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Fracture toughness and R-curve behaviour of PZT

Abstract:
The failure of ceramic materials is governed by the fracture toughness KIc and in case
of a material with a rising crack resistance by the so-called R-curve. In this report the
fracture mechanical properties of commercial PZT-ceramics are determined.
Controlled fracture tests with single-edge-notched bending bars were performed in an
extremely rigid loading device. The fracture toughness was determined from the
maximum load and the R-curve was evaluated via the compliance method. Indirect
results of KIc using the Indentation Strength (IS) method are reported.
As practical applications of the fracture mechanics data the influence of the R-curve on
strength and on lifetimes in static bending tests is dicussed.

Rißzähigkeit und Rißwiderstandskurve von PZT-Keramiken

Kurzfassung:
Das Versagen von Keramiken wird durch die Rißzähigkeit KIc und im Falle eines
Materials mit ansteigendem Rißwiderstand durch die R-Kurve bestimmt. Im vorliegen-
den Bericht werden die bruchmechanischen Eigenschaften von kommerziellen PZT-
Keramiken bestimmt. An einseitig gekerbten Biegestäben werden mit einer extrem
steifen Apparatur kontrollierte Bruchversuche durchgeführt und die Rißzähigkeit aus
dem Kraftmaximum und die R-Kurve über die Compliance-Methode bestimmt. Indi-
rekte Messungen der Rißzähigkeit erfolgen mit der "Indentation Strength" Methode.
Als praktische Anwendung der erhaltenen Ergebnisse wird der Einfluß der R-Kurve
auf die Festigkeit und die Lebensdauer in statischen Versuchen diskutiert.
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1 Introduction
Failure of ceramic materials often starts from cracks, which may originate at pores and
inclusions or may be generated during surface treatment. Various failure modes are respon-
sible for failure and finite lifetimes of ceramic materials. At moderate temperatures the most
important of them are:

•  spontaneous failure,

•  subcritical crack growth under static load,

•  cyclic fatigue,

•  thermal shock and thermal fatigue.

Spontaneous failure occurs when the applied stress reaches the strength of the material or, in
terms of fracture mechanics, when the stress intensity factor KI of the most severe crack in a
component reaches or exceeds the fracture toughness KIc. Therefore, KIc must be known for
the spontaneous failure behaviour to be assessed.
The loading quantity in linear-elastic fracture mechanics which governs failure is the stress
intensity factor K.
The stress intensity factor KI which is called the "mode-I" stress intensity factor and is caused
predominantly by stresses normal to the crack area is of greatest importance to the strength-
and failure behaviour. The stresses at a crack tip are directly related to KI by the Sneddon
equations, which are reported in most fracture-mechanics handbooks.
Failure of a component occurs when the stress intensity factor of the most severe crack
reaches a critical value KIc, the fracture toughness of the material. In case of ideally brittle
materials the fracture toughness is independent of the crack extension and, consequently,
identical with the stress intensity factor KI0 necessary for the onset of stable crack growth.
Early investigations on the determination of fracture toughness for piezoelectric materials
have been reported by Freiman et al.[1-3]. It is a well-known fact that failure of several
ceramics is influenced by an increasing crack-growth resistance curve. This is also the case for
piezoelectric ceramics [4-6].
For piezoelectric ceramics the crack growth resistance behavior is substantially more complex
than for usual monolithic ceramics. In the polarized state and especially in the case of an
externally applied electrical field the R-curve is affected via the electrical-mechanical
coupling. In this report the material behavior of piezoelectric materials is regarded exclusively
in the absence of an external electrical field.
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2 Experiments

2.1 Materials investigated

Fracture mechanics tests were carried out with commercial PZT-ceramics (manufacturer: PI
Ceramic, Lederhose, Germany). The materials are characterised by the manufacturer as shown
in Table 1.

PIC 141 PIC 151 PIC 155
density (g/cm3) 7.80 7.80 7.70
Curie temperature (°C) 275 250 320
d31 (m/V) -115·10-12 -170·10-12 -140·10-12

d33 (m/V) 330·10-12 450·10-12 310·10-12

S11
E (10-12 m2/N) 12.6 15.0 13.2

S33
E (10-12 m2/N) 13.0 11.6 18.7

Table 1  Investigated commercial PZT-ceramics.

For the material PIC 151 the Young's modulus was determined with fast tensile tests as E ≅  65
GPa in the unpoled and E ≅  57 GPa in the poled modification [7][8] with the poling direction
perpendicular to the specimen length axis.

2.2 Knoop-damaged specimens

Rectangular specimens 3x4x45 mm3 made of material PIC 151 were damaged by Knoop
indentations with different indentation loads P. Then the specimens were annealed above the
Curie temperature at 285°C to reduce all R-curve effects (cumulated during the indentation
tests) caused by domain switching ahead of the crack tip and to reduce residual stresses by the
pronounced creep effects present even at room temperature. After annealing the cracks were
marked with a penetration dye and could be measured easily under the optical microscope
after fracturing. The initial crack depth a0 is shown in Fig.2.1a in dependence of the inden-
tation load P. The a/c-ratio (c = half width of the crack) was a/c=0.95 with a standard
deviation of 0.08.

Strength tests with the Knoop-damaged bars were performed in 4-point bending and in tensile
tests. For the tensile tests the bars were glued in brass cylinders with an epoxy resin. The



3

tensile load of a servo-hydraulic machine is transferred by nylon strings to the brass cylinders.
Details are given in [7].

The bending tests were carried out with the Knoop cracks in the tensile region. The elastically
calculated bending strength data are represented in Fig.2.1b by the open circles and the tensile
strength data by the solid circles.
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Fig.2.1 Strength tests with Knoop-damaged specimens, a) initial crack depth a0 as a function of the indentation
load, b) elastically calculated bending strength and tensile strength.
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Fig. 2.2 Bending strength σb and tensile strength σt as functions of the initial crack depth a0.
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The bending strength σb and the tensile strength σt of the indentation damaged specimens are
plotted in Fig. 2.2 as functions of the initial crack size a0 in a log-log scale. The straight line
behaviour of the bending strength can be expressed as

σ b a= −33 0
0 34. .MPa (2.1a)

with a0 in mm. The tensile data lead to

σ b a= −24 5 0
0 37. .MPa (2.1b)

The significant deviations from straight lines with exponents -1/2 are first indications for a R-
curve effect in the investigated PZT-material.
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Fig.2.3 R-curve, determined from the tangent condition for Knoop indentation cracks of different size (different
indentation loads). Computations performed with constant aspect ratio (a/c=1).

For an auxiliary stress intensity factor K*, formally computed with the initial crack dimen-
sions and the maximum stress (i.e. the strength)

  K a F a Wc* ( / )= σ π 0 0  , (2.2)

it must hold

K KI 0 ≤ * (2.3)
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since the maximum stress σc is larger than the actual stress at the onset of crack extension.
Equation (2.2) enables to provide an upper limit of KI0. From the tensile strength data of Fig.
2.1b and the related crack sizes of Fig. 2.1a it results with the geometric function F(a0/W) for
bending (proposed by Newman and Raju [9]): KI0 ≤ 0.73 MPa m1/2.

The tensile strength results of Fig. 2.1b enable to estimate the shape of the R-curve. Since in a
load-controlled test the tangent condition (see eqs.(3.4a) and (3.4b)) is fulfilled at failure, the
stress intensity factors computed with the strength as the critical stress σ = σc must provide an
envelope for the R-curve. For a first rough computation let us assume the aspect ratio of the
extending cracks to remain constant (a/c = a0/c0 = const.).

The curves K=f(σc,∆a) are entered in Fig. 2.3 as thin lines (with the Knoop indentation load as
the parameter, standing for the initial crack size). The R-curve resulting from the envelope
condition is introduced as thick line. A strong increase of KIR with crack extension ∆a is
obvious.

2.3 Edge notched specimens

2.3.1 Specimen preparation, testing device and evaluation procedure

In rectangular bars with dimensions 3x4x45 mm narrow notches with very small notch root
radii were introduced using the razor blate method as proposed by Nishida et al. [10]. Stable
crack extension tests were performed with single edge notched specimens.

For the controlled fracture tests it is necessary to apply a test arrangement with a low
compliance. In order to perform such tests with extremely ridgid testing device the three-point
bending arrangement shown in Fig. 2.4 was used.

A specimen with depth W = 4 mm is loaded with an externally applied increasing load. The
effective load - acting on the specimen - is measured with a quartz load cell, and the displace-
ment is recorded by an inductive displacement pick-up.
The actual crack length was determined by a combination of the linear-elastic compliance
formula and and an experimental correction. In the first step the crack length has been
evaluated by linear-elastic analysis from the compliance, neglecting the effect of the R-curve
on the compliance. The total compliance C consists of the compliance of the uncracked bar
C0, the portion ∆C caused by the crack, and a 'parasitic' compliance Cpar summarising
additional elastic settling and elastic deformation of the supporting rollers and the supporting
structure

C C C Cpar= + +0 ∆ (2.4)
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Fig. 2.4 Testing device for stable crack growth measurements.

The compliance part due to the crack (∆C) can be obtained for any ratio W/L ≥ 2 (L = suppor-
ting roller span) from [11]. Several tests were suspended after a certain amount of crack
growth (prior final fracture) and the cracks were infiltrated with a penetration dye. After
drying the specimens were fractured und the real crack length was measured under an optical
microscope. In Fig. 2.5 the crack length obtained with the compliance method acomp is plotted
versus the physical crack length aopt. For small amounts of crack extension (∆a < 0.5 mm) the
deviations between the two types of crack length were found to be negligible. For larger ∆a
the crack length from compliance is significantly smaller than the real physical crack. Figure
shows the dependency between the two crack lengths.
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Fig. 2.5 Comparison of crack lengths from optical evaluation and compliance measurements.
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Figure 2.6 shows a typical load vs. displacement plot. The optical crack length evaluation via
the compliance together with Fig. 2.5 enables to determine the correct crack length from the
load versus displacement curve. From the load P recorded with the quartz load cell and the
crack length a the related stress intensity factors K were computed as

K Y a PL
W B

a
W

L
W= =σ σ0 0 2

3
2

( , ) , (2.5)

with the geometric function Y proposed for any L/W > 2 in [11].
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Fig. 2.6  Load vs. displacement record for a specimen with initial notch depth a0 = 1.6 mm

2.3.2 Results

Two R-curves obtained for poled PIC 151 (poling direction perpendicular to the specimen
length axis) are shown in Fig. 2.7 (symbols). In addition the stress intensity factors computed
with the maximum load occurring in the controlled fracture test σmax are entered as curves. In
a load-controlled fracture test failure would occur at that crack extension ∆a at which the R-
curve (symbols) and the curve K(σmax) coincide. This is the case in Fig.2.7 for ∆a ≅  300 µm. In
terms of Fig. 2.6 this condition is identical with the horizontal tangent dP/dδ=0, i.e. P = Pmax,
σ = σmax. The stress intensity factor for this condition is KIc, the stress intensity factor at the
point of instability.

Fracture toughness data obtained in controlled fracture tests are compiled in Table 2 as
average values of at least 6 specimens. The second value in each column is the standard
deviation. In case of relatively deep notches (a0 > 1.2mm) in all cases stable crack extension
with a "round maximum" (see Fig. 2.6) was found. For a0<1.3 mm also load-displacement
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curves were observed in which only a small crack extension occurred before failure and the
"round" maximum condition was not reached. The related data are marked by (*) of Table 2.
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Fig. 2.7 R-curve data for two specimens of poled PIC 151 (symbols). Curve: Stress intensity factor computed for
different crack length with maximum stress occurring in the controlled fracture tests (σ = σmax).

0 500 1,000 1,5000.5

1

1.5

∆a (  m)µ

K
(MPam    )1/2

IR

0 500 1,000 1,5000.5

1

1.5

∆a (  m)µ

KIR

poled unpoled

Fig. 2.8 R-curves for poled and unpoled PZT (PIC 151) determined in controlled fracture tests with edge-notched
bending bars; different symbols for different specimens.
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Figure 2.8 shows R-curves for the poled and for the unpoled material. The R-curve for the
unpoled material is slightly higher than the poled ceramic. The differences are about 5%, i.e.
in the order of the scatter of different specimens.

unpoled poled
PIC 141 1.13   0.07 1.10   0.10
PIC 151 1.35   0.09

1.17    0.045  (*)
1.20   0.06

PIC 155 1.25   0.04 1.16   0.06
Table  2 Fracture toughness computed from the maximum load and the related actual crack length amax. First

number: Mean value, second number: Standard deviation (toughness data in MPa m1/2). (*): notch depth <1.3 mm
(⇒  ∆a ≅  0).

2.4 Comparison of R-curves

In Fig. 2.9 the R-curve obtained in controlled fracture tests is compared with the estimation
resulting from the tensile strength data of Knoop-damaged specimens. The estimated results
are about 20% less than the results from edge-notched bending bars.
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Fig. 2.9  Comparison of R-curves obtained with edge-notched bending bars and specimens with Knoop
indentation cracks.

As can be concluded from the comparison given in Fig. 2.9 the evaluation of the R-curve with
Knoop-indentation cracks, assuming a/c = 0.95 remaining constant during the stable crack
extension, provides only a rough estimation of the real R-curve. The fact that the aspect ratio
a/c changes during crack propagation becomes obvious in Section 3.2.2 (see Fig. 3.6).
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2.5 Fit relations

A fit relation for the R-curve (∆a ≤ 750 µm) obtained with edge-cracked specimens is

K K A a m
IR I0= + ( )∆  (2.6)

with the parameters given in Table 3.

KI0 (MPa√m) A (MPa√m) m A' (MPa√m) m'
unpoled 0.7 0.085 0.354 0.521 0.164
poled 0.7 0.073 0.354 0.496 0.164

Table 3 Parameters for a power-law description of the R-curves (∆a in µm).
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Fig. 2.10  Fit-relations for the R-curve behaviour compared with the measured data. Solid curves: eq.(2.7),
dasher curves: eq.(2.6).

For analytical computations it may be of advantage to approximate the R-curve without an
initial value of KI0, e.g. by

K A a m
IR = ' ( ) '∆  (2.7)

Table 3 contains the parameters for such an approximation. The dashed curves in Fig. 2.10
show the description with eq.(2.6), the solid curves illustrate eq.(2.7).
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2.6 Fracture toughness determined with the Indentation Strength method

The fracture toughness KIc was determined with the indentation strength (IS) method [12].
Vickers indentations were introduced with different indentation loads and the damaged
specimens were broken in 4-point bending tests. From the bending strength σb, the indentation
load P, the hardness H and the youngs modulus E the KIc value results as

K E
H

FIc b= 





0 59
1 8

1 3 3 4. ( )
/

/ /σ (2.8)

Using the Vickers-hardness HV = 3 GPa we obtain the toughness data represented in Fig. 2.11
for PIC 151. The results can be summarised by

K Ic = 145. MPa m

with a standard deviation of ≅  0.15 MPa m1/2. A dependency on the indentation load is
negligible for PIC 141 and 151 (see Figs. 2.12 and 2.13). Therefore, mean values over all
loads were determined for these two materials (see Table 4). In case of PIC 155 a significant
trend of increasing IS-fracture toughness with increasing load seems to be obvious.

50 100 200 3000.6

0.8

1

1.2

1.4

1.6

1.8

unpoled
poled

K
(MPa m)

Ic

P (N)

PIC 151

Fig. 2.11 Fracture toughness resulting from the indentation strength method (PIC 151). Poled material:
Indentation direction perpendicular to the polarisation direction (full circles), indentation load in polarisation

direction (open circles).
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Fig. 2.12 Fracture toughness resulting from the indentation strength method (PIC 141). Poled material:
Indentation direction perpendicular to the polarisation direction (full circles), indentation load in polarisation

direction (open circles).
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Fig. 2.13 Fracture toughness resulting from the indentation strength method (PIC 155). Poled material:
Indentation direction perpendicular to the polarisation direction (full circles), indentation load in polarisation

direction (open circles).
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Material unpoled poled (a) poled (b)

  batch 1),              batch 2)

PIC 141 1.26 MPa m1/2 1.63 MPa m1/2

PIC 151 1.38 MPa m1/2 1.44 MPa m1/2 1.61 MPa m1/2, 1.45 MPa m1/2

Table 4  Indentation strength method: (a) Indentation direction perpendicular to the polarisation direction,
(b) Indentation direction parallel to the polarisation direction
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3 Effect of an R-curve on tensile and bending strength
In addition to the nonlinearity of stress-strain curves electro ceramics can exhibit nonsym-
metric deformation behaviour in tensile and compression tests. Tests carried out with a com-
mercial soft PZT-ceramic showed that the plastic strains in tension exceed those under com-
pressive stresses [7]. Nonsymmetry and nonlinearity result in complex stress distributions in
non-homogeneously loaded structures. Consequently this will have consequences for the
evaluation of bending tests.

3.1 Stress distribution in a bending bar
A computation of the stress distribution in bending bars was performed in [7]. The resulting
stresses are shown in Fig. 3.1. In Fig.3.1a the outer fiber tensile stress σ*, normalised on the
elastically computed bending stress σel,

σ el
M

BW
= 6

2 , (3.1)

with the bending moment M and the specimen thickness B (here 4mm), is plotted versus σel. A
strong stress reduction is visible. From Fig.3.1b the shape of the stress distribution can be
seen. Whereas at the tensile surface the stresses are reduced, at the compressive surface the
compressive stresses increase.
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Fig. 3.1  Stress state in a PZT bending bar as a consequence of the nonsymmetry in plastic deformation
behaviour, a) Outer fibre stress σ* as a function of the elastically computed bending stress σel, b) stress distri-

butions for different loads. y=η/W, η=distance from the centre line.



15

Figure 3.1a illustrates that e.g. for a nominal bending stress of 75MPa (the average bending
strength) a real outer fibre stress of about 75% of the elastically computed stress is present.
This strong stress reduction in bending is the main reason for the different strength results in
tension and bending.

A rising R-curve causes differences in the strengths resulting from tension and bending tests.
In order to estimate the effect of the R-curve on tensile and bending strength we consider the
pure tensile case (line 1 in Fig. 3.2) and two approximations of the nonlinear stress distri-
butions in the bending bar. An upper limit case for the stress in the tensile region is given by
line (2) in Fig. 3.2, which has the correct outer fiber stress value σ* and the correct stress
gradient. As a lower limit case we consider straight line (3).

3

σ

1

2

3

*

Fig. 3.2 Approximations of the nonlinear stress distributions by straight lines.

The simple straight-line representations of stresses then read

σ σ( ) * ( )y for curve= 1 (3.2a)

σ σ σ σ( ) ( * ) ( )y y for curve= + − 2 (3.2b)

σ σ= * ( )y for curve 3 . (3.2c)

where σ  is the stress value at the centre of the bar.

In order to performe numerical computations it is of advantage to express the stress quantities
σ  and σ* by simple relations. From the curves shown in Fig. 3.3b we find a good agreement
between numerically computed stresses (thin curves) with approximations by straight lines
(thick lines) for
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σ σ≅ * /2

providing

σ σ( ) * ( ) ( )y y for curve= +
2

1 2 (3.2b')

From the straight-line approximation illustrated in Fig. 3.3a one can write for the stress range
40 MPa < σel < 80 MPa

σ
σ

σ* . .

el
el≅ −0 9 0 002

MPa
(3.3)
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Fig. 3.3 Approximation of the stress state in the tensile region of a bending bar by straight line relations.

3.2 Fracture mechanical considerations

A semi-elliptical surface crack is assumed having the initial crack depth a0 and the initial
width c0. The applied stress gives rise for the stress intensity factor KIA at the deepest point
and for the stress intensity factor KIB at the surface points of the crack.

The failure condition in a strength test is given as

K K aIA IR= ( )∆   ,   K K cIB IR= ( )∆ (3.4a)

max ( ( )) , ( ( ))∂
∂

∂
∂

K K a
a

K K c
a

IA IR IB IR− −





≥∆ ∆ 0 (3.4b)
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3.2.1 Differences in bending and tensile strength in the absence of an R-curve

Since in a bending bar the stress state is different from the homogeneous stress in a tensile
specimen the geometric functions Y for the stress intensity factor solutions are different too.
Consequently, different critical stresses result in both cases for a given crack.

First the stress intensity factors have to be determined from crack geometry and stress
distribution. If Yt is the geometric function for pure tension and Yb is the value for pure
bending, the stress intensity factors for the three stress approximations can be written

K Y a= σ * (3.5)

with the geometric functions

Y Y for curvet= ( )1 (3.6a)

Y Y Y for curvet b

t
= + −σ σ σ

σ
( * )

*
( )2 (3.6b)

Y Y Y for curvet b≅ +1
2 2( ) ( ) (3.6b')

Y Y for curveb= ( )3 (3.6c)

From the failure conditions (3.4a) and (3.4b) the strengths for tension and bending load were
determined. They are plotted in Fig. 3.4 for an initial crack size of a0 = 150 µm as a function of
the initial aspect ratio a0/c0.
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Fig. 3.4 Strength with R-curve influence: a) bending strength (approximation (2) in Fig. 3.2) and tensile strength
for a 150 µm deep crack in dependence of the initial aspect ratio, b) ratio between bending and tensile strengths.
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3.2.2 Differences in bending and tensile strength including the R-curve

3.2.2.1 Application of an R-curve representation without KI0

In order to determine strength in tension and bending, the equations (3.4a) and (3.4b) have to
be solved.

If we use the R-curve representation by eq.(2.7), we obtain from eq.(3.4a) a system of two
nonliner equations

σ
σ

Y a c a W a A a a
Y a c a W a A c c

A
m

B
m

( / , / ) ( )
( / , / ) ( )

− − =
− − =

0

0

0
0

(3.7)

This sytem has to be solved for a given stress σ ≤ σc resulting the crack dimensions a and c.
This can be done numerically using e.g. the Harwell computer subroutine VA02A. Increasing
the stress stepwise we have to look for the maximum stress σc for which the system remains
soluble. If at least for of one location (A or B) the condition eq. (3.4b) is violated the compu-
ter program cannot find a solution. The related stress value is the strength. For the geometric
functions the relations of Newman and Raju [9] for tension and bending were used.

For semi-circular cracks (a0=c0) and semi-elliptical cracks (a0 = c0/2) the strength was deter-
mined under tensile and under bending loading. The resulting strengths are plotted in Fig. 3.5
for the three stress approximations. As could be expected the highest strength is obtained with
the lower limit case (3) and the lowest strength is found with the upper limit stress (1).
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Fig. 3.5 Strength results obtained with eq.(2.7) for the different stress approximations.
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The strength results of semi-circular cracks (a0/c0=1) can be expressed for pure tensile load by

σc=30.0 MPa (a0/mm)-0.341 (3.8a)

and in a bending test for the best stress approximation (see curve (2) in Fig. 3.5) one obtains

σc=32.85 MPa (a0/mm)-0.31 (3.8b)

Using the stress distribution shown in Fig. 3.1 we obtain the related elastically computed
bending strength, which can be approximated by
 σel,c=38.5 MPa (a0/mm)-0.386 (3.8c)

The computations show exponents which significantly deviate from the value -1/2 as has to be
expected in the absence of R-curve behaviour. The calculated exponents of eqs.(3.8a) and
(3.8c) agree very well with the exponents determined experimentally for the Knoop indenta-
tion cracks, which also had an initial aspect ratio of about 1 (see eqs.(2.1a) and (2.1b)).

The development of the aspect ratio a/c with actual crack depth a is shown in Fig. 3.6. The
aspect ratios tend to a value of about a/c→0.8 (as known also for materials without R-curve).
The change in the aspect ratio is "faster" for the bending load than for pure tensile loading.
The ratio of the two strength values (bending strength/tensile strength) for a semi-circular
crack is plotted in Fig. 3.7 as the solid line for approximation (3) and as the dashed line for the
more realistic stress approximation (2). The strengths for two different initial aspect ratios
(a0/c0 = 0.5 and 1.0) in approximation (2) are plotted in Fig. 3.8 normalised to the tensile
strength (identical with approximation (1)).
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Fig. 3.6  Change of the aspect ratio a/c during stable crack propagation until failure.

Figure 3.9a shows the bending and the tensile strength for a crack of initial depth a0= 150 µm
as a function of the initial aspect ratio. In Fig. 3.9b the ratio of bending strenth to tensile
strengthis represented. Compared with the results for a material in the absence of an R-curve
effect (Fig. 3.4) the curves are smoothed by the R-curve.
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Fig. 3.7 Ratio between bending (σb) and tensile strength (σb) as a consequence of R-curve behaviour for semi-

circular cracks. Bending: solid curve computed with the linear elastic stress distribution (3), dashed curve
computed with stress distribution (2) including nonelastic behaviour (see Fig. 3.2b).
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Fig. 3.8 Ratio of bending strength to tensile strength for cracks with different initial aspect ratio a0/c0.
Computations performed with eq.(2.7).

3.2.2.2 Application of an R-curve representation including KI0

For KIA, KIB ≥ KI0, the evaluation of eq.(2.6) needs the solution of the nonlinear system
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(3.9)

All results obtained with this R-curve description were found to be very close to those
obtained without an initial K-value KI0. 
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Fig. 3.9 Strength with R-curve influence: a) bending strength (approximation (2) in Fig. 3.2) and tensile strength
for a 150 µm deep crack in dependence of the initial aspect ratio, b) ratio between bending and tensile strengths.
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Fig. 3.10 Comparison between strength data. Solid curves: computed with eq.(2.6), dashed curves: computed
with (2.7).
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As an example the strengths for cracks with a0/c0=0.5 were computed. The dashed curves in
Fig. 3.10a were obtained with eq.(2.7), the solid curves with (2.6). Figure 3.10b gives the ratio
of the bending strength (approximation (2) used) to the tensile strength (identical with
approximation (1) in Fig. 3.2).

3.3 Prediction of tensile strength from bending strength results

Tensile strength and bending strength measurements were performed in on unpoled PZT.
Figure 3.11 shows the measured tensile strength of PIC 151 as circles. The measured bending
strength values are represented as series A (squares). Large differences between the two
strength measurements were found.
According to the relation for the failure probability F,

F
m

= − −




















1
0

exp σ
σ

(3.10)

the Weibull parameters m and σ0 were determined with the "Maximum Likelihood Procedure"
according to [13] and are given in Table 5. The 90% confidence intervals are represented by
the data in brackets.

Test Parameter  m Strength (MPa)

Tensile strength 11.8 [6.8; 15.8] σ0,t = 44.5 [42.3; 46.9]

Bending 15.3 [11.1; 18.9] σ0,b=75.3 [73.5; 77.2]

Table 5 Weibull parameters for strength tests on unpoled PZT. In brackets: 90% confidence intervals.

The tensile strength data are shown in Fig. 3.11 as the circles and the bending strength results
are given by the test series A. Microscopic inspection of the fracture surfaces showed that all
specimens failed by surface defects.
In order to allow a direct comparison of bending and tensile strength data, the different
surfaces of the specimens (bend specimens with only one side under tensile loading and
tensile specimens with four sides exposed to tension) have to be considered. From the strength
σc1, measured with a specimen having the effective surface Seff1, the strength for a different
specimen having the effective surface Seff2 can be predicted by

σ σc
eff

eff

m

c

S
S2

1

2

1

1=










/

(3.11)

where Seff is computed by

S g dSeff
m= ∫ (3.12)

σ σ= * g (3.13)
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with the reference stress σ*, which at fracture is equal to σc, and g is a geometry function
describing the stress distribution. In the case of the bending and tensile strength tests it holds
simply Seff1/Seff2=3.5 if specimen "1" is the tensile specimen.
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Fig. 3.11 Prediction of tensile strength from bending strength measurements. A: bending strength measurements;
step A⇒ B: elastically computed bending stresses replaced by true outer fibre stress; step B⇒ C: change in
strength due to the larger effective surface of the tensile tests as compared to the bending tests. Result C: pre-
dicted tensile strength.

In Fig. 3.11 it is illustrated how strong the different single effects and different effective
surfaces influence the tensile strength from the bending strength data. In these computations
the different effective surfaces of tensile and bending specimens was considered as well as the
reduced outer fiber stress in the bending specimens (as a consequence of Fig. 3.1a). Series A
in Fig. 3.11 represents the bending strength in terms of the elastically calculated bending
strength σel according to eq.(3.1). The computation illustrated in Fig. 3.11 takes first into
consideration the reduced outer fiber bending stress due to the nonlinearity and nonsymmetry
of deformation behaviour (prediction step A⇒ B) and the different effective surfaces in tensile
and bending tests (prediction step B⇒ C).

Figure 3.12 once more shows the final result of the prediction. A more realistic impression of
the confidence situation is given by the combination of the confidence intervals for σ0 and m.
Figure 3.13 illustrates the simultaneous combination of confidence intervals for m and σ0

according to the Annex of [14]. Only a slight overlapping of the confidence areas is visible.
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Fig. 3.12 Measured and predicted tensile strength.
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Fig. 3.13 Confidence intervals for the results shown in Fig. 3.9.

In Figs. 3.12 and 3.13 the final prediction and the measured tensile strengths are compared
under the simplyfying assumptions that:

•  the initial crack depth is negligible compared to the specimens size,

•  no R-cuve is present.

In an improved strength prediction these points have to be included.

In the calculations leading to eqs.(3.8a) and (3.8c) the existence of an R-curve and of a finite
crack length were taken into consideration. Combination of eqs.(3.8a) and (3.8c) yields the
tensile strength σt,c as a function of the elastically computed bending strength σel,c

σ
σ

t c
el c

,
,

.

.
=







30

38 5

0 8834

MPa
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(3.13)
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In order to show the influence of the single effects the prediction will be considered here step
by step starting with the measured bending strength, see data A in Fig. 3.14.

•  In the first step A⇒ B the actual outer fibre stress at failure is used as the strength.

•  In the second step B⇒ C again the different effective surfaces are considered.

•  The influence of the finite crack size and the R-curve, represented by Fig. 3.5, is considered
in the third step C⇒ D. Strength distribution D is then the predicted tensile strength.

The Weibull parameters of this final prediction are entered in Table 6. A slight overlapping of
the confidence intervals for m can be detected.
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Fig. 3.14 Prediction of tensile strength from bending strength measurements. A: bending strength measurements;
step A⇒ B: considering true outer fibre stress; step B⇒ C: change in strength due to the different effective
surfaces; step C⇒ D: influence of finite crack size and R-curve.

Test Parameter  m Strength (MPa)

measurement 11.8 [6.8; 15.8] σ0,t = 44.5 [42.3; 46.9]

prediction 17.3 [13.4; 21.4] σ0,b = 48.9 [47.8; 50.0]

Table 6  Weibull parameters of the tensile strength.

In Fig. 3.15 the confidence area for the final prediction is compared with the confidence area
of the measured tensile strengths. The overlapping is now more significant than that shown in
Fig. 3.13.
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Fig. 3.15 Confidence intervals for the results shown in Fig. 3.14.

3.4 Prediction of bending strength from tensile strength measurements

A second possibility of comparison is to predict the bending strength from measured tensile
strength data. The procedure is similar to the prediction of tensile strength from bending
strength. The only difference is that the prediction is now carried out with the smaller m-value
found for the tensile tests. This leads to a slightly different effect in the influence of the
effective surfaces.

The predictions in this direction are shown in Fig. 3.16 neglecting R-curve behaviour and
finite crack size and in Fig. 3.17 including these influences.
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Fig. 3.16 Bending strength predicted from tensile strength measurements compared with measured bending
strengths (without R-curve).
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Fig. 3.17 Bending strength predicted from tensile strength measurements compared with measured bending
strengths (R-curve and finite crack size included).
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4 Influence of the R-curve on lifetimes in static tests
Lifetimes in static bending tests are also influenced by R-curve behaviour. In case of a power
law for subcritical crack growth the crack growth rates are

da
dt

A
K
K

tip

I

n

=






*

0

(4.1)

where A* and n are material parameters and Ktip is the stress intensity factor governing the
stresses at the crack tip. If ∆KIR (>0) denotes the stress intensity factor caused by the R-curve
and Kappl is the externally applied stress intensity factor it holds

K K K K K Ktip appl IR IR IR I= − = −∆ ∆, 0 (4.2)

Equations (4.1) and (4.2) enable to determine the lifetimes in a test under constant load.
Numerical computations were performed under the assumtion that the R-curve for subcritical
crack growth is identical with the R-curve for controlled fracture tests.

Using the R-curve description by eq.(2.6), i.e.

∆ ∆K A aIR
m= ( ) , (4.3)

we can compute the lifetime numerically. Starting with the initial crack dimensions a0 and c0

the applied stress intensity factor is computed for the deepest point and the surface points of
the crack from the relations proposed in [9]. During a small time increment ∆t the crack
extensions ∆a and ∆c are determined from

∆ ∆a A K K ttip A I
n= *( / ), 0  (4.4a)

∆ ∆c A K K ttip B I
n= *( / ), 0  (4.4a)

In the case that the initially applied stress intensity factor is less than KI0 and stable crack
extension during load application can be excluded, the crack extension has to be computed
according to
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K A a a
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( ), 0

0

 (4.4d)

If the stress intensity factor at t = 0 exceeds KI0 we have to determine in the first step the
amount of stable crack extension at the deepest point and at the surface by solving the system
(3.9). If ∆as and ∆cs denote the contributions of stable extensions, we have to integrate the



29

same eqs.(4.4c) and (4.4d) but starting now with the initial crack dimensions ai = a0+∆as and ci

= c0+ ∆cs.

A comparison of the strength data for series A of Fig. 3.11 with the bending strength data and
the crack sizes for Knoop indentation cracks (Fig. 2.1) shows that the natural cracks in PIC
151 have a mean depth of about 150µm.

Results of the numerical computations are plotted in Fig. 4.1 for cracks with a0 = 150 µm, an
initial aspect ratio a0/c0 = 1 and different exponents n of the power law relation eq.(4.1). The
curves deviate from straight lines. Nevertheless, the dependencies were fitted within the stress
range represented by the dash-dotted box in Fig. 4.1. From the well-known relation between
the applied stress σappl and the lifetime tf (see e.g. [15])

t Cf appl
n= −σ ' (4.5)

we obtain the exponent n' from the slope of the lifetime curve. In the range of straight-line
behaviour an apparent crack growth relation between subcritical crack growth and applied
stress intensity factor can be derived

da
dt

A
K
K

appl

I

n

=

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



'

'

0

(4.6)

with the new parameters A' and n' describing the lifetime results sufficiently. The apparent
exponents n' are plotted in Fig. 4.2a versus the correct n-values. From this result and from the
ratio n'/n plotted in Fig. 4.2b versus n one can conclude that the R-curve effect leads to
apparent crack growth exponents which are about 60% of the correct values for the relation
(4.1).
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Fig. 4.1 Lifetime tf as a function of the elastically computed bending stress for several crack growth exponents n.
Dashed lines: straight lines fit for the stress range indicated by the dash-dotted box.



30

0 10 20 30 40 500

10

20

30

40

50

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

n'

n

n'
n

a) b)

n
Fig. 4.2 Apparent crack growth exponent n' according to the representation eq.(4.6)
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