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Abstract 

In this report stress analysis in a multi - layers joint, a plate or a cylinder, shall 

be presented. In a metal - ceramic joint, creep behavior of the metal is studied 

at high temperature. Equations to calculate analytically the stresses far away 

from the ends of the joint are given in an explicit form. The stresses obtained by 

these equations and by the finite element method (FEM) are compared to show 

the agreement of them. The effects of the material creep behavior on the stresses 

in a plate and cylinder are compared. Finally, an example is given for a multi -

layers joint with a functionally graded material (FGM). 

Kriechverhalten in einem Mehrschichtverbund 

Zusammenfassung 

In diesem Bericht wird eine Spannungsanalyse in einem Mehrschichtverbund, 

einer Platte oder einem Zylinder, durchgeführt. In einem Metall - Keramik -

Verbund wird das Kriechverhalten des Metalls bei Hochtemperatur untersucht. 

Die Gleichungen zur analytischen Berechnung der Spannungen weit weg vom 

Rand des Verbundes werden in einer expliziten Form gegeben. Die Spannungen, 

die durch diese Gleichungen und durch die Finite-Element-Methode (FEM) be

rechnet werden, werden verglichen. Die Effekte des materiellen Kriechverhaltens 

auf die Spannungen in einer Platte und in einem Zylinder werden auch verglichen. 

Schließlich wird ein Beispiel für einen Mehrschichtverbund mit Gradientenwerk

stoff (FGM) gegeben. 
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Chapter 1 

Introduction 

In engineering applications, a number of ceramic - metal joints are used under 

high-temperature conditions, in which the metal is used as a mechanical support 

structure and the ceramic as a coating for resisting the high temperature. For 

most metals creep behavior exists when the temperature is higher than 800°C. 

Therefore, material creep behavior must be considered in the stress analysis. 

In a multi - layers joint of ceramic and metal, very high stresses develop after a 

homogeneaus temperature change ( e.g. the residual stress) due to the difference 

in the thermal expansion coefficients and the elastic constants. For linear elastic 

material behavior, stress singularities exist at the intersection of the interface and 

the free edges. To reduce these stresses and to avoid the stress singularity in a 

quarterplanes joint, a functionally graded material (FGM) can be introduced as 

inter layer. 

In this report a multi - layers joint, with and without a functionally graded ma

terial as interlayer, is considered. Stress analysis in a plate and cylinder will be 

perforrned taking into account the material creep behavior. In the range far away 

from the free edge ( or from the ends) of a joint, the stresses can be calculated 

analytically. However, near the free edge the stresses can be obtained only from 

the finite elment method for materials following the multiaxial creep law. Stresses 

in a joint with and without FGM layer, with and without considering the creep 

behavior, in a plate and in a cylinder will be compared in order to determine 
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the effect of introducing a FGM layer and the influence of the material creep 

behavior on the stress distribution. The results show that the values of some 

stress components are increased when considering the material creep behavior. 

In a joined cylinder, for example, this applies to the stress component in radial 

direction, which may lead to a delamination of the joint. 
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Chapter 2 

Basic Equations for Multi 

Layers Cylinders 

In this chapter equations to calculate the stresses far away from the ends of a 

multi- layers cylinder will be given for elastic behavior (time equals zero) and for 

taking into account the material creep behavior (time dependent). Three cases 

will be treated, namely (a) the strain in the axial direction is assumed tobe zero, 

(b) the strain in the axial direction is an arbitrary constant, ( c) the strain in the 

axial direction is arbitrary. 

2.1 Salutions for elastic behavior 

2 .1.1 Zero strain in axial direction 

If the loading of a multi - layers cylinder is axial symmetric, the solution of 

the stresses is also symmetric. For the case of a cylinder being subjected to a 

temperature change (i.e. T=T(r)), the stress distribution is axial symmetric. 

If Ez = 0 is assumed ( coordinate system see Fig.l), the elastic stress - strain 

relations in each homogeneaus material read 

(2.1) 

(2.2) 
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L 

Fig.l The investigated geometry and the coordinate system. 
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with E' = E /(1- v2
), or 

Clr = E(1- v) (Er+ _v_E - 1 + l/ ar) 
(1- 2v)(1 + v) 1 - v <P 1- v 

(2.3) 

(J = E(1- v) (E + _v_Er- 1 + l/ ar) 
<P (1-2v)(1+v) <P 1-v 1-z; 

(2.4) 

(2.5) 

where E is the Young's modulus, v the Poisson's ratio, a the thermal expansion 

coefficient and T is the temperature distribution in the cylinder T=T(r) or a 

homogeneaus change of the temperature from a stress-free state. The strains are 

related to the displacement as 

du 
Er=-

dr 

u 
Eq, =

r 

(2.6) 

(2.7) 

where u is the displacement in r - direction. The equilibrium equation for this 

problern is 

Substituting Eqs.(2.6-2.7) into Eqs.(2.3-2.4) then in Eq.(2.8) yields 

d
2
u +~du _ 3!_ = !}_ (~ d(r u)) = 1 + v a dT(r). 

dr2 r dr r 2 dr r dr 1 - v dr 

The solution of Eq.(2.9) is 

1+v 1/ A B u = --a- T(r)rdr + -r + -, 
1-v r 2 r 

where A and Bare unknown constants. 

(2.8) 

(2.9) 

(2.10) 

Corresponding to this solution of u, the strains and stresses can be calculated 

from 

Er= --a -- T(r)rdr+T(r) +---1+v { 1 J } A B 
1- v r 2 2 r 2 

(2.11) 
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1+v 1 J A B 
E</> = --a- T(r)rdr +-+-

1- v r 2 2 r 2 
(2.12) 

E a J E (A 1 B) CYr = ---- T(r)rdr + -- - --
1 - v r 2 1 + v 2 1- 2v r 2 

(2.13) 

E ( a J ) E (A 1 B) o-<1> = -- - T(r)rdr- aT(r) + -- - +-
1- v r 2 1 + v 2 1 - 2v r 2 

(2.14) 

E A 2 E 
CYz = v--- - --aT(r). 

1 + V 2 1 - 2V 1 - V 
(2.15) 

If the temperature distribution in the cylinder is a constant, i.e. there is a homo

geneous temperature change in the cylinder, the above equations can be simplified 

as 

1+v T A B 
u = --a-r + -r + -, 

1-v 2 2 r 

1+v T A B 
E = --a-+--

r 1- v 2 2 r 2 

1+v T A B 
E</> = --a- + - + -

1- v 2 2 r 2 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

To determine the unknown constants A and B in each material, boundary and in

terface conditions have tobe used. Fora three-layers cylinder, the conditions are: 

at r=Ro ( coordinates see Fig.1) 

(2.21) 

at r=Rt 

o-(1) = o-(2) 
r r 

u(l) = u(z), (2.22) 
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0"(2) = 0"(3) 
r r 

u(2) = u(3)' 

and at r=R3 

0"(3) = 0 
r ' 

where the superscript (i) denotes the quantity being in material i. 

The boundary conditions lead to the following equations: 

(2.23) 

(2.24) 

(2.25) 

E2 T E2 ( A2 1 B2) E3 T E3 ( A3 1 B3) 
1 - v2 a

2 2 - 1 + v2 2 1 - 2v2 - R§ = 1 - v3 a
3 2 - 1 + 113 2 1 - 2113 - R§ 

(2.28) 

(2.29) 

E3 T E3 ( A3 1 B3) 
-1- v

3 
a 3 2 + 1 + v

3 
21- 2v

3 
- R~ = O. (2.30) 

Using the definitions of 

(2.31) 

7 



1 
771 = _1 ___ 2_1/_1 

1 
7]2 = ---

1 - 2vz 
1 

B* = !!_ 
Rt 

A* = A 
2 

Eqs.(2.25-2.30) can be rewritten as 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

-7]zA; + rz1B; + E327J3A;- E3zBir21 = ~ (E32A3a3- ,\zaz) (2.39) 
"" 
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(2.41) 

where the subscript i is for material i. 

By solving Eqs.(2.36-2.41), the coefficients A1 , B 1 , A2 , B 2 , A3 , B3 can be deter

mined. After using the program MATHEMATICA and simplifying the solution, 

there is 

~ = 'r/3 (E32- 1) ( 'r/1 ("72 + E12) + ("72- 'r/1E12) ro1 )r~1 + 

+'r/1 (E12- 1) (ry3E32- 'r/2) r31 + (1 + 'r/1E12) ('r/2- "73E32) rmr31 + 

+r21 ["71"73 (1 - E12) ("72 + E32) - "71 ("72 + E12) (1 + "73E32) r31 + 

+ro1 ( 'r/3 (1 + 'f71E12) ("72 + E32) + (ry1E12- 'r/2) (1 + "73E32) r31)] (2.42) 

A~ a3 (1 + "72) (1 + "73) E32A3ro1 (r21 - r31) + a2 (1 + "72) A2ro1 (1 - r21) x 

x ( 'r/3 (1 - E32) r21 + (1 + "73E32) r31) + a1.A1 (rol - 1) ["73 ("72 + E12) x 

x (1- E32) r~1 + (E12- 1) ('r/2- 'f73E32) r31 + 

+r21 ( 'r/3 (E12- 1) ('r/2 + E32) + ('r/2 + E12) (1 + "73E32) r31)] (2.43) 

B~ a3"71 (1 + "72) (1 + 'r/3) E32A3 (r21 - r31) + 

+a2'r/1 (1 + 'r/2) A2 (1 - r21) ( 'r/3 (1 - E32) r21 + (1 + "73E32) r31) + 

+a1 (1 + ryi) A1 [- 'r/3 ("72 + E32) r21 + 'r/2"73 (1 - E32) r~1 + 

+ ( "73E32- "72 + 'r/2 (1 + 'f73E32) r21 )r31] (2.44) 

A; a3 (1 + 'r/3) E32A3 ( "71 (1 - E12) + (1 + 'r/1E12) rm) (r21 - r31) + 

+a2.A2 ( "71 (1 - E12) + (1 + 'f71E12) ro1) (1 - r21) x 

x ( 'r/3 (1 - E32) r21 + (1 + 'f73E32) r31) + 

+a1 (1 + 'r/1) E12A1 (rol - 1) r21 ( 'r/3 (1- E32) r21 + (1 + 'f73E32) r31) 

(2.45) 

B~ as (1 + 'r/3) E32A3 ( "71 ("72 + E12) + ('r/2 - 'r/1E12) rm) (r21 - r31) -

-a1 (1 + r71) E12,\1 (1- roi) ( 'r/3 ("72 + E32) r21 + ("72- 'r/sEs2) rs1) + 

+a2 (1 + 'r/2) A2 ["71"73 (E12- E32) r21 + "71 (E12 + "73Es2) r31-

-ro1 ( 'r/3 (ry1E12 + E32) r21 + (ry1E12- "73E32) r31)] (2.46) 
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A~ a2 (1 + f/2) -A2( f/1 (1- E12) + (1 + f/1E12) r01) (1- r21) r31 + 

+a1 (1 + f/1) (1 + f/2) E12A1 (r01 - 1) r21r31 + a3A3 (r31 - r21) x 

x { f/1 (f/2 + E32) (E12- 1) + f/1 (rJ2 + E12) (1- E32) r21 -

-rol [(f/2 + E32) (1 + 771E12)- (f/2- f/1E12) (1- E32) r21]} 

(2.47) 

B~ =, a2 (1 + f/2) f/3A2(f/1 (1- E12) + (1 + r]1E12) r01) (1- r21) + a1 (1 + rJd x 

x (1 + f/2) f]3E12A1 (rol - 1) r21 + a3 (1 + f/3) A3 [771 f/2 (E12 - 1) + 

+f/1 (rJ2 + E12) r21 + ro1 ( (772- f/1E12) r21 - f/2 (1 + 771E12))) (2.48) 

and 

(2.49) 

(2.50) 

Now the coefficients A1 , B1, A2 , B2 , A3 , B3 are known. The stress distribution in 

a multi- layers cylinder can be calculated analytically from Eqs.(2.19,2.20,2.15) 

for the case of Ez = 0 and T = constant. 

2.1.2 Constant strain in axial direction 

In this section a multi- layers cylinder under mechanicalloading at the ends and 

having a constant strain in axial direction in the range far away from the ends 

shall be dealt with. For the case of Ez = d, the solution in each material is 

(2.51) 

(2.52) 

(2.53) 
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fz = d (2.54) 

_ E {A (1- 2v)Bc d} 
Cir - c- + lJ 

(1 + v)(1 - 2v) r2 
(2.55) 

E { (1- 2v)Bc } 
CJ<P = (1 + v)(1 - 2v) Ac+ r 2 + vd (2.56) 

Ciz = (1 + v)~1 _ 2v) { 2Acv + (1- v)d }, (2.57) 

where d is the constant strain in axial direction and Ac, Be are unknown con

stants. To determine the unknown constants A1c, B1c, A2c, B2c,A3c, B3c in each 

material, boundary conditions have to be used. From the boundary conditions, 

the following equations are obtained: 

A 
(1 - 2vl)Blc d _ 

lc - RÖ + 1/1 - 0 (2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 
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The solution of Eqs.(2.58-2.63) is 

Llc - (1- E~2)r31(Ef2 (1- 2vl)- (1- 2v2)) (1- 2v3) + 
+ r~1 (1 + Ef2 (1- 2v1)) (1- 2v2- E~2 (1- 2v3))-

- r21 [ (1- 2v2) + E~2 (1 - 2v2) (1- 2v3) - r31 ( 1 + Ef2 (1- 2vl)) x 

x (1 + E~2 - 2v2) (1 - 2v3) - Ef2 (1 - 2v1) ( 1 + E~2 (1 - 2v3))) + 

+ ro1 { (E~2 - 1) r31 (1- 2vl) (1 + Ef2 - 2v2) (1- 2v3) + 

+ (1 - Ef2) r~1 (1 - 2vl) ( 1 - 2v2 - E~2 (1 - 2v3)) -

-r21 [ (1 - 2vl) (1 - 2v2) + Ef2 (1 - 2vl) ( 1 + E~2 (1 - 2v3)) + 

+E~2 (1- 2vl) (1- 2v2) (1- 2v3)- (1- Ef2) r31 (1- 2vl) x 

Aic = (1 - E~2 ) r31ll1 ( 1 - 2v2 - Ef2 (1 - 2vl)) (1 - 2v3) -

-r~1 v1 (1 + Ef2 (1- 2vl)) (1- 2v2- E~2 (1- 2v3)) + 

(2.64) 

+r21ll1 [ (1 - 2v2) - Ef2 (1 - 2vl) ( 1 + E~2 (1 - 2v3)) - r31 ( 1 + Ef2 (1 - 2v1)) 

x (1 + E~2 - 2v2) (1 - 2v3) + E~2 (1 - 2v2) (1- 2v3)) + 

+ro1 {r~1 (1- 2v1) (Ef2v1 - v2)(1- 2v2- E~2 (1- 2v3)) + r31 (1- 2vl) x 

x (1 - 2v3) ( Ef2 (1 - E~2 ) v1 + (1 - 2v2) v2 + E~2 (v2 - 2v3 + 2v2v3)) + 

+r21 [ (1 - 2vl) v2 (1 - 2v2) + Ef2v1 (1 - 2vl) ( 1 + E~2 (1 - 2v3)) + 

+r31 (1 - 2v1) (1 + E32 - 2v2) (Ef2vl - v2) (1 - 2v3)-

-E~2 (1- 2vl) (1- 2v3) (v2- 2v3 + 2v2v3))} (2.65) 

B;c = r~1 (v1 - v2) ( 1- 2v2- E~2 (1 - 2v3)) - r31 (1- 2v3) X 

x [ (v1 - v2) (1 - 2v2) - E~2 ( (1 - v1) v2 + (1 - v2) (v1 - 2v3))] -

- r21 [ (v1 - v2) (1- 2v2) - r31 (1 + E~2 - 2v2) (v1 - v2) (1 - 2v3) + 

+ E~2 (1 - 2v3) ( (1 - v1) v2 + (1 - v2) (v1 - 2v3))) (2.66) 

A;c - r31 ( 1 - 2v2 - Ef2 (1 - 2vl)) (1 - 2~'s) (v2 - E~2 v3) -
- r~1 ( Ef2vl (1 - 2vl) + v2) ( 1 - 2v2 - E~2 (1 - 2v3)) + 
+ r2d (1 - 2v2) l/2- r31 (1 + E~2 - 2v2) ( Ef2vl (1- 2v1) + v2) (1 - 2v3) + 

12 



+Eg2 (1- 2v2) V3 (1- 2v3)- Ef2 (1- 2v1) (v2 + Eg2 (1- 2v3) v3)] + 

+ rm {r31 (1- 2vi) (1- 2v2 + Ef2) (1- 2v3) (v2- Eg2v3) + 

+ r~1 (1 - 2vi) (Ef2vl - v2) ( 1 - 2v2 - Eg2 (1 - 2v3)) + 

+ r 21 [ (1- 2vi) v2 (1- 2v2) + r31 (1- 2v1) (1 + Eg2 - 2v2) x 

x (Ef2vl - v2) (1 - 2v3) + Eg2 (1 - 2vi) (1- 2v2) v3 x 

x (1 - 2v3) + Ef2 (1 - 2v1) (v2 + Eg2 (1 - 2v3) v3)]} (2.67) 

B;c = r31 [Ef2 (1- 2v1) (v2- v1 + Eg2 (v1 - v3)) (1 - 2v3) + 

+ Eg2 (v2 - v3) (1 - 2v3)] - r21 [Eg2 (v2 - v3) (1 - 2v3) + 

+ Ef2 (1- 2vl) (v1- v2 + Eg2 (v1- v3) (1- 2v3) )] + ro1 x 

x { r31 (1- 2vi) (1 - 2v3) [Ef2 (v1 - v2) + Eg2 (v2 - v3- Ef2 (v1 - v3))] -

- r21 [Eg2 (1- 2v1) (v2- v3) (1- 2v3) - Ef2 (1- 2vl) x 

x (v1 - v2 + Eg2 (v1 - v3 ) (1 - 2v3))]} (2.68) 

Aic - r~1 ( 1 + Ef2 (1 - 2vl)) ( Eg2 (1 - 2v3) - (1 - 2v2)) V3 + 

+ r31 ( 1 - 2v2- Ef2 (1- 2v1)) (1- 2v3) (v2- Eg2v3) + 

+ r21 { (1- 2v2) v3 - Ef2 (1- 2vt) (1 + Eg2 (1- 2v3) )v3 + 

+Eg2 (1- 2v2) v3 (1- 2v3)- r31 (1- 2v3) [ (1- 2v2) v2 + 

+Ef2 (1- 2vl) (2vl- v2- 2v1v2) + Eg2(1 + Ef2 (1- 2vi) )v3]} + 

+ ro1 { (1 - Ef2) r~1 (1 - 2vl) ( Eg2 (1 - 2v3) - (1 - 2v2)) v3 + 

+r31 (1 - 2vl) (1 - 2v2 + Ef2) (1 - 2v3) (v2 - Eg2v3) + 

+r21 [ (1- 2vl) (1- 2v2) V3 + Ef2 (1 - 2vl) ( 1 + Eg2 (1- 2v3) )v3 + 

+Eg2 (1- 2v1) (1- 2v2) v3 (1- 2v3) + r31 (1 - 2vi) (1- 2v3) x 

x ( Ef2 (2vl - v2 - 2v1v2) - v2 (1 - 2v2) - Eg2 v3 (1 - Ef2))]} (2.69) 

Eie = (1 - 2v2) V2 - Ef2 (1 - 2vt) (v2 - v3) - (1 - 2v2) V3 - r21 X 

x [ (1- 2v2) (v2- vs) + Ef2 (1- 2vi) (2v1- (1 + 2v1) l/2- (1- 2v2) v3)] 

+ro1 (1 - 2vl) { (1 - 2v2) (v2 - va) - r21 (1 - 2v2) (v2 - v3) + 

+ Efdv2 - V3 + r21 ( 2vl - (1 + 2vl) v2 - (1 - 2v2) v3)]} (2. 70) 
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with 

and 

B dR2B;c 
lc = 1~' 

c 
B dR2B~c 2c = 1~' 

c 

(2.71) 

(2.72) 

B dR2Bic 
3c = 1 6c · (2. 73) 

Using the coefficients A 1c, B 1c, A2c, B2c, A3c, B3c, stresses in the cylinder can be 

determined analytically from Eqs.(2.55-2.57) for the case of a cylinder having 

Ez=d. 

2.1.3 Arbitrary strain in axial direction 

Fora multi -layers cylinder under thermalloading, in fact, the strain Ez is not zero 

and the stress az at the ends of the cylinder is zero. To find an exact analytical 

solution, satisfying az = 0 at each point of the ends of a cylinder, is very difficult. 

Although az = 0 at the ends of the cylinder cannot be satisfied at each point, 

the solution of the resulting force at the ends of the cylinder being zero 

(2.74) 

is useful, where ~ is the inner radius and Ra is the outer radius of the cylinder. 

For the case of az in each layer being a constant, Eq.(2.74) can be rewritten as 

N 

1f L a~i) [ (R~i))2 - (Rli))2] = 0 (2. 75) 
i=l 

where N is the number of the layers, R~i) the outer radius and R}i) the inner 

radius of each layer. 
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Under the assumption of Ez = 0, the resulting force of az at the ends is 

(2.76) 

The real situation is that the resulting force is zero at the ends of the cylinder. 

To describe the true stress distribution in the range far away from the ends, 

according to the Saint-Venant principle, the solution for loading with a resulting 

force -F0 should be superposed to that of Ez = 0. Under loading with a resulting 

force -F0 , the cylinder has a constant Ez in the range far away from the ends 

- denoted as d. From section 2.1.2 it is known that the resulting force of az 

corresponding to Ez=d is 

(2.77) 

where Aic is a function of d (see Eq.(2.72)). Following 

(2. 78) 

the quantity d can be determined. From Eqs.(2.76,2.77,2.72,2.78), there is 

r:_IY__ { [v__]}}j_____b_ - __]}}j_a·T] [(R(i))2 - (R~i))2]} z-1 z 1+v·1-2v· 1-v· z a z d ==- 1. l t 

N { E [2~ (1 )] [(R(i))2 (R(i))2]} "E-i=1 (1+v;)(1-2vi) ~c Vi + - Vi a - i 

(2. 79) 

where Ai, Aic, 6.c see chapters 2.1.1 and 2.1.2. Finally, the true stress distribution 

in a multi - layers cylinder under thermal loading is 

(2.80) 

where at will be calculated from section 2.1.1 and afj will be determined from 

section 2.1.2 using the value of d from Eq.(2.79). In chapter 3, some examples 

will be presented to see the agreement between the stresses calculated from the 

finite element method and those obtained by the analytical equations given in 

this chapter. 
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2.2 Salutions for creep behavior 

2.2.1 The case of Ez = 0 

Following Norton's law for creep material, the relation between the rates of stress 

and strain in the multi - axial form is 

. 1 + v . v . ;: 3D (n-l)S 
E· · = --a· · - -akku· · + - a · · 

tJ E tJ E tJ 2 eff tJ' 
(2.81) 

where . denotes the rate, D and n are material creep constants, Sij is the devi

ator of the stress tensor aij, akk is the sum of the three normal stresses, Oij is 

Kronecker's tensor and aeff is the effective stress of the stress tensor, which are 

defined as 

{ 

1 if i=j 
8··-

t) - 0 if i#j 

The rates of strains and displacement satisfy 

. du 
Er= dr 

. u 
E,p = -. 

r 

The equilibrium equation of the stress rate is 

d(J r CJ r - CJ ,p -+ =0. 
dr r 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

For the case of fz = 0, the following relations can be obtained from Eq.(2.81): 

. _ 1 (. v . ) 3D (n-1) (S S ) 
Er - E' a r - 1 _ lJ a ,p + 2 a eff r + lJ z (2.88) 
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(2.89) 

and 

. _ E(1- v) {. v . 3 (n-1) [( ) V (S S )] } 
ar- (1- 2v)(1 + v) Er+ 1 _ vEq,- 2Daeff Sr+ vSz + 1 _ V q, +V z 

(2.90) 

. _ E(1-v) {· V. 3 (n-1)[( ) V ( )]} 
aq,- (1- 2v)(1 + v) Eq, + 1- vEr- 2Daeff Sq, + vSz + 1- v Sr+ vSz 

(2.91) 

. - (. . ) 3D (n-1)ES a z - V a r + a q, - 2 a eff z · (2.92) 

It can be seen that Sr and Sq, always appear in the combination of Sr+ vSz and 

Sq, + vSz. Therefore, the definitions 

SI q, (2.93) 

will be used in the following. Insertion of Eqs.(2.85-2.86) into Eqs.(2.90-2.91) 

then into Eq.(2.87) yields 

d
2
ü +~du_ u = !!__ (~ d(r u)) 

dr2 r dr r 2 dr r dr 

~D!!_ [a(n-1)(SI + _v_SI )] + 1- 2v 3 Da(n-1) s;- S~. (2.94) 
2 dr eff r 1 - v q, 1 - v 2 eff r 

The solution of Eq.(2.94) is 

u = ~{ j [r~Da(n- 1)(S1 + _v_S1 
)] dr + 

r 2 eff r 1 - v q, 

1- 2v J I J [3D (n-1) s;- s~l d d I A 2 s} + 1 - v r 2 a eff r r r + r + ' (2.95) 

where A, B are unknown constants. In the general case, the quantities a~fi 1 ), s; 
and S~ are a function of r. Therefore, Eq.(2.95) cannot be integrated. 

If the thickness of the creep layer is very thin, however, a~fi 1 )' s; and s~ can 

be assumed as being constant in the integration range. This is the case for a 
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coated structure with an interlayer exhibiting a creep behavior. For this case, 

the solution can be simplified as 

. ß 1 3 ( _1){ v 1- 2v [ r]} u =Ar+-+- x -Da nff r(s; + --S~) + (s;- S~) r ln(r)-- . 
r 2 2 e 1-v 1-v '~' 2 

(2.96) 

Todetermine the constants A, ß, boundary conditions have to used. For simpli

fying the equations obtained from boundary conditions, the solution of ü can be 

rewritten as 

ü = ! { r [r 1 ~ Da(n-1
) (S1 + _v_S1 

)] dr1 + 
r J R; 2 eff r 1 - v <I> 

+ 1 - 2v r r1 r' [~ Da(n-1) S~ - S~l dr" dr 1 + A + ßr2 }; (2.97) 
1 - V j R; j R; 2 eff r" 

where ~ is the inner radius of the creep layer. Integrating Eq.(2.97) results as 

ü = A 1 3 (n-1){( I v s~ )( Rr) - + ßr +-x-Da ff Sr+-- " r-- + r 2 2 e 1-v '~' r 

1 - 2v 1 1 [ r R? R7 ]1 
+ 1 _ v (Sr- S</>) r ln(r)- 2- -;-In(~)+ 2r J' (2.98) 

It is noted that the values of A and ß in Eq.(2.96) and Eq.(2.98) are different. 

The rates of strains and stresses according to ü as given in Eq.(2.98) are 

A 1 3 (n-1){(sl v s~)( R7) -- + ß + - x -Da ff + -- 1 + - + r 2 2 2 e r 1 - v <I> r 2 

+ S - ln r + - + - ln Ri - - . 1 - 2 v ( I s~ ) [ ( ) 1 Rr ( ) Rr ] } 
1 - v r </> 2 r 2 2r2 

(2.99) 

A ß ! x ~Da(n- 1){(S1 _v_S1 )(1- R[) 
r 2 + + 2 2 eff r + 1 - v <I> r 2 + 

+ S - S ln r - - - - ln Ri + - . 1 - 2v ( 1 1 ) [ ( ) 1 Rl ( ) R[ l } 
1 - V r </> 2 r 2 2r2 

(2.100) 

1 3 (n-1) E { I [ ( ) 1 R[ ( ) Rr 1 ( ) 1] -x-Da ff S ln r + -- + 1- 2v - n Ri -- + 
2 2 e 1 - v2 r 2 r 2 r 2 2 

S; [ ~ ( . 1 RJ ( ~ ) R[ . ( _ , 1] ) 
+ </> -In r) + 2 r~ - 1- 2v ?iln ~)- 2 J + 

+ (1- 2v~(l + v) [B- ~(1- 2v)J (2.101) 
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1 3 (n-1) E { 1 [ 1 RT RT 1] 
a<P 2 X 2Daeff 1 _ 1/2 Sr ln(r)- 2~- (1- 2v)-;:21n(~) + 

2 
+ 

+S' [-ln(r) - ~ RT + (1- 2v) RT ln(~) - ~] } + 
<I> 2 r 2 r 2 2 

+ (1 _ 2v~( 1 + v) [8 + ~ (1- 2v) J (2.102) 

Now a three-layers cylinder will be studied. It is assumed that the interlayer only 

exhibits creep behavior and is very thin. Therefore, Eqs.(2.98-2.103) can be used 

for the stress analysis. Although materials 1 and 3 do not show any creep behav

ior, the rates of displacement (u), strains (Er, Erp) and Stresses (är, a<P, az) arenot 

zero during material 2 creeping. The conditions for determining the unknown 

constants A 1 , 8 1 , A2, 82, A3 , 8 3 are: 

at r=Ro 

and at r=R3 

o-(1) = 0 
r ? 

a-~1) = a-~2) 

u(l) = u(2), 

. (2) - . (3) 
(Jr - (Jr 

iJ,(2) = iJ,(3)' 

They yield the following equations: 

A1 
81 - Rfi (1 - 2v1) = 0 
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(2.104) 

(2.105) 

(2.106) 

(2.107) 

(2.108) 



(2.110) 

(2.111) 

A3 
83- 2 (1- 2v3 ) = 0. 

R3 
(2.113) 

The solution of Eqs.(2.108-2.113) is 

E2 E3 
~t = (1- 2v2)(1 + v2) (1- 2v3)(1 + v3) (r31- r21) (1 + roi(1- 2vi)) x 

x (r21 + (1- 2v2)) (1- 2v3) + (( ~( ))
2 

(r21 - 1) (1 + r01 (1- 2vl)) 
1 - 2v2 1 + v2 

E1 
x(1- 2v2) (r21 + r31(1- 2v3)) + ( )(

1 
) (1- rm) (1- 2vl) x 

1 - 2vl + l/1 

x [ (1 _ 2v~( 1 + v
3
) (1- r21) (r21 - r3I) (1- 2v3) + 

+ (
1

- 2v~( 1 + v
2
) (1 + r21(1- 2v2)) (r21 + r 31 (1- 2v3))] (2.114) 
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A~ n E2 E3 
- t5 (1- 2v2)(1 + v2) (1 _ 2v3)(1 + v3) (r31- r21) 2(1- v2)(1- 2v3) 

_ n E2 
t4 (1 _ 2v

2
)(1 + v

2
) 2(1- v2) (r21 + r31(1- 2v3)) + 

+ n [ E3 t2 (1 _ 2v
3
)(1 + v

3
) (r21 - 1) (r21 - r3I) (1- 2v3)-

- (1- 2v~(1 + v
2
) (1 + r21(1- 2v2)) (r21 + r31(1- 2v3))] (2.115) 

B' n E2 E3 
1 - t5 (1- 2v2)(1 + v2) (1- 2v3)(1 + v3) rOl (r31- r2I) (1- 2v1) x 

x 2 ( 1 - v2 ) ( 1 - 2v3) -

n E2 
- t4 (1- 2v2)(1 + v2{o1 (1 - 2vi)2(1- v2) (r21 + r31 (1- 2v3)) + 

+ Rt2r01 (1 - 2v1) [ (1- 2v~( 1 + v
3
) (r21 - 1) (r21 - r3I) (1- 2v3)-

(1 _ 2v~(1 + v
2
) (1 + r21 (1 - 2v2)) (r21 + r 31 (1 - 2v3))] (2.116) 

A; - Rt5 E3 ( r - r ) [ E1 ( 
(1- 2v3)(1 + v3) 31 21 (1- 2v1)(1 + vt) 1 - rDl) (1 - 2v1) + 

+ (1 _ 2v~(1 + v
2
) (1 + ro1(1- 2v1))] (1- 2v3) + 

+ n ( E1 
t4 (1 - 2v1)(1 + v1) (ro1 - 1) (1- 2v1) -

- (1 - 2v~(1 + v
2
) (1 + ro1 (1 - 2v1))) (r21 + r31 (1 - 2v3)) + 

+ Rt2 (1 + r 01 (1 - 2v ) ) [ E3 ( ) 1 (1 - 2v3)(1 + v3) r31 - r21 (1 - 2v3) -

- (1- 2v~(1 + v2) (r21 + r31(1- 2v3)) l (2.117) 
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(2.118) 

A~ R E2 - - t2 (1- 2v
2
)(1 + v

2
) r21 (1 + ro1(1- 2v1)) 2(1- v2) + 

+ R [ E1 t4 (1 _ 2v
1
)(1 + vl) (r01 - 1) (r21 - 1) (1- 2v1) -

- (1 _ 2v~( 1 + v
2
) (1 + r01(1- 2v1)) (r21 + (1- 2v2))] + 

+ 'Rts [ ( (1 _ 2v~(1 + v,)) 
2 

(1- r,J) (1 + ToJ(1- 2vl)) (1- 2v2) + 

+ E1 E2 l 
(1- 2v1)(1 + v1) (1- 2v2)(1 + v2) (ro1- 1) (1- 2v1) (1 + r 21 (1- 2v2)) 

(2.119) 

B' R E2 3 - - t2 (1- 2v2)(1 + v2) r21r31 (1 + r01(1- 2vi)) 2(1- v2)(1- 2v3) + 

with 

+ R [ E1 t4 (1 _ 2v
1
)(1 + v

1
) (r01- 1) (r21- 1) r31(1- 2vl)(1- 2v3)-

- (1 _ 2~(1 + v
2
) T31 (1 + r01(1- 2vl)) (r21 + (1- 2v2)) (1- 2v3)] + 

+ R [( E2 )
2 

t5 (1 _ 2v
2
)(

1 
+ v

2
) (1- r2I) r31 (1 + roi(1- 2v1)) (1- 2v2)(1- 2v3 ) 

+ E1 E2 
(1- 2vi)(1 + v1) (1 _ 2v2)(1 + v2) (rol- 1) r31(1- 2v1) x 

x (1 + r21 (1 - 2v2)) (1 - 2v3)] (2.120) 

B' 
B - 1 1--

D-t' 
B' 

B - 2 
2 - D-t' 
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(2.121) 

B' 
B - 3 

3 --
D-t' 

(2.122) 



where nt2, Rt4 , Rt5 make up the right side ofEqs.(2.109,2.111,2.112) and r 01 , r 21 , r31 

see Eq.(2.33). 

When the coefficients A1 , 8 1 , A2 , 8 2 , A3 , 83 are known, the rate of stresses can be 

determined from Eqs.(2.101-2.103). To calculate the stresses at any time ti, an 

iteration should be performed, i.e. 

( i) ( . ) - ( i-1) ( . ) . ( i) ( . ) d ( i) aij r, tz - aij r, tz_ 1 + aij r, tz t (2.123) 

where 

i 

ti = 2:: dt(k). (2.124) 
k=O 

The solution of ti = 0 corresponds to the elastic behavior. To calculate a-t) (r, ti), 
the stresses at the time ti-l are used. In chapter 3, some examples will be pre

sented to illustrate the agreement between the stresses calculated from the finite 

element method and those obtained by the analytical equations given in this 

chapter. 

2.2.2 The case of Ez being constant 

It is assumed that the rate Ez is a constant- denoted as d. From Eq.(2.81), there 

is 

. Ed 3D (n-l}ES (. . ) az = - 2 a eff z +V ar + at/> (2.125) 

and 

. - 1 (. V . ) 3D (n-1} (S S ) d 
Er - E' a r - 1 _ V(]' 4> + 2 (]' eff r + V z - V (2.126) 

. 1 (. V . ) 3D (n-1} (S S ) d 
Etf> = E' a 4> - 1 - v a r + 2 a eff 4> + v z - v (2.127) 

. - E(1-v) {· V . 3D (n-1) [s' V s'] V d} 
(]'r - Er + --Etj> - - (]' + -- + --

(1- 2v)(1 + v) 1 -V 2 eff r 1- V t/> 1- V 

(2.128) 
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. _ E(1 - v) {. V . 3 (n-1) [s' V S'] V d} 
ar/>- (1- 2v)(1 + v) Erj> + 1- V Er- 2Daeff </> + 1- V r + 1- V . 

(2.129) 

Substituting Eqs.(2.85-2.86) into Eqs.(2.128-2.129) and then in Eq.(2.87) yields a 

differential equation for ü, which is the sameasthat given in Eq.(2.94). Therefore, 

the solution for ü is the same as that in Eq.(2.98), and the strains Er and f.r/> are 

the same as those given in Eqs.(2.99) and (2.100) (it is noted that the values of 

the coefficients A, ß are different). The stresses, however, differ from those of 

Eqs.(2.101) and (2.102) as follows 

-x-Da S ln r + -- + 1- 2v- n i -- + 1 3 (n-1) E { , [ ( ) 1 Rr ( ) R? 1 (R) 1] 
2 2 eff 1 - v2 r 2 r 2 r 2 2 

+S~ [-ln(r) + ~ R? - (1- 2v) R? ln(Ri)- ~] } + 
'~' 2 r 2 r 2 2 

+ ß-- 1- 2v + E [ Ad ] Ev d 
(1-2v)(1+v) d r 2 ( ) (1-2v)(1+v) 

(2.130) 

- x -Da S ln r - --- 1- 2v - n -'Li +- + 1 3 (n-1) E { '[ () 1RT ( )R[ 1 (P-) 1] 
2 2 eff 1 - v2 r 2 r 2 r 2 2 

+S' [-ln(r)- ~ R? + (1- 2v) R? ln(Ri)- ~] } + 
</> 2 r 2 r 2 2 

E [ Ad ] Ev d 
+ (1- 2v)(1 + v) ßd + -:;T(1 - 2v) + (1- 2v)(1 + v) · 

U se of the boundary conditions results in 

A1d 
B1d- R

6 
(1- 2vl) = -v1 d 

24 

(2.131) 

(2.132) 

(2.134) 



(2.137) 

from which the coefficients Ad, Bd can be determined. Simplifying the solutions, 

the following relations are obtained: 

E2 { E2 A~d = Eq.(2.115) + d (1 _ 2v
2
)(1 + v

2
) (1 _ 2v

2
)(1 + v

2
) (r21 - 1) (1- 2v2) x 

E3 
x (r21 + r31 (1 - 2v3)) (v1 - v2) + ( )( ) (r31 - r21) (1 - 2v3) x 

1 - 2v3 1 + v3 

x [ (r21 + (1- 2v2)) v1 + (1- r 21) v2 - 2 (1- v2) v3]} (2.138) 

{ 
E1 [ E3 

B~d - Eq.(2.116) + d (1 _ 2v
1
)(1 + vl) (1 _ 2v

3
)(1 + v

3
) (ro1 - 1) (r21 - 1) x 

x (r31 - r21) (1 - 2v1)(1- 2v3)v1 + 

Ez J + (
1

-
2

v
2
)(

1 
+ vz) (rol- 1) (1- 2v1) (1 + r21(1- 2v2)) (r21 + r 31 (1- 2v3)) v1 

+ ( {1- 2v~(1 + v,)) 
2 

(1 - r,I) (1 - 2v,) (r21 + r 31 (1 - 2v3)) (v1 + r 01 (1 - 2v1)v2) 

E E 
+ (1- 2vz)(1 + vz) (1- 2v3)(1 + v3) (r21- r31} (1- 2v3) [ (rzi + (1- 2vz)) v1 + 

+r01 (r21 - 1) (1 - 2v1)v2 + r 01 (1- 2v1)2(1- vz)v3 J} (2.139) 
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I { ~ & 
A2d = Eq. (2.117) + d (1 - 2v2)(1 + v2) (1 - 2v3)(1 + v3) (r31 - r21) x 

E1 [ E2 
x (1 + r 01 (1- 2v1)) (1- 2v3) (v2- v3) + (1 _ 2v

1
)(1 + v

1
) (1 _ 2v

2
)(1 + v

2
) x 

x (rol- 1) (1- 2vl) (r21 + r31(1- 2v3)) (v1- v2) + 

+ (1 _ 2v~( 1 + v
3
) (rm- 1) (r31- r21) (1- 2v1)(1- 2v3) (v3 - v1)]} 

(2.140) 

ß~d = Eq.(2.118) + d{ (( ~( ))
2 
(1- r21) (1 + r 01 (1- 2vi)) x 

1- 2v2 1 + v2 

E1 [ E2 
x(1 2v2) (r21 + r31(1- 2v3)) v2 + (1 - 2v1)(1 + v1) (1 - 2v2)(1 + v2) x 

x (ro1- 1) (1- 2vl) (r21 + r31(1- 2v3)) (r21(1- 2v2)v1 + v2) + 

+ ( ~( 1 ) (rol - 1) (r31- r21) (1- 2v1)(1- 2v3) (r21V1- v3)] + 
1- 2v3 + v3 

E2 E3 
+ (1 _ 2v

2
)(1 + v

2
) (1 _ 2v

3
)(1 + v

3
) (r21 - r31) (1 + r01 (1- 2vi)) (1- 2v3) 

x (r21 v2 + (1- 2v2)v3)} (2.141) 

E2 { E2 A~d - Eq.(2.119) + d ( )( ) ( )( ) (r21 - 1) x 1- 2v2 1 + v2 1- 2v2 1 + v2 
E1 

x (1 + ro1(1- 2vi)) (1- 2v2) (v3- v2) + ( 
2 

)( ) (rol -1) x 
1- v1 1 + v1 

x (1 - 2vl) [2r21 v1 (1 - v2) + (1 - r21) v2 - (1 + r 21 (1 - 2v2)) v3]} 

(2.142) 

{ 
E2 E3 

B~d - Eq.(2.120) + d ( )( ) ( )( ) (r21 - r3I) x 1- 2v2 1 + v2 1 - 2v3 1 + v3 

x (1+roi(1 2vi))(r2I+(1-2v2))(1-2v3)v3 + (( ~( ))
2 

x 
1- 2v2 1 + v2 

x (1- r21) (1 + rm(1- 2vl)) (1- 2v2) (r31(1- 2v3)v2 + r21v3) + 

+ (1 - 2v~( 1 + v1) [(1 _ 2v~( 1 + v3) (rm- 1) (r21 -1) (r31- r21) x 

x (1- 2v1)(1- 2v3)v3 + ( ~( ) (r01 - 1) (1- 2v1) (2r21 r31 x 
1- 2v2 1 + v2 
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· and 

x(1- 2v3)v1 (1- v2) + (1- r21) r31(1- 2v3)v2 + r21 (1 + r21(1- 2v2)) v3)]} 

(2.143) 

(2.144) 

(2.145) 

where 6.t see Eq.(2.114). 

When the coefficients A1d, ß1d, A2d, ß2d, A3d, ß3d are known, the rate of stresses 

can be determined from Eqs.(2.125,2.130-2.131). The stresses can be calculated 

by means of the procedure given in chapter 2.2.1. 
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Chapter 3 

Examples for Multi - Layers 

Cylinders 

In this chapter, sorne exarnples will be presented to show the agreernent of the 

stresses calculated frorn the analytical equations given in chapter 2 and frorn the 

finite elernent rnethod (FEM) in a cylinder with a finite length. The length (2L) 

of the cylinder is varied to find out in which case (i.e. which ratio of the length 

(L) and thickness (H)) they have a good agreernent. 

The radii of the cylinder are 

Ro 2mm 

R1 4mm 

Rz 4.1 mm 

R3 4.355 mm. 

The material data of the three layers are 

and 

E 1 = 215 GPa, 

E2 = 180 GPa, 

E3 = 125 GPa, 

0.3, 0:'1 = 16.28 X 10-6 I K 

0.3, a 2 = 16.6 x 10-6 I K 

0.225, 0:'3 = 10.8 X 10-6 I K 

D2 = 1.4 x 10-8 ( a in MPa and t in hours), nz = 2.25. 
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For the stress analysis from FEM, the program ABAQUS with 8 nodes element 

is applied. The used mesh is shown in Fig.2, where only one half of the cylinder 

in z direction is presented due to the symme.try. In the following, the given FEM 

results are located along this symmetricalline. 

3.1 Results for elastic behavior 

For the case of a cylinder under thermalloading, the temperature change is 980K. 

Stressdistributions along the symmetricalline of the cylinder are plotted in Fig.3a 

for an in Fig.3b for a<P andin Fig.3c for az. The analytical solution (lines) is for 

the case of Ez = 0 (given in chapter 2.1.1). The FEM results (symbols) are for 

the case of Ez = 0 and for Ez being arbitrary with a variable ratio of L/ H. It can 

be seen that for all three stress components only the FEM results for the case 

of Ez = 0 exhibit a very good agreement with those from the analytical solution, 

irrespective of the ratio of L/ H. 

For the case of a cylinder having a constant Ez, the stress distributions along the 

symmetricalline of the cylinder are plotted in Fig.4a for ar, in Fig.4b for a<P and 

in Fig.4c for a z. The analytical solution (lines) is for the case of Ez = d (given in 

chapter 2.1.2). The FEM results (symbols) are for the case of the cylinder being 

loaded with a uniform az ( =1 MPa) at the ends and the cylinder with a variable 

ratio of L/ H. It can be seen that for all three stress components FEM results are 

in very good agreement with those from the analytical solution when the ratio 

L/H ~ 6. 

For the case of a cylinder under a temperature change of 980K and with an ar

bitrary Ez, the stress distributions along the symmetricalline of the cylinder are 

plotted in Fig.5a for ar, in Fig.5b for a<P and in Fig.5c for az. The analytical 

solution (lines) is taken from chapter 2.1.3. The FEM results (symbols) are for 

the case of a cylinder with a free a z at the ends and the cylinder with a variable 

ratio of L/ H. It can be seen that for all three stress components FEM results are 

in very good agreement with those from the analytical solution when the ratio 
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L/H::::;: 5. 

The comparisons have shown that the analytical solutions for the elastic behav

ior are accurate for a multi - layers cylinder with L/ H ::::;: 5. In fact, for cylinder 

with L/ H ::::;: 3 and stress free at the ends, the analytical solution can be used to 

describe the stress distribution in the center of a joint well. The equations for the 

case of Ez = 0 cannot be used to calculate the stresses in the center of a cylinder, 

irrespective of the ratio of L /H. 

3.2 Results for creep behavior 

To test the equations given in chapter 2.2, FEM calculations are performed for 

the case of a joint having an initial temperature of 1000°C, an end temperature 

of 20°C and subjected to t hours of creeping. It is noted that in this case stress 

relaxation and not creep occurs. It is the true creep process if the initial tem

perature is 20°C, the end temperature is 1000°C and then t hours of creeping. 

However, the equations to calculate the stresses are the same. 

For the case of Ez = 0, stress distributions along the symmetricalline of the cylin

der are plotted in Fig.6 for O"r, O"<f> and O"z with t=0.1 hours, in Fig.7 for O"r, O"<f> 

and O"z with t=l.4472 hours, andin Fig.8 for O"n O"<f> and O"z with t=10 hours. The 

analytical solution (lines) is given for the case of Ez = 0 and Ez = 0 (see chapter 

2.1.1 and chapter 2.2.1). The FEM results (symbols) are for the case of Ez = 0 

and Ez =0. It can be seen that in elastic materials they always are in very good 

agreement, irrespective of time. In creep material, the results obtained for the 

stress components O"r and O"z also are always in very good agreement, irrespective 

of time. However, for the stress components O"<f> they have a slight difference. 

For the case of a cylinder having a free O"z at the ends, the stress distributions 

along the symmetrical line of the cyiinder are plotted in Fig.9 for ur, a</> and 

O"z with t=0.1 hours, and in Fig.10 for O"n O"<f> and az with t=1.66 hours. The 

analytical solution (lines) is given for the case of Ez being arbitrary and Ez = 0 

30 



(see chapter 2.1.3 and chapter 2.2.1). The FEM results (symbols) are for the 

cylinder with a free a z at the ends, which corresponds to Ez being arbitrary and 

Ez = 0. It can be seen that for all stress components they are always in very good 

agreement, irrespective of time (here, L/ H = 5.1). 

The results have shown that for a multi- layers cylinder with a thin creep inter

layer, the analytical solution given in chapter 2.2 can describe the stresses very 

well, especially for the case of a cylinder with a free az at the ends, which is the 

relevant case in practice. 
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Chapter 4 

Stress Analysis in a Plate 

In this chapter, stress analysis in a multi- layers plate will be presented briefiy for 

elastic behavior and for a creep process, with only plane strain being considered. 

Then, the stress distributions in the range far away from the ends of a multi -

layers cylinder and of a multi- layers plate are compared to see the effect of the 

material creep behavior on stresses. 

4.1 Salutions for elastic behavior 

In this section, it is assumed that the plate is in plane strain. This means that 

Ez = 0. In the plane x-y (for coordinates see Fig.ll), following Bernoulli's law 

the strain can be always characterized, irrespective of materials property, by 

Ex= A+ßy ( 4.1) 

where A and B are unknown constants. The relation between the stress and the 

strain is 

(}X = E(1- v) (Ex+ _v_Ey- 1 +V ar) 
(1-2v)(1+v) 1-v 1-v 

E(1- v) r~- _v_~_- 1 +V rvTl 
ay = (1- 2v)(1 + v) \-y + 1- v-"' 1- v--) 
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(4.3) 

(4.4) 



Because the thickness of the plate is much smaller than the size of the plate in 

x- and z- direction, the stress O"y can be assumed to be zero (FEM calculations 

have shown that this is reasonable). Then, the stress and strain relation can be 

simplified as 

1 I 

Ex= E'O"x + a T (4.5) 

v' 
Ey =- E'O"x + o/T (4.6) 

Ez = 0 (4.7) 

and 

O"x = E'(Ex- a'T) (4.8) 

O"y = 0 (4.9) 

uz = VO"x - aET, (4.10) 

with E' = E/(1- v2), v' = v/(1- v), a' = (1 + v)a. In each material, 

(i=1,2, ... ,N) ( 4.11) 

is valid. When the parameters A and B are known, the stress and strain in the 

multi- layers plate can be calculated. Todetermine the constants A and B, the 

equilibrium conditions of the plate have to be used. As no force and moment is 

applied in the joint, the equilibrium conditions are: 

1
Y3 

Fx = O"xdY = 0 
Yo 

(4.12) 

(4.13) 

Substituting Eq.(4.11) in Eqs.(4.12) and (4.13) yields the general equations to 

determine A and B: 
N 

A ~ R~ ry. _ "'· 1] + .. L..,; ~~ L ~ ~~~-

i=l 

(4.14) 
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~ t E~ [ (Yi)
3 

- (Yi-1)
3
] 

i=1 
N 

L E:a~T /2 [ (Yi)
2 

- (Yi-1)
2
), 

i=1 
(4.15) 

where Yi see Fig.ll and N is the number of the layers in the joint. Using the 

definitions of 

gives 

N 

au = L E~ [Yi- Yi-1] 
i=1 

N 

R1 = L E:a~T [Yi- Yi-1] 
i=1 

N 

R2 = L E~o:~T /2 [ (Yi)
2 

- (Yi-1)
2
]' 

i=1 

A 

B 

R1a22- R2a12 
.6. 

R2au - R1a21 
.6. 

(4.16) 

( 4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

( 4.22) 

with .6. = an a22 - a12a 21 . The stress at any point in a N - layers joint can be 

calculated analytically from Eq. ( 4.11) with the coefficients given in Eq. ( 4.22). 

To check the analytical solution, one FEM calculation has been carried out. The 

comparison is shown in Fig.12 (joint geometry is the same as in chapter 4.3 and 

the material data are the same as in chapter 3). It can be seen that they are in 

good agreement and that the assumption of ay = 0 is true. 
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4.2 Salutions for creep behavior 

For creep material, Norton's law given in chapter 2.2 will be used. For a thin 

plate and in plane strain 

Ez 0 

0 (4.23) 

are true. Equations (2.81) and (4.23) lead to 

. _ ax 3D (n-1)(S S) 
Ex - E' + 2 CJ eff x + v z ( 4.24) 

. v' . 3D (n-1)(S S) 
Ey = - E' CJ x + 2 CJ eff Y + v z ( 4.25) 

and 

. -E'{· 3D (n-1)(S s)} CJ x - Ex - 2 CJ eff x + v z ( 4.26) 

. - . 3D (n-1) ES 
CJz - VCJx- 2 (J eff z· ( 4.27) 

Following Eq.(4.1) 

Ex= A+ßy ( 4.28) 

and therefore 

( 4.29) 

The thickness of the layer with creep material is very thin. Therefore, the quan-

. · S S S d (n- 1) b d b Th l'b · t1t1es x, y, z an CJeff can e assume to e constant. e equi 1 num 

condition of the plate yields 

. 1Y3 
Fx = axdy = 0 

Yo 
(4.30) 

. 1Y3 
Mx = axydy = 0. 

Yo 
( 4.31) 
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From Eqs.(4.29-4.31), the following equations can be obtained: 

At E~ [Yi - Yi-d + ~ t E~ [ (Yi)
2 

- (Yi-1)
2
] 

i=l i=l 

~ ~ D·a~n;-l) E~[S(i) + v-S(i)] [y· - y· 1] (4.32) 
~ 2 t 1 eff t x t z t t-

i=l ' 

Let 

nl = t ~Dw{n~ffl) EHS~i) + viS~i)] [Yi- Yi-1] (4.34) 
i=l ' 

This results in 

A 

ß 

nla22- n2a12 
.6. 

n2all - nl a21 
.6. 

(4.36) 

Now, the rate ofthe stress can be determined from Eq.(4.29) with the coefficients 

given in Eq. ( 4.36). The stress can be calculated by using the process shown in 

chapter 2.2.1. A comparison of the stresses obtained from Eqs.(4.36) and (4.29) 

and from FEM is made in Figs.13, 14 and 15 for different times (t=0.05943 hours 

(Fig.13), t=0.1617 hours (Fig.14) and t=5.3496 hours (Fig.15)) (joint geometry 

is the same as in chapter 4.3 and the material data are the same as in chapter 

3). It can be seen that they are in good agreement, irrespective of time. 

4.3 Effect of the material creep behavior on stresses 

in a plate and in a cylinder 

To compare the creep effect on stresses in a plate and in a cylinder, the stress 

distributions are plotted tagether for various times and for plane strain. 
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The geometry of the plate is 

Yo Omm 

Y1 2 mm 

Yz 2.1 mm 

Y3 2.355 mm 

LIH = 5.1. 

For the cylinder, the geometry is the same as that given in chapter 3. 

As a first example, the material data of the three layers are 

E1 = 142 GPa, 1/1 0.3, a1 = 15.8 x 10-6 IK 
E2 = 160 GPa, Vz 0.3, 0:2 = 16.6 X 10-6 I K 
E3 = 150 GPa, 1/3 0.3, 0:3 = 10.4 X 10-6 I K 

and 

D 2 = 9.7 x 10-9 (O" in MPa and t in hours), 

The loading results from the joint having an initial temperature of 20°C, an end 

temperature of 900°C and being subjected to t hours of creeping. 

Fig.16 shows the stress distribution in a plate and in a cylinder for the elastic 

behavior and for a short time. It can be seen that (a) with an increasing t, the 

absolute value of O"r increases, even in creep material, (b) in creep material, the 

absolute value of the stresses, which are parallel to the interface, decreases with 

increasing t; however, in elastic materials they may decrease or increase, (c) stress 

components parallel to the interface (O"r" O"x, O"z) in a cylinder are nearly constant 

in each material, whereas in the plate they vary strongly. 

The time dependence of ,the stresses at different points (inside radius ~' outside 

radius Ra and the center of each layer) in the joint is given in Figs.17- 19 for 

materials 1 (Fig.17), 2 (Fig.18) and 3 (Fig.19). The stress component O"z is not 

true due to the assumption of Ez = 0. Therefore, in the following O"z is not plotted 

(O"z is similar to O"(J or O"x)· It is shown that (a) in elastic materials (1 and 3) with 

increasing t stresses tend to a constant, which is not zero, although they decrease 

to zero in the creep material, (b) in creep material, with increasing t the stresses 
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parallel to the interface decrease, but the stress perpendicular to the interface ar 

does not, ( c) in creep material the rate of stress a in the plate is larger than that 

of the cylinder (Fig.18b). 

As a second example, the material data of the three layers are 

E 1 = 158.5 GPa, 

E3 = 15 GPa, 

0.3, 

0.3, 

a1 = 15.66 x 10-6 I K 

Ct3 = 10.75 X 10-6 I K 

and material 2 is the same as that in the first example. For this example, E3 is 

much smaller than E 1 and E 2 . 

Fig.20 shows the stress distribution in a plate and in a cylinder for the elastic 

behavior and for a short time. It can be seen that for a very small time, Iai is 

much larger than that at t=O and for very long time ( even stress changes the 

sign, this is not the case for example 1), which may indicate fracture or failure of 

the joint. 

The time dependence of the stresses at different points in the joint is given in 

Figs.21 - 23 for materials 1, 2 and 3. It is shown that (a) in the elastic materials 

stresses may change the sign with increasing t, (b) in creep material, stresses par

allel to the interface decrease to zero with increasing t, the stress perpendicular 

to the interface tends to a constant, ( c) for the plate, in elastic material the rate 

of stress a is much larger than for the cy lind er. 

To sum up, it may be concluded that for a joint with the same thickness, same 

materials combination and with three Young's moduli being similar (as in exam

ple 1) in a plate the stress situation is more beneficial than in a cylinder und er 

considering material creep behavior; if E3 is much smaller than E 1 and E2 ( as in 

example 2), ar is very small and a cylinder is more beneficial than a plate. 

So far only the stresses in the center of a joint are studied. Along the free edges 

of a multi - layers plate or along the free ends of a multi - layers cylinder, there 

is a stress singularity due to the difference of the elastic constants in the joined 

components. Therefore, the values of the stresses obtained from FEM have no 

real meaning. However, the tendency of the stress distribution obtained by the 
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FEM calculation is true. FEM results have shown that along the free edge of a 

plate and along the free ends of a cylinder stress distributions are similar, but 

the rate of stresses in a plate is larger that in a cylinder. 
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Fig.20 Stressesfora plate and a cylinder with €z = 0 and f.z = 0 (example 2). 
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Chapter 5 

Creep Behavior in a Joint with 

Functionally Graded Material 

In this chapter, an example will be presented to see whether a joint with a 

Functionally Graded Material (FGM) is beneficial or not, under material creep 

behavior. The joint (multi- layers cylinder) is made of a substrate (Ni- Superal

loy) and a bond coat layer with a NiCoCrAlY layer, a Al20 3 layer, a FGM layer 

and a Zr02 layer. The inner radius of the cylinder is 2mm and the outer radius 

is 4.355mm. · The thicknesses of the layers are: Substrate - 2mm; NiCoCrAlY 

layer - 100 J-Lm; Al20 3 layer - 5J-Lm; FGM layer - 50 J-Lm; Zr02 layer - 200 J-Lm 

(with FGM) or 250 J-Lm (without FGM). The ratio of the length and thickness is 

LIH=5.1. 

The used material data are: 

Esub. = 148 GPa, Vsub. 0.3, O:sub. = 16.28 X 10-6 I K 

ENico. = 70 GPa, VNiCo. 0.3, O:NiCo. = 16.6 X 10-6 I K 

EAbo3 = 319 GPa, VAL 2 o 3 0.24, aA12o3 = 8 x 10-6 I K 

Ezro2 = 16 GPa, Vzro2 0.286, O:zro2 = 10.8 X 10-6 I K 

and only the NiCoCrAlY layer has a creep behavior with the data of 

D = 7.3 x 10-9 (a in MPa and t in hours), n = 2.7. 

Graded material is introduced between the Ab03 layer and the Zr02 layer with 
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a linear transition function for Young's modulus E and the thermal expansion 

coefficient a. Loading is obtained from the initial temperature being 1200°C, the 

end temperature being 800°C, t hours of creeping and cooling down to 20 °C. 

The stress distribution in the range far away from the ends of the cylinder is 

plotted in Fig.24 for the elastic behavior. The stress components CJo and CJz are 

always similar, therefore, CJz is not presented. Stresses are calculated from FEM. 

It can be seen that for elastic behavior, the joint with a thick FGM layer and 

without the Zr02 layer (but the surface has the material data of Zr02 ) is the 

worst one, while the joint without FGM is the best one. 

In Figs.25 -26, the stress distributions for t=O.l hours and t=1.5 hours are given, 

where no cooling down to room temperature has taken place. Fig.27 shows the 

stresses after t=1.5 hours of creeping and subsequent cooling down to room tem

perature. It can be seen that the joint without FGM is better suited than the 

joint with FGM. In the case of a joint with FGM, the joint without a Zr02 layer 

is better. 

The time dependences of the stresses in a joint without FGM (Fig.28) and with 

FGM (Fig.29) are presented in Figs.28- 29. It can be seen that (a) after creep

ing, the stress CJr near the interface substrate / NiCoCrAlY layer is increased. 

Especially in the joint without FGM, the stress changes the sign (see Fig.28), 

which may introduce a delamination of the joint. (b) with t exceeding 1.5 hours, 

the creep process is almost completed. 

If the stress CJr at the interface is larger than the strength of the interface a de

lamination may occur. When the stress CJo at the surface is higher than strength 

of the material a crack may initiate. To analyze the effect of material creep be

havior on the failure, e.g. interface delamination or surface crack initiates, time 

dependence of stress CJr at the interface and CJo at the surface for different joint 

will be presented. 
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For a joint without FGM, stresses ar at the interfaces substrate I NiCoCrAlY 

layer (denoted as A), NiCoCrAlY layer I Ab03 layer (denoted as B) and Ah03 

layer I Zr02 layer ( denoted as C) are plotted in Fig.30. In Fig.31 stresses ao at 

the inside surface (substrate side) (denoted as D) and the outside surface (Zr02 

side) (denoted as E) are given. In Figs.30- 37 the time is in hours .. 
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For a joint with FGM, stresses ar at the interfaces substrate I NiCoCrAlY layer 

(denoted as A), NiCoCrAlY layer I Al20 3 layer (denoted asB) and Al20 3 layer 

I FGM (denoted as C) are plotted in Fig.32. In Fig.33 stresses ae at the inside 

surface (substrate side) (denoted as. D) and the outside surface (Zr02 Side) (de

noted as E) are shown. 
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Forajoint with FGM but without the Zr02 layer (surface has the material data 

as Zr02), stresses O"r at the interfaces A, Band C are plotted in Fig.34. In Fig.35 

stresses O"o at the inside surface (substrate side) (denoted as D) and the outside 

surface (Zr02 side) (denoted as E) are presented. 
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Fora multi- layers plate the stress situation is, however, different. For a plate in 

the range far away from the edge, only stress ax at the surface is dangerous. In 

Fig.36 stresses ax at the surface substrate (denoted as D) and the surface Zr02 

( denoted as E) are presented for a plate without FGM. Stresses O'x at the surfaces 

D and E are shown in Fig.37 for a plate with FGM . 
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From Figs. 30, 32 and 34 it can be seen that stress ar at interfaces B and C is al

most constant during the creep process, however, at interface A it varys strongly 

for the short time and it may change the sign (in the joint without FGM). The 

joint with FGM and Zr02 layer is the worst one and the joint without FGM is 

the best one from the sense of delamination. 

It is shown from Figs. 31, 33 and 35 that stress a0 at the surface Zr02 is almost 

constant during the creep process, however, at the surface substrate it varys 

strongly for the short time and it may change the sign (in the joint without 

FGM). The joint with FGM and a Zr02 layer has the largest tensile stress at 

the surface substrate and the joint with FGM but without Zr02 has the lowest 

compressive stress at the surface Zr02 • 

For a multi - layers plate the situation is another. At the surface Zr02 stress 

ax is always compression, but at the surface substrate ax is tensile for the joint 

without FGM and for a short time. 

Comparing plate and cylinder it can be seen that at the surface Zr02 the stress 

component parallel to the surface (ax and a0 ) is always compression, however, 

at the surface substrate the stress component parallel to the surface is almost 

tensile for cylinder and compression for plate. 

For the given joint geometry and materials combination, the introduction of a 

FGM layer is not beneficial and after creeping the stress situation is even worse, 

especially, for the cylinder geometry. 
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Chapter 6 

Conclusions 

Stress distribution in a multi - layers joint, a plate or a cylinder, has been ana

lyzed taking material creep behavior of one interlayer into consideration. 

Explicit equations to calculate the stresses far away from the ends of a multi -

layers cylinder under thermal and mechanical loading have been given for the 

cases of Ez = 0, Ez = constant and Ez being arbitrary, and for the cases of Ez = 0 

and Ez being a constant. FEM results have shown that for cylinder with L/ H 2: 3 

and stress free at the ends, the analytical solution can be used well to describe the 

stress distribution in the center of a joint. The equations for the case of Ez = 0 

cannot be used to calculate the stresses in the center of a cylinder, irrespective 

of the ratio of 1/H. 

Equations to calculate the stresses far away from the free edge of a multi - layers 

plate under thermalloading have been presented explicitly for the cases of Ez = 0 

and Ez = 0. 

In elastic materials (1 and 3) with increasing t stresses tend to a constant, which 

may belarger or smaller than the value at t=O. In creep material, with increasing 

t the stresses parallel to the interface decrease to zero, but the stress component 

Stress distribution in a multi - layers plate and in a multi - layers cylinder has 

68 



been compared taking into account the material creep behavior. It is shown that 

for a joint with the same thickness and same materials combination, in a plate 

the stress situation is more beneficial than in a cylinder if the three Young's mod

uli are similar (as in example 1); if E 3 is much smaller than E1 and E 2 (as in 

example 2), CJr is very small and a cylinder is more beneficial than a plate. In 

creep material, the rate of stress & in the plate is larger than that of the cylinder. 

An example has been presented for a multi - layers cylinder with a functionally 

graded material (FGM) interlayer. For this given joint geometry and materials 

combination, the introduction of a FGM layer is not beneficial and after creeping, 

the stress situation is even worse. It should be noted that the effect of introduc

ing a FGM layer and the influence of the material creep behavior on the stresses 

are strongly dependent on the ratios of thicknesses and Young's moduli between 

the layers. This means that foranother ratios of thicknesses and Young's moduli 

between the layers, introducing a FGM layer may be beneficial. 
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