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Abstract 

A one-dimensional model of ion diodes with applied magnetic field was 
developed based on a perturbation analysis using the Hamitton function for 
particles and the Vlasov-Maxwell model for the plasma. The Desjarlais 1 dim 
model was used as initial approximation. First and second order corrections to 
the 1 dim solution are used for calculating the focal distance of an ion beam. 

The gap between the anode and the cathode is considered as a lens that 
distorts slightly the ion trajectories. The magnetic field generated by the electric 
current of the diode causes beam focusing. The effect is shown to be of the order 
of (V/c)2 << 1 with Vi the velocity of accelerated ions and c the velocity of light. 
Distortion of the virtual cathode due to the diamagnetic current of the ExB 
electron drift causes an additiünal focüsing of the order of ( vdc)2 << 1 with v0 the 
characteristic drift velocity. 

From the analysis it. is concluded that the 1 dim approach is quite 
adequate for applied-B diodes as long as only the above mentioned focusing 
mechanisms are most important. Thus a 2 dim numerical simulation may focus 
mainly on the investigation of small scale turbulent perturbations caused by 
instabilities in the gap. 

Zusammenfassung 

Ein Linsenmodell für fremdmagnetisch isolierte Ionendioden 

Für fremdmagnetisch isolierte Ionendioden wurde ein 1 dim Modell entwickelt. 
Teilchen werden mit der relativistischen Hamiltonfunktion, Plasma mit dem 
Maxwell Vlasov Modell beschrieben. Näherungslösungen erster und zweiter 
Ordnung werden zur Berechnung der Ionenstrahlfokuslänge benützt. Das 1 dim 
Desjarlais Modell wird als Ausgangspunkt verwendet. 

Der Spalt zwischen der Anode und der Kathode wirkt als Linse welche die 
Ionenbahnen schwach stört. Das Magnetfeld erzeugt durch den Diodenstrom 
bewirkt eine Strahlfokusierung proportional zu ( v/c)2 « 1 mit Vi die 
Ionengeschwindigkeit und c die Lichtgeschwindigkeit. Die Störung der virtuellen 
Kathode durch den diamagnetischen Strom der Elektronen ExB Drift bewirkt 
einen weiteren Fokussierungseffekt. Dieser ist proportional zu ( vo/c}2 « 1 mit v0 
der charakteristischen Elektronendriftgeschwindigkeit 

Die durchgeführte Analyse und die erhaltenen Resultate zeigen, daß das 1 dim 
Modell für fremdmagnetisch isolierte Dioden ausreichend ist, solange die beiden 
oben genannten Fokussierungseffekte wichtig sind. Eine 2 dim numerische 
Simulation kann damit auf die Untersuchung turbulenter Störungen im 
Diodenspalt verursacht durch lnstab11itäten beschränkt werden. 
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1. INTRODUCTION 

Essentially two theories are available for describing the operation of a diode 
principally: the first one of M. Desjarlais [1] and the second one of A.V. Gordeev and A.V. 
Grechikha [2]. Numerical codes for detailed calculations based mainly on the Partide In Cell 
simulation (PIC method) ofVlasov-Maxwell equations arealso available [3]- [5]. In order to 
demonstrate the current state of diode investigations a short revue of these publications is 
given below. 

The principal scheme of the diode is shown in Fig. 1 in the Cartesian x- and z­
coordinates. In the perpendicular y-direction translation symmetry is assumed. Such plane 
approximation is rather usual for analytical models of both 'extraction' and 'radial' diode. 
Magnetic lines ofthe extemal field Bapp belong to the xz-plane. The anode is located at x = 0. 
The cathode of size L is located between the two tips at z = ±L/2. If voltage between the 
anode and cathode is applied then an ion beam is produced at the anode and a virtual cathode 
arises between the sharp ends of the tips. The virtual cathode consists of electrons which are 
produced from the tips of height h by means of field emission at x = !. 

In Ref. [1] an idealized 1 dim model of the diode is considered. Ions are produced at 
the anode and are accelerated by the electric field. The electron density in the gap is assumed 
to be constant. The model explains the behavior of the diode in the frame of a quasi-stationary 
approach. Current collapse was predicted after the diode voltage reaches the value 
(/Ja = (5/9)Aa with Aa the vector potential at the anode. Magnetic self focusing was not 
modeled. The diamagnetic shift of the virtual cathode towards the anode surface was taken 
into account. The crossed magnetic and electric fields cause an ExB electron drift. Thus an 
additional electric current arises along the y-axis. This current changes the applied magnetic 
field non-homogeneously resulting in a pressure gradient which pushes the virtual cathode to 
the anode. However distortion of the virtual cathode was not modeled. Therefore diamagnetic 
focusing of the ion beam was not obtained. The turbulent behavior of the electrons as well as 
effects of plasma pressure are not considered in this model. This theory claims to describe the 
diode behavior before the voltage peak. 

In Ref. [2] a turbulent distribution of magnetized electrons in the anode-cathode gap is 
considered in order to explain the unstable behavior of the diode in experiments just after the 
peak phase. The turbulence is a consequence of the development of the diocotron instability. 
Using the drift approximation for electrons and assuming a small field emission rate at the 
virtual cathode it was concluded that for 1 dim geometry the only adiabatic invariant Blne 
should be important for the electron distribution function. Thus the main principal 
development compared to Ref. [1] is the calculation ofthe density behavior. 

The numerical code KADI2D [3] at FZK is still rather preliminary. A direct 
simulation of turbulent processes is under devclopmcnt. One of already developed parts of 
this code is a computational grid generator allowing to map realistic 2 dim geometrical 
configuration ofthe gap onto some regular data structure. Another developed part is the solver 
ofthe Vlasov-Maxwell problern on the base ofthe PIC and the Finite Volume (FV) methods. 

In Ref. [4] the plasma evolution in the diode with resistive anode plasma layer is 
considered using a 2 dim PIC code in order to demonstrate the electron sheath collapse. The 

1 



ion beam was ignored and the anode plasma resistivity was assumed to be constant. 
According to first results it seems that the physics of the developing collapse is similar to the 
interchange instability in the magnetic field. The destabilizing force is caused by the electric 
field which tries to push rather dense anode plasma through the rare electron sheath. 

In Ref. [5] the code QUICKSILVER is described. It was used recently [6] for the 
numerical simulation of the Partide Beam Fusion Accelerator II. With PBF A II for Li+1 

beams, pulse duration 20 ns, valtage 10 MV, ion current 0.7 MA, focal power density 1.4 
TW/cm2 an intrinsic beam divergence f1(} >=:> 20 mrad was obtained. The main goal of these 
simulation is to find out how to reduce !1(} because for purposes of Inertial Confinement 
Fusion (I CF) it is necessary to achieve !1(} >=:> 6 mrad at 30 MV. This code may be considered 
as most advanced tool available for diode simulations. It is fully vectorized and equipped with 
many additional programming tools including a pre-processor for grid generation or an output 
post-processor. Its field solver utilizes both explicit and implicit finite-difference algorithms 
in Cartesian, cylindrical or spherical coordinate systems. A particle handler advances multiple 
particle species with three-dimensional relativistic kinematics. At simulations with the 
computer Cray YMP a three dimensional (r, ~,z-coordinates) spatial grid fits to the realistic 
diode geometry. At this the whole number of 3 dim cells exceeds 1 05

, the required number of 
particles is of 3 106

. During one simulation the code completes ~ 6 1 04 time steps taking ~ 
350 CPU hour. For feed line ofthe diode a simulation wave guide modelwas used. 

2. RESUL TS FROM NUMERICAL SIMULATIONS 

Earlier simulations of the diode demonstrated the development of two distinct 
instabilities: the high frequency diocotron instability and a low frequency ion mode. The 
diocotron instability is responsible for the fast broadening of the initially narrow electron 
sheath of the virtual cathode. It arises from wave-electron resonance at the electron drift 
velocity. It is valid mr; >> 1 with OJ the instability frequency and r; the ion gap transit time. 
The diocotron instability saturates after trapping of electrons by the waves. Then the electrons 
occupy the whole gap. Ions don't take part in this fast process, i.e. the diocotron instability 
doesn't induce significant ion beam divergence. In the course of valtage increase the ion 
current density J; increases drastically exceeding the Child-Langmuir current JCL. After the 
ratio J;IJCL ~ 4 - 8, an abrupt transition to the ion mode instability at much lower frequency 
( mr; < 1) occurs which induces significant ion beam divergence. 

Calculations of Ref. [6] also detected the diocotron instability early in time followed 
by a transition to the ion mode later. The characteristic period of the diocotron instability is 
less than 1 ns, and that of the ion mode is of 2 - 3 ns at r; >=:> 2.5 ns. The amplitudes of electric 
field strength of harmonic modes is less than 1 MV /cm. If the ion flux from the anode 
increases slowly enough, it may cause a delay of the development of the ion mode thus 
reducing the ion beam divergence. 
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3. MOTIVATION FOR THIS ANALYSIS 

Diode investigations are mainly done by application of large codes. The physics 
models of the codes are based on the siruplest theoretical approach realizing direct numerical 
solution of most general equations for the fields and matter. Theoretical ideas which allow to 
clarify effects principally as weil as aceeierate calculations drastically for the specific 
considered problern arenot included. 

Many-fold gain of efficiency may be realized after recogmzmg parameters 
intrinsically inherent in the problern (such as the relation '7 = Afre of characteristic wave 
length IL of the instability to the electron gyro-radius re). Quite often situations realize where 
the problern exceeds the technical possibilities of the best computers. Thus making prior 
theoretical analysis and adequate problern reduction unavoidable. For example, according to a 
theoretical analysis [7] based on the weak turbulence approach [8] of anomalaus electron 
diffusion across magnetic field in a magneto-electrostatic trap, the parameter ry becomes 
imfortant at ry ~ 1, thus an adequate 3 dim numerical grid must contain more than (Lir e)3 ~ 
1 0 cells for 1 00 e V electrons which is impossible to be handled by present day machines. 

One remarkable feature ofthe calculational results from Ref. [6] is the rather low Ievel 
of the perturbation fields in comparison with the quasi-stationary ones (for the electric field 
strengthitwas calculated '&EIE< 1/5). Such smallness could be a quite natural assumption for 
the whole problern because the goal of diode investigations is minimization of the ion beam 
divergence which may be possible only at low perturbation Ievels. 

Hence for the analysis of applied-B ion diode it is quite reasonable to use methods of 
perturbation theory. As an initial approximation a quasi-stationary state is assumed. The 
particle distribution function fo and the self-consistent field l.f/o are reflecting the initial 
symmetry of the unperturbed system (e.g. independence on the coordinates y and z). In this 
paper only those small perturbations 8/ and Öl.f/ are considered which are caused by valtage 
increase. The equations for fo + 8/, cpo + Öl.f/ are derived from general Vlasov and Maxwell 
equations using the Hamilton function of particles. 

In chapter 4 general mathematical expressions are given and in chapter 5 a 1 dim 
model of the diode is considered describing the initial approximation. Principally this 1 dim 
approach is similar to the Desjarlais model [1]. First and second order corrections are then 
calculated in order to get the focal distance F. Thus the gap between the anode and cathode is 
considered as a lens that distorts slightly the ion trajectories. In chapter 6 the influence of a 
first order additional magnetic field generated by the electric current through the diode is 
analyzed. This field causes focusing of the ion beam because it bends the ion trajectories. In 
chapter 7 the focusing effect of the distortion of the virtual cathode is analyzed. This 
distortion is due to a diamagnetic electron drift current which decreases the magnetic strength 
near the cathode causing a second order 2 dim change of electric field in the gap. Thus the 
acceleration of ions changes its direction resulting in focusing. 

A relativistic approach seems to be not necessary for the description of an applied B 
ion diode because ions are evidently non-relativistic particles. As to electrons they lose their 
kinetic energy in the course of their relatively slow turbulent diffusion from the virtual 
cathode to the anode through an electric potential drop of several MV thus keeping their 
characteristic velocity much smaller than the light speed. But due to the Iack of evidence a 
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relativistic description of electrons will be used. For the considered Vlasov-Poisson model 
based on the Rarnilton function of plasma particles the relativistic generalization doesn 't lead 
to additional complexity. 

4. GENERAL EQUATIONS 

The formulas of this chapter are taken from Ref. [9, 1 0]. The relativistic Rarnilton 
function Ha of an electron (index a = 'e') or ion (a = 'i') is given as: 

(1) 

with charges qe = -e and q; = e , masses ma, the elementary charge e and the velocity of light 
c. The electromagnetic field is described with the scalar electric potential rp and the vector 
magnetic potential A. Time t, position r, canonical momentum p are the coordinates of the 
problem. The field strengths E and B are expressed as 

1 oA 
E=----Y'rp, 

c a B=Y'xA 

The Maxwell equations for the potentials rp and A are given as 

'Z + cY' A = 0 (the Lorenz gauge) 

02(/J 
-2-2 - t:.rp = 47re(n; - ne) ca 

8
2 
A _ t:.A = 47re (". _ . ) 

2a2 J, J" c c 

(2) 

(3) 

(4) 

(5) 

Density na(t,r) and flux ja (t,r) are expressed via the distribution function.fa(t,:r,p) and 
the velocity Va of particles: 

(6) 

(7) 

The Vlasov kinetic equation for the functionfa(t,r,p) is given as 

(8) 
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with {,} the Poisson brackets. Boundary conditions for Eqs. (4), (5) and (8) are given in the 
course of the further considerations. 

The momentum p is expressed via the velocity as 

(9) 

with the module va=lval' and the relativistic factor Ya = [1-(va/c)2r112
• Expressing Ya from 

Eqs. (1) and (9) as 

and then v a via p as 

the flux ofEq. (7) is transformed as: 

(10) 

5.1NITIAL QUASI-STATIONARY APPROACH 

5.1. Formulation of the one dimensional problem. 

Initially it is assumed that the diode operation is quasi-stationary and with translational 
symmetry along the y- and z-axes. The position x = I in Fig. 1 corresponds to the undisturbed 
surface of the virtual cathode. The applied magnetic field is directed along the z-axis and is 
described by the y-component only: Ao = (0, Ayo(x), 0). Both electric qJo(x) and magnetic 
Ayo(x) potentials are zero at the virtual cathode and assigned with given values qJo(O) = (/Ja> 0, 
Ayo(O) = Aa > 0 at the anode2

• 

Then the Rarnilton function of Eq. ( 1) is given as 

Due to the independence of Ha0 on t, y and z the Poisson brackets {HaO,Ha~!}, {HaO,Py}, 
{ H aO,Pz} are equal to zero, thus H a0 and the momentum components py, Pz keep constant along 

1 the k-component (k=x,y,z) of particle velocity is designated below as vak. 
2 

The index 0 indicates the functions of the initial ('zeroth ') approximation. 
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an unperturbed particle trajectory [9]. Eq. (8) gets stationary showing that the value of the 
function/a0 is also a trajectory integral: 

(12) 

A complete integral ofEq. (12) is an arbitrary functionfaO(HaO,Py,pz) ofthe others integrals. 
Ions appear with zero velocity at the anode, pass the gap and disappear at the cathode. 

Thus their distribution function is determined by the anode emission and is given as 

(13) 

with the Dirac function 5C~l The x-component of the ion flux at the anode };x1(0) is 
determined by the anode emission being introduced with the additional index 1 which 
indicates first order approximation values. If the component };x would be the value of the 
initial approximation then in accordance with Eq. (5) it would generate an x-component of 
magnetic potential Ax that is not taken into account at the initial approximation. In other 
words it is valid the equality j10 = 0 in the expansion j; = j;0 + jn + ... 

The X-position of the electron gyrating in the applied magnetic field can be 
characterized by the momentum component Py· Neglecting the change of electric potential and 
the magnetic field strength over the x-projection of the gyration trajectory the x-coordinate of 
the leading center Xc(py) is found from the equation 

(14) 

that follows from the condition that Ha0 is constant at eAyolrmec >> Va. 

Electron trajectories are infinite spirals along the z-axis, thus controversially to ions 
there is no boundary condition determining the electron distribution. Therefore in order to 
find the physical solution for feo it is necessary to analyze turbulent perturbations of the 
system thus turning on a collective mechanism of effective particle collisions via 
electromagnetic field which form their distribution. Such an analysis is a rather complicate 
task. It seems that all turbulent models which are developed up to this date cannot be applied 
for the diode properly. Nevertheless in order to consider a simple model it is assumed now 
that the collisional effect is realized anyhow and corresponding collisional equilibrium is a 
local Maxwell distribution at the plane z = 0 for each position p1 •• The equilibrium distribution 
is characterized then by unknown functions of local electron density nem(py) and electron 
temperature Tem(py) at the plane z=O which will be established in the next chapter. This 
simplification is useful in order to describe the behavior of collisionless electrons because it 
provides a physically reasonable electron distribution. Hence at the above mentioned small 
projection of the gyration radius the expression for the functionfeo is defined as 

with the solution Xc(py,O) of eq. (14) at the plane z = 0 and a normalization factor Ce given as 

3 
Such an ion distribution function allows to consider ions on the base of formally less complicated 

hydrodynamic description. But here a more general distribution function formalism is chosen for both ion and 
electron plasma components. 
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(16) 

According to this definition there is no explicit dependence of the function feo on the 
momentum component Pz· In order to take into account the dependence of the electron 
distribution on the coordinate z it is assumed that the Boltzmann distribution function with 
position dependent py at arbitrary planes z = constant is valid: 

with Xc(py,z) the solution of eq. (14) for the coordinate z. Keeping in mind the mentioned 
assumption the explicit designation of the dependence of functionf;,0 on the coordinate z will 
be omitted in the following. 

Eqs (4) and (5) are reduced to the Poisson equations: 

(18) 

(19) 

Despite of absence of the flux j;0 in Eq. (19), the density n;o is not zero due to the relatively 
small velocity ofions. The Eqs. (6) and (7) for the density and the electron flux are given as: 

(20) 

(21) 

The functions fao depend only on the variables Hao, py and Pz· Then it is convenient to use the 
function H = Hao as independent variable instead of the momentum component Px· The 
expression for Px is obtained from Eq. (11) as: 

Then Eqs. (20) and (21) are transformed into 
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The contribution from the full distribution function corresponding to different signs of Pax are 
taken into account at the integration. 

In accordance with Eqs. (22) and (7) the following expressions for non-relativistic ions 
are obtained: 

(23) 

ii:l = 0 (24) 

Using Eq. (17) and assuming a weak dependence of the functions nem and Tem on p 1, 

the following expressions for electrons are obtained: 

(25) 

iexO = 0' ie:O = 0 

The electron current is obtained as 

(26) 

5.2. The one dimensional solution. 

To demonstrate the characteristic features of the initial approximation the solution of 
system ofEqs. (18) and (19) with densities and electron flux given by Eqs. (23), (25) and (26) 
at given constant values of electron temperature Tem and density ne111 is obtained. The 
exponential factor () of Eq. (25) introduces an additional unknown dependence of the density 
neo on coordinate z. But for the 1 dim problern the solution is obtained only atz= 0. Thus the 
equality () = 1 is valid. The anode emission is assumed to be given by the Child-Langmuir 
space charge limited ion current. The ion current Iimitation reduces the anode electric field 
drastically. The virtual cathode4 provides the electron population in the gap. Turbulence 
creates anomalaus electron diffusion across the gap. It is sufficient to have a relatively small 
electric field strength Ec = -d((Jo(l)/dx at the virtual cathode for driving the anomalaus current. 
Thus at both electrodes zero values ofthe electric field strength is assumed: 

4 
The virtual cathode is a surface of magnetic separatrix between two kinds of magnetic field I in es. The first ones 

belong to the gap, they arerather long and the boundary conditions at their ends can be neglected. The second 
once occupy the space between the ends of the tips and the surface of the real cathode, they are limited by the 
meta! surfaces of the tips. 
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(27) 

(28) 

These boundary conditions will be used in order to find the unknown values of the flux 
component};x1 and the density neo which is assumed tobe homogeneous. 

Eq. (27) should be substantiated additionally. The applied magnetic field strength 
Bzo = dAyoldx is not zero at the anode. lf Exo(x) = - dcpoldx changes weakly in the vicinity of 
the anode then the ions may be captured by the magnetic field at the anode and couldn 't 
traverse the gap. Therefore it has to be shown that Exo changes fast enough near the anode to 
allow the zero value of the Exo(O) as an adequate approximation. This evidence is given in the 
course of the further analysis. 

Eq. (28) can be substantiated in the following way. If it is assumed that there is an 
electron population in the gap then a source for these electrons as weil as a mechanism for 
their delivery should be provided. The source is the virtual cathode. The transport is by a 
weak turbulence that develops due to the large electric field in the gap. The turbulence creates 
an anomalaus electron diffusion across the gap. The corresponding 'parasitic' electron current 
to the anode is neglected. The virtual cathode is effectively connected to the emitting tips 
along the magnetic lines. Therefore it is sufficient to have a relatively small electric field 
strength Ec=-dcpo([)/dx at the virtual cathode to drive the anomalaus current. A stable 
dynamical equilibrium realizes: if the strength Ec is becoming too large then the density neo 
will increase due to a large anomalaus flux thus decreasing Ec in accordance with Eq. (18), 
and vice versa. Eq. (28) expresses the neglecting of Ec. 

The equation for the magnetic field strength Bzo follows from Eqs. (19) and (26) as: 

(29) 

According to Eq. (29) at small densities neo the strength Bzo is minimal at the cathode and 
maximal at the anode ( diamagnetic effect due to electron drift). lf the density is becoming 
large, the sign of the strength changes somewhere in between the electrodes. In this case the 
magnetic potential is a non-monotanie function in the gap. Below the density neo is assumed 
tobe small enough to get a positive right hand side (RHS) in Eq. (29). 

It is convenient to use the potential cpo as new independent variable. If Exo is written as 
a function of cpo then Eq. (18) is given as 

(30) 

A relation between the variable cpo and the coordinate x is given by the expression: 

(31) 

Using Eqs. (23) and (27) Eq. (30) is transformed into: 
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(32) 

with the ion velocity V;x given as 

Eqs. (27) and (32) give the relation interpreted as the equation for the fluxjix 1(0): 

(33) 

The Eq. (29) is transformed into: 

(34) 

From Eq. (34) and the condition ( tpo = 0 ~ Ayo = 0) the equation for the magnetic 
strength Bzo(O) follows as: 

(35) 

From Eq. (31) and the condition tpo( [) = 0 a relation interpreted as the equation for the 
density neo follows as: 

(36) 

To solve the set of Eqs. (32)-(36) a set of dimensionless variables is used which are 
introduced by the following expressions: 

s = xjl, (37) 

and a set of dimensionless parameters is defined by the expressions: 

(38) 
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with r; = Vcl OJ; the ion gyro-radius, Vc = (2etpalm;) 112 the x-component of the ion velocity at the 
cathode, OJ; = eAalm;cl the ion gyro-frequency and A-v = ( tpa18neneo) 112 the Debye length. The 
flux};x 1(0) and the field strengths Exo(O), Bzo(O) are made dimensionless according to: 

(39) 

As a result the whole problern is transformed to a set of five dimensionless equations for the 
unknown two functions ry(u), w(u) and the three numbers t, b, &v: 

J.
l 1/2 ( ( )2/ )-1/2 7]

2 =z"(l-u'f 1-&;2 1-w(u') (1-u') du'-1+u (40) 

fl ( ) 1/2 w-1-& b2-1..L11' ~-l(u')du' 
YV - 1 a J" • w '1 \ (41) 

fl ( 2 )-1/2 
l Ja 1 - u - &;

2 
( 1 - w( u)) du = 1 (42) 

(43) 

(44) 

Eq. (31) is transformed to the dimensionless view: 

(45) 

A small value is assumed for the parameter &; (the case of small width of the gap 
compared to the ion gyro-radius). Thus at &; ---+ 0 the term containing &; in Eq. (40) is 
neglected. Due to this simplification Eq. (40) becomes 

(46) 

From Eqs. ( 46) and (28) the value of the number t for which the dimensionless electric 
field strength 17 gets zero at the virtual cathode t = Y2 follows. Then Eq. (44) turns into the 
following expression for the parameter &v: 

l
f 1 du \J -I 1 

&/} = f 1Ju"(1- FuY12 - 7r 
(47) 
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Thus in accordance with Eq. (38) the density neo is obtained as neo= trrp0 /8eP. Expressing the 
ion electric current density in accordance with Eq. (39) the Child-Langmuir ion current is 
obtained as 

1f (/)3/2 

ejixl = g~e/2mi f (48) 

Assuming a small value for the parameter &a (large applied magnetic field, i.e. the 
inequality b >> 1 is valid). Eq. (43) is solved with first order accuracy of &a by the Taylor 
expansion ofthe square root under the integral: 

resulting in the value of number b as: b~d!Jr&a+(5/16)tr&a. Finally using the additional 
parameter q the behavior of the dimensionless functions u, ry, ~ and w is given by the 
following expressions: 

u = 1- q4 

(1 2 )1/2 ry=q -q 

~ = (2/tr)(arcsinq- qR) 

(49) 

(50) 

(51) 

(52) 

The dependencies of u(~, w(~ and ry(~ calculated with Eqs. (49)- (52) are shown in Fig.2. 
For this demonstration the parameter &a=5/9 is chosen which is used in chapter 7.3. In the 
Desjarlais model the current collapse occurs after the valtage reaches the value (/Ja= (5/9)Aa. 
The thin dotted diagonal on the plot shows the undisturbed dimensionless magnetic potential 
at &a = 0. 

In accordance with Eqs. (49) and (51) the dependence ofthe dimensionless coordinate 
~ on the potential at the vicinity of the anode ( q < < 1) is becoming ~ ::::: ( 5/3 n")(l-u i 14

. 

Substituting this dependence into Eq. (52) and neglecting the small contribution of the last 
term there it is obtained (1-w)2 ~ (1-u)312

• Thus in Eq. (40) the term cantairring the applied 
magnetic field parameter &; vanishes at u ~ 1 independently on the value of &;. This fact gives 
the evidence that a solution satisfying Eq. (27) exists for arbitrary applied magnetic field. 
Hence it is not necessary to introduce a non-zero electric field at the anode to avoid the above 
mentioned magnetic capture of the ions at the anode. 

As the parameters &; and &a may have arbitrary values a numerical calculation is 
completed in order to dernarrstrate the dependence of the parameters b, t and &v on &a and &;. 
For the calculation the derivatives ofEqs. (40) and (41) are obtained: 

dry2 ( 2( )2)-1/2 du = 1 - t 1 - u - &i 1 - w , ry(O) = ry(1) = 0 (53) 
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w(O) = 0, w(1) = 1 (54) 

The solution ofthe system (53), (54) at given values ofparameters band 1 near the electrodes 
is obtained as: 

u~1: 1J ~ J2i(1- u)l/4, (55) 

u~O: (56) 

In order to avoid singularities at the boundary points u = 0 and u = 1 the numerical integration 
of Eqs. (53), (54) is completed inside of the interval u1 < u < u2 with the new boundaries u, 
and u2 located in the gaprather close to the electrodes: u1 << 1, (1-u2) << 1. Eqs. (55) and (56) 
are used to establish the new boundary conditions at u = u1, u = u2 for Eqs. (53) and (54). The 
numerical integration is completed from both boundaries u1 and u2 to the intermediate point 
u = 1/2 in order to obtain the corresponding values lJ± = ry(l/2±0), W± = w(l/2±0). The 
deviation function 8._b,1) = (7]+-lJi + (w+-wi is used to find the unknown parametersband 1 
minimizing the function 5 down to 5 < 1 o-6 with the gradient minimization method. The 
results ofthe calculation are shown in Fig. 3. The dependence ofthe parameters 1 and &0 on &11 

and &; is rather weak in comparison with the dependence of the parameter b on &a. 

6. PERTURBATION ANALYSIS FOR MAGNETIC SELF FOCUSING 

6.1. The first order approximation equations. 

For the extraction type diode it is sufficient to develop a "theory ofthin lens" with a 
small bend of the ion trajectories in the z-direction caused by Ax (the far external focusing). 
The principal scheme for calculation of the focal distance Fis shown in Fig. 4. The solution 
of the self consistent system of equations is indicated as a loop diagram in this Fig. Because 
of quasi-stationary operation the time derivatives in the Vlasov and Maxwell equations are 
omitted in the scheme. Salutions of the Vlasov equation { H, ./} = 0 are determined by the 
Barnilton function H of particles using appropriate boundary conditions. H is a mathematical 
expression for the energy via spatial coordinates and canonical momentum of particles. The 
canonical momentum is contained explicitly in H. The Coordinates are contained implicitly 
via the electric and the magnetic potential. 

On first cycle of the diagram the Barnilton function H = Ho with (/JO and Ayo obtained 
in the previous chapter is used in the Vlasov equation {H,j} = 0 as it is indicated in the upper 
left box of Fig. 4. Then (following the arrow) the obtained zeroth order solution of the Vlasov 
equation f = fo is used for the calculation of the density and the first order approximation 
particle flux. Using these results at the RBS of the Maxweli equations first order corrections 
to the potentials are obtained (the down right box). The corrected potentials are substituted 
(following the arrow) into the Barnilton function resulting in the first approximation H, for 
H= Ho+ H, which determines the first order solutionf= fo + fi ofthe Vlasov equation (again 
the upper left box). In order to obtain next order corrections this cycle is repeated. 
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If }ixl :1- 0 then in accordance with Eq. (5) a x-cornponent of the rnagnetic potential Ax 

does exist. After neglecting Az at the first order approxirnation frorn Eq. (3) for the stationary 
problern follows that Ax is a function of z only. Thus Pz can't be derived as rnotion integral and 
the problern is lirnited principally in the z-direction. Hence ions are accelerated in z-direction. 
Syrnrnetry with respect to the plane z = 0 is assurned. The acceleration of ions causes 
rnagnetic self-focusing. The scherne of the rnagnetic self focusing for an extraction diode is 
shown in Fig. 5. The rnagnetic strength cornponent By = oAxl& is assurned to exist only in the 
gap because of a cornpensation of the ion bearn current by electron current outside of the gap. 
Due to the current cornpensation the ions are propagating Straightforward after passing the 
virtual cathode and then arrive at the focal point F. The srnall bend irnplies the introduction of 
a srnall pararneter describing contributions frorn Ax. The value of this pararneter is obtained at 
the end of this chapter. The perturbation source is the x-cornponent of the ion flux }ixl· 

Therefore in accordance with Eq. (5) the cornponent Ax is the first order perturbation. The 
non-zero ion flux in the z-direction causes the z-cornponent of rnagnetic potential Az to be 
non-zero5

• But Az appears only as a second order perturbation because according to Eq. (24) 
the equality };zt = 0 is valid. The slow change of the ion bearn pararneters along the z-direction 
allows to assurne that the derivatives of the initial approxirnation functions on coordinate z are 
negligibly srnall cornpared to those on coordinate x. It is necessary to carry out the first order 
approxirnation analysis only for ions because for electrons the assurnption about the 
Boltzrnann distribution as discussed in chapter 5.1 is sufficient. 

Forafirstorder correction Hil ofthe ion Rarnilton function it is abtairred frorn Eq. (1): 

(57) 

In order to dernarrstrate characteristic features of the first order approxirnation the srnall Aytis 
neglected in Eq. (57). As to a correction of Hil by rp1 it is shown below that the equality rp1 = 0 
is valid. 

(8) as 
The stationary Vlasov equation of the first order approxirnation is obtained frorn Eq. 

The Maxwell equations (3)-(5) write as: 

oAtl 
-=0 a 

(58) 

(59) 

(60) 

5 In principle the z-component of the ion flux could be compensated locally by the electron flux. But as long as 
the Boltzmann distribution is valid the electrons are allowed to move only along the surfaces of constant position 
p 1., i.e. their flux x-component is absent: )ex1=0. From the continuity equation divje = 0 then follows that at first 
order approximation the electron flux z-component is also zero: lezi = 0. 
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6.2. The first order solution. 

From Eqs. (59) and (60) an expression for the component Axt follows as: 

thus from Eq. (57) it follows: 

and from Eq. (58) 

( ) 2Jre . ( ) 2 
Ar~ z =--Jtxl Oz 

c 

!!_( _ H i!/';0 ) = i!/';0 oH11 

df Jil 11 Off tPz Oz 

(61) 

(62) 

with the symbol dldt designating the time derivative along an unperturbed trajectory. From 
Eq. (62) the expression for the function.fi 1 is obtained as: 

J,. = i!/';o (H - H.l ) + i!/';o r oH,I (t')dt' 
r1 Off II II 1=0 tPz ,b Oz (63) 

In Eq. (63) the time integration is carried out along an unperturbed trajectory, the timet plays 
the role of the coordinate along the trajectory. At the initial time moment t = 0 the 
perturbation of the distribution function is zero: .fitlt=o = 0. For ions t = 0 is the start from the 
anode with zero value of the x-component of the momentum: Pixlx=o = 0. From Eq. (61) the 
condition Hillt=o = 0 follows. At the zeroth approximation there is no acceleration towards the 
z-axis. Thus the coordinate z is constant while the integration along the unperturbed ion 
trajectory and the z-componentpiz ofthe momentum is equal to zero. Neglecting in Eq. (61) a 
weak dependence of the function ({Jo on coordinate z, replacing the variable under the integral 
in Eq. (63) by the substitution dt = dx/ VL"( and using the non-relativistic relation Pix = miVix the 
resulting expression for function.fi 1 is obtained from Eq. (63) as: 

(64) 

Eqs. (6) and (1 0) are transformed to corrections for the wn density and the z­
component of the ion flux: 

(65) 
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(66) 

Similarly to the ion flux of the first order approximation given by Eq. (66) the ion flux of the 
second order approximation is generated by functions of the lower approximation. 

Direct calculation of Eq. (65) results in the equality nn = 0. The Boltzmann electron 
density can be disturbed only by the potential perturbation cp1 but according to Eq. (4) cp1 can 
be non-zero only due to nn. Hence the zero value of the potential perturbation cp1 = 0 is 
confirmed. 

The expression for the z-component};z2 after some calculations is obtained as: 

For an estimation of the focus distance Fitis assumed that after reaching the cathode 
the ions which have initially some coordinate z are going further straightforward. In this case 
Fis given by the expression: 

F = zctgß (67) 

with ß the angle under which the ions are crossing the plane z = 0. ß is determined by the ratio 
of z- to the x-component of the ion flux at the cathode plane x = l. Using Eq. (39) with 
dimensionless flux z = 1/2 and Eq. (38) for substitution of the parameter s0 into the flux 
relation as weil as Eq. ( 4 7) for so the tangent of ß is obtained as 

(68) 

From Eqs. (67) and (68) the resulting expression for F follows as: 

(69) 

According to Eq. (69) the inequality F >> l is valid at non-relativistic ion velocities. 
Hence as long as the perturbation parameter (V;/c)2 is small the validity of the perturbation 
analysis for the effect ofthe magnetic self-focusing is confirmed. 

7. DIAMAGNETIC FOCUSING 

Another mechanism for ion focusing concerns the mobility of the virtual cathode. The 
electric and the magnetic potentials are constant at the surface of the virtual cathode. It is 
assumed that the surface is fixed at the points (x,z) = (l,±L/2) ofthe tip ends. The real cathode 

16 



is the surface of constant potentials. In chapter 5.2 it was shown that the magnetic field 
strength at the virtual cathode decreases due to the electron drift current. But there are no 
electric currents in the region of constant electric potential rp = 0 between the virtual and the 
real cathode (this region is called the cathode region). Thus the virtual cathode surface gets 
distorted. Its middle part shifts towards the anode in order to keep the momentum equilibrium 
but the ends are assumed to be fixed. The distortion of the surface results in perturbation of 
the electric field in the gap and consequently in bending of the ion trajectories. The distorted 
surfaces Ay = constant inside ofthe gap are shown in Fig. 6. 

To describe small perturbations a sinusoidal function is used in the surface equation 

a(x,z) = x -I- a 1 cos(nz/ L) = 0 (70) 

with a 1 the amplitude of the first order perturbation. Hence the space between the anode and 
the real cathode is divided into two regions - the gap and the cathode region - which interact 
via the surface a= 0. Due to the fact that the magnetic field ofthe current through the diode is 
neglected, the magnetic field in both regions is described by the y-component of the magnetic 
potential Ay. The interaction between the two regions is described by the momentum balance 
at the separating surface. It is assumed that there is no change ofthe plasma pressure at a= 0. 
The electric field strength is neglected there. Thus the balance equation is reduced to the 
continuity ofthe magnetic field pressure across the surface: 

(71) 

The magnetic strengthat both sides ofthe surface a= 0 is obtained below. 

7.1. Magnetic field in the cathode region 

The magnetic field is described by the y-component of magnetic potential Ay. At a > 0 
according to Eq. (5) in the cathode region the Laplace equation is valid: 

(72) 

The boundary conditions for Eq. (72) at the virtual and the real cathode are given as 

Bn = 0 at a= 0 and at x =I+ h (73) 

with n=(oaft:X,O,oal&) the normal vector to the surface and B=(-oAyi&,O,oAylt:X). According 
to Eq. (73) the magnetic potential is constant: A.vlx=t+ll = - Aahll at the real cathode. At a = 0 
Eq. (73) expresses the constant value of magnetic potential, too: A.v = 0. This condition is 
conveniently shifted from the perturbed virtual cathode to the plane x = l using the linear 
Taylor expansion: 

The solution ofEq. (72) is given in first order approximation as 
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Av = - ~a ( x - l - a( x) cos{ nz / L)) (74) 

To satisfy Eq. (73) for small amplitudes a the conditions a(l)=a~, a(l+h)=O are established. 
Substituting Eq. (74) into Eq. (72) and neglecting small terms a boundary problern for the 
amplitude a(x) is defined as: 

a(l+h) = 0 (75) 

The solution ofEq. (75) is obtained as 

The magnetic pressure at a= 0 from the side ofthe cathode region is obtained as: 

(76) 

7 .2. Magnetic field in the gap 

The source of perturbations is the electric potential (/Ja applied to the gap because if the 
equality (/Ja = 0 is valid then there is an unperturbed vacuum magnetic field only in the diode. 
Therefore (/Ja is considered as a small perturbation. In order to use the results of chapter 5.2 
small values of the dimensionless parameters &; and &a are assumed which are defined by Eq. 
(38). Fora small electric potential it is sufficient to use Eqs. ( 49), (50) and (51) independently 
from z. But for large magnetic potentials the initial solution has to include the dependence on 
z thus requiring second order perturbation terms. The magnetic potential in the gap is given as 

(77) 

with the zero approximation function w given by Eq. (52). Substitution of Eq. (77) into Eq. 
(5) and separating the terms which are proportional to the factor cos(nz/L) gives an equation 
for the unknown function a(x): 

a(l) = a1 (78) 

The non-zero boundary condition at the point x = l in Eq. (78) is obtained as a result of a 
small shift ofthe condition from the point a= 0 using the Taylor expansion for function Ay: 

(79) 

The solution ofEq. (78) is obtained as 
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a = a1 sh(nx/ r)/sh(trl/ r) (80) 

The z-component of the magnetic field strength is given by the expression: 

oA 1, A (dw da ( )) B =-· =-" -+-cos m/L 
z & I d~ dx 

This component is sufficient for a calculation of the magnetic pressure at the boundary CJ' = 0 
from the side of the gap. According to Eqs. (52) and (80) the magnetic pressure at CJ' = 0 
calculated from the side of the gap is obtained as: 

(81) 

with the function X given as 

It is obtained xJq--+i = -9tr/20. 
In the cathode region small perturbations are maximal at the symmetry plane z = 0 and 

vanish at the ends of the electrodes z = ±L. Because the electric potential is applied at every 
coordinate z, the perturbation doesn't vanish at the planes z = ±L from the side of the gap. 
Thus the boundary condition (71) should take into account some additional forces at the ends 
even for small perturbations. It seems that for the solution of the problern of the focal distance 
it is not necessary to analyze such effects, hence the end effect atz << L is neglected6

. As a 
result the amplitude a1 is obtained from Eq. (78) as 

(82) 

7.3 Perturbed motion of ions and the focal distance F 

In order to find the focal distance F the z-component of the ion fluxJ;zz is calculated on 
the base of Eq. (66) in a similar way as described in chapter 6.2. The ion distribution function 
fil is given by Eq. (63) with Hii\t=o=O.The first approximation correction Hn for the ion 
Barnilton function Eq. (1) is obtained as 

(83) 

Estimating values of the functions a, q; and Py as a -- a1, rp ~ (/Ja and py ~ m;Vc the magnetic 
term of the RHS of Eq. (83) is found to be negligibly small at the conditions I ~ h ~ L: 
pymualerpa ~ &;(&a)2 << 1. Thus ions are influenced mainly by the electric term erp. Up to now 

6 
This neglection is a temporary assumption because up to now there is no idea how to take this effect into 

account. Therefore the estimation of its importance is still not done. 
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in chapter 7 the electric potential cp was calculated as the first order perturbation function of 
the coordinate x but the focusing of ions is caused by the z-dependence of Hn. Therefore the 
perturbation of cp has to be calculated up to the second order contribution. 

Densities and electric potential are represented as 

with the constant dimensionless electron density Pe = I and the functions u , Pi being the 
results of the one dimensional analysis of chapter 5.2. According to Eq. (23) for small values 
of Bi and for the ion flux given by Eq. (39) at the equality t = 1/2 it is obtained Pi= (1-u)" 112/2. 
The function u is given by Eq. (49). 

Substituting Eq. (84) into Eq. (4) and using Eq. (47) for the parameter Bo the equation 
for the function u2 is obtained as a zero coefficient at the function cos(trz!L): 

(85) 

with the dimensionless parameter &z = 1rl/L. The condition at the boundary .; = 1 in Eq. (85) is 
valid due to the equality ry(1) = 0. This fact is proved similarly to Eq. (78) by the shift ofthe 
boundary condition from cr = 0 resulting in u2(1) = 17( I )a1/l. The functions 17 and cr are given 
by Eqs. (50) and (70). 

In order to calculate the electron density correction Pe2 the Boltzmann distribution 
functionfe along the magnetic surface Ay =- (c/e)py = constant with the potential Ay given by 
Eq. (77) is obtained according to Eq. (17) in the linear approximation for the exponent as 

fe( X, Z, H, P_v) = feolz=O (1 + (e/Tem)( cp(x, Z)- cp(x",O ))) (86) 

The Maxwellian functionfeolz=o is defined by Eq. (15) at constant central density nem =neo and 
temperature Tem· The Maxwellian function doesn't dependent on the coordinate x. In Eq. (86) 
the coordinate Xe at the plane z = 0 belongs to the magnetic surface that crosses the point (x,z), 
thus according to Eq. (77) the following relation between the Coordinates x and Xe is valid: 

Neglecting the difference between the coordinates x and Xe in the small amplitude a and using 
the function w(x) = 1 - xll in accordance with Eq. (52), the expression for Xe is obtained as: 

x" = x + a(x)(I- cos(m/ r)) 

As a result the potential dependence on x and z is obtained in the linear approximation as: 
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Hence frorn Eq. (86) the electron density ne is obtained as 

with the dimensionless pararneter &rTen/erp0 • In these expressions for the density and the 
potential there are small terms which don't depend on the coordinate z. Such terrns are not 
irnportant for focusing and thus are neglected. As a result the correction ,Oe2 is obtained as 

(87) 

For the calculation of ,Oi2 only the dependence of the electrical term on z in Eq. (83) 
has tobe taken into account. This part has tobe used for calculation ofthe correction/;1 on the 
base ofEq. (63). Thus the sufficient part offn is given as: 

fil = erpa[if;o u2 cos(m/ L)- :rr iJ;o r u2(c;(t'))dt' sin(m/ r)] 
oH L iP: .b 

(88) 

Since the second term in the RHS of Eq. (88) is an odd function of the pz, there is no 
contribution of this term to the ion density integral nn=neo,Oi2 of Eq. (65). The calculation of 
Eq. (65) for the small parameter &1 using Eq. (39) with 1 = 112 results in an expression for ,Oi2: 

P;2 = 4(1- u)3/2 (89) 

After substituting Eqs. (87), (89) and (80), Eq. (85) can be written as: 

In order to sirnplify the further analysis a small value is assumed for the parameter &r (the 
case of relatively cold electrons in the gap when the inequality Tem << erp0 is valid). Due to 
this assurnption only the terms containing large parameter G = :1!2&r are saved in Eq. (90). 
The simplified equation is becoming the algebraic expression for the function u2: 

(91) 

This solution is valid in the main volume of the gap except at the rather thin electrostatic 
sheaths. These sheaths there are formed to satisfy the boundary conditions. A sheath near the 
virtual cathode forms to satisfy the condition u2(1) = 0. To achieve this the terms Jlu21d(- and 
Gu2 of Eq. (90) are becoming cornparable near the virtual cathode. The thickness lc of the 
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layer is estimated as lc = !!d12 << 1 with G = :?-12Br. The sheath near the anode of the 
thickness la ~ lc concerns the !arge value of the term :1![8(1-ui12]u2 at u >::: 17

. A small 
influence of the sheath is neglected below. 

The ion flux z-component };z2 of Eq. (66) is integrated taking into account only a 
contribution from the odd part of the functionf;1 with respect to the momentum component Pz 
because the contributions from the even part of this function and from the even term 
containing the Barnilton function correction Hil are equal to zero due to the factor Pz under the 
integral. Thus the relation ofthe z- to the x-components ofthe ion flux at the virtual cathode is 
obtained as 

(92) 

The integral in Eq. (76) was calculated for Bz << 1 ("shallow gap"), Bz >> 1 ("deep gap") and 
Bz = 1. At Bz << 1 the integral is equal to (2.nr 1

• At Bz >> I only a small interval of the 
thickness lz = Ll1r near the virtual cathode is important for the calculation. Assuming that the 
parameter Br is small enough for the neglection of the sheath at the virtual cathode Uz >> lc) 
the integral is calculated as 7r/[4(Bz)2

]. For the intermediate case Bz = 1 numerical integration 
results in the approximate value 1/7. 

Finally using Eqs (67), (68), (82) and (92) the focal distance Fis obtained as 

(93) 

For example, the high valtage proton diode has the following parameters: 1 = h = 1 cm, 
L = 3.14 cm, the applied magnetic field Aal! is 3 T, the valtage ({Ja is 5 MV. Then the values of 
the dimensionless parameters are equal to Bz = 1 and Ba= 5/9. The focal distance is obtained as 
F >::: 32.5 cm. There is a minimum of the function F(Bz) at fixed values of the parameters Ba 

and h/1. For h = I= 1 cm and Ba = 5/9, F reaches the minimum value F min = 24 cm at Bz = 1.3 
(L = 2.4 cm). A further increase of the potential moves the focal point towards the electrodes. 
The perturbation model can't be applied anymore. 

The parameter Ba can be expressed as Ba = VD/c with VD = cE_,jBz>:::<p0 1Aa the 
characteristic electron drift velocity in the gap. In the Iimit Ba ---+ 1 the drift velocity in the 
diode should approach the velocity of light. In this case at small electron temperature T0 the 
Buneman instability should develop increasing T0 self consistently. 

7 An analysis of the anode layer at x<la the details of which are omitted here implies this term as important as the 
RHS of Eq. (90). According to the analysis the only possible solution satisfying the condition u2(0) = 0 is 
obtained as u2 ""- (72/585)(3m'5) 113G.;'1013(a//). Comparing this result with Eq. (91) at .;' = a- 112 and &z < I it is 
checked that both solutions are proportional to U 213 but they have different signs, the solution Eq. (91) is 
absolutely larger by the factor 585/72. Thus th~ function u2 changes the sign in the sheath. This circumstance 
doesn 't destroy monotonic behavior of the whole electric potential. 
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8. CONCLUSION 

At non-relativistic ion velocities the effect of the magnetic self-focusing is of the order 
of (V;/c)2 with V; the velocity of accelerated ions at the cathode. The effect of self focusing 
due to the curvature of the virtual cathode is of the order of (((Ja! Aal At (/Ja < Aa the focus 
distance Fis significantly larger than the characteristic dimensions ofthe diode. To obtain the 
dependence of Fon the higher valtage ((Ja (at F comparable with the diode electrode sizes !, h 
and L) either a high er order perturbation analysis with the small parameter ((/Ja! Aa)2 or a direct 
numerical calculation are necessary. For available installations ((Ja1Aa doesn't exceed the value 
of 0.5 . Therefore for the development of a comprehensive model for an analysis ofturbulent 
processes it is sufficient to use a plane 1 dim approach (in the simplest case the solution of 
chapter 5.2) as an adequate initial approximation neglecting the effects of self focusing as 
long as the electric potential is not extremely high. 

9.REFERENCES 

1. M. Desjarlais, Theory of applied-B ion diodes, Phys. Fluids B, 1, 1709, 1989. 
2. A.V. Gordeev, A.V. Grechikha, New model for electron screening in an ion diode in an 

external magnetic field, JETP Lett., 61, 196, 1996. 
3. M. Boger, E. Halter, M. Krauß, C.-D. Munz, R. Schneider, E. Stein, U. Voß, T. 

Westermann, The Karlsruhe Diode Simulation Program System KADI2D, FZK, Annual 
report FZKA 5840, 69, 1995. 

4. A. Grechikha, Electron sheath collapse in an applied-B ion diode, FZK, Annual report 
FZKA 5840,61, 1995. 

5. J.P. Quintenz, D. B. Seidel, M.L. Kiefer, T.D. Pointon, R.S. Coats, S.E. Rosenthal, T.A. 
Mehlhorn, M.P. Desjarlais, N.A. Krall, Simulation codes for Iight-ion diode modeling, 
Laserand Partide Beams, 12, 283, 1994. 

6. T.D. Pointon, M.P. Desjarlais, Three-dimensional particle-in-cell simulations of applied-B 
ion diodes on the particle beam fusion accelerator II, J. Appl. Phys., 80, 2079, 1996. 

7. V.P. Pastukhov, Anomalaus electron transpoft in the transition layer of an electrostatically 
plugged magnetic mirror, Sov. J. Plasma Phys. 6, 549, 1980. 

8. A.A. Galeev, R.Z. Sagdeev, In: Reviews of Plasma Physics, 7, Consultants Bureau, New 
York, 1974. 

9. L.D.Landau, E.M.Lifshitz, Mechanics. Pergarnon Press, 1959. 
10. L.D.Landau, E.M.Lifshitz, The classical theory offields. Pergarnon Press, 1959. 

23 



B ' app; 

:• 
•I 
:. 
:• 
•I 

r. 
•I 
:I 
;I 
•I 
:e 
:• 
•I 
:I 

:, 
I :. 

:I 
:• 

virtual cathode 

t 
' 

Fig. 1 Principal scheme of a diode 

X 

l+h 

1.0~--------------------------------------------~ 

0.8 

0.6 

0.4 

0.2 

• ' ' • I 
I 
I 

.... -----....... -- --. /" 11 .. 

s = 5/9 a 

0.4 0.6 0.8 1.0 s 
Fig. 2 Dependence of dimensionless functions electric (u) 
and magnetic (w) potentials as weil as electric field strength 11 
on dimensionless coordinate S -

24 



~ CU 1.5 ....., 
Cl) 

E 
CO 
b 
CO 
0..1.0 
cn 
U) 
CU -c: 
0 

...... ...... 

7tE b 

...... -

a 

.... .... .... .... 

t 

E.=0.1 
I 

E.=Q.8 
I 

'Ci) 0.5 !----..................... --~~==~-~-----
~ --------------------------------------------~------~b .. ~ ....... 
(U 

E ---------- ··&·-------------------------·---·---·--· T ....... .. 

~ E0 c va 
0.0 ~--~--~--~----~--~--~--~----~~ 

0.1 0.2 0.3 0.4 0.5 
Fig. 3 Dependence of the dimensionless parameters anode 
magnetic field strength(b), ion flux(t) and Debye length (E 0 ) 

on dimensionless anode electric potential E 8 

{H,f}=O f [~] ~:]td3p .... 
~ 

' ~ 

H n, j 

I ~ 

I 

; L1 cp = 4n e ~ I 
H(P, <r, A) 

-
er, A I ~A=4"e!j 

Fig. 4 Scheme of consistent calculation 
of the focal length 

25 

F 



Zj ~app 
+ L/2+---!-. ~ 

A 

0 

l.- -virtual cathode -L/2_.____..;_ .......... 

F X 

focal ~oint 

Fig. 5 Magnetic self- focusing schematically 

-L/2 
I 

Fig. 6 Diamagnetic self 
focusing schematically 

26 


