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Abstract

Our aim is the motivation of a macroscopic constitutive model for engineering reliabil-
ity analysis purposes of piezoceramic components designed for so-called \smart" elec-
tromechanical sensor and actuator applications. Typically, such components are made of
materials like ferroelectric PZT ceramics which exhibit signi�cant history dependent non-
linearities as the well known dielectric, buttery, and ferroelastic hystereses due to switch-
ing processes. Furthermore, phase transitions lead to distinct thermo-electromechanical
coupling properties and rate e�ects are present.

In a �rst step, we propose a constitutive framework capable of representing general
thermo-electromechanical processes. This framework makes use of internal variables and
is thermodynamically consistent with the Clausius-Duhem inequality for all admissible
processes.

Next, we focus on uni-axial electromechanical loadings and introduce microscopically
motivated internal variables and their evolution equations. In order to verify the underly-
ing a priori assumptions, we discuss extensively the numerically calculted model response
to standard electromechanical loading paths. It turns out that the model represents the
typical hystereses mentioned above as well as mechanical depolarization and other non-
linear electromechanical coupling phenomena. Furthermore, the model response exhibits
rate e�ects.

Ein Modell f�ur PZT-Keramiken unter einachsigen Be-

lastungen

Unser Ziel ist die Motivation eines makroskopischen Sto�gesetzes zum Zwecke struk-
turmechanischer Zuverl�assigkeitsanalysen von piezokeramischen Komponenten f�ur soge-
nannte \intelligente" elektromechanische Sensor- und Aktuatoranwendungen. Meist wer-
den solche Komponenten aus ferroelektrischen PZT-Keramiken hergestellt, die infolge von
Umklappprozessen ausgepr�agt geschichtsabh�angige Nichtlinearit�aten aufweisen wie die
wohlbekannte dielektrische Hysterese, die Schmetterlingshysterese und die ferroeleastische
Hysterese. Auch f�uhren Phasen�uberg�ange zu bestimmten thermo-elektromechanischen
Koppelph�anomenen, und es treten Geschwindigkeitse�ekte auf.

In einem ersten Schritt schlagen wir einen Modellrahmen vor, der geeignet ist, allge-
meine thermo-elektromechanische Prozesse zu erfassen. Dieser Modellrahmen beruht auf
inneren Variablen und ist thermodynamisch konsistent f�ur alle zul�assigen Prozesse.

Als n�achstes beschr�anken wir uns auf einachsige elektromechanische Belastungen und
f�uhren mikroskopisch motivierte innere Variable mit ihren Evolutionsgleichungen ein.
Um unsere A-Priori-Annahmen zu veri�zieren, diskutieren wir ausf�uhrlich die numerisch
berechnete Antwort auf �ubliche elektromechanische Belastungspfade. Es zeigt sich, da�
das Modell die oben erw�ahnten typischen Hysteresen, sowie auch die mechanische Depo-
larisation und andere nichtlineare elektromechanische Koppelph�anomene darstellt. Weit-
erhin zeigt das Modell Geschwindigkeitse�ekte.
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1 Introduction

The piezoelectric e�ect causes a coupling between electric and mechanical �elds, and
thus it is a number one candidate for advanced sensor and actuator applications (e. g.
[1]). In many cases, the piezoelectric e�ect is realized by the ferroelectric phase of lead
zirconate titanate (PZT) ceramics [2, 3, 4]. If such a material has been poled by an electric
�eld above the coercitive �eld at a temperature below the Curie point, its response to
small signals may be characterized by the parameters of classical linear piezoelectricity.
However, nowadays applications involve severe loadings and complicated geometries such
that the assumption of small signals is no longer justi�ed in general. Rather, the non-
linear behavior of the material can become dominant [5], and it may have an impact on
its fatigue properties [6, 7].

In order to assess the reliability of a piezoceramic component, it is important for struc-
tural engineers to estimate its mechanical stress state quantitatively. For this purpose, the
electric and mechanical �eld equations have to be solved for an appropriate constitutive
assumption relating the histories of the macroscopic stresses, strains, electric �eld, and
polarization to each other.

The constitutive theory of linear piezoelectricity was developed many decades ago
and has found wide spread application in analytical and numerical solution methods
(cf. [8, 9, 10]). Many recent works deal with linear piezoelectric fracture mechanics,
see [11, 12, 13, 14, 15, 16, 17]. We may emphasize that in principle the signi�cance of
results based on linear piezoelectricity is restricted to cases where the assumption of linear
behavior is met with su�cient accuracy.

Works dealing with nonlinear constitutive models of piezoceramics for purposes of
engineering reliabilty analyses are still quite rare. A pure phenomenological approach
for the experimental investigation and description of constitutive behavior has been in-
vented in [18, 19, 20, 21, 22]. An attempt to describe macroscopic ferroelectricity on
a thermodynamical basis can be found in [23, 24]. [25, 26, 27] are important experi-
mental works investigating nonlinear electromechanical coupling phenomena. The papers
[28, 29, 30, 31] present two successful attempts to describe electrostrictive coupling by
means of thermodynamically based phenomenological models.

In [32], a phenomenological constitutive model of PZT ceramics for general electro-
mechanical loading histories has been proposed, which is simple enough to be implemented
in a FE-code with reasonable expenditure. Remanent polarization and remanent strain
have been introduced as internal variables and by bilinear approximation the macroscopic
electromechnical coupling phenomena relevant for engineering applications of these ma-
terials are represented. The model has been motivated directly from exerimental �ndings
without reference to a thermodynamical framework. It shows no time e�ects, since the
evolutions equations of the internal variables are rate independent.

Some recent approaches simulate macroscopic ferroelectricity on the basis of micro-
scopic models for the behavior of single domains. In [33], a model consisting of 10 000
randomly oriented grains, has been simulated numerically, where each grain shows an
idealized rectangular hysteresis for the dielectric behavior. With the help of an energet-
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ically motivated criterion for domain switching caused by an electric �eld or mechanical
stress, the macroscopic dielectric and buttery hystereses are described. Following a sim-
ilar approach, the model in [34] utilizes the additional constraint that each single grain is
transversly isotropic (instead of possesing tetragonal anisotropy) and as a consequence,
macroscopic constitutive behavior is derived analytically from microscopic assumptions.

One of the primary di�culties in modeling of macroscopic behavior of ferroelectric
ceramics associated with domain switching is the drastic di�erence of the length scale of
ferroelectric domains from that of macroscopic specimens. To overcome this di�culty,
some investigators [33, 35] have proposed to treat each grain as a single e�ective domain.
This approach is computationally e�ective and hence permits simulations of specimens
consisting of a large number of grains, although it has several shortcomings, such as lack of
a mechanism to determine the magnitude of the e�ective polarisation intensity. In [36], it
recently has been proposed to model each grain as a body of mixture consisting of distinct
types of domains which are characterized by their mass fraction as internal variables. The
average polarization of a grain is hence a linear function of the mass fractions and domain
switching corresponds to changes of the mass fractions of the corresponding domains. The
numerical implementation of this model has been limited to either one dimensional cases
[37] or two-dimensional cases with a few hundreds of grains [38] because of the complexity
of the formulation.

The scope of this paper is to present an approach towards a macroscopic constitutive
model for ferroelectric ceramics applicable by structural engineers to reliability analyses
which is microscopically motivated and thermodynamically based at the same time.

In section 2, we invent the general structure of our model. A thermodynamic Gibbs
energy function is constructed such that classical linear piezoelectricity is included as a
special case. It has to be taken into account that the anisotropy properties of the classical
electromechanical tensors as well as macroscopic remanent polarization and strain depend
on the loading history. This is done by introducing so-called microstructural parameters
as internal variables which are supposed to represent the state of the microdipoles in
the ceramic in a macroscopic manner. The Clausius-Duhem inequality can be ful�lled in
su�cient manner for every admissible electromechanical process, if the evolution equations
for the internal variables are given a special structure.

In the literature, experimental data for nonlinear coupling phenomena of piezoceram-
ics are available only for uni-axial electromechanical loadings. Therefore, we specialize
our considerations to this case in section 3. As a main step, two internal variables are
motivated representing the macroscopic state of the orientation of the crystal axes and
of the spontaneous polarization, respectively, of the unit cells in the polycrystal. The
evoltion equations of these internal variables are introduced such that the model response
shows nonlinear rate e�ects. A threshold takes care that only external loads of su�cient
magnitude can lead to an evolution of the microstructural parameters, i. e. to an onset of
ferroelectric switching processes.

The system of constitutive equations is too complicated to be investigated analytically.
In order to verify the physical signi�cance of the model, we discuss in sections 4 and 5 by
means of numerical integration the model response to standard electromechanical loading
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histories. Special emphasis is layed on the microscopic interpretation of the behavior of
the macroscopic quantities.

In the following analysis which is restricted to a geometrically linear setting, all com-
ponent representations of tensors are refered to a cartesian coordinate system (summation
convention). First order tensors (vectors) are denoted by upright letters with superscript

arrows (~a, ~A) and second order tensors (tensors) by bold slanted letters (a, A, �). A
dot between tensors indicates the contraction relative to one index, for example, the
inner product between vectors, i. e. ~a � ~b = aibi, the composition of two tensors, i. e.
A �A�1 = I (A�1: inverse of A, I: identity tensor), the inner product between tensors,

i. e. A : B = tr(A �BT ) = AijBij (trA: trace of A. BT : transpose of B), _() = d()=dt
denotes the time derivative of a �eld ().

2 Thermodynamical Framework

By de�nition, a ferroelectric material exhibits polarization switching at attainable electric
�elds [39]. As a result, the well known ferroelectric hysteresis occurs for loadings by a
cyclic electric �eld. Switching processes can also be initiated by mechanical loadings
leading to ferroelastic behavior (e. g. [26]). On the macroscopic level, these hysteresis
phenomena represent irreversible changes in the material and they can be observed for
arbitrary slow loadings [18].

The above �ndings motivated us to decompose strain and polarization additively in
reverible and irreversible parts (see also [23, 24]):

S = S
r + Si (1)

~P = ~Pr + ~Pi (2)

The irreversible or remanent quantities Si and ~Pi represent macroscopic averages of the
microscopic spontaneous strain and polarization of the ferroelectric crystal structure, re-
spectively. In order to represent the history dependence of irreversible strain and polar-
ization, we consider them to be functions of a set of internal variables:

S
i = Ŝ

i (q1; : : : ; qn) (3)

~Pi = ~̂Pi (q1; : : : ; qn) (4)

The association of the internal variables q1; : : : ; qn with microstructural parameters should
be introduced such that they reect on the macroscopic level the internal microscopic state
of the material.

Besides the above mentioned microstrucutural changes, ferroelectic ceramics may re-
spond to electro-mechanical loadings without changes of the lattice structure. We repre-
sent this reversible piezoelectric behavior by the reversible quantities Sr and ~Pr. For a
�xed internal state, the piezoelectric properties of the material can be approximated by
linear relations. In this sense, it seems apropriate to choose the relations

S
r = CI

�1 : T + dlT � ~E (5)

~Pr = dl : T + � � ~E (6)
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for the reversible strain and polarization where T is the stress and ~E is the electric

�eld. Although these equations have the same stucture as the classical linear piezoelectric
constitutive law, the elasticity tensor CI , the tensor of piezoelectric constants dl, and the
tensor of dielectric constants � depend on the loading history via the internal variables:

CI = ĈI (q1; : : : ; qn) (7)

dl = d̂l (q1; : : : ; qn) (8)

� = �̂ (q1; : : : ; qn) (9)

In this way we take into account the sensitivity of the reversible properties of the ceramic
to changes in the lattice structure. In particular, the history dependence of these tensors is
related to history dependent anisotropy properties. This may be most pronounced in the
case of dl, since the phenomenon of piezoelectrical coupling is absent on the macroscopic
level in an unpoled material even if its microstructure exhibits a microscopic spontaneous
polarization.

Until now, we have motivated a certain model structure for the description of the
electro-mechanical behavior of ferroelectric ceramics in a �rst step. In the next step, we
want to �nd a thermodynamical basis for this model structure. For this purpose, we
depart from the Clausius-Duhem inequality for a deformable dielectric body which reads
in an isothermal process with uniform temperature distribution as

T : _S + ~E �
_~P � � _ (10)

where � is the mass density. The free energy  has to be constructed such that it is
compatible with the piezelectricity relations (5) and (6) in view of the inequality (10).

The free energy should depend on both the reversible quantities Sr, ~Pr and the remanent
quantities Si, ~Pi. Noting the relations in (1) and (2), we write

 = � (Sr;~Pr; q1; : : : ; qn) (11)

Then, we �nd the potential relations

T = �
@ � 

@Sr (S
r;~Pr; q1; : : : ; qn) (12)

~E = �
@ � 

@~Pr
(Sr;~Pr; q1; : : : ; qn) (13)

as necessary and su�cient conditions for the Clausius-Duhem inequality (10) to be satis-
�ed for reversible processes in the sense _q� = 0 ; � = 1; : : : ; n.

Assuming the relations (12) and (13) can be solved for Sr, ~Pr, we may introduce by
the Legendre transform

� g = ��  + T : Sr + ~E � ~Pr (14)

the Gibbs engergy

g = ~g(T ;~E; q1; : : : ; qn) : (15)
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Using (12) and (13), we obtain

S
r = �

@~g

@T
(T ;~E; q1; : : : ; qn) (16)

~Pr = �
@~g

@~E
(T ;~E; q1; : : : ; qn) : (17)

For �xed q1; : : : ; qn, (16) and (17) represent the piezoelectric behavior which we assume
to be linear in (5) and (6). Consequently, the dependence of

g = ~gr(T ;~E; q1; : : : ; qn) + ~gi(q1; : : : ; qn) (18)

upon T and ~E is quadratic, i e.,

� gr =
1

2
T : ĈI �1 : T + ~E � d̂l : T +

1

2
~E � �̂ � ~E ; (19)

which posseses the formal structure of classical linear piezoelectricity. In fact, by the
potential properties (16) and (17) we �nd the piezoelectric relations (5) and (6). However,
in contrast to linear piezoelectricity the coe�cients CI , dl, and � are functions of the
internal variables q1; : : : ; qn. Thus, we now may determine the free energy function � by
the Legendre transform (14) which is consistent with the basic properties (1) through (9)
in the sense of the Clausius-Duhem inequality.

Next, we want to exploit the Clausius-Duhem inequality in view of restrictions for the
evolution equations of the internal variables. With the help of the potential relations (16)
and (17), we �nd from the Legendre transform (14)

� _ = T : _Sr + ~E �
_~Pr � �

nX
�=1

@~g

@q�
_q� : (20)

Inserting this in inequality (10) and taking into account the additive decompositions (1)

and (2) of Si and ~Pi as well as their dependences (3) and (4) on the internal variables
yields

nX
�=1

 
T :

@Ŝ i

@q�
+ ~E �

@~̂Pi

@q�
+

@~g

@q�

!
_q� � 0 : (21)

Following [36, 37], we call motivated by this inequality the quantities

f� = T :
@Ŝ i

@q�
+ ~E �

@~̂Pi

@q�
+

@~g

@q�
; � = 1; : : : ; n (22)

driving forces. The remaining inequality (21) and thus the Clausius-Duhem inequality is
satis�ed in a su�cient manner, if we assume

_q� = ��f� ; �� � 0 ; � = 1; : : : ; n : (23)
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3 Microscopically motivated internal variables for uni-

axial loadings

We now specialize the general frame work introduced in the previous section to the case
of uni-axial electro-mechanical loadings of a ferroelectric ceramic. The properties of the
ferroelectric phase of the polycrystal are assumed to be dominated by the tetragonality
of the microstructure. Consideration of a tetragonal microstructure o�ers probably the
most obvious insight in the relation between microstructure and macroscopic response.

A tetragonal unit cell is characterized by the fact that one of its lattice axes, the
so-called c axis is about 0.1 % longer than the two other ones, the a axes. The c axes
of the unit cells can be oriented in either one of the three lattice directions of a grain.
A region within a grain of the ferroelectric polycrystal where the c axes of the unit cells
have the same orientation is called a domain. It is a characteristic property of ferroelectric
materials that mechanical or electrical loadings may switch the orientation of the c axes
by 90� and 180�.

In the thermally depoled reference state of the polycrystalline ceramic, the ditribution
of the c axes is random and no direction is preferred. In case of uni-axial loadings, the
axis of the loading may eventually become preferred such that the ceramic will exhibit
transvesal isotropy on the macroscopic level irrespective of the details of its microstruc-
tural anisotropy properties. While the axis of anisotropy will be �xed to coincide with
direction of the loading, the extend of anisotropy may vary with the loading history.

3.1 Uni-axial formulation of the model

The direction of the uni-axial loading is assumed to coincide with the x3 axis. We denote
the only non-vanishing components of T , ~E, ~P, and ~Pi by �, E, P, and Pi, respectively.
Furthermore, we write S = S33 and Si = Si

33 for the relevant components of the strain
tensors S and Si, respectively.

The additive decompositions (1) and (2) then read as

S = Sr + Si (24)

P = Pr + Pi : (25)

From the piezoelectricity relations (5) and (6) we may write

Sr =
1

Ŷ
� + d̂E (26)

Pr = d̂� + �̂E (27)

where Ŷ = 1=(ĈI �1)3333, d̂ = (d̂l)333, and �̂ = �̂33 are functions of the microstructural
parameters q�. Additionally, we �nd

� gr =
1

2

1

Ŷ
�2 + d̂� E +

1

2
�̂E2 (28)

with these de�nitions.
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x 3

45

Fig. 1: Two cones of 45� about the x3 axis, being the axis of loading: The
value of � is the fraction of c axes situated with in these cones.

3.2 Choice of microstructural parameters

The physical signi�cance of model depends strongly on the choice of the internal variables
q�. For the considered case of uni-axial loadings, we will now introduce such microstruc-
tural parameters. They represent the microscopic state of the ceramic in the sense of
macroscopic averages.

To begin with, we consider a ferroelectric sample in its unpoled reference state. It is
well known that such a sample exhibits irreversible deformation under compressive stresses
of su�cient magnitude without any changes of the state of macroscopic polarization [25,
26]. This phenomenon stems from so-called 90� switching processes of the c axes of the
tetragonal unit cells. While the distribution of the c axes was initially uniform over the
spherical surface, the fraction of c axes aligned with the x3 axis, the axis of loading, is
reduced due to 90� switching processes. The the length of the sample in the direction of
loading is decreased irreversibly and it gives way for the compressive stress.

We now introduce cones of 45� angle with the x3 axis being the cone axis, see Fig.
1. Obviously, the fraction of of domains with their c axis situated within these cones has
been reduced in the previously discussed example of mechanical compressive loadings.
Thus the microscopic state of the distribution of the c axes may be described with the
help of thess cones: Our �rst internal variable, denoted by � = q1, represents the fraction
of domains with their c axes situated within the 45� cones. This means that � may take
values between 0 and 1. From the above discussion we see that the irrevesible deformation
Si should be chosen as a function of �.
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Fig. 2: Within the lattice of a tetragonal grain, there are six possible orien-
tations for the microdipole of the polarized unit cell (two per lattice
axis).

The tetragonal unit cell of a ferroelectric material is polarized: The resultant centers
of positive and negative charges constituting the unit cell have di�erent locations. Thus
every unit cell forms a microdipole with its axis parallel to the c axis of the unit cell.
Within a grain, there are six possible orientations for the microdipole of a unit cell. In
particular, there are two orientations for each lattice direction (see Fig. 2). Concerning
the net polarization resulting from the microdipoles this means that di�erent states of
macroscopic polarization can result from the same degree of alignment of the c axes
with respect to the x3 axis, i. e., for the same value of �. Therefore, we need additional
information, in order to determine the macroscopic state of polarization associated with
the microscopic domain state.

In this sense, our second internal variable  = q2 represents the state of relative net po-
larization in x3 direction resulting from the distribution of the spontaneous microdipoles:

 =
Pi

Psat

(29)

In this equation, the saturation polarization Psat is the maximum macroscopic irreversible
polarization.
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3.3 Relations between irreversible quantities and microstructural

parameters

We now want to specify the dependence of irreversible strain on the microstructural
parameters. As mentioned before, the macroscopic state of irreversible strain depends on
�, the fraction of domains with their c axes aligned to the x3 axis. However, the state of
relative polarization of these domains will have no inuence on the remanent distortion
of the lattice. Thus we may assume

Si = Ŝi(�) (30)

for the functional relation between the macroscopic irreversible strain and the microstruc-
tural state variables. For convenience, we may identify the unpoled reference state with
a vanishing value of the irreversible strain: Ŝi(�ref) = 0. If all c axes are situated in the
45� cones about the x3 axis, i. e. � = 1, the irreversible strain reaches a saturation value:
Ŝi(1) = Ssat. Here, the saturation strain Ssat is the maximum value of the macroscopic
remanent strain of the ceramic which is assumed for a domain state of highest order
with respect to a certain axis. By resticting ourselves to a linear relation for the sake of
simplicity, we �nd the relation

Ŝi(�) = Ssat
� � �ref
1� �ref

(31)

from the two values just discussed.
As a veri�cation, it is interesting to consider the state � = 0 where all c axes are

situated outside of the 45� cones. Such a state might be reached by strong compressive
stresses acting in x3 direction. In this case, we �nd Ŝi(0) = �Ssat�ref=(1��ref). However,
in order to be able discuss this value, we must specify �ref . Since �ref represents the the
thermally depoled reference state, its value is given by the intersection of our 45� cones
with the spherical surface or in other words by the cuto� of the spherical surface by these
cones. This value is slightly below one third, so that we may assume

�ref =
1

3
(32)

for simplicity. We then get Ŝi(0) = �1
2
Ssat. In a ferroelectric material with a tetragonal

microstructure one may expect such a di�erence in the maximum magnitudes of the
irreversible strain for compressive and tensile loadings at least qualitatively (see also
section 4.2 of this paper and [40] for experimental evidence on this matter).

For the sake of completeness, we may note at this point that we �nd from the de�ntion
(29) of the second internal variable  immediately

Pi =  Psat (33)

This means that the irreversible polarization depends on the relative polarization  alone:
Pi = P̂i()
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-1

1

G

γ

Fig. 3: The set G of admissible states G forms a triangle with its corners at
(0,0), (-1,1), and (1,1).

The second internal variable  represents the state of relative polarization associated to
a degree of aligment of c axes given by �. Consequently,  may assume values between -�
and �: In the case  = �, all domains within the 45� cone about the x3 axis are polarized
in positive x3 direction while  = �� means the opposite. If  = 0, the fractions of
domains in the 45� cones polarized in positive and negative x3 direction are equal, leading
to a cancelation of the resultant remanent polarization. Especially,  = 0 in the unpoled
reference state.

In summary, we �nd that � and  may take values according to

0 � jj � � � 1 : (34)

This means the microstructural parameters � and  are not completely independent of
each other and admissible internal states are represented by the set

G =
n
(�; )

��� 0 � jj � � � 1
o

: (35)

As shown in the �--plane in Fig. 3, G is a triangle with its corners at (0,0), (-1,1), and
(1,1).

3.4 History dependent piezoelectricity

It remains to specify the dependence of the coe�cients in the piezoelectricty relations
(26) and (27) on the microstructural parameters � and . Clearly, the elastic and dielec-
tric response of a ferroelectric is inuenced by its domain state. This can easily be seen
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by comparing the elastic and dielectric constants of a poled ceramic in poling direction
to those obtained in perpendicular direction. Since the corresponging values di�er by
approximately 10 %, we may neglect the dependence of Y and � on the microstructural
parameters in order to keep the model as simple as possible. However, the situation
is completely di�erent for the piezoelectric coe�cient d̂: In the unpoled state the phe-
nomenon of piezoelectricity is not only modi�ed quantitatively, it is totally absent then:
d̂ = 0 if Pi = 0. In the poled state (Pi = �Psat), the piezoelectric coe�cient reaches its
maximum magnitude: d̂ = �dsat. For simplicity, we �t by a linear function:

d̂() = dsat  = dsat
Pi

Psat
(36)

We want to emphazise that concerning all functional relations for their dependence
on the microstructural parameters, we tried to make the simplest choice which is still
physically reasonable in a qualitative manner. We did so, since it is our primary goal to
discuss the basic features of our model in this paper.

3.5 Evolution equations for the internal variables

It is the constituting feature of ferroelectric ceramics that their domain state can be
changed by switching the microdipole of a unit cell by either an electric �eld or mechanical
loads of su�cient magnitude. These mechanisms are depicted in Fig. 4. An electric �eld
will try to give the microdipoles its own orientation. Compressive mechnical stresses
acting in the direction of the c axis of a unit cell will eventually make it switch by 90�,
however, it can not trigger a unique orientation of the microdipole in the new state. We
now need to de�ne evolution equations for our microstructural parameters in a way that
the macroscopic consequences of these mechanisms are described.

The starting point for the introduction of our evolution equations is the Gibbs energy
g from which the driving forces f� are derived. Since the part gi has not been speci�ed
yet, we now choose the following relation:

� gi = �
1

2
c� (� � �ref)

2 �
1

2
c 

2 � IG(�; ) (37)

By introducing an appropriate function IG(�; ), we have to ensure that the microstruc-
tural parameters assume admissible values from the set G = f (�; ) j 0 � jj � � � 1 g
only. Further details concerning this function will be discussed in the following sections.

The role of the two other terms in gi can be seen, if we have a look at the driving
forces resulting from this form of the Gibbs energy. With the help of the functions (28),
(31), and (36) we �nd by applying the prescription (22)

f� =
Ssat

1� �ref
� � c� (� � �ref)�

@IG
@�

(38)

f = Psat E + dsat � E� c  �
@IG
@

(39)
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Fig. 4: Switching mechanisms in a tetragonal ferroelectric ceramic.

for the driving forces. Of course, the primary contribution to the driving forces stems from
the mechanical stress and from the electric �eld. Now, if we assume that c� und c are non-
negative constants, as we will do from now on, we see that the corresponding terms reduce
the magnitude of the driving forces as the values of the microstuctural parameters grow.
In this way, we represent the fact that the unpoled state is most preferred and departing
from the unpoled state expieriences an increasing resistance caused by the constraint from
neighbouring domains and grains.

In order to satisfy the Clausius-Duhem inequality in a su�cient manner, we now choose

_� = � f� (40)

_ = � f (41)

as evoltion equations for the internal variables. In ful�llment of the requirement (23), the
function

� = �0

Dq
f 2
� + f 2

 � Psat Ec

E
(42)

is non-negative (�0: positive material constant, hxi = x if x � 0 and hxi = 0 if x � 0).
According to the function �, microstructure evolution takes place if the magnitude of
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the total driving force reaches a critical value PsatEc. This threshold has been chosen
such that starting from the unpoled reference state (� = �ref ,  = 0), the microstructural
parameters will not change under pure electric loadings as long as the magnitude of the
electric �eld remains below the coercitive �eld Ec. This means that we have a range of
linear dielectric behavior for su�ciently small values of the electric �eld. In order to have
irreversible poling processes, the coercitive �eld has to be overcome. Starting from the
unpoled reference state, we �nd from the condition � = 0 for the coercitive stress �c
necessary to initiate mechanically caused switching processes

�c =
1� �ref
Ssat

Psat Ec (43)

by equations (40) and (42).
Since the right hand sides of the evolution equations (40) and (41) are functions of the

state variables only, the model response shows rate e�ects. The choice of � and especially
the constant �0 inuences this rate dependence. This can be seen by introducing the
material intrinsic time scale

� = �0 t (44)

yielding

_� = �0
d�

d�
(45)

_ = �0
d

d�
(46)

for the time derivatives of the internal variables. We see that for large values of �0, time
dependent processes in the material take place very rapidly on the physical time scale t.
This means that we get a nearly spontaneous response without rate e�ects for su�ciently
large values of �0. On the other hand, if we choose small values for �0, time processes in
the material are delayed with respect to t and we expect a signi�cant rate dependence of
the model response. For further discussions of these aspects we refer to the next sections.

4 Discussion of an idealized formulation of the model

Following [41], we may choose for IG the indicator function of the set G in order to
enforce that the pair of internal variables assumes only admissible values from this set.
The indicator function is de�ned by

IG(�; ) =

8<
:

0 ; (�; ) 2 Gn@G

1 ; else
; (47)

where @G is the boundary of G. As a rough physical interpretation, we may state that the
indicator function surrounds the set of admissible values of (�; ) by an in�nitely steep
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and in�nitely high energy barrier. As long as (�; ) takes values in the interior of G, there
is no contribution from the indicator function to the driving forces. However, as soon as
the (�; ) is situated on the boundary of G, the contribution from the indicator function
to the driving forces will be such that no values outside G can be reached. We consider
this step like behavior induced by the use of the indicator function as an idealized way to
enforce the constraints for physically admissible values of the microstructural parameters.

Instead of using the mathemetical formulation of [41] employing convex analysis, we
adopt the represention of the indicator function found in [42]. Introducing the functions

h1(�; ) =  � � (48)

h2(�; ) = � � � (49)

h3(�; ) = � � 1 (50)

the set G may be represented equivalently by

G =
n
(�; )

���hi(�; ) � 0 ; i = 1; 2; 3
o

: (51)

The indicator function may then be written as

IG(�; ) = ��1h1 � �2h2 � �3h3 : (52)

Adopting for the remainder of this paper the approximate value �ref =
1
3
, this yields the

evolution equations

_� = �
�
3
2
Ssat � � c� (� �

1
3
) + �1 + �2 � �3

�
(53)

_ = �
�
Psat E + dsat � E� c  � �1 + �2

�
(54)

Here, the multipliers �i satisfy the Kuhn-Tucker conditions

hi � 0 ; �i � 0 ; hi�i � 0 ; i = 1; 2; 3 : (55)

It might be interesting to shed some light on the role of the �-terms in the driving
forces. For values of microstructural parameters from the interior ofG, i. e. (�; ) 2 Gn@G,
we �nd hi < 0, i = 1; 2; 3. According to the Kuhn-Tucker conditions (55), the driving
forces are then given by the \regular" parts

f� = f�reg =
3
2
Ssat � � c� (� �

1
3
) (56)

f = freg = Psat E + dsat � E� c  (57)

Now, lets assume that (�; ) is on the boundary � =  of G, i. e. h1 = 1. If at this state

dh1(�; )

dt

�����
f�=f�reg;f=freg

> 0 ; (58)
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the multiplier �1 > 0 has to be chosen according to the Kuhn-Tucker conditions (55) such
that the pair (�; ) doesn't get outside the set of admissible values, i. e. h1(�; ) 6> 0.
From the consistency condition

dh1(�; )

dt

�����
f�=f�reg+�1;f=freg��1

= 0 (59)

we �nd

�1 =
1

2

�
� f�reg + freg

�
: (60)

Consequently, the evolution equations are given by

_� = �
1

2

�
f�reg + freg

�
(61)

_ = �
1

2

�
f�reg + freg

�
(62)

in this situation. Obviously, _�= _ = 1 now, meaning that the term �1 corrects the driving
forces such that the state (�; ) may move along the boundary h1 = 1 of G but cannot
get outside. Instead of going futher in the mathematical details of this particular aspect
of our model, we now turn to discuss the physical signi�cance of the model by considering
its response to characteristic electro-mechanical loading paths.

� mC/kVm 0.05 Y MPa 100
dsat mm/kV 0.001 Ssat % 0.3
Ec kV/mm 1.0 Psat mC/m2 300

Tab. 1: Values of the classical ferroelectric material constants chosen for the
numerical calculations in this paper.

While the physical meaning of most of the material constants in our model is clear, this
is not so obvious for some of them. In particular the piezoelectric constants as well as the
coercive �eld, the saturation polarization and the saturation strain can be measured by
standardized methods. For the remainder of this paper, we choose their values according
to table 1 in a way that they are charactersitic for typical ferroelectric ceramics without
representing a single composition precisely. The other parameters, i e., �0, c�, and c
which are typical of our model are varied in the calcutions in order to demonstrate their
role.

4.1 Poling and electrical cycling

The probably most commonly investigated type of loading of ferroelectric ceramics is
poling and cycling by strong electric �elds. Under these loadings, the typical dielectric
hysteresis and the butterly hysteresis occur. We consider electric cycling with an ampli-
tude of twice the coercive �eld, i. e., 2.0 kV/mm.
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Fig. 5: Model response to a cyclic electric �eld (saw tooth shape) of �2:0
kV/mm amplitude for zero c� and c . �0 has been chosen large in
order to get a spontaneous model response.
a) Dielectric hysteresis
b) �- plane

4.1.1 Rate independent response for zero values of c� and c

To begin with, we are interested in the spontanous model response for zero values of c� and
c. This investigation is to make us familiar with the basic features of our model before
we get into re�nement of the model response by choosing more realistic values for the
material parameters c�, c , and �0. In the �rst step, we consider the dielectric hysteresis
in Fig. 5a) and the corresponding trajectory of (�; ) in Fig. 5b). The polarization is
computed according to the additive decomposition (25) and the relations (27) and (33)
for the reversible and irreversible parts, respectively:

P = �E + Psat (63)

As long as the electric �eld is below the coercive �eld of 1.0 kV/mm, we observe in Fig.
5a) a linear dielectric response where the slope is given by �. (�; ) remain at their initial
values (1

3
; 0). At E = Ec, � becomes non-zero and the growth of the internal variables

starts. In Fig. 5b), we observe that  starts to grow while � remains at its initial value
since the driving force f� is still zero. Because �0 has been given a large value in order
to yield a spontaneous model response, the growth of  is very rapid. (For values above
�0 = 2:0 � 10�2 sec�1�kPa�2, the model response showed no rate e�ets.) This can be seen
from the step like increase of the polarization to a value of 171 mC/m2 in Fig. 5a) due to
the corresponding increase of Pi related by equation (33).
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According to the microscopic interpretation of the microstructural parameters, the
model response in this period of the loading history may be considered representing pure
180� switching processes: The state of the c axes described by � remains constant while
the relative polarization, i e., the orientation of the microdipoles changes. At  = 1

3
, all

microdipoles within the 45� cones about the axis of poling are oriented in the direction
of the electric �eld and the reservoir for pure 180� switching is gone.

At (�; ) = (0; 1
3
), the boundary @G of admissible values for the internal variables is

reached, indicated by h1 = 0. Due to the electric �eld, the driving force freg continues
growing. However, a further increase of  is only admissible if it is compensated by
a corresponding growth of �. In fact, as we have seen in the discussion prior to this
subsection, the indicator function IG(�; ) de�ned in equation (52) provides corrective
terms to the driving forces.

At the incident of their occurence, these correction terms cause a drop of the magnitudeq
f 2
� + f 2

 of the total driving force, resulting
q
f 2
� + f 2

 < PsatEc. Therefore, the evolution

of the internal variables stops, and changes of P are linear with � as the slope, untilq
f 2
� + f 2

 reaches the critical value PsatEc again due to the continued growth a the electric

�eld.
This pause in the evolution of the microstructural parameters can be associated readily

to the higher energy level needed to initiate 90� switching processes compared to 180�

switching: As we have seen before, further polarization switching beyond the state (�; ) =
(0; 1

3
) is possible only, if accompanied by changes of � representing the state of the c axes.

However, in its microscopic interpretation, such a changes mean 90� switching. Now, since
90� switching causes a strain mismatch in the crystal structure, the neighbourhood of the
unit cells to be switched acts as resisting contraint and a higher energy level is needed
compared to 180� switching

Once the critical load for further irreversible evolution is reached again at E = 1:4
kV/mm, (�; ) attain spontaneously their limiting values (1; 1). According to equation
(33), Pi jumps to the value Psat yielding the second step observed in the dielectric hys-
teresis in Fig. 5a).

By the value (1; 1), our microscopic parameters represent a state where all c axes
are situated within the 45� cone about the axis of poling (� = 1), with all microdipoles
oriented to the positive x3 axis which is the current oriention of the electric �eld ( =
+1). In its microscopic interpretation, this is the fully poled state. This fully poled
state provides no further reservoir of switchables domains for ongoing poling in the same
direction as before even if the electric �eld keeps on increasing.

This is reected by the fact that the pair (1; 1) is the outermost corner of the triangle
G of admissible values of (�; ), see Fig. 3. Any further increase of the electric �eld is
o�set by correction terms due to the indicator function IG leading to vanishing driving
forces. A microscopic interpretation for this behavior is that the domain structure after
having been fully switched exhibits resistance needed to prevent any further switching.
This resistance annihilates the agitation by the electric �eld.

The increase of P is now linear again, with � as the slope. Note that due to our isotropy
assumption for �, i. e., its independence of the microstructural parameters, the slopes of
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Fig. 6: Buttery hysteresis corresponding to the curves in Fig. 5.

the unpoled and the fully poled portions of the dielectric curve in Fig. 5a) are equal.
Before we continue the discussion of the dielectric properties, we now consider the

poling part of the buttery hysteresis in Fig. 6, i. e., the strain induced by a poling
electric �eld. It can be calculated by the additive decomposition (24) and the relations
(26) and (31) for the reversible and irreversible parts, respectively, yielding

S = dsat  E + 3
2
Ssat (� �

1
3
) ; (64)

if we choose �ref =
1
3
and d̂ according to (36).

Starting from the thermally depoled reference state, there is no electro-mechanical
coupling in the macroscopic ceramic. As soon as the coercive �eld is reached, we observe
a small jump in the induced strain corresponding to the �rst jump of P at E = Ec in the
dielectric plot Fig. 5. This strain cannot be associated to 90� switching since � remains
at its initial value 1

3
so far. Rather, this strain is due to the piezoelectric e�ect caused by

a net polarization induced by 180� switching and the acting electric �eld. The step like
character of the strain evolution is connected to the spontaneous growth of .

During the following pause of the evolution of the internal variables, the strain varies
linearly with the electric �eld. The slope is given by the current value dsat

1
3
of the

piezoelectric coe�cient of E in the �rst term of equation (64). This means that the
piezoelectric e�ect is already present to a certain extent in this partially poled state.

As soon as the barrier for 90� switching is overcome at E = 1:4 kV/mm, � and
 increase spontaneously to their limiting value 1, as discussed before. According to
equation (64) this leads to a related jump of S due to both its piezoelectric and irreversible
parts. This second jump is larger then the �rst one because of the impact of 90� switching
on the irreversible strain. From then on, we have a pure linear piezoelectric response of
the fully poled state.
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We now come back to the dielectric hysteresis in Fig. 5a). After the electric �eld has
reached its maximum value of 2.0 kV/mm, it is �rst reduced to zero and then reversed to
-2.0 kV/mm. During unloading, we observe a linear dielectric model response. At E = 0
kV/mm, we read an irreversible, i. e., remanent polarization of P = Psat = 300 mC/m2

from the plot in Fig. 5a).
At E = �1 kV/mm, � reaches its critical value and the internal variables may be

subject to change again, this time starting from (1; 1). The electric �eld and thus the
driving force f = freg act now in the negative x3 direction while f� = f�reg vanishes.
Consequently, the total driving force (f�; f) = (f�reg; freg) points along the border of
G, but not to its exterior and because of this, no correction by additional terms due to
the indicator function IG will occur.  changes spontaneously from +1 to -1, while � is
constant, since its driving force is zero during this period, see Fig. 5b). At (�; ) = (1;�1),
the boundary @G is reached again and because the total driving force (f�reg; freg) now
points to the exterior ofG, the indicator function kicks in to maintain the internal variables
in the range of admissible values, i. e., at (1;�1). Due to the change of  from 1 to -1,
we observe a complete reversion of the polarization to second fully poled state. After
unloading we �nd a remanent polarization of P = �Psat = �300 mC/m2

In its microscopic interpretation, this polarization reversal is related to pure 180�

switching without 90� switching: The fact that � is constant at a value of 1 means that
all c axes remain within the 45� cones about the axis of loading. The change of  alone
has to be associated to a pure reorientation of the microdipoles within these cones from
the old to the new direction of the electric �eld. This interpretation is consistent with the
absence of a pause of the evolution of the internal variables like the one observed during
the poling process starting from the depoled reference state (1

3
; 0). Starting from the fully

poled state, all domains can switch to the new orientation of the electric �eld in one step
by 180�. There is no need to assume energetically less favorable intermediate states by
90� switching.

Looking at the buttery hysteresis in Fig. 6, we observe during unloading a linear
piezoelectric response leaving a remanent strain of S = Ssat = 0:3%. The spontaneous
process of repoling �nds its expression in the observation of a jump in the induced strain at
E = �1:0 kV/mm. At this intstant, the piezoelectric coe�cient in equation (64) changes
its sign and the piezoelectric strain instead of being subtracted from Ssat, is now added to
it. A second piezoelectric range with opposite sign but otherwise equivalent behavior is
reached. No change at all occurs in the second term of equation (64) since � is constant.

From a microscopic point of view, it is clear that pure 180� switching causes no change
of the remanent strain. Only the strain induced by an electric �eld via the piezoelectric
e�ect is a�ected due to the reversal of the net polarization: The piezoelectric strain
changes its sign.

4.1.2 Discussion of c� and c

The step-like switching behavior in Fig. 5 is usually attributed to single crystals where
no neighborhood of misoriented grains constrains the simultaneous switching of all mi-
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Fig. 7: Model response to a cycling electric �eld for c� = 0:0 kPa and c =
30:0 mC/m2 � kV/mm:
a) Dielectric hysteresis
b) Buttery hysteresis

crodipoles. However, in a polycrystalline and multidomain ceramic composed of numerous
misoriented grains and containing defects this idealized kind of behavior is not observed.
Rather, the polarization grows steadily as the electric �eld has to overcome gradually
the increasing resistence of the lattice structure of the ceramic against the progressive
ordering during poling.

In order to represent this internal resistence of the microstructure, we have introduced
a limiting term in each of the driving forces f� and f in equations (38) and (39), respec-
tively. Due to this term, a counter force proportional to the value of the corresponding
internal variable itself is built up as it departs from its initial value in the reference state.
The factors of proportionality of these terms are denoted by c� and c , respectively.

To begin with, we consider the inuence of c on the model response by choosing
c = 30:0 mC/m2 � kV/mm, and leaving c� = 0:0 kPa. Figs. 7a) and b) show the resulting
dielectric hysteresis and buttery hysteresis, respectively. The path of microstructural
evolution in the �- plane is not shown, since it is exactly the same as in Fig. 5b). As the
main di�erence we now observe in the dielectric plot a �nite slope of the polarization over
the electric �eld during poling. Furthermore, the magnitude of the critical value of the
electric �eld for repoling at reversal of the electric �eld is reduced below Ec. Otherwise,
the basic features of the hysteresis are the same as before.

Likewise, we recognize �nite slopes in the buttery hysteresis during poling too. The
curvature of the plot during poling is due to the fact that both the piezoelectric coe�cient
and the electric �eld in the �rst term of the strain relation (64) change in these periods.

Next, we study the role of c� by taking c� = 100:0 kPa, and c = 0:0 mC/m2 � kV/mm.
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Fig. 8: Model response to a cycling electric �eld for c� = 100:0 kPa and
c = 0:0 mC/m2 � kV/mm:
a) Dielectric hysteresis
b) �- plane

Since the counter force term in f is not active now, we observe during the �rst period of
180� switching the same spontaneous poling behavior as in Fig. 5a). In the second period
of poling, which is accompanied by 90� switching, � departs from its starting value and
thus the counter force term in f� is activated. As a result, we �nd a �nite slope of the
polarization over the electric �eld now.

The most signi�cant di�erence with respect to the previous behavior, however, is
observed during reversing the electric �eld in Fig. 8b). In contrast to the situations
considered before, f�reg = �c�(� � 1

3
) now causes a partial reduction of � until the

boundary of G is hit again due to jj = �. Then, the indicator function IG dominates
f� once more and a further change of  is compensated by an increase of �, such that
(�; ) take only admissible values. As a result of this intermediate decrease of � followed
by a newly increase as  changes from one fully poled state to the other, the �- curve
exhibits a buttery like shape.

This partial recovery of � during �eld reversal can be interpreted microscopically
as back switching of such 90� domains that have been forced to align with the axis of
loading only by very high �elds against a resisting neighborhood. As the electric �eld is
reversed, these domains are driven back to their original 90� state by the constraint due
to the mismatch of neighboring grains and domains, before they are oriented in the new
direction of the electric �eld by a second step of 90� switching.

Consequently, the response during repoling is di�erent compared to the previous cases,
since now both 180� and 90� switching processes occur. After reaching E = �Ec, the po-
larization changes by a severe jump similar to the one in Fig. 5a) due to a sudden increase
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Fig. 9: Buttery hysteresis for c� = 100:0 kPa and c = 0:0 mC/m2 � kV/mm

of . However, this time, the boundary of G, i. e., jj = �, is reached before the magni-
tude of  takes its saturation value 1, see Fig. 8b). The indicator function IG is activated
to modify the driving forces such that only admissible values of the internal variables

occur. Due to this modi�cation of the driving forces
q
f 2
� + f 2

 drops below its critical

value PsatEc and just as during the �rst poling from the reference state, the evolution of
the internal variables experiences a pause. Again, this pause might be interpreted micro-
scopically as the need to overcome a higher energy barrier related to 90� switching. The
critical value for the second onset of poling is reached as the �rst polarization curve is
met. (This can be observed during repoling from E = �2:0 kV/mm to E = 2:0 kV/mm.)
Since the recovery of � during repoling stops well above the reference value, the second
step of 90� switching is smaller then the one during poling from the reference state.

Now � is no longer constant during repoling, and because of this the irriversible strain
Si in the second term of equation (64) changes as well as the piezoelectric term. This is of
course consistent with the microscopic interpretation relating � to 90� domains. In fact,
we obtain the signi�cantly modi�ed buttery hysteresis shown in Fig. 9. The di�erence
with repect to Fig. 6 occurs during the �rst polarization and during repoling. In the
second step of the �rst polarization curve representing 90� switching, we now observe a
�nite slope of the strain over the electric �eld. After the reversed electric �eld has passed
the critical value Ec, the switching of  stops at jj = � as discussed before. During the
following pause of the internal variables, we have a pure linear piezoelectric changing of
the strain. The slope is smaller then in the fully poled state since  in the piezoelctric
coe�cient is below its saturation value 1. As the �rst polarization curve is met, the second
step of 90� poling takes place until a fully poled state ( = 1) with linear piezoelectric
behavior is reached.

In Fig. 10, we see the combined e�ect of non-zero values for c� and c (the �- plane
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Fig. 10: Model response to a cycling electric �eld for c� = 100:0 kPa and
c = 30:0 mC/m2 � kV/mm:
a) Dielectric hysteresis
b) Buttery hysteresis

has not been reproduced, since it is identical to the one shown in Fig. 9b) ). Basicly, these
curves exhibit the superposed e�ects discussed above for the two special cases. All in all,
we recognize clearly a more realistic model response due to the presence of counter force
terms in the driving forces. Their microscopic motivation has been given at the beginning
of this section.

4.1.3 Rate dependence

It is well known that ferroelectric ceramics exhibit signi�cant rate dependence e�ects.
Especially in the case of so-called hard-PZT, the di�usion of ions gives rise to typical
time constants for the electro-mechanical properties of the ceramic. Because of this, the
change of the macroscopic properties of the ceramic due to a change of the external loads
is not completely spontaneous. Rather, at least part of the material response is delayed
leading to relaxation phenomena.

Until now, we chose �0 � 2:0 � 10�2 sec�1�kPa�2 in order to get a sponateous model
response. Fig. 11 shows the model response computed for �0 = 1:0 � 10�3 sec�1�kPa�2

(c� = 100:0 kPa, c = 30:0 mC/m2 � kV/mm). The hystereses now have a more curved
appearence. Compared to the corresponding curves in Fig. 10, it takes larger magnitudes
of the electric �eld to yield the same polarization value. Especially, as the eletric �eld
reaches the peak value +2.0 kV/mm for the �rst time, the fully poled state  = 1 has not
yet been assumed. The polarization growth is �nished during the very �rst period of the
reduction of the electric �eld.
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Fig. 11: Rate e�ects in the model response for �0 � 1:0 � 10�3 sec�1�kPa�2:
a) Dielectric hysteresis
b) Buttery hysteresis

Similar to equation (44), we may introduce a material intrinsic time scale by

� = � t : (65)

From this de�nition, we recognize a highly nonlinear rate dependence of our model: Be-
sides the material constant �0, the relaxation times depend on the current values of the
driving forces. However, as we have seen, the basic properties of our model are deter-
mined by its spontaneous behavior. Therefore we focus on the investigation of spontaneous
properties in the remainder of this paper and will not go into a further discussion its rate
dependence.

4.2 Spontaneous response to mechanical compression-tension

loading

Another common experiment for the macroscopical investigation of ferroelectric ceramics
involves mechanical compression of samples of brick-like geometry. We consider here a
complete loading cycle of initial compression loading, follow by unloading and tensile
reloading. The loading cycle is closed by a �nal compression loading. The amplitude of
the prescribed stress is 100 MPa. The material parameters were chosen according to Tab.
1. Furthermore, we took c� = 100:0 kPa, c = 30:0 mC/m2 � kV/mm, and a su�ciently
large value for �0 in order to get a rate independent model response.

As we have seen before, domain switching in ferroelectric ceramics may also be induced
by mechanical stresses. Since mechanical stresses can not trigger a unique orientation of
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Fig. 12: Model response to pure mechanical loading:
a) Ferroelastic hysteresis
b) � as a function of t

the microdipoles, they can not lead to a net polarization of an initially unpoled sample.
The sample will remain unpoled even if the domain structure is changed dramatically and
thus it will exhibit no electro-mechanical coupling e�ects.

Starting from an unpoled state,  will vanish identically under pure mechanical load-
ings, since the driving force f is zero in this case, thus reecting the above mentioned
electro-mechanically decoupled behavior. The strain is computed from the additive de-
composition (24) and the relations (26) and (31) for the reversible and irreveresible parts,
respectively, yielding for the present situation (�ref =

1
3
)

S =
1

Y
� + 2

3
Ssat (� �

1
3
) : (66)

The ferroelastic hysteresis of the stress-strain behavior resulting from our loading
history is shown in Fig. 12a) and the corresponding history of � is plottet in Fig. 12b).
The probably most signi�cant feature of the curves in Fig. 12 is their lack of symmetry.

At the beginning of the compression loading, we see in Fig. 12a) a linear elastic
response, until the stress reaches the critical value

� = ��c = �66:6 MPa (67)

determined by equation (43). Starting from this point, we observe irreversible ferroelastic
deformation as � is reduced from its initial value 1

3
to zero, see Fig. 12b). The tangent

modulus, i. e., the slope of the stress-strain curve in this period depends on the value of
c�. In particular, a zero value of c� would give a vanishing tangent modulus.
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At � = 0, the boundary of the set of admissible values for the internal variables is hit,
see Fig. 3. Since (0; 0) happens to be the corner of the triangle G corresponding to the
smallest value allowed for �, its evolution is stopped by the indicator function IG even
though f�reg is still increasing. In its microscopic interpretation, the state (�; ) = (0; 0)
corresonds to a situation where no c axes are left in the 45� cones about the axis of loading
(� = 0), i e., all c axes are situated as close as possible to a plane perpendicular to the
stress with no net polarization ( = 0).

At this state, a second region of linear elastic behavior is reached. The slope of this
region is the same as the initial slope, since we have assumed that Young's modulus Y
is independent of the microstructural parameters, similar as we have done for �. After
unloading, we recognize a remanent strain of

S = Si = �1
2
Ssat = �0:15% : (68)

Now, as a tensile stress is applied, eventually irreversible deformation starts again. �
grows from 0 to 1, passing its initial value 1

3
at � = �c. At � = 1, the boundary of G is

hit and � can not grow further. This time, the magnitude of the maximum irreversible
deformation is much larger as we see after linear elastic unloading. In fact, we get

S = Si = Ssat = 0:3% (69)

now. This lack of symmetry of the ferroelastic hysteresis is in accordance with microscopic
considerations: In a tetragonal ceramic starting from an unpoled state, the reservior of
domains switchable towards the axis of loading is about twice as large as the reservoir
of domains switchable perpendicular to it. It must be noted though that under ten-
sile stresses a completely switched state is usually not attainable as specimens have the
tendency to fail earlier then under compressive stresses (see [40]).

4.3 Mechanical depolarization

A critical property for the application of piezoceramics in heavily loaded actuators is the
mechanical depolarization behavior of the material. If a prepoled sample is loaded by
strong compressive stresses in the direction of poling, domain switching will start. How-
ever, as mentioned before, mechanical stresses can not trigger a unique orientation of the
switched microdipoles and the net polarization of the sample is lost gradually as switch-
ing carries on. Loss of net polarization goes of course along with loss of piezoelectricity,
making the ceramic useless for electro-mechanical applications until it is poled again.

Fig. 13 shows the reproduction of these experimental �ndings by our model. The
material parameters were given the same values as before. The loading history consists
of electrical poling by raising the electric �eld from zero to 2.0 kV/mm. After removing
the electric �eld, a compressive mechanical stress up to -200.0 MPa is applied.

The poling process has already been discussed in detail in section 4.1, see Fig. 5. We
recognize its e�ect from the horizontal line in Fig. 13a). At the peak value of the electric
�eld, a polarization of over 400 mC/m2 is reached. Upon removing the electric �eld, only
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Fig. 13: Mechanical depolarization of a fully poled state:
a) Polarization vs. stress
b) �- plane

the remanent polarization of 300 mC/m2 remains. This fully poled state is attained by
180� and 90� switching and is represented by (�; ) = (1; 1), see Fig. 13b).

Now, as the compressive stress is applied, we observe a linear piezoelectric response in

Fig. 13a) departing from P = Psat. Eventually, the stress reaches a limit where
q
f 2
� + f 2



becomes equal to PsatEc and the evolution of the internal variables is activated. Starting
from (1; 1), the driving force (f�reg; freg) points to the exterior of the set G of admissible
values of (�; ), since f�reg is negative and freg vanishes. Therefore, the reduction of �
caused by the mechanical stress in the driving force (38) is compensated by a correspond-
ing reduction of  due to the indicator function IG, in order to ensure that the internal
variables take admissible values. In this way,  is reduced to zero together with � follow-
ing the border @G from (1; 1) to (0; 0). The depoled state (�; ) = (0; 0) has already been
discussed in the previous section. According to equation (36) it exhibits no piezoelectric
coupling.

It is interesting to consider the inuence of a bias electric �eld on the stress level neces-
sary for the onset of depolarization. A �eld with the same orientation as the polarization
stabilizes the domain structure and makes a higher critical stress necessary for depolar-
ization. On the other hand, an electric �eld oriented opposite to the polarization will
lead to an early onset of depolarization even if it is too weak to cause domain switching
by itself. According to [26], the dependence of the critical stress for depolarization on a
bias �eld acting during the application of the compressive load is linear. From the values
plotted in Fig. 14 we �nd a linear dependence of this stress on the bias �eld for our model
as well. Note that the depolarizations stress � = ��c = �66:6 MPa corresponds to the
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Fig. 15: Electric cycling under a compressive bias stress:
a) Dielectric hysteresis b) Buttery hysteresis

The impact of the bias stress on the buttery hysteresis is even more signi�cant. First,
the application of the bias stress gives rise to a linear elastic predeformation of -0.04%.
Next, as the evolution of irreversible processes is initiated, we observe a small drop of the
strain until the irreversible changing is paused again. As the energy level for switching is
overcome, we do have a slight increase in , i e., some 180� switching, causing an increase
of the polarization observed in Fig. 15a). But at the same time, the compressive stress
in the driving force f� leads to a reduction of � and thus to the observed corresponding
drop of the irreversible strain. This can be asociated to 90� switching giving way for the
bias stress. During the pause of the evolution of the internal variables, we see a linear
piezoelectric changing of the strain. The slight positive slope of this part of the curve
con�rms that a certain degree of net polaristion already exists at this stage.

At the end of the pause, the electric �eld is strong enough to lead to 90� switching
against the bias stress and poling as well as irreversible deformation are observed. How-
ever, as mentioned before, a fully poled state can not be reached and thus the remanent
strain after unloading is considerably smaller then the saturation strain Ssat.

During reversing the �eld, the strain drops signi�cantly below zero, indicating values
of � close to zero. This may be interpreted that most of the domains assume a 90�

intermediate state to give way for the bias stress before the reversed �eld has become
strong enough to align them again with the poling axis. In the pause before the repoling
starts, we observe a small slope of the E-S curve. From this piezoelectric behavior we
conclude that a weak net polarization in the new direction of the electric �eld is already
present.

In concluding this section we mention that according to further example calculations
our model yields for bias stresses of su�cient strength a total suppression of any poling.
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Fig. 17: Section 4.5: Model response:
a) Polarization P vs. electric �eld E
b) Strain S vs. electric �eld E
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Fig. 18: Section 4.5: Model response:
a) Stress � vs. Strain S
b) Polarization P vs. Stress �
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polarization is merely the linear dielectric contribution associated to the electric �eld by
the dielectric constant �. For compressive stress in this range there are no further changes
in polarization, thereby con�rming the loss of piezoelectricity and thus of net polarization.
Fig. 18a) shows the deformation accompanying the depolarization. For stesses below -190
MPa, the completely depolarized state exhibits a linear elastic behavior.

The third step of reduction of the electric �eld leads to a linear dielectric reduction of
the polarization, see Figs. 17a) and 18a). In Fig. 17b), we see that the strain is constant
during the reduction of the electric �eld, indicating once more the absence of piezoelectric
coupling.

In the fourth step, the mechanical stress is removed until t = 20:5 sec. However, the
electric �eld is still above the coercive �eld. Because of this, repoling takes place as the
compressive stress is released, and thus the microstructural parameters � and  recover.
Consequently, the polarization grows again just until it reaches the corresponding value
of the �rst polarization curve in Fig. 17a). Furthermore, we have an associated recovery
of the irreversible strain, see Fig. 18b).

Finally, upon removing in step �ve the electric �eld, the polarization and the strain
are reduced to their current remanent values. From the non-zero slope of the strain over
the electric �eld in this period observed in Fig. 17b), we conclude a limited recovery of
the piezoelectricity due to the recovery of the net irreversible polarization.

5 Discussion of a more realistic formulation of the

model

The model formulation discussed up to now was based on an idealised enforcement of the
range of admissible values for the internal variables. In particular, this formluation leads to
a step like representation of the transition from 180� to 90� switching with an intermediate
pause of the evolution of the internal variables. However, in a polycrystalline ceramic we
rather expect a continous transition from a behavior dominated by 180� switching to a
behavior dominated by 90� switching. This transition takes place at di�erent instants of
the loading history in di�erent grains and domains rather then at one instant everywhere
in the ceramic. Beyond a certain level of the load, the number of domains undergoing the
transition will gradually increase, reach a maximum, and �nally die out as the transition
processes are complete.

The description of the transition from 180� to 90� switching depends on the choice
of the function IG. Taking IG to be the indicator function of the set G of admissible
values for the microstructural parameters could be interpreted as surrounding this set
with in�nitely steep and in�netely high energy barriers. This meant that even for states
(�; ) very close to the boundary @G, no information about the being near transition of
the switching types was available in advance.

A more realistic description of the transition from 180� to 90� switching can be achieved
by modifying the choice of the funcions hi. In this sense, we now de�ne

h1(�; ) = ( � �)�(2n+1) (70)
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h2(�; ) = (� � �)�(2n+1) (71)

h3(�; ) = (� � 1)�(2n+1) (72)

where n is a non-negative integer. The interior of the set G is then represented by

Gn@G =
n
(�; )

��� 0 < hi(�; ) <1 ; i = 1; 2; 3
o

: (73)

The function IG may then be de�ned as

IG(�; ) = �1h1 + �2h2 + �3h3 ; (74)

where �i � 0 are material constants. This choice of IG can be considered to surround G
with in�ntite high energy barriers, but they have a �nite and increasingly larger slope as
@G is approached from the interior of G. The steepness of this walls is controlled by n.

According to the prescriptions (38) and (39), we now �nd

f� =
3
2
Ssat � � c� (� �

1
3
) �

�1 (2n+ 1)

( � �)(2n+2)
+

�2 (2n+ 1)

(� � �)(2n+2)
(75)

f = Psat E + dsat � E� c 

+
�1 (2n+ 1)

( � �)(2n+2)
+

�2 (2n+ 1)

(� � �)(2n+2)
�

�3 (2n+ 1)

(� � 1)(2n+2)

(76)

for the driving forces. In contrast to the previous formulation, the correction terms due to
IG are now always present. They induce an increasing counter force as the boundary @G
is approached from the interior of IG. The inuence of these counter forces is balanced by
�i. In this sense, we now may say that the state is provided with the information about
the closeness to the boundary @G.

5.1 Representation of the hystereses

In this section, we will have a look at the hystereses resulting from the modi�ed model.
We adopted the values of Tab. 1 for the material paramters together with c� = 100 kPa
and c = 50 mC/m2 � kV/mm. In order to check the basic properties of our model, we
realized a rate-independent model response by �0 = 2:0 � 10�3 sec�1�kPa�2. In IG, we
took n = 1, �3 = 0:1, and �1 = �2 = �32

�(2n+2).
We start with electric cycling at an amplitude of 2.0 vK/mm. The dielectric hysteresis

in Fig. 19a) now has a much more realistic appearance. Since the saturation states at
the boundary of G can be reached only asymptotically, we observe the typically curved
transition into saturated behavior known from experiments.

In Fig. 19b) we observe a �rst period that may be associated to pure 180� switching.
However, as the state (�; ) approaches the boundary @G, the corrective contribution to
(f�; f) originating from h1 in IG gaines inuence deecting the path of (�; ) such that
it runs parallel to @G. As before, this part of the model response can be associated to
90� switching processes. As the state now approaches values with � = 1, the corrective
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Fig. 19: Model response for the modi�ed choice of IG:
a) dielectric hysteresis
b) �- plane

contribution to (f�; f) caused by h3 in IG becomes inportant too, and eventually these
corrective terms cancel out the external loads stopping gradulally the evolution of the
internal variables near the upper right corner of G. In its microstructural interpretation,
this is a state of saturated polarization where the domain structure has assumed the
orientation of the acting electric �eld as far as possible.

A close look at Fig. 19b) reveals that (�; ) never reaches the boundary of G. As a
consequence, the remanent polarization is signi�cantly below the saturation polarization
Psat. The principal behavior of the modi�ed model is basically the same as the before. In
particular, we still can identify in the dielectric curve the periods dominated by 180� and
90� switching.

Fig. 20a) shows the corresponding buttery hysteresis. We recognize a clearly more
realistic representation of the saturation process of poling as the curve of the strain over
the electric �eld enters gradually into the linear piezoelectric range. Obviously, this curve
can be understood in view of the discussion above and in section 4.1. Similar remarks
apply also to the ferroelastic hysteresis shown Fig. 20b).

6 Conclusion

The constitutive model for piezoceramics discussed in the previous sections has been con-
tstructed on a thermodynamical basis. In order to describe the signi�cant history depen-
dence these materials show, we introduced microscopically motivated internal variables
with ordinary di�erential equations as evolution laws.
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Fig. 20: Strain computation according to the modi�ed model:
a) Buttery hysteresis during electric cycling
b) Ferroelastic hysteresis during mechanical cycling

Even though only very few material constants are involved in the present formulation
of the model, the the behavior of piezoceramics under uni-axial loadings was represented
at least qualitatively well. Even more important, all observations made at the macro-
scopic curves of the model response could be associated to well established microscopic
interpretations of ferroelectric behavior.

Further investigations concerning the shape and the enforcement of the set G of admis-
sible values for the internal variables seem to be desirable. An improved model response
can be expected, if more realistic functions for the dependence of the classical piezoelec-
tric constants on the microstructural parameters are chosen. Finally, the rate dependence
of the model response needs to be compared more thouroughly to experimental results,
possibly leading to a modi�cation of the factor � in the evolution equations.
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