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Abstract

The conceptual and algorithmic framework solving numerically the time-dependent
Maxwell-Lorentz equations on an unstructured mesh in two and three space dimen-
sions is presented. Beyond a brief review of the applied charged particle handling
based on advanced particle-in-cell techniques, a modern finite-volume scheme for the
numerical approximation of the three-dimensional, time-dependent Maxwell equati-
ons is introduced using unstructured grid arrangements. Furthermore, the algorithmic
realization of the resulting numerical schemes is described in great detail. Apart from
this, simulation results for typical benchmark problems computed with the particle
treatment and Maxwell solver are presented, demonstrating the quality and properties
as well as the relevance and reliability of the applied numerical methods.

EIN MAXWELL-LORENTZ LOSER ZUR SELBSTKONSISTENTEN
TEILCHEN-FELD SIMULATION AUF UNSTRUKTURIERTEN
RECHENGITTERN

Uberblick

Das Konzept und der algorithmische Rahmen zur numerischen Behandlung der zeit-
abhangigen Maxwell-Lorentzgleichungen auf unstrukturierten Rechennetzen in zwei
und drei Raumdimensionen wird vorgestellt. Die wesentlichen Ideen der auf un-
strukturierte Gitter erweiterten Methoden zur Teilchenbehandlung, die auf fortge-
schrittenen Particle-in-Cell Techniken beruhen, werden in knapper Form beschrie-
ben. Weiterhin wird ein moderner Zugang zur numerischen Approximation der drei-
dimensionalen, zeitabhdngigen Maxwellgleichungen eingeflihrt, der in einem zeit-
gemaBen, hochaufldsenden Finite-Volumen Verfahren miindet. Dariiber hinaus wer-
den die Kernstiicke der algorithmischen Umsetzung der abgeleiteten numerischen
Schemata ausfiihrlich erlautert und die vom Gittererzeugungsmodul bestimmte Da-
tenstruktur zusammenfassend dargestellt. Simulationsergebnisse fiir typische Testpro-
bleme, die mit den Teilchenbehandlungsmodulen und mit dem Maxwell-L&ser erzielt
wurden, runden den vorliegenden Bericht ab, und geben deutliche Auskunft liber die
Eigenschaft, Giite, Relevanz und VerlaBlichkeit der benutzten numerischen Methoden.
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Chapter 1

Introduction

The goal of the present technical report is to provide the user of the Maxwell-
Lorentz simulation program KADIZD developed at the Institut fiir Neutronenphy-
sik und Reaktortechnik (INR) with more detailed informations about the nume-
rical methods, the approximation techniques and the implementation framework
used in the program. The proposed Finite-Volume Particle-in-Cell (FV-PIC)
Maxwell-Lorentz solver calculates the time-dependent solution of the Maxwell-
Lorentz equations in two and three space dimensions on unstructured meshes,
respectively, and is up to second-order accurate in both space and time.

The considered Maxwell-Lorentz model is constituted by the Maxwell equa-
tions in the vacuum and the usual laws of classical mechanics known as the
Lorentz equations [13, 3, 22]. The evolution of the electromagnetic fields inside
a domain €2 is given by the full set of the Maxwell equations in the vaccum

QE -V, xB = —L (1.1a)
€0
OGB+VyxE = 0, (1.1b)
Ve E = 2| (1.1c)
€0
V. B = 0, (1.1d)

where E, B, p and j respectively denote the electric field, the magnetic induction,
the charge density and the current density. The electric permittivity ¢y and
magnetic permeability p of the vacuum are related to the speed of light according
to eouoc2 =1.

The dynamics of the charged macro particle distribution inside the computa-
tional domain is determined according to the Lorentz equations

op(t) = wi(t), (1.2a)
ﬁk(t) = F(wkavk‘)t)7 (12b)

where the particle index k runs over the total number IV, of charges. The Lorentz




force
F (@, vi,t) = Qr [E(mi(t), 1) + vi(t) x Blay(t), t)] (1.2¢)

on the charge (Jy = N() with the mass My = N M depends on the electroma-

gnetic fields F and B at the actual position x;, and on the velocity vy of the kth

macro particle, calculated from the momentum p;, according to v (t) = Mpk ﬁyit()t)

with fy,% = 14+ (%}h) 2. Although AM;, and (} depend on the number Ny, of elemen-
tary constituents of a macro particle, it is noteworthy, that this number cancels
out in (1.2¢) and, consequently, the motion of a macro charge is determined by
Q/M, the ratio of charge and mass of a single constituent.

The interaction of the charged particle distribution with the electromagnetic
fields inside € is computed in a self-consistent manner: The charge and current
density

Np

pl,t) = > Qudlr—ar)] (1.3a)
1;—;1

J@t) = Y Quuirlpy)d o — (1)), (1.3b)
k=1

are obtained from the phase space coordinates (@, vy,) of the entire ensemble of
the macro charges. The electromagnetic fields calculated from the sources (1.3)
redistribute the charged particles within the domain € via the Lorentz force
(1.2c), yielding changed phase space coordinates, and from these, the new densi-
ties are obtained. This complex interplay between fields and particles described
by (1.1)-(1.3) is known as the non-linear Maxwell-Lorentz problem, the starting
point for further numerical approximations.

The organization of the present report is as follows: In Chapter 2, some
remarks concerning the unstructured computational grids usually used as test
meshes for the code development are first given. Afterwards, we briefly recall the
basic concepts and approximation techniques to come in useful for the numerical
solution of the Maxwell-Lorentz system. In Chapter 3, numerical results for some
typical test problems are presented, demonstrating the quality and property as
well as the relevance and reliability of the applied numerical methods. In Chapter
4, an overview of the implemented principal algorithms and resulting subroutines
is given and the determinative data structure needed for the realization of these
algorithms is sketched out in more detail. Finally, conclusive remarks and a short
outlook of the further activities are made in Chapter 5.




Chapter 2

Numerical Schemes and
Approximation Methods

Traditional techniques for solving the Maxwell equations in the time domain
rely on finite-difference (FD) methods [32]. Staggered grid FD schemes are used
in different electromagnetic PIC simulation codes which are successfully applied
to a multitude of investigations relevant for the understanding of electrical and
plasma devices (see, e.g., [26, 27]). The FD approach is based on a Cartesian
grid and may be extended to a structured boundary-fitted mesh consisting of
quadrilateral grid zones by applying the FD scheme to the transformed equations
[14]. To get more flexibility, especially, for the simulation of complexer geometries,
in the present report, a FV approach for the Maxwell equations is proposed.
This method based on high-resolution schemes originally developed for hyperbolic
equations combines robustness at steep gradients with accurate resolution [17].
The coupling of the high-resolution FV Maxwell solver with the PIC method is
a new way of approximation in the context of self-consistent particle simulation
in electromagnetic fields [22]. The numerical concept in its entirety forming the
basis of the FV-PIC approach is schematically depicted in Figure 2.1.

At each time step, the electromagnetic fields obtained from the numerical
solution of the Maxwell equations on the computational mesh are interpolated
to the actual locations of the charged particles (Interpolation). According to the
Lorentz force the charges are redistributed and the new phase space coordinates
are computed by solving numerically the usual laws of dynamics known as the
Lorentz equations (Particle Pushing). To close the chain of self-consistent inter-
play between particles and fields, the particles have to be located with respect to
the computational mesh (Localization) in order to determine their contributions
to the changed charge and current densities (Assignment). These updated den-
sities are then the sources for the Maxwell equations in the subsequent iteration
cycle. For more detailed informations concerning the FV-PIC approach we refer
to [6, 22, 23, 24].
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Figure 2.1: Particle-in-Cell iteration cycle.

2.1 Computational Grid

The necessity of a computational mesh is founded on the nature of the PIC
approach itself [3, 13, 22]. In essence, this approach circumvents the direct force
calculation between charged particles by introducing a grid-based and a mesh-free
numerical model: On the computational grid the spatial and temporal evolution
of the electromagnetic fields generated by all charges is determined, whereas
the charged particles themselves are advanced in the continuous computational
domain.

When solving numerically the time-dependent Maxwell problem, it is very
important to possess an adequate computational mesh, which covers the geo-
metry under consideration very properly. Especially, high quality simulations
of electrical devices require an appropriate replica of the border of the device,
where several kinds of physically and computationally motivated conditions can
be applied. For our computational endeavor solving numerically the Maxwell-
Lorentz problem in two and three space dimensions, we choose the most flexible
concept, namely, unstructured meshing techniques, which possess the property of
the highest degree of freedom in mapping the relevant geometry to the discrete
image. Furthermore, grid generators based on triangulization (2D) and tetrahe-
drization (3D) of the domain are widespread and therefore usually (commercially)
available.

Throughout the course of code development and validation, we usually use a
simple unit square for the two and a unit cube for the three-dimensional case as
computational domains. To discretize these domains, we apply the mesh genera-
tor Modulef (see, for example, [10]). As an example, a typical unstructured mesh




used for two-dimensional test calculations is depicted in Figure 2.2.

Unstructured 2D test grid

1.0

WP

0.6
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0.2

0.0
0.0 05 1.0

Figure 2.2: The standard two-dimensional computational domain covered by an
unstructured mesh.




2.2 A Finite-Volume Method for the Maxwell Equa-
tions in the Time Domain on Unstructured Grids

In this part of the report, we consider the vacuum Maxwell equations for Carte-
sian z = (z1,x2,23) = (2,y, 2) coordinates. The sometimes important cylinder
symmetrical case © = (21,29, 23) = (2,7,0) is treated for completeness in Appen-
dix C.

Different forms of the Maxwell equations are usually used in computational
electromagnetics (CEM) and are reviewed, for instance, in [4, 29, 23] and thus
will not be repeated here. The relevant formulation for the construction of FV
methods is the conservation form of the Maxwell equations:

Ofi(u
z e _, 21)

which is based on the time-dependent equations (1.1a-b) only. Here, the vector
u of the electromagnetic quantities is composed by the electrical field £ and the
magnetic induction B and reads as

’LL([E,t) = (EaB)T = (ElaEZaESaBlaBQaBii)T . (22)
The physical fluxes f; are given by
filw) = Ksu; fori=1,2,3, (2.3a)

where the block-structured matrices K; € IR®*6 are defined according to

- 0 —02./\/11‘
Ki = ( M 0 ) , (2.3b)

with

(2.3c)

The source term ¢ of the time-dependent conservation equation (2.1) is inde-
pendent of u and may be written as

1, . .
q= _6—0(.71’.727.73,07070)T B (24)

where j = (41, ja,43)7 is the current density.




2.2.1 Numerical Scheme

The domain of computation €2 is partitioned into N non-overlapping cells denoted
N

by Ci: Q = |J C;. The actual time level is computed according to t" = nAt,
i=1

where At is determined with respect to the CFL condition. The average value

over the cell C; at time ¢ = ¢ of any integrable function h(z,t) is denoted in the
following by A'. Explicitly, this cell average is calculated from

1/
hy = ‘—//h,(a:,t”) av, (2.5)
i
C;

where V; is the volume of C;.
In order to solve (2.1), we apply a splitting ansatz, which consists in compu-
ting the following sequence of equations: First, we solve

dul)
ot

=4q, (268)

with initial value u” (¢*) = u”. Then the solution of the homogeneous conserva-
tion equation

ou® S Ofi(u®)

is determined for the full time step size At with initial the initial data «(® (") =
ulV) (t"‘ + %) In the next step the ordinary differential equation

ou®
; : TR 3) {4 At (2) rgn1
is solved once again but now with initial value u t" + 5 ) =u ") . By

setting

ut = B gty (2.6d)

the value of u at the new time level #**! is finally obtained. The integration of

. At
the ordinary equation (2.6a) over the space-time volume C; x [¢", 1" + —2—] yields
the exact equation

V; [uﬁ” (t“ + H) - u§1>(t")]

tn4 At
n

/ /qudt,

2
t C}




which will be approximated according to

u? (") =V <t” + —é—t> =uf + ﬁ / gz, " + %)dV . (2.7a)

In the same way, the approximation of equation (2.6¢) can be performed, yielding

At At
wltt = o () = o ) 4 2 / ale, " + )dV (2.7b)

Now, we consider the integration of the homogeneous conservation equation (2.6b)
over the space-time element C; x [t",¢""!]. Applying GauB’s theorem we obtain
the exact evolution equation

n41
a; t 3

G w®rt - @] =3 [ [ i fia®) | asat,

a=1 $n Si,a ]:1

where S; o is the face o of C; and o; denotes the total number of faces of C;.

Furthermore, (n;);q is the jth component of the outwards directed unit normal
at the face S; .. The direct approximation of this integral formulation yields the

explicit F'V scheme, usually written in the form

)

(@)t = () f’— ZG"“/“‘. (2.7c)

Clearly, the FV scheme is completely defined if the numerical flux GnH/ % s

specified. The numerical flux itself is a suitable approximation of the phySlcal
flux through the boundary face S; o, which means:

in_’_l

f:lﬂ L\t/ /.Awu (2,t)dS dt , (2.8a)

where the matrix A; o € IR%%6 is given by

3
Aia =D (n))iak; (2.8b)

=1

a linear combination of the constant matrices ; defined by (2.3b-c). The deter-
mination of this flux as a function of the aver aged quantities (U(Q)) is the item
of the next Section.

10




2.2.2 Calculation of the Numerical Flux

In this section we outline the path of approximations to obtain the numerical flux
G:’j{l/ % For that purpose, we apply the second-order accurate midpoint rule to
the integrals (2.8a), yielding the first approximation

G o Iy o Ai g (M g, 1777 (2.9)

1,0

where M; , and L; , denote the midpoint and area of the face 5; , respectively
(here and in the following we drop the superscript @) for readability reasons).
Obviously, the central point to estabhsh the numerical scheme is the computation
of a suitable estimation of (M q, s 2). For that, the typical space increment
is denoted by Az and, furthermore, it is supposed that a first-order accurate
approximation of the gradient of the jth component of v at the barycenter B; of
C; is known at time ¢™:

P
CHINES BZ’” (Biyt") with1 <k <6,1<j<3. (2.10)
7

A truncated Taylor expansion with respect to ¢ yields the sought function uy, at
M; o and /2
At du
(M 0y 717 ) = g (M g, £7) + = 2
' ' 2 0Ot
Here, the approximation of the time derivative can be replaced by the approxi-
mation of the space derivatives of uy, as given by equation (2.6b):

(M 0, t") + O(A#?) . (2.11a)

3
Ouy, du
—— (Mj,0,1t") = — [IC——(A/[',Q,t”)} . (2.11D)

Since the quatities wuy are associated per definition with the barycenter B;, a
further Taylor expansion, now, with respect to = has to be performed, yielding

3
B3 duy,
ue(Mia ") = we(B, %)+ 3_(BiMia)jo (B ) + O(Aa?), - (21¢)
Jj=1
where (B;M;q); is the jth component of the distance vector B;M;, seen in
Figure 2.3 for the two-dimensional analogue of the considered three-dimensional
case. With the equalities

[ug]? = ug(B;, ") + O(Ax?) (2.11d)
(see Appendix C) and
B,
SoE (Mi, ") = (7)1 + O(Aw) (2.11¢)
J

11




we finally get an approximation [UA]ZI of the ktH component of u(M; q, t”‘+%)

3 At S
[ k]n-l— = ’LLk ? + Z L a 8 )k’j - 7 Z []C] (s?)J]k ’ (2.12&)
7=1

which is second-order accurate in both time and space. Due to the fact, that S; o

Figure 2.3: Two neighboring cells C; and Cy, , with the barycenters B; and
By, . and their common side S; , with the midpoint A 4 for the two-dimensional
geometry.

is also a face of the neighboring grid cell Cy, , of C; (see Figure 2.3), a further

second-order estimation [uy]?, of uy(M; a,t”+ 2) can be found:

IQ‘
: (B, I At
[uslfy = funll;., +y; B, M;0); <,,,akj—7}j;[ s - (212b)
J

These two second-order accurate approximations (2.12a)-(2.12b) are the initial
values of the Riemann problem which is discussed in more detail in the next
section. However, it is obvious that if the slopes (s}')i; in (2.12a)-(2.12b) are
set equal to zero, piecewise constant states are obtained and the order of the
numerical scheme is reduced to one.

2.2.3 Solution of the Riemann Problem

The further step to obtain the numerical scheme for the Maxwell equations is
a combination of the two approximations (2.12a-2.12b) and the solution of the

12




Riemann problem (RP). The local RP is an initial-value problem of the form

Ou du
5 + Aé)_§ =0, (2.13a)

with the initial data

0 ( _fut i E<0
WO =uie,0 = { ¥ HESO (2.13b)
where the coordinate ¢ is associated with the orientation of the normal vector
at the face S; o (see Figure 2.4). For the sake of clarity, we have dropped in the
present RP formulation the superscript n and the subscripts ¢ and « (cf. (2.8b)
and (2.12)). For the interesting case of the vacuum Maxwell equations the RP
can be solved exactly by applying the theory of characteristics (see, e.g., [17]).

In order to illustrate the solution path of the RP, we introduce the characte-
ristic variable

v(fa f) =R U(f,t) ’ (214&)

where R~ is the matrix of the left eigenvectors of A (see Appendix A), and

recast (2.13a) according to

v dv
5 A =0 (2.14b)

Since A is a diagonal matrix (see Appendix A) we obtain six uncoupled linear
transport equations whose solutions are given by

on(6,1) =o€~ M) s k=1,..,6, (2.14c)

with the initial values v(®(¢) = R-1u®(£). At ¢ = 0 the solution of the RP in
characteristic variables reads as (cf. Figure 2.4)

0(0,1) = (o7 (u™), v (u), 3(@), T (@), v (uF), 0 (wh)) " (2.15a)

where v¥ is calculated from v* = R~ u*. Because two eigenvalues of the matrix
A are zero (A3, see Appendix A), the solution of (2.15a) depends also on the
initial value u = u(0,0). However, later on we will see that this value does not
influence the numerical flux computation, and hence, it is not necessary to specify
u [29] in this context. Multiplying now (2.15a) with the matrix R of the right
eigenvectors (see Appendix A), we obtain the solution of the RP at £ =0

u(0,8) = Rv(0,1) , (2.15b)

which is explicitly written down in Appendix B. Applying the matrix A to the
last equation, it can be easily proved (see Appendix B) that the relation

Au(0,t) = Atut + A"~ (2.15¢)

13




A 1/2 A 3/4 A 5/6

Y
Ay

Figure 2.4: Riemann problem at the face S; o of the cell C; and its schematical
solution in the (¢,¢)-plane.

holds. Inserting this result into the equation for the numerical flux (2.9), the
compact flux-splitting form

G Z g, (A+ W AT

1,Q 2,0 za 7Q 1,&)

(2.16)

is obtained. This formulation reveals that the total flux G’ + /? is balanced by
a flux to the "right” having positive eigenvalues only, and a ﬂu\ to the "left”
having negative eigenvalues only associated with A+ and A Lo respectively.

2.2.4 Computation of the Gradients

There are different ways to compute approximations of the gradient of a regular
function v(z,t) at time ¢ = ™. Let us consider the tetrahedral cell C; with the
barycenter B;, which totally lies inside the domain 2 and is, hence, no boundary
cell. This cell has four neighbors C, ., with o € [1,4], having the barycenters
Bi .

The first strategy to define the gradient vector (s?)(l) € R? of any regular
function v is to consider the following system of linear equations:

(B, t") — v(Byg, ") = BB - (s}))
v(B;,t") — v(Bi3,t") = Bi3B; - (s)V) . (2.17)
’U(Bj,tn) — U(Bi’4,tn) = Bz,zlEi . (S?)(l)

It is easy to prove that this system of equations has a (unique) solution if the
four barycenters B;, B; 2, B; 3 and B; 4 form a non-degenerate tetrahedron which,
however, might not always be the case. Then, (sg‘)(l) is a first-order approxima-
tion of the gradient of the function v in B;. Similary, we can define a further
gradient approximation (3?)(2), calculated from the values of v at the locations
{Bi; B; 3; Bi4; B;1 }; this approximation is obtained by a cyclical permutation of

14




the indices {1;2;3;4} in (2.17). Obviously, two supplementary approximations
(8?)(3) and (3?)(4) for the gradient of the function v in B; can be found by further
permutations of the indices.

To avoid spurious oscillations near steep gradients, it is convenient to use the
slope-limited gradient, being the one in the set {(s?)(”} leq14] with the smallest

norm. For more details of this item we refer to [7, 21, 23].
The second way to define the gradient of v(z,¢") in B; is established by the
solution of the system

v(Bj1,t") — v(Bja,t") = BiaBy) - (s)®)

i
’U(qu’Q,t‘n) — ’l)(B.,jA,t”) = BZ'ABi’Q . (S?)(E)) s (2.18)
U o(Bis, t") — v(Bia, t") = BiaBis - (s1)©)

where the value v(B;,t") is not explicitly used. The advantage of this definition
of (s?)(5) e IR? is that the barycenters B;1, Bjg, Bi3 and B; 4 always form a
non-degenerate tetrahedron and, hence, the equation (2.18) possesses a unique
solution. Furthermore, for regular grids, this approximation is a second-order
accurate one, which is, in general, not valid in the case {(3}?)([)} le[1A]’

After performing numerical experiments with both possibilities of the gradient
calculation, it has been found out that the (3?)(5) gradient approximation yields
more accurate and stable results than those obtained by using (s?)(l) withl € [1,4]
or by using a slope-limited approximation.

2.2.5 Boundary Conditions

In this section we describe the numerical realization and implementation of
physically occuring as well as computationally motivated boundary conditions.
Boundary conditions and their implementation are only well-posed if locally the
characteristic-based wave propagation is taken into account. In general, initial-
boundary-value (IBV) instead of RP have to be solved at the grid cells adjacent
to the border of the computational domain. However, it is possible to reformulate
these IBV as Riemann problems by introducing fictitious grid cells surrounding
the real computational domain and specifying in these cells suitable values in
such a way that the solution of the RP at the border provides with the proper
boundary conditions [23].

For our purposes, we proceed as follows: First, we determine from «(0,t) (see
equation (2.15b) and Appendix B) the values in the fictitious dummy or ghost
cells denoted, without loss of generality, by u~. Then, we compute the numerical
boundary flux (cf. (2.16)), which have to be prescribed in our implemetation for
the boundary conditions of the electromagnetic field.




Perfect Conductor

First, we consider the boundary condition of a perfectly conducting face, where
the tangential electrical field vanishes at the surface:

Eoxn=0; with n=(n,ng,n3)’ . (2.19a)

In our notation, this condition is equivalent to (see Appendix B)

Up, N3 — Upy 12 0
upsny —ug,ng | =1 0 | . (2.19b)
U, Mg — Uy 0

Inserting the values for ug,, ug, and wug, given in Appendix B, we find

ng(ugf + uy) — npud +ug) (2.20a)
—c(n% + n%)(uzr —uy )+ 0711712(’U§L —ug ) + 0”1”3(“3r —ug) = 0, .
—ng(uf +up) +n(ud +uy) (2.20Db)
temng(ui = up) —e(nf +n3)(uf —ug) +engna(ud —ug) = 0,

and
ng(uf +uy) —ni(ud + uy) (2.20c)
+enns(uf —up) + enong(ug —ug) —e(nf +nf)(uf —ug) = 0. '

Obviously, for (2.20a)-(2.20c) there exists no uniquely determined solution, since
we have three equations for six unknows. This arbitrariness reflects the fact that
in the dummy cell the characteristic variables corresponding to waves which do
not enter the computational domain have no influence on the solution at the
boundary. A sufficient condition given by

(uy,uy,uy uy,uy v ) = (—uyf, —ud, —ud, uf,ul ud) , (2.21)

fulfils (2.20a)-(2.20c) identically, and is used to compute the boundary flux
through the considered surface cell according to (2.16).

Silver-Miiller Conditions

With the normal n (2.19a) and the abbreviations
uf” = (u,, w0y, u0)” and ufl) = (uo,, uoy, ua,)” (2.222)

the Silver-Miiller boundary condition reads as

(u(()) . cu£0) N n) xn=(ey—chyxn)xn, (2.22b)

e
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where eg and bg are given vectors in IR2. In the case where these two vectors are
equal to zero, it can be shown that the equality (2.22b) is a first-order accurate
absorbing boundary condition (see, for example, [25]). Combining the condition
(2.22b) with ug = u(0,1) given in the Appendix B, we get

(ue_ —cuy X n) xn=(eg—cbp Xxn)xn, (2.22¢)

where ug = (uj’,uj ,uz )T and v, = (ug,u;,ug )T. A sufficient condition that
tulfils (2.22c¢) is

u, =ey and u; =bg. (2.23)

Cylinder Symmetrical Axis

In the case where the problem under consideration possesses a cylindrical sym-
metry, a two-dimensional description in the (z,7)-plane is satisfactory whereat
the third component of the normal vector n is equal to zero. However, for such
a problem it is necessary to specify an additional condition at the axis » = 0.
Because uz = ug = 0, on this axis we impose the boundary condition

Ugy = Ugg =0 . (2.24a)

By using the solution of the RP (see Appendix B), we furthermore obtain the
following requirements

(uf +ug) +cng(uf —uy) —en(uf —ug) =0, (2.24b)

—na(uf —uy) +n(ud —uy) + clud +ug) =0. (2.24c¢)
on the z-axis. A sufficient condition to fulfil the last two equalities is given by

(uyug Uy, uy, g, U ) = (UT’ugv —u;,u:f,u;“, —ug—) . (2.25)
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2.3 Particle Treatment

A further central building block in order to find the numerical solution of the
Maxwell-Lorentz model (1.1)-(1.3) is the particle treatment, consisting of an ac-
cumulation of different approximation techniques for the interpolation, particle
pushing, localization and charge assignment [3, 13]. Basically, the goal of par-
ticle treatment is to obtain the redistributed charged macro particle distribution
under the action of the applied external as well as self-generated electromagnetic
fields in order to compute the changed charge and current densities, the sources
for the Maxwell equations.

2.3.1 Particle Pushing

The discretization of the relativistic equations of motion (1.2) as well as its non-
relativistic counterpart has been described extensively in the literature [5, 3, 13,
30]. However, for the sake of completeness we briefly recall the basic features
of the used leapfrog-scheme introduced by Boris [5], taking into account the
special structure of the Lorentz force (1.2¢). For that purpose, we consider in the
following only one macro particle and, hence, drop from now on the index k and
rewrite (1.2a-b) according to

"t gt = A™t/? (2.26a)
(U"+1/2 - aE"’) . (U’H/2 + aE") = 2gnypr,  (226b)
on
where a = %\Aj—z and the relativistic velocity is computed from U = yv with
v? = W = 1+ |UJ?*/c®. Furthermore, At is the time step size and n

denotes the actual time level where the electromagnetic fields at the position
" are given. Obviously, the right-hand side of (2.26a) is time-centered around
t+1/2 = (n 4 1/2)At while that of (2.26b) has to be computed at t* = nAt,
leading to a second-order accurate integration scheme. For the further proceeding,
we now introduce the quantities

w = U2 4aBE, (2.27a)
ut = Umtl2_aE", (2.27b)

replace U™ by its average value % (U”_l/ 2 yntt/ 2) and approximate ¥ =

7~ = 1+4|u~|%/c? with the velocity u~ obtained after the first ”half-acceleration”
described by (2.27a). Then, equation (2.26b) can be recast into the form

vt —u = (ut+u) xt, (2.27¢)

where we introduced the auxilary vector ¢ = %|B”|b” with " = 'g—:' With

this relation it is easy to prove that ¢ - ut =¢-u~ and Jut| = |u~|. In order to
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Figure 2.5: Geometrical illustration of the second-order accurate Boris scheme.

determine u™ from (2.27¢), we compute an additional velocity vector given by
w=u 4+u xt, (2.27d)

which is the sum of 4™ and the ”"half-rotation” of =~ around the magnetic in-

duction B™, having the length of |u'|> = (1 + [¢?) |u™|? — (u™ )%, A further

?half-rotation” but now of u around B" yields

!

wxt = ut xt+|tPut — (ut )t
= u xt—[tPu+ (u-t)t. (2.27e)

From this relation and equality (2.27c) we find that «™ is obtained from

_|__ —

ut =u "xt. (2.271)

AEEaTEe

After a second ”half-acceleration” by At/2 with the electrical field E™, we finally
get the solution of (2.26b), namely, the velocity at the time level ¢t = nti/2

U2 =yt 4 aE" (2.27g)
and from that and (2.26a) the new particle position at ¢ = #**1. For the special
case where t is orthogonal to u™ the outlined Boris scheme can be illustrated
geometrically as it is shown in Figure 2.5.

2.3.2 Particle Localization

For our purposes, we adopt the intensively investigated particle localization tech-
niques proposed by Lohner et al. [19, 18] and Assous et al. [2] for unstructured
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mesh zones spanning triangles in two and tetrahedra in three space dimensions.
Especially, we use the Lohner approach for the two-dimensional situation while
we adopt the Assous strategy for the three-dimensional case, because it is found
out, that the Assous algorithm is faster than the one proposed by Lohner.

Two-dimensional Localization Algorithm

In the following, we describe briefly the basic ideas of the two-dimensional Lohner
approach. This algorithm based on the calculation of shape-functions &;o =
Sia(x™) for the macro particle located at time ¢ = ¢" inside the mesh zone C; of
the computational grid at ™. From these functions, criteria are obtained for a
sophisticated searching strategy [19, 18]. Closely related to this approach is the
one proposed by Westermann [31], where the ideas of convex hulls are used.

In the two-dimensional case, C; is a triangle with the vertices M, , having
the grid coordinates a;o = (aa,ba)T, where o runs from one to o; = 3. The
situation on hand is depicted in Figure 2.6, where we recognize that the triangle
opposite to the vertex M; o is denoted by C;_ . To decide now whether a particle
" = (fc",y”)T lies inside the element C; at ¢ = t" the following strategy is
applied:

Step 1:

Figure 2.6: Particle localization in the two-dimensional case.

Calculate the three real numbers S; 1, S;2, &3 € IR according to

o; . o;
Z Sialie =", with Z Sia=1. (2.28a)
a=1 a=1

Explicitly, these linear shape-functions S; o with respect to the particle coordinate
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x" are given by

1
Siz = 5 [(bg — b1)(a" — a1) — (a3 — a1)(y" — b1)] , (2.28b)
1
Sig = 7 [—(bg — b1 )(a™ — a1) + (a2 — a1)(¥" — 1)) (2.28c¢)
Sipn = 1-82—8;3, (2.28d)
with
J = (bg - bl)(ag — al) - (b2 - bl)(ag - al) . (2.286)
Step 2:
If
MIN (Si,1§ S; 23 S.l'73) >0 and MAX (871’1; 8,512;31'73) <1, (2.29a)

then " is located inside the mesh zone C; at time ¢ = ¢".
Otherwise, if

MIN (Sj’l;Sj,Q;Si’g) <0 ' (2.29b)

z" & C;, and we have to continue the search in the element adjacent to C; and
lying opposite to the vertex M;, possessing the smallest value for the shape-
function S; 4.

Three-dimensional Localization Algorithm

The basic ideas of the three-dimensional scheme proposed by Assous et al. [2]
can be summarized as follows: Consider the tetrahedric grid zone C; as depicted
in Figure 2.7 having the vertices M; ., with the coordinates a; = (¢q,ba, ca)T
where 1 < a < 0; = 4. Then, we first calculate the determinants 4A;, with
respect to the particle position &" at ¢t = " from

Ai,al = (_1)a1+1 (Aa'z X A(Xg) * Aa4 ] (230&)

where the {a1;a9; as;as} are cyclical permutations of {1;2;3;4} and A, is the
abbreviation of the difference vector A, = a;, — ™. Explicitly, we find for the
four determinants of C;

Aiq (Ag x As3) - Ay, (2.30b)
Ay = (A1 x Ay)- Ag, (2.30¢)
Az = (A x Ay) Ao, (2.30d)
Ai,4 = (A3 X Az) A1 (2.306)

Afterwards, the following possible cases have to be considered during the sear-
ching procedure, where ¢ denotes the machine zero:
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Case 1:
If

Vo€ {1,2,3,4), Ay > —e, (2.31a)

then the particle is located in the mesh zone C; at t =", i.e., ™ € ;.
Case 2:

If
Ik e {1,2,3,4}, Ajp < —e, (2.31b)

holds, continue the searching procedure in the cell C;, located opposite of the
vertex M; .

Case 3:

If

E(ka [) € {1a 2, 334}2 v ke ‘7’é ! aAi,k 7A’i,l < —€, (2310)

or if even three determinants become negative, the decision process is more com-
plex. To discuss this item, we assume that A;; and A; 2 are lower than —e and
denote by H the intersection point of the particle trajectory with the plane span-
ned by (M;2 M;z M;4) (cf. right picture of Figure 2.7). Then, we introduce

Figure 2.7: Particle localization within the tetrahedron C; according to Assous
et al. [2].

the local basis @ = M; 2M; 3, b = M, 9M; 4 and expand the vector @ = Mz’,,Qﬁ
according to

x=aa+Fb. (2.32a)
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Moreover, this vector is also given by
@ =M ,P—HP, (2.32b)

where P denotes the particle position at time ¢ = t". Because ﬁ is parallel to
v" /2 we find that

@ x o2 = ./\/li’gﬁ x 12 (2.32¢)

holds, which means, that it is not necessary to compute H explicitly. Inserting
(2.32a) into the last relation, we get

W x "2 = aa x v" Y2 4 gb x 0" TV2 (2.32d)

yielding two equations for the unknown parameters o and 3. Now, we can decide
if

a,f€[0,1] and a+F<1,

then the particle crossed the plane (M;s M;s M;4) and has to be searched
in Cj,. If this condition is not met, the searching has to be continued in the
tetrahedron Cj,.

2.3.3 Particle Assignment and Interpolation

Applying the outlined localization strategy (in two or three space dimensions),
a macro particle with the phase space coordinates (@ (t), v, (t)) may be found
in the grid cell C;. Now, we have to calculate the contribution of this particle
to the charge and current densities at the node ¢ with the coordinates a;. This
node is surrounded by a certain number v; of elements forming the local node
domain €; as depicted in Figure 2.8, In order to do this, we compute the particle

Q

Figure 2.8: Local node domain €; established by v; elements.

linked shape-function S; = S;(z(¢)) according to (2.28a) (for the two or three-
dimensional case). This function possesses the property that at the considered
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node ¢ the relation S;(a;) = d;; holds, where d; ; denotes the Kronecker symbol.
Then, we perform an averaging process over the local node domain €2;, defined
for any integrable function h(x,t) according to

hag 1) = Vi / W, )S:(@, ) dV (2.332)
ZQ;

where V; denotes the volume associated with the node ¢ given by

Vi = ISi(m)dV. (2.33b)
/

Applying this averaging to (1.3), the contribution of the kth charged macro par-
ticle to the charge and current densities at the node 7 is obained from

prlagt) = %S.,?’“), (2.34a)
. Uk (ke
jrait) = Qf,—i’”si“), (2.34D)

where the abbreviation ka) = S;(xy(t)) is used.

After the total charge and current densities at the nodes of the computational
mesh are determined, the new electromagnetic fields at these nodes are compu-
ted by solving the Maxwell equations (2.1)) with the discussed FV scheme. To
advance the charged particles from the time level t* to #"*! in this new fields,
we once again apply the concept based on the shape-function approach, but now,
in order to determine the fields at the actual particles positions at ¢ = t". The
electromagnetic fields u(z(t"), ") (cf. equation (2.2)) acting at the kth charged
particle position are calculated from the formula

u(ey(t"), ") = Z Sia(@r (")) (@i, ") - (2.35)
a=1

Here, u(a; q,t") are the electromagnetic fields given at the nodes M;  of the grid
cell C; and S; (x4 (t")) denotes the particle linked shape-function in this cell.

Now, a typical PIC cycle is closed and the entire particle treatment starts
again with particle pushing as described in Section 2.3.1.

2.3.4 Particle Handling at the Border of the Computational Do-
main

Two important boundary conditions in the context of particle treatment, namely,
absorption and reflection on a certain border of the computational domain will be
discussed in the following for the two-dimensional situation. For that, we assume
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that the macro particle P with the coordinates ™ is situated in the grid zone
C; at time t = t™ (cf. Appendix D). This grid element has one common side with
the border of the computational domain and is established by the vertices M,
with the coordinates a; o = (aaq, ba,O)T, where 1 < o < g; = 3. Let us suppose
that the particle leaves the grid cell C; within the time interval At = ¢+l — ¢7,
The first task is now to find out the side S; o through which the particle moves
during At. For that, we determine subsequently the following determinants

di = det(Ay,p)=(A1xp)- e3, (2.36a)
do = det (A27p) = (AQ X p) Te3, (236b)
d3 = det(As,p) = (43 Xp)-es, (2.36¢)

with the abbreviations A, = P"M; o = aj. — 2" and p = P”’P"*’i and where
the unit vector eg is given by es = (0,0, l)T. With the agreement that the side
Si« which the particle crossed lies between M; o and M; 41 (see Figure 2.9)
and the convention that M;, = Mj,,.l, we have to check the following possible

alternatives, subsequently:

n+1

@ r

Figure 2.9: Particle passed side S; ; of the border grid cell C;.

e Particle passed side 5;
This case is schematically depicted in Figure 2.9 . The signs of the determinants
(2.36) for this situation are given by

203 lf[(p7A3)§7T

<0, ifL(p,As)>7 (2.372)

dy >0 and do <0} dgz{

e Particle passed side 5
This situation is seen in Figure 2.10 and characterized with the determinants
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(2.36) according to

Figure 2.10: Particle crossed side S;o during At = "1 — " of the border cell
C;.

ZO’ if Z(pa141) STr

<0, if/l(p,A)>m (2.37b)

dg >0 and d3 <0; dlz{

e Particle passed side Si.3
Using once again the determinants (2.36), we find for this situation, schematically
illustrated in Figure 2.11, the condition

>0, if/(p,Ag) <

<0, ifl(p,As) > (2.37c)

dz >0 and dy <0 dgz{

Figure 2.11: Side S; 3 of the border cell C; is crossed by the macro particle.
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Defining the function k in the following way:

E1,1) =1, k(1,2) =2, k(2,1) =2, k(2,2) =3, k(3,1) =3, k(3,2) =1,

we recognize from (2.37a) - (2.37c) that the particle crossed the side S; ; if and
only if dy(;1) > 0 and dy; 0y < 0; this criterion is explicitly used in our computer
program. If this side coincides with the border of the computational domain, the
macro particle is absorbed, which means, it is taken out of the domain and of the
further computation, and assessed for diagnostical reasons.

To discuss the particle reflection schematically depicted in Figure 2.12, we as-
sume without loss of generality that the side ;1 of the triangle cell C; coincides
with the border of the computational domain where a reflection boundary condi-
tion is imposed. The considered macro particle crossed the side S;1 at the point

Figure 2.12: Reflection of a particle at the side S; 1 of the border cell Cj.

() during the time interval At and possesses the known position P* at t = ¢"+1,
located outside the computational domain (see Figure 2.12). However, due to the
reflection condition we have to put the particle to its true location P*t! inside
the domain which is still unknown. To determine this true position, we define
the unit vectors according to

b e =t

Mii Mo s P M;q oo P (2.380)
= 3, PR ————a 3 = .

|Mi,1 Mzl [P M1l PP

and compute the scalar products

S1

S9-8 =cosa, 82-83=C0S7Y, 838 =cosf, (2.38b)
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yielding the three angles «, # and «y of the triangle (M, Q P™). With the given
length [P" M, 1|, we easily find that

lpn@ = S%na [P Ml . (2.39a)
sin 3

Furthermore, it is obvious from Figure 2.12 that the vector QP;: can be expressed
in terms of

QP = PP — PG = (IP"P"| - 1P"4)) 55 (2.39b)

This vector may also be expanded in the orthogonal basis established by s and
m, with s -m =0 and s x m = e where ez = (0,0,1)”, yielding

@772 = (W . .31) 81+ <C§7_ﬁ - m) m. (2.39¢)
Since 83+-m = —sin 3, we obtain from the last two equations the following result:
6273az = (IPT,,P“Z| - Ipnéo (cosBs1 —sinffm) . (2.39d)

Oprtt

A reflection of this vector at the side S; ; yields QP"*!, obtained from the relation
QP"Hi = (IPW,P | — ]73”@) (cosfs1+sinfm) . (2.40)
Performing the final computation step

P = B 4 g (2.4

we get the true position of the macro charge at t = #"*! reflected at the side S;,
of the triangle cell Cj. :
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Chapter 3

Numerical Results

In this chapter, we present results of pure electromagnetic as well as particle
benchmark calculations computed with the Maxwell and particle solvers, respec-
tively. These results underline the high quality and characteristic properties of
the outlined numerical methods.

3.1 Two and Three-Dimensional Electromagnetic
Test Problems

3.1.1 Two-dimensional Test Examples

First, let us consider a simple two-dimensional test problem without any symime-
try, for which the use of Cartesian coordinates = = (21, 22) = (z,y) is appropriate.
The physical domain Q = [0,1] x [0, 1] consists of the unit square with a length
of Im. Tt is easy to check that the fields

[+

Ei(z,y,t) =— ]"L sin(ky) cos(kjz — wt) , (3.1a)
‘I

Ey(w,y,t) = cos(kLy) sin(kjz — wt) , (3.1b)

Bs(z,y,t) = Z—w—Q cos(ky) sin(kjz — wt) , (3.1c)
o e

are a set of solutions of the time-dependant Maxwell equations, where the longi-
tudinal and transversal wave numbers k| and k, , respectively, are related to the
pulsation w according to

ki + k3 = W (3.1d)
|| J‘ c2 . .

In order to check simultaneously different kinds of boundary conditions, we limit
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grid 1 grid 2 grid 3
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Figure 3.1: Discretization of the computational domain with different fineness in
order to study the properties of the F'V Maxwell solver.

the computational domain at y = 0 and y = Im by a perfectly conducting wall,
resulting in

Ei(2,0,t) = BEy(z,1,t) =0; V(z,1), (3.2a)
from which we get the requirement that
ky =pn,pe”Z. (3.2b)

Furthermore, we prescribe field boundary conditions at x = 0 and £ = 1 m given
by the analytical values of the incoming characteristics

E2(07y,t) + CB3(O7y7t) = (1 + ]:'u

- ) cos(k, y) sin(wt) (3.3a)
e

and

w .
—FE5(1,y,t) + eB3(1,y,t) = <——1 + E—c> cos(ky)sin(kj — wt) , (3.3b)
l

respectively, computed from the equations (3.1b) and (3.1¢). Performing nume-

rical experiments, we explicitly choose ky = k| = 7/m and initialize the fields

according to the analytical solution (3.1a)-(3.1c) at time ¢ = 0. Afterwards, the

Maxwell solver computes the evolution of the fields within the time interval of
2

three periodes ——73, during which the boundary conditons (3.2a), (3.3a) and (3.3b)
w

are imposed. In order to study experimentally the effective order of the schemes
under consideration, we perform the computations on three different grids with
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Figure 3.2: Numerical result of the E field computed with the first-order scheme
for three different discretizations. The lower right plot shows the analytical so-
lution of this field component.

different finenesses (100, 400 and 1600 triangles, respectively) depicted in Figure
3.1. Obviously from this Figure, the lengths of the sides of the triangles, and
hence, the time step size determined by the CFL condition is reduced by a factor
two in switching from grid 1 to grid 2 and from grid 2 to grid 3, respectively.
The numerical results for B obtained with the first and second-order accurate
Maxwell solver for the three different discretizations are shown in the Figures
3.2-3.3. Additionally, the analytical solution is given there for comparison. A
closer inspection of these Figures reveals that the numerical solution on the fi-
nest mesh computed with the second-order accurate scheme is nearly in perfect
agreement with the analytical result.  To get a more quantitative picture of

the approximation quality of the first and second-order schemes, we compute the
relative discrete L?-error between the analytical and numerical solution. This
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=

Figure 3.3: Numerical solution of the F; field for three different fine grids com-
puted with the second-order scheme. The lower right plot shows the analytical i
solution of this component.

error norm is defined as

) 2 2 ) L\ 2
S (uns — B1) + (i — B3)” + ¢ (ul; — BE,)| Vi
n n
”uﬁum “uana”L2 _ i=1

| [ugna l 'Lz

S (B + (Bg)? + (B’ Vi
i=1 4

(3.4)

where the analytical solution is computed at the barycenter B; of the cell C; at
time ¢ = ¢, which means for example: Ef'; = Ey(B;,t"). The relative discrete
L%-error for both the first and the second-order accurate schemes computed for
the three different grids is plotted with respect to time in Figure 3.4. We verify
from these plots the fact that the schemes we use are really of the order one and
two: the L2-error is (approximately) reduced by a factor two for the first-order
and by a factor four for the second-order scheme, when switching from grid 1 to
grid 2 and from grid 2 to grid 3, respectively. |
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Figure 3.4: The L%-error computed with the first and second-order accurate
schemes for grids with different finenesses.

3.1.2 Cylinder Symmetrical Test Problem

Secondly, we are interested in a cylinder symmetrical problem with respect to
the z-axis. For the natural description, it is convenient to use cylindrical co-
ordinates and for the computation, we restrict ourselves to the finite domain
2 =[—0.5,0.5] x [0,0.5] in the (z,7)-plane. Apart from the rotational axis, the
boundaries of ) are considered to be perfectly conducting walls. The electroma-
gnetic fields are driven by the current density of the form [12]

. . 27 2 DI
j(z,?“,t)={ j.e,, if 0<t<— and (2°+7°)2 <R (3.50)

w . 3
0, otherwise

where j, is given by

(22 +1%)3

7 sin(wt) (3.5b)

gz, t) =1 —
and e, = (1,0)T, modelling the radiation of a dipole in an empirical manner.
For the simulation, we fixed the parameters w and R, respectively, equal to w =
5710% s7! and R = 0.04 m. With a time step size of At = 5 ps , we perform 600
iteration cycles to reach the final simulation time of 3 ns . The computational
mesh we use is composed of 4 X 34 x 68 = 9248 triangles and shown in Figure
3.5. The numerical values of the B; (= By), F1 (= E,) and E, (= E,) fields are

33




ronol
ion

sect
-axis
(3.6a)

ished by

4!
%
G
G
!

X <X XX HVAVAvAZvAVAv‘vAvLK

0020
XIXISC
XX
SONEOI0]
XIXIXIX]
POIXX]
XX
IXIXDOX]
OZO2070%
XXX

02 10'

TOSS
iven by

AvAvAv‘v‘v‘vAvAvAvA

X1

X
]

X

X
XDOXIX >
SO0
PRI
4

X]
00
4)1010}0"0{4
OO
NZ026X
XX
XXX
T
0N
XIX]
]
<
DX
XXX
T
1XJ

X
0
7
I}

.4

Z(MPZ'
3
>
X
KD
PXDIXIX
I
M)A X
ITOZOTOT
POXPIXIXIX]
ZOT03
XX
OO0
IXIXIX] 0
XXX X
EOZOTOR
XXX
RXIRIX]

X
2
P
X
X
)
>
>
X

1
IX]
X
00
X
030

Xv X
mvuvuﬁmvmlﬁmmvumimxr Kvue«#uvmv( 0%
OO NI O IO
OO0 OO L0000
SoSoletotatizoze 0X0T020T02020 LRI XXX X c v

K>

%

r
A»Z

S
el
5
X}
X

03

N'EDIOE
IXIXIN]

DX
D
D20
0]
QNP0

A«
XIX)
XX
2
X

.

th the one publ

ZZ-Alv.ZZvAIvAZZIIZWvAIIZv».IZZXvAv ]
KR X XX X XXX
RIS IR S
TOZOZOZOTOTEOIDIOZOSOTZOT m%m%&mnm&m&m%rz
Aﬁmvuﬁ‘n.m.mﬁ‘vum%vu DOZOZOIZOIITO)
R IRGRXBEXIXIX O XIXIX]
XXX XA
(vaque.v.ZXZXIXIZXv(v‘
v

07
X
X
DX

P:
.:
PXEX)
XX
XXX
XX
DX
XX
XXX
le radiation test problem.
wi

X
A
XX
XD
<D

K
X

0
0
X

X
D

) b,
]
<
ipo
Y’
imensions

v

vv

v

iM)A

0%

v VAVAIvAvAvAvANA

0
0%
DX
!
P
0(
%

)

ide of length L whose ¢

'0104» 00
xact]

>¢
X
>Z
X%
X
f
DAXIX]
)X
XX,
);1
>
XX
X

0%

<)

»X(
D
A»

'NANAIZKZ
DO AXZv
ROTIZ0Z0T
ZOS0
POTOZOTO
vmﬁe .I
X

1]
I
1X]
i
Xl
RONIZ0
XY

4.

I
0%
050
X

50
POX
IX)
X

A»Zﬁl(
XX

02

MMX-AZIv.XZZZZZZZVIZ
Mvmilv DZEOTOTOOI e»l
X ek

PIXRXIX )W.vAvAvA:ZVAvAVAvD

OO0
%
X
¢

X
X
IX]

'(

XY
XL
X

A v

OTOZONZONRL 0'0
X
A)
DZ
IXIXIXT
AK!
XD
OO0
DOXIXIX]
X
>
IX]
X

XX

vl

>4
XX}
IZ00
'0}
20502
XD
0%
X
XX

0
X
X

(XX

KX

tches e
, who proposed two finite-volume methods on Delaunay-Vo

XX
XXX
DIXDX
2%
ZO

XXX
K0S
<X}

0N
X
K

2020
XX
X

>

X
U]
X
X

0
2

mulas of the TEM fields a,

m
B
v
&S

iX> ’OA'I(MPZ‘PX

X
X
0
X
XXX
X

OZOZO
0N
XD
P
D3
XIX)
>IX]
XX
XX
X
ROZ0
50
XX

0
<

oA
XXX
%0
X
XX
%

03030

XX

OZUIZOT

XL

>

X

>

X

X
X
30
%0
%
1%
DY

X1
030
XCX]

DX

2
%HX%E%%%R%&EWE?« HZOZOZO
ZZ-AEV.v.vAIV.ZIvaquZIIZ

:4
MK
>

P>

X
X
%0
5
X
X1

DUXDXXIXE
XD
KP4

X}
D>
X

re a wavegu

XP>

’e"
0
0

D
I

DX D>
XX
X1
X
Xl
X
al for

X
12020202050

X

X

X

=
0on ma

.-

vv.

SOZ0( A
0303 I
(XX
X<

020

6T

0

DX

RRE
0%
S0
1C

P>

0%
XD

)IMK
KX

T
X K
M 02
00 X X
XX
X
XX
DX
PPOX]
RIXX
gat

DRIXIX
DAXERE
XX
X1
ider

0%
XXX
w.olo!i
XTI
DXDXIXDO
PXIXIXIX
FOTUTU
XXX
IXIXIXIXD
R

H 0A
X

X

0%
703

0%

X

X

ropa
ted by two circles of radius R; and Ry. By z, we denote

P
XL eAv e # AKV I AXvoAv Avclv AIn.v .v).v 0T0% AZv
).Iv R IX IO XTX X X K N%N#NA

:vAvAZvAv.vAvAv ‘szzauvﬂxv‘xv‘vﬂmm % v.

XD
XX
IXIX]
XX
XX
X1
KR

The analyt
T
Y

15
XD
207

KPP
XD
KX
X[
XX
KX
D0

)

X
11mi

we cons

X
2030
X
23
X
]
DAX]
Do)
RO

]
DO
XX

?

lar crown 1

0%
P

IXPX
%0
X

0
X
0z
0%

»z«

DX

DX
]
0
X

N%Kﬂ:ﬂﬁ
IX]
020

P AvAv XXX ‘voAv OX] Av .vAv EOZOZOZO0 Ava XX

OO0 eue AIv 0ZOZ0N e AIvAvAv IR
(. A

D>
>
3

X
X

where the non-zero field components are transverse to the z

2020
X
X
X

XX
X1
%0
XD
]
Xt

)A

)X‘

XXIXL

PRI

RO

POXIX

PO

ne
X
X
020
X[
020

Computational mesh used for the d

R

P

X

PIXIXI
4

32

>
XD
X

50

v.vAvaAVAvAVA
XX DK
OSOTISOTOSUSS
R0

XXX

(5%
2
3

o

0'9
IXIX
R
4
X
X
X

BEX

DX
XD
55
03
0

i
4
I
<

o,

X

-0.5

XXX

b
b
b
b
D

0.5 BT
0.0

Figure 3.5
computed with the second-order accurate Maxwell solver and snapshots recorded

at 1 ns, 2 ns and 3 ns are respectively presented in Figure 3.6. The observed

structure of the wave p

Hermeline [12]
propagation. This means, that we are interested in the temporal evolution of

the common rotational axis of both cylinders, being also the direction of wave
a TEM mode,

meshes for the Maxwell equations in the time domain.

3.1.3 Coaxial Wave Guide in Three D

As a last example

(ie., B, =B, =0

is a circu
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1ns 2ns 3ns

Figure 3.6: Structure of the dipole fields at three different times calculated with
the second-order accurate Maxwell solver.

and
-y
B, 1 a2 4 2
B, | == L sin(kz — wt) | (3.6b)
Bz C (L‘Q ?)_ y2

where the wave number £ is related to the pulsation w according to w = kc. For
the numerical simulation we choose L = 0.5 m, 1 = 0.5 m, Re = 0.1 m and

cm e s . . .
w = — s}, and initialize the fields according to their analytical values at ¢ = 0.

The numerical experiments are performed on two different grids composed by
6960 and 54960 tetrahedra, respectively. Applying the CFL restriction on the
time step size, an oscillation period is devided into 152 time steps for the coarse
and 308 for the fine grid. For both cases, the simulation has been carried out over
2.25 periods. A comparison between the numerically obtained and corresponding
exact values of the £, and E, field components is presented in the Figures 3.7 and
3.8, respectively. For both computational grids as well as for the first and second-
order accurate scheme, we observe a very good agreement between the computed
and analytical solution. The numerical result obtained for the £, field is seen in
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Figure 3.7: E, field of the coaxial waveguide in the sectional plane y = 0.

Figure 3.9. We notice that the biggest deviations from the exact result (E, = 0)
are located around the inner circle with the radius Ry. However, this observation
can be explained by the fact that the region of strong curvature around the inner
circle is not well approximated by the mesh under consideration and, especially
there, a refined computational grid seems to be necessary. Furthermore, the
discrete L2-error computed according to

num — Yanall
num — YanallL2

lufpallz N

f} Z_;( ti= B+ (- BR)Y) | Vi
233( +(By)?) | Vi

i=1 | j=1

[l

, (37)

is depicted in Figure 3.9. In this formula, E}; and B}; are the values of the fields
given by (3.6a) and (3.6b) at the barycenter of the cell C; and at ¢ = . This
error is approximately reduced by a factor of two when switching from the coarse
to the fine grid for the first-order, and by a factor of three for the second-order
accuracy, which indicates that the second-order scheme has in fact an effective
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order of convergence (EOC) of about 1.6.

For the graphical presentation of the numerical results given in the Figures 3.7
- 3.9 we used the software-tool ”TECPLOT”. This tool only allows to plot values
at the summits of the tetrahedra. However, the numerical solution is defined to
be the vector of the average values of the fields over the tetrahedra. Hence, the
results seen in the Figures 3.7 - 3.9 are node values, computed as the average of
the values of the fields in the cells surrounding the nodes.

Ey - Ey : Eyn -
7.23 L % 7.16 L 7.34 .
4.34 4.30 4.40
1.45 coarse grid 1.43 coarse grid 1.47 coarse grid

-1.44 1st order -1.43 2nd order -1.47 An. Sol.
-4.30 -4,40
-7.16 -7.34

Ey :
8.32 o
4.99
1.67 fine grid fine grid 1.69 fine grid

-1.66 1st order 2nd order -1.74 An, Sol.

-4.98
-8.31

Figure 3.8: E field of the coaxial waveguide in the sectional plane y = 0.
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Figure 3.9: E, field component of the coaxial waveguide and discrete L2-error
defined according to equation (3.7).

3.2 Two and Three-Dimensional Benchmark Pro-
blems for Particle Treatment

3.2.1 Localization and Assignment

In the following, we first focus our attention to the localization and assignment
procedures in two and three dimensions described in Section 2.3.2 and 2.3.3,
respectively. The computational domain consists of a unit square for the two (see
Figure 2.2) and a unit cube for the three-dimensional case. The discretization of
these domains by an unstructured computational grid is established by 130 and
200 nodes, resulting in 222 triangle and 744 tetrahedron elements, respectively.
Within the computational domain the particles are uniformly distributed, which
means for instance in two dimensions, that 80 particles are situated per row and
column if N, = 80x 80 = 6400. Analogous, if 64000 particles are considered in the
unit cube, we have a spatial particle discretization of 40 x 40 x 40. Furthermore,

each particle carries a charge of @ = ]—VI; (measured in Coulomb), so that we
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obtain for the charge density

N,
1 o5 C
= — E , = ]_—‘
po Vk_lQl" m3

in the unit volume V.
The performances of the numerical experiments for the two and three-

dimensional situations are quite similar: In the first step of the calculation, we
localize the particles within the computational mesh according to the Lohner
or Assous approach (cf. Section 2.3.2). Then, we compute the shape-functions
(2.28a) of each particle in order to perform the assignment process and, finally,
determine the charge density in the nodes ¢ of the grid (cf. Section 2.3.3) and at
the barycenter B; of the elements Cj, given by the average

1 &
/)(Bl)t) = ; Zp(M‘i,avt) y (38)
b a=1

where p(M; q,1) is the charge density at the vertices (nodes) M; o of Cj. A first

Localization and Assignment

—{— Nodes
—(O— Barycenters

maxiR, - R| [%]

bl L L PN AR | n s P v b
10° 10* 10°
Number of Particles

Figure 3.10: Maximum deviation (in per cent) in the nodes (squares) and bary-
centers (circles) from the charge density pg = 1 versus the number of particles in
the computational domain.

result of the two-dimensional localization-assignment procedure is presented in
Figure 3.10. There, the maximum of the absolute value of the difference pg — p;

max{|po — pil} = max{[1 - pil}
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is plotted versus the number of particles placed inside the domain (N, =
400, 1600, 6400, ... , 409600), where i runs, respectively, over all nodes (indica-
ted by squares in the plot) and barycenter of the elements (indicated by circles).
Clearly, the maximum deviation drops below one per cent if more than 6400 par-
ticles are inside the domain. Furthermore, we observe that the deviation from
the reference value at the barycenters is less pronounced than that at the nodes,
being the consequence of the additional averaging given by (3.8). Further re-

Localization and Assignment; 6400 Particles
0.010 -

0.008 -

0.006 ]

11-R|

0.004

0.002

| I

20 40 60 80 100 120
Number of Node |

0.000

Figure 3.11: Deviation from py = 1 at the 130 nodes of the computational grid
for 6400 particles in two space dimensions.

sults of the localization-assignment part of the particle treatment for the two as
well as three-dimensional cases are depicted in the Figures 3.11-3.12 and Figures
3.13-3.14, where 6400 and 64000 particles are distributed in the computational
domain, respectively. There, the deviation pg — p; at the nodes (Figures 3.11 and
3.13) and at the barycenters of the elements (Figures 3.12 and 3.14) are plotted
for the two and three-dimensional situations. The plots show that the results for
the two-dimensional case are very acceptable: the deviation is always less than
one percent. The results for the three-dimensional test case are also satisfactory,
but reveal that the discretization of the unit cube with the mesh we use is too
coarse.
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Localization and Assignment; 6400 Particles

(
0.0000 Hll“lnl.. ll il ||n||| In' “l.lrlﬂ!lll!frh. ;H rr’fml!fmlﬂﬂ W“H!M II[lerﬂn!I’lﬂlﬁlll.Iu....&..ru
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Figure 3.12: Deviation from pg = 1 in the barycenter of the 222 elements of the
computational grid for 6400 particles in two space dimensions.

3.2.2 Localization and Interpolation

Now, we consider the localization-interpolation building block of the two and
three-dimensional particle treatment. For that purpose, 100 (1000) particles are
distributed uniformely in the unit square (cube) in the same manner as already
mentioned above. At each particle position @, the actual value of the externally
applied force

F(z) = Fysin(r—) sin(r-2L) (3.9)
o Yo

is computed, where 2g = yg = lm and Fp is fixed to one Newton. This direct force
calculation yields the reference values for the comparison made later on and is
denoted by Fy,(xy). Afterwards, the relevant localization procedures for the two
or three-dimensional cases are used in order to find the particles with respect to
the cells of the computational mesh. Assuming that the kth particle is located at
&}, in the mesh zone C;, then we calculate the shape-function S; (@) (cf. (2.28a))
and determine the force (3.9) at the local nodes a; o of C;. By applying formula
(2.35), the force Fjy(wy) acting at the particle position @y is obtained. The
results of the numerical simulation is seen in Figure 3.15 for the two-dimensional
and in Figure 3.16 for the three-dimensional calculations, respectively. There, the
directly computed force Fgy, (@) (solid line) and the force determined from the
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Localization and Assignment 3D; 64000 Particles
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Figure 3.13: Deviation from pg = 1 in the 200 nodes of the computational grid

for 64000 particles in three space dimensions.

localization-interpolation process Fi;, () (open circles) are depicted as functions
of the particle number. The comparison indicates a very good agreement between
direct and indirect calculated force values at the particle positions .

3.2.3 Interpolation, Particle Pushing and Localization

The following problem is tailored to test the interplay between interpolation, par-
ticle pushing and localization. For that, we consider the Lorentz force computed

from the externally applied fields
E.(z) = Ey sin(rz) sin(my) ,

B,(x) = —E—CD—Z cos(mzx) cos(my) ,

in two space dimensions, and from

Ey(x) = Fy, sin(rz) sin(ny) sin(rz) ,
E,
B,(z) = ——203 cos(mz) cos(my) cos(mz) ,

in the three-dimensional case, where the coordinates z, y and

(3.10a)
(3.10b)

(3.11a)
(3.11b)

Z are norma-

lized to one meter and Ep, is fixed equal to 1 V/m. This Lorentz force
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Localization and Assignment 3D; 64000 Particles
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Figure 3.14: Deviation from pg = 1 in the barycenter of the 744 elements of the
computational grid for 64000 particles in three space dimensions.

acts on the macro particle (with charge @ = 1 Coulomb) initially located
at z(0) = (0.2,0.5)7 in two and x(0) = (0.5, 0.5, 0.5)7 in three dimen-
sions. At these starting points, the intitial velocity (normalized to the speed
of light) is chosen to be v(0) = (0.777- 1072, 0.202 - 10“1)T and v(0) =
(0.785 1072, 0.785 - 1072, 0.395 - 10_1)T, respectively. To prove the efficiency
of the numerical schemes outlined in Section 2.3.1-2.3.3, it is important to notice
that for the Lorentz force established by the fields (3.10) or (3.11) an analytical
solution of the classical laws of mechanics (1.2) can be found (see, e.g., [15]),
yielding the trajectory of the particle in the computational domain.

To perform the numerical simulation, we use the standard discretization of
the unit square (130 nodes, 222 elements) and unit cube (200 nodes, 744 ele-
ments), and determine the particle position ®(¢) and velocity v(t) in two and
three space dimensions with respect to time. The results of the two-dimensional
numerical experiment are presented in Figure 3.17, where 100 temporal iteration
cycles with At = 0.05 are performed. This plot demonstrates clearly, that the
numerical calculation of the particle position agrees very well with the analytical
solution drawn there as solid and dashed lines. The simulation result together
with the exact solution for the three-dimensional case are depicted in Figure 3.18.
There, we observe discrepancies between the analytical and numerically determi-
ned solutions, clearly indicating that the unstructured mesh used is too coarse
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Localization and Force Interpolation
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Figure 3.15: Directly calculated Fy;, () (solid line) and from the localization-
interpolation procedure obtained force Fi;,(xy) (circles) as a function of the par-
ticle number for the two-dimensional case.

and that a further refinement of the computational grid is necessary for high
quality simulations,

In order to get an imagination of the influence of the grid fineness on the
discrete solution procedure, we consider a further two-dimensional test problem,
solved numerically within the frame of the interpolation, particle pushing and
localization building block. This problem deals with the movement of a particle
in a central force field given by

—0.17,
(r2 +1r2)
0.1
F, = —1v __ (3.12b)

(T?E + r§)3/2 ’

where 7, = 2 — 0.5 and ry = y — 0.5. The dimensionless initial data of the
particle are specified according to z(0) = 0.2, y(0) = 0.5, v(0) = 0 and v, (0) =
1/4/3. For the numerical experiment we use two different computational grids,
namely, GRID! with 130 nodes and 222 elements and GRID2 possessing 701
nodes resulting in 1320 elements. The simulation results for GRID1 and GRID2
together with the exact solution are depicted in Figure 3.19 and 3.20, respectively,
where 700 temporal steps are computed. It is clearly visible from Figure 3.19 that
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Localization and Force Interpolation
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Figure 3.16: Directly calculated Fg;, () (solid line) and from the localization-
interpolation procedure obtained force Fi;,(xy) (circles) as a function of the par-
ticle number for the three-dimensional situation.

the trajectory of the particle for the coarse mesh (GRID1) gets unstable due to
the inadequate discretization. Moreover, the encircled phase space area oscillate
when the particle circles several times around the origin of the central force. This
lack is removed if the fine mesh (GRID2) is used for the numerical computation,
impressively demonstrated in Figure 3.20, where we recognize a nearly perfect
agreement between the numerically obtained and the exact solutions.




Movement and interpolation
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Figure 3.17: Movement of a macro charge in a unit square, where an externally
crossed electromagnetic field is applied. The numerical result (open circles and
squares) is compared to the analytical solution plotted as solid and dashed lines.
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Figure 3.18: Movement of a macro charge in a unit cube, where an externally
crossed electromagnetic field is applied. The numerical result (open circles) is
compared to the analytical solution plotted as solid lines.
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Figure 3.19: Numerically obtained (left) and exact (right) solutions of the cen-
tral force problem on the coarse computational mesh (GRID1: 130 nodes, 222
elements).
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Figure 3.20: Numerically computed (left) and exact (right) solutions of the cen-
tral force problem on the refined computational grid (GRID2: 701 nodes, 1320
elements).
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Chapter 4

Algorithms and Data Structure

Before entering in a more detailed code description of KADIZD , we have to men-
tion some more general requirements. Since the code is written in FORTRAN
77, the dimensions of all necessary arrays have to be specified as parameter sta-
tements in the main program. Therefore, the following parameter agreements,
essential for code running, should be declared in the main program, which sub-
sequently call the subroutines of the Maxwell solver and particle treatment. In
the following description, the integer number labeled as ndim abbreviates the
spatial dimensionality (i.e., two or three) of the problem. In detail, we have to
specify the following parameters:

e melem : maximum number of elements.
e mpoin : maximum number of vertices.

e mside : maximum number of sides (faces) if ndim = 2 (ndim = 3). This
value is set equal to 3*melem (ndim = 2) or to 4¥*melem (ndim = 3).

e mnelv : maximum number of elements a given vertex belongs to.

e mbsil : maximum number of boundary sides (faces) of type 1 (being, for
instance, a perfect conductor).

e mbsi2 : maximum number of boundary sides (faces) of type 2.
e mbsid : maximum number of boundary sides (faces) of type 3.
e mbsi4 : maximum number of boundary sides (faces) of type 4.

e mptyp : maximum number of particle species (for instance, mptyp = 2 if
electrons and ions are considered).

e mpart : maximum number of particles within each species.
e mpato : maximum total number of particles which is set equal to mpart

* mptyp .
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e mpodi : maximum number of mesh points where diagnostic monitoring
should be made.

In the ndim = 3 case, the considered elements are tetrahedra; in addition to the
maximum number of faces and of points already defined, we also need to define
maximum values concerning the sides of the elements.

e maret : maximum number of sides (if ndim = 3).

e mnela : maximum number of elements a given side (if ndim = 3) belongs
to.

The values of these parameters are declared in the file param.h and can
easily be modified if they are not adequate. However, in this case the code has
to be recompiled for further execution.

In the present description of the algorithms, we also define the different
arrays used in the code. For that purpose, it is helpful to specify explicitly the
dimensions of the arrays according to

e array(ndimlndim2, ... ,ndimp).

Sometimes it is very convenient to define locally integer numbers represen-
ting a given element, a given side, etc.. For that, the following nomenclature is
adopted:

e ielem : represents the global number of a given element and has a value
lying between 1 and melem

e iside : denotes the global number of a given side and, therefore, is between
1 and mside

e ipoin : abbreviates the global number of a certain vertex and has a value
between 1 and mpoin

e locsi : is a local number of a side (for ndim = 2) or a face (for ndim = 3)
of a given element. Hence, it ranges from 1 to 3 or from 1 to 4, respectively.

Moreover, in the following, nsid (ndim) denotes the number of sides or faces of

the mesh elements, and is equal to three (for ndim = 2) or four (for ndim = 3).

In the following, we first present some details of the general structure of the
particle simulation program KADIZD., which is composed of three main parts,
namely, the

e Preparatory Step

e Time Loop
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Post-Processing Step.

Afterwards, we discuss in more detail the algorithmical realization of the nume-
rical schemes introduced in Chapter 2. Especially, we go through the different
steps of the Maxwell solver, being of central importance for the field computation
at each iteration cycle.

4.1

Preparatory Step

In this building block, the following actions are performed:

4.2

Open the files from which the basic information is read (SUBROUTINE fi-
leop ). These are

1. the file provided from the mesh-generator: Its name has to be nopo
and should be located in the current directory.

2. the command file defined by the user: Its name has to be data and
should also be located in the current directory. An example of such a
command file is given in Appendix E.

Read these two files with the SUBROUTINE wuserpre and SUBRQU-
TINE readmsh .

Create the files needed for the diagnostic monitoring at different points of
the mesh (SUBROUTINE creadia ).

Build up the data structure required for the computations on the unstruc-
tured grid (SUBROUTINE indvtoe and SUBROUTINE ietsste ).

Compute all geometric values associated with the grid: volumes of the
elements, areas of the faces, lengths of the sides, etc.. This is done in the
SUBROUTINE geomesh .

Initialize the field values and the particle coordinates, velocities, localiza-
tions and weights within the grid zones (SUBROUTINE initfid and SU-
BROUTINE intprtc ).

Time Loop

This is the core block of the Maxwell-Lorentz solver and executes the following
actions:

Carrying out the particle treatment consisting of interpolation, particle
pushing, localization and charge assignment (SUBROUTINE ptreat ).
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e Computation of the source terms, depending on the charge and current
densities created by the particles, and on possible externally applied sources
(SUBROUTINE compsou ).

e Take into account the contributions of the sources over a half time-step
(SUBROUTINE halfsou ).

e Gradient computation in the case where the second-order accurate scheme
is used (SUBROUTINE inngrad ).

e Computation of the field values at the midpoints of the sides of the elements
at time ¢ = t"*t1/2 in order to solve the Riemann problems. Furthermore, a
special treatment of the boundary sides is performed (SUBROUTINE side-
val and SUBROUTINE presiva ).

e Determination of the numerical fluxes based on the solution of the Riemann
problem (SUBROUTINE riemann ).

e Computation of the solution of the homogeneous Maxwell equations (SU-
BROUTINE intefld ).

e Take into account the contributions of the sources over a further half time-
step (SUBROUTINE halfsou ).

e Generation of the diagnostic files whenever it is desired (SUBROU-
TINE creamsh and SUBROUTINE diagpoi ).

4.3 Post-Processing
In this last step, the following actions are performed:
e The files are closed (SUBROUTINE filecl ).

e Whatever for the further post-processing procedure is needed can be achie-
ved subsequently, for instance, writing the results in a suitable plot format.

4.4 Details of the Maxwell Solver

In this section, we describe in greater detail the different computational steps
carried out by the Maxwell solver within a temporal iteration cycle.

4.4.1 Computation of the Sources

The sources of the Maxwell equations may be composed by two different contri-
butions: the current density obtained from the charged particle distribution and
an externally imposed current density specified by the user. To store the values
of these sources we define six arrays according to:
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e sourcy (melem) with g =1, ..., 6: Values of the uth component of the
source terms at the (weighted) barycenters of the elements.

Due to the application of a splitting ansatz for the numerical solution of the
Maxwell equations (cf. Section 2.2.1), we first have to compute the contribution
of the source terms to the electromagnetic fields at the intermediate time t"+1/2 =
(n+1/2) At.

4.4.2 Computation of the Gradients

Choosing the second-order accurate scheme for the numerical calculation, the
piecewise linear reconstruction of the solution requires the computation of the
gradients of the fields. For that purpose, the determination of the local gradients
in a given cell, based on the values of the fields in the three (or four) neighboring
elements of the considered mesh zone is necessary (cf. Section 2.2.4). Hence,
we define the following six arrays to store the values of the gradients of the
electromagnetic field:

e xygray (melemndim) with ¢ = 1, .. , 6: Values of the ndim
u,, gradient coordinates, where wu, is the pth component of u =
(Ey, Ea, B3, By, By, Bg)".

In order to have access to the values of the fields in the three (or four) neighboring
elements, we define the following array:

e indxee (melem,nsid(ndim)): Global numbers of the three (ndim = 2) or
four (ndim = 3) neighbors of a given element.

Moreover, the gradients in the inner and boundary cells of the computational
domain have to be computed in different ways. To manage this in an efficient
way, we introduce

e intrel : Number of inner cells

e gninel (melem) : Global numbers of these inner cells

e iselob : Number of boundary cells.

e gnbdel (melem) : Global numbers of these boundary cells.

Finally, the computation of the gradients according to the system (2.18) depends
on geometrical factors which remain constant in time. As these factors depend
themselves on the locations of the barycenters of the neighboring cells, they
are different when we use weighted barycenters (ndim = 2 and (z-r) geometry)
or when we use non-weighted barycenters (ndim = 2 and (x-y) geometry), see
Appendix C. In order to make the computation easier, we store these geometrical
factors in the array
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e xtabgr (2,melem,2,2) : if ndim = 2, the first index represents the case of
non-weighted barycenters when equal to 1 (x-y geometry), or the case of
weighted barycenters when equal to 2 (z-r geometry).

e xtabgr (melem,3,3) : if ndim = 3, we only consider non-weighted barycen-
ters.

4.4.3 TField Values at a Common Border of Two Elements

The flux calculation through the sides (faces) of a triangle (tetrahedron) requires
the solution of a Riemann problem at adjacent sides (faces) and, therefore, the
knowledge of the field values at the midpoint of the common side (face) of two
elements (cf. Section 2.2.2). To take this fact into account, we define the following
arrays:

e elpm (mside,2) : Left and right F; values at the common side (face) of
two adjacent elements.

e e2pm(mside,2) : Left and right Ey values at the common side (face) of two
adjacent elements.

¢ edpm Hlside 2\ . Lef‘ﬂ aila l'i"'ht E” Vahles at the comimon SidC fa.CC of two
1<) 5 3
adj acent elenlents .

e blpm(mside,2) : Left and right B; values at the common side (face) of
two adjacent elements.

e b2pm(mside,2) : Left and right By values at the common side (face) of
two adjacent elements.

e b3pm(mside,2) : Left and right Bz values at the common side (face) of
two adjacent elements.

To compute these values, it is important to know the two global numbers of the
adjacent elements. These numbers are stored in the array

e indxse (mside,2) : Global numbers of the first and second element having
a common side (face).

In the case of the first-order accurate scheme, the values of the fields on each
side (face) of the elements are simply set equal to the values of the fields in each
neighboring element. For the second-order scheme it is necessary to compute
these values from the field values given at the barycenters, the values of the
gradients determined according to the procedure discussed previously, and the
coordinates of the vectors joining the barycenters (or the weighted barycenters)
of the elements and the midpoints of the sides (or faces). These coordinates are
computed once and stored in an array :
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e xybace (2,mside,ndim,2) : For ndim = 2, this array contains the two
coordinates of the vectors joining the midpoint of a given side and the non-
weighted (resp. weighted) barycenters of the two neighboring elements if
the first index is equal to 1 (resp. 2).

e xybace (mside,ndim,2) : If ndim = 3, this array gives the 3 coordinates of
the vectors joining the midpoint of a given side and the barycenters of the
two neighboring elements.

4.4.4 Riemann Problem

The fluxes through the sides (faces) of the mesh zones are computed from the
knowledge of the field values of two neighboring elements and the unit normal to
the side (cf. Section 2.2.3). By convention, this unit normal is oriented for the
global side iside from indxse(iside,1) to indxse(iside,2). The ndim components
of this vector are computed only once and stored in the following array:

e xynors (mside,ndim): The ndim components of the unit normal to the
sides (faces).

Afterwards, the six components of the numerical flux are calculated and stored
in the following arrays:

e flxu (mside) with p =1, ..., 6: Value of the uth component of the nume-
rical flux influencing the quantity w,, where u = (Ey, By, E3, By, By, Bg)T.

4.4.5 Homogeneous Equations

The values of the electromagnetic fields are updated according to the numerical
scheme presented previously in Section 2.2.1. For each element and for each of its
sides (faces), one must know the global number of this side (face) for which the
numerical flux has been computed and stored. These global numbers are stored
in the array

e indxes (melem nsid(ndim)) : Global numbers of the three (ndim = 2) sides
or four (ndim = 3) faces of each element.

Furthermore, we calculate the product of the length (area) of this side (face) with
the time-step size and divide this product by the area (volume) of the element.
If the unit normal at the side (face) under consideration is oriented outwards of
the element, then this coefficient is multiplied by 1, otherwise, if the normal is
oriented inwards, the coefficient is multiplied by —1. This information is held in
the array

e tlnsvo (melem,nsid(ndim)) : Value computed for the coefficient given by
the time-step size times the length (area) divided by the area (volume)
times the orientation (1 or —1) if ndim = 2 (ndim = 3).
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4.4.6 Tinal Values of the Fields

The second half-contribution of the source terms is taken into account, finally,
yielding the solution of the Maxwell equations at the new time level, which
concludes the chain of approximations realized by the Maxwell solver.

4.5 Grid Informations and Structure of the Data

Before starting the time loop and the further computations, the program must
first read a mesh file provided by the mesh-generator, in order to access to the
following information:

e npoin : total number of mesh vertices which should be smaller than the
maximum number mpoin .

e nelem : total number of mesh elements which should not exceed the
permitted maximum number melem .

e coord (mpoin,ndim) : table of the coordinates of each vertex given by the
two (ndim = 2) or three (ndim = 3) real numbers.

e indxev (melem,nver(ndim)) : table specifying the global numbers of the
three (ndim = 2) or four (ndim = 3) vertices of each element.

e nrefsi (melem,nsid(ndim)) : table indicating whether a local side (ndim =
2) or face (ndim = 3) is :

an inner side (face) nrefsi(ielem,locsi) = 0
on a conducting boundary  nrefsi(ielem,locsi) = 1
on an open boundary nrefsi(ielem,locsi) = 2
on a loading boundary nrefsi(ielem,locsi) = 3
on a symmetry axis nrefsi(ielem,locsi) = 4.

The reading of this basic information is carried out by the SUBROU-
TINE readmsh .

The following conventions are imposed by the Modulef mesh-generator and
should be called to mind if other grid generation modules are used:

1. For a two-dimensional mesh:

each triangle is positively oriented.

local side 1 is between local vertices 1 and 2.

local side 2 is between local vertices 2 and 3.

local side 3 is between local vertices 3 and 1.

2. For a three-dimensional mesh:
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each tetrahedron is positively oriented.

local face 1 is established by the local vertices 1, 2 and 3.

local face 2 is established by the local vertices 1, 3 and 4.

local face 3 is established by the local vertices 1, 2 and 4.

local face 4 is established by the local vertices 2, 3 and 4.

In order to obtain the entire needed information about the mesh structure, the
following strategy is adopted: First, two auxiliary arrays are determined, playing
also an important role in the context of particle treatment:

1. nelv (mpoin) : Number of elements a given mesh vertex belongs to. This
number should be smaller than the mnelv parameter.

2. indxve (mpoin,mnelv) : List of the global element numbers a considered
vertex belongs to.

The algorithm to extract these informations is very simple :
e loopl over the global numbers of the elements (current element: 7elem).

— loop2 over the three (four) local vertices of delem:
% access to the global number (ipoinl) of this local vertex thanks to
the table indxev .
* add 1 to nelv (ipoinl).
* ielem Is the next element of the indxve (ipoinl,*) list : indxve
(ipoinl,nelv(ipoinl)) = ielem.

— end of loop2.
e end of loopl.

Secondly, we evaluate at the same time the arrays indxes , indxee and indxse
according to the following procedure:

e Loop on the three (four) local sides (faces) of each element.

e If this side (face) has not been taken into account as a global side yet then:
add 1 to the number of sides (faces).

— If this side (face) is an inner side then :

* Thanks to the mesh-generator conventions and to indxev , find
out the global numbers of the two (three) local vertices of this
local side (face).

* The intersection of the two (three) lists of global elements these
two (three) vertices belong to, is composed of two elements: the
current element and its neighbour through the current global side.
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* Then we know for this side (face) the two adjacent elements (table
indxse ),

* and for these two elements the global number of their common
local side (face) (table indxes )

* and the global number of their neighbors through this side (face)
(table indxee ).

— If this side belongs to a boundary of a certain type p then:

* add 1 to the number of sides (faces) of this boundary type.

+ Then we know the global number of this boundary side (face)
(table indxbs ).

# this boundary side (face) is associated with the current global
element (table indxbe ).
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Chapter 5

Conclusional Remarks and
Outlook

In the present report, we describe the basic concepts and approximation tech-
niques to come in useful for the numerical solution of the time-dependent
Maxwell-Lorentz equations in two and three space dimensions on unstructured
mesh arrangements.

The solution strategy is based on the PIC method: The charged particles are
advanced in the continuous computational domain resulting in a changed macro
particle distribution. Quantities computed from these redistributed charges are
coupled to the grid-based electromagnetic fields according to interpolation and
localization procedures for unstructured mesh zones spanning triangles in two
and tetrahedra in three space dimensions. The spatial and temporal evolution
of the electromagnetic fields on the computational grid is determined by solving
numerically the Maxwell equations with a very robust high-resolution FV scheme.
The coupling of this F'V Maxwell solver with the PIC method for unstructured
grids is a new way of approximation in the context of self-consistent particle
simulation in electromagnetic fields.

Standard test calculations performed with the Maxwell and particle treat-
ment solvers separately, clearly indicate that the implementation of the resulting
algorithms is done properly. Furthermore, the agreement between the simula-
tion results and exact reference solutions is very satisfactory, encouraging and
stimulating our computational endeavor.

At the moment only a little experience is available running the entire FV-PIC
Maxwell-Lorentz simulation program KADI2D in two and three space dimensions
on unstructured computational meshes. However, this situation will be changed
in the course of this year: Kspecially, for relevant two-dimensional cylinder sym-
metrical benchmark problems, a simulation campaign is planned in order to verify
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and assess the new KADI%D code to the last detail.

It is a well-know fact [3], that the different steps of particle treatment intro-
duce numerical errors and, consequently, charge conservation is not guaranteed on
this discrete level of approximation. One way to get out of this numerically cau-
sed lack is to use sophisticated charge and current assignment techniques [8, 28]
to enforce Gaufl’s law on the particle level. In this field, we recently proposed
a new particle handling approach based on finite-size particle approximations.
The description of the resulting numerical schemes as well as the results obtained
with the evaluated algorithms will be the item of a forthcoming paper [9].

The other way to enforce the divergence condition starts from a constrained
form of the Maxwell equations [1] and approximate this hyperbolic-elliptic system
with different kinds of numerical methods [5, 20, 16]. For our activities in this
context, we replace the hyperbolic-elliptic by a strictly hyperbolic problem and
construct an efficient and very fast high-resolution FV scheme [23], which is suc-
cessfully applied in the standard KADI2D code. Hence, it is desireable to adapt
this hyperbolic correction method also for the simulation program KADI2D de-
signed to run on unstructured grid arrangements. One essential advantage of
this hyperbolic approach is that the charge correction is nested in an explicit FV
scheme which is inherently parallel in nature. This is an important fact, fitting
in an excellent manner in our parallelization endeavor of the KADI2D program
system in order to get a highly efficient production code in near future.
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Appendix A
Miscellaneous Properties of
the Matrix used for the FV
Approach
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In the following we summarize the essential properties of the matrix A € IR6*6
(cf. equation (2.8b)), given by the linear combination

3
A=>"niK;, (1.1a)
j=1

where the components of the unit normal n = (ny, no, ng)T, with n; # 0 Vj, at
3

the face S; o fulfil the relation ) n? = 1. Using the block-structured matrices
i=1
K; defined by (2.3b), A is explicitly given by
/[ 0 0 0 0 n3c®  —noc? \
0 0 0 —ngc? 0 nic?
_ 0 0 0 noc®  —nyc? 0
A= 0 —n3 no 0 0 0 ’ (1.1b)
3 0 —my 0 0 0
- N 0 0 0 0
where ¢ denotes the velocity of light. The eigenvalues of A are
A = diag (A1, A2, Az, A, As, Ag) = diag (—¢, —¢,0,0,¢,¢) , (1.2a)

where A is a 6 x 6 diagonal matrix. Since two eigenvalues coincide, respectively,
three classes of waves with different propagating velocities Ay = Ay = —¢, A3 =
Ay = 0 and A5 = Ag = c occur. The right and left eigenvectors of A are the
columns and rows of the matrices

0 1 0 Z—; 1 0
—nsc —(11?4—”;%) 0 1 —(nf—l—n%) nsc
ning ning ning ning
< n3 0 ns n3 —c
— 71 ny no ni 1
R —(n3+n3) —ng oo na —(n3+n3) ) (1.2b)
n119 1NoC ng ninac ning
1 0 L | 0 1
ng
ng 1 1 0 —=1 ng
no nac nac no
2,2
—ng3 0 ny —ning  PitN3 —ngns
220 ) 2¢ 2
natny —myng  —ning 0 —ngc nac
2 2 2 2 22
-1 0 0 0 7113 Nong n3
R 2 ) (1.2c)
11N9 n; N9Ng 0 0 0
nytni  —mgny  —ning 0 nac —nac
2 2 2 2 2 5 2
n3 0 —ny —ning  P{tN3  —nong
2c 2¢ 2 2 2

respectively. Since the eigenvalues of the matrix A are real numbers and the
right eigenvectors are linearly independent, the Maxwell equation (2.1) is strictly
hyperbolic. With (2b), (2¢) and

|Al = d‘iag (c’ C, 0’ 0’ c’ C) )

(1.3a)




we obtaln

|A] = RIA|R™ = < D0 )

0 D
with
(n3 +n3)c —n1mgc —ninsc
D= —ninge (M2 +ndle  —nansc
—ninsc —ngnzc  (n? +nd)c

Finally from (1.1b) and (1.3b) the matrices
1
At = 3 (A=£]A])

can be calculated which are given in explicit form according to

1 (Dt %
£ _
A _2<—5 Di>’

where the abbreviations D¥ = +D and

0 ng —No
= —ns3 0 (3|
ng —ny 0

are used.
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Appendix B

Formulas based on the Solution
of the Riemann Problem
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Applying the right and left eigenvector matrices R and R~ of A given in Ap-
pendix A to (2.15), the solution of the Rierhann problem (RP) may be written
explicitly in the form

1 _ _ _
u, = 5 [(ﬂ% + n%)(uf +uy) — 721712(’111;_ +uy ) — 7’L1713<’LL§_ +ug)
+2n1(n1u7 + notis + nauz)

+eng(ud —ug ) — englugd — uﬁ_)} , (2.1a)

1
uy = g [—nmg(ufr +ul) 4 (nd 4+ nd)(ud +uy) — ngng(ug +uy)

+2n2 (N1 + notis + n3ug)
—cna(uf —uy) + eny(ud — u,g)] , (2.1b)
1 .

Uy = g [—nmg(fu;r +uy) — nona(ug 4+ uy) + (nf +nd)(ud +uy)
+2n3(n1 a1 + notiz + n3u3)

+eng(uf —uy) — eng(uf — ug)] , (2.1c)

1 _ _
Uy = oo [_n3(u2+ -y )+ 712(u§r —u3)

+2cny (n1Tg + nolis + nstg) (2.1d)

+e(nd 4+ n3)(uf +uy) — ening(ud +ugy) — enina(ud + ug)] ,

1 _ _
u, = 5o [ng(ufL —uy) —ni(ul —ug)
+2cng(nitg + notis + nslg) (2.16)

—cning(uf +up) + c(nf +nd)(ud +uz) — cnans(ud + ug)] ,

1 _ _
uo, = 5o |—me(uf —up) +m(uf —uy)
+2cng(n1ug + notis + natig) (2.1f)

—enyng(uf +uy) — enang(ud +ug) + e(n? 4+ n3)(ud + ug)} .

Another convenient formulation of the solution of the RP at £ = 0 is given
by [11, 29]

1
u(0,t) = 5 ut + Z a;rj+u — z ary | (2.2a)
JjeJ— jeJt
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where the coefficients o = (aq, ... ,aG)T are computed from the decomposition of
the jump in the initial data into the basis of the right eigenvectors of A4:

6
u —ut = era/j =Ra. (2.2b)
j=1

Furthermore, J* are index sets defined as J~ = {j|\; < 0} and J* = {j|); > 0},
respectively. Especially, the numerical flux (2.9) is then calculated from

1
Au(0,t) = 5./4 (’LL_ —l—u+) + Z Ajar — Z Ajar;, (2.3a)
JEJ ™ JjeJ+

where the definition of the eigenvalue problem Ar; = A;r; is used. The last
equation can be recast in the form

) 6
1, _ 1
Au(0,t) = 3 (u™ +ut) — 3 Z |\jlajr;
j=1
= % (u™ +ut) — %R!A‘R"l (u™ —ut) (2.3b)

where the definition (3a) of Appendix A and equation (1b) is applied. With (3c)
and (4a) from Appendix A and some rearrangements we finally obtain

Au(0,t) = ATut + A" u™ . (2.3¢)
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Appendix C

Numerical Scheme for the
Maxwell Equations in Cylinder
Symmetrical Geometry
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Assuming that the electromagnetic fields are independent of the variable 6, the
homogeneous Maxwell equations in cylinder coordinates may be written as

0 10
pr (ez) —c pw (rbg) =0, (3.1a)
9 ,0
g (er) +c e (bg) =0, (3.1b)
o 0 0
% (bg) + % (er) = o (e;) =0, (3.1c)

where we restrict ourselves to the TM system (e, e,,bp). Introducing new va-
riables according to

Q = (dzy d?‘a ba)T == (rez,reT,bg)T 3 (32)

a new set of equations is obtained:

0 0

_ 29 _
57 (de) = ¢ 5 (rbg) =0, (3.3a)
0 e B
e (dr) +c 7 (rbg) =0, (3.3b)
0 0 (1 0 (1
This system can be recast in conservation form
d 0 0
= A Y (BO) = A

where the matrices A, B € IR®*3 are given by

00 0 0 0 —c%r
2
A= 0 (1) c'r , B: 01 0 0 (34b)
0 - 0 —— 0 0
T r

The integration of (3.4a) over a grid cell T; whose sides are denoted by S; o, leads
to the following exact equation:

|5 @as+Y [ caa=o, (35)
TZ' @ Si,a
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where no approximations are made. Here, the matrix C; € IR3*3 is defined by

0 0 —crn,
C: = 0 0 cirn, (3.6)
1,0 Ny Ny ) .
B
roor

and n,, n, are the components of the outwards directed normal vector n;, =
(ny,m,)7 at Sia. Integrating (3.5) over the time interval [nAt, (n 4+ 1)At], ap-
plying the midpoint rule and denoting the cell average by

o 1of

we obtain the explicit scheme

, , At

Q' = QF = 7 D Lia Gia Q (M t7172) (3.7)
-

where t"11/2 = (fn + %) At, M; o is the midpoint of side S; o and |T;| is the area

of the cell T;. Assuming that @ is constant during the time step size Af, we

approximate ) (l\lg,a,tnﬂ/ 2) at the midpoint by the solution of the Riemann

problem (RP) at £ = 0:

d 0

_é_t (Q) + 55 (Gi,aQ) =0,

QT ife<0
Q(§>O)_{ Q— If§>0 i

where QT and — are approximated values of Q) (]\JW, gt/ 2) on each neighbo-
ring element to S; , and calculated according to

(3.8a)

Ot = lim Q (Mi,a+§ni,a, t”+1/2) , (3.8D)
£—0-
- s : . n+1/2
Q = Jim Q (Mz,a + Enig, t ) . (3.8¢)

Furthermore, the matrix G; o € IR¥*® is similar to the one defined by (3.6), but
now evaluated at ro; o, the r-coordinate of the midpoint AZ; ,

0 0 “027“02‘@717-
R 0 0 C27"0ianz
G’l,a’ - nr Ny ? . (3.8(1)
- 0
Toi,a  T0i,
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Since G is a constant matrix, the solution of the Riemann problem (3.8a) is
easy to find and given by

dr, CrrT'0i,0 (pZ - P3)
dre | = | —cnaroia(pe — p3) (3.9a)
bre D2+ p3

where

2z

Ay me Ay e by

P2 T0i,c 2¢ 704, 2¢ 2

(3.9b)

b3/ _ df & d n Nz 4 @
\ T0i,a 2c T0i,a 2C /

and where we have omitted the dependencies with respect to @ = Q(0,0), be-
cause, as before, the final result does not depend on . With that result, the
numerical scheme (3.7) can be written in the following way

dz" n+1 d.: n
<7—L> = <%> lTl ZLm —c*ny0,0(pe + p3)] (3.10a)
; : I

dri n+1 d7l T
- =\ T |T! Z LL o C UZZRA a(pQ +.773)] (3-10b)
i

T

bl = b, — A Z Lial —p3)] s (3.10c)

where r; is the r-coordinate of the barycenter of the cell T;. Replacing in (3.9b)

d; dr
- 2 n
b}’ eZ ? b§7 eZ{ ?
04, T0¢,0
d;” d,“L
—_ o +
— bye,, —— byel,
T0s,0 T0i,0

. dyi . dpi . .
and renaming in (3.10a)-(3.10c) —= by é,; and — by &4, the numerical scheme
T T3

(3.7) can finally be brought into the form

~n-+1 en + e

ezz;'_l 21 N eii,a 2i,e
- _ ~n _ i
eri - 2% § : Ll 24 Mi,a eri,a + Mi,a eri,a s
pntl B ’T I bt -
0i 0i 01, 0%,
(3.11a)
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with

T0i,a 2 T0i,a 9 T0i,a
. ich Fe—=n,n, —c 7"—717.
1 1 )
+ _ - T0i,0 T04,a T0i,0
Mi,a =5 | Fe—nmy j:c—ng c2——"%n, . (3.11b)
i T Ty
—Ty Ty +c

All what remains to do now, is to specify adequate first (resp. second) order

approximations of e;ti o ej_t,i o and b;tz. . in order to complete the formulation of
) ? ki

our first (resp. second) order accurate numerical scheme. However, for that

purpose, we will first prove the following lemma:

Lemma 1 Let 3 be in {0;1}, then for any regular function u(z,r) we have :

/ rPulz, r)dzdr
T;

:u(ZAz. T A, )+O(52>
! |Ti| e 7

where A;g is the point given by the coordinates (2415,74;5) defined according to:

/ P 2dzdr / B dzdr
Ti _ Ti

ZAl' = 774.4,‘ -
’ r? ;] ’ 7|3

K

and where ¢ is a measure of the space increment of the grid.

Proof : Since u(z,r) is regular, we can expand u in a Taylor series around
A;p yielding

/ rPu(z,r)dzdr =
J,

i

0
[/T rﬁdzdr] U(Za;5,TA) + {/ Pz — zAZ.B)d.zdr] Q_Z(ZAWTA”) +

i

[/ P — 7'*Aiﬁ)dzdr} @(zAiﬂ,TA;B) +/ rPO(6?)dzdr .
T or T
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Because 7 is a linear function, (we recall that 3 € {0;1}) we have : / rPdzdr =

riﬂ |T;|, and thus we get:

/ rPuz, r)dzdr
;T

which proves the result.

From this lemma, we first conclude that
= e, (A1, t") + O(6%) , &% = e, (A, t") + O(6%) (3.3a)
and
b, = bg( Az, t") 4+ O(6%) . (3.3b)

Moreover, we approximate the field values at the midpoint M; . of the side S; o
at time ¢ = ¢"*1/2 according to

(]\/[ Im+1/2) = e (A, t ")+ Azlj\/fz o Ve (Aint ) +

(3.4a)
%%(Aﬂ, ") + O(A?) + O(6%) + O(SAL)

er(]\/[i,aatn+l/2) = 81'(Az'1> ) + Azlj\/[z o ver(Azla ) +
At de, (3.4D)

7E(Aﬂ, ") 4+ O(AE) + 0(6%) + O(5AL)

Do (M o, tT12) = by(Asg, 1) + Az M g - Vbg(Asg, ) +

(3.4c)
S0 410, 7) + O(AP) + O() +0(621)

In order to complete the numerical scheme, we have to propose appropriate ap-
proximations of the three gradients and derivatives with respect to time appearing
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in (3.4a) - (3.4¢). Similar to section 2.2.4, we consider an inner cell 7; of the com-
putational domain and its three neighbor cells T;, with « € {1;2;3}. For any
regular function u, we define the vector w € IR? by:

——
{ U(A?IB) = Z(Azzﬁ> +AlLAZlﬂ> w ’ (3.5)

being a first-order accurate approximation of the gradient of the function wu:

= Vu + O(4). Finally, the time derivatives occuring in (3.4a) - (3.4c) are
simply shifted to derivatives of the fields with respect to space by using the three
original equations (3.1a) - (3 1c). Now, the chain of approximations is closed and

the values ei’a, i o and b(h o determined by

+ —  Zn - — zn
eiz‘,a = Cris Cria T Crig o
— n - _. zn
em’,a = & 6” a T Erig (36)
bt — b — 0,
#i,« #i i, T Giq

in case of a first order accurate scheme, and computed from

7 & by
o = &t AuMia- Ve, [ ( " N ,
’ 44 L 7
; o+ A AT (s : (3.7a)
i = EritAuMia- Vel + — [ ( ) } ; :
T -
Vi = Ujit+ AoMig -V 5 [ (Ve”) <Ve’;i)r] ,
— S At by ~
6z_z',a = é?ia + Aialﬂli,a ' Vegia + 7 I:C2 <7il”- + (V 3912'.3)7_)} ,
— At <
Cria = €+ A My Vel +— [_02 (ng;iau ’ (3.7h)
- — t -
0i7a = gla + ALQO]\([I’O ’ ngTQ + [ (verla)z + (Veg’ia>’l} '

in case of an explicit FV scheme of second-order accuracy.
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Appendix D

Two-dimensional Particle
Localization with the Assous
Approach
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For the sake of completeness, we summarize briefly the basic features of the two-
dimensional localization algorithm, the plane geometry analogue of the three-
dimensional case described in Section 2.3.2. The situation on hand is seen in
Figure D.1, where the macro particle P* with the coordinates ™ is situated in
the triangle C; at time ¢ = ™. In order to decide whether the particle is inside the

M

3

Figure D.1: Particle localization in two dimensions according to the scheme pro-
posed by Assous et al. [2].

element C; (possessing the vertices M, o with the coordinates a; o = (@q, ba, O)T
where 1 < a < g; = 3), we have to calculate the following three determinants:

A{,’l = (AQ X Ag) ‘ez, (418,)
Ao = (A3 X Ajp)-e3, (4.1b)
Ajz = (A1 x Ag) ez, (4.1c)

where eg = (0,0,1)7 is the unit vector orientated with the z3-direction and A,
is the abbreviation for A, = P"M; o = a; o —x". With the machine zero ¢ > 0,
the following alternatives have to be considered:

If

Djo>—€; Ya, 1<a<3,

then the particle is situated in the triangle C; and the corresponding shape-
function (cf. 2.28a) for this particle may be computed.
Otherwise, if one of the

Ai,a<_€; 1<a<3,

(in Figure D.1 A;; < —¢) then a more careful particle handling is necessary.
Especially, it is important to include more temporal information of the particle
movement in order to find out through which side of the element C; the particle
passed within the time step At = "+ —¢7,
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Appendix E

Example of a Command File
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In order to run the code, the user has to provide the system with a command file
named data , where the possible course of actions are declared and the essential
information for the code running is specified. The structure of the command file
data is arranged as follows:

fname : name of the diagnostic files generated during the computation.
Type: character*7.

itmax : maximum number of temporal iteration cycles. Type: integer.

itdia : frequency of diagnostic file generation during the simulation. Type:
integer.

icomp : desired diagnostic information:
0 : FEi, FEy and Bs components.

1 : Bi,Bs and F3 components. Type: integer.

2 : E\|,Ey, k3, By, By and Bs.
npodi : Number of mesh points where the diagnostic information is re-

corded. This number should be smaller than mpodi . Type: integer.

xypodi (i,1), xypodi(i,2) (and xypodi(i,3) if ndim = 3) :Coordinates
of the npodi points where the diagnostic information should be monitored.
Type: real*8.

idibeg , idiend : The printing of diagnostics starts with the iteration
idibeg and ends with the iteration idiend. Type: integer.

iorder : Order of the numerical scheme (1 or 2). Type: integer.

igeome : Type of geometry (ndim = 2)
1 for the Cartesian (z,y) geometry,
2 for the cylinder symmetrical (z,7) geometry.

dt : Desired value of the time step size before an additional correction
according to the CFL condition is performed. Type: real*8.

nptyp : Number of particle species used for the simulation. This number
must be smaller than mptyp . Type: integer.

The following values have to be specified nptyp times in the following order :

— npart (i) : number of initial particles of species i. Type: integer.
Must be smaller than mpart .

— qtypp (i) : electrical charge of the particles of species i. Type:
real*8.

— mtypp (i) : mass of the particles of species i. Type: real*8.
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