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Abstract 

N umerical analyses are used within the framework of the local approach to determine the critical 
stress at cleavage fracture. A set of ABAQUS post-processing modules serving this purpose is 
described in this report. The modules are intended to perform several steps that are necessary to 
obtain the parameters of the Weibull distribution of the critical Weibull stress at cleavage frac­
ture. The main steps are determination of the first principal stress envelope at the experimentally 
abtairred Ioad Ievels at fracture, calculation of the Weibull stresses at fracture and an iterative 
maximum likelihood procedure for the distribution parameters of the Weibull stress. Some re­
marks on limitsjmodifications of the model in case of other mechanisms are also included in the 
report. 

Zusammenfassung 

WEISTRABA - Ein Programm zur numerischen Bestimmung der Parameter für die 
Weibullspannung aus ABAQUS Spannungsanalysen 

-Verfahren und Programmbeschreibung-

Im Rahmen der Methodik des Local Approach wird eine kritische Spaltbruchspannung aus nu­
merischen Analysen ermittelt. Der vorliegende Bericht enthält die Beschreibung für eine Reihe 
von ABAQUS postprocessing Modulen für diesen Zweck, wobei die Bestimmung der Parameter 
der Weibullverteilung der kritischen Weibullspannung bei Einsetzen des Spaltbruchs in mehreren 
Schritten erfolgt. Die wichtigsten Schritte sind zunächst die Ermittlung der Einhüllenden der 
maximalen Hauptspannung für die experimentell beim Bruch ermittelten Belastungsniveaus, die 
Berechnung der Weibullspannungen beim Bruch, sowie die iterative Ermittlung der Verteilungspa­
rameter der Weibullspannung. Einige Anmerkungen zum Gültigkeitsbereich, bzw. zu notwendi­
gen Modifizierungen im Falle daß andere Mechanismen vorliegen, geben einen Ausblick auf mögliche 
zukünftige Erweiterungen. 
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1 

Introduction 

The present analysis is part of the European Fusion Technology Programme- EBP Struc­
tural Material for 1995 to 1998. It is related to Work Package SM 5 Rules for mechanical 
design, fabrication, and inspection, the Task 5.2 Fracture mechanics concept and the 
subtask 5.2.1 Fracture mechanics studies. 

Within this framework, it is intended to develop a fracture mechanics concept for the description 
of the ductile-to-brittle-transition behaviour of ferritic-martensitic steels. Due to the need of 
transferability, a concept based on the mechanisms of ductile or brittle behaviour is indispensable 
for the assessment of size and geometry effects, irradiation effects, and effects due to complex 
mechanical as well as thermalloading conditions. 

In contrast to the global approaches, where geometrical Iimits on validity of test results are 
imposed to ensure transferability of test data to component design, a local approach relies on 
the combination of local (i.e. microstructurally based) fracture criteria and stress field analyses 
of selected geometries to ensure the transferability of material data. That is, within a local 
approach transferability is inherently guaranteed as lang as the local fracture mechanism remains 
unchanged, which has to be verified by suitable investigations of the fractured specimens. 

A key issue of the local fracture description is the determination of the fracture parameters, which 
requires considerable (numerical and experimental) efforts. Fracture parameters are obtained 
by numerical (FE) elasto-plastic deformation analyses of fracture tests. In the case of brittle 
fracture, a statistical approach is necessary because of the inherent scatter. If the metallographic 
investigations of fractured specimens indicate that ductile darnage precedes final cleavage fracture, 
changes in the stress field have to be accounted for by appropriate darnage models. This is outside 
the scope of the present investigation. 

The following report is intended to give a brief description of theoretical background together with 
the relevant background information on the programming philosophy that is used for the calcu­
lation of the parameters of brittle fracture from experimental results and from the corresponding 
stress analyses. 

Furthermore several modules that are necessary to perform the calculation of Weibull stress 
parameters from a stress analysis with the ABAQUS finite element code [1] (current version 5.6) 
shall be described. The first module, fiLou, is used to determine the maximum principal stress 
together with the basic data of the finite element model from the ABAQUS *. f il binary results 
file. In the second module, gau_wei, a numerical integration is performed to calculate the Weibull 
stress for a given Ioad step. The third module, wei...ml, contains the statistical analysis and the 
determination of the distribution parameters by the maximum likelihood method. The module 
fiLou is a stand-alone one because its purpose is data processing only. The second and third 
module, gau_wei and wei_llll, are linked with each other because the statistical analysis has tobe 
performed iteratively with repeated calculations of the Weibull stresses. 
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Special attention is paid to the application to components of nuclear fusion reactors and ferritic­
martensitic reduced activation alloys. In this case, neutron irradiation Ieads to a pronounced shift 
in the ductile to brittle transition temperature and combined thermal and mechanicalloading Iead 
to specific design requirements that are still under development. 

Same remarks on modifications that might be necessary to handle these different fields of appli­
cation are made. This includes constraint effects, irradiation effects, and effects of !arge stress 
gradients. 

In the Appendix, a documentation of the relevant subroutines of the three modules developed up 
to now is given. 

Additionally, a reference example shall be presented for the Weibull stress calculation taken 
from experiments on F82Hmod and calculations that are performed within the European Blanket 
Programme. 
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Basic relations for cleavage fracture 
analysis 

2 

In this chapter, a short summary of the theoretical relations w hich are the basis of the developed 
computer programs is given. The Weibull stress is defined and the necessary relations for nu­
merical integration of the finite element stress results are given. Also, the maximum likelihood 
procedure is summarized. Special attention is given to the iterative procedure which is necessary 
in order to obtain the Weibull stress distribution parameters correctly. Finally, some remarks are 
made on limitations of the use of the Weibull stress concerning effects of changes in the stress 
field ( constraint effects, steep stress gradients) and fracture mechanism ( ductile darnage). 

2.1 The Weibull stress as cleavage fracture parameter 

The Weibull stress at cleavage fracture is a random variable that characterizes the fracture re­
sistance of the material against cleavage (brittle) fracture. The Weibull stress ow is defined 
by 

(2.1) 

where m is the so-called Weibull slope, V0 is a reference volume, Vpl is the volume of the plastic 
zone, and a 1 is the first principal stress. 

The statistical distribution of its critical value, e.g. the value at cleavage fracture is given by 

(2.2) 

The distribution parameters O"u and m of the Weibull stress aw at fracture arematerial parameters 
(i.e. independent of the stress state in the material), but may depend on temperature. 

The Weibull slope m characterizes the scatter of the Weibull stress. The coefficient of variation 
(C.O.V) of aw is a function of m alone and given by 

Jr(l+~)- (r(l+rk)f 
f(l + rk) 
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where r(.) denotes the Euler's gamma function. 

The parameter O"u gives the 1- 1/e (=63.2%)-quantile of O"w. 

The reference volume V0 which appears in eq. (2.1) is introduced for dimensional purposes only 
and set to 1mm3 unless stated otherwise 1 . 

For the analysis, the Weibull stress at fracture has to be determined from suitably chosen exper­
imentalloading parameters, such as e.g. the diameter reduction for notched tensile specimens at 
fracture or the value of the J-integral for cracked specimens. 

2.2 Numerical integration of finite element stress results 

For numerical reasons, the integration of the Weibull stress according to eq. (2.1) is performed 
after normalizing <71 by a suitably chosen reference stress, e.g. the ftow stress. This is done 
to avoid numerical difficulties resulting from large values of the Weibull exponent m which is 
typically in the range of 10-30. The correction is removed after the numerical integration is 
complete. Eq. (2.1) then reads: 

O"W -- ~ dV ( )m 1 J ( )m 
<7 ref - Vo <7 ref 

(2.4) 

Vpt 

and final correction is simply made by multiplying the resulting integral value by the value of the 
reference stress <7~r· 

The first principal stress values are obtained from the ABAQUS stress analysis with the help of 
the postprocessing routine fiLou which is described below. Stressesare given at the integration 
points of the ABAQUS elements. Reduced integration is used, which means that we have 2x2=4 
integration points per element in the 2D case and 2x2x2=8 integration points in 3D problems. 
The Weibull stress is integrated element-by-element. In the general case of a 3D model, we have 

O"W 

1 

O"ref [~ I: O"Well m 
0 el 

with the auxiliary quantity of 

(2.5) 

with ki, kj, kk the number of integration points in each dimension and wi, Wj, Wk the respective 
weights. The contributions from each element are summed up to give the final result. For 
ki = kj = kk = 2, we have Wi = Wj = Wk = 1 and ri, rj, rk = 1/J3. 

A plastic zone indicator ftag is used to extend numerical integration only over the plastic zone and 
not over the entire volume of the specimen. This plasticity ftag is set to 1 for each integration 
point where plasticity occurs (in terms of a von Mises yield criterion or by checking the plastic 
strains of the FE output) and 0 otherwise. Any averaging procedures are avoided. Only the stress 
values at the integration points, which are known to be the most exact values within an element 
[4], are used. 

1Some authors use Vo as an additional parameter related to Uu (see e.g. [2, 3)) chosen tobe small enough that 
stress gradients can be neglected and large enough that the weakest link argument for finding a microcrack of a 
given size still holds (e.g. 10 grains). If stress gradients are important for the fracture behaviour, this can be 
directly incorporated into the fracture model leading to eq. (2.2) at the expense of losing the meaning of Uu and 
m as material parameters (see below). 
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Foreach FE Ioad step, corresponding to a specimen fracture event, the first principal stress values 
are checked against the values of the previous step and a stress envelope is constructed to take 
into account locally decreasing stresses due to stress redistribution which may Iead to decreasing 
values of the local risk of rupture. 

2.3 Maximum likelihood procedure 

The determination of the two parameters m and CTu has to be performed iteratively as ow depends 
on the (unknown) parameter m. 

Step 1: A starting value of e.g. m = 20 is used and the Weibull stress crw at fracture is calculated 
for each fractured specimen (i.e. at different Ioad steps according to the experimentalloading 
parameter) as described above. 

Step 2: A piotfile is generated containing the resuits in increasing order of Weibull stress crw 
tagether with In In[ 1 

)] as a function of In X(n), where X(n) is the Weibull stress of the 
1-F(xn 

specimen with rank n and F(xn) = N~1 is the mean (cumulative) frequency of the n-th 
observation (using N~ 1 as plotting position is generally recommended for statistical reasons 

e.g. [5) -, although it plays no role provided that the maximum likeiihood method is used 
for parameter estimation). As the theoretical relation between failure probability and crw 
is given by 

a plot of In ln[
1
_}(xn)] versus ln crw(n), where crw(n) is the "experimental" Weibull stress for 

the specimen with rank n, should give an approximately linear relation. 
(Step 2 is only for illustration and not necessary for Step 3) 

Step 3: The maximum likelihood method is used to determine the parameters m and cru of the 
Weibull distribution of the Weibull stress. The maximum likelihood estimators of m and 
cru are denoted by m and a:;,, respectively. m is the solution of the nonlinear equation 

which is obtained by an interval sectioning procedure. Using m, the maximum likelihood 
estimator a:;, is obtained from the equation 

The parameter m is corrected with the unbiasing factor b(N) obtained by subroutine BIAS 
described below (see also Table B.1). munb = m * b(N). 

Step 4: If the maximum likelihood estimators a:;, and munb agree within a fixed tolerance with 
those of the previous iteration, their values are considered acceptable. Otherwise, steps 2-4 
are repeated. A :ftow diagram is given in Figure 2.1 to illustrate the iterative procedure. 

Confidence intervals for m and CTu 

Confidence intervals for the Weibull parameters m and cru determined by the maximum likelihood 
method are obtained according to the following procedure: 
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I Fix initial m I 
t 

Step 1: Calculation of Weibull stress aw 

Step 2: Plot of In In[ \ )] as a function of In X(n) 
1-F Xn 

Step 3: Calculation of munb and 0: 

I Step 1 with m = munb I f- no Step 4: munb = initial m ? 

yes t 

Figure 2.1: Flow diagram for iterative Weibull parameter estimation procedure 

1. For a confidence Ievel 1 -Cl' (80 %, 90% or 96% is possible, i.e. Cl' = 0.20, Cl' = 0.10 or 
Cl'= 0.04) a 1 = a/2 and a 2 = 1- a/2 are calculated. 

2. tt(N, a 1 ) and t 2 (N, a2) are taken from Table B.2 
A =Ci;;* exp( -t2/m) and B =Ci;;* exp( -ttfm) are calculated. 
[A, B] is reported to be the confidence interval for au for a confidence Ievel of 1 -Cl'. 

3. l 1 (N, al) and l2 (N, a2) is taken from Table B.3 
C = mjl2 and D = mjl1 are calculated. 
[C, D] is reported to be the confidence interval for m for a confidence Ievel of 1 - Cl'. 

These quantities have to be calculated with the maximum likelihood estimate of m without the 
unbiasing factors. 

Note: The confidence intervals for m and au are valid only, if m and Ci;; were obtained by the 
maximum likelihood method. Any other estimation procedure for the Weibull parameters yields 
different confidence intervals. 

The Tables B.1- B.3 were taken from Ref. [6]. 2 

Upon completion of the analysis, a plotfile is generated. It contains the values of the Weibull 
stress as weil as preprocessed data in a form that allows immediate generation of a Weibull plot 
via some plotting programs like e.g. gnuplot. Figure 2.2 shows an example of a Weibull plot 
template. The calculated values for ln aw are plotted together with the Weibull distribution which 
is a line with the slope m and containing the point (Ci;;, 0). 

2.4 Some remarks on constraint corrections 

Constraint correction is inherent in the Weibull stress for fracture mechanics (precracked) speci­
mens (seee.g. [7]). 

2 An EXCEL template for the evaluation of the Weibull parameters is available from the authors. 
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For a power-law hardening material 

(2.6) 

( a0 - reference stress, Eo = a0 / fo, n - hardening exponent, o: - strain offset at ao), the stress field 
in the vicinity of a mode I crack tip can be described by a three-term asymptotic expansion [8) 

CTij _ A -s-(o)(8) A-t-(1)(8) + A2 
-2t-s-(2)(8) - or a.. - r CT· · -r CT·. ao IJ tJ Ao tJ 

with the dimensionless quantities 

-(k) (7 .. 
tJ 

_/r , where J is the J-integral 
J ao 

n - dependent angular stress functions. 

The coefficient Ao is given by 

(2.7) 

(2.8) 

(2.9) 

with In according to [9). The exponent s = -1/ ( n + 1) is theoretically known [9, 10] and for the 
exponent r an eigenvalue problern has to be solved (e.g. [8)). The amplitude A is determined 
by curve fitting of eq. (2.7) to FE crack tip stress results. The three-term approximation of the 
stress field is used for the calculation of the Weibull stress aw (see eq. (2.1)). In case of small 
scale yielding, i.e. if the first term of eq. (2.7) yields a good approximation of the stress field, and 
for two-dimensional cracks with a constant J along the crack front, it can be shown [2, 3] that 
aw can be re-written as 

aw 

2~14~0~0 ___ 1~60~0~1~8~00~2~0~00~2~20~0~~2~6~00~ __ ~3~2~00~~~38~0~0~~4~400 
99.9 

+--- lnln(1/(1-PJ)) 99 
1 -

0-

-1-

-2-

-3-

PJ/% ---+ 
-4-r--.--.-l-.---.-,-.---.-,--.----.-,--.----.-,--.---~ 

7.2 7.4 7.6 7.8 8.0 8.2 8.4 

In aw 

Figure 2.2: Template for Weibull plot of aw 
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where B is the specimen thickness, Je is the value of the J-integral at the onset of cleavage 
fracture and Upt is the normalized plastic zone size of a specimen of unit thickness given in terms 
of r = rJ /ao. 

Under small-scale yielding conditions, and in case of a constant J along the crack front, aw 
and Jrc can thus be expressed in terms of each other by identifying corresponding values of the 
cumulative distribution function of both quantities. This Ieads to the relation (see e.g. [2]) 

1- exp (- (::) m) = 1- exp (- ( J~c) 
2

) (2.11) 

where b is a distribution parameter of the Jrc distribution, or, solved for aw: 

or (2.12) 

If there is a significant loss of constraint, higher-order terms are needed for a description of the 
stress field. In this case, the Weibull stress is of the form 

( aw)m = J~ B G(A, M) 
ao a0 Vo 

(2.13) 

where M stands for the material parameters and the dimensionsless function 

G(A, M) = j (::) m dU (2.14) 

Up1 

depends on the Ioad Ievel only and not explicitly on the crack size or specimen geometry. Thus, it is 
possible to select a reference solution for A, e.g. the small-scale yielding value, AssY· AssY can be 
obtained by a modified boundary layer solution for small-scale yielding for suitably selected values 
of the stress intensity factor ]( and the amplitude T resulting in prescribed elastic displacements 
at the boundary of the elasto-plastic boundary value problem. For a given value of aw, Je can 
then be transformed into an equivalent small-scale yielding value, Jssy, by 

(~)
2 = G(Assy, M) 

JssY G(A, M) 
(2.15) 

which, as aw cx: ]2/m holds for SSY, implies that the failure probability can be written in terms 
of a Weibull distribution for the transformed values of JssY with a shape factor of m = 2. 

For a given amplitude A, is is thus possible to predict Jrc from the aw results using the following 
two-step procedure: 

1. Compute aw at fracture from the Je results according to eq. (2.13). 

2. Calculate Jrc from experimentally obtained Je values according to eq. (2.15) and determine 
the parameterb of the Jrc distribution (which is a Weibull distribution with m = 2) 
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This procedure additionally allows the scatter bands in the data to be determined by using the 
appropriate relations for the respective quantiles of ow and hc· 

Analysis of Iiterature data in Ref. [7], where Je/ hc was predicted for typical fracture mechanics 
specimens (ECP, CCP, 3PB, CT) showed promising results. Good agreement was found for the 
following function 

G(A, M) = exp ( ao(M) + a1 (M)A + a2 (M)A2
) (2.16) 

with the material-dependent parameters ai. 

The essential advantage of this scaling approach is the fact that there is no explicit dependence of 
crack size or specimen geometry. Thus, the stress field is characterized by the ( elastic) boundary 
conditions (J and T) of an elasto-plastic (modified) boundary layer problem, from which the 
scaling function G(A, M) is deduced, and FE analysis of the specimen is replaced by use of 
appropriate stress amplitudes in the MBL approach. 

In the field of fusion applications, this scaling approach seems to be especially promising for the 
processing of data from small (subsized) specimen testing results, provided that the infiuence of 
material heterogeneity on this scale still allows the use of a continuum mechanics approach. 

2.5 Some remarks on transition and inftuence of ductile darnage 

In the transition regime, a competitive process between ductile and cleavage fracture mechanisms 
takes place. Void nucleation and growth may change the stress and strain field and final cleavage 
fracture can only occur, if the stresses remain sufficiently high to trigger unstable crack prop­
agation. So, for a volume element dV, the two competitive processes can be stated as follows: 
Cleavage occurs, if a critical cleavage stress is exceeded in dV, ductile failure by void coalescence 
occurs, if a critical void volume fraction f0 ( E~q) ( depending on the equivalent plastic strain E~q) 
is exceeded in dV. 

The modelling of this competitive process must consider the respective probabilities. In case of 
ductile and cleavage fracture being independent of each other, the respective survival probabilities 
multiply and give the overall survival probability for combined fracture. A detailed analysis would 
exceed the scope of the present report. 

2.6 Same remarks on potential application to irradiation harden-. 
1ng 

In terms of the local approach, irradiation darnage is described mainly by the infiuence on yield 
stress. It turned out that the critical cleavage stress is not affected by irradiation effects. The basic 
framework of the local approach is therefore easily adopted and it is only necessary to identify 
a suitable description of irradiation hardening [12, 13]. It has to be ensured, however, that for 
the material under consideration neutron irradiation does not generate additional populations of 
fiaws. 

2. 7 Some remarks on steep stress gradients 

If steep stress gradients exist, which means that the assumption of a constant stress along the 
existing cleavage origins is violated, the weakest link argument leading to the Weibull distribution 
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of aw still holds. However, the fracture mechanics description of the cleavage origins as micro­
cracks with a critical crack size ac cx 1/ a 2 is no langer valid. Instead, ac depends not only on 
the magnitude of the local stress field, but additionally on the stress gradient, or, equivalently, on 
the location of the crack. As a consequence, m loses its significance as material parameter [14). 
Steep stress gradients may be relevant at very low temperatures due to very small plastic zone 
sizes as well as for thermal loading. In these cases, weight function methods are necessary and 
the evaluation of the stress integral requires the use of location-dependent critical stresses which 
may be obtained e.g. by neural network approaches [15). 
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3 

Program description 

In the following sections, programming considerations for the three modules of f iLou, gau_wei, 
wei...ml are given tagether with an application example from a series of notched round bar tests 
at the lower shelf. 

3.1 Scope of the modules 

The analysis is performed with three different modules. The first module is used to extract the 
stresses and plastic zone size from finite element results. The second and third modules are 
used to determine the Weibull stress parameters. This allows the stress analysis to be performed 
independently of the final ML procedure for the Weibull stress. Communication between the 
modules is via a communication file *. wst generated from the FE output (e.g. ABAQUS *. fil­
file) whose structure will be described below. 

3.1.1 General features 

Maximum array sizes are given in PARAMETERstatements (see Table 3.1). The PARAMETER state­
ments of Table 3.1 are compiled in a separate file PARAM which is included in the respective 
subroutines via a FORTRAN INCLUDE statement. Most of the variables and arrays are trans­
ferred to the subroutines via the different COMMON blocks which are given in Table 3.2 tagether 
with the maximum sizes of the arrays. The COMMON blocks of Table 3.2 are compiled in a 
separate file CDMMON which is included in the respective subroutines via a FORTRAN INCLUDE 
statement. 

3.1.2 Stress analysis module 

In the stress analysis module named f iLou, an analysis of the ABAQUS result file * . f il is 
performed. The communication file *. wst for the ML procedure is generated for this purpose. 
It contains the data describing the FE model, the maximum principal stresses at the integration 
points of each element and a plasticity flag for each integration point. 

3.1.3 Maximum likelihood module 

The iterative procedure for the determination of the Weibull modulus, m, and the parameter C1u 

of the Weibull stress CJw is performed in the maximum likelihood module named wei...ml. The 
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I Variable II Description I Default I 
UN, HA, QU, auxiliary quantities: 1. 00, .500, .2500 -
ZE, PI 0.00, 3.1415926 ... 00 -
MAXOIM dimension of the FE model 3 
MAXEL maximum number of elements 3000 
MAXI PE maximum number of GAUSS points. per element 20 
MAXNPE maximum number of nodes per element 20 
MAXITW maximum number of iterations for ML procedure 100 
MAXSTP maximum number of Ioad steps in FE analysis 100 
MAXNO maximum number of nodes 10000 
MAXIP maximum number of integration points (= MAXIPE*MAXEL) -

WI1, WI2 weights for GAUSS quadrature 1. 

Table 3.1: Variables defined in PARAMETER statements. Most variables are used to adjust array 
dimensions in COMMON blocks in order to save memory. 

I COMMON block name II Variable (bounds) 

MESH NELEMS, NNOOES, NOIM, NPE, IPE 

ELEMTS NOOE(MAXEL,MAXNPE),COOR(MAXNO, MAXOIM) 

STRESS STRSIP(MAXEL, MAXIPE, 8),S1ENV(MAXEL, MAXIPE) 

SHAPEF HI(MAXNPE) 

SHAPEO DHIOR(MAXIPE,MAXNPE),OHIOS(MAXIPE,MAXNPE), 
OHIOT(MAXIPE,MAXNPE) 

JACMAT OJACM(MAXOIM,MAXOIM), OJOET 
GAUQUA WI(2),GP(2) 
SIGW WSTR, WM, WMO, SIGU, SIGREF, SIGW(MAXSTP) 
PZONE PZVOL,IPFLAG(MAXEL,MAXIPE) 
AUX IWUN, FNAME, ELTYPE 

Table 3.2: Variables declared in COMMON blocks. 

necessary input is read from the communication file *. wst and the Weibull stress values for 
each experimental Ioad step at fracture are calculated using a starting value of m. This gives 
a sample of Weibull stresses at fracture, which is used for the maximum likelihood estimates 
for the distribution parameters m and a;; and the corresponding unbiased value munb. lf munb 

coincides with the starting value, m, the procedure is terminated, otherwise m is set to munb and 
the iteration is continued until convergence is achieved. 

3.2 Program structure 

3.2.1 Module fiLou 

The module fiLou has to organize input data for the Weibull stress analysis; for this purpose, the 
ABAQUS binary results file *. f il is analysed record by record and a communication file *. wst is 
generated for the maximum likelihood (ML) Weibull stress analysis. The *. wst communication 
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Name II Description 

NELEMS number of elements in FE model 
NNODES number of nodes in FE model 
NDIM dimension of FE model 
NPE number of nodes per element in FE model 
IPE number of integration points per element in FE model 

NODE(*,*) contiguity Iist of nodes for each element 
COOR(*,*) array of initial nodal coordinates 

STRSIP(*,*,*) stress tensor at integration points for each element 
S1ENV(*,*) array of 1st principal stresses at integration points for each element 

I HI ( *) II array of shape functwn values at mtegratwn pomts 

I DHID [RST] ( *, *) II derivatives of shape functions with respect to reference coordinates 

DJACM(*,*) Jacobi matrix 
DJDET determinant of J acobi matrix 

WI(*) weights for Gaussian quadrature 
GP(*) evaluation points for Gaussian quadrature 

WSTR Weibull stress for current Ioad step 
WM Weibull modulus for current iteration 
WMO Weibull modulus for previous iteration 
SIGU parameterau 
SIGREF reference stress value for plasticity ftag 
SIGW(*) array of Weibull stresses for allload steps 

PZVOL volume of plastic zone 
IPFLAG(*,*) plasticity ftag 

IWUN FORTRAN unit of communication file *. wst 
FNAME root name of communication file *. wst 
ELTYPE ABAQUS element type 

Table 3.3: Description of variables in COMMON blocks. 

file contains data of the finite element model (e.g. nodal and element data) and the envelope 
of the first principal stress du ring successive loadcases ( array S1ENV) as weil as a ftag ( array 
IPFLAG) that indicates whether the stress evaluation point lies within the plastic zone or not. 
This facilitates the subsequent numerical integration procedure. The plasticity ftag array IPFLAG 
is determined using either a von Mises yield criterion or equivalent plastic strain values from the 
ABAQUS results file. Details of the structure of the *. wst-file are contained in Table A.l. 

3.2.2 Module gau_wei 

In the module gau_wei, the numerical integration of the Weibull stress is performed. First, finite 
element nodal and coordinate data are initialized (subroutine PSENV, 1st call) by reading them 
from the *. wst-file and the derivatives of the interpolation functions for the selected finite element 
type are evaluated at the integration points of the unit reference element (subroutines DHIDRS for 
2-D problems or DHDRST for 3-D problems, respectively, depending on the dimension of the FE 
model). This is only clone at the beginning of the calculation procedure in order to reduce the 
computational effort. 

The following steps are then repeated for every Ioad step. The principal stress envelope array 
S1ENV for Ioad step LST is read tagether with the corresponding plasticity ftag arra.y IPFLAG 
(subroutine PSENV, 2nd and subsequent calls). Then, numerical integration of the maximum 
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Name II Purpose 

wstrit main program - controls iterative procedure for ML parameters 
bias bias correction of maximum likelihood estimate for m 
dhidrs derivatives of shape functions for 2D (8 node) elements 

at integration points 
dhdrst derivatives of shape functions for 3D (20 node) elements 

at integration points 
djac2d calculation of Jacobi matrix and determinant (2D case) 
djac3d calculation of Jacobi matrix and determinant (3D case) 
int2ws calculation of Weibull stress from 1st principal stresses (2D) 
int3ws calculation of Weibull stress from 1st principal stresses (3D) 
maxl maximum likelihood estimation of a given sample of aw 
output print some results 
psenv read *. wst-file; FE data and principal stress envelope 

Table 3.4: Subroutine names and their purpose 

principal stress envelope is performed by subroutine INT2WS for 2D problems or INT3WS for 3D 
problems. Gaussian integration is used with 2 evaluation points per element in each dimension 
( corresponding to reduced integration element types in ABAQUS). Subroutines DJA2D/DJAC3D 
supply the Jacobi determinant which is necessary for the volume integration to be performed in 
the standard unit element. The stress envelope is normalized by a suitably chosen reference stress 
SIGREF, e.g. the flow stress, in order to avoid numerical difficulties caused by high values of the 
Weibull exponents. The normalization is corrected after the numerical integration is completed. 
A summary is printed upon the completion of allload steps (subroutine OUTPUT). 

3.2.3 Module weLml 

After completion of allload steps corresponding to a sample of failed specimens, the parameters 
of the statistical distribution of aw are estimated using the maximum likelihood (ML) method. 
Subroutine MAXL serves this purpose. A bias correction for the Weibull modulus m is calculated 
by the function BIAS. Bias correction is available for sample sizes between 5 and 120. Module 
gau_wei is used again until convergence of the parameter m is achieved. 

Confidence intervals for m and au are given (subroutine CNFLIM) at the end of the iterative 
procedure. 

Subroutine MLPLOT generates a plotdata file for the graphical presentation of the ML results. 

3.3 Application example 

In this section, the calculation of the Weibull stress for a set of round notched bar tensile specimens 
at a lower shelf temperature of -150°C is presented for a ferritic-martensitic steel designated 
F82Hmod. Details on the material can be found elsewhere [11), whereas a sketch of the numerical 
procedure is outlined below with special emphasis being put on the structure of data processing 
and the processing of experimental results. 

3.3.1 Stress analysis and envelope of the maximum principal stress 

Experimental results are available in terms of Ioad vs. diameter reduction recordings, from which 
the respective values at fracture are obtained. An elasto-plastic ABAQUS finite element analysis 
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/v1/home/imf2/riesch/netze/f82hmod/f82h2w 
810.d0 22.d0 33 (sigO fuer xtra bzw. SIGREF, wmO, iwun fuer wstress) 

2 8 4 (ndim, npe, ipe ) 
15 (lstmax) 

Table 3.5: Example of auxiliary file. 

is performed covering the whole range of observed diameter reduction recordings and resulting 
in a numericalload vs. diameter reduction curve. Numerical and experimental data are plotted 
and should coincide, otherwise the numerical model has to be improved, e.g. by taking into 
account ductile damage. ABAQUS Ioad step control has to be chosen such that the diameter 
reductions at fracture are met by the displacement boundary conditions of the successive steps. 
This facilitates the subsequent Weibull stress analysis. The final ABAQUS *. fil results file is 
assumed to contain the values of the maximum principal stress at the integration points of each 
element. This has to be ensured by appropriate ABAQUS output control statements. 

An auxiliary file is used for the determination of the envelope of the maximum principal stress. 
This file (see example in Table 3.5) is read from stdin and contains the file name to be read 
(recommended name is base name of ABAQUS *.fil file -line 1), a reference stress value (e.g. 
the ftow stress- line 2), a suitably chosen starting value for m ( e.g. 22 - line 2), the Fortran unit 
number for the *. wst filetobe generated (e.g. 33 -line 2), the dimension, number of nodes and 
integration points per element used in FE analysis (line 3), and the number of Ioad steps at which 
the Weibull stress is calculated (i.e the number of specimens- line 4). Upon completion of the 
procedure, the communication file *. wst is written in the directory, where the ABAQUS results 
file resides and which is to be specified in the auxiliary file. 

3.3.2 Weibull stress parameters 

With the completion of the *. wst-file, all data are available for the iterative Weibull stress pa­
rameter calculation. Modules gau_wei and wei...ml use the same auxiliary file as module fiLou, 
thus ensuring consistency of the reference stress for both purposes. The results are written on a 
*. dat filethat resides in the current directory (i.e. /weistr/) and contains a (comprehensive) 
printout of the iterative procedure, a summary of the calculated Weibull stresses for each iteration 
step, and the Weibull stress distribution parameterstagether with a plotdata segment which can 
be used to generate a Weibull diagram. 

3.3.3 Presentation of results - graphics 

A Weibull diagram template is provided for use with the gnuplot plotting program. The plotdata 
segment of the output file is ready to be used by a gnuplot plot statement. An example of the 
plotdata file is given in Table 3.6, while the corresponding plot is shown in Figure 3.1. 
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# PLOT: GENERATE PLOTFILE FOR ML RESULTS ( AT THE MOMENT: GNUPLOT-FORMAT) 
# RESULTS FROM .wst-FILE: /v1/home/imf2/riesch/netze/f82hmod/f82h2w 
# SIGU= 2106.668 WMB = 11.77931 WMUB= 10.69561 
# LN(SIGW) LN LN 1/(1-FI) SIGW FI 

7.448905 -2.740493 1717.981 0.6250000E-01 
7.486048 -2.013419 1782.992 0.1250000 
7.493316 -1.571953 1795.998 0.1875000 
7.573672 -1.245899 1946.274 0.2500000 
7.594648 -0.9816471 1987.531 0.3125000 
7.606468 -0.7550149 2011.162 0.3750000 
7.612556 -0.5527521 2023.444 0.4375000 
7.631592 -0.3665129 2062.332 0.5000000 
7.631593 -0.1903393 2062.332 0.5625000 
7.634804 -0.1935689E-01 2068.966 0.6250000 
7.652639 0.1511325 2106.196 0.6875000 
7.654677 0.3266343 2110.494 0.7500000 
7.671654 0.5152019 2146.628 0.8125000 
7.673846 0.7320994 2151.340 0.8750000 
7. 799211 1. 019781 2438.678 0.9375000 

# MLPLOT: PLOTFILE GENERATED ... 
# COLS ARE: 

0 

:;::; 
q. 
:::::- -1 

.E 

.E 

-2 

LN(SIGW(I)),LN LN 1/1-FI,SIGW(I),FI 

Table 3.6: Plotdata file for part of Figure 3.1. 

Weibull stress at fracture for -150 deg C 

1mm notch o 
ML fit '(WMUB) ----· 

2rilm notch + 
MLfit:(WMUB) ·· 

....................... !···· 

. . . . . . . . . . i 

2mm notchi WMB = 11.8 
i WMUB= 10.7 
j SIGU= 2106.7 

99% 

95% 

80% 

60% 

40% 

20% 

10% 

5% 

Figure 3.1: Maximum likelihood results of ow for two notch geometries at -150° C (2mm notch 
results correspond to data shown in Table 3.6) 
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Appendix A 

Description of the subroutines 

A.l Module fil_ou 

A.l.l Program XTRA 

Description 

This is the main program of the module f iLou. Its purpose is to generate the *. wst communi­
cation file from ABAQUS *. fil binary results files. The structure of the *. wst-file is given in 
Table A.l. 

XTRA reads the base name of the ABAQUS * .fil binary results file (which is used as the base 
name of the *. wst communication file) from standard inputtagether with a reference stress value 
that is used for the calculation of the plasticity ftag during the analysis. 

XTRA then scans each record of the ABAQUS *. fil binary results file and writes the ABAQUS 
record identification key to the standard output. The records are either analysed and kept in 
suitable variables, or they are skipped and a warning message is issued if the identification key 
is not contained in the predefined key Iist. (Details of the scanning procedure depend on the 
ABAQUS data management schemes which can be looked up in the ABAQUS manuals [1] and 
are not repeated here.) 

The basic data of the FE model are also written into the communication file. This includes the 
size and type of the model, data for nodes, elements, and meshing. Element-based stress results 
are analysed in detail. For each Ioad case, an array S1ENV is generated, which contains the 
envelope of the values of the maximum principal stress at all integration points in every element 
of the model. The plasticity ftag array IPFLAG is written into the file tagether with the array 
S1ENV. Array IPFLAG indicates whether the plasticity criterion is met at the Gauss point currently 
analysed and will be subsequently used in the numerical integration of the Weibull stress. At the 
moment, a stress-based criterion (von Mises) is used, but the analysis of plastic strain values is 
equally possible. 

For every loadcase, one record per element is generated in the *. wst file. lt contains the first 
principal stress values at integration points 1, . . . IPE, followed by the plasticity ftag values 
at integration points 1, . . . IPE. The length of the record thus differs for 2D and 3D analyses. 

Before writing the record, a check is performed to ensure that the values of the maximum principal 
stress do not decrease at the current integration point. If so, the value of the previous Ioad step is 
retained, thus giving a stress envelope which contains non-decreasing values for subsequent Ioad 
steps. 
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I No. of lines II Content FORMAT I 
I NEL+NNODE+3 II Prologue 

1 no. of elements I nodes I sigref lcomments 'I8,I8,2X,G10.4,2A' 

1 ABAQUS version I date I time , A, 

NEL element nodes I element type (variable) 

NNODE nodal coordinates 'I5,3(2X,G14.7)' 

1 heading , A, 

I NEL+1 II body - repeated for each Ioad step 

1 ' START OF NEW INCREMENT' 'A' I 
NEL envelope of max. principal stress + plasticity flag (variable) I 

Table A.l: Structure of the *. wst communication file. 

Some technical details 

To run XTRA, it is necessary to generate a Ioad module xtra. x using the ABAQUS statement: 
abaqus make j ob=xtra. xtra. x can then be invoked by xtra. x < fname, where fname is the 
name of the above-mentioned auxiliary file in the current directory. 

Parameters In: 

NPRECD precision flag set by ABAQUS PARAMETERstatement (current value: NPRECD=l, 
i.e. single precision) 

MAXEL maximumnurober of elements (set by: PARAMETER(MAXEL=1000)) 

MAXNOD maximum nurober of nodes (set by: PARAMETER(MAXNOD=8000)) 

MAXNPE maximumnurober of nodes per element (set by: PARAMETER(MAXNPE=20)) 

MAXIPE maximum nurober of integration points per element (set by: PARAMETER(MAXIPE=8) 

Parameters Out: 

none 

External Subroutines: 

POST POST(FNAME) initializes FORTRAN unit nurober (set by call of ABAQUS subroutine 
DBRNU(JUNIT)) and defines some additional parameters (set by call of ABAQUS sub­
routine INITPF(FNAME, NRU, LRUNIT, LOUTPF)) 

DBFILE internal ABAQUS routine (for LOP=O, DBFILE(LOP, ARRAY, JRCD) reads the next 
record of ABAQUS *. fil file into array ARRAY and sets EOF file marker JRCD) 

External Functions: 

none 

Local Variables: 

KEY record identifier key 

LOP required by subroutine DBFILE. LOP=O is used only. 
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JRCD EOF file marker 

NW number of words per ABAQUS record 

JRRAY auxiliary array for ABAQUS record 

ARRAY auxiliary array for ABAQUS record (JRRAY(NPRECD,513) and ARRAY(513) are con-
nected via a FORTRAN EQUIVALENCE statement) 

FNAME base name of *. wst file 

I, J, K, N loop counters 

CHAR auxiliary character variable 

CHAR1 auxiliary character variable 

HEADG heading of ABAQUS results file 

TMPCHA ABAQUS version, date, time, ... 

CFLAG(O: 2) output location identification 

SNAME set name (node or element set), blank if unspecified 

ELTYPE element type ( only for element output) 

ACYFLG actively yielding ftag (ABAQUS) 

FC, SC, TC first, second, and third nodal coordinate 

PE1, ... ,PE6 plastic strain components 

PEEQ 

PEMAG 

equivalent plastic strain 

plastic strain magnitude 

Si, S2, S3 1st, 2nd, and 3rd principal stress 

SIGEQ 

SIGO 

TLEN 

von Mises stress 

reference ftow stress value 

typical element length of FE mesh (ABAQUS) 

STRESS(8) components of stress tensor (incl. stress invariants) (temporary array for output of 
nodal or averaged stresses to stdio) 

STRESI(MAXEL,MAXIPE,6) components of stress tensor at integration points (written for each 
increment to auxiliary file 'stresses' at current directory) 

S1ENV array of envelope of maximum principal stress 

IPFLAG plasticity flag array 

JEL 

JPNT 

JSPNT 

JLOC 

NDI 

NSHR 

NDIR 

NSFC 

JFLAG 

IEL 

NEL 

II 

no. of element currently analysed 

no. of node/integration point currently analysed (0 if centroidal values or nodal aver­
aged values are given) 

0 for continuum elements 

location identifier for eiemental output 

no. of direct stress components 

no. of shear stress components 

not used 

not used 

location identifier upon start of output request (0- element based output) 

loop counter for elements 

counter for actual number of elements in current increment 

loop counter for integration points 
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loop counter for stress coroponents 

nurober of integration points 

IKOMP 

IINT 

INODE 

KEL 

KNOD 

current node nurober for nodal coordinates record 

current eleroent nurober 

current node nurober for node definitions record 

!1900, !1901 loop counter 

NODE contiguity array of nodes for each eleroent 

COORD array of initial nodal coordinates 

NELEMS no of eleroents in the model 

NNODES no of nodes in the model 

IDIM diroension of the model 

IWUN output unit for cororounication file * . wst 

A.l. 2 Subroutine POST 

Description 

Subroutine POST initializes the FORTRAN unit nurober (set by call of ABAQUS subroutine 
DBRNU (JUNIT) and defines soroe additional parameters (set by call of ABAQUS subroutine 
INITPF(FNAME, NRU, LRUNIT, LOUTPF)). 

Parameters In: 

FNAME name of ABAQUS *. fil file 

Parameters Out: 

none 

External Subroutines: 

INITPF(FNAME,NRU,LRUNIT,LOUTF) (see above) 

DBRNU(JUNIT) sets FORTRAN unit nurober for file FNAME 

External Functions: 

none 

Local Variables: 

NRU nurober of result files to be read (NRU=1 is used) 

LRUNIT(2 ,NRU) FORTRAN unit numbers and flag indicating binary or ASCIIformat of ABAQUS 
results file 

LOUTF 

JUNIT 

flag for output file format (not used) 

FORTRAN unit nurober for file FNAME required by ABAQUS subroutine DBRNU 
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A.2 Modules gau_wei, weL.ml 

A.2.1 Program WSTRIT 

Description 

This is the main program of module gau_wei. Its pur'pose is to calculate the Weibull stress from 
the ABAQUS output (2 or 3D analysis) via the *. wst communication file and perform iterative 
ML estimation including confidence intervals. This is clone in several steps: 

1. parameter input 

2. calculation of shape function derivatives at integration points 

3. reading of the stress envelope results from the *. wst communication file 

4. numerical integration of Weibull stress at fracture 

5. output of Weibull stresses for complete sample 

6. maximum likelihood procedure 

7. repeat steps 3 to 6, if convergence not achieved 

8. calculate confidence limits for maximum likelihood estimators 

9. generate results file including plotdata file 

The subroutines which are invoked are described below. 

The results file is generated in a format that can be used as a source to generate a Weibull plot. 
At the moment, gnuplot format is preferred. 

Parameters In: 

none 

Parameters Out: 

none 

External Subroutines: 

PSENV reads initial values from standard input at first call; read communication file FNAME at 
subsequent calls 

DHDRST calculates derivative of shape functions at integration points for 3-D problems 

DHIDRS calculates derivative of shape functions at integration points for 2-D problems 

INT2WS calculates Weibull stress for 2-D problems 

INT3WS calculates Weibull stress for 3-D problems 

MAXL performs maximum likelihood estimation of Weibull stress parameters 

OUTPUT generates printout of results for each Ioad step 

CNFLIM calculates confidence intervals for Weibull stress distribution parameters 

MLPLOT generates plotdata file 
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External Functions: 

BIAS calculates unbiasing factor for m 

Local Variables: 

ITW counts no. of iterations for ML procedure 

WTOL convergence criterion ( currently set to 0. 1) 

LST Ioad step number 

A.2.2 Subroutine PSENV 

Description 

Reads FE data and principal stress envelope array from *. wst-file. 

Parameters In: 

LST indicator for Ioad step (LST=O means: read prologue of *. wst-file; LST > 0 means: 
read data for Ioad step LST) 

ITW counter for ML iteration; if ITW=O and LST=O, also initial control data is read from 
standard input 

FNAME name of *. wst-file to be analysed (read from stdin) 

SIGO reference stress for plasticity flag (read from stdin) 

WMO initial value for Weibull modulus (read from stdin) 

IWUN FORTRAN unit of input file FNAME (read from stdin) 

NDIM dimension of FE model in file FNAME (read from stdin) 

NPE number of nodes per element of FE model in file FNAME (read from stdin) 

IPE number of integration points per element of FE model in file FNAME (read from stdin) 

LSTMAX number of Ioad steps in file FNAME (read from stdin) 

NELEMS number of elements (read from *. wst-file) 

NNODES number of nodes (read from *. wst-file) 

SIGREF reference stress (read from *. wst-file and checked against SIGO for consistency) 

NODES ( *) node Iist of FE mesh (read from *. wst-file) 

COOR( *) nodal coordinate Iist of FE mesh (read from *. wst-file) 

S 1ENV ( *) array of principal stress envelope for Ioad step LST ( read from *. wst-file) 

IPFLAG ( *) plasticity flag array for Ioad step LST ( read from *. wst-file) 

Parameters Out: 

NODES ( *) node Iist of FE mesh 

COOR ( *) nodal coordinate Iist of FE mesh 

S1ENV(*) array of principal stress envelope 

IPFLAG ( *) plasticity flag array 

External Subroutines: 
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none 

External Functions: 

none 

Local Variables: 

FORNOD auxiliary character variable for FORTRAN FORMATstatement 

FDRS1E auxiliary character variable for FORTRAN FORMATstatement 

FORCHA auxiliary character variable for FORTRAN FORMATstatement 

KEL dummy variable 

ELTYPE dummy variable 

I, J loop counter 

IEL loop counter 

II loop counter 

INOD loop counter 

A.2.3 Subroutine DHDRST 

Description 

This subroutine calculates derivatives of shape functions with respect to the natural coordinates r, 
8, t at the integration points of the 3-D quadratic element with 20 nodes and reduced integration. 
Node numbering is according to ABAQUS convention. The calculation scheme is as follows 
(taken from Bathe [4], p. 201): First, the derivatives of the quadratic interpolation functions at 
the midside nodes, i.e. nodes 20, 19, ... to 9 are calculated for each of the three directions r, 8, 

t and at each integration point IP. Then, the derivatives of the linear interpolation functions at 
the corner nodes i.e. nodes 8, 7, .. . to 1 are determined and corrected for the quadratic terms 
from the adjacent nodes. The complete scheme for direction r is as follows, where r, 8 1 t are to 
be taken at the Coordinates of integration point number i ( = IP): 

ähi(20) 1 2 

är 
-- * (1 + 8) * (1- t) 

4 
ähi (19) 1 

är 4 * (1+8) * (1-t2
) 

ähi(18) 1 2 

är 
- * (1- 8) * (1- t ) 
4 

ähi(17) 1 2 

är 
-- * (1- 8) * (1- t ) 

4 
ähi(16) 

- ~ * ( 1 - 8
2

) * ( 1 + t) 
är 4 

ähi(l5) 1 
är 

- 2 *r*(1+8)*(1+t) 

ßhi(14) 1 
är 4 * ( 1 - 8

2
) * ( 1 + t) 

ßhi(13) 1 
är - 2 * r * (1- 8) * (1 + t) 

ßhi(12) 1 2 

är 
-- * (1- 8 ) * (1- t) 

4 
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8hi(11) 
8r 

8hi(10) 
8r 

8hi(9) 
8r 

ähi(8) 
8r 

8hi(7) 
8r 

8hi(6) 

8r 
ähi(5) 

8r 
8hi(4) 

8r 
8hi(3) 

8r 
8hi (2) 

8r 
8hi(1) 

8r 

1 - 2 *r*(1+s)*(1-t) 

1 2 4 * (1 - s ) * (1 - t) 

1 - 2*r*(1+s)*(1-t) 

1 ( 1 ( ) ( ) 8hi(15) 8hi(16) 8hi(20)) 
- 2 * - 4 * 1 + 8 * 1 + t - 8r - 8r - -8::-r---'-

1 (1 ( ) ( ) 8hi(14) 8hi(15) 8hi(19)) 
- 2 * 4 * 1 + 8 * 1 + t - 8r - 8r - -8-:-r---'-

-~ * (~ * (1 _ s) * (1 + t) _ 8hi(13) _ 8hi(14) _ 8hi(18)) 
2 4 8r 8r 8r 

-~ * (-~ * (1 - s) * (1 + t) _ 8hi(16) _ ähi(13) _ 8hi(17)) 
2 4 8r 8r 8r 

-~ * (-~ * (1 + s) * (1 _ t) _ 8hi(ll) _ 8hi(12) _ 8hi{20)) 
2 4 8r 8r 8r 

-~ * (~ * (1 + s) * (1 _ t) _ 8hi(10) _ 8hi(ll) _ 8hi(19)) 
2 4 8r 8r 8r 

-~ * (~ * (1 _ s) * (1 _ t) _ 8hi(9) _ 8hi(10) _ 8hi(18)) 
2 4 8r 8r 8r 

-~ * (-~ * (1 - s) * (1 - t) _ 8hi(12) _ 8hi(9) _ 8hi(17)) 
2 4 8r 8r 8r 

(A.1) 

Results for directions s, t are determined accordingly, but omitted here for brevity. These results 
are used in subroutine DJACD which calculates the Jacobi matrix. As the derivatives are given in 
the reference configuration, it is only necessary to determine them at the beginning of the iterative 
procedure once and for all. 

Parameters In: 

none 

Parameters Out: 

DHIDR( IP, *) derivatives of shape function HI with respect to R for integration point No. IP at 
nodes 1...20 

DHIDS (IP, *) derivatives of shape function HI with respect to S for integration point No. IP at 
nodes 1...20 

DHIDT(IP, *) derivatives of shape function HI with respect toT for integration point No. IP at 
nodes 1...20 

shape function HI at nodes 1...20 (not used in the sequel) 

External Subroutines: 

none 

External Functions: 

none 

Local Variables: 
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IP 

L 

R, R2 

s, S2 

T, T2 

UPR, 

UPS, 

UPT, 

WU3 

auxiliary variable ( counter for integration points) 

auxiliary variable (loop counter) 

auxiliary variables ( coordinates r, r 2 ) 

auxiliary variables ( coordinates 8, 82 ) 

auxiliary variables ( coordinates t, t 2 ) 

UMR, UMR2 auxiliary variables (1 + r, 1- r, 1- r 2
) 

UMS, UMS2 auxiliary variables (1 + 8, 1 - 8, 1- 8
2

) 

UMT, UMT2 auxiliary variables (1 + t, 1 - t, 1 - t 2) 

auxiliary variable ( J3) 
SUM auxiliary variable ( consistency check) 

SUMR auxiliary variable ( consistency check) 

SUMS auxiliary variable ( consistency check) 

SUMT auxiliary variable ( consistency check) 

A.2.4 Subroutine DHIDRS 

Description 

This subroutine calculates derivatives of shape functions with respect to the natural coordinates r, 
s at the integration points of 2-D quadratic element with 8 nodes and reduced integration. Node 
numbering is according to ABAQUS convention. The calculation scheme is as follows (taken 
from Bathe [4], p. 200): First, the derivatives of the quadratic interpolation functions at the 
midside nodes, i.e. nodes 8, 7, 6, 5 are calculated for each of the three directions r, 8, t and at 
each integration point IP. Then, the derivatives of the linear interpolation functions at the corner 
nodes i.e. nodes 4, 3, 2, 1 are determined and corrected for the quadratic terms from the adjacent 
nodes. The complete scheme for direction r is as follows, where r, 8, t are to be taken at the 
coordinates of integration point number i ( = IP): 

8hi(8) 1 2 

ßr --*(1-s) 
2 

8hi(7) 
-r*(1+s) ßr 

8hi(6 1 2 

ßr· - * (1- s ) 
2 

8hi(5) 
-r*(1-s) ßr 

8hi(4) ~ * ( -~ * (1 + s) _ 8hi(7) _ 8hi(8)) 
ßr 2 2 ßr ßr 

8hi(3) ~ * (~ * (1 + s) _ ßh1(6) _ 8hi(7)) 
ßr 2 2 ßr ßr 

8hi(2) ~ * ( ~ * ( 1 _ s) _ a h1 ( 5) _ a hi ( 6) ) 
ßr 2 2 ßr ßr 

8hi(1) ~ * ( -~ * (1 - s) _ 8h1(8) _ 8hi(5)) (A.2) 
ßr 2 2 ßr ßr 

Results for direction 8 are determined accordingly. These results are used in subroutine DJACD, 

which calculates the Jacobi matrix. As the derivatives are given in the reference configuration, 
subroutine DHIDRS has to be called only once. 

Parameters In: 
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none 

Parameters Out: 

DHIDR ( IP, *) derivatives of shape function HI with respect to R for integration point no. IP at 
nodes 1...8 

DHIDS ( IP, *) derivatives of shape function HI with respect to S for integration point no. IP at 
nodes 1...8 

External Subroutines: 

none 

External Functions: 

none 

Local Variables: 

IP 

I' J 

R, R2 

auxiliary variable ( counter for integration points) 

auxiliary variable (loop counter) 

auxiliary variables 

S, S2 auxiliary variables 

UPR, UMR, UMR2 auxiliary variables 

UPS, UMS, UMS2 auxiliary variables 

WU3 auxiliary variable 

A.2.5 Subroutine DJACD 

Description 

This subroutine performs calculation of the Jacobi determinant at integration point IP for 2-D 
8-node quadratic elements with reduced integration. Node numbering is according to ABAQUS 
convention. 

Parameters In: 

INTEL 

IP 

element no. 

integration point no. 

Parameters Out: 

DET Jacobi determinant 

External Subroutines: 

none 

External Functions: 
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none 

Local Variables: 

IQ auxiliary variable (loop counter) 

NQ number of nodes (set to 8) 

DJ 11 auxiliary variable 

DJ12 auxiliary variable 

DJ21 auxiliary variable 

DJ22 auxiliary variable 

DET J auxiliary variable 

A.2.6 Subroutine DJAC3D 

Description 

This subroutine performs calculation of the Jacobi determinant at integration point IP for 3-D 
20-node quadratic elements with reduced integration. Node numbering is according to ABAQUS 
convention. 

Parameters In: 

INTEL 

IP 

element no. 

integration point no. 

Parameters Out: 

DET J acobi determinant 

External Subroutines: 

none 

External Functions: 

none 

Local Variables: 

IQ auxiliary variable (loop counter) 

NQ number of nodes (set to 20) 

DJ11 auxiliary variable 

DJ12 auxiliary variable 

DJ13 auxiliary variable 

DJ21 auxiliary variable 

DJ22 auxiliary variable 

DJ23 auxiliary variable 

DJ31 auxiliary variable 

DJ32 auxiliary variable 

DJ33 auxiliary variable 

DETJ auxiliary variable 
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A.2. 7 Subroutine INT2WS 

Description 

This subroutine calculates the Weibull stress (numerical integration over plastic zone) for 2-D 
problems and stores the results as SIGW(LST) in the array SIGW. 

Parameters In: 

LST Ioad step number 

Parameters Out: 

none 

External Subroutines: 

DJACD calculates Jacobi determinant 

External Functions: 

none 

Local Variables: 

INTEL auxiliary variable (loop counter) 

I1DIM auxiliary variable (loop counter) 

I2DIM auxiliary variable (loop counter) 

IP auxiliary variable 

PS1 auxiliary variable 

WS1 auxiliary variable 

WS2 auxiliary variable 

WSTREL auxiliary variable 

WSTR auxiliary variable 

A.2.8 Subroutine INT3WS 

Description 

This subroutine calculates the Weibull stress (numerical integration over plastic zone) for 3-D 
problems and stores the results as SIGW(LST) in the array SIGW. 

Parameters In: 

LST Ioad step number 

Parameters Out: 

none 
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Externat Subroutines: 

DJAC3D calculates Jacobi determinant 

Externat Functions: 

none 

Local Variables: 

INTEL auxiliary variable (loop counter) 

I1DIM auxiliary variable (loop counter) 

I2DIM auxiliary variable (loop counter) 

I 3D IM auxiliary variable (loop counter) 

IP auxiliary variable 

PSi auxiliary variable 

WS1 auxiliary variable 

WS2 auxiliary variable 

WS3 auxiliary variable 

WSTREL auxiliary variable 

WSTR auxiliary variable 

A.2.9 Function BIAS 

Description 

Bias correction factor b(N) for maximum likelihood estimate m. 
Parameters In: 

N sample size (must be in the range of 5 to 40. Otherwise, a warning message is issued 
and BIAS is set to unity.) 

Parameters Out: 

none 

Externat Subroutines: 

none 

Externat Functions: 

none 

Locat Variables: 

B(*) auxiliary array (contains bias correction factors b(N) for N = 5, .. .40) 
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A.2.10 Subroutine MAXL 

Description 

Yields maximum likelihood estimates of Weibull stress parameters. 

Parameters In: 

LSTMAX sample size (corresponds to max. no. of Ioad steps), i.e. no. of fractured specimens 
analysed. 

Parameters Out: 

none 

External Subroutines: 

none 

External Functions: 

BIAS bias correction 

DMLF maximum likelihood function for m 

Local Variables: 

I auxiliary variable (loop counter) 

ISTEP auxiliary variable (loop counter) 

DMLM auxiliary variable 

DMLO auxiliary variable 

DMLU auxiliary variable 

SUMW auxiliary variable 

WMLHM auxiliary variable 

WMLHD auxiliary variable 

WMLHU auxiliary variable 

WMTDL tolerance for accuracy of interval sectioning method 

A.2.11 Function DMLF 

Description 

Maximum likelihood function for m. 

Parameters In: 

DM value of m 

N sample size 

Parameters Out: 
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none 

External Subroutines: 

none 

External Functions: 

none 

Local Variables: 

I auxiliary variable (loop counter) 

SUMW auxiliary variable (I:;f' aw) 

SUMLW auxiliary variable (I::f' ln ( aw)) 

SUMWLW auxiliary variable (I:;f' ln ( aw) * aw) 

A.2.12 Subroutine CNFLIM 

Description 

80, 90, and 96 percent confidence intervals of ML estimates of parameters m and au are calculated 
and printed. 

Parameters In: 

N sample size 

DM ML estimate of parameter m 

XO ML estimate of parameterau 

Parameters Out: 

WMLO lower bound of confidence interval for parameter m 

WMUP upper bound of confidence interval for parameter m 

SIGULO lower bound of confidence interval for parameterau 

SIGUUP upper bound of confidence interval for parameterau 

External Subroutines: 

none 

External Functions: 

none 

Local Variables: 

I RDW auxiliary variable 

CNFTAB auxiliary array 

L1, L2 auxiliary variables for m intervals 

Tl, T2 auxiliary variables for au intervals 
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Appendix B 

Tables for Weibull parameter 
evaluation 

B .1 U nbiasing factors b( N) for m 

N B(N) N B(N) N 
5 0.669 17 0.919 29 
6 0.752 18 0.923 30 
7 0.792 19 0.927 31 
8 0.820 20 0.931 32 
9 0.842 21 0.935 33 

10 0.859 22 0.938 34 
11 0.872 23 0.941 35 
12 0.883 24 0.943 36 
13 0.893 25 0.945 37 
14 0.901 26 0.947 38 
15 0.908 27 0.949 39 
16 0.914 28 0.951 40 

Table B.1: Unbiasing factors b(N) 
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B(N) 
0.953 
0.955 
0.957 
0.958 
0.959 
0.960 
0.961 
0.962 
0.963 
0.964 
0.965 
0.960 



B.2 Percentage points, t1(N, ai) and t 2(N, a 2), for the confidence 
interval for CJ u at confidence Ievel 1 - a 

N Ü:l = 0.02 Ü:l = 0.05 Ü:l = 0.10 Ü:2 = 0.90 Ü:2 = 0.95 Ü:2 = 0.98 
5 -1.631 -1.247 -0.888 0.772 1.107 1.582 
6 -1.396 -1.007 -0.740 0.666 0.939 1.291 
7 -1.196 -0.874 -0.652 0.598 0.829 1.120 
8 -1.056 -0.784 -0.591 0.547 0.751 1.003 
9 -0.954 -0.717 -0.544 0.507 0.691 0.917 

10 -0.876 -0.665 -0.507 0.475 0.644 0.851 
11 -0.813 -0.622 -0.477 0.448 0.605 0.797 
12 -0.762 -0.587 -0.451 0.425 0.572 0.752 
13 -0.719 -0.557 -0.429 0.406 0.544 0.714 
14 -0.683 -0.532 -0.410 0.389 0.520 0.681 
15 -0.651 -0.509 -0.393 0.374 0.499 0.653 
16 -0.624 -0.489 -0.379 0.360 0.480 0.627 
17 -0.599 -0.471 -0.365 0.348 0.463 0.605 
18 -0.578 -0.455 -0.353 0.338 0.447 0.584 
19 -0.558 -0.441 -0.342 0.328 0.433 0.566 
20 -0.540 -0.428 -0.332 0.318 0.421 0.549 
22 -0.509 -0.404 -0.314 0.302 0.398 0.519 
24 -0.483 -0.384 -0.299 0.288 0.379 0.494 
26 -0.460 -0.367 -0.286 0.276 0.362 0.472 
28 -0.441 -0.352 -0.274 0.265 0.347 0.453 
30 -0.423 -0.338 -0.264 0.256 0.334 0.435 
32 -0.408 -0.326 -0.254 0.247 0.323 0.420 
34 -0.394 -0.315 -0.246 0.239 0.312 0.406 
36 -0.382 -0.305 -0.238 0.232 0.302 0.393 
38 -0.370 -0.296 -0.231 0.226 0.293 0.382 
40 -0.360 -0.288 -0.224 0.220 0.285 0.371 
42 -0.350 -0.280 -0.218 0.214 0.278 0.361 
44 -0.341 -0.273 -0.213 0.209 0.271 0.352 
46 -0.333 -0.266 -0.208 0.204 0.264 0.344 
48 -0.325 -0.260 -0.203 0.199 0.258 0.336 
50 -0.318 -0.254 -0.198 0.195 0.253 0.328 
52 -0.312 -0.249 -0.194 0.191 0.247 0.321 
54 -0.305 -0.244 -0.190 0.187 0.243 0.315 
56 -0.299 -0.239 -0.186 0.184 0.238 0.309 
58 -0.294 -0.234 -0.183 0.181 0.233 0.303 
60 -0.289 -0.230 -0.179 0.177 0.229 0.297 
62 -0.284 -0.226 -0.176 0.174 0.225 0.292 
64 -0.279 -0.222 -0.173 0.171 0.221 0.287 
66 -0.274 -0.218 -0.170 0.169 0.218 0.282 
68 -0.270 -0.215 -0.167 0.166 0.214 0.278 
70 -0.266 -0.211 -0.165 0.164 0.211 0.274 

Table B.2: Auxiliary variables for the confidence interval for au 
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N Ü:l = 0.02 Ü:l = 0.05 Ü:l = 0.10 0:2 = 0.90 0:2 = 0.95 0:2 = 0.98 
72 -0.262 -0.208 -0.162 0.161 0.208 0.269 
74 -0.259 -0.205 -0.160 0.159 0.205 0.266 
76 -0.255 -0.202 -0.158 0.157 0.202 0.262 
78 -0.252 -0.199 -0.155 0.155 0.199 0.2.58 
80 -0.248 -0.197 -0.153 0.153 0.197 0.255 
85 -0.241 -0.190 -0.148 0.148 0.190 0.246 
90 -0.234 -0.184 -0.144 0.143 0.185 0.239 
95 -0.227 -0.179 -0.139 0.139 0.179 0.232 

100 -0.221 -0.174 -0.136 0.136 0.175 0.226 
110 -0.211 -0.165 -0.129 0.129 0.166 0.215 
120 -0.202 -0.158 -0.123 0.123 0.159 0.205 

Table B.2: Auxiliary variables for the confidence interval for au (cont'd.) 

B.3 Percentage points, h(N1 o:1) and l2(N1 a2), for the confidence 
interval for m at confidence level 1 - a 

N Ü:l = 0.02 Ü:l = 0.05 Ü:l = 0.10 0:2 = 0.90 0:2 = 0.95 0:2 = 0.98 
s 0.604 0.683 0.766 2.277 2.779 3 . .518 
6 0.623 0.697 0.778 2.030 2.436 3.067 
7 0.639 0.709 0.78.5 1.861 2.183 2.640 
8 0.6.53 0.720 0.792 1.747 2.01.5 2.377 
9 0.665 0.729 0.797 1.66.5 1.896 2.199 

10 0.676 0.738 0.802 1.602 1.807 2.070 
11 0.686 0.74.5 0.807 1..5.53 1.738 1.972 
12 0.69.5 0.7.52 0.811 1.513 1.682 1.894 
13 0.703 0.7.59 0.81.5 1.480 1.636 1.830 
14 0.710 0.764 0.819 1.452 1.597 1.777 
1.5 0.716 0.770 0.823 1.427 1.564 1.732 
16 0.723 0.77.5 0.826 1.406 1.535 1.693 
17 0.728 0.779 0.829 1.388 1.510 1.660 
18 0.734 0.784 0.832 1.371 1.487 1.630 
19 0.739 0.788 0.835 1.3.56 1.467 1.603 
20 0.743 0.791 0.838 1.343 1.449 1..579 
22 0.752 0.798 0.843 1.320 1.418 1.538 
24 0.759 0.805 0.848 1.301 1.392 1.504 
26 0.766 0.810 0.852 1.284 1.370 1.47.5 
28 0.772 0.815 0.856 1.269 1.351 1.450 
30 0.778 0.820 0.860 1.257 1.334 1.429 
32 0.783 0.824 0.863 1.246 1.319 1.409 
34 0.788 0.828 0.866 1.236 1.306 1.392 
36 0.793 0.832 0.869 1.227 1.294 1.377 
38 0.797 0.835 0.872 1.219 1.283 1.363 
40 0.801 0.839 0.875 1.211 1.273 1.351 

Table B.3: Auxiliary variables for the confidence interval for m 
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N G'l = 0.02 G'l = 0.05 G'l = 0.10 G'2 = 0.90 G'2 = 0.95 G'2 = 0.98 
42 0.804 0.842 0.877 1.204 1.265 1.339 
44 0.808 0.845 0.880 1.198 1.256 1.329 
46 0.811 0.847 0.882 1.192 1.249 1.319 
48 0.814 0.850 0.884 1.187 1.242 1.310 
50 0.817 0.852 0.886 1.182 1.235 1.301 
52 0.820 0.854 0.888 1.177 1.229 1.294 
54 0.822 0.857 0.890 1.173 1.224 1.286 
56 0.825 0.859 0.891 1.169 1.218 1.280 
58 0.827 0.861 0.893 1.165 1.213 1.273 
60 0.830 0.863 0.894 1.162 1.208 1.267 
62 0.832 0.864 0.896 1.158 1.204 1.262 
64 0.834 0.866 0.897 1.1.55 1.200 1.256 
66 0.836 0.868 0.899 1.152 1.196 1.251 
68 0.838 0.869 0.900 1.149 1.192 1.246 
70 0.840 0.871 0.901 1.146 1.188 1.242 
72 0.841 0.872 0.903 1.144 1.185 1.237 
74 0.843 0.874 0.904 1.141 1.182 1.233 
76 0.845 0.875 0.905 1.139 1.179 1.229 
78 0.846 0.876 0.906 1.136 1.176 1.225 
80 0.848 0.878 0.907 1.134 1.173 1.222 
85 0.852 0.881 0.910 1.129 1.166 1.213 
90 0.855 0.883 0.912 1.124 1.160 1.206 
95 0.858 0.886 0.914 1.120 1.155 1.199 

100 0.861 0.888 0.916 1.116 1.150 1.192 
110 0.866 0.893 0.920 1.110 1.141 1.181 
120 0.871 0.897 0.923 1.104 1.133 1.171 

Table B.3: Auxiliary variables for the confidence intervalform (cont'd) 
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