of the two approximations (2.12a-2.12b) and the solution of the 
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Riemann problem (RP). The local RP is an initial-value problern of Lhe form 

au au 
at +A a~ = 0 ' 

with the initial data 

u(o) (~) = u(~, 0) = 
{ 

u+ 

u 
if ~ < 0 
if ~ > 0 

(2.13a) 

(2.13b) 

where the coordinate ~ is associated with the orientation of the normal vector 
at the face Si,a (see Figure 2.4). For the sake of clarity, we have dropped in the 
present RP formulation the superscript n and the subscripts i and a ( cf. (2.8b) 
and (2.12)). For the interesting case of the vacuum Maxwell equations the RP 
can be sohred exactly by app lying the theory of characteristics ( see, e.g., [17]). 

In order to illustrate the solution path of the RP, we introduce the characte
ristic variable 

v(~, t) = n-1 u(~, t) ' (2.14a) 

where n-1 is the matrix of the left eigenvectors of A (see Appendix A), and 
recast (2.13a) according to 

(2.14b) 

Since A is a diagonal matrix (see Appendix A) we obtain six uncoupled linear 
transport equations whose solutions are given by 

(2.14c) 

with the initial values v(0)(~) = n-1 u(0)(~). At~= 0 the solution of the RP in 
characteristic variables reads as ( cf. Figure 2.4) 

(2.15a) 

where v± is calculated from v± = n-1 u±. Because two eigenvalues of the matrix 
A are zero (.\3; 4 , see Appendix A), the solution of (2.15a) depends also on the 
initial value Ti = u(O, 0). However, later on we will see that this value does not 
influence the numerical flux computation, and hence, it is not necessary to specify 
Ti [29] in this context. :rviultiplying now (2.15a) with the matrix R of the right 
eigenvectors (see Appendix A), we obtain the solution of the RP at ~ = 0 

u(O, t) = R v(O, t) , (2.15b) 

which is explicitly written down in Appendix B. Applying the matrix A to the 
last equation, it can be easily proved (see Appendix B) tlmt the relation 

(2.15c) 
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t 

Figure 204: Riemann problem at the face Si,o: of the cell Ci and its schematical 
solution in the (~, t)-planeo 

holdso Inserting this result into the equation f'or the numerical flux (209), the 
compact flux-splitting form 

Gn+l/2 _ L· (A+ , n+ A- n-) 
i o: - z,o: i o:ui o: + i o:v.i o: 

l ' ' ., ' 

(2016) 

is obtainedo This formulation reveals that the total flux G~~1 /2 is balanced by 
a flux to the "right" hmring positive eigenvalues only, and 'a flux to the "left" 
having negative eigenvalues only associated with Ato: and Ai,o:' respectivelyo 

2.2.4 Computation of the Gradients 

There are different ways to compute approximations of the graclient of a regular 
function v ( x, t) at time t = tn 0 Let us consider the tetrahedral cell C'i with the 
barycenter Bi, which totally lies insicle the clomain D and is, hence, no bounclary 
cell. This cell has four neighbors C'v;,a, with o: E [1, 4], having the barycenters 
Bi o:o 

'The first strategy to define the gradient vector (sf)(l) E IRa of any regular 
function v is to consicler the following system of linear equations: 

(2017) 

It is easy to prove that this system of equations has a ( unique) solution if the 
four barycenters Bi, Bi,2 , Bi,3 and Bi,4 form a non-degenerate tetrahedron which, 
however, might not always be the caseo Then, (sf)(l) is a first-orcler approxima
tion of the graclient of the function v in Bi 0 Similary, we can clefine a further 
gradient approximation ( sf) (2), calculatecl from the values of v at the locations 
{Bi; Bi,3; Bi,4; Bi,l}; this approximation is obtainecl by a cyclical permutation of 
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the indices {1; 2; 3; 4} in (2.17). Obviously, two supplementary approximations 
( sf) (3) and ( sf) ( 4) for the gradient of the function v in Bi can be found by further 
permutations of the indices. 

To avoid spurious oscillations near steep graclients, it is convenient to use the 
slope-limited graclient, being the one in the set { (sf )(l) }zE[l,4] with the smallest 

norm. For more cletails of this item we refer to [7, 21, 23). 
The second way to clefine the gradient of v ( x, tn) in Bi is establishecl by the 

solution of the system 

(2.18) 

where the value v(Bi, tn) is not explicitly usecl. The aclvantage of this clefinition 
of (sf)(S) E IR3 is that the barycenters Bi,l, Bi,2, Bi,3 ancl Bi,4 always form a 
non-eiegenerate tetraheclron ancl, hence, the equation (2.18) possesses a unic1ue 
solution. Furthermore, for regular gricls, this approximation is a seconcl-orcler 
accurate one, which is, in general, not valid in the case { ( sf) (I)} IE[l,4]. 

After performing numerical experiments with both possibilities of the graclient 
calculation, it has been founcl out tlmt the (sf)(5) graclient approximation yields 
more accurate and stable results than those obtainecl by using ( sf )(l) with l E [1, 4] 
or by using a slope-limited approximation. 

2.2.5 Boundary Conditions 

In this section we describe the numerical realization and implementation of 
physically occuring as well as computationally motivated boundary conditions. 
Boundary conditions and their implementation are only well-posed if locally the 
characteristic-based wave propagation is taken into account. In general, initial
boundary-value (IBV) instead of RP have to be solvecl at the grid cells adjacent 
to the border of the computational domain. However, it is possible to reformulate 
these IBV as Riemann problems by introducing fictitious grid cells surrounding 
the real computational domain and specifying in these cells suitable values in 
such a way that the solution of the RP at the border provieles with the proper 
boundary conditions [23). 

For our purposes, we proceed as follows: First, we determine from u(O, t) (see 
equation (2.15b) ancl Appendix B) the values in the fictitious dummy or ghost 
cells denoted, without loss of generality, by u-. Then, we compute the numerical 
boundary fiux ( cf. (2.16)), which have to be prescribed in our implemetation for 
the boundary conditions of the electromagnetic field. 
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Perfeet Conductor 

First, we consider the boundary condition of a perfectly conducting face, where 
the tangential electrical field vanishes at the surface: 

(2.19a) 

In our notation, this condition is equivalent to (see Appendix B) 

(2.19b) 

Inserting the values for uo1 , 'Uo 2 and uo3 given in Appendix B, we find 

n3(ut + u2)- n2(ut + u3) 
-c(n§ + n§)(ut- u4) + cn1n2(ut- u5) + cn1'n3(ut- uß) 0, 

(2.20a) 

-ns(ut +u!) +n1(ut +u3) 
+cn1n2(ut u4)- c(nr + n§}(ut- u5) + cn2n3(ut- uß) 0, 

(2.20b) 

ancl 

n2(ut + u!)- TLI(ut + u2) 
+cn1n3(ut- u4) + cn2ns(ut- u5)- c(nt + n§)(ut- uß) = 0. 

(2.20c) 

Obviously, for (2.20a)-(2.20c) there exists no uniquely determined solution, since 
we have three equations for six unknows. This arbitrariness reflects the fact that 
in the dummy cell the characteristic variables corresponding to waves which do 
not enter the computational domain have no influence on the solution at the 
boundary. A sufficient condition given by 

(2.21) 

fulfils (2.20a)-(2.20c) identically, ancl is usecl to con1pute the bounclary flux 
through the considered surface cell according to (2.16). 

Silver-Müller Conditions 

With the normal n (2.19a) and the abbreviations 

(2.22a) 

the Silver-Müller boundary condition reads as 

( u~0 ) - cubo) x n) x n = (eo- cbo x n) x n, (2.22b) 
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where e0 and b0 are given vectors in IR3 . In the case where these two vectors are 
equal to zero, it can be shown that the equality (2.22b) is a first-order accurate 
absorbing boundary condition (see, for example, [25]). Combining the condition 
(2.22b) with u 0 = v,(O, t) given in the Appendix B, we get 

('u;- cv,t; x n) x n = (eo- cb0 x n) x n, (2.22c) 

where u; = ( u1, u2, 11,3) T and ut; = ( u4, v,5, uß) T. A sufficient condition that 
fulfils (2.22c) is 

v,e = eo and v,t; = bo . (2.23) 

Cylinder Symmetrical Axis 

In the case where the problem under consideration possesses a cylindrical sym
metry, a two-dimensional description in the (z, 1·)-plane is satisfactory whereat 
the third component of the normal vector n is equal to zero. However, for such 
a probleut it is necessary to specify an additional condition at the axis r = 0. 
Because 'U3 = 'U5 = 0, on this axis we impose the boundary conclition 

(2.24a) 

By using the solution of the RP (see Appendix B), we furthermore obtain the 
following requirernents 

(2.24b) 

(2.24c) 

on the z-axis. A sufficient conclition to fulfil the last two equalities is given by 

(2.25) 
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2.3 Partide Treatment 

A further central building block in order to find the numerical solution of the 
Maxwell-Lorentz model (1.1)-(1.3) is the particle treatment, consisting of an ac
cunmlation of different approximation techniques for the interpolation, particle 
pushing, localization and charge assignment [3, 13]. Basically, the goal of par
ticle treatment is to obtain the redistributed charged n1.acro particle distribution 
under the action of the applied external as well as self-generated electromagnetic 
fields in order to compute the changed charge and current densities, the sources 
for the JVIaxwell equations. 

2.3.1 Partide Pushing 

The discretization of the relativistic equations of motion (1.2) as well as its non
relativistic counterpart has been described extensively in the literatme [5, 3, 13, 
30]. However, for the sake of completeness we briefiy recall the basic features 
of the used leapfrog-scheme introduced by Boris [5], taking into account the 
special structure of the Lorentz force (1.2c). Forthat purpose, we consider in the 
following only one macro particle and, hence, drop from now on the index k and 
rewrite ( 1.2a-b) according to 

( un+l/2 _ aEn) _ ( un-1/2 + aEn) 

(2.26a) 

(2.26b) 

where a = ~';/ and the relativistic velocity is computed from U = rV with 
1 2 = l-lv1

1

z;cz = 1 + IUI2 /c2
. Furthermore, t.t is the time step size and n 

denotes the actual time level where the electromagnetic fields at the position 
xn are given. Obviously, the right-hand siele of (2.26a) is time-centered araund 
tn+l/2 = (n + 1/2)t.t while that of (2.26b) has to be computed at tn = nt.t, 
leading to a second-order accurate integration scheme. For the further proceeding, 
we now introduce the quantities 

un-1/2 + aEn , 

un+l/2 _ aEn 
' 

(2.27a) 

(2.27b) 

replace un by its average value ~ ( un-112 + un+112) and approximate '"'/~ ~ 
,- = 1 + Iu -1 2 / c2 with the velocity u- obtained after the first "half-acceleration" 
described by (2.27a). Then, equation (2.26b) can be recast into the form 

(2.27c) 

where we introduced the auxilary vector t = 'Yc:_ IBnibn with bn = 1~: 1 • With 

this relation it is easy to prove that t · u+ = t · u- and lu+l = Iu- I. In order to 
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Figure 205: Geometrical illustration of the second-order accurate Boris schemeo 

determine u+ from (2o27c), we compute an additional velocity vector given by 

(2o27d) 

which is the sum of u- and the "half-rotation" of u- around the magnetic in
duction B 11

, having the length of lu1 12 = (1 + ltl2 ) lu-1 2 - (u- o t) 2
0 A further 

"halforotation" but now of U
1 

around B 11 yields 
I 

U X t u+ x t + ltl 2u+- ( u+ 0 t) t 
u- x t -ltl 2u- + (u- 0 t) t 0 

From this relation and equality (2o27c) we find that u+ is obtained frmn 

+ _ _ 2 I 

U - U + 1 + ltl 2 U X t o 

(2o27e) 

(2o27f) 

After a second "half-acceleration" by 6t/2 with the electrical field E 11
, we finally 

get the solution of (2o26b), namely, the velocity at the time level t = tn+l/2 

(2o27g) 

and from that and (2o26a) the new particle position at t = tn+lo For the special 
case where t is orthogonal to u- the outlined Boris scheme can be illustrated 
geom.etrically as it is shown in Figure 2050 

2.3.2 Partide Localization 

For our purposes, we adopt the intensively investigated particle localization tech
niques proposed by Löhner et al. [19, 18] and Assous et al. [2] for unstructured 
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mesh zones spanning triangles in two and tetrahedra in three space dimensions. 
Especially, we use the Löhner approach for the two-dimensional situation while 
we adopt the Assaus strategy for the three-dimensional case, because it is found 
out, that the Assaus algorithm is faster than the one proposed by Löhner. 

Two-dimensional Localization Algorithm 

In the follovving, we describe briefiy the basic ideas of the two-dimensional Löhner 
approach. This algorithm based on the calculation of shape-functions Si,a = 
Si,a(xn) for the macro particle located at timet= tn inside the mesh zone Ci of 
the computational grid at xn. From these functions, criteria are obtained for a 
sophisticated searching strategy [19, 18]. Closely related to this approach is the 
one proposed by V\Testermann [31), where the ideas of convex hullR are used. 

In the two-dimensional case, Ci is a triangle with the vertices Mi.,a having 
the grid coordinates ai,a = (aa, ba)T, where a runs from one to O"i = 3. The 
situation on hand is depicted in Figure 2.6, where we recognize that the triangle 
opposite to the vertex Mi,a is denoted by CiQ. To decicle now whether a particle 
xn = ( xn, yn) T lies inside the element Ci at t = tn the following strategy is 
applied: 
Step 1: 

M. 
I , 1 

Figure 2.6: Partide localization in the two-dimensional case. 

Calculate the three real numbers Si,l, Si,2, Si,3 E 1R according to 

O"j 

.z= si,aai,a = xn , with 
a=l 

O"j 

.z=si,a = 1. 
a=l 

(2.28a) 

Explicitly, theselinear shape-functions Si,a with respect to the particle coordinate 
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xn are given by 

with 

Step 2: 

If 

si,s 

si,1 

~ [(bs- bi)(xn- a1)- (as- a1)(yn- b1)] , 

1 J [-(b2- b1)(xn- ai) + (a2- a1)(yn- bi)] 

1 - si,2 - si,s , 

i\IIIN (Si,1; Si,2; Si,3) ;::: 0 and J\!IAX (Si,1; Si,2; Si,s) :::; 1 , 

then xn is located inside the mesh zone Ci at time t = tn. 
Otherwise, if 

(2.28b) 

(2.28c) 

(2.28d) 

(2.28e) 

(2.29a) 

(2.29b) 

xn tf. Ci, and we have to continue the search in the element adjacent to Ci and 
lying opposite to the vertex Mi,a possessing the smallest value for the shape
function si,a. 

Three-dimensional Localization Algorithm 

The basic ideas of the three-dimensional scheme proposed by Assaus et al. [2] 
can be summarized as follows: Consider the tetrahedric grid zone Ci as depicted 
in Figure 2.7 having the vertices JVIi,a with the coordinates ai,a = (am ba, caf 
where 1 :::; a :::; CJi = 4. Then, we first calculate the determinants .6.i,a with 
respect to the particle position xn at t = tn from 

(2.30a) 

where the {a1;a2;as;a4} are cyclical permutations of {1;2;3;4} and Anis the 
abbreviation of the difference vector Aa = ai,a - xn. Explicitly, we find for the 
four determinants of Ci 

.6.i, 1 (A2 x As) · A4 , (2.30b) 

.6.i,2 ( A 1 x A4) · As , (2.30c) 

.6.i,3 (A4 X AI) . A2 ' (2.30d) 

.6.i,4 (As x A2) · A1 . (2.30e) 

Afterwards, the following possible cases have to be considered during the sear
ching procedure, where E denotes the machine zero: 
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Case 1: 
If 

Vk: E {1, 2, 3, 4} ' D..i,k ~ -E' (2.31a) 

then the particle is located in the mesh zone Ci at t = tn, i.e., xn E Ci. 
Case 2: 
If 

3k: E {1,2,3,4}, b..;,k < -E, (2.31b) 

holds, continue the searching procedure in the cell Cik located opposite of the 
vertex A1i,J,,. 
Case 3: 
If 

3(k:, l) E {1, 2, 3, 4}2 
, k: =;f l , b..i,k , b..i,l < -E, (2.31c) 

m if even three cleterminants become negative, the decision process is n'lore com
plex. To discuss this item, we assume tlmt D..i,l and D..i,2 are lower than -E and 
denote by H the intersection point of the particle trajectory with the plane span
ned by (A1i,2 Mi,3 Mi,4) (cf. right picture of Figure 2.7). Then, we introcluce 

M.4 I, 
M.4 I, 

b I 
C. 

I 

M '1 I, 

M.2 
I, 

M.2 I, 

Figure 2.7: Partide localization within the tetrahedron Ci according to Assous 
et al. [2]. 

the local basis a = Mi 2Mi 3, b = Mi 2Mi 4 and expand the vector x = Mi 2H ' ' ' ' ., 
accorcling to 

x = o:a + ßb. (2.32a) 

22 



JVIoreover, this vector is also given by 

X = A1 i,2 p - HP ' (2.32b) 

where P denotes the particle position at tixne t = tn. Because HP is parallel to 
vn- 112 , we find that 

(2.32c) 

holds, which means, that it is not necessary to compute H explicitly. Inserting 
(2.32a) into the last relation, we get 

~X vn-1/2 = o:a X vn-1/2 + ßb X vn-1/2' , (2.32d) 

yielding two equations for the unknown parameters o: and ß. Now, we can decicle 
if 

o:,ß E [0,1] and o:+ß ::=; 1, 

then the particle crossed the plane (A1i,2 Mi,3 Mi,4) and has to be searched 
in Ci 1 • If this condition is not met, the searching has to be contim1ed in the 
tetrahedron C'i2 • 

2.3.3 Partide Assignment and Interpolation 

Applying the outlined localization strategy (in two or three space dimensions), 
a macro particle with the phase space coordinates ( x k( t), v k( t)) may be found 
in the grid cell Ci. Now, we have to calculate the contribution of this particle 
to the charge and current densities at the nocle i with the coordinates ai. This 
nocle is surrouncled by a certain number z;i of elements forming the local node 
clomain ni as depictecl in Figure 2.8. In order to clo this, we compute the particle 

Figure 2.8: Localnocle domain ni established by Vi elements. 

linked shape-function Si = Si(x(t)) according to (2.28a) (for the two or three
dimensional case). This function possesses the property that at the considered 
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node i the relation Si(aj) = !Si,j holds, where !Si,j denotes the Kronecker symbol. 
Then, we perform an averaging process over the local node domain Di, defined 
for any integrable function h(x, t) according to 

h(ai, t) = ~i J h(x, t)Si(x, t) dV, (2.33a) 

rl; 

where Vi clenotes the volume associatecl with the nocle i given by 

Vi = J Si(x)dV. (2.33b) 

rl; 

Applying this averaging to (1.3), the contribution of the kth chargecl macro par
ticle to the charge ancl current clensities at the nocle i is obainecl from 

(2.34a) 

(2.34b) 

where the abbreviation sy:) = Si(Xk(t)) is usecl. 

After the total charge ancl current clensities at the nocles of the computational 
mesh are cleterminecl, the new electromagnetic fielcls at these nocles are compu
tecl by solving the JVIaxwell equations (2.1)) with the cliscussecl FV scheme. To 
aclvance the chargecl particles from the time level t 11 to tn+l in this new fielcls, 
we once again apply the concept basecl on the shape-function approach, but now, 
in orcler to cletennine the fielcls at the actual particles positions at t = t11

• The 
electromagnetic fielcls u ( x k ( t11

), t11
) ( cf. equation ( 2. 2)) acting at the kth chargecl 

particle position are calculatecl from the formula 

u; 

u(xk(t11
), i 11

) = L Si,a(xk(t11 ))u(ai,m i 11
) • (2.35) 

a=l 

Here, u( ai,a, t 11
) are the electromagnetic fielcls given at the nocles Mi,a of the gricl 

cell Ci ancl si,a (X k ( t 11
)) clenotes the particle linkecl shape-function in this cell. 

Now, a typical PIC cycle is closecl ancl the entire particle treatment starts 
again with particle pushing as clescribecl in Section 2.3.1. 

2.3.4 Partide Handling at the Border of the Computational Do
mmn 

Two important boundary conditions in the context of particle treatment, namely, 
absorption and reflection on a certain border of the computational domain will be 
discussed in the following for the two-dimensional situation. For that, we assume 
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that the macro particle pn with the coordinates xn is situatecl in the grid zone 
Ci at time t = tn ( cf. Appendix D). This grid element has one common siele with 
the border of the computational clomain and is established by the vertices Mi,a 

with the Coordinates ai,o: = (ao:, bo:, of, where 1 :::; a:::; (Ji = 3. Let us suppose 
tlmt the particle leaves the gricl cell Ci within the time interval b.t = tn+l - tn. 
The first task is now to find out the siele Si,o: through which the particle moves 
cluring b.t. For tlmt, we cletermine subsequently the following cleterminants 

det (A1,p) = (A1 x p) · e3 , 

det (A2,p) = (A2 x p) ·es , 

clet (A3,p) = (As x p) · e3, 

(2.36a) 

(2.36b) 

(2.36c) 

with the abbreviations Ao: = P11 M.i,~ = ai,o:- xn and p = pnpn+I and where 

the unit vector e3 is given by e3 = (0, 0, 1f. With the agreem.ent that the siele 
Si,o: which the particle crossed lies between JVli,a and Mi,o:+l (see Figure 2.9) 
and the convention that JV1i,4 = Mi,l, we have to check the following possible 
alternatives, subsequently: 

M1 
p 

n+1 
• p 

Figure 2.9: Partide passecl siele Si,l of the border grid cell Ci. 

• Partide passed side Si,l 

This case is schematically depicted in Figure 2.9 . The signs of the cleterminants 
(2.36) for this situation are given by 

d1 > 0 ancl d2 < 0 ; d3 = { 2: O, 
< 0, 

• Partide passed side Si,2 

if L(p, As) :::; 1r 

if L(p, A3) > 1r 
(2.37a) 

This situation is seen in Figure 2.10 ancl characterized with the cleterminants 
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(2.36) according to 

• p 
n+1 

Figure 2.10: Partide crossecl siele Si,2 cluring ßt = tn+l - tn of the border cell 
Ci. 

d2 > 0 ancl d3 < 0 ; d1 = { 2: O, 
< 0, 

• Particle passed side Si,3 

if L(p, Al) ::; 1r 

if L(p, Al) > 1r 
(2.37b) 

Using once again the cleterminants (2.36), we find for this situation, schematically 
illustrated in Figure 2.11, the condition 

d3 > 0 ancl d1 < 0 ; d2 = { 2: O, 
< 0, 

n+1 
p 

• 

if L(p, A2) ::; 1r 

if L(p, A2) > 1r 
(2.37c) 

Figure 2.11: Siele Si,3 of the border cell Ci is crossed by the macro particle. 
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Defining the function k in the following way: 

k(1, 1) = 1 ' k(1, 2) = 2' k(2, 1) = 2' k(2, 2) = 3' k(3, 1) = 3 ' k(3, 2) = 1 ' 

we recognize from (2.37a) - (2.37c) that the particle crossed the siele Si,j if and 
only if dk(j,l) > 0 and dk(j,2) < 0 ; this criterion is explicitly used in our computer 
program. If this siele coincides with the border of the con1.putational domain, the 
macro particle is absorbed, which means, it is taken out of the domain and of the 
further computation, and assessed for diagnostical reasons. 

To discuss the particle reflection schematically depicted in Figure 2.12, we as
sume without loss of generality that the siele Si,l of the triangle cell Ci coincides 
with the border of the computational domain where a reflection boundary condi
tion is imposed. The considered rnacro particle crossed the siele Si,l at the point 

' 
~ 
0 * p 

Figure 2.12: Reflection of a particle at the siele Si,1 of the border cell Ci. 

Q during the time interval ßt and possesses the known position P* at t = tn+l, 
located outside the computational domain (see Figure 2.12). However, due to the 
reflection condition we have to put the particle to its true location pn+l inside 
the domain which is still unknown. To determine this true position, we define 
the unit vectors according to 

Mi,1Mi,2 
81 = -;-::::;=:==::::;:=;:~ 

IMi,dvti,2l 

and compute the scalar products 

82 = 1-nn I A ) I ' r ~ )VIi,l 

82 . 81 = cos 0: ' 82 . 83 = cos I ' 83 . 81 = cos ß ' 
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yielding the three angles a, ß and "'! of the triangle (M.i 1 Q pn). vnth the given 
==~~) , 

length IPn Mi,ll, we easily find that 

l
pnQI = sina IPn M· )I· . ß 1.,1 sm 

(2.39a) 

Furthermore, it is obvious from Figure 2.12 that the vector QP~ can be expressed 
in terms of 

(2.39b) 

This vector may also be expanded in the orthogonal basis established by 8 and 
m, with 8 · m = 0 and 8 x m =es where es= (0, 0, 1f, yielding 

QP~ = ( QPl · 81) 81 + ( QP~ · m) m . (2.39c) 

Since 8s · m = - sin ß, we obtain frmn the last two equations the following result: 

QPl = (IPnPli-IPnCJI) (cosß81-sinßm). (2.39d) 

A refiection of this vector at the side Si,l yields Qpn+f, obtained from the relation 

(2.40) 

Performing the final computation step 

(2.41) 

we get the true position of the macrocharge at t = tn+l refiected at thc side Si,l 

of the triangle cell Ci. 
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Chapter 3 

N umerical Results 

In this chapter, we present results of pure electronmgnetic as well as particle 
benchmark calculations computed with the "Maxwell and particle solvers, respec
tively. These results underline the high quality and characteristic properties of 
the outlined numerical methods. 

3.1 Two and Three-Dimensional Electromagnetic 
Test Problems 

3.1.1 Two-dimensional Test Examples 

First, let us consider a simple two-dimensional test problen1 without any symme
try, for which the use of Cartesian coordinates x = (x1, x2) = (x, y) is appropriate. 
The physical dmnain 0 = [0, 1] x [0, 1] consists of the unit square with a length 
of 1m. It is easy to check that the fields 

kj_ 
E1 (x, y, t) = -+- sin(kj_y) cos(k11x- wt) , 

n:ll 
(3.1a) 

(3.1b) 

(3.1c) 

are a set of solutions of the time-dependant lVIaxwell equations, where the longi
tudinal and transversal wave numbers k11 and kj_, respectively, are related to the 
pulsation w according to 

w2 
k2 + k2 -II j_- 7}2 · (3.1d) 

In order to check simultaneously different kinds of boundary conditions, we limit 
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Figure 3.1: Discretization of the computational domain with different fineness in 
order to study the properties of the FV ·Maxwell solver. 

the computational domain at y = 0 and y = 1m by a perfectly conclucting wall, 
resulting in 

E1(x, 0, t) = E1(x, 1, t) = 0; V(x, t) , (3.2a) 

from which we get the requirement that 

k 1_ = ]J7f' , p E 7l . (3.2b) 

Furthermore, we prescribe fielcl bounclary conclitions at x = 0 ancl x = 1 m given 
by the ana.lytical values of the incoming characteristics 

and 

E2(0, y, t) + cB3(0, y, t) =- (1 + kw ) cos(k1_y) sin(wt) 
"llc 

-E2(1, y, t) + cB3(1, y, t) = ( -1 + k:c) cos(k1_y) sin(k11 - wt) , 

(3.3a) 

(3.3b) 

respectively, computecl from the equations (3.1b) ancl (3.1c). Performing nume
rical experiments, we explicitly choose k11 = k1_ = 7f' /m ancl initialize the fielcls 
accorcling to the analytical solution (3.1a)-(3.1c) at timet= 0. Afterwarcls, the 
Maxwell solver computes the evolution of the fielcls within the time interval of 

three periocles 
2

7f', d~ring which the bounclary conclitons (3.2a), (3.3a) ancl (3.3b) 
w 

are imposecl. In orcler to stucly experimentally the effective orcler of the schemes 
uncler consicleration, we perform the computations on three different gricls with 
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Figure 3.2: Numerical result of the E1 fidel computed with the first-order scheme 
for three different discretizations. The lower right plot shows the analytical so
lution of this field component. 

different finenesses (100, 400 and 1600 triangles, respectively) depicted in Figure 
3.1. Obviously from. this Figure, the lengths of the sides of the triangles, and 
hence, the time step size determined by the CFL condition is reduced by a factor 
two in switching from grid 1 to grid 2 and from grid 2 to grid 3, respectively. 
The numerical results for E1 obtained with the first and second-order accurate 
JVIaxwell solver for the three different discretizations are shown in the Figures 
3.2-3.3. Additionally, the analytical solution is given there for comparison. A 
closer inspection of these Figures reveals tlmt the numerical solution on the fi
nest mesh computed with the second-order accurate scheme is nearly in perfect 
agreement with the analytical result. To get a more quantitative picture of 

the approximation quality of thc first and second-order schcmes, we compute the 
relative discrete L 2-error between the analytical and numerical solution. This 
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Figure 3.3: Nmnerical solution of the E1 field for three different fine grids com
putcd with the second-order schemc. The lower right plot shows the analytical 
solution of this component. 

error norm is defined as 

N 

llu~um- u~nallv 
llu~naiiL2 

L [ ( u~,i - E1,i) 
2 + ('u~,i E~J 2 + c2 

( u6,i - B3,i) 
2
] l"i 

i=l 
N 

"' [(En)2 + (En ·)2 + c2(Bn)2] V 0 1,7 2,z 3,t 1 

i=l 

(3.4) 

where the analytical solution is computed at the barycenter Bi of the cell Ci at 
timet= tn, which means for example: E1i = E1(Bi, tn). The relative discrete 
L2-error for both the first and the second-~rder accurate schemes computed for 
the three different grids is plotted with respect to time in Figure 3.4. \iVe verify 
from these plots the fact that the schemes we use are really of the order one and 
two: the L2-error is (approximately) reduced by a factor two for the first-order 
and by a factor four for the second-order scheme, when switching from grid 1 to 
grid 2 and from grid 2 to grid 3, respectively. 
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Figure 3.4: The L2-error computed with the first and second-order accurate 
schen'les for grids with different finenesses. 

3.1.2 Cylinder Symmetrical Test Problem 

Secondly, we are interested in a cylinder symmetrical problem with respect to 
the z-axis. For the natural description, it is convenient to use cylindrical CO

ordinates and for the computation, we restriet ourselves to the finite domain 
n = [-0.5, 0.5] X [0, 0.5] in the (z, r)-plane. Apart from the rotational axis, the 
boundaries of D are considered to be perfectly conducting walls. The electroma
gnetic fields are driven by the current density of the form [12] 

j(z, r, t) ~ { j,e, ' if 0 < t < 2
1f and ( z2 + r2

) ~ :::; R - - w 
0 , otherwise 

where Jz is given by 

. (z2 + r2) ~ . 
Jz(z, r, t) = 1- R sm(wt) 

(3.5a) 

(3.5b) 

and ez = (1, O)T, modeHing the radiation of a dipole in an empirical manner. 
For the simulation, we fixed the parameters w and R, respectively, equal to w = 
57r109 s-1 and R = 0.04 m. With a time step size of D.t = 5 ps , we perform 600 
iteration cycles to reach the final simulation time of 3 ns . The computational 
mesh we use is composed of 4 x 34 x 68 = 9248 triangles and shown in Figure 
3.5. The numerical values of the B3 (=Be), E1 (= Ez) and E2 (= ET) fields are 
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Figure 3.5: Computational mesh used für the dipole radiation test problen'l. 

computed with the second-order accurate .tviaxwell solver and snapshots recorded 
at 1 ns, 2 ns and 3 ns are respectively presented in Figure 3.6. The observed 
structure of the wave propagation matches exactly with the one published by 
Hermeline [12], who proposed two finite-volume methods on Delaunay-Vorono'i 
meshes for the IVIaxwell equations in the time domain. 

3.1.3 Coaxial Wave Guide in Three Dimensions 

As a last example, we consider here a waveguide of length L whose cross-section 
is a circular crown limited by two ch·cles of radius R1 and R2. By z, we denote 
the common rotational axis of both cylinders, being also the direction of wave 
propagation. This means, that we are interested in the temporal evolution of 
a TEJVI mode, where the non-zero field components are transverse to the z-axis 
(i.e., Ez = Bz = 0). The analytical formulas of the TEJVI fields are given by 

I sin(kz - wt) , (3.6a) 

) 
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1ns 2ns 3ns 

Figure 3.6: Structure of the dipole fields at three different times calculated with 
the second-order accurate lVIaxwell solver. 

and 

~ ( 
-y 

) sin(kz- wt) , ( ~:) x2 + y2 
X (3.6b) 

x2 + y2 
0 

where the wave number k is related to the pulsation w according to w = kc. For 
the numerical simulation we choose L = 0.5 m, R1 = 0.5 m, R2 = 0.1 m and 
w = c; s-1 , and initialize the fields according to their analytical values at t = 0. 

The numerical experiments are performed on two different grids composed by 
6960 and 54960 tetrahedra, respectively. Applying the CFL restriction on the 
time step size, an oscillation period is devided into 152 time steps for the coarse 
and 308 for the fine grid. For both cases, the simulation has been carried out over 
2.25 periods. A comparison between the numerically obtained and corresponding 
exact values of the Ex and Ey field components is presented in the Figures 3. 7 and 
3.8, respectively. For both computational grids as well as for the first and second
order accurate scheme, we observe a very good agreen'lent between the computed 
and analytical solution. The numerical result obtained for the Ez field is seen in 
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Figure 3. 7: Ex field of the coaxial vvaveguide in the sectional plane y = 0. 

Figure 3.9. vVe notice that the biggest deviations from the exact result (Ez = 0) 
are located araund the inner circle with the radius R2. However, this observation 
can be explained by the fact that the region of strong curvature araund the inner 
circle is not well approximated by the mesh under consideration and, especially 
there, a refined computational gricl seems to be necessary. Furthermore, the 
cliscrete L 2-error com.putecl according to 

llu~ttm- 'U~naiiL2 

llu~naiiP 
(3.7) 

is clepicted in Figure 3.9. In this formula, Ej;i ancl Bj,i are the values of the fielcls 
given by (3.6a) and (3.6b) at the barycenter of the cell Ci and at t = t71

• This 
error is approximately reducecl by a factor of two when switching from the coarse 
to the fine gricl for the first-orcler, and by a factor of three for the seconcl-order 
accuracy, which indicates tlmt the seconcl-order scheme has in fact an effective 
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order of convergence (EOC) of about 1.6. 

For the graphical presentation of the numerical results given in the Figures 3.7 
- 3.9 we used the software-tool "TECPLOT". This tool only allows to plot values 
at the summits of the tetrahedra. However, the numerical solution is defined to 
be the vector of the average values of the fields over the tetrahedra. Hence, the 
results seen in the Figures 3.7- 3.9 are node values, computed as the average of 
the values of the fields in the cells surrounding the nodes. 
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Figure 3.8: Ey field of the coaxial waveguide in the sectional plane y = 0. 
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Figure 3.9: Ez field component of the coaxial waveguide and discrete L2-error 
defined according to equation (3.7). 

3.2 Two and Three-Dimensional Benchmark Pro
blems for Particle Treatment 

3.2.1 Localization and Assignment 

In the following, we first focus our attention to the localization and assignment 
procedures in two and three dimensions described in Section 2.3.2 and 2.3.3, 
respectively. The computational domain consists of a unit square for the two (see 
Figure 2.2) and a unit cube for the three-dimensional case. The discretization of 
these domains by an unstructured computational grid is established by 130 and 
200 nodes, resulting in 222 triangle and 744 tetrahedron elements, respectively. 
Within the computational domain the particles are uniformly distributed, which 
means for instance in two dimensions, tlmt 80 particles are situated per row and 
column if Np= 80 x 80 = 6400. Analogons, if 64000 particles are considered in the 
unit cube, we have a spatial particle discretization of 40 x 40 x 40. Furthermore, 
each particle carries a charge of Qk = J (measured in Coulomb), so that we 

p 
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obtain for the charge density 

1 Np C 
Po = - L Q~,~ = 1-. V m 3 

k=l 

in the unit volume V. 
The performances of the numerical experiments for the two and three

dimensional situations are quite sinlilar: In the first step of the calculation, we 
localize the particles within the computational mesh according to the Löhner 
or Assous approach ( cf. Section 2. 3. 2). Then, we compute the shape-functions 
(2.28a) of each particle in order to perform the assignment process and, finally, 
determine the cha.rge density in the nodes i of the grid ( cf. Section 2.3.3) a.nd at 
the ba.rycenter Bi of the elements Ci, given by the a.verage 

1 o-; 

p(Bi, t) = - L p(Mi,a, i) , 
O"i a=l 

(3.8) 

where p(Mi,a, t) is the cha.rge density at the vertices (nodes) A1i,a of Ci. A first 

Localization and Assignment 

-D- Nodes 
-Q- Barycenters 

~ 10° 

a:-

ll:o 

~ 
E 

10·' 

10' 104 105 

Number of Partielas 

Figure 3.10: Maximumdeviation (in per cent) in the nodes (squa.res) and bary
centers ( ch·cles) from the cha.rge density p0 = 1 versus the number of pa.rticles in 
the com.putationa.l doma.in. 

result of the two-dimensional localization-assignment procedure is presented in 
Figure 3.10. There, the ma.ximum of the absolute value of the difference po -Pi 

max{IPo -Pd} = ma.x{l1- Pil} 
'h 'rh 
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is plottcd vcrsus thc numbcr of particles placcd inside the domain (Np = 
400, 1600,6400, ... , 409600), where i runs, respectively, over all nodes (indica
ted by squares in the plot) and barycenter of the elements ( indicated by cil·cles). 
Clearly, the n1.aximum deviation drops below one per cent if more than 6400 par
ticles are inside the domain. Furthermore, we observe that the deviation from 
the reference value at the barycenters is less pronounced than that at the nodes, 
being the consequence of the additional averaging given by (3.8). Further re-

Localization and Assignment; 6400 Partielas 

0.006 

0:-

' 
:!: 
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Figure 3.11: Deviation from p0 = 1 at the 130 nodes of the computational grid 
for 6400 particles in two space dimensions. 

sults of the localization-assignment part of the particle treatment for the two as 
well as three-dimensional cases are depicted in the Figures 3.11-3.12 and Figures 
3.13-3.14, where 6400 and 64000 particles are distributed in the computational 
domain, respectively. There, the deviation Po- Pi at the nodes (Figures 3.11 and 
3.13) and at the barycenters of the elements (Figures 3.12 and 3.14) are plotted 
for the two and three-dimensional situations. The plots show that the results for 
the two-dimensional case are very acceptable: the deviation is always less than 
one percent. The results for the three-dimensional test case are also satisfactory, 
but reveal that the discretization of the unit cube with the mesh we use is too 
coarse. 
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Localization and Assignment; 6400 Partielas 

0.0040 

0.0030 

0.0010 

0.0000 
50 100 150 200 

Number of Elements J 

Figure 3.12: Deviation from po = 1 in the barycentcr of thc 222 elements of the 
computational grid for 6400 particles in two space dimensions. 

3.2.2 Localization and Interpolation 

Now, we consider the localization-interpolation building block of the two and 
three-dimensional particle treatn1ent. For that purpose, 100 (1000) particles are 
distributed uniformely in the unit square ( cube) in the same manner as already 
mentioned above. At each particle position Xk the actual value of the externally 
applied force 

F(x) = Fo sin(1r x) sin(1rJL) 
:ro Yo 

(3.9) 

is computed, where x 0 = Yo = 1m and F0 is :fixed to one Newton. This direct force 
calculation yields the reference values for the comparison made later on and is 
denoted by Fdi?"(xk)· Afterwards, the relevant localization procedures for the two 
or three-dimensional cases are used in order to find the particles with respect to 
the cells of the computationalmesh. Assuming tlmt the kth particle is located at 
Xk in the mesh zone Ci, then we calculate the shape-function Si,o:(xk) ( cf. (2.28a)) 
and determine the force (3.9) at the local nodes ai,o: of Ci. By applying formula 
(2.35), the force hip(xk) acting at the particle position Xk is obtained. The 
results of the numerical simulation is seen in Figure 3.15 for the two-dimensional 
andin Figure 3.16 for the three-dimensional calculations, respectively. There, the 
directly computed force Fdir ( x k) (solid line) and the force determined from the 
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Localization and Assignment 3D; 64000 Partielas 
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Figure 3.13: Deviation from p0 = 1 in the 200 nodes of the computational grid 
for 64000 particles in three space dimensions. 

localization-interpolation process Ftip ( x k) ( open circles) are depicted as functions 
of the particle number. The comparison indicates a very good agreement between 
direct and indirect calculated force values at the particle positions xk. 

3.2.3 Interpolation, Partide Pushing and Localization 

The following problen'l is tailored to test the interplay between interpolation, par
ticle pushing and localization. For that, we consider the Lorentz force computed 
from the externally applied fields 

Ex(x) 

Bz(x) 

Eox sin( 7rX) sin( 1ry) , 

Eoz ) - cos( 1rx cos( 1ry) , 
c 

in two space dimensions, and from 

Eox sin( 7rX) sin( 1ry) sin( 1r z) , 
Eoz 
- cos( 1rx) cos( 1ry) cos( 1rz) , 

c 

(3.10a) 

(3.10b) 

(3.1la) 

(3.1lb) 

in the three-dimensional case, where the coordinates x, y and z are norma
lized to one meter and Eoz is fixed equal to 1 V jm. This Lorentz force 
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Figure 3.14: Deviation fron~ p0 = 1 in the barycenter of the 744 elements of the 
computational grid f'or 64000 particles in three space dimensions. 

acts on the macro particle ( with charge Q = 1 Coulomb) initially located 
at x(O) = (0.2, 0.5f in two and x(O) = (0.5, 0.5, 0.5)T in three dimen
sions. At these starting points, the intitial velocity (normalized to the speed 

of light) is chosen to be v(O) = (0.777 ·10-2
, 0.202 · 10-1f and v(O) = 

(0.785 · 10-2 , 0.785 · 10-2 , 0.395 · 10-1 )T, respectively. To prove the efficiency 
of the numerical schemes outlined in Section 2.3.1-2.3.3, it is important to notice 
that for the Lorentz force established by the fields (3.10) or (3.11) an analytical 
solution of the classical laws of mechanics (1.2) can be found (see, e.g., [15]), 
yielding the trajectory of the particle in the computational domain. 

To perform the numerical simulation, we use the standard discretization of 
the unit square (130 nodes, 222 elements) and unit cube (200 nodes, 744 ele
ments), and determine the particle position x(t) and velocity v(t) in two and 
three space dimensions with respect to time. The results of the two-dimensional 
numerical experiment are presented in Figure 3.17, where 100 temporal iteration 
cycles with 6.t = 0.05 are performed. This plot demonstrates clearly, that the 
numerical calculation of the particle position agrees very well with the analytical 
solution drawn there as solid and dashed lines. The simulation result tagether 
with the exact solution for the three-dimensional case are depicted in Figure 3.18. 
There, we observe discrepancies between the analytical and numerically determi
ned solutions, clearly indicating that the unstructured mesh used is too coarse 
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Figure 3.15: Directly calculated Fdir(xk) (solid line) and fron'l the localization
interpolation proced ure o btained force Ftip ( x k) ( cil·cles) as a function of the par
ticle number for the two-dimensional case. 

and that a further refinement of the computational grid is necessary for high 
quality simulations. 

In order to get an imagination of the infiuence of the grid fineness on the 
discrete solution procedure, we consider a further two-dimensional test problem, 
solved numerically within the frame of the interpolation, particle pushing and 
localization building block. This problem deals with the movement of a particle 
in a central force field given by 

Fx 
-0.1rx 

(3.12a) 
(2 2)3/2' rx + ry 

Fy 
0.1ry 

(3.12b) 
( 2 + 2)3/2 ' rx ry 

where rx = x - 0.5 and ry = y - 0.5. The dimensionless initial data of the 
particle are specified according to x(O) = 0.2, y(O) = 0.5, vx(O) = 0 and vy(O) = 
1/ J3. For the numerical experiment we use two different computational grids, 
namely, GRID1 with 130 nodes and 222 elements and GRID2 possessing 701 
nodes resulting in 1320 elements. The simulation results for GRID1 and GRID2 
tagether with the exact solution are depicted in Figure 3.19 and 3.20, respectively, 
where 700 temporal steps are computed. It is clearly visible from Figure 3.19 that 
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Figure 3.16: Directly calculated Fdi1·(xk) (solid line) and from the localization
interpolation procedure obtained force Ftip(xk) (ch·cles) as a function of the par
ticle number for the three-dimensional situation. 

the trajectory of the particle for the coarse mesh (GRIDl) gets unstable due to 
the inadequate cliscretization. Moreover, the encirclecl phase space area oscillate 
when the particle ch·cles several times around the origin of the central force. This 
lad\: is removecl if the fine mesh ( GRID2) is used for the mm1erical computation, 
impressively clemonstratecl in Figure 3.20, vvhere we recognize a nearly perfect 
agreement between the numerically obtainecl and the exact solutions. 
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Figure 3.17: Iviovement of a macro charge in a unit square, where an externally 
crossed electromagnetic :field is applied. The numerical result ( open cil·cles and 
squares) is cmnpared to the analytical solution ploLted as solid and dashed lines. 
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Figure 3.18: Movement of a macro charge in a unit cube, where an externally 
crossed electromagnetic :field is applied. The numerical result ( open cil·cles) is 
compared to the analytical solution plotted as solid lines. 
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Figure 3.19: N umerically obtained (left) and exact (right) solutions of the cen-
tral force problem on the coarse computational mesh (GRID1: 130 nodes, 222 

elements). 
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Figure 3.20: Numerically computed (left) and exact (right) solutions of the cen-
tral force problem on the refined computational grid (GRID2: 701 nodes, 1320 
elements). 
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Chapter 4 

Algorithms and Data Structure 

Before entering in a more detailed code description of KADI~D , we have to men
tion son1e more general requirementso Since the code is written in FORTRAN 
77, the din1ensions of all necessary arrays have to be specified as parameter sta
tements in the main programo Therefore, the following parameter agreements, 
essential for code running, should be declared in the main program, which sub
sequently call the subroutines of the Maxwell solver and particle treatmento In 
the following description, the integer number labeled as ndim abbreviates the 
spatial dimensionality (i.eo, two or three) of the problemo In detail, we have to 
specify the follovving parameters: 

• melem : maximum number of elementso 

• mpoin : maximum number of verticeso 

• mside : maximum number of sides (faces) if ndim = 2 (ndim = 3)0 This 
value is set equal to 3*melem (ndim = 2) or to 4*melem (ndim = 3)0 

• mnelv : maximum number of elements a given vertex belongs too 

• mbsil : maximum munber of boundary sides (faces) of type 1 (being, for 
instance, a perfect conductor)o 

• mbsi2 maximum number of boundary sides (faces) of type 20 

• mbsi3 maximum number of boundary sides (faces) of type 30 

• mbsi4 maximum number of boundary sides (faces) of type 40 

• mptyp : maximum number of particle species (for instance, mptyp = 2 if 
electrons and ions are considered) 0 

• mpart maximum number of particles within each specieso 

• mpato maximum total number of particles which is set equal to mpart 
* mptyp 0 
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• mpodi : maximum number of mesh points where diagnostic monitaring 
should be made. 

In the ndim = 3 case, the considered elements are tetrahedra; in addition to the 
maximum number of faces and of points already defined, we also need to define 
maximum values concerning the sides of the elements. 

• maret maximum number of sides (if ndim = 3). 

• mnela maxinmm number of elements a given siele (if ndim = 3) belongs 
to. 

The values of these parameters are declared in the file param.h and can 
easily be modified if they are not adequate. However, in this case the code has 
to be recompiled for further execution. 

In the present clescription of the algorithms, we also clefine the different 
arrays usecl in the cocle. For that purpose, it is helpful to specify explicitly the 
clin'lensions of the arrays accorcling to 

• array(ndiml,nclim2, ... ,nclimp). 

Sometimes it is very convenient to define locally integer numbers represen
ting a given element, a given siele, etc .. For that, the following nomenclature is 
adopted: 

• ielem : represents the global number of a given element and has a value 
lying between 1 and melem 

• iside : clenotes the global number of a given siele ancl, therefore, is between 
1 ancl mside 

• ipoin : abbreviates the global m1mber of a certain vertex ancl has a value 
between 1 ancl mpoin 

• locsi : is a local number of a siele (for ndim = 2) or a face (for ndim = 3) 
of a given element. Hence, it ranges from 1 to 3 or from1 to 4, respectively. 

Moreover, in the following, nsid (ndim) clenotes the number of sicles or faces of 
the mesh elements, and is equal to three (for ndim = 2) or four (for ndim = 3). 

In the following, we first present some details of the general structure of the 
particle simulation program KADI~D , which is composed of three main parts, 
namely; the 

e Preparatory Step 

• Time Loop 
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• Post-Processing Step. 

Afterwards, we discuss in more detail the algorithmical realization of the nume
rical schemes introduced in Chapter 2. Especially, we go through the different 
steps of the Maxwell solver, being of central importance for the :field computation 
at each iteration cycle. 

4.1 Preparatory Step 

In this building block, the following actions are performed: 

e Open the files from~ which the basic information is read (SUBROUTif\JE fi
leop ) . These are 

1. the file provided from the rnesh-generator: Its name has to be nopo 
and should be located in the current directory. 

2. the command file defined by the user: Its name has to be data and 
should also be located in the current directory. An example of such a 
command :file is given in Appendix E. 

• Read Lhese two files with the SUBROUTI~JE userpre ancl SUBROU
Tif\JE readmsh. 

• Create the files neecled for the diagnostic monitaring at different points of 
the mesh (SUBROUTINE creadia ). 

• Build up the clata structure requirecl for the computations on the unstruc
tured grid (SUBROUTINE indvtoe and SUBROUTINE ietsste ). 

e Compute all geometric values associated with the grid: volumes of the 
elements, areas of the faces, lengths of the sides, etc .. This is clone in the 
SUBROUTINE geomesh . 

• Initialize the :field values and the particle coordinates, velocities, localiza
tions and weights within the grid zones (SUBROUTINE initfld and SU
BROUTINE intprtc ). 

4.2 Time Loop 

This is the core block of the JVIaxwell-Lorentz solver and executes the following 
actions: 

• Carrying out the particle treatmcnt consisting of interpolation, particle 
pushing, localization and charge assignment (SUBROUTINE ptreat ). 
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• Computation of the source terms, depending on thc chargc and current 
densities created by the particles, and on possible externally applied sources 
(SUBROUTINE compsou ). 

• Take into account the contributions of the sources over a half time-step 
(SUBROUTINE halfsou ). 

• Gradient computation in the case where the second-order accurate scheme 
is used (SUBROUTINE inngrad ). 

• Computation of the field values at the midpoints of the sides of the elements 
at timet= tn+l/2 in order to solve the R.iemann problems. Furthermore, a 
special treatment of the boundary sides is performed (SUBROUTINE side
val and SUBROUTINE presiva ). 

• Determination of the numerical fiuxes based on the solution of the Riemann 
problem (SUBROUTINE riemann ). 

• Computation of the solution of the homogeneaus Maxwell equations (SU
BROUTINE intefid ). 

• Take into account the contributions of the sources over a further half time
step (SUBROUTINE halfsou ). 

• Generation of the diagnostic files whenever it is desired (SU BROU
TINE creamsh and SUBROUTINE diagpoi ). 

4.3 Post-Processing 

In this last step, the following actions are performed: 

• The files are closed (SUBROUTINE filecl ). 

• \iVhatever for the further post-processing procedure is needed can be achie
ved subsequently, for instance, writing the results in a suitable plot format. 

4.4 Details of the Maxwell Solver 

In this section, we describe in greater detail the different computational steps 
carried out by the Maxwell solver within a temporal iteration cycle. 

4.4.1 Computation of the Sources 

The sources of the Maxwell equatious may be composed by two different contri
butions: the current density obtained from the charged particle distribution and 
an externally imposed current density specified by the user. To store the values 
of these sources we define six arrays according to: 
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• sourcp, (melem) vvith {1· = 1, . ., , 6: Values of the p.th component of the 
source terms at the ( weighted) barycenters of the elements. 

Due to the application of a splitting ansatz for the numerical solution of the 
l\!Iaxwell equations (cf. Section 2.2.1), we first have to compute the contribution 
of the source terms to the electromagnetic fields at the intermediate tin1e tn+l/2 = 
(n + 1/2) b..t. 

4.4.2 Computation of the Gradients 

Choosing the second-order accurate scheme for the numerical calculation, the 
piecewise linear reconstruction of the solution requires the computation of the 
gradients of the fields. For that purpose, the determination of the local gradients 
in a given cell, based on the values of the fields in the three ( or four) neighboring 
elen1ents of the considered mesh zone is necessary ( cf. Section 2.2.4). Hence, 
we define the following six arrays to store the values of the gradients of the 
electromagnetic field: 

• xygrap, (melem,ndim) with {1· = 1, .,. , 6: Values of the ndim 
u/1 gradient coordinates, where u/1 is the p,th component of u = 

(E1, E2, E3, Bt, B2, B3)r. 

In order to have access to the values of the fields in the three ( or four) neighboring 
elements, we define the following array: 

• indxee (melem,nsid(ndim)): Globalnumbers of the three (ndim = 2) or 
four (ndim = 3) neighbors of a given element. 

l\!Ioreover, the gradients in the inner and boundary cells of the computational 
domain have to be computed in different ways. To manage this in an efficient 
way, we introduce 

• intrel : Number of inner cells 

• gninel (melem.) : Global numbers of these inner cells 

• iselob : Number of boundary cells. 

• gnbdel (melem) : Globalnumbers of these boundary cells. 

Finally, the computation ofthe gradients according to the system (2.18) depends 
on geometrical factors which remain constant in time. As these factors depend 
themselves on the locations of the barycenters of the neighboring cells, they 
are different when we use weighted barycenters (ndim = 2 and (z-r) geometry) 
or when we use non-weighted barycenters (ndim = 2 and (x-y) geometry), see 
Appendix C. In orcler to malm the computation easier, we store these geometrical 
factors in the array 
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• xtabgr (2,melem,2,2) : if nelim = 2, the first inelex represents thc casc of 
non-weighteel barycenters when equal to 1 (x-y geometry), or the case of 
weighteel barycenters when equal to 2 (z-r geometry). 

• xtabgr (melem,3,3) : if nelim = 3, we only consieler non-weighteel barycen
ters. 

4.4.3 Field Values at a Connnon Border of Two Elements 

The flux calculation through the sieles (faces) of a triangle (tetraheelron) requires 
the solution of a Riemann problem at aeljacent sieles (faces) and, therefore, the 
lmowleelge of the fielel values at the mielpoint of the common siele (face) of two 
elements (cf. Section 2.2.2). To take this fact into account, we elefine the following 
arrays: 

• elpm (msiele,2) : Left and right E1 values at the common siele (face) of 
two aeljacent elements. 

• e2pm(mside,2) : Left anel right E2 values at the common siele (face) of two 
aeljacent elernents. 

• e3pm(mside,2) : Left a.nd right E3 values at the common sidc (facc) oftwo 
adjacent elements. 

• blpm(mside,2) : Left anel right B 1 values at the common siele (face) of 
two aeljacent elements. 

• b2pm(mside,2) : Left and right B2 values at the common siele (face) of 
two adjacent elements. 

• b3pm(mside,2) : Left anel right B 3 values at the common siele (face) of 
two aeljacent elements. 

To compute these values, it is important to know the two global numbers of the 
aeljacent elements. These numbers are storeel in the array 

• inelxse (msiele,2) : Global numbers of the first anel second element having 
a com1non siele ( face). 

In the case of the first-oreler accurate scheme, the values of the fields on each 
siele (face) of the elements are simply set equal to the values of the fielels in each 
neighboring element. For the seconcl-orcler scheme it is necessary to compute 
these values from the fielcl values given at the barycenters, the values of the 
graclients cletermineel accorcling to the proceclure cliscussecl previously, anel the 
coordinates of the vectors joining the barycenters ( or the weightecl barycenters) 
of the elernents ancl the miclpoints of the sieles ( or faces). These coorclinates are 
computecl once anel storeel in an array : 
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• xybace (2,mtJide,ndim,2) : For ndim, = 2, this array contains the two 
coordinates of the vectors joining the midpoint of a given siele and the non
weighted (resp. weighted) barycenters of the two neighboring elements if 
the first index is equal to 1 (resp. 2). 

• xybace (mside,ndim,2) : If ndim = 3, this array gives the 3 coordinates of 
the vectors joining the midpoint of a given siele and the barycenters of the 
two neighboring elements. 

4.4.4 Riemann Problem_ 

The fluxes through the sides (faces) of the mesh zones are computed from the 
knowledge of the field values of two neighboring elements and the unit normal to 
the siele ( cf. Section 2.2.3). By convention, this unit normal is oriented for the 
global siele iside from indxse(iside,1) to indxse(iside,2). The ndim cmnponents 
of this vector are computed only once and storeel in the following array: 

• xynors (msiele,nelim): The ndim, components of the unit normal to the 
sides ( faces). 

Afterwarels, the six components of the numerical flux are calculateel and storeel 
in the following arrays: 

• flx~t (msiele) with p = 1, ... , 6: Value of the ~tth component of the nume
rical flux influencing the quantity uf-L, where u = (E1, E2, E3, B1, B2, B3f. 

4.4.5 Homogeneaus Equations 

The values of the electromagnetic fielels are upelateel accoreling to the numerical 
scheme presenteel previously in Section 2.2.1. Foreachelement aiiel for each of its 
sieles (faces), one must know the global number ofthissiele (face) for which the 
numerical flux has been computeel anel storeel. These global numbers are storeel 
in the array 

• indxes (melem,nsiel(nelim)) : Global numbers of the three (ndin1, = 2) sieles 
or four (ndim = 3) faces of each element. 

Furtherm.ore, we calculate the proeluct of the length ( arca) of this siele ( face) with 
the time-step size anel eliviele this proeluct by the area (volume) of the element. 
If the unit normal at the siele (face) uneler consieleration is orienteel outwarels of 
the element, then this coefficient is multiplieel by 1, otherwise, if the normal is 
orienteel inwarels, the coefficient is multiplieel by -1. This information is helel in 
the array 

• tlnsvo (melem,nsiel(nelim)) : Value computeel for the coefficient given by 
the time-step size times the length (area) elivieleel by the area (volume) 
times the orientation (1 or -1) if ndim = 2 (ndim, = 3). 
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4.4.6 Final Values of the Fields 

The seconel half-contribution of the source terms is taken into account, finally, 
yieleling the solution of the Maxwell equations at the new time level, which 
conclueles the chain of approximations realizeel by the Maxwell solver. 

4.5 Grid Informations and Structure of the Data 

Before starti11g the time loop ancl the further computations, the program must 
first reael a mesh file proviclecl by the mesh-generator, in orcler to access to the 
following information: 

e npoin : total number of mesh vertices which shoulcl be smaller than the 
maximum number mpoin . 

e nelem : total number of mesh eleme11ts which shoulcl not exceecl the 
permittecl maximum number melem . 

• coord (xnpoin,nelim) : table of the coorclinates of each vertex give11 by the 
two (ndirn = 2) or three (ndün = 3) real11umbers. 

• indxev (melem,nver(ndim)) : table specifying the global numbers of the 
three (nd-im= 2) or four (ndim = 3) vertices of each element. 

• nrefsi (melem,nsiel(nclim)) : 
2) or face (ndim, = 3) is : 

an inner siele ( face) 
on a conclucting bounclary 
on an open bounclary 
011 a loacling bounclary 
011 a symm_etry axis 

table inelicating whether a local siele (ndim = 

nrefsi(ielem,locsi) = 0 
nrefsi(ielem,locsi) = 1 
nrefsi(ielem,locsi) = 2 
nrefsi ( ielem,locsi) = 3 
nrefsi(ielem,locsi) = 4. 

The reacling of this basic information is carriecl out by the SUBROU
TINE readmsh . 

The following conventions are imposeel by the Modulef mesh-generator ancl 
shoulcl be calleel to minel if other gricl generati011. moelules are usecl: 

1. For a two-dimensional mesh: 

• each triangle is positively orientecl. 

• local siele 1 is between local vertices 1 ancl 2. 

• local siele 2 is between local vertices 2 anel 3. 

• local siele 3 is between local vertices 3 ancl 1. 

2. For a three-elimensional mesh: 
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• each tetraheelron is positively orienteel. 

• local face 1 is establisheel by the local vertices 1, 2 anel 3. 

• local face 2 is establisheel by the local vertices 1, 3 anel 4. 

• local face 3 is establisheel by the local vertices 1, 2 anel 4. 

• local face 4 is establisheel by the local vertices 2, 3 anel 4. 

In oreler to obtain the entire neeeleel information about the mesh structure, the 
following strategy is aelopteel: First, two auxiliary arrays are eletermineel, playing 
also an important role in the context of particle treatment: 

1. nelv (mpoin) : Numher of elements a given n1.esh vertex belongs to. This 
number shoulel be smaller than the mnelv parameter. 

2. indxve (mpoin,mnelv) : List of the global element numbers a consielereel 
vertex belongs to. 

The algorithm to extract these informations is very simple : 

• loop1 over the globalnumbers of the elements ( current element: ielem,). 

* access to the global number ( ipoin1) of this local vertex thanks to 
the table indxev . 

* aelel 1 to nelv (ipoin1). 

* ielem is the next element of the indxve (ipoin1, *) list : indxve 
( ipoin1 ,nelv(ipoin1)) = ielem. 

end of loop2. 

• end of loopl. 

Seconclly, we evaluate at the same time the arrays indxes , indxee anel indxse 
accoreling to the following proceclure: 

• Loop on the three (four) local sicles (faces) of each element. 

• If this siele (face) has not been taken into account as a global siele yet then: 
aelcl1 to the number of sieles (faces). 

- If this siele ( face) is an inner siele then : 

* Thanks to the mesh-generator conventions ancl to indxev , find 
out the global numbers of the two (three) local vertices of this 
local siele ( face). 

* The intersection of the two ( three) lists of global elements these 
two ( three) vertices belang to, is composecl of two elements: the 
current element ancl its neighbour through the current global siele. 
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* Then we lmow forthissiele (face) the two aeljacent elements (table 
indxse ), 

* anel for these two elements the global number of their cmTlnlon 
local siele (face) (table indxes ) 

* anel the global number of their neighbors through this siele (face) 
( table indxee ) . 

- If this siele belongs to a bounelary of a certain type p then: 

* aelel 1 to the number of sieles (faces) of this bounelary type. 

* Then we know the global number of this bounelary siele (face) 
(table indxbs ). 

* this bounelary siele (face) is associateel with the current global 
element (table indxbe ). 
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Chapter 5 

Conclusional Remarks and 
Outlook 

In the present report, we clescribe the basic concepts ancl approxinmtion tech
niques to come in useful for the numerical solution of the time-clepenclent 
:Maxwell-Lorentz equations in tvvo ancl three space climensions on unstructured 
1nesh arrangen1.ents. 

The solution strategy is based on the PIC methocl: The charged particles are 
aclvancecl in the continuous computational clomain resulting in a changecl macro 
particle clistribution. Quantities computecl from these reclistributecl charges are 
couplecl to the gricl-based electromagnetic fields according to interpolation ancl 
localization proceclures for unstructurecl mesh zones spanning triangles in two 
ancl tetrahedra in three space dimensions. The spatial and temporal evolution 
of the electromagnetic fielcls on the computational grid is cleterminecl by sohring 
numerically the Maxwell equations with a very robust high-resolution FV scheme. 
The coupling of this FV Maxwell solver with the PIC method for unstructurecl 
gricls is a new way of approximation in the context of self-consistent particle 
simulation in electromagnetic fielcls. 

Standard test calculations performecl with the J\!Iaxwell and particle treat
ment solvers separately, clearly inclicate that the implementation of the resulting 
algorithms is clone properly. Furthermore, the agreement between the simula
tion results and exact reference solutions is very satisfactory, encouraging ancl 
stimulating our computational encleavor. 

At the moment only a little experience is available running the entire FV-PIC 
Maxwell-Lorentz simulationprogram KADI§D in two and three space climensions 
on unstructured computationalmeshes. However, this situationwill be changed 
in the course of this year: Especially, for relevant two-climensional cylinder sym
metrical benchmark problems, a simulation campaign is plannecl in orcler to verify 
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and assess the new KADI~D code to the last detail. 

It is a well-know fact [3], that the different steps of particle treatment intro
duce numerical errors a.nd, consequently, charge conservation is not guaranteed on 
this discrete level of approximation. One way to get out of this numerically cau
sed lade is to use sophisticated charge and current assignment techniques [8, 28] 
to enforce Gauß's law on the particle level. In this field, we recently proposed 
a new particle handling approach based on finite-size particle approximations. 
The description of the resulting numerical schen1es as well as the results obtained 
with the evaluated algorithms will be the item of a forthcoming paper [9]. 

The other way to enforce the divergence condition starts from a constrained 
form of the Maxwell equations [1] and approximate this hyperbolic-elliptic system 
with different kinds of numerical methods [5, 20, 16]. For our activities in this 
context, we replace the hyperbolic-elliptic by a strictly hyperbolic problem. and 
construct an efficient and very fast high-resolution FV scheme [23], which is suc
cessfully applied in the standard KADI2D code. Hence, it is desireable to adapt 
this hyperbolic correction method also for the simulationprogram KADI~D de
signed to run on unstructured grid arrangements. One essential advantage of 
this hyperbolic approach is that the charge correction is nested in an explicit FV 
scheme which is inherently parallel in nature. This is an important fact, fitting 
in an excellent m.anner in our parallelization endeavor of the KADi~D program 
system in order to get a highly efficient production code in near future. 
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Appendix A 

Miscellaneous Properties of 
the 1v1atrix used for the FV 
Approach 
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In the following we summarize the essential properties of the matrix A E JR6 x6 

( cf. equation (2.8b)), given by the linear combination 

3 

A= L njKj, (1.1a) 
j=l 

where the components of the unit norrnal n = (n1, n2, n 3 )r, with nj o;f 0 'ij, at 
3 

the face Si,o: fulfil the relation l: nJ = 1. Using the block-structured matrices 
j=l 

Kj defined by (2.3b), Ais explicitly given by 

I 0 0 0 0 n3c2 -n2c2 \ 
0 0 0 -n3c2 0 nlc2 

A= 
0 0 0 n2c2 -n1c2 0 

(1.1b) 
0 -n3 n2 0 0 0 

n3 0 -n1 0 0 0 
-n2 'nl 0 0 0 0 

where c denotes the velocity of light. The eigenvalues of A are 

(1.2a) 

where A is a 6 x 6 diagonal m.atrix. Since two eigenvalues coincide, respectively, 
three classes of waves with different propagating velocities .\1 = .\2 = -c, .\3 = 
A4 = 0 and A5 = A6 = c occur. The right and left eigenvectors of A are the 
colmnns and rows of the matrices 

0 1 0 n1 1 0 n2 
-n3c -(11i+11~) 0 1 -(11f+11~) 113C 

111112 n1n2 111n2 11!112 
_f_ 113 0 113 113 -c 

R= 111 111 112 111 ll1 
2 -(11~+n~) -113 111 0 ____:I3:_;L_ -(n2+n3) 

111n2 111112C n3 rq n2c np1.2 

(1.2b) 

1 0 112 0 0 1 
_1_ 113 -1 113 1 0 n3 

n2 112C n2c 112 

-n3 0 11! -n1112 11I+11§ -112n3 
2C 2c -2- -2- -2-

11~+11~ -n1n2 -11!113 0 -113C 112C 
2 -2- -2- -2- 2 

n-1 0 0 0 n1n3 n2n3 n2 3 = n2 n1n2 2 n2n3 0 0 0 
(1.2c) 

11~+11~ -111112 -111n3 0 113C -112C -2- -2- -2- 2 -2-
113 0 -111 -111112 nf+n~ -n2113 
2c 2C -2- -2- -2-

respectively. Since the eigenvalues of the matrix A are real numbers and the 
right eigenvectors are linearly independent, the Maxwell equation ( 2.1) is strictly 
hyperbolic. ·with (2b), (2c) and 

lAI = diag(c,c,O,O,c,c) , (1.3a) 
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we obtain 

lAI = RIAIR-1 = ( ~ ~ ) (1.3b) 

with 

( 

(n~ + n§)c 
D = -n1n2c 

-n1n3c 

-n1n2c 
(nr + n§}c 

-n2n3c 

(1.3c) 

Finally from (l.lb) and (1.3b) the matrices 

(1.4a) 

can be calculated which are given in explicit form according to 

(1.4b) 

where the abbreviations v± = ±D and 

(1.4c) 

are used. 
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Appendix B 

Formulas based on the Solution 
of the Riernann Problern 
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Applying the right and left eigenvector matrices R and n-1 of A given in Ap
pendix A to (2.15), the solution of the Rierhann problem (RP) rnay be written 
explicitly in the form 

Uo1 = ~ [(n~ + n~)(ut + u;-)- n1n2(ut + u2)- n1ns(ut + u3) 

+2n1(n1u1 +n2u2 +nsus) 

+cns(ut- u5)- cn2(ut- uß)] , (2.1a) 

'Uo 2 ~ [ -nl'n2(ut + u;-) + (ni + n~)(ut + u2)- n2ns(ut + u3) 

+2n2(n1u1 + n2u2 + ns·us) 

-cns(ut- u;l) + cn1(ut- uß)] , 

uo3 ~ [ -nlns(ut + u;-)- n2ns(v.t + ·u2) + (ni + n~)(ut + u3) 

+2ns(nlul + n2v.2 + nsus) 

(2.1b) 

+cn2(ut- u4)- cn1(ut- u5)] , (2.1c) 

:J -ns( v.t - u2) + n2( v.t- u3) 

+2cnl(nlu4 + n2·us + ns·u6) (2.1d) 

+c(n~ + n~)(ut + u4)- cn(ndut + u5)- cn1ns(ut + uß)] , 

2
1
Jns(v.t- u;-)- n1(ut- v.;;) 

+2cn2(n1u4 + n2u5 + nsu6) (2.1e) 

-cn1n2(ut + u4) + c(ni + n~)(ut + v.5)- cn2ns('z.tci + uß)] , 

2_[-n2(ut -u;-) +n1(ut -u2) 
2c 
+2cn3(n1u4 + n2u5 + n3u5) (2.1f) 

-cnl'ns(ut + u4)- cn2ns(ut + u5) + c(ni + n~)(ut + uß)] . 

Another convenient formulation of the solution of the RP at ~ = 0 is given 
by [11, 29] 

1 
u(O, t) = 

2 
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where the coefficients a = ( 0:1, ... , 0'6 )T are computed from the decomposition of 
the jump in the initial data into the basis of the right eigenvectors of A: 

6 

u-- u+ = L TjO'j =Ra. 
j=l 

(2.2b) 

Furthermore, J± are index sets defined as J- = {jl>.:i < 0} and J+ = {jl>.:i > 0}, 
respectively. Especially, the numerical fiux (2.9) is then calculated from 

1 
A ·u(O t) - -A (·u- + u+) + '""""' >. ·a -r · - '""""' >. ·a -r · '' -2 ~ J JJ ~ J JJ' 

jEJ- jEJ+ 

(2.3a) 

where the definition of the eigenvalue problern~ Ar:i = \ir:i is used. The last 
equation can be recast in the form 

A u(O, t) = 

(2.3b) 

where the definition (3a) of Appendix A and equation (lb) is applied. \Vith (3c) 
and ( 4a) from Appendix A and some rearrangements we finally obtain 

(2.3c) 
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Appendix C 

N umerical Scheme for the 
Maxwell Equations in Cylir1der 
Symmetrical Geometry 
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Assuming that thc clcctromagnetic fields are independent of the variable e, the 
homogeneaus Maxwell equations in cylinder coordinates may be written as 

a 2 1 a 
- (ez)- c -- (rbo) = 0, 
at rar 

(3.1a) 

a 2 a 
-a ( e1') + c -a ( bo) = 0 ' 

t z 
(3.1b) 

a a a 
-
8 

(bo) + -
8 

(e1.)- -
8 

(ez) = o, 
t Z T 

(3.1c) 

where vve restriet ourselves to the Tl\11 system (ez,er,bo). Introducing new va
riables according to 

(3.2) 

a new set of equations is obtained: 

a 2 a 
"(dz)- c !:1 (rbo) = 0, 
ot or 

(3.3a) 

a 2 8 
at (dr) + c az (rbo) = 0' (3.3b) 

a a (1 ) a (1 ) at (bo) + az -:;:d1' - ar -:;:dz = 0. (3.3c) 

This system can be recast in conservation forn1 

a a a 
8t ( Q) + 8z (AQ) + 8r (BQ) = O ' (3.4a) 

w here the matrices A, B E lR 3 x 3 are given by 

(3.4b) 

The integration of (3.4a) over a grid cell Ti whose sides are denoted by Si,a, leads 
to the following exact equation: 

(3.5) 
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where no approximations are made. Here, the matrix Ci,a E IR3 x 3 is defined by 

( 

0 0 

C. - 0 0 
t a-, nr nz 

r r 

(3.6) 

and nz, nT are the components of the outwards directed normal vector ni,a 

(nz, nr)T at Si,a· Integrating (3.5) over the time interval [nßt, (n + l)ßt], ap
plying the midpoint rule and denoting the cell average by 

Qn 1 ;·Qd 
i = ITd s, 

T; 

we obtain the explicit scheme 

Qn+l ~ Qn - ßt "L· . U . Q (IvL . e~+l/2) 
'!. '!. jTij ~ l.,o: 1.,o: t,a, ' (3.7) 

where tn+l/2 = (n + ~) ßt, 1\1i,a is the midpoint of siele Si,o: and jTil is the area 
of the cell Ti. Assuming that Q is constant during the time step size Llt, we 
approximate Q (1\![i,o:, tn+l/2 ) at the midpoint by the solution of the Riemann 
problem (RP) at ~ = 0: 

a a 
at (Q) + a~ (Gi,aQ) = o, 

{ 
Q+ 

Q(~,O) = Q-

(3.8a) 

where Q+ and Q- are approximated values of Q C,Mi,a, tn+l/2 ) on each neighbo
ring element to Si,a and calculated accorcling to 

(3.8b) 

(3.8c) 

Furthermore, the matrix Gi,a E IR3 x3 is similar to the one definecl by (3.6), but 
now evaluatecl at roi,m the r-coorclinate of the midpoint 111i,o: 

Gi,a ~ ( 

0 0 -c2 roi anT 

) ' 
0 0 c2roi anz (3.8d) ' nr nz 

0 
roi,a roi,a 
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Sincc Gi,o: is a constant matrix, the solution of the Riemann problem (3.8a) 1s 
easy to find and given by 

( dRz ) ( cnrTOi,o:(P2- P3) ) dRT -cnz7'oi,o:(P2- P3) (3.9a) 
bRI} P2 + P3 

where 

( 
d; n 1. d;: nz b0 

I (::) 
-----+-
Toi,o: 2c Toi,o: 2c 2 

(3.9b) 
dt nT dt nz bt \ ---+--+- ) Toi,o: 2c Toi,o: 2c 2 

and where we have omitted the dependencies with respect to Q = Q(O, 0), be
cause, as before, the final result does not depend on Q. ~With that result, the 
numerical scheme (3.7) can be written in the following way 

(d )n+l (d )n A zi •zi ut 2 
- = - - -IT I LLi,o:[-c n1·Toi,o:(P2 + P3)], 
Ti Ti Ti i o: 

(3.10a) 

(3.10b) 

n+l n ßt """' [ ( )] bei = bei - I'D I L Li,o: -c P2 - P3 , 
z 0: 

(3.10c) 

where Ti is the r-coordinate of the barycenter of the cell Ti. Replacing in (3.9b) 

d-
_z_ by e;, 
Toi,o: 

d-;: -
-- by e1' , 
Toi,o: 

c[+ 
_z_ bv e+ 

J z ' Toi,o: 

and renaming in (3.10a)-(3.10c) dzi by ezi and dri by eTi, the numerical scheme 
Ti Ti 

( 3. 7) can finally be brought into the form 

(3.11a) 

74 



with 

zTOi a -c -'-TLr 
Ti 

2 Toi,a 
c --nz 

Ti 
±c 

) (3.1lb) 

All what renmins to do now, is to specify adequate first (resp. second) order 
approximations of e~,a, e~,a and b~,a in order to complete the formulation of 
our first (resp. second) order accurate numerical scheme. However, for that 
purpose, we will first prove the following lemma: 

Lemma 1 Let ß be in { 0;1}, then .for any regular function u(z, r) we have : 

where Aiß is the point given by the coordinates (zAiß, TAiß) defined according to: 

and where o is a measure of the space increment of the grid. 

Proof : Since u(z, r) is regular, we can expand u in a Taylor series araund 
Aiß yielding 
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Because rß is a linear function, ( we recall that ß E {0; 1}) we have : { Tß dzdr = Jr, 
rfiTil, and tlms we get: 

.Ir, rßu(z, r)dzdr 

rfiTil 

which proves the result. 

Frmn this lemma, we first conclude that 

and 

(3.3a) 

(3.3b) 

Moreover, we approximate the fielcl values at the miclpoint J.\1i,o: of the siele Si,o: 
at time t = tn+l/2 accorcling to 

ez(JVfi,o:, tn+l/2) = ez(Ail, tn) + AilJI;Ji,o: · Y'ez(Ail, tn) + 

~t a;; (Ail, f 1
) + O(b..t2

) + 0(62
) + 0(6b..t) , 

er(Mi,o:, in+l/2) = e1.(Ail, in)+ Aill\;Ji,o: · Y'er(Ail, in)+ 

b..i ~~r (Ail, f 1
) + O(b..i2

) + 0(62
) + 0(6b..i) , 

2 ui 

(3.4a) 

(3.4b) 

(3.4c) 

In orcler to complete the numerical scheme, we have to propose appropriate ap
proximations of the three gradients ancl derivatives with respect to time appearing 
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in (3.4a)- (3.4c). Sirnilar to section 2.2.4, we consider an inner cell Ti of the com
putational domain and its three neighbor cells Tiu with o: E {1; 2; 3}. For any 
regtdar function u, we define the vector w E JR2 by: 

{ 
u(Ai1ß) = u(Ai2ß) + Ai2ßAi1ß. · w 

u(Ai1ß) = u(Ai3ß) + Ai3ßAi1ß · w 
(3.5) 

being a first-order accurate approximation of the gradient of the function u: 

w = ~·u + 0(8). Finally, the time derivatives occuring in (3.4a) - (3.4c) are 
simply shifted to derivatives of the fields with respect to space by using the three 
original equations (3.1a)- (3.1c). Now, the chain of approximations is closed and 
the values e~,o:' e~,o: and b~,o: determinecl by 

+ en ezi,o: en ezi o: zr ' Z1u ' +' -n 
er·i,o: 

-n (3.6) er-i o: er·i ' eTiu 
b+' bn 

' bBi,o: bn fh,o: (Ji Oiu 

in case of a first order accurate scheme, and computed from 

-n A 1\i n n ~t I 2 (boi (nbn) )l ezi + il ;i,o:. vezi + 0 IC -;:::- + v Bi .. 
"- L \ 1 1. ' /,. J 

e~i + Aill\ii,o: . ~ e~i + ~t [ -c
2 

( ~bBi) J ' 
bn A . n n J.t [ ( ~ n) ( ~ n) J 

(Ji + i01\1i,o: . V bei + 2 - ver·i z + V ezi r ' 

(3.7a) 

(3. 7b) 

in case of an explicit FV schen1.e of second-order accuracy. 
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Appendix D 

Two-dimensional Particle 
Localization with the Assaus 
Approach 
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For the sake of completeness, we summarize briefiy the basic features of the two
dhnensional localization algorithm, the plane geometry analogue of the three
dimensional case described in Section 2.3.2. The situation on hand is seen in 
Figure D.1, where the macro particle pn with the coordinates xn is situated in 
the triangle C; at timet = tn. In order to decide whether the particle is inside the 

Figure D.1: Partide localization in two dimensions according to the scheme pro
posed by Assous et al. [2]. 

elen1ent C; (possessing the vertices A1i,a with the coordinates a;,a = (aa, bm O)T 
where 1 ~ O' ~ O"i = 3), we have to calculate the following three determinants: 

~i,l 

~i,2 

~i,3 

(A2 x A3) · e3 , 

(A3 x A1) · e3 , 

(A1 x A2) · e3 , 

(4.1a) 

(4.1b) 

(4.1c) 

where e3 = (0, 0, 1 f is the unit vector orientated with the x3-direction and Aa 
is the abbreviation for Aa = pn A1i,~ = ai,a - xn. \iVith the machine zero E > 0, 
the following alternatives have to be considered: 
If 

~i,a 2': -E ; Va', 1 ~ a ~ 3 , 

then the pa.rticle is situated in the triangle C; and the corresponding shape
function ( cf. 2.28a) for this particle may be computed. 
Otherwise, if one of the 

~i,a < -E ; 1 ~ a: ~ 3 , 

(in Figurc D.1 ~i,l < -c) thcn a more careful particle handling is necessary. 
Especially, it is important to include more temporal information of the particle 
movement in order to find out through which side of the element Ci the particle 
passed within the time step ~t = tn+l - tn. 
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Appendix E 

Example of a Command File 
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In order to run the code, the user has to proviele the system with a command file 
named data , where the possible course of actions are declared and the essential 
information für the code running is specified. The structure of the command file 
data is arranged as follows: 

• fname : name of the diagnostic files generated during the computation. 
Type: character*7. 

• itmax : maximum number of temporal iteration cycles. Type: integer. 

• itdia : frequency of diagnostic file generation during the simulation. Type: 
integer. 

• icomp desirecl cliagnostic information: 
0 E1, E2 ancl B3 components. 
1 B1, B2 ancl E3 components. Type: integer. 
2 E1,E2,E3,Bl,B2 ancl B3. 

• npodi : Number of mesh points where the cliagnostic information is re
cordecl. This number shoulcl be smaller than mpodi . Type: integer. 

• xypodi (i,l), xypodi(i,2) (ancl xypodi(i,3) if ndirn = 3) :Coordinates 
of the npodi points where the cliagnostic information should be monitored. 
Type: real*8. 

• idibeg , idiend : The printing of diagnostics starts with the iteration 
idibeg and ends with the iteration idiend. Type: integer. 

• iorder : Order of the numerical scheme (1 or 2). Type: integer. 

• igeome Type of geometry ( ndirn 2) 
1 for the Cartesian ( x, y) geometry, 
2 für the cylincler symmetrical ( z, r) geometry. 

• dt : Desired value of the time step size before an additional correction 
according to the CFL condition is performed. Type: real*8. 

• nptyp : Number of particle species used for the simulation. This number 
must be sma.ller tha.n mptyp . Type: integer. 

• The following values have to be specifiecl nptyp times in the following orcler : 

npart (i) : number of initial particles of species i. Type: integer. 
Must be snmller than mpart . 

qtypp (i) : electrical charge of the particles of species i. Type: 
real*8. 

mtypp (i) mass of the particles of species i. Type: real*8. 
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