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Abstract

In this report stress analysis in a multi - layers joint, a plate or a cylinder, shall
be presented. In a metal - ceramic joint, creep behavior of the metal is studied
at high temperature. Equations to calculate analytically the stresses far away
from the ends of the joint are given in an explicit form. The stresses obtained by
these equations and by the finite element method (FEM) are compared to show
the agreement of them. The effects of the material creep behavior on the stresses
in a plate and cylinder are compared. Finally, an example is given for a multi -

layers joint with a functionally graded material (FGM).

Kriechverhalten in einem Mehrschichtverbund

Zusammenfassung

In diesem Bericht wird eine Spannungsanalyse in einem Mehrschichtverbund,
einer Platte oder einem Zylinder, durchgefiihrt. In einem Metall - Keramik -
Verbund wird das Kriechverhalten des Metalls bei Hochtemperatur untersucht.
Die Gleichungen zur analytischen Berechnung der Spannungen weit weg vom
Rand des Verbundes werden in einer expliziten Form gegeben. Die Spannungen,
die durch diese Gleichungen und durch die Finite-Element-Methode (FEM) be-
rechnet werden, werden verglichen. Die Effekte des materiellen Kriechverhaltens
auf die Spannungen in einer Platte und in einem Zylinder werden auch verglichen.
Schliefilich wird ein Beispiel fiir einen Mehrschichtverbund mit Gradientenwerk-
stoff (FGM) gegeben.
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Chapter 1
Introduction

In engineering applications, a number of ceramic - metal joints are used under
high-temperature conditions, in which the metal is used as a mechanical support
structure and the ceramic as a coating for resisting the high temperature. For
most metals creep behavior exists when the temperature is higher than 800°C.

Therefore, material creep behavior must be considered in the stress analysis.

In a multi - layers joint of ceramic and metal, very high stresses develop after a
homogeneous temperature change (e.g. the residual stress) due to the difference
in the thermal expansion coefficients and the elastic constants. For linear elastic
material behavior, stress singularities exist at the intersection of the interface and
the free edges. To reduce these stresses and to avoid the stress singularity in a
quarter planes joint, a functionally graded material (FGM) can be introduced as

interlayer.

In this report a multi - layers joint, with and without a functionally graded ma-
terial as interlayer, is considered. Stress analysis in a plate and cylinder will be
performed taking into account the material creep behavior. In the range far away
from the free edge (or from the ends) of a joint, the stresses can be calculated
analytically. However, near the free edge the stresses can be obtained only from
the finite elment method for materials following the multiaxial creep law. Stresses
in a joint with and without FGM layer, with and without considering the creep

behavior, in a plate and in a cylinder will be compared in order to determine




the effect of introducing a FGM layer and the influence of the material creep
behavior on the stress distribution. The results show that the values of some
stress components are increased when considering the material creep behavior.
In a joined cylinder, for example, this applies to the stress component in radial

direction, which may lead to a delamination of the joint.




Chapter 2

Basic Equations for Multi -
Layers Cylinders

In this chapter equations to calculate the stresses far away from the ends of a
multi - layers cylinder will be given for elastic behavior (time equals zero) and for
taking into account the material creep behavior (time dependent). Three cases
will be treated, namely (a) the strain in the axial direction is assumed to be zero,
(b) the strain in the axial direction is an arbitrary constant, (c) the strain in the

axial direction is arbitrary.

2.1 Solutions for elastic behavior

2.1.1 Zero strain in axial direction

If the loading of a multi - layers cylinder is axial symmetric, the solution of
the stresses is also symmetric. For the case of a cylinder being subjected to a
temperature change (i.e. T=T(r)), the stress distribution is axial symmetric.
If e, = 0 is assumed (coordinate system see Fig.1), the elastic stress - strain

relations in each homogeneous material read

1 v
- — _ 2.1
&= 5 (o, 1= V0'¢) + (1 +v)aT (2.1)
~—1—( z )+(1+1/)T (2.2)
€p — o O¢ 1= I/UT (87 .




AZ

Fig.1 The investigated geometry and the coordinate system.




with E' = E/(1 — %), or

_ E(1l-v) v 1+v
T A1+ ) (E’“+1—u€“’“1—uaT> (2:3)

_ E(1-v) v 1+v
U¢_(1—2V)(1+1/) <6¢+1_V6T—1__VaT> (2.4)
o, =v(or + 0y) — EaT, (2.5)

where E is the Young’s modulus, v the Poisson’s ratio, a the thermal expansion
coefficient and T is the temperature distribution in the cylinder T=T(r) or a
homogeneous change of the temperature from a stress-free state. The strains are

related to the displacement as

du
= 2.6
&= (2.6)
u
= — 2.
€¢ ” ( 7)

where u is the displacement in r - direction. The equilibrium equation for this

problem is

do, | 0v =04 _
dr r

Substituting Eqgs.(2.6-2.7) into Egs.(2.3-2.4) then in Eq.(2.8) yields

0. (2.8)

du ldu  uw _ d (1d(ru)) 1 +I/adT(T) (2.9)
dr2 " rdr r* dr\r dr ) 1-v dr ' '
The solution of Eq.(2.9) is
1+v 1 A B
_ L 4.8 2.1
u l_uaT/T(r)rdr+2r+T, (2.10)

where A and B are unknown constants.
Corresponding to this solution of u, the strains and stresses can be calculated

from

1+v 1 A B
& =1 Va{ - ;E/T(r)rdr +T(r)} + 3 2 (2.1.1)
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€ tz T12/T Jrdr + 5 +§ (2.12)
0T:~1—Vr2/T dr+1fu(§l—12y_§) (213)
771 i/ <%/T(T)Tdr - aT(T)) 1 fu (él -121/ + g) (2:14)
oo=vt A2 F (2.15)

1+v21-2v 1—v
If the temperature distribution in the cylinder is a constant, i.e. there is a homo-

geneous temperature change in the cylinder, the above equations can be simplified

as
U= 1i5a§r+ §T+ ?, (2.16)
XN
e¢:1+'/§ -‘§+P; (2.18)
OT:_léyag 1—E:u<§1—121/_£> (219)
0¢:—1€ua%+lfv<gl—l2u+£> (220

To determine the unknown constants A and B in each material, boundary and in-

~ terface conditions have to be used. For a three-layers cylinder, the conditions are:

at r=Ry (coordinates see Fig.1)

o) =0, (2.21)
at r=R;
(1) = 5@
uM = 4@ (2.22)




at r=~R,

o) = o®
u® = u®, (2.23)
and at r=Rj3
o® =0, (2.24)

where the superscript (i) denotes the quantity being in material i.

The boundary conditions lead to the following equations:

B T, B (A 1 B\_,
1—u "2 14\ 21-2 R?

(2.25)

al"“ a2_ —

E; T E, (é 1 B1>_ E, T E, <& 1 B2>

1—vy 2 14+ \21—-24 RZ) 1-w, °2 14wm\21-2v, R?
(2.26)
1+I/1 T A1 Bl 1+1/2 T A2 | Bg
— SRt = “R + 2R + =2 2.27
1_V1a1 R, + 1+ Rl 1—V2a22 1+ 9 1+R1 ( )

E, T E, (il_g_ 1 Bg>_ Es T E; (é 1 Bg)

122 T4\ 21—20 R) 102 " 11xm\21—215 RZ
(2.28)
1+1/2 T AQ B2 1+V3 T A3 B3
Ry+ —Ro+ —= R —R 2.29
1_2 22+ 2 + R2 1_3 2 + 2+ R2 ( )
Es T Ey (A3 1 B;
— — i) - =] =0. 2.30
1—~1/3a32+1+1/3<21—21/3 RZ (2:50)
Using the definitions of
1+V1
A =
! 1—111
1-‘;—1/2
Ny =
2 1—1/2
1413
Ay = 2.31
o (.31)
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T

1~ 21/1
1
=T o0
1
= 2.32
YE] 1= 20, ( )
o= ()
01 Ry
= (m)
21 i
Ri\?
== 2.33
ra <R3> (2.33)
B
B* = —
R}
o (2.34)
2
_ &1 + v
2 EQ 14 1241
E3 14 v,
Fyp = — 2.35
32 E2 1+ 1/3, ( )
Egs.(2.25-2.30) can be rewritten as
* * T
Aim — Biro = —2-/\16!1 (2.36)
* * * * T
—E12’T}1A1 + ElgBl + 7]2142 it BQ = 5(/\202 —_ E12/\1a1) (237)
* * * * T
Al + Bl - AQ - B2 = 5(/\2&2 - )\10{1) (238)
* * * * T
—mp AL + 191 By + Esoms Ay — Es2Birar = —(Es2Az03 — A20t2) (2.39)
* * * * T
A2 + B27'21 — AB — B37’21 = 5()\3&3 — Azag) (240)




T
mA; — ra1 B3 = “2")\3043, (2.41)

where the subscript i is for material i.
By solving Egs.(2.36-2.41), the coeflicients A;, By, Aa, By, As, Bs can be deter-
mined. After using the program MATHEMATICA and simplifying the solution,

there is

A = n3(Ex-—1) (771 (72 + E12) + (12 — mEi2) 7’01)T§1 +
+m (B ~ 1) (13 B3y — ma2) ra1 + (1 + mEva) (2 — M3 E32) 1731 +
+721 [771773 (1~ Er2) (m2 + Ez2) — m (m2 + Enz) (1 +n3E3) a1 +
+7To1 (773 (1 4+mEi2) (m2 + Es2) + (mEr2 — m2) (1 + n3Ea9) r31>] (2.42)

AL = az(1+m) (14 n5) Bssdaror (ro1 — 731) + i (14 172) Agron (1 — 721) X
X (773 (1 = E3) 721 + (1 + 1m3E32) Tsl) + oy Ap (ro1 — 1) [773 (m2 + Era) X
X (1= Esp) 131 + (Bra — 1) (n2 — 13 E32) 731 +
+7‘21(Ti3 (Big — 1) (n2 + E3) + (2 + En2) (1 + m3E32) T31)] (2.43)

By = agm (1+n2) (L +m) Eszs (o1 — 1) +
+aam (1+172) Ao (1= 1) (ns (1 — Bag) ran + (1 + 73 Ba2) 731) +
+ay (1+m) /\1[ — 113 (112 + Ba2) o1 + 1ot (1 — ) 3 +
+(773E32 — 12+ 12 (1 4+ n3E32) 7‘21)7‘31] (2.44)

Ay = o3(14m3) Esz/\s(m (1= E) + (1 +mEm) 7“01) (ro1 — 731) +
+ag s (771 (1-FEp)+ 1+ 771E12)r01) (1 —7rg) X
x (13 (1 = Ep)ros + (1 + m3Eso) 1) +
+a1 (1 +m) B (o1 — 1) 7’21<773 (1= Ez)ra1 + (1 + m3E3) 7”31)
(2.45)

By = a3(1+m) Bas(m (0 + Evz) + (12 — mBu) 1) (ra1 — r1) =
—a1 (1 +m) EipAr (1 — 7o) (773 (m2 + E32) 71 + (2 — 13 E32) T31> +
+ay (1 +m2) A {7)1773 (E1g — Esp) mo1 + m1 (Brg + m3Esp) 731 —
—To1 (773 (mEr2 + Es2) o1 + (mEr12 — 3 E3) 7’31)] (2.46)
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Ag = Q9 (1 + 772) )\2 (771 (1 — E12) + (1 + 7]1E12) 7‘01) (1 — 7‘21) 731 +
+ar (14+m) (14 n2) ErgAy (ror — 1) rarrsy + asAs (131 — 721) X
X{nl(ﬂz + E32) (Biz — 1) +m1 (n2 + Ena) (1 — Esp) ra1 —

—ro1 (M2 + Ba2) (1 + mBi) — (1 — mEia) (1 = Egg) 7n] }
(2.47)

Bé = ag (1+1m2) 773/\2<771 (1= Ep)+ (1+mEq) 7’01) (1 —7ry) + a1 (1+m) x
X (14 m2) n3EreA (Tor — 1) ro1 + a3 (14 1m3) As [771712 (Byp — 1)+

+m (2 + E12) mo1 + Tor ( (ne — mEr2) ra1 — m2 (1 + m Eha) )] (2.48)
and
Al Al Al
A =T =T-2 =T7= 2.4
T B T B!, T B!
B, = ERf_Al, B, = ‘Q‘“R%"Z?”’ B; = §R?—Aé' (2.50)

Now the coeflicients A;, By, As, By, Az, B3 are known. The stress distribution in
a multi - layers cylinder can be calculated analytically from Eqgs.(2.19,2.20,2.15)

for the case of ¢, = 0 and T = constant.

2.1.2 Constant strain in axial direction

In this section a multi - layers cylinder under mechanical loading at the ends and
having a constant strain in axial direction in the range far away from the ends

shall be dealt with. For the case of €, = d, the solution in each material is

B,

u= A+ — (2.51)
B,

& =Ac— (2.52)
B.

€p = A, + 7'_2 (253)




€, =d (2.54)

B E (1-2v)B,
0',»—-(1+V)(1_2V){AC*‘T—+Vd} (255)
Op = i V)}(El ~ o) {Ac + (i——;ﬂl—?f + ud} (2.56)

o, = (1+V)(1_21/){2ACV+(1—1/)d}, (2.57)

where d is the constant strain in axial direction and A., B, are unknown con-
stants. To determine the unknown constants A;., Bi., Aac, Bac,Ase, Bs. in each
material, boundary conditions have to be used. From the boundary conditions,

the following equations are obtained:

1-— 21/1)Blc

Ap— & o tnd=0 (2.58)

E1 ){Alc _ (1 —_ 2V1)Blc 4 l/ld}

(1+l/1)(1——21/1 R%
i EQ (1 — 2V2)BQC
T (14 v2)(1 = 2u,) {AQC R? T vad (2.59)
B, B,
ARy + R11 = Ag Ry + R21 (2.60)
EQ (1 — 2V2)B2c
(14 v5)(1 — 2u3) {AQC R? oad
_ Eg (1 — 21/3)Bgc
= Tt vs) (1 —203) {A3C o7 + vad (2.61)
B C C
ARy + RZ = Asc Ry ];)232 (2.62)
1-2 c
Age ~ (—R”;)—%— +d = 0. (2.63)
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The solution of Eqs.(2.58-2.63) is

Ae = (1= Ef)ra (B (1—2m) - (1-2m)) (1 - 20) +

%
Alc

*
A2c

+ A1+ B (1-2m) ) (1 -2 — B (1— 29) ) —
— ror[(1— 20p) + E5 (1 — 2) (1 — 2v3) — 31 (1 + Ef, (1 — 211) )
x (1+ Bf — 20) (1 — 2u3) — Ef, (1= 201) (1+ B (1 — 2us) )] +
+ o (B — 1) (1— 201) (1+ B, — 20) (1 — 203) +
+(1— EG)rd (1-2m) (1- 20y — B (1-2m) ) —
=71 [ (1= 201) (1 = 2up) + Ef, (1 — 201) (1 + E5, (1 - 20) ) +
+E5 (1 —21) (1 = 2u5) (1 — 213) — (1 — E{y)rs (1 — 21y) %
x (1 - 2wy + E5) (1 — 2vs) |} (2.64)

= (1-E3) r31u1(1 —2uy — Ef, (1 — 21/1)) (1 - 2v3) —

—r§11/1<1 + Ef, (1 — 21y) ) (1 —2uy — E5, (1 — 21/3)) +

tron [(1 = 20) — By (1— 200) (14 B, (1= 2v) ) — ra (1 + B, (1 210) )
x (1+ ESy — 2wp) (1 — 2vs) + B, (1 — 2wp) (1 — 23) | +

+r01{r31 (1 — 2u14) (Efovy — 1/2)(1 —2up — E5y (1 — 21/3)) + 731 (1 — 214) X
X (1 — 2v3) (Ef2 (1—Ep) v+ (1 —2va) e + ES, (V2 — 2v3 + 21/21/3)) +

+rar[ (1= 201) v (1= 209) + B (1 — 20) (1+ ES, (1 - 2v5) ) +

+7r31 (1 — 2vy) (1 + ES, — 2u9) (E{ovy — v2) (1 — 213) —

—E5 (1= 2v1) (1 — 2u3) (1p, — 213 + 21/21/3)]} (2.65)

Bi, = 13 (i —w)(1— 20— E5 (1-2v3)) — a1 (1 - 203) X

x[(ul—uz)(l—ng E32( 1—w)vy+ 1—1/2)(u1~21/3))]—
— 7‘21[(7/1 - 1/2) (1 —_ 21/2) — T31 (1 + E32 - 21/2) (1/1 — 1/2) (1 - 21/3) +
+E, (1—2vs) (1= m) va + (1 =~ 1) (1 — 203) ) (2.66)

= 7"31<1 — 2y — By (1 - 2V1)) (1 = 2w3) (v — Egyvs) —
— 13 (Boan (1= 2) + o) (1 - 20 — B (1 - 20) ) +
+ 7’21[(1 — 2u9) Uy — 131 (1 + E5y — 213) (Elczlll (1-2un)+ 1/2> (1 —2u3) +

12




* —
B2c -

+ +

*®
A3C

*
BBc

X

+E (1= 2v) vg (1 — 2u3) — B, (1 — 201) (va + B (1 - 2v) v )| +
7‘01{7"31 (1= 2u1) (1 = 2v5 + Ey) (1 — 2u3) (vy — ESyvs) +

2 (1= 2uv) (Efvy — y2)<1 —2uy — E5, (1— 21/3)> +

ron [ (1= 201) v (1 = 20) + 731 (1 = 201) (1 + B, — 209) X

X (Efov1 — o) (1 — 2v3) + ES, (1 — 211) (1 — 21) w3 X

x (1= 2v3) + B3, (1= 2u1) (va + B, (1 — 203) 13)] } (2.67)

31 [Efz (1—214) (1/2 -+ ES, (1 — 1/3)) (1—2u3) +

E$ (vo —v3) (1 — 21/3)] —Ta [E§2 (vo —v3) (1 — 2v3) +

Ef, (1 —21) (1/1 — vy + ES, (1 —v3) (1 — 2uv3) )] + 791 X

{r31 (1—21) (1 —2u3) [ % (11 — o) + E§2<V2 — vy — Efy (11 — 13) )] -
To1 [E§2 (1 —2v1) (o — v3) (1 = 2v3) — Efy (1 — 214) X

x (v — vy + B (v = v3) (1 - 213) )]} (2.68)

I

ro (14 5y (1= 201) ) (5, (1 = 2v5) — (1 — 209) Jvs +

rar(1 = 2vy — Efy (1= 201) ) (1 = 2v3) (1 — Egyvs) +

ror{ (1= 2v3) v — By (1 — 201) (1 + B (1 — 2u3) Jvs +

+E5, (1 —21) 3 (1 — 2v3) — 731 (1 — 2u3) [(1 — 2up) vy +

+E7, (1 — 211) (214 — vy — 20110) + ES, (1 + Ef, (1 - 2v) )1/3]} +

+ ro{ (1= Bf) 3 (1—201) (B (1 — 205) — (1 - 2m) s +

+731 (1 — 211) (1 — 29 + EY,) (1 — 2v3) (12 — Egyvs) +

+ro [ (1= 201) (1 — 2v) vs + By (1 — 201) (1 + ES (1 — 2v3) Jvs +
+E5 (1 —2v1) (1 —2v) w3 (1 — 2v3) + 731 (1 — 201) (1 — 2u3) X

x (B, (20 — va — 20105) — vy (1— 209) — Egyus (1 - E5,) )]} (2.69)

+ 4

= (1-2wm)vy— E{, (1 —2v) (o — v3) — (1 — 21p) v3 — 791 X
[ (1= 20) (v2 = ws) + B (1 = 201) (201 — (14 201) v — (1 — 203) w35

"ILT'()l (1 - 21/1) { (1 - 21/2) (1/2 — l/3) — T2 (1 — 21/2) (1/2 — 1/3) +
+EY, [VQ —v3+ry (21/1 — (14 2v) 1y — (1 — 21,) 1/3)” (2.70)
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with

EC El (1 4 1/2) (1 it 21/2)
27 By (1+1) (1-21)
Es (14 v2) (1 — 2w)
: 2.71
E32 Eg (1 + 1/3) (]. - 21/3) ( )
and
_ AL _ A _ A
A = d—&:, Ay =d A Az, =d A (2.72)
B*C B*C B C
By, = deZ;:, By, = de—A—Q—C-, Bs, = dR} AB (2.73)

Using the coeflicients Aj., By, Aoe, Bac, Ase, Bac, stresses in the cylinder can be
determined analytically from Egs.(2.55-2.57) for the case of a cylinder having
€,=d.

2.1.3 Arbitrary strain in axial direction

For a multi - layers cylinder under thermal loading, in fact, the strain €, is not zero
and the stress o, at the ends of the cylinder is zero. To find an exact analytical
solution, satisfying o, = 0 at each point of the ends of a cylinder, is very difficult.
Although o, = 0 at the ends of the cylinder cannot be satisfied at each point,

the solution of the resulting force at the ends of the cylinder being zero

Ra
27r/ o,rdr =0 (2.74)

is useful, where R; is the inner radius and R, is the outer radius of the cylinder.

For the case of ¢, in each layer being a constant, Eq.(2.74) can be rewritten as
Y o [(RO)? - (BRP)!] =0 (2.75)

where N is the number of the layers, R®) the outer radius and Rz(.i) the inner

radius of each layer.

14




Under the assumption of ¢, = 0, the resulting force of o, at the ends is

N E. A E. ) ;
= | i B ()2 _ (py2
=Y {1/11 v il p azT} m [(RD)? — (RP)?]. (2.76)

i=1

The real situation is that the resulting force is zero at the ends of the cylinder.
To describe the true stress distribution in the range far away from the ends,
according to the Saint-Venant principle, the solution for loading with a resulting
force -Fy should be superposed to that of ¢, = 0. Under loading with a resulting
force -Fy, the cylinder has a constant €, in the range far away from the ends
- denoted as d. From section 2.1.2 it is known that the resulting force of o,

corresponding to €,=d is

N Ez

Fe=3, 1+ ) (1 — 2v;)

i=1

{2Aicvi + (1= w)d}m [(BD)? = (RPY] - (277)
where A;. is a function of d (see Eq.(2.72)). Following
Fy=-F, (2.78)

the quantity d can be determined. From Eqs.(2.76,2.77,2.72,2.78), there is

s { i — BT [(RY)? - (R,@i))z]}

>N, {ﬁ:ﬁm [2%}% +(1- 1/1)] [(R((Ii))z _ (R§i))2]}
(2.79)

d=—

where A;, A%, A, see chapters 2.1.1 and 2.1.2. Finally, the true stress distribution

i)

in a multi - layers cylinder under thermal loading is
0y = 0og; + 05 (2.80)

where o; will be calculated from section 2.1.1 and of; will be determined from
section 2.1.2 using the value of d from Eq.(2.79). In chapter 3, some examples
will be presented to see the agreement between the stresses calculated from the
finite element method and those obtained by the analytical equations given in

this chapter.
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2.2 Solutions for creep behavior

2.2.1 The case of ¢, =0

Following Norton’s law for creep material, the relation between the rates of stress

and strain in the multi - axial form is

. 1+v, v
eij:_‘E‘T"aij_E

where . denotes the rate, D and n are material creep constants, S;; is the devi-

3 n—
dkkdij -+ —Z-Daéﬁ» I)Sij, (281)

ator of the stress tensor o;j, ok is the sum of the three normal stresses, d;; is
Kronecker’s tensor and o, is the effective stress of the stress tensor, which are
defined as

1 if i=j
61'1' _=
0 if i]
Gkk:d1+02+03:0'7-+0'¢+(72 (282)
1
Sij =03 — gakkéij (283)

3 1
7ot = | 55555 = /(0 =0 4 (0 — 0.+ (0 —au P (280

The rates of strains and displacement satisfy

du
= 2.85
b= (2.85)

U
Ep = — 2.86
€p = (2.86)

The equilibrium equation of the stress rate is

dor | o =% _ (2.87)

dr r

For the case of ¢, = 0, the following relations can be obtained from Eq.(2.81):

. 1 . v, 3 -1
& =5 <U., 1o u%) + §D‘7gﬁ (S, +vS,) (2.88)
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. . v, 3 (n-1)
€p = —E7 (0’¢ - i——-_-——l;O'r> + EDUGH (S¢ + VSZ) (289)

3 n v
¢ — _Daeff b [(Sr + I/Sz) + T—-—_I/(Sd) + I/Sz)} }
(2.90)

TN -2)Q +v) {é’+1

. El-v) . v . 3 n—1) v
O¢p = {6¢+ 1_V€r—§DUeff [(S¢+VS) ].-V(ST+VSZ):I}

(2.91)

3
6, = (6, + Gg) — épaggf YES,. (2.92)

It can be seen that S, and S, always appear in the combination of S, + vS, and
S¢ + vS,. Therefore, the definitions

;S',:, = .AST + VSZ
S, = S,+vS, (2.93)

will be used in the following. Insertion of Eqgs.(2.85-2.86) into Egs.(2.90-2.91)
then into Eq.(2.87) yields
4 ldi u _ d (1d(ra)
dr?2 rdr r? dr
3 _d , 1-203  (eySr — Sy
_ 3,d 2r 2% (2,04
2Dd7‘ [ Teft K S¢)] 1—v 2Daeff T (2:94)

The solution of Eq.(2.94) is

r dr

i = 1{/[7«30 e’lzf“(s;+—” _5,)] dr +

T

1—2’// /{ Ts}drdrﬂLAr +B} (2.99)

where A, B are unknown constants. In the general case, the quantities o' ﬁ nl) , Sy

and Sy are a function of r. Therefore, Eq.(2.95) cannot be integrated.
If the thickness of the creep layer is very thin, however, o T;{ 2 ,S; and Sy can

be assumed as being constant in the integration range. This is the case for a
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coated structure with an interlayer exhibiting a creep behavior. For this case,

rin(r) - -;-] }

(2.96)

the solution can be simplified as

. B 1 3 (n—1) 14 1-2v
u:AT+—T~+—><—Da {T(S;+1_VS;,)+1_V(S;—S;)

2 "o et

To determine the constants A, B, boundary conditions have to used. For simpli-
fying the equations obtained from boundary conditions, the solution of % can be

rewritten as

. 1 {
U = -
r

1—2’// / [ (” 1 7 — 5% }dr” dr' + A+ Br® }s (2.97)

1—v

T1,3
/R. [7‘ 2 Dot Ooff DS+ qu)] dr' +

where R; is the inner radius of the creep layer. Integrating Eq.(2.97) results as

. A 1 3 R

o= A Br o x ~Dol {(s' 1_Vs')( —)+
L= g B Ry + B
(S = Sy) {rln(r) 5~ - In(Ry) + 5 } (2.98)

It is noted that the values of A and B in Eq.(2.96) and Eq.(2.98) are different.

The rates of strains and stresses according to % as given in Eq.(2.98) are

. A 1 3 (e v R?
& = ~——2+B+—>< §Daéffl){(5';+ — )(1+—)+
1- C e 1 _R_f R?
+T—, (S S3) |In [ n(r) + = 5+ In(R;) — 57| [ (2.99)
. A 1.3 , oy R
€y = —+B+—>< Doeff {(S 1—1/5)( r2)+
1-2v,_, , 1 R? R?
. ” (Sy — S3) [ln(r) 57 n(R;) 52| [ (2.100)
. _ 1 3 (n—1) E ! 1R12 Rz2 _ 1
6 = 5%3 sDogr 1_1/2{5' [ln() 52 +(1 21/)7‘2 In(R;) 5 +

2 2

+S(’;,I: ln(r)+l—R———(1—2u)R (m)——}j-k

E A
e el LR 2,,)] (2.101)

72

-
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0p = 5 %3 2 Do eff 1_1/2{5’ [ln()-5——(1——21/)—111(]{1.)_;__}_,_

2 2
+5, [— In(r) — %% 41— QV)%ln(Ri) - -33} } +

E A
T+ [B tall- 2V)] ' (2100
. 3 n—1 E / / ! 2B
5, = { ° Do éﬁ )1— [(S,eS¢)ln(r)—S¢]+(1_2V)(1+V)B}_
_§.D e?f I)ESZ (2.103)

Now a three-layers cylinder will be studied. It is assumed that the interlayer only
exhibits creep behavior and is very thin. Therefore, Egs.(2.98-2.103) can be used
for the stress analysis. Although materials 1 and 3 do not show any creep behav-
ior, the rates of displacement (%), strains (¢, €,) and stresses (d,, Gy, 0,) are not
zero during material 2 creeping. The conditions for determining the unknown
constants A,, By, Ay, Ba, A3, B; are:

at r=Fy
e =0, (2.104)
at r=R;
dp) _ dﬁz)
at) = 4@ (2.105)
at r=R,
o = 6®
=43, (2.106)
and at r=R3
¥ =0. (2.107)

They yield the following equations:

B, - (1 —2) =0 (2.108)




E1 .Al E2 AQ
-2l - - By — Z2(1—2
(1—2v1)(1 + 1) {Bl R%( 2”1)} (1= 20) (1 + 1) [ 2 Rg( ”2)}
3 _ E
=5 D oy i—:?;g(s;@) — 51 = ) In(Ry) (2.109)
A A
BiR; + R—i - ByR; — ‘R‘f‘ =0 (2.110)
E, Ay E3 As }
— 221 = 2m)| — By — 2212
(1—20)(1 + 1) [32 Rg( ”2)] (1 — 2u5)(1 + v3) [ ’ Rg( )
_ 1 3 (712—'1) E2 ,(2) ].R% JQ% _ 1
= —-—2- X 5 D2 02,8H 1_ I/% Sr ln(Rz) + —2*']?%‘ -+ (1 — QVQ)E%' ln(Rl) 9
1 R? R? 1
+5 {— In(R,) + 5}}% —(1- QI/Q)R—%IH(Rl) - 5] } (2.111)
AQ -AS
ByRy + R B3sR; — R
_ 13 (na—1) ( 1(2) Vo /(2)) R’
=-5 %3 D, T, eff { S+ - 1/25¢ R, R,
1 - 2’/2 1(2) /(2) RQ R% R%
| _ _fe M L Y2112
1 Vg (ST S¢ ) R2 ln(Rz) 9 R2 hl(R]) + 2R2 ( )
B3 e —Ji;—(l - 21/3) = 0. (2113)
Ry
The solution of Eqs.(2.108-2.113) is
E, E;
Ay = — 1 1-2 X
C T Ao dm) A B sy o ) el =2m))
E, 2
- 1-2 —-1)(1 1-2
X (ro1 + (1 — 2u9)) ( v3) + <(1 “om)(1 + 1/2)> (ro1 ) (1 + ror( v1))

E,
(1—21)1 +vy)

X(1 = 2uy) (ror + ra1(1 — 213)) + (1 —7ro1) (1 —214) X

E;
Tz A ) o ) (1= 2] 4
E,
A o) 1y Ll = 2) a1 21/3))] (2.114)
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B =

E, Es

Rt5(1 —205) (1 + v2) (1 — 2u3) (1 + v3) (ra1 = 721) 2(1 = 1) (1 = 205)
R gy 201 = ) (7 (1= 200) +
t Re (1-— 21/53(1 + v3) ran = 1) (rm = 7a) (1 = 2v) =
= Ry 2 £ )7“01 (rs1 —721) (1 — 211) X

(1 —=2v9)(1+12) (1 —2v3) (1 + 13
x2(1 — 1p)(1 — 2v3) —
Ey

7’01(1 — 2111)2(1 - 1/2) (T21 + T31(1 — 21/3)) +

Es
(1 — 21/3)(1 + 1/3)

(T21 —_ 1) (7’21 - 7‘31) (1 _ 21/3) —

(- 21/2E)2(1 + v3) (U471 (1 = 20)) (ran + a1 = 209)) (2.116)

Es
(1 — 21/3)(1 + 13

E,
(1—2)(1+ 1)

) (7‘31 — T‘21) [ (1 —_ 7’01) (1 — 21/1) +

(1 + 7‘01(1 — 21/1))j|(1 — 21/3) —+

+ Ry <( =L (ron = 1) (1 —21) —

1-— 21/1)(1 + 1/1)

"1 = 20) (1 + ) (I +70,(1 — 21/1))) (ro1 + 3 (1 — 2v3)) +

+ Ru(l+7r0(l—21)) [(1 — 21/5‘3(1 ) (r31 — ro1) (1 — 2v3) —
E,
— 0= 20) (1 + v2) (ro1 + 731 (1 — 21/3))} (2.117)
E3 El
Rts(l — o0 (L4 05) (ra1 — ro1) l(l “o) 0+ 0) (ror —1) (1 —21n) +
, EQ . o N ] N
+(1 o) £ ) (1+70(1—21))(1 - 41/2)](1 — 2u3) +
R By (1—=7¢) (1 =21) —

(1 - 21/1)(1 + 1/1)
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- 21/52(1 ) (1 + 7o (1 = 20)) (1 - 2’/2)} (o1 + 131 (1 — 213)) +

+ RtQT’Ql (1 + 7'01(1 - 21/1)) (1 — 21/53(1 T 1/3) (Tgl - 7‘31) (1 - 21/3) —
- 2,/52(1 ) (1= 2u) (ra1 + 5 (1 — 21/3))] (2.118)
Ag = Rtg(l — 2V2E)12(1 T I/Q) To1 (1 -+ 7‘01(1 - 21/1)) 2(1 — I/Q) +
 Ru [(1 - 21/;E)H(1 + vy) (ror = 1) (ra1 = 1) (1 = 2v) —

— (1 -+ T‘Ol(l - 21/1)) (T21 -+ (1 - 21/2))] +

E, 2
—+ Rt5|:<( 1+l/2)> (1-—7‘21) (1+T01(1—*21/1)) (1——2V2)+

1-— 21/2)(
E, E, _
o)A s 2 d o (0~ D20 L ra(l =)
(2.119)
B, = -R Es 1 1—201))2(1 — 1) (1 — 2v3) +
= t2 = 2m)(1 1 VZ)T217‘31 (1+70(1—201))2(1 — vy V3
Ey
+ Rt4 l:(l — 21/1)(1 T 1/1) (7‘01 - 1) (7‘21 — 1) 7‘31(1 - 21/1)(1 - 21/3) —
E,
— (1 = 21/2)(1 n I/Q)TBI (1 -+ 7'01(1 - 21/1)) (7‘21 + (1 - 21/2)) (1 - 21/3) +
E 2
+ Rt{, I:<(1 — 21/2)2(1 i V2)> (1 - T21) T3 (1 + 7‘01(1 — 21/1)) (]. - 21/2)(]. - 21/3)
E) E,
=2 @0 T = 2y (A ) 70 ™ D7l = 2]
X (1 + 7"21(]. — 21/2)) (]. - 21/3):! (2120)
with
Al Al Al
A= Rig Az = Ri7E, As = Ri7, (2.121)
_B B =5
B, A B =3, By =4, (2.122)




where R2, R, Ris make up the right side of Egs.(2.109,2.111,2.112) and rg;, 721, 731
see Eq.(2.33).

When the coefficients Ay, By, Aj, Ba, Az, B3 are known, the rate of stresses can be
determined from Egs.(2.101-2.103). To calculate the stresses at any time t;, an

iteration should be performed, i.e.

o (r,t:) = ol D(r,ticy) + 63 (r, ;) dt® (2.123)
where
i
ti=>_ dtt). (2.124)
k=0

The solution of ¢; = 0 corresponds to the elastic behavior. To calculate dg)(r, ti),
the stresses at the time ¢;,_; are used. In chapter 3, some examples will be pre-
sented to illustrate the agreement between the stresses calculated from the finite
element method and those obtained by the analytical equations given in this

chapter.

2.2.2 The case of ¢, being constant

It is assumed that the rate ¢, is a constant - denoted as d. From Eq.(2.81), there

is
‘ 3 e _
o, = Ed— 5Dag;f VES, + v(6, + &) (2.125)
and
=L (-2 ) +2D DS, +vS,) — v d (2.126)
€& = fo Oy T V0¢ 5 Ooff " - v .
= 2 (s Y_5) + 2Do0 (S, + v d 2.127
€¢——E-II‘<(7¢—1TO’T)+§ Ueff (¢>+l/ z)'—l/ ( )
E(1 - V) n—1)

3 (ne
¢ — SDals [S;,+

_ v Voo, v
0T~(1—21/)(1+1/) {6r+1~1/ 2 -VS¢J+ d}

1-v
(2.128)

1
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. E(l-v , % nl)[, % ,] % }
U¢_(1—21/)(1+1/){€¢+1—1/ Daeﬁ S¢+1— S 1—1/d '
‘ (2.129)

Substituting Egs.(2.85-2.86) into Eqgs.(2.128-2.129) and then in Eq.(2.87) yields a
differential equation for 1, which is the same as that given in Eq.(2.94). Therefore,
the solution for 4 is the same as that in Eq.(2.98), and the strains ¢, and é, are
the same as those given in Egs.(2.99) and (2.100) (it is noted that the values of
the coefficients A, B are different). The stresses, however, differ from those of
Eqgs.(2.101) and (2.102) as follows

2 2 1
6 = +x2pgnn_E {5'[1()+——R—+(1—2y)%m(3i)——]+

2 2 eff 1—yp 9 5
R? 1
+S¢[ +———(1—-21/)—T—2—ln(Ri)—-§] }+
A Evd
o 2V)(1 - [Bd 12 )} e (2.130)

2~ 2 r? = 2
R2 R? 3
+Sy [ In(r) — -—+ (1 - 21/)—7é1n(R,) - —] } +
E .Ad Evd
—(1— . 131
T ) [B‘“L -2+ A= 290+7) (2.131)
Use of the boundary conditions results in
Bld - fl%(l - 21/1) = - d (2132)
Rg
Ey Aig Ey A2q
- — 1-2
(1- 21/1)(1 + 1) [ 1T R? . 2”1)} (1= 2u5)(1 + 1) {BM R? L)
na E.
= 5 Deolisg 7o (S = 571 = ) (R)
Egl/z d E1V1 d
_ 2.133
+(1—-21/2)(1—1—1/2) (1-2v)1+ ) ( )
Ald A2d
2 M 2.134
BiaR: + R By Ry R =0 ( )
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E, Aoa E; Asd
— 22 o) — By — 221 -2
(1= 20)(1 + o) [ “TRE (1= 2u) Q=21+ | R (1= 2w)
_ 1 3, ey _E2 [ag LRy o B _1
=5 X5 Do 7T 2\ 5 |nlBe) + g+ (1 - 2n) () - 5

2 2 1
#S§2 |- hn(R) + 1 - (- 2 () - 3] |

2 R R3 2
Esvs d FEovy d
— 2.135
02+ =21 +m) (2.135)
./42(1 -A3d
Boa Ry + ?2 — B3qRy — R_2
— _1 § (n2-1) ( 1(2) ) cv’(?)) _ ﬁ
= 5 X 5 D2 U?,eff { ST + 1 1/20¢ RQ R2
1 —_ 21/2 /(2) ,(2) R2 R% R%
— - = - = —_— 2.136
+ 1 - Vo (S,. S¢ ) R2 ln(Rg) 5 R2 1Il(R1) + 2R2 ( )
A
Bsq — %(1 — 2u3) = —3 d, (2.137)

from which the coefficients A4, By can be determined. Simplifying the solutions,
the following relations are obtained:
E, E,
(1 = 2u5)(1 + 1) { (1 —2v5)(1 + vy)
E;
(1 = 2v3)(1 + v3)

Ild = Eq(2115) +d (7‘21 — 1) (1 - 21/2) X

(ra1 — ro1) (1 — 2u3) X

X (7‘21 + 7‘31(1 —_ 21/3)) (1/1 — 1/2) +

X [ (7‘21 + (1 — 2V2)) nm + (1 — 7‘21) V9 — 2 (1 — 1/2) l/g] } (2138)

E; Ey
(1= 21)(1 +14) [(1 —2v3)(1 + v3)
X (7‘31 — 7‘21) (1 - 21/1)(1 - 21/3)1/1 +
Ey

T T D020 (47 2) vl 2

Ild = Eq(2116) + d{ (7‘01 — 1) (7‘21 — 1) X

E; 2
() () (- 200 O (= 20) 0 5 sl =2

+ £ &3 (ro1 — 731) (1 — 2”3)[("21 +(1-2m))n+
(1= 2u0) (1 + 1) (1 — 2v5)(1 + v3)
+ro1 (21 — 1) (1 = 2v1)vp + ror (1 — 201)2(1 - VQ)VS]} (2139
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/ B Es
= Fq.(2.117
Az q.( )+d{(1_21/2)(1+1/2) (1 —2u3)(1 + w3

E, E,
A =21+ ) [(1 o)A+ )
X (7‘01 — 1) (1 — 21/1) (7‘21 + T31(1 — 21/3)) (1/1 — Z/Q) +

Es

+ (1 _ 21/3)(1 n V3) (TOI - ].) (7'31 - T21) (1 — 21/1)(1 — 21/3) (1/3 — 1/1)]}

) (r31 —7T21) X

X (]. -+ 7‘01(]. - 21/1)) (1 - 21/3) (1/2 — 1/3) +

(2.140)

Bgd = Eq(2118) -+ d{ <(1 — 2V2E)2(1 T V2)> (1 —_ 7‘21) (1 + T01(1 - 21/1)) X

E, Ey
(1= 20){1 + 1) [(1 o)1)
X (7‘01 — 1) (1 — 21/1) (7'21 + 7'31(1 - 21/3)) (7‘21(1 - 21/2)1/1 + 1/2) -+

X(l — 21/2) (7’21 4 7‘31(1 - 21/3)) vy -+

Ey
+ (1 — 21/3)(1 n I/3) (7‘01 - 1) (7’31 — 7‘21) (1 — 21/1)(1 — 21/3) (7‘211/1 — 1/3)] +
E2 E3
+ (1 —202)(1 + 1) (1 — 213)(1 + v3) (ra1 = 7a1) (14 7o (1 = 20)) (1 = 205)
X (7’211/2 + (1 — 21/2)1/3) } (2141)
P E, E,
A = BeQI9) +dama N { T2 T 2 ™1

-2 A +m)

X (14+7o1(1 = 214)) (1 — 2u) (V3 — 1) + - 1) x

X(l — 21/1)[27'211/1 (1 — VQ) + (1 — T21) Vo — (1 + 7'21(1 — 21/2)) 1/3]}

(2.142)

2 ES
(1 — 2112)(1 + 1/2) (1 - 21/3)(1 + vy

By, = FEq.(2.120) +d{ ) (r21 = 7T31) X

x (1+r01(1-zul))(m+(1—2u2))(1—2us)”3+((1—2V;E)2(1+u2)> "

X (1 =791) (1 +7ro1(1 = 211)) (1 — 205) (731 (1 — 203) vy + 71 03) +
B Es , D N
(1=211)(1+mn) [(1 — 2u3)(1 + v3) (ror = 1) (rar = 1) (ra1 = 72) %

(1- 21/32(1 + 15) (ror = 1) (1~ 2V1)(2T21T31 X

X(]. - 21/1)(1 — 21/3)1/3 -+
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X(l - 21/3)1/1 (1 — 1/2) + (1 - 7‘21) T31(1 - 21/3)1/2 + 7 (1 + 7'21(1 - 21/2)) 1/3)]}

(2.143)
and
2 lld 2~Al2d 2 gd
Ald = Rl E, .Azd = Rth, A3d = Rl At . (2144)
1d 2d 3d
ld At b 2d At b) B3d At bl ( )

where A; see Eq.(2.114).
When the coefficients Ayq4, Big, Azg, Bog, Asq, Bag are known, the rate of stresses
can be determined from Egs.(2.125,2.130-2.131). The stresses can be calculated

by means of the procedure given in chapter 2.2.1.
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Chapter 3

Examples for Multi - Layers
Cylinders

In this chapter, some examples will be presented to show the agreement of the
stresses calculated from the analytical equations given in chapter 2 and from the
finite element method (FEM) in a cylinder with a finite length. The length (2L)
of the cylinder is varied to find out in which case (i.e. which ratio of the length
(L) and thickness (H)) they have a good agreement.

The radii of the cylinder are

Ry = 2mm
Ry = 4mm
RQ = 4.1 mm

R; = 4.355 mm.
The material data of the three layers are

E, = 215 GPa, vy = 0.3, op = 16.28 x 107%/K
E, = 180 GPa, v, = 0.3, oy =16.6 x 107°/K
E; = 125 GPa, vs = 0225, a3=108x%x10"%/K

and

D;=14%x10"® (0in MPa and t in hours), ny = 2.25.
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For the stress analysis from FEM, the program ABAQUS with 8 nodes element
is applied. The used mesh is shown in Fig.2, where only one half of the cylinder
in z direction is presented due to the symmetry. In the following, the given FEM

results are located along this symmetrical line.

3.1 Results for elastic behavior

For the case of a cylinder under thermal loading, the temperature change is 980K.

Stress distributions along the symmetrical line of the cylinder are plotted in Fig.3a
for o,, in Fig.3b for 04 and in Fig.3c for o,. The analytical solution (lines) is for
the case of ¢, = 0 (given in chapter 2.1.1). The FEM results (symbols) are for
the case of ¢, = 0 and for €, being arbitrary with a variable ratio of L/H. It can
be seen that for all three stress components only the FEM results for the case
of €, = 0 exhibit a very good agreement with those from the analytical solution,

irrespective of the ratio of L/H.

For the case of a cylinder having a constant ¢,, the stress distributions along the
symmetrical line of the cylindér are plotted in I ig;4a for o, in Fig.4b for o4 and
in Fig.4c for 0,. The analytical solution (lines) is for the case of ¢, = d (given in
chapter 2.1.2). The FEM results (symbols) are for the case of the cylinder being
loaded with a uniform o, (=1 MPa) at the ends and the cylinder with a variable
ratio of L/H. It can be seen that for all three stress components FEM results are
in very good agreement with those from the analytical solution when the ratio
L/H > 6.

For the case of a cylinder under a temperature change of 980K and with an ar-
bitrary €, the stress distributions along the symmetrical line of the cylinder are
plotted in Fig.5a for o,, in Fig.bb for 4 and in Fig.5¢c for o,. The analytical
solution (lines) is taken from chapter 2.1.3. The FEM results (symbols) are for
the case of a cylinder with a free o, at the ends and the cylinder with a variable
ratio of L/H. It can be seen that for all three stress components FEM results are

in very good agreement with those from the analytical solution when the ratio
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L/H > 5.

The comparisons have shown that the analytical solutions for the elastic behav-
ior are accurate for a multi - layers cylinder with L/H > 5. In fact, for cylinder
with L/H > 3 and stress free at the ends, the analytical solution can be used to
describe the stress distribution in the center of a joint well. The equations for the
case of €, = 0 cannot be used to calculate the stresses in the center of a cylinder,

irrespective of the ratio of L/H.

3.2 Results for creep behavior

To test the equations given in chapter 2.2, FEM calculations are performed for
the case of a joint having an initial temperature of 1000°C, an end temperature
of 20°C' and subjected to t hours of creeping. It is noted that in this case stress
relaxation and not creep occurs. It is the true creep process if the initial tem-
perature is 20°C, the end temperature is 1000°C' and then t hours of creeping.

However, the equations to calculate the stresses are the same.

For the case of €, = 0, stress distributions along the symmetrical line of the cylin-
der are plotted in Fig.6 for o,, 04 and o, with t=0.1 hours, in Fig.7 for o,, 0y
and o, with t=1.4472 hours, and in Fig.8 for 0,, 04 and o, with t=10 hours. The
analytical solution (lines) is given for the case of ¢, = 0 and é, = 0 (see chapter
2.1.1 and chapter 2.2.1). The FEM results (symbols) are for the case of ¢, = 0
and €, =0. It can be seen that in elastic materials they always are in very good
agreement, irrespective of time. In creep material, the results obtained for the
stress components ¢, and o, also are always in very good agreement, irrespective

of time. However, for the stress components o, they have a slight difference.

For the case of a cylinder having a free o, at the ends, the stress distributions
along the symmetrical line of the cylinder are plotted in Fig.9 for o,, o4 and
o, with t=0.1 hours, and in Fig.10 for o,, 04 and o, with t=1.66 hours. The

analytical solution (lines) is given for the case of ¢, being arbitrary and ¢, = 0

30




(see chapter 2.1.3 and chapter 2.2.1). The FEM results (symbols) are for the
cylinder with a free o, at the ends, which corresponds to ¢, being arbitrary and
€, = 0. It can be seen that for all stress components they are always in very good

agreement, irrespective of time (here, L/H = 5.1).

The results have shown that for a multi - layers cylinder with a thin creep inter-
layer, the analytical solution given in chapter 2.2 can describe the stresses very
well, especially for the case of a cylinder with a free o, at the ends, which is the

relevant case in practice.
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Chapter 4
Stress Analysis in a Plate

In this chapter, stress analysis in a multi - layers plate will be presented briefly for
elastic behavior and for a creep proceés, with only plane strain being considered.
Then, the stress distributions in the range far away from the ends of a multi -
layers cylinder and of a multi - layers plate are compared to see the effect of the

material creep behavior on stresses.

4.1 Solutions for elastic behavior

In this section, it is assumed that the plate is in plane strain. This means that
€, = 0. In the plane x-y (for coordinates see Fig.11), following Bernoulli’s law

the strain can be always characterized, irrespective of materials property, by
€z = A+ By (4.1)

where A and B are unknown constants. The relation between the stress and the

strain is
E(l —v) % 1+v

- . - T 4.2
Tz (1—21/)(1+1/)<6+1——1/6y l—ua) (42)

E(l1-v) ( % 1+v -\
g, = » £ — ol (4.3)
oy (1—-21/)(1-|-1/)\6y+1—1/FJ“ 1-v") Y
o, =v(0; + 0y) — EoT. (4.4)
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Because the thickness of the plate is much smaller than the size of the plate in
x- and z- direction, the stress o, can be assumed to be zero (FEM calculations
have shown that this is reasonable). Then, the stress and strain relation can be

simplified as

1

€& = 20 +o'T (4.5)
v ,
ey-—E—lam-%-aT (4.6)
€, =0 (4.7)
and

o, = E'(e, — &'T) (4.8)
o, =0 (4.9)
L0, = voy — aET, (4.10)

with E' = E/(1 - v*),v' =v/(1 —v),& = (1 + v)a. In each material,
0, = E{{A+ By — o/T) (i=1,2,...,N) (4.11)

is valid. When the parameters A and B are known, the stress and strain in the
multi - layers plate can be calculated. To determine the constants A and B, the
equilibrium conditions of the plate have to be used. As no force and moment is
applied in the joint, the equilibrium conditions are:

F, = ” ody =0 (4.12)

Yo

Y3
M, = ozydy = 0. (4.13)

Yo
Substituting Eq.(4.11) in Eqgs.(4.12) and (4.13) yields the general equations to

“determine A and B:

N B 2 2
/ !
AY Eilyi—yia] + b} > E; [(.%) = (i) }
i=1 =1
N
= Y EoqT [yi — yi) (4.14)




Sl

l 3
LIy
EjoiT/2 () - i-)?],  (4.15)

>kt -]+

Il
'Mz ol

1

I

where y; see Fig.11 and N is the number of the layers in the joint. Using the

definitions of

N
an =Y Ej [y — yi] (4.16)
i=1
1Y 0
Ay = “2“ Z [ yz (Yi1) } (4.17)
91 — Q19 (4.18)
1 N
an =3 Y B [@) — (1)) (4.19)
i=1
Z EiT [y — yi1] (4.20)
z 2
Ry =3 EloiT/2 [(w)® - (vi-1)?], (4.21)
i=1
gives
. Ryagy — Ryaqz
A = A
B Raan ; Rlam, (4.22)

with A = aj1a99 — ai2a9;. The stress at any point in a N - layers joint can be
calculated analytically from Eq.(4.11) with the coefficients given in Eq.(4.22).
To check the analytical solution, one FEM calculation has been carried out. The
comparison is shown in Fig.12 (joint geometry is the same as in chapter 4.3 and
the material data are the same as in chapter 3). It can be seen that they are in

good agreement and that the assumption of o, = 0 is true.
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4.2 Solutions for creep behavior

For creep material, Norton’s law given in chapter 2.2 will be used. For a thin

plate and in plane strain

e, = 0

g, = 0 (4.23)

are true. Equations (2.81) and (4.23) lead to

. Oz 3. (n-
b= oot 59053 i (Se +vS.) (4.24)
. v . 3 (n—1)
€y = ~g0s + §D0eff (Sy + vS,) (4.25)
and
. . 3 n—
0, = FE' {ex - §D0'((3ﬁ' Vs, + I/Sz)} (4.26)
6, = vi, — SDeVES (4.27)
z €T 2 eﬂ‘ z* .
Following Eq.(4.1)
€, = A+ By (4.28)
and therefore
Gy = E' {A + By — gDagg”(Sm + us,,)} : (4.29)

The thickness of the layer with creep material is very thin. Therefore, the quan-
tities S;, Sy, S, and ogflfl) can be assumed to be constant. The equilibrium

condition of the plate yields
. Y3
B, = / Gody = 0 (4.30)
y

. Y3
M, = / Gaydy = 0. (4.31)
Y

0
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From Eqs.(4.29-4.31), the following equations can be obtained:

N B 2 2
AZE{ i — yi1] + 3 E [(yz) _(yi—l)]

N

= S Dl 4 SOl ] (1)

ALY P / s

?; z[yz yzlil ZE[yl _)]
__Z Dz fnéf_fl)E,/Q[ () 4+ 1,50] [( D2 — (3 )2] (4.33)

Let

_Z °p, o{at BilSY + 1S [y: — yi1] (4.34)
Z ’Dio " B2 + viSO) [0 = (i) (4.35)

This results in

Riaz — Roaiz

A

Rea1 — Rian
A .
Now, the rate of the stress can be determined from Eq.(4.29) with the coefficients

A

B (4.36)

given in Eq.(4.36). The stress can be calculated by using the process shown in
chapter 2.2.1. A comparison of the stresses obtained from Egs.(4.36) and (4.29)
and from FEM is made in Figs.13, 14 and 15 for different times (t=0.05943 hours
(Fig.13), t=0.1617 hours (Fig.14) and t=>5.3496 hours (Fig.15)) (joint geometry
is the same as in chapter 4.3 and the material data are the same as in chapter

3). It can be seen that they are in good agreement, irrespective of time.

4.3 Effect of the material creep behavior on stresses

in a plate and in a cylinder

To compare the creep effect on stresses in a plate and in a cylinder, the stress

distributions are plotted together for various times and for plane strain.
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The geometry of the plate is

Yo = 0mm
1 o= 2mm
Yo = 2.1mm

ys = 2.355 mm
L/H =5.1.

For the cylinder, the geometry is the same as that given in chapter 3.

As a first example, the material data of the three layers are

E, =142 GPa, vy = 0.3, o =158 x 1078 /K
E,=160GPa, 1, = 0.3, «a,=166x10"%/K
E3=150GPa, 13 = 0.3, «a3=104x10"%/K

and
D, =9.7x10"° (o in MPa and t in hours), ny = 3.4.

The loading results from the joint having an initial temperature of 20°C, an end
temperature of 900°C' and being subjected to t hours of creeping.

Fig.16 shows the stress distribution in a plate and in a cylinder for the elastic
behavior and for a short time. It can be seen that (a) with an increasing t, the
absolute value of o, increases, even in creep material, (b) in creep material, the
absolute value of the stresses, which are parallel to the interface, decreases with
increasing t; however, in elastic materials they may decrease or increase, (c) stress
components parallel to the interface (g, 05, 0,) in a cylinder are nearly constant
in each material, whereas in the plate they vary strongly.

The time dependence of the stresses at different points (inside radius R;, outside
radius R, and the center of each layer) in the joint is given in Figs.17 - 19 for
materials 1 (Fig.17), 2 (Fig.18) and 3 (Fig.19). The stress component o, is not
true due to the assumption of ¢, = 0. Therefore, in the following o, is not plotted
(0, is similar to og or ;). It is shown that (a) in elastic materials (1 and 3) with
increasing t stresses tend to a constant, which is not zero, although they decrease

to zero in the creep material, (b) in creep material, with increasing t the stresses
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parallel to the interface decrease, but the stress perpendicular to the interface o,
does not, (c) in creep material the rate of stress ¢ in the plate is larger than that
of the cylinder (Fig.18b).

As a second example, the material data of the three layers are

E, = 158.5 GPa, v, = 0.3, a; = 15.66 x 107%/K
E3=15GPa, 13 = 03, «a3=1075x10"%/K

and material 2 is the same as that in the first example. For this example, Fj3 is
much smaller than F; and F,.

Fig.20 shows the stress distribution in a plate and in a cylinder for the elastic
behavior and for a short time. It can be seen that for a very small time, |o| is
much larger than that at t=0 and for very long time (even stress changes the
sign, this is not the case for example 1), which may indicate fracture or failure of
the joint.

The time dependence of the stresses at different points in the joint is given in
Figs.21 - 23 for materials 1, 2 and 3. It is shown that (a) in the elastic materials
stresses may change the sign with increasing t, (b) in creep material, stresses par-
allel to the interface decrease to zero with increasing t, the stress perpendicular
to the interface tends to a constant, (c) for the plate, in elastic material the rate

of stress ¢ is much larger than for the cylinder.

To sum up, it may be concluded that for a joint with the same thickness, same
materials combination and with three Young’s moduli being similar (as in exam-
ple 1) in a plate the stress situation is more beneficial than in a cylinder under
considering material creep behavior; if F3 is much smaller than E; and F; (as in

example 2), o, is very small and a cylinder is more beneficial than a plate.

So far only the stresses in the center of a joint are studied. Along the free edges
of a multi - layers plate or along the free ends of a multi - layers cylinder, there
is a stress singularity due to the difference of the elastic constants in the joined
components. Therefore, the values of the stresses obtained from FEM have no

real meaning. However, the tendency of the stress distribution obtained by the
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FEM calculation is true. FEM results have shown that along the free edge of a
plate and along the free ends of a cylinder stress distributions are similar, but

the rate of stresses in a plate is larger that in a cylinder.
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Fig.11 The geometry and coordinates of a plate.
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Fig.20 Stresses for a plate and a cylinder with ¢, = 0 and €, = 0 (example 2).
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Chapter 5

Creep Behavior in a Joint with

Functionally Graded Material

In this chapter, an example will be presented to see whether a joint with a
Functionally Graded Material (FGM) is beneficial or not, under material creep
behavior. The joint (multi - layers cylinder) is made of a substrate (Ni - Superal-
loy) and a bond coat layer with a NiCoCrAlY layer, a Al,O3 layer, a FGM layer
and a ZrO, layer. The inner radius of the cylinder is 2mm and the outer radius
is 4.355mm. The thicknesses of the layers are: Substrate - 2mm; NiCoCrAlY
layer - 100 pum; Aly,Os layer - bum; FGM layer - 50 um; ZrO, layer - 200 um
(with FGM) or 250 pum (without FGM). The ratio of the length and thickness is
L/H=5.1. ’

The used material data are:

Eqp =148 GPa, vy = 0.3, g = 1628 x 107%/K
Enico. =70 GPa,  wnico. = 0.3,  anico. = 16.6 x 107%/K
Eai,0, = 319 GPa, Vabo, = 0.24, Qao, = 8 x 107¢/K
Ez0, =16 GPa,  vz,0, = 0286,  agzo0, =108 x 107%/K

and only the NiCoCrAlY layer has a creep behavior with the data of
D =173x10"" (oin MPa and t in hours), n=27.

Graded material is introduced between the Al,O3 layer and the ZrO, layer with
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a linear transition function for Young’s modulus E and the thermal expansion
coefficient «. Loading is obtained from the initial temperature being 1200°C, the

end temperature being 800°C, t hours of creeping and cooling down to 20 °C.

The stress distribution in the range far away from the ends of the cylinder is
plotted in Fig.24 for the elastic behavior. The stress components gy and o, are
always similar, therefore, o, is not presented. Stresses are calculated from FEM.
It can be seen that for elastic behavior, the joint with a thick FGM layer and
without the ZrO, layer (but the surface has the material data of ZrO,) is the

worst one, while the joint without FGM is the best one.

In Figs.25 -26, the stress distributions for t=0.1 hours and t=1.5 hours are given,
where no cooling down to room temperature has taken place. Fig.27 shows the
stresses after t=1.5 hours of creeping and subsequent cooling down to room tem-
perature. It can be seen that the joint without FGM is better suited than the
joint with FGM. In the case of a joint with FGM, the joint without a ZrO, layer

is better.

The time dependences of the stresses in a joint without FGM (Fig.28) and with
FGM (Fig.29) are presented in Figs.28 - 29. It can be seen that (a) after creep-
ing, the stress o, near the interface substrate / NiCoCrAlY layer is increased.
Especially in the joint without FGM, the stress changes the sign (see Fig.28),
which may introduce a delamination of the joint. (b) with t exceeding 1.5 hours,

the creep process is almost completed.

If the stress o, at the interface is larger than the strength of the interface a de-
lamination may occur. When the stress oy at the surface is higher than strength
of the material a crack may initiate. To analyze the effect of material creep be-
havior on the failure, e.g. interface delamination or surface crack initiates, time
dependence of stress o, at the interface and oy at the surface for different joint

will be presented.
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Fig.25 Comparison of stresses in a joint with and without FGM (t=0.1 hours).
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t=1.5 hours
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Fig.26  Comparison of stresses in a joint with and without FGM (t=1.5 hours).
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F ig.27 Comparison of stresses in a joint with and without FGM (t=1.5 hours & cooling down).

61




L L LA A L U LI 0 o o

0.5 1.0 1.5 2.0 2.5
r (mm)

0.0

(a)

Fig.28 Time dependence of stresses in a joint without FGM.
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Fig.29 Time dependence of stresses in a joint with FGM.
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For a joint without FGM, stresses o, at the interfaces substrate / NiCoCrAlY
layer (denoted as A), NiCoCrAlY layer / Al,O3 layer (denoted as B) and Al,O3
layer / ZrO, layer (denoted as C) are plotted in Fig.30. In Fig.31 stresses gy at
the inside surface (substrate side) (denoted as D) and the outside surface (ZrO,

side) (denoted as E) are given. In Figs.30 - 37 the time is in hours. .

Fig.30 Stresses o, at interfaces A, B and C for cylinder without FGM.
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For a joint with FGM, stresses o, at the interfaces substrate / NiCoCrAlY layer

(denoted as A), NiCoCrAlY layer / Al,O3 layer (denoted as B) and Al,O; layer

/ FGM (denoted as C) are plotted in Fig.32. In Fig.33 stresses oy at the inside

surface (substrate side) (denoted as. D) and the outside surface (ZrO, side) (de-

noted as E) are shown.
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For a joint with FGM but without the ZrO, layer (surface has the material data

as ZrQ,), stresses o, at the interfaces A, B and C are plotted in Fig.34. In Fig.35

stresses oy at the inside surface (substrate side) (denoted as D) and the outside

surface (ZrO, side) (denoted as E) are presented.
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For a multi - layers plate the stress situation is, however, different. For a plate in

the range far away from the edge, only stress o, at the surface is dangerous. In

Fig.36 stresses o, at the surface substrate (denoted as D) and the surface ZrO,

(denoted as E) are presented for a plate without FGM. Stresses o, at the surfaces

D and E are shown in Fig.37 for a plate with FGM.
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From Figs. 30, 32 and 34 it can be seen that stress o, at interfaces B and C is al-
most constant during the creep process, however, at interface A it varys strongly
for the short time and it may change the sign (in the joint without FGM). The
joint with FGM and ZrO, layer is the worst one and the joint without FGM is

the best one from the sense of delamination.

It is shown from Figs. 31, 33 and 35 that stress oy at the surface ZrO, is almost
constant during the creep process, however, at the surface substrate it varys
strongly for the short time and it may change the sign (in the joint without
FGM). The joint with FGM and a ZrO, layer has the largest tensile stress at
the surface substrate and the joint with FGM but without ZrO, has the lowest

compressive stress at the surface ZrQO,.

For a multi - layers plate the situation is another. At the surface ZrO, stress
o, is always compression, but at the surface substrate o, is tensile for the joint
without FGM and for a short time.

Comparing plate and cylinder it can be seen that at the surface ZrO, the stress
component parallel to the surface (o, and op) is always compression, however,
at the surface substrate the stress component parallel to the surface is almost

tensile for cylinder and compression for plate.
For the given joint geometry and materials combination, the introduction of a

FGM layer is not beneficial and after creeping the stress situation is even worse,

especially, for the cylinder geometry.
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Chapter 6
Conclusions

Stress distribution in a multi - layers joint, a plate or a cylinder, has been ana-

lyzed taking material creep behavior of one interlayer into consideration.

Explicit equations to calculate the stresses far away from the ends of a multi -
layers cylinder under thermal and mechanical loading have been given for the
cases of €, = 0, ¢, = constant and ¢, being arbitrary, and for the cases of ¢, =0
and €, being a constant. FEM results have shown that for cylinder with L/H > 3
and stress free at the ends, the analytical solution can be used well to describe the
stress distribution in the center of a joint. The equations for the case of ¢, = 0
cannot be used to calculate the stresses in the center of a cylinder, irrespective
of the ratio of L/H.

Equations to calculate the stresses far away from the free edge of a multi - layers
plate under thermal loading have been presented explicitly for the cases of €, =0

and ¢, = 0.

In elastic materials (1 and 3) with increasing t stresses tend to a constant, which
may be larger or smaller than the value at t=0. In creep material, with increasing

t the stresses parallel to the interface decrease to zero, but the stress component

constant, which is not zero.

Stress distribution in a multi - layers plate and in a multi - layers cylinder has

68




been compared taking into account the material creep behavior. It is shown that
for a joint with the same thickness and same materials combination, in a plate
the stress situation is more beneficial than in a cylinder if the three Young’s mod-
uli are similar (as in example 1); if F3 is much smaller than F), and E; (as in
example 2), o0, is very small and a cylinder is more beneficial than a plate. In

creep material, the rate of stress ¢ in the plate is larger than that of the cylinder.

An example has been presented for a multi - layers cylinder with a functionally
graded material (FGM) interlayer. For this given joint geometry and materials
combination, the introduction of a FGM layer is not beneficial and after créeping,
the stress situation is even worse. It should be noted that the effect of introduc-
ing a FGM layer and the influence of the material creep behavior on the stresses
are strongly dependent on the ratios of thicknesses and Young’s moduli between
the layers. This means that for another ratios of thicknesses and Young’s moduli

between the layers, introducing a FGM layer may be beneficial.
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