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T-stresses for components with one-dimensional cracks

Abstract:

The failure of cracked components is governed by the stresses in the vicinity of the
crack tip. The singular stress contribution is characterised by the stress intensity factor
K, the first regular stress term is represented by the so-called T-stress. Sufficient
information about the stress state is available, if the stress intensity factor and the
constant stress term, the T-stress, are known.

While stress intensity factor solutions are reported in handbooks for many crack
geometries and loading cases, T-stress solutions are available only for a small
number of test specimens and simple loading cases as for instance pure tension
and bending.

T-stress solutions for components containing two-dimensional internal cracks and edge
cracks were computed by application of the Boundary Collocation Method (BCM).
The results are compiled in form of tables, diagrams or approximative relations.

In addition a Green's function for T-stresses is proposed for internal and external
cracks which enables to compute T-stress terms for any given stress distribution in the
uncracked body.

T-Spannungen fiir Komponenten mit eindimensionalen Rissen

Kurzfassung:

Das Versagen von Bauteilen mit Rissen wird durch die unmittelbar an der RiBspitze
auftretenden Spannungen verursacht. Der singuldre Anteil diese Spannungen wird
durch den Spannungsintensititsfaktor K charakterisiert. Der erste regulidre Term wird
durch die sogenannte T-Spannung beschrieben. Eine fiir die meisten Anwendungsfille
ausreichende Beschreibung des Spannungsfeldes vor Rissen ist moglich bei Kenntnis
dieser beiden bruchmechanischen Parameter. Wéhrend Losungen fiir Spannungsinten-
sitdtsfaktoren in Handbiichern verfiigbar sind, besteht ein Mangel an T-Spannungs-
Losungen.

Im vorliegenden Bericht werden Ergebnisse fiir Bauteile mit zweidimensionalen
Innenrissen sowie AuBenrissen mitgeteilt, die mit der "Boundary Collocation
Methode" (BCM) bestimmt wurden. Die Resultate werden in Form von Tabellen, Dia-
grammen und Nédherungsformeln wiedergegeben.

Zusitzlich werden Greensfunktionen fiir Innen- und Auflenrisse angegeben. Diese er-
lauben die Berechnung des T-Spannungsterms flir beliebige Spannungsverteilungen in
der ungerissenen Struktur.
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1 Introduction

The fracture behaviour of cracked structures is dominated by the near-tip stress field. In
fracture mechanics, interest focusses on stress intensity factors, which describe the singular
stress field ahead of a crack tip and govern fracture of a specimen when a critical stress inten-
sity factor is reached. Nevertheless, there is experimental evidence (e.g. [1-4]) that also the
constant stress contributions acting over a longer distance from the crack tip may affect
fracture mechanics properties.

Two experimental results may illustrate this for nonelastic fracture mechanics. As a first
example results for the plastic component of the crack opening displacement (COD) during
crack extension are plotted in Fig. 1a as reported by Cotterell et al.[3] for steel 1204-350. It
can be seen that the initiation value (obtained by extrapolation to zero crack growth) is by a
factor of about 2 higher for a shallow crack (a/W =0.1) compared with a deep crack (a/W =
0.5).
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Fig. 1.1 a) Crack opening displacement (COD) of specimens with shallow and deep notches for 25 mm thick
bend specimens made of structural steel [3]; b) J, at cleavage instability for HY80 MMA weld measured with
3-point bending specimens after Sumpter and Hancock [4].

In Fig. 1.1b the influence of the crack length on the critical J-integral value at cleavage insta-
bility for HY80 weld metal is shown as measured by Sumpter and Hancock [4]. These results
show that the parameters of plastic fracture mechanics (J, COD) cannot characterise the




fracture behaviour sufficiently. An interpretation of such crack length effects is possible by
including the T stress as an additional parameter for crack tip stress triaxiality.

Sufficient information about the stress state is available, if the stress intensity factor and the
constant stress term, the T-stress, are known.

While stress intensity factor solutions are reported in handbooks for many crack geometries
and loading cases, T-stress solutions are available only for a small number of test specimens
and simple loading cases as for instance pure tension and bending.

Different methods were applied in the past to compute the T-stress term for fracture mecha-
nics standard test specimens. Regarding one-dimensional cracks, Leevers and Radon [5] made
a numerical analysis based on a variational method. Kfouri [6] applied the Eshelby technique.
Sham [7,8] developed a second-order weight function based on a work-conjugate integral and
evaluated it for the SEN specimen using the FE method. In [9,10] a Green's function for T-
stresses was determined on the basis of Boundary Collocation results. Wang and Parks [11]
extended the T-stress evaluation to two-dimensional surface cracks using the line-spring
method. A compendium of results from the literature has been given by Sherry et al. [12].

In earlier reports the T-stress terms for edge-cracked structures [13] and internal one-
dimensional cracks were reported [14].

In the present report T-stress solutions derived by the author are compiled. Most of the results
were obtained with the Boundary Collocation Procedure and with the Green's function
technique. Therefore, these methods are described in detail in Sections 2-4. For the numerical
computations the Boundary Collocation Method (BCM) is applied. This procedure provides
all coefficients of a Williams expansion of the stress function. Therefore, additional coef-
ficients are reported, especially the coefficient of the singular stress term, i.e. the stress
intensity factor and in some cases weight functions are given which enable to compute the
stress intensity factor under arbitrary stress distributions in the uncracked component.




2 T-stress term

The complete stress state in a cracked body is known if a related stress function is known. In
most cases, the Airy stress function @ is an appropriate tool which results as the solution of

AAD =0 @2.1)

For a cracked body a series representation for ® was given by Williams [15]. Its symmetric
part can be written in polar coordinates with the crack tip as the origin

i 3
O=c* W (r/W)y"" An[cos(n+%)(p _hts —= cos(n—l)(p}
L h=z

n=0

+0 *sz(r/W)””A*n[cos(n+2)(p —coshno] (2.2)

n=0

where o* is a characteristic stress and W is a characteristic dimension. The geometric data are
explained by Fig. 2.1. The stress components are given by

_ io A WY (n+3) 2){2%7_;@(:05(;1 “1/2)¢ —(n+1/2)cos(n+3/ 2)(p}
+i A* (r I W)'[(n* = n—2)cosno — (n+2)(n +1)cos(n +2)p] (2.3)
g— io (I W) ]/2(n+3/2)(n+1/2){cos(n+3/2)(p -~ "+?;§cos(n—l/2)<4>}
+§; A* (r I W)"(n+2)(n+ D[cos(n +2)p — cos np ] (2.4)
Z’ _ gj;An (1 WY (n+31 2)(n+1/ 2)[sin(n+3/ 2)p —sin(n — 1/ 2)p]
+i0 A* (r | WY (n+1)[(n+2)sin(n +2)p — nsinne] (2.5)

From (2.3) the x-component of stresses results with ¢=0

csx/c*:—?;;An(aW )m (2”““21)(21”“) Z4A* ( ) n+l)  (2.6)




The term with coefficient 4, is related to the stress intensity factor K| by

K, =0 *FJna 2.7)
with the geometric function F
F=A4,18/a (2.8)

with the relative crack depth a=a/W.

The term with the coefficient 4%, represents the total cbnstant o,-stress contribution
appearing at the crack tip (x = a) of a cracked structure, which is called the T-stress

T=0

X

x=a

This total x-stress includes stress contributions which are already present at the location x =a

in the uncracked body, o'”, and an additional stress term which is generated by the crack

x,a”

exclusively. This stress separation gives rise to define two T-stress contributions. The contri-
bution determined by the x-stress in the uncracked structure may be denoted here by 70

T =6 (2.10)
and the contribution caused by the crack by 7. Therefore, we can write

T=TO+T . (2.11)

Fig, 2.1 Geometrical data of a crack in a component.




Leevers and Radon [5] proposed a dimensionless representation by the stress biaxiality ratio B
which reads

Tra T

2.12
R Y (2.12)
or expressed in terms of stress function coefficients
8o, A *
== 2.13
b= 213)

Taking into consideration the singular stress term and the first regular term, the near-tip stress
field can be described by

K]

Sl Ry fi@)+o (2.14)
C,.o O 7 0

%ﬁ( . ”’0)=( ) (2.15)
, ny,O ny,o O O

where f; are the well-known angular functions for the singular stress contribution.

The determination of the biaxiality ratio obviously needs the stress intensity factor solution to
be known. Fortunately, in the application of the BCM-Method also the coefficient 4, related
to the stress intensity factor via eqs.(2.7) and (2.8) is determined. Therefore, for all crack
problems the stress intensity factor solution will be given too.

In special cases it may be of advantage to know also higher coefficients of the Williams
expansion, eq.(2.2). This is desirable e.g. for the computation of stresses over a somewhat
wider distance from a crack tip. Therefore, additional coefficients are compiled in some
cases.




I METHODS

For the determination of T-stress solutions occurring in this report the following methods
were applied:

e Westergaard stress function

e Williams (Airy) stress function
e Boundary Collocation method
e Green's function method

e Principle of superposition.

The methods are outlined in Sections 3 and 4.




3 Green's function for T-stress

3.1 Representation of T-stresses by a Green's function

As a consequence of the principle of superposition, stress fields for different loadings can be
added in the case of single loadings acting simultaneously. This leads to an integration repre-
sentation of the loading parameters and was applied very early to the singular stress field and
the computation of the related stress intensity factor by Buickner [16]. Similarly, the T-stress
contribution T, caused by the crack exclusively can be expressed by an integral [7-10]. The
integral representations read

K, =jih(x,a)oy(x)dx (3.1.1a)
Tc:j{t(x,a)cy(x)cbc (3.1.1b)

where the integration has to be performed with the stress field o, in the uncracked body
(Fig.3.1.1). The stress contributions are weighted by a weight function (A, f) dependent on the
location x where the stress o, acts.

Fig. 3.1.1 Crack loaded by continuously distributed normal tractions (present in the uncracked body).

The weight functions /4 and 7 can be interpreted as the stress intensity factor and as the T-term
for a pair of single forces P acting at the crack face at the location x, (Fig. 3.1.2), i.e. the




weight functions (h, 7) are Green's functions for K; and 7,. This can be shown easily. The
single forces are represented by a stress distribution

cs(x):gS(x—x(,) (3.1.2)

where 0 is the Dirac Delta-function and B is the thickness of the plate (often chosen to be B=
1). By introducing these stress distribution into (3.1.2) we obtain

X, :g:[é(x~x0)h(x,a)dx:gh(xo,a) (3.13)
T, :§I6u——xo)t(x,a)dx:%t(xo,a) (3.1.4)

i.e. the weight function terms A(xg,a) and #(x,,a) are the Green's functions for the stress inten-
sity factor and T-stress term.




3.2 Set-up of the Green's function

3.2.1 Asymptotic term

In order to describe the Green's function, a separation is made consisting of a term ¢,

representing the asymptotic limit case of near-tip behaviour and a correction term 7., which
includes information about the special shape of the component and the finite dimensions,

=1y +1

(3.2.1)

corr

Fig. 3.2.1 Situation at the crack tip for asymptotic stress consideration.

In order to obtain information on the asymptotic behaviour of the weight or Green's function,
we consider exlusively the near-tip behaviour. Therefore, we take into consideration a small
section of the body (dashed circle) very close to the crack tip (Fig.3.2.1). The near-tip zone is
zoomed very strongly. Consequently, the outer borders of the component move to infinity.
Now, we have the case of a semi-infinite crack in an infinite body. If we load the crack faces
by a couple of forces P at location x=x,<<g, the stress state can be described in terms of the
Westergaard stress function [17]:

=21 JE , z=E+in (3.2.2)
V4

T moz+b

The regular contribution to the stress function is (z, b #0)

= z (3.2.3)




from which the regular part of the x-stress component results as

o,=ReZ-yIm(dZ/dz) = o, ,=Re{Z}f (3.2.4)

o =R},

The constant x-stress term, i.e. the regular x-stress at x' =0 is then given by

_ x—a

- Liim (3.2.6)

wrslene =7 e (¢-xWa-x

Jx'-a ,
. (x ool Fe (3.2.5)

x reg

and the Green's function reads

= o =~ lim _Vx-a (3.2.7)

nx—m(x -x)a-x

From (3.2.7), the T-stress can be derived for a couple of forces for a semi-infinite crack in an
infinite body, namely

0 fi
T:{ orx <a (3.2.8)

w forx=a

Let us consider the crack loading p to be represented by a Taylor series with respect to the
crack tip as

d
p(x)=p|_ - le)'

1dp

> (a—x)* +. (3.2.9)

xX=q

(a-x)+

x=a

The corresponding T-stress contribution, resulting from the asymptotic part of the Green's
function, is given by

= Ito(x',a,x)c(x)dx = -—1—0
i

0

lim+/x'-a

dx
- +R 3.2.10
x=a x'-a '([ (x'-x)a-x ( )

¥y

with the remainder R containing integrals of the type

n- 1/2

f g x) nzl (3.2.11)

which yield (see e.g. integral 212.14a in [18])
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I, _22 (a- 31)2\} A LS LR j:;\/x—z

(3.2.12)

Consequently, the limit value is

limvx'-al, =0 = R=0 (3.2.13)

x'—>a

and the term 7; is exclusively represented by the first integral term in (3.2.10). Integration of
this term results in

p dx 1
limvx'—a | ———————=——
X=a xtsq v(!. (x'__x),\/a —-X T px 9 x'a

; a
lim «/x'-a arctan X—a =
74 ntn 2

1 |l [x—a |
=-=p__, llmtn—arctan —J -p|_ (3.2.14)
n xX= X‘—‘)a a xX=
= T,=-p|_ =-0,/ (3.2.15)

3.2.2 Correction terms for the Green's function

3.2.2.1 Edge cracks

By the considerations made before, only the asymptotic part of the x-stress is derived. Since a
small region around the crack tip was chosen, the component boundaries were shifted to infi-
nity. Now, a set-up has to be chosen for the weight function contribution 7, which includes
the finite size of the component.

Let us assume the difference between the complete Green's function #(b) and its asymptotic
part #y(b) to be expressible in a Taylor series for b=a-x—0

ot or’
b) = t(b)—1,(b by=0+— b+1 b2+... 3.2.16
(8= 1O~ (D)= SO =0+ batm) (32.16)
Then the complete Green's function can be written as
t=t,+y C,(1-x/a)’ (3.2.17)

v=1

If we restrict the expansion to the leading term, we obtain as an approximation

=1, +C(1—f) (3.2.18)

a

11




A simple procedure to determine approximative Green's functions is possible by determina-
tion of the unknown coefficients in the series representation (3.2.17) to known T-solutions for
reference loading cases [10]. The general treatment may be shown for the determination of
the coefficient C for an approximative weight function representation according to (3.2.18).

Let us assume the T-term 7; of an edge-cracked plate under pure tension o, to be known.
Introducing (3.2.18) into (3.1.1) yields (with T”=0)

T,=0,[i(x,a)ds =0, [1,dc+0,C[(1~x/a)dx :co(—ucf:zi) (3.2.19)
4] 0 0
and the coefficient C results as
C- —2-(1+£] (3.2.20)
a (o38

Knowledge of additional reference solutions for 7 allows to determine further coefficients.

3.2.2.2 Internal crack

The derivation of an approximate Green's function for internal cracks is similar to those of
edge cracks. Due to the symmetry at x=0, the general set-up must be modified. An improved
description that fulfills eq.(3.2.16) and is symmetric with respect to x=0 is

t=1,+ Y C,(1-x"/a*) (3.2.21)

v=1

with the first approximation
t=t,+C(1-x*/a*) (3.2.22)

In this case, the coefficient C results from the pure tension case as

C= —3—(1 +Lj (3.2.23)
2a G,

12




4 Boundary Collocation Procedure

4.1 Boundary conditions

A simple possibility to determine the coefficients 4, and A*; is the application of the Bounda-
ry Collocation Method (BCM) [19-21]. For practical application of eq.(2.2), which is used to
determine A4, and A*,, the infinite series for the Airy stress function must be truncated after
the Nth term for which an adequate value must be chosen. The still unknown coefficients are
determined by fitting the stresses and displacements to the specified boundary conditions. The
stresses result from the relations

2
5, =100, 100 4.1.1)
ror r°oe
o0'P
o, = 57 (4.1.2)
2
=y (413)
reoQ ¥ orop

The stresses resulting from these relations by use of the Williams stress function are given in
egs.(2.3-2.5). The displacements read

© n+1/2

IZV ZA"( ) §n+3[( +4v —32)cos(n—3)p — (n—3)cos(n+3)p]+
=0

1+v

i ZA* (—)'ﬂ [(n+4v —2)cosnp —(n+2)cos(n+2)p] (4.1.4)

v 14y g (_)"+]/22n+3
n=0

T 7 [(n—L)sin(n+2)p —(n—4v +L)sin(n -1y 1+

1+V ZA* (———)H [(n+2)sin(n+2)p — (n—4v +4)sinne] (4.1.5)

(v=Poisson's ratio), from which the needed Cartesian component results as

U, =UCOSQ —VsingQ (4.1.6)
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Fig, 4.1.1 Node selection and boundary conditions for an internally cracked disk.

In the special case of an internally cracked circular disk of radius R, the stresses at the boun-

daries are:
c =1, =0 4.1.7)

n = Yre

along the quarter circle. Along the perpendicular symmetry line, the boundary conditions are:

u, =const. —> O _ 0 (4.1.8)
vy

1, =0 (4.1.9)

About 100 coefficients for eq.(2.2) were determined from 600-800 stress and displacement
equations at 400 nodes along the outer contour (symbolized by the circles in Fig. 4.1.1). For a
selected number of (N+1) collocation points, the related stress components (or displacements)
are computed, and a system of 2(N+1) equations allows to determine up to 2(N+1) coeffi-
cients. The expenditure of computation can be reduced by the selection of a rather large
number of edge points and by solving subsequently the then overdetermined system of
equations using a least squares routine,

In the case of the edge-cracked rectangular plate of width W and hight 2H (Fig. 4.1.2) the
stresses at the border are

c,=0,1t,=0 for x=0 (4.1.10)
o,=0* 1,=0 for y=H (4.1.11)
c,=0,1,=0 for x =W (4.1.12)

14
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Fig. 4.1.2 Collocation points for the edge-cracked rectangular plate

and in the case of the Double-edge-cracked plate (Fig. 4.1.3) it holds

c.=0,t,=0

c,=06% 1,=0
i;x:o, T, =0

a)
L:: ———

for x=0

for y=H

for x=W

b)

;

L
|

B& & BB

(4.1.13)

(4.1.14)

(4.1.15)

Fig. 4.1.3 Double-edge-cracked plate a) geometric data, b) half-specimen with symmetry boundary conditions.




4.2 Boundary Collocation procedure for point forces

The treatment of point forces at the crack face in case of a finite body is illustrated in the
following sections for a circular disk with an internal crack loaded by a couple of forces at x=
y=0. In order to describe the crack-face loading by concentrated forces, we superimpose two
loading cases. First, the singular crack-face loading is modelled by the centrally loaded crack
in an infinite body described by the Westergaard stress function

_Pa__1

T z4z' -a?

The stresses resulting from this stress function disappear only at infinite distances from the
crack. In the finite body, consequently, the stress-free boundary condition is not fulfilled. To
nullify the tractions at the outer boundaries, stresses resulting from the Airy stress function,
eq.(2.2), are added which do not superimpose additional stresses at the crack faces. The basic
principle used for such calculations, the principle of superposition, is illustrated in more detail
in Section 5.

z (4.2.1)

Fig.4.2.1 Coordinate system for the application of the Westergaard stress function to a finite component.

The stresses caused by Z are

6,=ReZ-yImZ (42.2)
o,=ReZ+yImZ (42.3)
T, =—YReZ 4.24)

16




with

Z|:d_Z:_Pa 2z - a’

dz —; 22(22 _a2)3/2 (4.2.3)

For practical use it is of advantage to introduce the coordinates shown in Fig.4.2.1. The fol-
lowing geometric relations hold

z=rexp(ip), z—a=rexp(iop,), z+a=r,exp(iop,) (4.2.6)

F=Ax*+y?, tangp=y/x 4.2.7)
K=A(x—a) +y*, tang,=y/(x-a) (4.2.8)
Ky=4(x+a)’+y* | tang,=y/(x+a) (4.2.9)

ReZ = Pa__ cos(@ + 30, +30,) (4.2.10)
LN

ImZ = - (4.2.11)

Pa sin(p +30,+10,)
’TU‘.\/;I-g 21 2%2

2

. Pa 2 a . .- > .
ReZ'= —}—}:WCOS%((QI +(P2)_WCOS(ZQ) +'7(|)l +—2'(p2)J (4212)
, Paj 2 a
7= 28] o, 40 i e 0| @219

The stress function Z provides no T-stress term as will be shown in by eq.(6.1.6). Neverthe-
less, the equilibrium tractions at the circumference act as a normal external load and may
produce a T-stress. Radial and tangential stress components along the contour of the disk for
a crack with a/R=0.4 are plotted in Fig.4.2.2.

17
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Fig.4.2.2 Normal and shear tractions created by the stress function (4.2.1) along the fictitious disk contour (for
o see Fig. 4.2.1), o*=P/(nRf), t =thickness,
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5 Principle of superposition

The procedure necessary for the computations addressed in Section 4.2 is illustrated below. A
disk geometry may be chosen. Figure 5.1 explains the principle of superposition for the case
of T-stresses. Part a) shows a crack in an infinite body, loaded by a couple of forces P. The
T-stress for this case is denoted as 7;. First we compute the normal and shear stresses along a
contour (dashed circle) which corresponds to the disk. We cut out the disk along this contour
and apply normal and shear tractions at the free boundary which are identical with the stresses
computed before (Fig. 5.1b).

Fig. 5.1 Illustration of the principle of superposition for the computation of T-stresses for single forces.
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The disk loaded by the combination of single forces and boundary tractions exhibit the same
T-term 7;,. Next, we consider the situation b) to be the superposition of the two loading cases
shown in part ¢), namely, the cracked disk loaded by the couple of forces (with T-stress 7—
AT) and a cracked disk loaded by the boundary tractions, having the T-term A7 As
represented by part d), the T-term of the cracked disk is the difference 7=7,—AT. If the sign
of the boundary tractions is changed, the equivalent relation is given by part €).
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II RESULTS FOR STRESS BOUNDARY
CONDITIONS

The following sections contain numerical solutions for the T-stress term and the Green's func-
tion under stress boundary conditions. The problems are subdivided in:

e Internally cracked components,
- cracks in infinite bodies,
- circular disk with internal crack,

- rectangular plate with internal crack.

o Edge-cracked components,
- rectangular plate with edge crack
- edge-cracked circular disk,

- cracks ahead of notches.

« Components with multiple edge cracks
- double-edge-cracked rectangular plate,

- double-edge-cracked circular disk.
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6 Crack in an infinite body

6.1 Couples of forces

The T-stress term resulting from a couple of symmetric point forces (see Fig. 6.1.1) can be
derived from the Westergaard stress function [17] which for this special case reads

_2pr Na® —x*
T (2° - x*W1-(a/z)

(note that eq.(3.2.2) is the limit of this relation for x —a). The real part of (6.1.1) gives the x-
stress component for y =0

Z

(6.1.1)

2P a'-x*x'

oo =Re{Z}=— (6.1.2)

T (x|2_x2) /x|2_a2

e)

X

Its singular part

s ' _ 2P val?2
Wl T Ja? —x? Jx-a

(6.1.3)

provides the well-known stress intensity factor solution
K =lim42n(x'-a)c, = \/E——&— (6.1.4)
lim Sl iy s 14

Then, the regular stress term reads

_2P (@’ - x*)x'—Ja /2 (x*-x*)Vx'+a

= 6.1.5
x,reg y=0 T (xoZ__XZ)\/xﬂ_aZ \/a2 __x2 ( )
and for the T-stress term it results
) 0 for x<a
T=limo,, = (6.1.6)
a7 o for x=a
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.........................................................................
......

Fig. 6.1.1 Crack in an infinite body loaded by symmetric couples of forces.

6.2 Constant crack-face loading

In the case of a constant crack-face pressure p=const. (Fig. 6.2.1), the stress function reads

z
resulting in the x-stress of
x!
Gx|y:0 = p{:—m— 1} (622)
p X ;

...............................

Fig, 6.2.1 Crack in an infinite body under constant crack-face pressure.

The T-stress term results as

as found for the small-scale solution (3.2.15).
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7 Circular disk with internal crack

7.1 Constant internal pressure

The crack under constant internal pressure (Fig. 7.1.1) has been analyzed with the Boundary
Collocation method. T-stress data are shown in Fig. 7.1.2 and Table 7.1.1.

Fig. 7.1.1 Circular disk with internal crack under constant pressure p and equivalent problem of disk loading

by normal tractions at the circumference.

o BCM
06}
T,
08k
10702 04 06 08 1
a

Fig. 7.1.2 T-stress for an internal crack in a circular disk.
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0 -1.00 0.000 1.000 0.00
0.1 -0.919 -0.019 0.965 -0.020
0.2 -0.864 -0.064 0.951 -0.067
0.3 -0.820 -0.120 0.951 -0.126
0.4 -0.776 -0.176 0.962 -0.183
0.5 -0.728 -0.228 0.979 -0.233
0.6 -0.675 -0.275 0.998 -0.275
0.7 -0.615 -0.315 1.011 -0.311
0.8 -0.552 -0.352 1.004 -0.351
0.9 -0.485 -0.385 0.953 -0.404
1.0 -0.413 -0.413 0.8255 -0.50

Table 7.1.1 T-stress, stress intensity factor and biaxiality ratio for an internally cracked circular disk with

constant crack-face pressure (value 7 for =1 extrapolated); for 7 and 7, see eqs.(2.9) and (2.11).

The T-values in Table 7.1.1 were extrapolated to oo = 1. Within the numerical accuracy of the
extrapolation, the limit values are

: K1y = [ €1y~ 1
LIE}T/G (1-oa) ng}]}/o (I1-a)=-0413 s (7.1.1)

and for the biaxiality ratio

lirr}BV1—a z—;— (7.1.2)
The T-stress terms can be approximated by
- -2340” +4270.° —33260.* + 098240’
T /o = 1+0 —2340" +4270 260. 9824a. (7.13)
l-a
-2340.* +4270.% —33260.* +09824c.’
T/o = 2340 +427a o+ 24a1 (7.1.4)

-

The stress intensity factor solution (found in the BCM-computations) is in good agreement
with the geometric function [10]

K 1-050 +168730° - 26710 +32027a.* — 189350

e i (7.1.5)

F
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7.2 Disk partially loaded by normal tractions

A partially loaded disk is shown in Fig.7.2.1a. Constant normal tractions o, are applied at the
circumference within an angle of 2.

Fig. 7.2.1 a) partially loaded disk, b) diametral loading by a couple of forces (disk thickness: f).

The total force in y-direction results from
Y
P, :Zchchosy'dy':ZtcnRsiny (7.2.1)
0
The x-stress term 7, normalised to o*, is shown in Fig. 7.2.2. From the limit case y—0, the
solutions for concentrated forces (see Fig. 7.2.1b) are obtained as represented in Fig. 7.2.3.
The T-stress can be fitted by

T _ -4(1-0)+767770° -160169a.” +8.7994a.* —1108490.°

— = — (7.2.2)
with o* defined as
c*= 5— , (7.2.3)
TRt
T, can be computed from 7
T, _3(1-0)+767770* 1601690 + 8.79940.* ~1108490.° do.® (72.4)

c* 1-a T (1+a?)
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or expressed by a fit relation

T, _-3(1-a)+28996a.” -~ 617590 +2.54380.° + 008410’

c*

In this case, the limit values are (at least in very good approximation)

1iII]1T/G *(l—oc):lin}Tc/o *A-a)=-0648 = —

0
-0.5

4007 04 06 08 1

Fig. 7.2.2 T-stress for a circular disk, partially loaded over an angle of 2y (see Fig. 7.2.1a).

The geometric function F, defined by

K, =c *Jna F(a/ R)

is plotted in Fig. 7.2.3.

1-a

FTT/2

b

31/8 7/ﬂ/

ik

{7116

/
1

o

(7.2.5)

(7.2.6)

(7.2.7)

From the limit case y—0, the solutions for concentrated forces (see Fig. 7.2.1b) are obtained
as represented in Fig. 7.2.5. A comparison with the results from literature [22-24] gives good
agreement in stress intensity factors. The solution given by Tada et al. [25] (dashed curve in
Fig. 7.2.5) deviates by about 20% near a/R=0.8. The results obtained here can be expressed

by

_ 3-12540 —170130.® + 405970 — 280590 *

K, =c *JmaF, , F,=

Ji-a
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with o* given in (7.2.3).

0
I‘;“'O‘) :
c

W

-4

0 02 04 06 08 1
o

Fig. 7.2.3 T-stress for a circular disk loaded diametrically by concentrated forces (Fig. 7.2.1b). T-stress results
including partially distributed stresses with an angle of y=n/16 (squares) and exact limit cases for o=0.

3
112 |
F(1-0)™ | ¥ n/1e
/8
2.5

Yo 02 04 06 08 1
a=a/R

Fig. 7.2.4 Stress intensity factors for a circular disc, partially loaded over an angle of 2y (see Fig. 7.2.1a).
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1.5

1 " L . —_ L
0 02 04 06 08 1

a=a/R
Fig. 7.25 Stress intensity factor and T-stress for a circular disc loaded diametrically by concentrated forces
(Fig. 7.2.1b). Comparison of stress intensity factors; solid squares; partially distributed stresses with an angle

of y=n/16, circles: results by Atkinson et al. [22] and Awaji and Sato [23], open squares: results obtained with
the weight function technique [24], dashed line: solution proposed by Tada et al.[25].
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7.3 Central point force on the crack face

A centrally cracked circular disk, loaded by a couple of forces at the crack center, is shown in
Fig.7.3.1. For it, the T-stress was calculated by Boundary Collocation computations.

Fig. 7.3.1 Circular disk with a couple of forces acting on the crack faces.

The T-stress data obtained with the BCM-method according to Section 4.2 are plotted in Fig.
7.3.2 as squares. Together with the limit value (7.2.6) the numerically found T-values were
fitted by the polynomial

T -4197la +54661a” — 114970, = 076770 (7.3.1)
o ¥ 1-a B

This relation is introduced into Fig. 7.3.2 as the solid line.

The stress intensity factor for central point forces is

K, =——F, (732)

Tra

 1-1.0788401 +8.249560.° —17.9026a.° +2033390* — 93050
- V-0

Fy (7.3.3)

Figure 7.3.3 gives a comparison of the BCM-results with results obtained by Tada et al. [25]
with an asymptotic extrapolation technique. Maximum differences are in the order of about
10%.
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(% (1-01)

-0.5 K

5

0 02 04 06 08 1
o,

Fig. 7.3.2 T-stress for an internally cracked circular disk with a couple of forces acting in the crack center on

the crack faces. Symbols: Numerical results, solid line: fitting curve.

E (1_a)1/2
16
} ) ..
1.2 ¢
-

0 02 04 06 08 1
o =a/R

Fig. 7.3.3 Stress intensity factor for a couple of forces P at the crack center, represented by the geometric
function Fp. Solid curve: eq.(7.3.3), dashed curve: Tada et al. [25].
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8 Estimation of T-terms with a Green's function

8.1 Green's function with one regular term

In order to estimate T-stresses, an approximate Green's function according to eqs.(3.2.22) and
(3.2.23) may be applied. A Green's function with only one term was derived according to
Section 3.2.2 using the case of constant crack-face pressure o, as the reference loading case
which may produce the crack contribution 7,=7. In this rough approximation the T-term 7,
results as

T :Cj(l—xZ/az)cy(x)a’x—cyx:a , C:—;;[1+§°) (8.1.1)

0 N

This section now deals with a check of the accuracy of the approximate Green's function by
comparing the results of the set-up (3.2.22) with T-stress solutions found by application of
the Boundary Collocation procedure.

First, the case of concentrated forces at x =0 (see Fig. 7.3.1) is considered. The couple of
central forces reads in terms of the Dirac 8-function (B=1)

5, (¥)= g&(x) (8.12)

Introducing this and (7.1.3) into (8.1.1) leads to

Tz£(1+-—T°—j (8.1.3)
4a O,

2 _ 3 4
iz3_7t 2340 +4270° —33260” + 098240 e P (8.1.4)
o* 4 1-a Rin

The result is plotted in Fig. 8.1.1.

As a second example, the diametral tension test is considered (see Fig. 7.2.1b). Introducing
the stress distribution for a diametral tension test,

°y ——~——4 1 =x/R 8.1.5
ot Qrery L0 57X &1
S, __ 48°
ol 1+—_(1+§2)2 (8.1.6)

into (8.1.1) yields, after numerical integration, the T-stress shown in Fig. 8.1.2.
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- |

-0.5 —
N

o

1-term Green's function

P I
0 02 04 06 08 1
04

Fig. 8.1.1 T-stresses for an intemally cracked circular disk, loaded by a couple of forces at the crack faces
(see Fig. 7.3.1) estimated with a 1-term Green's function (dashed curve) compared with results from BCM-
computations (solid curve).

T
G*

0

_1W M'

(1-a)

4 : : : .
0O 02 04 06 08 1
0/

Fig. 8.1.2 T-stresses for an internally cracked circular disk, loaded by a couple of diametral forces at the free

boundary (see Fig. 7.2.1b) estimated with a 1-term Green's function (symbols) compared with results from
BCM-computations (curves).
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From these two examples we can conclude for this first degree of approximation that the
application to continuously distributed stresses gives significantly better results than the
application to strongly non-homogeneous stresses as in the case of single forces at the crack
faces. The reason for this behaviour is the fact that in the reference loading case (constant
crack-face pressure) the load was also distributed homogeneously. In both cases the
deviations increase with increasing relative crack size o.. This makes evident that the Green's
function needs higher order terms for larger o.

8.2 Green's function with two regular terms

In order to improve the Green's function, the next regular term is added. Consequently, the
Green's function expansion reads

1=1,+C(1-x*/a")+C,(1-x*/a*)’ (8.2.1)

As a second reference loading case we now use the solution 7} for the internally cracked disk
with a pair of single forces P at the crack center (see Fig. 7.3.1).

Introducing the two reference stresses
P \
o,=const. G,= 56 (x) (8.2.2)

into eq.(3.1.1) and carrying out the integration provides a system of two equations

’ 2 8
T /o, :—1+?"q+§c2 (8.2.3)
n/c*:%cﬁ%@q (8.2.4)
(o*=P/(Rtr)) from which the coefficients result as
C, :£(1+IL)~8 L (8.2.5)
2a o, Rino *
C, =~15-(1+—Tl—j+1o I (8.2.6)
2a o, Rtnoc *
or by
1 686 10570 — 2201730 +932290.*
C =+ 220 +18 o 201730” +9 o (8.2.7)

R 1—-a
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_ 1419020, —146260.” +212854a° —9.81170*

C
R 1-o

(8.2.8)

With the improved Green's function the diametral tension specimen was computed again
using eqs.(8.1.5) and (8.1.6). The result is plotted in Fig. 8.2.1. It becomes obvious that in
this approximation the agreement is significantly better for large o.

=
o (1-a)
0

4L : : \ :
0 02 04 06 08 1
04

Fig. 8.2.1 T-stresses for an internally cracked circular disk, loaded by a couple of diametral forces at the free
boundary (see Fig. 7.2.1b) estimated with a 2-terms Green's function (symbols) compared with results from
BCM-computations (curves).
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8.3 Brazilian Disk

Fig. 8.3.1 Diametral compression test with intemal crack (disk thickness: £).

Stress intensity factors Kj, Kj; and related geometric functions £y, Fy

K, =0 F,\a = fc(x)h,(x,a)dx

Ky =0 oFyma = [t(x)hy (x,a)dx
0

Characteristic stress:

Cyg=—,
nat

(identical with the maximum tensile stress in the center of the disk).

(8.3.1)

(8.3.2)

(8.3.3)

The circumferential stress component in an uncracked Brazilian disk has been given by

Erdlac (quoted in [22]) as

_2P|1 (1-pcos®)sin®®  (1+pcos®)sin’ O

(0} =0 =
o ntR{Z (1+p*-2pcos®)® (1+p*+2pcos®)?

1 (1-pcos®)(cos®—-p)* (1+pcos®)(cos® +p)*

2P
G, = Py 2 2
TR | 2 (1+p° -2pcos®)

36

(1+p? +2p cos ®)°

}, p=r/R (8.3.4)

(8.3.5)




Fig. 8.3.2 T-stress for the Brazilian disk as a function of the angle ©.
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Fig. 8.3.3 Geometric functions for a/R=0.5 as a function of the angle ©. Curves: obtained with the weight
function procedure; squares: Results from Atkinson et al. [22] and Awaji and Sato [23].
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0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

-4.000
-3.656
-3.398
-3.197
-3.033
-2.895
-2.775
-2.668
-2.574

-3.464
-3.136
-2.829
-2.515
-2.163
-1.733
-1.183
-0.510
0.106

-2.000
-1.745
-1.396
-0.969
-0.492
-0.015
0.369
0.553
0.513

0.000
0.091
0312
0.581
0.812
0.935
0.919
0.795

0.643

2.000
1.855
1.773
1.684
1.543
1.344
1.116
0.906
0.746

3.464
3.104
2.711
2.294
1.883
1.509
1.201
0.971
0.815

4.000
3.552
3.029
2.485
1.980
1.555
1.227
0.993
0.839

Table 8.3.1 T-stress 7(1-a/R) for the Brazilian disk test.

0 0. 1.000{1.73212.000
0.1 |0. 1.02311.75812.010
0.2 |0 1.092|1.835]2.036
03 jo0. 1.214{1.957]2.069
04 0. 1.40012.1162.097
0.5 0. 1.670(2.29912.119
0.6 |0. 2.053]2.491(2.146
0.7 |0. 2.57812.697(2.220
0.8 0. 3.260{3.0092.441

1.732
1.724
1.698
1.656
1.603
1.554
1.530
1.564
1.720

1.000
0.988
0.955
0.907
0.856
0.813
0.792
0.808
0.889

e Lo e e e e

e

Table 8.3.2 Geometric function Fy; for the Brazilian disk tests.

0.1
0.2
03
0.4
0.5
0.6
0.7
0.8

1.000
1.017
1.063
1.137
1.241
1.384
1.578
1.846
2.244

0.732
0.737
0.746
0.752
0.742
0.693
0.562
0.263
-0.302

0

-0.020
-0.084
-0.200
-0.379
-0.635
-0.973
-1.381
-1.843

-1.000
-1.037
-1.141
-1.308
-1.527
-1.789
-2.083
-2.413

-2.824

-2.000
-2.033
-2.120
-2.248
-2.406
-2.594
-2.819
-3.108
-3.530

-2.732
-2.750
-2.793
-2.854
-2.940
-3.065
-3.250
-3.525
-3.965

-3.000
-3.016
-3.031
-3.062
-3.118
-3.220
-3.393
-3.665
-4.112

o 2~

Table 8.3.2 Geometric function F for the Brazilian disk tests.

38




9 Rectangular plate with internal crack
The geometric data of the rectangular plate with an internal crack are illustrated in Fig.9.1.1.

o)

PhARRREAREAEAHE
|
|

Yy

2w
I
@)

Fig. 9.1 Rectangular plate with a central internal crack (geometric data).

The plate under uniaxial load (tensile stresses at the ends y =+ H) shows no o,-component in
the uncracked structure. Consequently, the quantities 7" and 7, are identical. T-stress results
obtained by BCM-computations are shown in Fig. 9.2a and entered into Table 9.1.

0 -1.0 -1.0 -1.0 -1.0 -1.0
0.1 -0.97 -0.96 | -092 | -0.91 -0.9
0.2 -0.95 -092 | -0.88 | -0.85 | -0.83
0.3 -0.766 -0.855 { -0.85 | -0.809 | -0.777
0.4 -0.455 -0.745 | -0.805 | -0.756 | -0.716
0.5 -0.110 -0.616 | -0.738 | -0.692 | -0.656
0.6 0.145 -0.502 | -0.647 | -0.620 | -0.596
0.7 0.215 -0.400 | -0.543 | -0.55 | -0.53
0.8 0.13 -0291 | 045 | -046 | -047
0.9 -0.10 -0.25 | -0.38 | -0.41-| -043
1.0 -0413 -0.413 | -0.413 § -0.413 | -0.413

Table 9.1 T-stress term, normalized as T/oc(1-a0), for
different crack and plate geometries.
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T/c (1-) a) B(1-a) b)

0.4 0.2
THW|
0.22— . 8:22 ; /A\\ 0 %
0:— 2 ?gg / \\ 0.2 / A \
02f 1.25 / o // /q/
0.4} / |

j

; -0.6 o

06/ / / Z2
08l -0.8
_15 v -1
“1.2°F -1.2

0 02 04 06 08 1 0 02 04 06 08 1
ol o,

Fig.9.2 Internal crack in rectangular plate, a) T-stress, b) biaxiality ratio.

o=0 1.00 1.00 | 1.00 | 1.00 | 1.00 | 1.00
0.2 0.916 0.924 1 0940 | 0.977 | 1.051 | 1.182
03 0.888 0.905 | 0.540 | 1.008 | 1.147 | 1.373
04 0.869 0.890 | 0.942 | 1.053 | 1.262 | 1.562
0.5 0.851 0.877 | 0.943 | 1.099 | 1.391 | 1.742
0.6 0.827 0.856 1 0.937 | 1.130 | 1.533 | 1.938
0.7 0.816 0.826 | 0.914 | 1.125 | 1.668 | 2.197
0.8 0.814 0.818 | 0.840 | 1.088 | 1.689 | 2.41
1.0 0.826 0.826 | 0.826 | 0.826 | 0.826 | 0.826

Table 9.2 Geometric function for tension #*(1-a/ W)”z.

The biaxiality ratio, defined by eq.(2.9), is plotted in Fig. 9.2b and additionally given in Table
9.3.
For a long plate (H/W> 1.5) the biaxiality ratio B can be expressed by

_l—O.Soc
1—a

p= (0.1)




0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0

-1.0
-0.93
-0.801
-0.558
-0.291
-0.063
0.075
0.098
0.055
-0.1
-0.5

-1.0
-0.95
-0.872
-0.746
-0.591
-0.443
-0.328
-0.241
-0.173
-0.2

n oz
-U.0

-1.0
-0.955
-0.90
-0.843
-0.764
-0.672
-0.573
-0.483
-0.418
-0.41
-0.5

-1.0
-0.955
-0.91
-0.860
-0.803
-0.734
-0.661
-0.598
-0.54
0.5
-0.5

-1.0
-0.95
-0.905
-0.858
-0.805
-0.749
-0.693
-0.645
-0.59
-0.54
-0.5

12

Table 9.3 Biaxiality ratio, normalized as p (1-o) ', for different crack and pléte geometries,

Figure 9.3 shows results for the biaxiality ratio B. The open symbols are results reported in
[10] and the solid ones represent data from Table 9.3. Very good agreement can be concluded
from this illustration with maximum deviations of about 1%.

H/\W=1

T
@

-1.05

902 04 oe

a/W

Fig. 9.3 Comparison of results compiled in Tables 1 and 2 with data reported in [12]. Open symbols: open
circles Leevers and Radon [5], squares: Kfouri [6], solid circles; Table 9.3.

The Williams coefficients 4,, 4,*, 4, and 4*,, defined by eq.(2.2), are entered in Tables 9.4-
and 9.7.
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0.8

-0.0651 | -0.0817 | -0.0837 | -0.0824 -0.0817
0.0117 | -0.0508 | -0.0674 | -0.0685 | -0.0686
0.1223 -0.0074 | -0.0493 | -0.0575 | -0.0603
0.2665 0.0557 | -0.022 | -0.0452 | -0.0549
0.4560 0.1584 | 0.0216 | -0.0300 | -0.0485
0.7797 0.3607 | 0.0893 | -0.0133 [ -0.1178
0.7242 0.7987 | 0.1645 | -0.3734 | -0.2886

Table 9.4 Coefficient 4, for different crack and plate geometries.

0.2
0.3
04
05
0.6
0.7
0.8

-0.2608 | -0.0792 | -0.0180 | -0.0064 | -0.0019
-0.5306 1 -0.1920 | -0.0527 | -0.0197 | -0.0053
-0.7606 | -0.3129 | -0.1065 | -0.0409 | -0.0089
-0.9124 | -0.4263 | -0.1787 | -0.0655 | -0.0086
-0.9652 | -0.5736 | -0.2694 | -0.0812 | -0.0041
-1.096 -0.9091 | -0.3629 | -0.0555 | 0.333

-1.429 -1.709 | -0.3075 | 1.154 | 0.8425

Table 9.5

Coefficient 4*, for different crack and plate geometries.

0.2 0.1977 0.136 | 0.113

03 02126 | 0.118 | 0.070
0.4 0.2372 1 0.139 | 0.057
0.5 02797 ]0.188 | 0.057

0.6 0.4367 0.278 | 0.079

0.65 0.6322 0.352 ] 0.119

0.7 0.9848 0.462 | -0.079

0.8 2.748 0911 1-0.463
Table 9.6 Coefficient A,.
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0.2 -0.06174 | -0.023 | -0.003
0.3 0.0133 -0.032 {-0.005
0.4 0.1697 -0.031 | -0.003
0.5 0.3255 -0.032 | 0.000
0.6 0.3194 -0.063 | -0.004
0.65 0.1475 -0.104 | -0.022
0.7 -0.2523 | -0.190 | 0.025
0.8 -2.747 -0.816 | 0.092

Table 9.7 Coefficient 4*,.

For the evaluation of arbitrarily distributed stresses in the uncracked plate the application of
the Green's function procedure is recommended. An approximative computation of T is
possible by

(9.2)

x=a

3 a
T=—(+T, /co)‘([(l—xz/az)cy(x)dx—cy

with 7, given by the data in Table 9.1, The related stress intensity factor (necessary for the
computation of the biaxiality ratio ) can be calculated with eq.(3.1.1a). Weight functions are
given in handbooks (see e.g. [10]). A rough approximation reads

h;,/”"/"[ ! +2(F—1)x/1—x/aJ 9.3)
na Jl-x/a

with the geometric function for constant stress as given in Table 9.2.
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10 Edge-cracked rectangular plate

10.1 Rectangular plate under tension

)
L

k
A
X

0 -0.526 | -0.526 | -0.526 | -0.526 | -0.526 [ -0.526 | -0.526
0.1 -0.452 1-0452 | -0.452 | -0.444 | -0.432 | -0.416 | -0.400
0.2 -0.374 | -0.376 | -0.373 | -0.334 | -0.270 | -0.084 | 0.143
0.3 -0.299 | -0.298 | -0.282 | -0.148 | 0.030 | 0.449 | 0.890
0.4 -0.208 | -0.205 | -0.175 | 0.040 | 0310 | 0.912 | 1.526
0.5 -0.106 | -0.102 | -0.070 | 0.167 | 0473 | 1.165 | 1.858
0.6 0.006 0.008 | 0.032 | 0.220 | 0490 | 1.142 | 1.812
0.7 |' 0.122 0.123 | 0.134 | 0.234 | 0.404 | 0.869 | 1.387
0.8 0.232 0.234 | 0.240 | 0.268 | 0.324 | 0.524 | 0.760
0.9 0.352 0353 [ 0356 | 0364 | 0.372 | 0.376 | 0.380
1.0 0.474 0474 | 0474 | 0474 | 0474 | 0.474 | 0474

Table 10.1,1 T-stress for a plate under tension T/c'(l-a/W)z.
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For a long plate (H/W=1.5) the T-stress is

o)

The biaxiality ratio reads in this case

B

(I-o)’

T —0526+0641a +020490.” +0.7550° — 0.79740.* +019660.°

_ —0.469 + 014560, +13394a.” +043690.” — 210250, * + 107260

J1-a

(10.1.1)

(10.1.2)

The stress intensity factor is entered in Table 10.1.2 in form of the geometric function

eq.(2.8).

1.1215
1.0170
0.9800
0.9722
0.9813
0.9985
1.0203
1.0440
1.0683
1.1215

1.1215
1.0174
0.9798
0.9729
0.9819
0.9989
1.0204
1.0441
1.0683
1.1215

1.1215
1.0182
0.9877
0.9840
0.9915
1.0055
1.0221
1.0442
1.0690
1.1215

1.1215
1.0352
1.0649
1.0821
1.0819
1.0649
1.0496
1.0522
1.0691
1.1215

1.1215
1.0649
1.1625
1.2134
1.2106
1.1667
1.1073
1.0691
1.0734
1.1215

1.1215
1.1455
1.3619
1.4892
1.5061
1.4298
1.2898
1.1498
1.0861
1.1215

1.1215
1.2431
1.5358
1.7225
1.7819
1.7013
1.5061
1.2685
1.1201
1.1215

Table 10.1.2 Geometric function for tension F*(1-a/ W)3/2.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.0

-0.469
-0.444
-0.382
-0.308
-0.212
-0.106
0.006
0.117
0.217
0.423

-0.469
-0.444
-0.384
-0.306
-0.209
-0.102
0.008
0.118
0.219
0.423

-0.469
-0.444
-0.377
-0.287
-0.176
-0.070
0.031

0.128
0.225

0.423

-0.469
-0.429
-0.314
-0.137
0.037
0.157
0.210
0.222
0.251
0.423

-0.469
-0.406
-0.232
0.025
0.256
0.405
0.443
0.378
0.302
0.423

-0.469
-0.363
-0.062
0.302
0.606
0.815

0.885

0.756
0.482
0.423

-0.469
-0.322
0.093
0.517
0.856
1.092
1.203
1.093
0.679
0.423

Table 10.1.3 Biaxiality ratio p(1-a/W)""* .
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In Fig. 10.1.2 the biaxiality ratios for H/W = 0.5 and 1.0 are compared with a solution in
tension [5] available for these geometries. The agreement is very good.

0.2

¥
XL
=

1]
o
(&)

0 02 04 06 08
a/\W

Fig, 10.1.2 Biaxiality ratios p (Table 10.1.3, circles) compared with data reported by Leevers and Radon [5]
(squares).

Tables 10.1.4 and 10.1.5 represent some values for the coefficients 4, and 4*, of the
Williams series expansion

=0.2 -0.0459 -0.0440 | -0.0251 | 0.0061 | 0.0907
0.3 -0.0140 -0.0084 | 0.0436 | 0.1219 | 0.3205 | 0.5414
0.4 0.0438 0.0537 | 0.1431 [ 0.2782 | 0.6248 | 1.011
0.5 0.1655 0.1770 | 0.2933 | 0.4836 | 1.0043 | 1.595
0.6 0.4513 0.4606 | 0.5774 | 0.8001 | 1.477 | 2.294
0.7 1.254 1.257 1.335 1.5314 | 2.240 | 3.195
0.8 3.768 4.284 4.346 4.440 4.81
Table 10.1.4 Coefficients 4, for tension.
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a=0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.2473
0.1453
0.0551
-0.0807
-0.3932
-1.383
-5.22

0.2379
0.1223
0.0328
-0.0815
-0.3563
-1.313
-5.90

0.1574
-0.0188
-0.1050
-0.1247
-0.1838
-0.821
-5.26

0.0561
-0.1640
-0.2557
-0.2257
-0.0893
-0.2534

-4.04

-0.1510
-0.4022
-0.4886
-0.4073
-0.0277
0.7099
0.866

-0.5714
-0.5957
-0.4062
0.1377
1.446

Table 10.1.5 Coefficients 4*; for tension,

For long plates (H/W=1.5) the coefficients 4, and 4*; can be approximated by [9]

_-0.02279 + 0.04107a, +0.032310.> +0.24700.> - 032410 * + 0.13580.°

Table 10.1.6 Coefficients 4, for tension.

a=0.3
0.4
0.5
0.6
0.7

0.8

-0.2882
-0.2302
-0.3278
-0.8237
-3.088
-16.39

-0.0631
0.2938
0.5297
0.3264
-1.981

-18.47

3.368
5.898
8.845
12.513
16.688

Table 10.1.7 Coefficients 4 *, for tension.
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4 = (1—a)5/2JEJ (10.1.3)
. 3 - 010620, — 00818702 + 0. 3 -040920.* +0.1 5
A*1500481 010620, — 0.0818701 +O332760L 40920.* +0.151 10 (10.1.4)
(l-a)a
o=03 | 0.0111 | 0.0328 | -0.7476
0.4 | 0.0888 | -0.0130 | -1.8675
0.5 | 0.2546 | -0.0451 | -3.4075
0.6 | 07246 | 0.1850 | -5.415
0.7 |24535] 1.7412 | -7.471
0.8 10.61 11.55




10.2 Rectangular plate under bending load

HHH“G
”HHH ¥

Fig. 10.2.1 Edge-cracked rectangular plate under bending loading.

0 -0.526 -0.526 | -0.526 | -0.526 | -0.526 | -0.526
0.2 -0.150 -0.148 | -0.114 | -0.061 0.099 0.292
0.3 -0.039 -0.024 | 0.080 0.222 0.559 0.920
04 0.044 0.067 0.224 0.424 0.873 1,333
0.5 0.099 0.124 0.283 0.493 0.964 1.439
0.6 0.133 0.150 0.269 0.438 0.840 1.251
0.7 0.151 0.158 0.217 0314 0.574 0.857
0.8 0.158 0.158 0.174 0.204 0.302 0.426
0.9 0.140 0.142 0.150 0.162 0.169 0.186
1.0 0.113 0.113 0.113 0.113 0.113 0.113

Table 10.2.1 T-stress for a plate under bending T/o-(l-a/W)z.

For a long plate (H/W=1.5) the T-stress is

_— 2 3_ 4
l: 0526+2481a —3.553a“ +2.63840." - 092760 (10.2.1)

o, (1-a)?

with the bending stress oy, defined by

o(x)=c,01-2x/W) (10.2.2)
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bending
05} \
s
0
tension
-0.5F
0O 02 04 06 08
o

Fig. 10.2.2 Biaxiality ratio for an edge-cracked plate or bar in tension and bending

, Tension , Bending
I(1-o¢)2 ! 2|
° 15t 1.5} HIW

/\ 0 \
» %’ A 0.75
-0.5 ' -0.5

' 02 04 06 08 1 10 02 04 06 08 1
0.4 o

Fig. 10.2.3 T-stress under tensile and bending loadings.
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1.5

B(‘I-OL)HZ -

H/W
0.25

0.3

05} 0.4
0.5

0.75
1.5

05F

Fig. 10.2.4 Biaxiality ratio in the form B(1-o)

0 0.2

04
a

0.6

0.8 1

172

o=0 | 1.1215 | 1.1215 | 1.1215 | 1.1215 | 1.1215 | 1.1215
0.2 0.7561 [ 0.7561 | 0.7562 | 0.7628 | 0.8279 | 0.9130
03 0.6583 | 0.6583 | 0.6589 | 0.6677 | 0.7444 | 0.8475
0.4 0.5861 | 0.5861 [ 0.5865 | 0.5930 | 0.6567 | 0.7505
0.5 0.5293 [ 0.5293 | 0.5296 | 0.5332 | 0.5717 | 0.6388
0.6 0.4842 | 0.4842 | 0.4842 | 0.4852 | 0.5022 | 0.5367
0.7 0.4481 | 0.4479 | 0.4478 | 0.4478 | 0.4514 | 0.4621
0.8 0.4203 | 0.4188 | 0.4191 | 0.4185 | 0.4180 | 0.4185
1.0 0.374 0374 | 0374 | 0374 | 0374 | 0374

Table 10.2.2 Geometric function for bending Fy-(1-a/ W)w.

The biaxiality ratio for a long plate (H/W=1.5) is approximated by

~ —0469 +12825. + 0.65430.> — 124150.° + 0075680 *

P N
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o=0 | -0.469 | -0.469 | -0.469 | -0.469
0.2 -0.198 | -0.194 | -0.138 | -0.067
0.3 -0.059 | -0.036 { 0.107 | 0.262
0.4 0.075 0.113 | 0.341 | 0.565
0.5 0.187 0.233 | 0495 | 0.772
0.6 0.275 0309 [ 0.536 | 0.816
0.7 0.337 0.353 | 0.481 | 0.679
0.8 0.376 0378 | 0.416 | 0.487
1.0 0.302 0.302 | 0302 | 0.302

Table 10.2.3 Biaxiality ratio for bending p-(1-a/ W)” 2,

In Fig. 10.2.5 the biaxiality ratios for H/W = 1.5 are compared with a solution from the
literature [8]. It should be noted that the results given by Sham [8] were determined for a very
long plate with H/W=6. Nevertheless, this solution (squares) is very close to the BCM-results
of Table 10.2.3 (curve: interpolated by application of cubic splines). This excellent agreement
indicates that the plates are represented in both cases by the limit case of an "infinitely long
plate".

1
0 H/W=6
B T —— H/W=1.5
0.5+
0
-0.5F

0 02 04 06 08
a/W

Fig. 10.2.5 Biaxiality ratios 3 (Table 10.2.3, curve) compared with data reported by Sham [8] (squares).
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Higher order coefficients of the Williams stress function for bending are compiled in Tables
10.2.4 and 10.2.5.

0.2 0.021 10.023| 0.0233 | 0.0249 | 0.0409 | 0.0672
0.3 0.06 0.06 | 0.0652 [ 0.0696 | 0.1104 | 0.1722
0.4 0.116 [0.118| 0.1185 | 0.1257 [ 0.1906 | 0.2887
0.5 0.201 {0.201] 0.2023 | 0.2104 | 0.2885 | 0.4148
0.6 0.362 10.362| 0.3623 | 0.3684 | 0.4409 | 0.5751
0.7 0.720  10.742) 0.745 | 0.7472 { 0.7922 | 0.900
0.8 -0.713 {0771} 1.785 | 2.030 | 2.049 | 2.088

Table 10.2.4 Coefficient 4, for bending.

021 -0.034 -0.028 | -0.025 | -0.033 | -0.102 { -0.188
03] -0.1216 -0.127 | -0.123 | -0.141 | -0.251 | -0.363
041 -0.1944 | -0.1958 | -0.197 | -0.213 | -0.310 | -0.408
0.5 -0.2884 | -0.2872 | -0.289 | -0.289 | -0.308 | -0.348
0.6 | -0.4666 | -0.4668 | -0.464 | -0.440 | -0.315 | -0.213
0.7 ] -0.9162 -0.951 | -0.952 | -0.907 | -0.598 | -0.230
0.8 1.369 -1.08 -2.62 | -2924 | -2.521 | -1.84
Table 10.2.5 Coefficient 4*, for bending.

For long plates (H/W=1.5) the coefficients 4, and A*, can be approximated by [9]

~0.02279 + 0196610, — 0305520, +0.247618c.°> — 0.080370.*

o Ta 10.2.4)

mn

Al

0.04813 — 042240 + 1000502 —1.02690.* + 037990, *
(1-a)a

A*, (10.2.5)

1K
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10.3 Green's function for single-edge-cracked plates

A Green's function for single-edge-cracked plates can be given by

(x)=1,+C(1-x/a)+C,(1-x/ a)’
or

I=-0o,

X=

o+ Cljcy(x)(l -x/a)dx +C2icy(x)(1— x / a)’dx

with the coefficients C; and C, given in the following tables.

02 2.531 20151253 478 | 8.16
0.3 1.456 1.306 | 400 | 6.53 | 11.74
0.4 1.167 1.792 1493 | 833 | 15.13
0.5 1.728 | 2.112 | 571 | 9.46 | 18.67
0.6 3.167 |3.417 | 6.04 | 10.21 | 21.60
0.7 6.204 |6.422)805]11.73 ]23.31

Table 10.3.1 Coefficient C,-W for the Green's function, eq.(10.3.1).

0.2 2.438 3234 | 337 { 1.50 | 0.80
0.3 1.714 2.286 1 0980 | 0.82 | 1.55
04 1.417 1.167 1 0925 | 1.46 | 3.81
0.5 0.864 1152 | 1.44 | 3.17 ] 5.95
0.6 0.437 0.875 | 2.81 | 5.00 | 8.28
0.7 0.789 1.034 | 335 {593} 1071

Table 10.3.2 Coefficient C, ¥ for the Green's function, eq.(10.3.1).

(10.3.1)

(10.3.2)

In order to determine the biaxiality ratio for any stress distribution one has to compute also
the stress intensity factor for these stresses. Therefore, the fracture mechanics weight function

h is necessary from which the stress intensity factor results as
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K, = jc(x)h(x,a)dx

(10.3.3)

where o(x) is the normal stress distribution in the uncracked component along the prospective
crack line of an edge crack. An approximate weight function for the edge-cracked rectangular

plate is

+DyJ1-p+D,(1-pY?|, p=x/a

0.2
0.3
04
0.5
0.6
0.7
0.8

1.001
1.298
1.581
1.827
1.996
2.070
2.015

1.001
1.302
1.581
1.829
1.996
2.071
2.015

1.003
1.326
1.598
1.835
1.998
2.071
2.017

1.010
1.317
1.616
1.859
2.001
2.079
2.054

1.249
1.539
1.836
1.973
2.027
2.104
2.064

1.347
1.816
2.036
2,122
2.110
2.094
2.094

Table 10.3.3 Coefficient Do(l-oc)y2 for weight function (10.3.4).

0.2
03
04
0.5
0.6
0.7
0.8

0.1963
0.3072
0.4909
0.7329
1.074
1.526
2.128

0.200
0.301
0.4909
0.7300
1.074
1.525
2.128

0.210
0.2641
0.4661
0.7213
1.072
1.525
2.128

0.2245
0.3422
0.4887
0.7183
1.077
1.513
2.066

0.255
0.516
0.624
0.857
1.186
1.516
2.050

0.634
0.784
1.006
1.170
1.368
1.629
2.018

Table 10.3.4 Coefficient D,(1-o)*? for weight function (10.3.4).
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10.4 Edge-cracked bar in 3-point bending

thickness: t

I

2L
Fig. 10.4.1 3-point bending test.

N
o

The T-stresses for the 3-point bending test were computed by application of the Green's
function method, using an expansion with two regular terms, eqs.(10.3.1) and (10.3.2). The
stresses normal to the crack plane are given by Filon [26]

G =- PL g_]ii sinh(mW [ 2)— L mW cosh(mW [ 2)
A e mW +sinh(mW)

cos(my) cosh(mn)

2P 5 mm sinh(mW /2) cos(my)sinh(mn)

IL % mW +sinh(mW)

2P & cosh(MW [ 2) — 1 MW sinh(MW / 2)
tL o sinh(MW) - MW

cos( My)sinh( Mn)

2P i Mn cosh(MW [ 2)

L 2 sinh () - aaw O cosh(M) (104D

e ___(Z"Z Dr (10.4.2)

3PL
Wt

(10.4.3)
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The stress intensity factors were computed with the weight function technique using
eq.(3.1.1a) and the weight function given in [10].

02 -0.2280 [ -0.2217{-0.2185{-0.2133 ] -0.2090 | -0.2027
0.3 -0.0776 | -0.0756 | -0.0746 | -0.0730 | -0.0717 | -0.0697
0.4 0.1174 | 0.1125 | 0.1101 | 0.106 | 0.1027 | 0.0977
0.5 0.3822 | 0.3683 | 0.3614 | 0.3499 | 0.3406 | 0.3267
0.6 0.8063 | 0.7813 | 0.7688 | 0.7479 | 0.7313 | 0.7062

0.7 1.6380 | 1.5983 | 1.5784 | 1.5453 | 1.5189 | 1.4791
Table 10.4.1 T-stress 7,/c* for the edge-cracked bar in 3-point bending.

The constant stress component in the uncracked body along the crack line, o, is given by
[26]

P ZPstnh(mW/2)+ L mW cosh(mW / 2)

-t _ osh
O 2L L &5 mW +sinh(mW) osh(rm)
2P s mm sinh(mW / 2) sinh(rm)
tL 5 mW +sinh(mW)
2P & cosh(MW /2) — 3 MW sinh(MW / 2) . sinh(Mi)
L 4 sinh(MW)— MW N
M cosh(MW / 2)
osh 10.4.4
Z sinh(AW) — aaw “OSHM) (104.4)
and, consequently, the T-term 7 results as
T=T.+0,| . w» (10.4.5)

The stresses resulting from (10.4.4) are nearly independent by L/W for L/W > 2. This gives
rise for an approximative relation

2P & P 2 4 214583
= ———-2—+—(0474 - 3159~ +2149 =x/W 10.4.6
0L =gty OATE SIS £ 21498%)  E= (104.6)

The T-stress according to eq.(10.4.5) is entered in Table 10.4.2. The geometric function is

given in Table 10.4.3 and the related biaxiality ratios are entered in Table 10.4.4 and plotted
in Fig.10.4.2.
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0 -0.526 | -0.526 | -0.526 | -0.526 | -0.526 | -0.526

0.1 -0.291 }-0.292 | -0.291 | -0.290 | -0.289 | -0.288
0.2 -0.150 }-0.149 } -0.149 | -0.149 | -0.149 | -0.149
0.3 -0.044 | -0.049 | -0.054 | -0.056 | -0.058 | -0.063

0.4 0.035 0.026 | 0.022 { 0.014 { 0.008 | -0.001
0.5 0.088 0.077 | 0.071 | 0.061 | 0.054 | 0.044
0.6 0.122 0.111 | 0.105 | 0.096 { 0.088 | 0.077
0.7 0.141 0.132 | 0.127 | 0.119 | 0.113 | 0.103
0.8 0.143 0.137 | 0.132 | 0.125 | 0.120 | 0.112
0.9 0.132 0.128 | 0.126 | 0.122 | 0.119 | 0.115
1 0.113 0.113 | 0.113 | 0.113 | 0.113 | 0.113
Table 10.4.2 T-stress in the form of T/c*(1-a/W)’ for the edge-cracked bar in 3-point bending,

0.1 0.8964 | 0.8849 | 0.8791 | 0.8694 | 0.8616 | 0.8504
0.2 0.7493 | 0.7381 | 0.7325 | 0.7231 | 0.7156 | 0.7046
03 0.6485 | 0.6387 | 0.6337 | 0.6255 | 0.6188 | 0.6091
0.4 0.5774 | 0.5690 | 0.5651 | 0.5582 | 0.5527 { 0.5447
0.5 0.5242 | 05177 | 0.5145 | 0.5091 | 0.5048 | 0.4985
0.6 0.4816 | 0.4770 | 04744 | 0.4704 | 0.4672 | 0.4626
0.7 0.4458 | 0.4430 | 0.4408 | 0.4381 | 0.4359 | 0.4328
0.8 0.4154 | 04140 | 0.4124 | 0.4108 | 0.4094 | 0.4076
Table 10.4.3 Geometric function F(l-a/W)m.

0 -0.469 | -0.469 | -0.469 | -0.469 | -0.469 | -0.469
0.1 -0.325 | -0.330 | -0.331 | -0.334 | -0.335 | -0.339
02 -0.200 |-0.202 | -0.203 | -0.206 | -0.208 | -0.211
0.3 -0.068 | -0.077 | -0.085 | -0.090 | -0.094 | 0.103
04 0.061 0.046 | 0.039 | 0.025 | 0.014 | -0.002
0.5 0.168 0.149 | 0.138 | 0.120 | 0.107 | 0.088

0.6 0.253 0.233 | 0.221 | 0204 | 0.188 | 0.166
0.7 0.316 0.298 | 0.288 | 0.272 | 0.259 | 0.238
0.8 0.344 0.331 | 0.320 | 0.304 | 0.293 | 0.259
09 0.332 0.327 | 0.321 | 0.314 | 0.309 | 0.301

1 0.302 0.302 | 0.302 | 0302 | 0.302 | 0.302

172

Table 10.4.4 Biaxiality ratio in the form of B(1-a/W) " for
the edge-cracked bar in 3-point bending,
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A comparison with literature data is given in Fig. 10.4.3 for L/W=2. Data from Leevers and
Radon [5] (squares) and Kfouri [6] (circles) are plotted together with the data of Table 10.4.4
(curve). Whereas the data of Leevers and Radon differ significantly the agreement with the
data provided by Kfouri is very good.

0.6

B

04

0.2

o

02 04 06

Fig. 10.4.2 Biaxiality ratio p for edge-cracked 3-point bending specimens with different ratios L/W.

0.
6 L/W=2

B

04r

0.2 a

-0.2r

-0.4

0 02 04 06
a/W

Fig. 10.4.3 Comparison between Table 10.4.4 (curve) and results of Leevers and Radon [5] (squares) and
Kfouri [6] (circles).
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10.5 The Double Cantilever Beam (DCB) specimen

The Double-Cantilever Beam (DCB) specimen is illustrated in Fig. 10.5.1. Concentrated
forces P are applied at the ends of the cantilevers.

= a
P
&I i
P v
) w :

Fig. 10.5.1 Double-Cantilever-Beam specimen.

The biaxiality ratio B obtained for the DCBis found to be independent of a/W if a/W < 0.55.
For d/a< 0.5 the biaxiality ratio can be described by the relation [13]

= O.681£+0.0685 (10.5.1)

1
B a
Using the stress intensity factor solution

K, = \/Eg(ﬂmﬁs) (10.5.2)
d B\d

(B=specimen thickness) yields for the T-stress

a
24068
7P _ |12 P 4 10.5.3
~Jna Vnad B d (10.5.3)
ra 0.681= + 0.0685
a

The approximate relation (10.5.1) is represented in Fig. 10.5.2 together with results reported

by Leevers and Radon [5] (symbols). The agreement of the plotted data is sufficient for 0.1 <
dla < 0.5 and a/W > 0.4. Maximum deviations are less than 10%.
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0.5

B ol
0.3F

0.2r c}fﬂ a/W

® 0.4

01l o 005

: ® 06

0 07

C0 02 04 06

d/a

Fig, 10.5.2 Biaxiality ratio for the DCB specimen. Line: eq.(10.5.1), symbols: Leevers and Radon [5].
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10.6 Couple of opposite point forces

An infinitely long strip with a single edge crack is considered (Fig. 10.6.1). A pair of opposite
point forces generates stresses in the plane of the crack.

A vav
a4
?

thickness: t

P

->y<—

Fig. 10.6.1 Edge cracked strip with opposite concentrated forces.

The T-stresses for the edge crack affected by two opposite concentrated forces P were com-
puted by application of the Green's function method, using an expansion with two regular
terms, eqs.(10.3.1) and (10.3.2).

The stresses normal to the plane of the crack, o, are given by [26]

- 4P I sinhu —ucoshu cos 2uy cosh 2un du —
0

- Wt sinh 2u + 2u /4

J AP j 2y __sioh o 24 G 20 gy (10.6.1)
Wt W sinh2u+2u W W

0

with n=x-W/2. The characteristic stress is chosen as

o =L (10.6.2)

"

resulting in the T-term 7,/c* according to eq.(2.11). Table 10.6.1 shows the results. For the
computation of the total constant stress term, the related stress in the uncracked body has to
be computed from
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4P % si
S ,[ smb u+ucoshu cos 2uy cosh 2um du
nWit+  sinh2u+2u w w
8P i .
+ J‘f‘ﬂ . sinh u cos 21y sinh 2um du (10.6.3)
wWt+ W sinh 2u + 2u w
and it then results
=T +o, a2 (10.6.4)

0.2 -0.355 0.273 0.143 0.054 0.009 0.00
0.3 -0.541 -0.027 | 0.209 0.119 0.034 0.001
04 -0.561 -0.169 | 0.226 0.159 0.053 0.002
0.5 -0.558 -0.213 0.226 0.171 0.060 0.003
0.6 -0.565 -0.180 | 0.225 0.160 0.053 0.002
0.7 -0.576 -0.046 | 0.219 0.127 0.037 0.001

Table 10.6.1 T-stress 7./c* for the edge-cracked strip under opposite concentrated forces.

0.2 -2.48 -0.584 | 0.1044 | 0.0713 | 0.026 0.002
0.3 -2.44 -1.169 | 0.1064 | 0.1386 | 0.063 0.006
0.4 -2.28 -1.390 | 0.0660 | 0.1758 | 0.090 0.008
0.5 -2.22 -1.448 | 0.0438 | 0.1859 | 0.100 0.010
0.6 -2.28 -1.401 | 0.0650 | 0.1768 | 0.090 0.008
0.7 -2.47 -1.188 | 0.1804 | 0.1466 | 0.066 0.006

Table 10.6.2 T-stress T/o* for the edge-cracked strip under opposite concentrated forces.
The stress intensity factors K; and Ky; with the geometric functions F} and F; are defined by

K,=c*JnaF, , K, =0 *naF, (10.6.3)

For their calculation the weight function method was used. The results are entered in Tables
10.6.3 and 10.6.4
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0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

-1.175
-1.210
-0.969
-0.781
-0.649
-0.549
-0.453
-0.316

-0.238
-0.495
-0.522
-0.455
-0.366
-0.270
-0.163

-0.050

0.054
0.056
0.038
0.025
0.021
0.023
0.023
0.016

0.040
0.060
0.064
0.057
0.046
0.033
0.020
0.008

0.017
0.029
0.032
0.030
0.024
0.017
0.009
0.003

0.005
0.004
0.004
0.004
0.003
0.002
0.001
0.001

Table 10.6.2 Geometric function Fy,.

0.1

0.2
0.3
04
0.5
0.6
0.7
0.8

-0.959
-0.579
-0.347
-0.238
-0.173
-0.116
-0.046
0.047

0.048
-0.163
-0.121
-0.056
-0.003
0.044
0.080
0.083

0.346
0.220
0.142
0.098
0.072
0.050
0.028
0.009

0.173

0.129
0.091
0.061
0.039
0.022
0.011
0.008

0.060 |0.000

0.048 10.001
0.036 10.001
0.024 10.000

0.013 |-0.001
0.006 [-0.001
0.002 |-0.002
0.001 |-0.003

Table 10.6.3 Geometric function Fy.
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10.7 Rectangular plate with thermal stresses

A long rectangular plate with a parabolically distributed temperature ®

® :4@{%—(-}-}2} (10.7.1)

(with the maximum temperature ®,) is considered, which causes a stress distribution

2
Gy:c*(§—4%+4%) , 0*¥=a,0.F (10.7.2)

with E = Young's modulus and or = thermal expansion coefficient. The stress distribution is
shown in Fig. 10.7.1a. Introducing this stress distribution into eq.(10.3.2) and using the
approximate Green's function (3.2.18), (3.2.20) yields the T-stress

1:3(1—(>L)2(1+-T!-j+4oc(1——oc)~~Z (10.7.3)
c* 3 o} 3

0

where T, is the reference T-stress solution for pure tension with tensile stress o, taken from
Table 10.1.1 or from eq.(10.1.1). The related stress intensity factor solution X, obtained with
the weight function given in [10], has been entered additionally in Fig. 10.7.1b.

a) b)
1 06
* ]
c/o K | .
04+ K
05l Tic™ |
' 0.2
0
0 i
| \\/ 0.2}
05 - : : 0.4 : - '
0 0.5 1 0 0.5 1
x/W a/WW

Fig. 10.7.1 a) thermal stresses in a rectangular plate, b) stress intensity factor and T-stress, X' =K/(0*W”2).

64




The biaxiality ratio represented in Fig. 10.7.2 was computed from the T-stress solution
eq.(10.7.2) and the stress intensity factor solution K. Large positive biaxiality ratios are ob-
vious for deep cracks. This is the consequence of the low stress intensity factors near a/W =
0.8.

30

20r

10+

Fig. 10.7.2 Biaxiality ratio for thermal stresses given by eq.(10.7.1).
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10.8 Partially loaded rectangular plate

A plate loaded by a constant stress over a range d is shown in Fig. 10.8.1. The related T-stress
terms 7, and the biaxiality ratios are entered into Tables 10.8.1-10.8.8.

VIR

Fig, 10.8.1 Partially loaded edge-cracked rectangular plate.

Due to the nonhomogeneous tractions at the plate ends already in the uncracked component a
stress component o, will be generated along the crack line. Consequently, the T-term
resuiting from the coefficient 4,* of the Williams expansion and 7, in the sense of eq.(2.11)
must be different. In this Section only the total T-terms are reported.

03 0 -0.196 | -0.362 | -0.501 | -0.608
04 0 -0.072 1 -0.197 | -0.372 | -0.577
0.5 0 0.123 | 0.092 | -0.102 | -0.419
0.6 0 0461 | 0.660 | 0.468 | 0.040

0.7 0 1.199 1.90 1.806 | 1.337
Table 10.8.1 T-stress 7y/c* for H/W=1.25,
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0.3 0 -0.174 | -0.360 | -0.515 | -0.606
0.4 0 -0.042 | -0.193 | -0.383 | -0.570
0.5 0 0.157 | 0.117 | -0.409 | -0.409
0.6 0 0.522 | 0.680 | 0.474 | 0.051
0.7 0 1.329 | 1.959 | 1.917 | 1.366
Table 10.8.2 T-stress Ty/c* for H/W=1.00.
0.3 0 -0.094 | -0.333 | -0.524 | -0.571
0.4 0 0.098 ! -0.115 1 -0.369 | -0.485
0.5 0 0.348 | 0.251 | -0.039 | -0.277
0.6 0 0.703 | 0.808 | 0.560 | 0.199
0.7 0 1.456 | 2.052 | 2.011 | 1.485
Table 10.8.3 T-stress T /c* for H/W=0.75.
0.3 0 0.257 } -0.119 | -0.317 | -0.299
04 0 0.722 ] 0.457 | 0.136 | 0.110
0.5 0 1.157 1 1.195 | 0.783 | 0.666
0.6 0 1.614 { 2.007 | 1.668 | 1.372
0.7 0 2250 | 3.174 | 3.007 | 2.593

Table 10.8.4 T-stress Ty/o* for H/W=0.50,

0.3
04
0.5
0.6
0.7

-0.156 | -0.184 | -0.225 | -0.311
-0.045 | -0.077 } -0.124 | -0.213
0.056 0.026 | -0.024 | -0.105
0.142 0.122 | 0.073 | 0.006
0.209 0.213 | 0.160 | 0.116

Table 10.8.5 Biaxiality ratio B(1-a/W)"* for H/W=1.25.
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0.3 -0.138 ] -0.181 | -0.230 | -0.306

04 -0.026 | -0.074 | -0.129 | -0.209
0.5 0.071 0.032 { 0.026 | -0.102
0.6 0.154 0.124 | 0.073 | 0.008
0.7 0.227 0.205 | 0.167 } 0.118

Table 10.8.6 Biaxiality ratio p(1-a/W)" for H/W=1.00.

0.3 -0.071 -0.164 | -0.235 | -0.284
04 0.059 -0.044 1 -0.125 {1 -0.176
0.5 0.153 0.068 | -0.009 | -0.069
0.6 0.209 0.149 | 0.086 | 0.031
0.7 0.251 0.216 | 0.175 | 0.128

Table 10.8.7 Biaxiality ratio B(l-a/W)”2 for H/W=0.75.

03 0.166 -0.054 | -0.135 | -0.136
04 0.378 0.158 | 0.043 | 0.037
0.5 0.488 0.329 | 0.177 | 0.157
0.6 0.466 0.355 | 0.248 | 0.209
0.7 0.386 0.332 | 0.261 | 0.222

Table 10.8.8 Biaxiality ratio p(1-a/ W)”2 for H/W=0.50.,

An example of application of this loading case may be demonstrated for a plate with H/W =
1.25 loaded by a couple of point forces P at several locations d/W as illustrated in Fig.
10.8.2a. The evaluation of the related T-stress term is explained in Fig. 10.8.2b.

First, we determine the 7,/c*-values for two values d, and d, with d;, =d-e and d,=d+¢ (g « d)
by interpolation of the tabulated results applying cubic splines. The normal force P is given
by

P=c*(d,—d) (10.8.1)

(¢ = thickness). The T-stress for this case is
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and for the case of d}, d, > d (e — 0)

_ T, /o) P

PTodIw) wi (1083)

In Fig. 10.8.3 the T-stresses are plotted as a function of the relative crack length a/W.

a b
P A 9 ) )
c* M
Had 1
«—d;
— 2H _— 2H
SRR ]
LN LN

P‘ vy

,L03 04
{ " 1 —_ b | U R,
—40 02 04 06 08 1
d/W

Fig. 10.8.3 T-stress caused by a couple of forces acting at location d (H/W=1.25).
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T-stresses for couples of point forces obtained with eq.(10.8.3) are entered into Tables 10.8.9-
10.8.12. These results can be used to compute the T-stress for any given distribution of
normal tractions o, at the ends of the plate

P

_([—-—cs (x)dx | G*:"MZ' (10.8.4)

If a smooth distribution of normal tractions acts at the ends of the plate it is of advantage to
rewrite eq.(10.8.4) and to apply integration by parts. This leads to

r=tig

G *

U7, do
s j—--—dx (10.8.5)

O

As an example the T-stress for bending was computed from (10.8.5). The results for two
values of H/W are shown in Fig. 10.8.4 (circles) together with the data of Table 10.2.1
(curves) which were obtained directly from BCM-computations. The agreement is good.

0. 4
1(1 o | HAN=0.5
0.2}
0.75

0
0.2
0.4

Bending

06,0202 06 08 1
04

Fig. 10.8.4 Comparison of bending results obtained with eq.(10.8.5) (circles) and with BCM (curves).

Geometric function for stress intensity factor defined by

K, =0 *Fna (10.8.6)
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1.049
1.245
1.546
2.054
3.138

1.643
1.990
2.538
3472
5.274

1.859
2318
2.968
4.080
6.191

1.637
2.103
2.825
4.034
6.327

Geometric function F for H/W=1.25.

0.3
0.4
0.5
0.6
0.7

[T e T e N < )

1.280
1.568
2.139
3.207

1.056

1.668
2.009
2.599
3.483
5.229

1.871
2.296
2.982
4.101
6.280

1.656

2.112
2.824
4.035
6.353

Table 10.8.10 Geometric function F for H/W=1.00.,

0.3
0.4
0.5
0.6
0.7

S o o O

1.100
1.302
1.614
2.129
3.174

1.697
2.038
2.612
3.435
5.209

1.864
2.295
3.012
4.099
6.284

1.681

2.135
2.842
4,043
6.357

Table 10.8.11 Geometric function F for H/W=0.75.

03
04
0.5
0.6
0.7

0
0
0
0

0

1.296
1.479
1.676
2.193
3.190

1.862
2242
2.752
3.575
5.240

1.961
2422
3.126
4.249
6.307

1.847
2.323
3.007
4.146
6.386

Table 10.8.12 Geometric function F for H/W=0.50.

Similar to the T-term, the stress intensity factor can be computed

K=2ag
c *
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10.9 Compact Tension specimen

The Compact Tension (CT) specimen is illustrated in Fig. 10.9.1,

&P )

)

I

W Ny
Fig. 10.9.1 Compact Tension specimen.
Results from the literature are entered in Fig. 10.9.2 for the biaxiality ratio f together with

limit cases (oo — 0 and oo — 1) taken from Table 10.2.3. The curve introduced in Fig. 10.9.2
can be described by

B = ~0469 +4.2327a — 5.01620.% — 237070.” + 618660, — 226130,
B Ji-a

(10.9.1)

" 3 " ] n 1 " 1 .
02 04 06 08 1
04
Fig. 10.9.2 Biaxiality ratio for the CT-specimen; curve: eq.(10.9.1), squares: Leevers and Radon {5], circles:
Cotterell [27], triangles: limit cases from Table 10.2.3.
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11 Edge-cracked circular disk

Edge-cracked circular disks are often used as fracture mechanics test specimens, especially in
case of ceramic materials [28][29]. Figure 11.1 shows the geometric data.

Fig. 11.1 Geometric data of an edge-cracked circular disk.

11.1 Circumferentially loaded disk

A circular disk is loaded by constant normal tractions o, along the circumference (loading as
in Fig.7.1.1)

c,=const, T=0 (11.1.1)
In this case it holds [10]
A* (1-0)* =-011851=C*, |, a=a/W (11.1.2)
and, from eqs.(2.9) and (2.11)
T ggn, = 04T
c, (1-o)
(11.1.3)
T 0474
= -1
5, (-ay

73




The value C*;, occurring in eq.(11.1.2) is identical with the coefficient of Wigglesworth's

[30] expansion for the edge-cracked semi-infinite body.

With the stress intensity factor solution

X, :c"F\/n—a  F= 11215

the biaxiality ratio results as

0.4227
-

Further coefficients of the Williams stress function are [10]

4 = -0.02279 + 013220

! (I—OL)MJO?

~004812-01185a

A*
' (1-a)a

(1-a)”?

_ —0.00680 — 0.03416a +0.0991a 2

A2 (1 _a)7/2a3/2

_ —0.01787+ 0096270, — 0118510

A*
: (1-a)a?
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(11.1.5)

(11.1.6)

(11.1.7)

(11.1.8)

(11.1.9)




11.2 Diametrically loaded disk

11.2.1 Load perpendicular to the crack

The Green's function method may be applied here to the diametrically loaded edge-cracked
disk (Fig. 11.2.1).

Fig, 11.2.1 Diametrically loaded circular disk.

Using eq.(11.1.3) as the reference T-stress solution the coefficient C for the Green's function,
represented by eqs.(3.2.19) and (3.2.20), follows as
09481

C=——- =alD 11.2.1
a(l-a)*’ @=a ( )

Consequently, the T-stress can be computed from

09481 |
r= zj(l—p)oy(p)dp—cy\_ , p=x/a (11.2.2)
(I-a) x=a

As an application a disk of unit thickness is considered, which is diametrically loaded by a
pair of forces P. The forces may act perpendiculary to the crack plane. In this case the
stresses are given by

4

—
0+1-¢)7

= £=x/R,R=D/2 (11.2.3)

2

O
G *
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O, _ 4(1_é)2 _ __i
s* U+t % TR (11.2.4)

as illustrated in Fig. 11.2.2. Introducing o, in eq.(3.22) yields the T-stress term

094815 * ( a) ( a) a’ ( aj
T= 4/ 1—-—]arctan| 1 - — 2———~——~7t 1-—||-0o 11.2.5
2(1—0L)2(a/R)2{ R R R R R lx=a ( )
3 -
c/c” |
2+ Gy
1 -
0
At Oy
o 02 04 06 08 1
x/D
Fig. 11.2.2 Stresses along the x-axis in a diametrically loaded disk.
The stress intensity factor results from [16] as
K, = [h(x,a)c , dx (11.2.6)
0

where 4 is the fracture mechanics weight function. In case of an edge-cracked disk a repre-
sentation is given in [10], i.e.

h(x,a)= \/’{ +Dy\1-p +D,(1-p)"* + D,(1-p)** (11.2.7)

with the coefficients

D, = (15721+24109a. — 08968a.> —14311a*)/ (1 -0 )*?
= (04612 + 059720, + 0.74660* +2.2131a°)/ (1-a. ) (11.2.8)
=(~02537+ 043530, — 028510.* — 0.5853a.%) / (1-a )

76




By consideration of the total x-stress (crack contribution and x-stress component in the un-
cracked body), one can compute the biaxiality ratio according to eq.(2.12)

The T-stress and the stress intensity factor result in the biaxiality ratio  which is shown as
curve in Fig. 11.2.3,

In addition to the Green's function computations, the biaxiality ratios were directly
determined with the Boundary Collocation method (BCM) which provides the coefficients
Ay, A*, and by eq.(2.13) the quantity B for the situation of diametrical loading. The results are
entered as circles. An excellent agreement is obvious between the BCM results and those ob-
tained from the Green's function representation. This is an indication of an adequate descrip-
tion of the Green's function by the set-up eq.(3.2.19) using only one regular term.

P

150702 04 06 08 1

a/D

Fig. 11.2.3 Biaxiality ratio for an edge-cracked circular disk diametrically loaded by a pair of forces; lines:
eq.(11.2.5), circles: BCM-results,

0 0 -1.236
0.1 -0.364 -1.216
0.2 -0.732 -1.134
03 -0.970 -0.960
0.4 -0.915 -0.682
0.5 -0.526 -0.333
0.6 0.007 0.004
0.7 0.430 0.245
0.8 0.652 0.370

Table 11.2.1 T-stress and biaxiality ratio for Fig 11.2.3.
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11.2.2 Brazilian disk (edge-cracked)

thickness t

Fig, 11.2.4 Brazilian disk test with edge-cracked disk.

The circumferential stress component in an uncracked Brazilian disk (Fig.11.2.4) has been
given by Erdlac (quoted in [22]) as

p=r/R (11.2.9)

5 2o Z2P|1_ (1-pcos@)sin*@ (1+pcos®)sin2®_l
" mR|2 (1+p°-2pcos®) (1+p°+2pcos®) |

Using eq.(11.2.2) the T-stress can be determined. The T-stress term, evaluated for several
relative crack depths a/W and several angles ® is compiled in Tables 11.2.1 and 11.2.2 and
the biaxiality ratio in Table 11.2.3.

0 0 0 0 0 0 0
0.05 2.671 1.086 | 0.359 | 0.215 | 0.191 | 0.184
0.1 0.933 1.466 | 0.715 | 0.460 | 0415 | 0.401
0.2 -1.687 1 0.194 | 1.068 | 0.979 | 0.937 | 0.922
0.3 -2.319 [ -1.099 ] 0.691 | 1.328 | 1.428 | 1.456
0.4 -2.546 | -1.824 | -0.078 | 1.235 | 1.577 | 1.691
0.5 -2.744 1 -23101-0.896] 0.518 | 0.952 | 1.104
0.6 -3.050 | -2.814 | -1.906 | -1.153 | -0.959 | -0.894
0.65 -3.290 | -3.163 | -2.727 | -2.637 | -2.662 | -2.675
0.7 -3.637 | -3.683 | -4.085 | -4.911 | -5.196 | -5.297

Table 11.2.1 T-stress 7/o* for the Brazilian disk test (c*=P/(mR1)).

For the determination of the total x-stress at the crack tip (i.e. the determination of 7 from T7,)
the radial stress component has to be included, which was also derived by Erdlac
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o, =
TR 2

(1+p? - 2pcos ®)

_ 2P {l_ (1-pcos®)(cos®—p)* (1+pcos®)(cos® +p)>

(1+p*+2pcos®)

} (11.2.10)

0
0.05
0.1
0.15
0.2
0.25
03
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75

0.000

1.858

-1.979
-4.587
-5.482
-5.669
-5.633
-5.556
-5.508
-5.515
-5.592
-5.752
-6.012
-6.399
-6.950
-7.735

0.000

1.067

1.097

-0.044
-1.470
-2.610
-3.383
-3.888
-4,231
-4.493
-4.725
-4.959
-5.221
-5.539
-5.968
-6.663

0.000
0.376
0.760
1.015
1.020
0.743
0.252
-0.337
-0.922
-1.445
-1.896
-2.305
-2.750
-3.389
-4.524
-6.746

0.000 [0.000
0.227 [0.203
0.511 |0.464
0.837 10.784
1.172 |1.152
1.467 |1.543
1.670 |1.910
1.737 [2.192
1.643 |2.317
1.380 [2.210
0.932 [1.799
0.257 {1.017
-0.746 |-0.219
-2.251 [-2.041]
-4.569 |-4.714
-8.316 |-8.844

0.000

0.195
0.449
0.766
1.143
1.561
1.981
2.337
2.543
2.497
2.104
1.282
-0.042
-1.979
-4.773
-9.029

Table 11.2.2 T-stress T/c* for the Brazilian disk test (c*=P/(n(R)).

B (1-0(,)1/2

-1.5

T T

¢

/8-

m/4

3n/8

0 02 04 06 08 1

a/D

Fig. 11.2.5 Brazilian disk test with an edge-cracked disk and biaxiality ratio B(1-00)'”*, ot =a/D.
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0
0.05
0.1
0.15
0.2
0.25
03
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
1

-1.228
-0.608
0.549
1.446
1.995
2.301
2.455
2.510
2.500
2.440
2.342
2.209
2.043
1.843
1.608
1.337
0.423

-1.228
-1.062
-0.594
0.019
0.600
1.053
1.358
1.529
1.591
1.570
1.486
1.354
1.190
1.005
0.814
0.636
0.423

-1.228
-1.196
-1.087
-0.900
-0.651
-0.372
-0.104
0.118
0.276
0.367
0.400
0.394
0.369
0.345
0.334
0.343
0.423

-1.228
-1.220
-1.188
-1.127
-1.036
-0.914
-0.769
-0.610
-0.449
-0.297
-0.158
-0.034
0.076

0.173

0.255

0.320

0.423

-1.228
-1.224
-1.204
-1.166
-1.106
-1.021
-0.910
-0.776
-0.622
-0.457
-0.289
-0.127
0.021

0.147

0.247

0.320

0.423

-1.228
-1.225
-1.209
-1.178
-1.128
-1.054
-0.955
-0.830
-0.679
-0.510
-0.332
-0.156
0.004

0.139

0.245

0.321

0.423

Table 11.2.3 Biaxiality ratio (1-a/D)"* for the Brazilian disk test.
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11.2.3 Disk with thermal stresses

In a thermally loaded circular disk the stresses in the absence of a crack consist of the circum-
ferential stress component o, and of the radial stress distribution o,. The two stress com-
ponents can be computed from the temperature distribution @(r) with »=D/2-x (see e.g. [31])

1 R r
G,:ocTE(Fj®rdr~%I®rdrj (11.2.11)
0 0
~ E 1 R dr 1 r
5, =0, F!@r +;7_£®rdr—® (11.2.12)

with the thermal expansion coefficient o, The temperatures found e.g. in [29] can be ex-
pressed by

O(r) = ®0[1+B2(%)2 +B4(%)4} (11.2.13)

with the maximum temperature occurring in the centre of the disk (= 0). The related stresses

are given by

B lB 1 3 NS P\
O'w —O(,TE@)O Z 2+‘6—B4—ZB2 E —“534 E (11214)
1 rr) 1 r
c, :—'(XTE@)O':ZBZ(]—'I—{?)+gB4(l—'I?):| (11215)

For a typical stress distribution in a thermally heated disk one can conclude from curves plot-
ted in [29]

[ 2 ﬂ

G, =-0* 1—3(i) +§(1) (11.2.16)
2\’ 2R/
B 2 4]

G, =-c* 1-3(i) +l(-’—) (11.2.17)
- 2\R) T2\R)

where o* is the circumferential tensile stress at » = R. The stresses are and shown in Fig.
11.2.6.
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'

o

[4)]
T

Fig. 11.2.6 Stress distributions in a thermally heated disk.

When eq.(11.2.2) is used, the thermal stresses result in the T-stress

2
T =-01580lc * 2(3) —42_ 3|5
R/ R y

Including the o,-stress, present already in the uncracked disk, it results with eq.(2.11)

(11.2.18)

x=q

r _ Tc_l_cs,
G* O'* *

(11.2.19)

Q

x=a

0.8

Fig. 11.2.7 Stress intensity factor and T-stress for a disk under thermal loading,
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The two T-stresses are plotted in Fig. 11.2.7 together with the stress intensity factor computed
with the weight function for the edge-cracked disk.

The biaxiality ratio 3, defined by eq.(2.12), is plotted in Fig. 11.2.8. Very high B-values occur
for a/D > 0.6. The main reason is the very small stress intensity factor which disappears at

approximately a/D =0.7.

10

12

Klo*™D

K

0»__,/

0 02 04 06 08 1
a/D

Fig, 11.2.8 Stress intensity factor K and biaxiality ratio {3 for the edge-cracked disk under thermal loading.
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12 Cracks ahead of notches

Special specimens contain narrow notches which are introduced in order to simulate a starter
crack. This is for instance the case in fracture toughness experiments carried out on ceramics.
A plate with a slender edge notch of depth a, is considered. A small crack of length ¢ is

assumed to occur directly at the notch root with the radius R. The geometrical data are
illustrated in Fig. 12.1.

Fig, 12.1 A small crack emanating from the root of a notch.

In the absence of a crack the stresses near the notch root are given by

_ 2K(a,) R+E&

Oy~ TR+ 2) R+ 2% (2.1

2K(@,) ¢

= Ja(R+ %) R+ 2 (12.2)

(for € see Fig. 12.1) as shown by Creager and Paris [32]. The quantity K(a,) is the stress
intensity factor of a crack with same length a, as the notch under identical external load

K(a,) =0 *F(a,)\[ra, (12.3)

with the characteristic stress o* and the geometric function F. The stresses resulting from
eqs.(12.1) and (12.2) are plotted in Fig. 12.2. The solid parts of the curves represent the

region (0 < & < R/2) where higher order terms are negligible. A small crack of length 7 is
considered which emanates from the notch root (Fig. 12.1).
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oc/c*

Fig. 12.2 Stresses ahead of a slender notch computed according to Creager and Paris [32] for ao/W = 0.5 and
RIW =0,025.

Under externally applied load the coefficients of the stress function were calculated with
BCM applying the outer fiber bending stress as the reference stress, i.e.

_6M
oW

c¥*=0 (12.4)
with specimen width W, thickness 7 and bending moment M. The coefficient 4, is related to
the stress intensity factor K by

K,=c *F(0)Jrt, F)=\18W /¢ A4, (12.5)

with the geometric function F. The T-term 7, eq.(2.11), results directly from the coefficient
A*;. In Fig. 12.3 the term 7 is plotted versus a/l¥ the relative for several notch depths ay.
Additionally, the "long crack solution" given by eq.(10.2.1) is introduced as solid curve. This
curve represents the T-stress for an edge crack of total length a=a,+/.

Results obtained under tensile loading are plotted in Fig. 12.4. In this case the characteristic
stress is identical with the remote tensile stress o, i.e. * =0y In this representation the solid
line is described by eq.(10.1.1).

For the limit case £/R—0 the T-stress can be determined from the solution for a small crack in
a semi-infinite plate with a tensile stress identical with the maximum normal stress G,

occurring directly at the notch root

GW:M*H%V%‘ (12.6)
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Directly at the free surface (€ = 0) it holds o, =0 and, therefore, 7, = T for ¢//R — 0. It can be
concluded

Tplate
To=Tmoo =~ . (12.7)
o—0
Pla: = —4(A *0)p1a1e,(x—)0 =-0526 (128)
c a—0
and, consequently,
T _ }ao

It becomes obvious from eq.(12.9) that for slender notches very strong compressive T-
stresses occur in the limit case ¢/R — 0. The limit values 7, for tension and bending,
indicated by the arrows in Figs. 12.3 and 12.4, are entered in Table 12.1,

In Fig. 12.5 both the bending and the tensile results are plotted in a normalised representation.
From Fig. 12.5b we can conclude that the deviation between the T-stress term for the crack/
notch configuration and the long-crack solution 7* (with the crack assumed to have the total
length a,+¢) is negligible for £/R> 1. The drastic decrease in T for £//R — 0 must occur within
the range 0 < ¢/R <0.2.

T/o 1

0.5

-0.5 04 05 06

Fig. 12.3 T-stress for a small crack ahead of a slender notch in bending, computed with the Boundary
Collocation Method for R/W = 0.025. Solid line: long-crack solution.
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T/ oc”
0.5+

¥V, Y. ¥, VT
03 04 05 o6
a/W

Fig. 12.4 T-stress for a small crack ahead of a slender notch in tension, computed with the Boundary
Collocation Method for R/W = 0.025. Solid line: long-crack solution, }

1 F & BogF0 oot d o 1.02F
ATrel | ATreI
08t 1
06} 0.98
i
0.4r 0.96
* a) | b)
02} 004l
% 1 T2 3 0o 1 2 3 4
/IR /IR

Fig, 12.5 T-stress in a normalised representation AT, = (T-T,)/(T*-T,), T* =long-crack solution; circles:
tension, squares: bending.

03 -4.11 -6.05
0.4 -5.28 -8.91
0.5 -7.01 -13.31
0.6 -9.86 -20.74

Table 12.1 Limit values for the T-stress term (/R — 0).
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13 Double-edge-cracked plate

SETRTRTTIILY.

—

—ar

|

|

i

f

l

|
~——2W—=
FITTTATriTy

Fig. 13.1 Double-edge-cracked rectangular plate

T-stresses for the Double-edge notched rectangular plate (Fig. 13.1) are compiled in Table
13.1.

0.0 -0.526 | -0.526 | -0.526 | -0.526 | -0.526 | -0.526
0.1 -0.530 | -0.530 | -0.530

0.2 -0.532 | -0.528 | -0.527

0.3 -0.532 | -0.520 | -0.512 | -0.473 | -0.257 | 0.293
0.4 -0.528 | -0.504 | -0.440 | -0.282 | 0.256 1.546
0.5 -0.522 | -0.464 | -0.316 | 0.045 1.058 3.135
0.6 -0.510 | -0.409 | -0.153 | 0.483 2.202 5.24

0.7 -0.4932 | -0.32 0.023 0.969 3.68 8.13

Table 13.1 T-stress 7/c for the Double-edge-cracked plate in tension.

Stress intensity factors, defined by
K,=cFJra, F'=F(-alW)" (13.1)

are compiled in Table 13.2 and the biaxiality ratios f§ are given in Table 13.3.
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0 1.1215 [ 11215 |1.1215 |1.1215
0.3 1029 (118 [1.49 |1.891
0.4 0.9197 10.9946 |1.1926 |1.646 |2.196
0.5 0.8659 [0.9427 |1.1537 |1.719 |2.437
0.6 0.8135 {0.8760 |1.0597 |1.6529 |2.535
0.7 0.7492 |0.8029 |0.9297 |1.4142 |2.46

1.0 0.6366 |0.6366 |0.6366 |0.6366 |0.6366

Table 13.2 Geometric function Fy'

For a long plate (H/W=1.5) the T-stress term and the biaxiality ratio may be approximated by

T —0526+046720 +018440.> - 01153x°
—= (13.2)
G 1-a
—0.469 + 0140670, + 0356460, — 0.009860.°
B= (13.3)
J1-
and for the quadratic plate (H/W=1)
T/6 =-0526+018040 —2.72410.%> +9.59660.° — 638830 (13.4)
B =—0469 + 012290 —122560.% + 6.06280.> — 449830 * (13.5)
0.0 0469 | -0469 | -0469 | -0.469 | -0.469 | -0.469
0.1 0475 | 0470 | -0.464
0.2 0.476 | -0.465 | -0.451
0.3 0472 | 0453 | -0.416 | -0336 | -0.144 | 0.174
0.4 0460 | -0425 | -0343 | -0.183 | 0.120 | 0.545
0.5 -0.440 | -0.379 | -0.237 | 0.028 | 0435 | 0910
0.6 -0.408 | -0318 | -0.110 | 0288 | 0842 | 1.307
0.7 0364 | 0228 | 0016 | 057t | 1424 | 1.903

Table 13.3 Biaxiality ratio B for the double-edge-cracked plate in tension.

Results of Table 13.2 are compared in Fig. 13.2 with data from the literature (Kfouri [6]).
Differences of less than 0.01 were found, i.e. an excellent agreement can be stated. Further
coefficients of the Williams stress function are hsted Tables 13.4 and 1
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H/W=1 H/W=1.5
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Fig. 13.2 Comparison of results with available data from literature. Circles: Table 13.2, squares: Kfouri [6].

03 -0.045 -0.043 | -0.0362 | -0.0192 | 0.0441
0.4 -0.0416 | -0.0371 | -0.0237 | 0.0147 | 0.1395
0.5 -0.0414 | -0.0339 | -0.0118 | 0.0522 | 0.2591
0.6 -0.0454 | -0.0277 | -0.0053 | 0.0840 | 0.3936
0.7 -0.0591 [ -0.0457 | -0.0110 | 0.0956 | 0.5074

Table 13.4 Coefficient 4, for the Double-edge-cracked plate in tension.

03 0.1555 0.148 | 0.1208 | 0.0771 | -0.0509
0.4 0.1086 | 0.0911 | 0.0489 | -0.0382 | -0.1991
0.5 0.0759 | 0.0505 | -0.0099 | -0.1384 | -0.3478
0.6 0.0515 | 0.0014 | -0.0496 | -0.2157 | -0.5472
0.7 0.0356 | 0.0039 | -0.0671 [ -0.2510 | -0.7722

Table 13.5 Coefficient 4*; for the Double-edge-cracked plate in tension.

In order to evaluate arbitrary stress distributions in the uncracked plate a weight function for
stress intensity factors, see eq.(3.1.1a), is given according to the representation
3\

h:\/nza[\/—]—lf——‘;'i'l)o«”—p+D](1—p)3/2J p=x/a (136)
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with the coefficients Dy, D, listed in Tables 13.8 and 13.9.

0.3
04
0.5
0.6

0.7

0.541
-1.867
-3.24
-4.43
-5.54

0.0447
0.007
-0.061
-0.158
-0.372

-0.0173
0.0026
0.0023

-0.022

-0.083

Table 13.5 Coefficient 4,.

0.3
0.4
0.5
0.6
0.7

3.37
5.90
8.50
10.48
11.45

-0.096
0.203
0.390
0.497
0.661

-0.244
-0.142
-0.075
-0.017
0.036

Table 13.6 Coefficient 4*,.

0 [0.585 0.584 [0.584 |0.584 [0.584
03 [3.75 243 |1.403 |0.932 |0.614
0.4 |4.91 326 11777 1.085 [0.720
05 |6.46 393 (2004 {1252 |0.879
0.6 |8.14 429 (212 |1.478 [1.160
0.7 |o.62 405 [233 [1.88 [1.494
Table 13.8 Coefficient D, for eq.(13.6).

03
04
0.5
0.6
0.7

0.256
0.552
0.624
0.739
0.787
0.557

0.256
0.302
0.335
0.325
0.243
0.024

0.256
0.216
0.178
0.134
0.01

0.034

Table 13.9 Coefficient D, for eq.(13.6).
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14 Double-edge-cracked circular disk

Fig. 14.1 Double-edge-cracked disk.

Figure 14.1 shows the double-edge-cracked disk. The T-stress under loading by constant
circumferential normal tractions o, is shown in Fig. 14.2 together with the biaxiality ratio f3.
In contrast to the single-edge-cracked disk the relative crack length is defined here by o =a/R
(R=DI2).

1.5 1

T/o,

1.25

e
©
T

0.8

0.7

0.75
0.6

0.5, 0.5

0.25 0.4

0 02 04 06 08 1 0 02 04 06 08 1
04 04

Fig. 14.2 T-stress and biaxiality ratio for the double-edge-cracked circular disk under circumferential normal
tractions.
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0 0474 [0423 |0.9481
02 (0599 {0472 [1.199
03 |0.702 |0528 |1.405
0.4 |0.829 |0.604 |1.658
0.5 0977 |0.698 |1.954
06 |1.136 [0.795 |2.273
0.7 |1200 0.865 |2.580

0.8 |1.425 |0.873 |2.850

Table 14.1 T-stress, biaxiality ratio and coefficient for the Green's function.
Loading; constant circumferential normal tractions.

The T-stress, entered into Table 14.1, can be expressed by

T = 0474 +040220, + 091040.” + 144060, — 168740, * (14.1)

o)

n

F'i2
11
|

0.9
08!
07!
06} © BCM f

05002 04 06 08 1
04

Fig. 14.3 Geometric function F'' for the Double-edge-cracked disk.

The geometric function F for the stress intensity factor is

K=6 FJma | F=F{l-a,

o~
f—
IS
N
N’

with the geometric function shown in Fig. 14.3 and approximated by
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11215+ 027460, — 0.7959a.* —11411a> +117760.*

F
Jl—a

(14.3)

For the Green's function under symmetrical loading the same set-up is chosen as used for
single-edge-cracked components, namely, expressed in the integrated form

T=Cf(i-x/a)o,(x)dx-o,| (14.4)
0
with the parameter C entered into Table 14.1 and fitted for o <0.8 by the polynomial
C= l(0.9481 +080430, + 182070, +288130.> ~33747a.*) (14.5)
a

A weight function for the computation of related stress intensity factors according to
eq.(3.1.1a) is given by

1

2
h:,f— ——+D,\J1-p+D(1-pY*+D,(1-p)*|, p=x/a 14.6
na(ﬂ 0 p (1-p) ,(d-p) j p ( )

with coefficients compiled in Table 14.2. This weight function is appropriate for symmetric
loading at both single edge cracks.

0 |04501 |0.7000 |[-0.3100
0.1 10.7167 [0.6860 |-0.2894
0.2 10.9396 |0.6932 |-0.2760
0.3 |1.1157 [0.7058 [-0.2668
0.4 |1.2549 |0.6998 [-0.2563
0.5 [1.3890 [0.6344 |-0.2343
0.6 [1.5957 [0.4227 |[-0.1782
0.7 |2.0673 |-0.1587 |-0.0304
Table 14.2 Coefficients for weight function eq.(14.6).
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15 Double-edge-cracked Brazilian disk

The Brazilian disk test with a double-edge-cracked circular disk is illustrated by Fig. 15.1.

thickness t

Fig. 15.1 Brazilian disk test with double-edge-cracked specimen.

Using the Green's function and the stress distribution given by eqs.(11.2.20) and (11.2.11) the
T-stress was computed for the Brazilian disk test with double-edge-cracked disks. Tables 15.1
and 15.2 contain the data for several angles ® (see Fig. 15.1).

0 0 0 0 0 0 0 0
0.1 2.400 2.671 1.086 | 0.359 { 0.215 | 0.191 | 0.184
02 -1.946 0.900 1.453 | 0.711 | 0458 | 0.413 | 0.399
03 -2.951 -0.917 10.0942 1 0.958 | 0.711 | 0.656 | 0.639
0.4 -3.185 -1.884 ] 0.081 | 1.018 ] 0.946 | 0.907 | 0.893
0.5 -3.226 -2.370 ] -0.716 | 0.867 | 1.129 | 1.142 | 1.143
0.6 -3.190 -2.610 | -1.317 | 0.557 | 1.229 | 1.336 | 1.367
0.7 -3.100 -2.703 -1.72 | 0.177 | 1.232 | 1.459 | 1.531
0.8 -2.955 -2.688 -1.95 | -0.179 | 1.148 | 1.493 | 1.608

Table 15.1 T-stress 7,/c* for the Brazilian disk test (c*=P/(nRt)).
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0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0
-3.075
-8.879
-8.773
-8.009
-7.348
-6.833

-6.42
-6.07

0
1.859
-2.012
-4.696
-5.678
-5.934
-5.924
-5.81
-3.65

0
1.076
1.084
-0.096
-1.584
-2.788
-3.601
-4.10
-4.36

0
0.376
0.756
0.995
0.969
0.649
0.118

-0.484
-1.02

0
0.227
0.509
0.825
1.139
1.403
1.571

1.62
1.56

0
0.203
0.462
0.773
1.123
1.484
1.818
2.08
2.23

0.195
0.447
0.756
1.114
1.504
1.891
223

2.46

Table 15.2 T-stress 7/c* for the Brazilian disk test (c*=P/(rRt)).

Mode-I stress intensity factors computed with the weight function eq.(14.6) and expressed by
the geometric function F are entered in Table 15.3. The geometric function F is defined by

K=c*Fra , o*=P/(nRt)

0
0.1
0.2
03
04
0.5
0.6
0.7

0
-6.189
-4.105
-2.728
-1.901
-1.343
-0.934
-0.615

0
-2.953
-3.312
-2.680
-2.044
-1.541
-1.153
-0.855

0
-0.970
-1.709
-1.989
-1.927
-1.713
-1.469
-1.263

0
-0.304
-0.648
-0.987
-1.274
-1.479
-1.607
-1.705

0
-0.180
-0.399
-0.652
-0.927
-1.212
-1.500
-1.809

0
-0.160
-0.357
-0.590
-0.854
-1.145
-1.459
-1.817

0
-0.154
-0.344
-0.571
-0.832
-1.127
-1.445
-1.817

(15.1)

Table 15.3 Stress intensity factor represented by geometric function F for the Brazilian disk test.
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III RESULTS FOR MIXED BOUNDARY
CONDITIONS

The following sections contain numerical solutions for the T-stress term for plates which are
loaded at the ends by prescribed displacements. The problems are subdivided in:

o Single-edge-cracked components,
- rectangular plates under constant displacement v
- rectangular plates under bending displacement v

- rectangular plates under constant displacements v and v.

e Double-edge-cracked plate,
- rectangular plate under constant displacement v

- rectangular plate under constant displacements v and v.

e Internally cracked plate,
- rectangular plate under constant displacement v

- rectangular plate under constant displacements v and v.
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16 Array of deep edge cracks

Figure 16.1 shows an array of periodical edge cracks. BCM-computations were performed for
an element of periodicity for the special case of a constant remote tensile stress . The
boundary conditions are given by constant displacements v and disappearing shear stresses
along the symmetry lines, i.e.

cd
v=——; 1_=0 for y=%d/2 16.1

Ty e y (16.1)
(£ =E for plane stress and E' = E/( 1-v2) for plane strain, = Young's modulus, v = Poisson's
ratio) as illustrated in Fig. 16.2. The coefficient A*; is shown in Fig. 16.3a as a function of
the ratio d/a for different relative crack lengths o. = a/W. The result can be summarised as

A* =0148 | d/a<l5 (16.2)
—

-
— 1
—

<—a“>?

R

W

Fig. 16.1 Periodical edge cracks in an endless strip.

The coefficient A, is plotted in Fig. 16.3b in the normalised form
A, = 64w I d (16.3)

For all values oo=a/W investigated it was found

~

4, =1000+ 0002 (16.4)

resulting in the stress intensity factor solution
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K, =cd/2 (16.5)
(see e.g. [33]). The T-stress term is

T'=-0592c (16.6)
and the biaxiality ratio B according to eq.(2.12) results as

B=—1484a/d (16.7)

f T=0 v=const
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0.148 1,05
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Fig. 16.3 a) Influence of the geometric data on the first regular term of the Williams stress function A*;, b)
Coefficient 4, in the normalisation A= 6A,NTW | d .

99



17 Single-edge-cracked plate

17.1 Mixed boundary conditions at the ends

Whereas stress intensity factors for some special crack problems (e.g. semi-infinite crack in a
strip of finite height [33]) are available in literature, there is a lack in solutions for the T-
stress term in case of displacement-controlled loadings. Such solutions would be of special
interest for thermal crack problems.

The single-edge-cracked plate under displacement-controlled loading is shown in Fig. 17.1.1.
In Fig. 17.1.1a the plate i1s extended in y-direction by a constant displacement v. The related
stress in the uncracked plate is for plane stress conditions

v
c,=—FL 17.1.1
0= (17.1.1)
(£=Young's modulus). For plane strain conditions see Section 20. As the second condition
disappearing shear tractions at the ends of the plate may be prescribed leading to a mixed
boundary problem. The equivalent description of the crack problem is shown in Fig. 17.1.1b,
where the crack faces are loaded by o, and displacements at the ends of the plate are sup-

pressed (v=0).

— _ b) =0 v=0
a T=0 v=const
) [ E -------------- ' ///{/////‘/////‘/%W{////////////‘//////‘/////%
Y
Gy

2H Pretrttt

______________________________ | a

l W. - OHONONONONONe
0777777 77

Fig. 17.1.1 Edge-cracked plate under displacement boundary conditions, a) loading by constant displacements
v at the plate ends, b) equivalent crack face loading resulting from the superposition principle.

Results for stress intensity factors are illustrated in Fig. 17.1.2a in the form of the geometric
function F with o* =0,. Boundary Collocation results are entered as circles. For H/W<0.5 a
simple representation of the results is given by [10]
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;
H Ta

F= —tanh”’(l.lZlS = =22 17.1.2
,/m ‘/H' , ( )

This solution is indicated by the curves in Fig. 17.1.2a. Figure 17.1.2b illustrates the resulting
T-stress normalised to 6. In the case of H/W=0.25, the T-stress is nearly constant within the
range of 0.4 <a/W<0.7. In order to allow interpolations, Tables 17.1.1 and 17.1.2 provide
single values.

a) b)
T
F 1.2+ GO
04}
a‘a‘:/lf/
%o
0.6}
0.8}
T
09" 02 04 06 08 1 0 02 04 06 08 1
a/W a/WW

Fig. 17.1.2 Results of BCM computations; a) stress intensity factor, expressed by F' (symbols; BCM results,
curves: eq.(17.1.2)), b) T-stress (symbols as in a)).

a) b)
3F L
F T 4 HW=0.25
| 025 0.50 O, |
25 0
i 3r 0.50
stress L
2r conditions |
2
1.5 I stress
3 1 ( conditions
1 displacement
conditions 0 displacement
057 conditions
| HW=0.25 050
% 02 04 06 08 1 o 02 04 06 08 1
a/Ww a/W

Fig. 17.1.3 Comparison of solutions for constant normal tractions and constant displacements at the plate ends;
a) geometric function for stress intensity factor, b) T-stress.
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Figure 17.1.3 gives a comparison between the stress intensity factor and T-stress solutions for
the stress conditions of (o, =0, 14,=0 at y=H) and the results obtained with the displacement
condition (v=const., 1,,=0 at y=H) for H/W=0.25 and H/W=0.5.

Strong deviations of the results are obvious from Fig. 17.1.3. Whereas the geometric
functions F for the stress boundary conditions increase monotonically with increasing a/W,
the geometric function for the displacement boundary conditions decreases with a/W. This
result illustrates that the application of the correct boundary conditions is necessary to
compute the fracture mechanics parameters for a given crack problem.

As a second displacement condition, the case of prescribed bending displacements

H( x)
v=o,—|1-2— 17.1.3
GOE W ( )

is considered with the outer fibre tensile stress o, in the uncracked plate. The results obtained
for this type of loading are compiled in Tables 17.1.3 and 17.1.4. Higher order coefficients of
the Williams stress function are entered in Tables 17.1.5-17.1.8

0.00 1.1215 1.1215 | 1.1215 | 1.1215 | 1.1215
0.25 0.558 0.794 | 0.938 | 1.030 | 1.094
0.3 0.510 0.726 | 0.883 | 0.992 | 1.071
0.4 0.445 0.627 | 0.782 | 0.909 | 1.012
0.5 0.399 0.561 | 0.701 | 0.826 | 0.937
0.6 0.364 0.515 | 0.638 | 0.750 | 0.855
0.7 0.338 0.481 | 0.588 | 0.684 | 0.774
0.8 0.318 0.453 | 0.548 | 0.629 | 0.704

Table 17.1.1 Geometric function F for stress intensity factor solution (edge-cracked plate).

0.00 -0.526 -0.526 | -0.526 | -0.526 | -0.526
0.25 -0.536 -0.448 | -0.467 | -0.490 | -0.509
0.3 -0.564 -0.460 | -0.462 | -0.484 | -0.503
0.4 -0.587 -0.505 | -0.481 | -0.490 | -0.498
0.5 -0.592 -0.555 | -0.530 | -0.525 | -0.521
0.6 -0.594 -0.606 | -0.596 | -0.583 | -0.567
0.7 -0.600 -0.662 1 -0,674 | -0.661 | -0.641
0.8 -0.634 -0.735 | -0.774 | -0.776 | -0.768

Table 17.1.2 T-stress data 7/o, (edge-cracked plate).
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0.00 -0.469 -0.469 | -0.469 -0.469 -0.469
0.25 -0.961 -0.564 | -0.498 | -0.476 | -0.465
0.3 -1.106 -0.634 | -0.523 | -0.488 | -0.470
0.4 -1.319 -0.805 | -0.615 | -0.539 | -0.492
0.5 -1.484 -0.989 | -0.756 | -0.636 | -0.556
0.6 -1.632 -1.177 | -0.934 { -0.777 | -0.663
0.7 -1.775 -1.376 | -1.146 | -0.966 | -0.828
0.8 -1.994 -1.623 | -1.412 | -1.234 | -1.091

Table 17.1.3 Biaxiality ratio p (edge-cracked plate).

0.3 -0.0737
0.4 -0.0744
0.5 -0.0744
0.6 -0.0744
0.7 -0.0748
0.8 -0.0760

Table 17.1.4 Coefficient 4, for v=const. (edge-cracked plate).

0.3 0.2775 0.1945 | 0.1669
0.4 0.2523 0.1752 ] 0.1450
0.5 0.2464 0.1630 | 0.1364
0.6 0.2468 0.1589 { 0.1281
0.7 0.2544 0.1613 | 0.1156
0.8 0.2834 0.1664 | 0.1024
Table 17.1.5 Coefficient 4 *, for v=const. (edge-cracked plate).

03 | -0.1052 |-0.0785 |-0.0356
0.4 -0.0900 | -0.0610 |-0.0340
0.5 0.0886 -0.0468 |-0.0166
0.6 -0.0895 -0.0343 } 0.0123
0.7 -0.0919 | -0.0111 { 0.0649
0.8 -0.0806 0.0590 | 0.192

Table 17.1.6 Coefficient 4, for v=const. (edge-cracked plate).
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0.3 -0.1880 | -0.1082 |-0.1501
0.4 -0.1282 | -0.0685 |-0.0758
0.5 -0.1091 | -0.0498 |-0.0635
0.6 -0.1017 | -0.0394 {-0.0870
0.7 -0.0836 | -0.0577 | -0.153
0.8 -0.0736 | -0.1636 | -0.380

Table 17.1.7 Coefficient 4*, for v=const. (edge-cracked plate),

0.00 1.1215 1.1215 | 1.1215 | 1.1215 | 1.1215
0.2 0.431 0.639 | 0.740 | 0.798 | 0.829
03 0.250 0412 | 0.531 | 0.614 | 0.677
0.4 0.129 0.238 | 0344 | 0.432 [ 0.503
0.5 0.035 0.102 | 0.186 | 0.262 | 0.330
0.6 -0.041 -0.008 | 0.050 [ 0.109 | 0.164
0.7 -0.105 -0.103 | -0.070 | -0.032 | 0.007
0.8 -0.162 -0.188 | -0.183 | -0.168 | -0.148

Table 17.1.8 Geometric function F for bending displacements (edge-cracked plate).

0.00 | -0526 |-0526]-0.526|-0.526 ] -0.526
02 | -0.165 |-0.121-0.146 | -0.165 | -0.182
03 | -0072 | 0033 | 0033 | 0.016 | 0.003
0.4 0.040 | 0.161 | 0.184 | 0.176 | 0.171
0.5 0.158 | 0282 | 0318 | 0323 | 0326
0.6 0276 | 0402 | 0.446 | 0.462 | 0.476
0.7 039 | 0525 | 0580 | 0.608 | 0.631
0.8 0.525 | 0662 | 0.741 | 0.790 | 0.828

Table 17.1.9 T-stress data 7/o, for bending displacements (edge-cracked plate).
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0.00 -0.469 -0.469 | -0.469 | -0.469 | -0.469
0.2 -0.383 -0.189 | -0.197 | -0.207 | -0.219
03 -0.288 0.080 | 0.062 | 0.026 | 0.004
0.4 0310 0.676 | 0.535 | 0.407 | 0.340
0.5 4.514 2,765 | 1.710 { 1.233 | 0.988
0.6 -6.732 -0.020 | 892 [ 4.238 | 2.902
0.7 -3.771 -5.097 | -8.285 | -1.906 | 90.14
0.8 -3.241 -3.521 | -4.050 | -4.702 | -5.590

Table 17.1.10 Biaxiality ratio § for bending displacements (edge-cracked plate).

0.3 0.0170 0.0406 | 0.0487
0.4 0.0318 0.0534 | 0.0674
0.5 0.0466 0.0647 | 0.0822
0.6 0.0615 0.0757 | 0.0959
0.7 0.0764 0.0870 | 0.1107
0.8 0.0917 0.0997 | 0.1304
Table 17.1.11 Coefficient 4, for bending displacements.

03 -0.0206 [-0.0843(-0.1074
0.4 -0.0768 {-0.1107]-0.1344
0.5 -0.1264 |[-0.1318]-0.1512
0.6 -0.1754 |-0.1518}-0.1681
0.7 -0.2255 {-0.1759{-0.1960
0.8 -0.2849 |[-0.2177]-0.2560

Table 17.1,12 Coefficient A* for bending displacements.
A weight function for the crack problem illustrated in Fig. 17.1.1 has been given in [34] as

h:AE{—lzﬂu)iCn(l—p)"“”} , p=x/a (17.1.4)

Vnal_\/l_p n=1
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with the coefficients C, compiled in Table 17.1.13. In order to allow wide range
interpolations of the weight function it is of advantage to know also the solution for the limit

case H/W—0 which may be approximated by [10]

2 1 a\’ 2 a 3 3
h:x/n:a-_—m{l-z(g) (1-p) }exp(sg(l-p)—(a/m (-p7) (17.15)

0.25

0.50

1.00

-1.6924
0.4181
0.8616
-0.7010
-0.7560
0.0813
0.5542
-0.3818
0.1158
0.1943
0.4413
-0.3196

-2.3107
1.1296
1.0018
-0.9450
-1.0480
0.0515
0.6190
-0.4584
-0.1735
0.1825
0.4832
-0.3369

-2.9654
2.3576
0.4213
-0.9149
-1.3366
0.1397
0.6893
-0.5345
-0.4305
0.1079
0.5914
-0.3962

-3.6544
4.15225
-1.1047
-0.4561
-1.5870
0.3347

0.7303

-0.6192
-0.6369
-0.0455
0.7634

-0.4931

-4.3576
6.4217
-3.5700
0.4673
-1.8665
0.3478
1.3338
-0.9558
-0.7176
-0.4514
1.1138
-0.6423

-50441
9.0209
-6.7893
1.7795
-2.2770
0.0345
3.0820
-1.7863
-0.5953
-1.3617
1.8879
-0.9200

Table 17.1.13 Coefficients for the weight function representation eq.(17.1.4).
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17.2 Pure displacement conditions at the plate ends

{ u=0 v=const

oo |
£

Yi

Fig. 17.2.1 Edge crack under pure displacement boundary conditions.

In the loading situation illustrated in Fig. 17.2.1 the displacements v are also kept constant.
Since a rigid body motion has no influence on the stresses we restrict the considerations to the
case U = 0. T-stress solutions for several Poisson's ratios v are compiled in Tables 17.2.1-
17.2.3, normalised on the characteristic stress

o, :%—E (17.2.1)

Geometric functions F for stress intensity factors, defined by

K =oF+na, (17.2.2)

are represented in Tables 17.2.1-17.2.3. An impression of the influence of the Poisson's ratio
on the geometric function is shown in Fig. 17.2.2.

For short plate heights a simple representation of geometric functions has been given in [10]

¥
F:J—Ig— tanh"” (1.1215 /”—a‘ oy =22 (17.2.3)
a H

This relation represents the data of Table 1 with maximum deviations of less than 1.5% for
H/W<0.5 and less than 2.5% for H/W=0.75.

Results obtained for pure displacement boundary conditions are compiled in Tables 2 and 3.
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Fig. 17.2.2 Influence of Poisson's ratio v on geometric function F for stress intensity factor.

0 1.1215
03 10512 0.516 |0.524 |0.537 }0.555
04 10444 10447 [0.455 10.466 |0.482
0.5 10398 10.401 10.407 10.417 }0.430
0.6 ]0.364 0367 |0.372 10.380 [0.390
0.7 10.338 0.341 (0.345 10.351 [0.358
0.8 (0318 0.320 [0.322 10.326 |0.330
Table 17.2.1 Geometric function for H/W=0.25.

0 1.1215
03 10727 [0.730 |0.736 (0.744 10.754
04 {0.630 ]0.636 [0.643 [0.652 ]0.664
0.5 10563 ]0.568 |0.575 |0.584 |[0.595
0.6 |0.516 0.520 ]0.525 {0.532 (0.540
0.7 0480 ]0.482 |0.485 |0.490 [0.496
0.8 10451 [0.452 [0.453 [0.455 |0.458

Table 17.2.2 Geometric function for H/W=0.5.

108




0 1.1215
03 10993 ]0.994 [0.996 |[1.000 |[1.005
04 10909 (0911 {0914 {0918 [0.924
0.5 10827 }0.828 [0.831 [0.835 |0.840
0.6 10751 10.752 [0.754 |0.757 [0.762
0.7 10.684 [0.685 [0.686 |0.688 10.692
0.8 10629 ]0.629 }0.630 |0.632 [0.635

Table 17.2.3 Geometric function for H/W=1.0,

0 -0.526
03 -0.547 |-0.522 [-0.506 |-0.498 |-0.499
04 [-0.577 |-0.547 1-0.525 [-0.511 [-0.505
0.5 -0.590 }-0.563 |-0.544 }-0.533 [-0.529
0.6 [-0.599 [-0.579 [-0.568 {-0.565 [-0.570
0.7 |-0.614 |-0.607 |-0.605 [-0.608 [-0.616
0.8 1-0.651 [-0.653 |-0.659 |-0.669 [-0.682
Table 17.2.4 T/o, for H/W=0.25.

0 -0.526
03 |-0.468 |-0.479 [-0494 [-0.513 |-0.535
04 [-0.509 [-0.518 |-0.531 [-0.549 [-0.571
0.5 [-0.557 [-0.564 |[-0.575 {-0.591 [-0.611
0.6 |-0.608 1-0.614 |-0.623 [-0.635 [-0.651
0.7 |-0.664 |-0.668 |-0.674 |-0.684 [-0.696
0.8 [-0.740 [-0.740 [-0.742 (-0.747 [-0.754
Table 17.2.5 T/o, for H/W=0.5.

0 -0.526
0.3 |[-0.484 |-0.488 [-0.494 |-0.501 |-0.510
0.4 [-0.492 1-0.497 [-0.504 }|-0.512 ]-0.521
0.5 |[-0.526 |-0.531 |-0.538 [-0.546 |-0.555
0.6 |[-0.583 |-0.587 [-0.592 |-0.599 |-0.607
0.7 |-0.661 |-0.664 [-0.668 [-0.673 |-0.678
0.8 |-0.776 |-0.776 |-0.779 |-0.784 |-0.791
Table 17.2.6 T/c, for H/W=1.0.
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-0.0752

-0.0761
-0.0762
-0.0763
-0.0767

-0.0771

-0.0815
-0.0817
-0.0817
-0.0817
-0.0815
-0.0799

-0.0868
-0.0863
-0.0859
-0.0850
-0.0818

20.0871

-0.0944
-0.0933
-0.0922
-0.0911
-0.0891
-0.0839

Table 17.2.7 Coefficient A; for H/W=0.25.

0.3
0.4
0.5
0.6
0.7
0.8

-0.0489
-0.0509
-0.0528
-0.0538
-0.0536
-0.0506

-0.0518
-0.0531
-0.0544
-0.0549
-0.0539
-0.0503

-0.0551
-0.0558
-0.0564
-0.0562
-0.0545
-0.0501

-0.0589
-0.0589
-0.0588
-0.0578
-0.0552
-0.0500

-0.0632
-0.0625
-0.0616
-0.0596
-0.0562
-0.0501

Table 17.2.8 Coefficient A; for H/W=0.5.

0.3
04
0.5
0.6
0.7
0.8

-0.0356
-0.0298
-0.0265
-0.0234
-0.0188
-0.0106

-0.0363
-0.0302
-0.0269
-0.0236
-0.0189
-0.0105

-0.0370
-0.0310
-0.0274
-0.0239
-0.0190
-0.0106

-0.0378
-0.0321
-0.0280
-0.0243
-0.0192
-0.0108

-0.0387
-0.0326
-0.0286
-0.0248
-0.0195
-0.0112

Table 17.2.9 Coefficient A, for H/W=1.0.

0.4
0.5
0.6
0.7
0.8

0.2742
0.2532
0.2466
0.2472
0.2552
0.2778

0.2626
0.2494
0.2489
0.2555
0.2673
0.2868

0.2559
0.2506
0.2561
0.2672
0.2815
0.2951

0.2542
0.2568
0.2682
0.2822
0.2978
0.3027

0.2574
0.2679
0.2852
0.3006
0.3163
0.3095

Table 17.2.10 Coefficient A*, for H/W=0.25.
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03 0.1936 {0.1953 |0.1993 |0.2056 |0.2141

0.4 10.1744 10.1759 {0.1790 [0.1837 [0.1899

0.5 0.1647 10.1672 [0.1706 10.1749 {0.1801

0.6 10.1611 [0.1635 |0.1663 [0.1695 |0.1731

0.7 10.1628 |0.1632 |0.1637 [0.1643 |0.1649

0.8 ]0.1726 [0.1699 |0.1672 [0.1645 |0.1619
Table 17.2.11 Coefficient A*, for H/W=0.5.

0.3
0.4
0.5
0.6
0.7

0.8

0.1684
0.1455
0.1363
0.1280
0.1171
0.1058

0.1713
0.1468
0.1363
0.1271
0.1155
0.1066

0.1743
0.1486
0.1367
0.1265
0.1144
0.1073

0.1775

0.1509
0.1375
0.1263
0.1138
0.1078

0.1809

0.1536
0.1386
0.1264
0.1136
0.1081

Table 17.2.12 Coefficient A*, for H/W=1.0.
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18 The double-edge-cracked plate

18.1 Mixed boundary conditions at the end

The double-edge-cracked plate under displacement-controlled loading is shown in Fig.
18.1.1. Results for stress intensity factors (expressed by F)) are illustrated in Fig. 18.1.1a. Also
in this case the curves introduced are described by eq.(18.1.1). The numerical data are
represented well up to H/W=0.5 by

Y
F:‘ﬁimmw(umaﬂﬂ , Yy =22 (18.1.1)
na H

with a maximum deviation of less than 3%. For the characteristic stress o*=c, see
eq.(17.1.1). Figure 18.1.2 represents the resulting T-stress.

=0
e
3 | )
|
|
|
2W—e |

Fig. 18.1.1 Double-edge-cracked plate under mixed boundary conditions

0.00 -0.526 -0.526 | -0.526 | -0.526 | -0.526
0.3 -0.5632 | -0.456 | -0.443 | -0.455 | -0.471
0.4 -0.5872 | -0.494 | -0.434 { -0.423 | -0.433
0.5 -0.5919 [ -0.530 | -0.437 | -0.396 | -0.396
0.6 -0.5922 | -0.546 | -0.436 | -0.369 | -0.359
0.7 -0.5903 | -0.534 | -0.417 | -0.336 | -0.315
0.8 -0.5740 | -0.480 | -0.370 | -0.290 | -0.290

Table 18.1.1 T-stress data 7/o, for the double-edge-cracked plate.
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Fig. 18.1.2 Results of BCM computations for the double-edge-cracked plate; a) stress intensity factor,
expressed by the geometric function F (symbols: BCM results, curves: eq.(8)), b) T-stress (symbols as in a)).

0.00 1.1215 1.1215 | 1.1215 | 1.1215 ] 1.1215
0.3 0.5104 0.726 | 0.868 | 0.940 | 0.976
0.4 0.4446 0.625 | 0.764 | 0.853 | 0.905

0.5 0.3987 0.557 | 0.680 | 0.772 | 0.834
0.6 0.3641 0.508 | 0.614 | 0.703 | 0.772
0.7 0.337 0.468 | 0.563 | 0.648 | 0.722
0.8 0314 0.480 | 0.527 | 0.612 | 0.693

Table 18.1.2 Geometric function F for the double-edge-cracked plate.

0.0 20469 | -0.469 | -0.469 | -0.469 | -0.469

0.3 -1.103 -0.628 | -0.510 | -0.484 | -0.483
0.4 -1.321 -0.790 | -0.568 | -0.496 | -0.478
0.5 -1.485 -0.952 | -0.643 | -0.513 | -0.475
0.6 -1.626 -1.075 | -0.710 | -0.525 [ -0.465
0.7 -1.752 -1.141 | -0.741 | -0.519 | -0.436
0.8 -1.828 -1.00 | -0.702 | -0.474 | -0.418

Table 18.1.3 Biaxiality ratio p for the double-edge-cracked plate.
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0.3
0.4
0.5
0.6
0.7
0.8

-0.0737
-0.0744
-0.0743
-0.0742
-0.0740
-0.0726

-0.0457
-0.0744
-0.0504
-0.0509
-0.0501
-0.0495

-0.0387]-0.0386 | -0.0397
-0.0364 [ -0.0335 | -0.0342
-0.0366 | -0.0314 | -0.0315
-0.03721-0.0313 | -0.0311
-0.0383 | -0.0334 | -0.0337
-0.0424 | -0.0409 | -0.0433

Table 18.1.4 Coefficient 4, for the double-edge-cracked plate.

03
0.4
0.5
0.6
0.7
0.8

0.2776
0.2522
0.2461
0.2449
0.2420
0.2220

0.1913
0.2523
0.1470
0.1266
0.1027
0.0697

0.1543 | 0.1426 | 0.1368
0.1245 | 0.1021 | 0.0960
0.1044 | 0.0772 | 0.0676
0.0841 | 0.0573 | 0.0465
0.0610 | 0.0394 | 0.0303
0.0371 | 0.0236 | 0.0200

Table 18.1.5 Coefficient 4*, for the double-edge-cracked plate.

03
0.4

0.6
0.7
0.8

05 |-

-0.1054

-0.0899
-0.0885
-0.0884
-0.0866
-0.0766

-0.0773 | -0.0416
-0.0900 | -0.0291
-0.0432 | -0.0242
-0.0326 | -0.0233
-0.0264 | -0.0312
-0.0362 | -0.0694

Table 18.1.6 Co

efficient A4,.

0.3
0.4
0.5
0.6
0.7
0.8

-0.113 | -0.159
-0.128 | -0.088
-0.067 | -0.058
-0.065 | -0.047
-0.074 | -0.041
-0.091 | -0.032
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18.2 Displacement boundary conditions at the ends

The T-stress, geometric function and the higher coefficients 4, and A*, for the double-edge-
cracked rectangular plate under pure displacement conditions at the plate ends are given in
Tables 18.2.1-18.2.14.

vy us0
V{' % | i
|
|
M o
|
- 2W

Fig. 18.2.1 Double-edge-cracked plate under displacement boundary conditions.

0 -0.526
0.3 [-0.5460 |-0.5152 [-0.4915 [-0.4749 |-0.4654
0.4 |-0.5744 [-0.5337 |[-0.4997 |-0.4724 |[-0.4517
0.5 [-0.5845 |-0.5404 {-0.5024 |-0.4705 ]-0.4448
0.6 [-0.5856 |-0.5412 |-0.5030 |-0.4709 |-0.4449
0.7 1-0.5794 |-0.5375 |[-0.5021 [-0.4732 [-0.4507
0.8 [-0.5578 |-0.5232 [-0.4953 [|-0.4741 [-0.4596

Table 18.2.1 T-stress T/, for H/W=0.25.

0 1.1215
0.3 [0.5119 |0.5156 |0.5243 }10.5381 |0.557

0.4 10.4443 [0.4471 ]0.4549 [0.4677 |0.4854
0.5 10.3982 [0.4003 ]0.4071 ]0.4185 [0.4346
0.6 103637 10.3656 [0.3717 [0.3821 10.3967
0.7 [0.3365 [0.3384 |0.3441 [0.3536 |0.3670
0.8 10.3137 [0.3159 [0.3214 |0.3301 [0.3420

Table 18.2.2 Geometric function F for H/W=0.25.
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0.3 |-0.0752 [-0.0774 |-0.0816 |-0.0879 [-0.0960

04 |-0.0760 |-0.0778 {-0.0816 |-0.0873 |-0.0950

0.5 ]-0.0760 [-0.0778 ]-0.0815 |-0.0872 |[-0.0948

0.6 |-0.0759 |-0.0778 |[-0.0815 |-0.0871 |-0.0947

0.7 |-0.0757 |-0.0777 [-0.0815 [-0.0871 |-0.0944

0.8 |-0.0747 {-0.0770 |-0.0809 |-0.0863 [-0.0932
Table 18.2.3 Coefficient 4, for H/W=0.25.

0.3 ]0.2737 ]0.2568 ]0.2442 |0.2359 ]0.2318
04 10.2518 |0.2412 |0.2355 {0.2347 |0.2387
0.5 10.2432 10.2354 [0.2331 [0.2361 |0.2446
0.6 0.2388 10.2327 [0.2322 {0.2374 |0.2483
0.7 10.2330 |0.2292 |0.2311 |0.2386 |0.2517
0.8 0.2149 0.2156 |0.2214 {0.2324 0.2485

Table 18.2.4 Coefficient A* for H/W=0.25.

0 -0.526
0.3 |-0.456 |-0.458 |-0.466 |-0.481 [-0.502
0.4 |[-0.479 {-0.472 }-0.473 |-0.481 |-0.496
0.5 |-0.502 |-0.488 |-0.481 [-0.482 (-0.491
0.6 |-0.512 |-0.494 ]-0.483 [-0.480 (-0.485
0.7 |[-0.500 [-0.482 [-0.472 |-0.496 |-0.473
0.8 |-0.455 [-0.441 {-0.433 {-0.460 (-0.436

Table 18.2.5 T-stress 7/, for H/W=0.5.

0 1.1215
03 10722 |0.722 |0.725 {0.732 |0.742
04 (0625 [0.629 0.637 |0.649 |0.666
0.5 10.558 [0.563 [0.573 [0.587 }0.605
0.6 10509 [0.515 ]0.524 [0.538 [0.555
0.7 0469 [0.475 |0.484 |0.496 |0.512
0.8 10.437 [0.441 |0.449 [0.460 [0.474

Table 18.2.6 Geometric function F for H/iW=0.5,
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03
0.4
0.5

0.6
0.7
0.8

-0.0439
-0.0506
-0.0519
-0.0523
-0.0518

-0.0515

-0.0529
-0.0534
-0.0541
-0.0542
-0.0539
-0.0532

-0.0578
-0.0574
-0.0575
-0.0572
-0.0564
-0.0556

-0.0638
-0.0626
-0.0620
-0.0613
-0.0592
-0.0587

-0.0711
-0.0690
-0.0676
-0.0664
-0.0646
-0.0624

Table 18.2.7 Coefficient 4, for H/W=0.50.

03
0.4
0.5
0.6
0.7
0.8

0.1808
0.1550
0.1368
0.1207
0.1012
0.0716

0.1726
0.1460
0.1302
0.1173
0.1007
0.0727

0.1678
0.1398
0.1261
0.1162
0.1022
0.0753

0.1664
0.1364
0.1245
0.1174
0.1058
0.0793

0.1683
0.1357
0.1254
0.1210
0.1114
0.0847

Table 18.2.8 Coefficient 4 *, for H/W=0.50.

0.3
0.4
0.5
0.6
0.7
0.8

-0.526
-0.460
-0.434
-0.411
-0.385
-0.351
-0.302

-0.473
-0.446
-0.425
-0.399
-0.364
-0.316

-0.486
-0.460
-0.441
-0.416
-0.379
-0.329

-0.498
-0.477
-0.460
-0.436
-0.398
-0.342

-0.509
-0.497
-0.482
-0.459
-0.419
-0.354

Table 18.2.9 T-stress 7/o, for H/W=1.0.

0 1.1215

0.3 10925 10918
04 ]0.841 }0.839
0.5 10.767 |0.769
0.6 [0.703 ]0.708
0.7 ]0.653 0.658
0.8 10.619 0.627

0.913
0.840
0.774
0.715
0.666

0.634

0.911 0912
0.844 10.851
0.781 10.791
0.724 10.736
0.676 |0.688

0.642 (0.64%

Table 18.2.10 Geometric function F for H/W=1.0.
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0.3 |-0.0409 |-0.0433 |-0.0459 |[-0.0488 |-0.0520
0.4 [-0.0371 |-0.0395 [(-0.0422 {-0.0452 |-0.0484
0.5 |-0.0354 |-0.0377 |-0.0403 [-0.0432 |-0.0463
0.6 |-0.0351 |-0.0371 |[-0.0395 |[-0.0422 |-0.0452
0.7 |-0.0367 }-0.0384 |-0.0404 |-0.0426 |-0.0451
0.8 [-0.0433 1-0.0452 |-0.0469 |-0.0483 |-0.0493

Table 18.2.11Coefficient 4, for H/W=1.0.

0.3 ]0.1456 |0.1477 |0.1521 [0.1589 }0.1681

0.4 10.1047 |0.1082 |0.1128 |0.1185 ]0.1252
0.5 10.0783 |0.0806 [0.0840 |0.0883 0.0937
0.6 0.0575 |0.0592 |0.0616 |0.0647 }0.0686
0.7 (0.0391 [0.0402 |0.0418 ]0.0439 |[0.0465
0.8 [0.0239 [0.0245 [0.0252 |0.0259 [0.0266

Table 18.2.12 Coefficient 4*, for H/W=1.0.

0 -0.526
0.3 |-0.477 |-0.490 |[-0.509
04 |-0.442 |-0.462 |-0.488
0.5 |-0.411 |[-0.436 |-0.469
0.6 [-0.377 |-0.404 |-0.432
0.7 |-0.338 |-0.356 [-0.399

Table 18.2.13 T-stress T/c, for H/W=1.25.

0 1.1215
0.3 10964 [0.954 [0.958
04 0895 [0.894 [0.904
0.5 10.829 |[0.833 |0.847
0.6 0770 [0.779 {0.795
0.7 [0.724 }0.733 [0.752

Table 18.2.14 Geometric function F for H/W=1.25.
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19 Internally cracked plate

19.1 Mixed boundary conditions at the ends

The T-stress, geometric function and the higher coefficients 4, and 4*, for the internally
cracked rectangular plate under mixed boundary conditions at the plate ends are given in
Tables 19.1.1-19.1.7. The characteristic stress o, is defined according to eq.(17.1.1).

]
§ _Y

Fig. 19.1.1 Internally cracked plate with mixed boundary conditions at the ends.

0.00 1.00 1.00 1.00 1.00 1.00
0.25 0.570 0.790 | 0.889 [ 0937 | 0.959
0.3 0.518 0.735 { 0.852 | 0913 { 0.944
0.4 0.446 0642 | 0778 | 0.860 | 0.907
0.5 0.399 0.573 | 0.737 | 0.805 | 0.865
0.6 0.364 0.523 | 0.652 | 0.751 | 0.823
0.7 0.338 0.485 | 0.603 | 0.702 | 0.778
0.8 0.319 0.455 | 0.562 | 0.667 -

Table 19.1.1 Geometric function F for stress intensity factor solution (intemally cracked piate).
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0.00
0.25
03
0.4
0.5
0.6
0.7
0.8

-1.00
-0.606
-0.596
-0.592
-0.592
-0.594
-0.600
-0.635

-0.740

1,00
-0.932
-0.910
-0.869
-0.840
-0.833
-0.857
-0.98

1,00
-0.964
-0.952
-0.928
-0.912
-0.913
-0.965

Table 19.1.2 T-stress data T/c, (internally cracked plate).

0.00
0.25
03
0.4
05
0.6
0.7
038

-1.00
-1.064
-1.151
-1.327
-1.485
-1.630
-1.777
-1.993

-1.627

1.00
-0.995
-0.997
-1.010
-1.044
1110
11,220
-1.474

21.00
-1.005
-1.008
41,022
-1.054
-1.109
-1.240

Table 19.1.3 Biaxiality ratio  (internally cracked plate).

0.25
0.3
04
0.5
0.6
0.7
0.8

".0.0734

-0.0735
-0.0740
-0.0742
-0.0743
-0.0748
-0.0758

-0.0648

-0.0581
-0.0499
-0.0457
-0.0430
-0.0398
-0.0348

-0.0668

-0.0599
-0.0503
-0.0439
-0.0393
-0.0349
-0.0392

-0.0682

-0.0614
-0.0515
-0.0448
-0.0396
-0.0416

Table 19.1.4 Coefficient 4, for the internally cracked plate.
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025
0.3
0.4
0.5
0.6
0.7
0.8

0.2239
0.2384
0.2454
0.2457
0.2468
0.2544
0.2822

0.0514
0.0699
0.1005
0.1220
0.1385
0.1524
0.1634

0.0167
0.0258
0.0466
0.0675
0.0853
0.1001
0.1222

0.0071
0.0116
0.0232
0.0374
0.0542
0.0721
0.1262

0.0038
0.0063
0.0140
0.0261
0.0428
0.0873

Table 19.1.5 Coefficient A*, for the internally cracked plate.

0.25
0.3
0.4
0.5
0.6
0.7
0.8

-0.087
-0.092
-0.090
-0.089
-0.089
-0.092
-0.079

0.025
0.000
-0.024
-0.032
-0.030
-0.011
0.059

0.057
0.035
0.009
0.000
0.004
0.029
0.109

0.068
0.048
0.026
0.018
0.021
0.049
0.125

0.072
0.053
0.033
0.024
0.028
0.037

Table 19.1.6 Coefficient 4, for the internally cracked plate.

0.25
03
0.4
0.5
0.6
0.7
0.8

-0.035
-0.077
-0.104
-0.106
-0.101
-0.084
-0.072

0.038
0.032
0.014
0.000
-0.011
-0.042
-0.159

0.018
0.020
0.020
0.011
-0.009
-0.052
-0.188

0.008

0.010
0.011

0.007
-0.006
-0.061
-0.276

0.004 |
0.006
0.008
0.007
-0.002
-0.033

Table 19.1.7 Coefficient 4*, for the internally cracked plate.
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19.2 Displacement boundary conditions at the ends

The T-stress, geometric function and the higher coefficients 4; and 4*, for the internally
cracked rectangular plate under pure displacement conditions at the plate ends are given in
Tables 19.2.1-19.2.4. The characteristic stress o, is defined by eq.(17.1.1).

i — v
|

I

|

- IL——~>X 2H
4———23———»
|
l
2W.
f v

Fig. 19.2.1 Internally cracked plate with pure displacement conditions at the ends.

0 -1.000 '

03 [-0.612 }-0.567 |-0.527 [-0.492 |-0.462

0.4 }-0.600 [-0.563 |-0.533 }-0.509 ]-0.491

0.5 [-0.598 [-0.568 |-0.545 [-0.529 [-0.520

0.6 [-0.602 |-0.578 |-0.561 [-0.551 |-0.549
Table 19.2.1 T-stress T/c, for H/W=0.25,

0.3 (0518 |0.519 10.527 }0.541 ]0.561
0.4 10.447 |0.449 |0.456 [0.467 |0.483

0.5 10.399 10.402 [0.408 [0.417 |0.430
0.6 |[0.365 [0.367 [0.372 [0.380 |0.391
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0.3
0.4
0.5
0.6

-1.000
-1.182
-1.343
-1.499
-1.651

-1.090
-1.253
-1.413
-1.575

~1.000
-1.169
-1.336
-1.508

-0.992
-1.090
-1.268
-1.451

-0.825
-1.016
-1.210
-1.404

Table 19.2.3 Biaxiality ratio § for H/W=0.25.

03 |-0.0757
0.4 |-0.0759
0.5 (-0.0761
0.6 |-0.0767

-0.0777
-0.0780
-0.0783
-0.0787

-0.0813
-0.0816
-0.0817
-0.0817

-0.0865
-0.0866
-0.0864
-0.0857

-0.0932
-0.0931
-0.0924
-0.0908

Table 19.2.4 Coefficient 4, for H/W=0.25.

0.3
0.4
0.5
0.6

0.2287
0.2376
0.2411
0.2451

0.2302
0.2386
0.2444
0.2575

0.2380
0.2455
0.2530

0.2740

0.2520
0.2582
0.2668
0.2945

0.2723
0.2768
0.2858

0319

Table 19.2.5 Coefficient A*, for H/W=0.25.

0.3
0.4
0.5
0.6
0.7

-1.000
-0.729
-0.675
-0.660
-0.667
-0.697

-0.697
-0.656
-0.650
-0.665
-0.698

-0.673
-0.643
-0.645
-0.666
-0.701

-0.657
-0.636
-0.645
-0.671
-0.707

-0.648
-0.634
-0.651
-0.679
-0.715

Table 19.2.6 T-stress T/o, for H/W=0.50.

0
0.3
0.4
0.5
0.6
0.7

1.000
0.731 0.735
0.640 |0.642
0.572 |0.574
0.522 10.523
0.484 }10.485

0.745
0.649

0.579

0.527
0.487

V.07

0.490

0.762 10.786
0.661 |0.677
0.587 ]0.599
0.533 10.541
0.495

Table 19.2.7 Geometric function F for H/W=0.50.
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0.3
0.4
0.5
0.6
0.7

-1.000
-0.998
-1.056
-1.152
-1.278
-1.440

-0.949
-1.022
-1.132
-1.269
-1.439

-0.904
-0.991
-1.114
-1.263
-1.439

-0.863
-0.963
-1.099
-1.259
-1.440

-0.825
-0.937
-1.087
-1.257
-1.443

Table 19.2.8 Biaxiality ratio B for H/W=0.50.

0.3
0.4
0.5
0.6
0.7

-0.0586
-0.0548
-0.0541
-0.0542
-0.0540

-0.0597
-0.0561
-0.0554
-0.0552
-0.0543

-0.0614
-0.0579
-0.0571
-0.0565
-0.0549

-0.0637
-0.0601
-0.0591
-0.0580
-0.0557

-0.0665
-0.0628
-0.0614
-0.0597
-0.0567

Table 19.2.9 Coefficient 4, for H/W=0.50,

0.3
0.4
0.5
0.6
0.7

0.0717
0.1000
0.1172
0.1309
0.1499

0.0806
0.1089
0.1257
0.1370
0.1489

0.0904
0.1190
0.1348
0.1433
0.1492

0.1012
0.1303
0.1446
0.1499
0.1509

0.1129
0.1429
0.1550
0.1569

0.1540

Table 19.2.10 Coefficient 4*, for H/W=0.50.

03
0.4
0.5
0.6
0.7
0.8

-1.000
-0.910
-0.871
-0.845
-0.842
-0.872
-0.958

-0.911
-0.870
-0.842
-0.838
-0.867
-0.960

-0.918
-0.873
-0.843
-0.837
-0.864
-0.963

-0.930
-0.880
-0.847
-0.838
-0.863

-0.967

-0.947
-0.892
-0.855
-0.842
-0.865
-0.973

Table 19.2,11 T-stress T/o, for H/W=1.0.
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0 1.000

0.3 10905 ]0.915
0.4 |0.851 |0.857
0.5 [0.795 |0.798
0.6 10.744 10.744
0.7 10.699 ]0.698
0.8 10.666 }0.665

0.929
0.866
0.803
0.746
0.698
0.665

0.948 (0.971
0.879 [0.895
0.811 |0.822
0.750 10.757
0.700 10.703
0.667 10.669

Table 19.2.12 Geometric function F for H/W=1.0.

0.3
0.4
0.5
0.6
0.7
0.8

-1.000
-1.006
-1.024
-1.063
-1.132
-1.247
-1.440

-0.996
-1.015
-1.056
-1.127
-1.242
-1.444

-0.988
-1.008
-1.050
-1.122
-1.238
-1.448

-0.981
-1.002
-1.045
-1.117
-1.234
-1.451

-0.975
-0.997
-1.040
-1.113
-1.231
-1.454

Table 19.2.13 Biaxiality ratio p for H/W=1.0,

0.3
0.4
0.5
0.6
0.7

0.8

-0.0599
-0.0507
-0.0451
-0.0416
-0.0388

-0.0329

-0.0602
-0.0506
-0.0447
-0.0410
-0.0380
-0.0338

-0.0608
-0.0507
-0.0445
-0.0405
-0.0374
-0.0346

-0.0616
-0.0510
-0.0444
-0.0401
-0.0369
-0.0353

-0.0626
-0.0514
-0.0444
-0.0398
-0.0365
-0.0359

Table 19.2.14 Coefficient A, for H/W=1.0.

0.3
0.4
0.5
0.6
0.7
0.8

0.0123
0.0245
0.0402
0.0594
0.0842
0.1202

0.0127
0.0248
0.0399
0.0583
0.0817
0.1227

0.0127
0.0248
0.0395
0.0572
0.0797
0.1252

0.0124
0.0245
0.0389
0.0561
0.0781
0.1278

0.0118
0.0238
0.0381
0.0549
0.0770
0.1304

Table 19.2.15 Coefficient A*, for H/W=1.0.
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20 Poisson's ratio and boundary conditions

As could be seen from the results presented in Section 17, the mixed boundary conditions
yielded results independent of the Poisson's ratio, whereas in case of displacement boundary
conditions at y=H an influence of v is obvious. This behaviour is known for stress intensity
factors [33-38] and will be discussed according to [34] for the T-stress term.

Figure 20.1 illustrates three different loading situations at the ends of a rectangular plate. Pure
stress conditions are represented as case a), mixed boundary conditions as case b) and pure
displacement conditions as case c).

Ty=0 0'.,,=const

D Atppbptatbegt B pR0 vt o [ 50 veconst
yi Y y

2H 2H oM

wa—\;v - a&—+ -~ a— |

I 0 I S .

Fig. 20.1 Edge crack under different boundary conditions; a) pure stress conditions, b) mixed boundary
conditions, c) displacement boundary conditions.

20.1 Influence of v on the Airy stress function

A simple consideration in terms of the Airy stress function may illustrate this. A fracture
mechanics problem is solved if the Airy stress function ® has been determined as the solution
of the biharmonic differential equation

AAD =0 (20.1)

For cracked structures the Airy stress function is of the Williams type [15]. A possible influ-
ence of Poisson's ratio v can only result from the boundary conditions which must be fulfilled
by @. The following considerations are made for plane stress conditions.

The common boundary conditions for all three cases, illustrated in Fig.20.2, are
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v=0 1_=0 forL,

c,=0 1,=0 forL, 202)
c,=0 t,=0 forL, '
c,=0 1,=0 forL,

with the boundaries L, L, L, and L4 shown in Fig. 20.2. The Williams stress function [15]
automatically satisfies the displacement and stress conditions along lines L, and L,.

Fig. 20.2 Notation of boundary lines.

The different conditions at boundary L read for cases a), b) and ¢) in Fig. 20.1

cy‘:oo 1, =0 casea)
=0 caseb) (20.3)
=0 casec)

xy
V=const 7T v
v =const U

Let us use Hooke's relations written in terms of the stress function

2 2
gx:@_zi(a VL cfj (20.4)
ox  E'\ oy Ox
2 2
c, :QZZL(a L cf) (20.5)
oy E'\ox y
1 t
with v={ Vo PERESTER (20.6)
v/(1-v) plane strain

and as an additional relation between the displacements
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with the shear modulus G.

Stress boundary conditions (case a):

From eq.(20.3), expressed by the stress function @

0 0*®
T'\y:O:_axay) O-y:GO:—é;—z—> (208)
we can conclude that this boundary condition only introduces o, into the solution.
Mixed boundary conditions (case b):
Starting with
o*d
1.,=0=- , V=const. 20.9
=022 (209)
we obtain from (20.7) with 6v/0x=0 and 1,,=0:
M_o vy (20.10)
leading to
2 3 3 3 at
o°u :oz_l_(a‘f_v' 5;"]=l(a?+v'—*y) (20.11)
Oxoy E'\ oy ox“oy) E'\ oy Ox
The boundary conditions (20.9), rewritten in terms of the stress function, are given by
3 2
a(f:o, 0% _y (20.12)
oy Oxdy

Since the boundary conditions do not contain v, the stress function for case b) must also be
independent of v.

Displacement boundary conditions (case c):

From (20.4) we obtain with u=const, i.e. ou/0x=0

2 2
ou_ 1 (a ® 0 <D):0 (20.13)

~ 2 VY Lz
ox E'\ oy Ox

providing the boundary condition for ®
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0’0 8D
ayZ =V axZ

= ®=f(v) (20.14)

i.e. the stress function will depend on v.

20.2 Influence of v on the T-stress

From the numerical results we can conclude that the stress intensity factors and weight
functions for mixed boundary conditions at the plate ends (v=const., 1,,=0) are independent
of the Poisson's ratio within the accuracy of the BCM procedure. In case of pure displacement
conditions (v=const., u=const.) an influence of v could be clearly stated.

In order to give a theoretical explanation let us use the Williams expansion [15] for the stress
function @

@ 3
O=c *WY (/W) A,,{cos(n +3)0 - %f—f—cos(n - %)(p}

n=0 -2

+o ¥WEY (r [ W)™ A* [cos(n +2)¢ - cosng] (20.15)
n=0
with polar coordinates 7, ¢ (origin at the crack tip). Since in case of the mixed boundary
conditions this function has to be independent of v for all locations of the component, the
coefficients 4, have to be independent of v. Due to

_1o® 1 0" 0’P 100 10°®

= 4——, O, = T,
"oror r?op’ ot * 2 op rorop

c (20.16)

also the stresses in the component must be independent on v. This especially holds for the
singular stress term, consequently for the stress intensity factor K and for the constant stress
term, the T-stress.

Finally, it should be mentioned that in case of plane strain conditions Poisson's ratio only
affects the results via the characteristic stress c*.
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21 Nomenclature

a Crack length

N
S

Depth of a notch

N
=

Coefficient of the Williams stress function

W
*

=]

Coefficient of the Williams stress function

i

CoefTicient of the Green's function for T-stresses
Spacing of a crack array

Diameter of a disk

S O =

=

Coefficient for weight function representation
Young's modulus

Geometric function for stress intensity factors
Shear modulus

Weight function (Green's function) for stress intensity factors
Height of a rectangular specimen

Stress intensity factor

Length of a small crack ahead of a notch
Length of a 3-point bending bar

Notation of boundaries

Bending moment

Pressure on crack faces

L I RS R N T N o R !

concentrated forces

~

distance from crack tip

=

Radius of a disk, notch root radius

f Weight function (Green's function) for T-stress, thickness of a component
Iy asymptotic part of f (near-tip solution)

T total T-stress, eq.(2.9)

T,  T-stress contribution caused by the crack, eq.(2.11)

7 T-stress contribution caused by the x-stress in the uncracked body, eq.(2.10)

130




[

< T R N

S

Displacements in x-direction
Displacements in y-direction
Width of a rectangular plate
Coordinate parallel to a crack
Coordinate perpendicular to a crack
Complex coordinate (x+iy)
Westergaard stress function
Relative crack length a/W
Biaxiality ratio, eq.(2.12)
Poisson's ratio

Polar angle

constant stresses at the plate ends in case of stress boundary conditions; for
displacement boundary conditions o,=vE/H

characteristic stress

Normal tractions

Shear stresses

Airy stress function, Williams stress function

Angle between crack and force in a Brazilian disk test
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