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Abstract

In the present report an analytically based scheme is presented, which allows to capture

the inuence of basal solidi�cation onto a spreading ow of liquid melt with poor thermal

conductivity.

Based on an underlying lubrication theory we derive an approximation for the temperature

�eld and, thus, for the s/l-interface. Solutions are found based on similarity transformations

or numerical schemes using the method of lines. E�ects due to capillarity or liberation of

latent heat are negligible. Solidi�cation occurs at a de�ned solidi�cation temperature, no

mushy solidi�cation regime is presumed. For the temperature �eld we use a quasi-steady

approximation, which leads with respect to reactor safety applications to a conservative

result for the crust inuence onto the spreading ow. Furthermore, we assume both thermal

conductivity and density to be constant and equal in the liquid and solid phases.

The spreading ow is characterized in terms of Reynolds number Re, Froude number Fr,

Prandtl number Pr and an aspect ratio �. For the spreading volume we allow for V / t�,

which leads to a characterization of all possible spreading ows in terms of the exponent �.

Within the viscous/gravitational regime, �Re � 1, we �nd for melts with Pr � 1 a weak

inuence of the bottom crust onto the spreading ow. With increasing crust thickness we

�nd a slow down of the spreading, due to a reduction of the driving hydrostatic pressure

head. For t!1 we �nd a complete stop of the spreading for � < 7=4. For values � � 7=4

the inuence of basal solidi�cation, in contrast, will not lead to a stop of the spreading.



Ausbreitung von Schmelzen bei gleichzeitiger Erstarrung auf der Bodenplatte

Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Ausbreitung viskoser Schmelzen mit schlechter

Temperaturleitf�ahigkeit unter dem Einu� erstarrender Krusten auf der Bodenplatte.

Basierend auf einer nichtisothermen D�unn�lmapproximation wird eine L�osung f�ur das Tem-

peraturfeld und damit f�ur die s/l-Grenz�ache hergeleitet. Zur L�osung werden �Ahnlichkeits-

transformationen und alternativ numerische Verfahren verwendet. E�ekte durch Ober-

�achenspannung und Freisetzung von Latentw�arme sind in Rahmen dieser Betrachtung

vernachl�assigbar. Innerhalb der Modellbildung erfolgt die Erstarrung bei einer festen Er-

starrungstemperatur. F�ur das Temperaturfeld wird eine quasistation�are N�aherung verwen-

det. Dies f�uhrt bei Reaktorsicherheitsfragen zu einer konservativen Absch�atzung der nicht-

isothermen Ein�usse auf die Ausbreitung der Schmelze. Weiterhin werden f�ur die Dichte

und die Temperaturleitf�ahigkeit identische und konstante Werte in der festen und �ussigen

Phase verwendet.

Charakterisiert wird das Problem der nichtisothermen Ausbreitung viskoser Schmelzen

durch die Reynolds-Zahl Re, die Froude-Zahl Fr, die Prandtl-Zahl Pr und ein L�angenver-

h�altnis �. F�ur das Volumen der Schmelze wird das allgemeine Gesetz V / t� angenommen.

Somit k�onnen anhand des Parameters � typische Ausbreitungsprobleme klassi�ziert werden.

F�ur Schmelzen mit Pr � 1 �nden wir einen schwachen Einu� der erstarrenden Krusten

auf die Ausbreitung der dar�uberliegenden Schmelze. Mit wachsender Krustendicke wird

die Ausbreitung durch eine Reduzierung der antreibenden hydrostatischen Druckdi�erenz

verlangsamt. F�ur t!1 ist lediglich f�ur � < 7=4 mit einem Anhalten der Ausbreitung zu

rechnen. F�ur � � 7=4 f�uhrt der Einu� erstarrender Krusten auf der Bodenplatte hingegen

nicht zu einem Stop der Ausbreitung.
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Chapter 1

Introduction

The process of spreading under the inuence of heat losses and, hence, solidi�cation has a

wide range of applications in geology and engineering. A �rst example is the spreading of

lava, following the eruption of a volcano. One important question here regards the safety

of the population in the vicinity of the volcano. Thus, it has to be answered, whether the

lava will reach the urban area, or whether solidi�cation will prevent the ow of lava from

intruding. Secondly, solidi�cation of corium melts under the inuence of heat losses may be

critical for the coolability of the melt after a severe core meld down accident. In contrast to

the lava problem, where a short spreading length is desirable, safety concepts rely on a large

spreading length. If solidi�cation leads to an accumulation of the corium melt, the removal

of decay heat is more critical and erosion of the base material may be the consequence.

Figure 1.1 shows a sketch of a reactor pressure vessel and the so-called core-catcher. After a

severe core melt down accident, the melt is accumulated below the reactor pressure vessel.

Due to the decay heat the melt is heated up, until the gate is eroded. After the gate

opening the melt spreads onto the dry spreading area. Depending on the melt conditions

(temperature, viscosity, constitution, : : :), three distinguishable spreading regimes occur:

� inertial/gravitational regime,

� viscous/gravitational regime,

� crust controlled regime.

1
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Figure 1.1: Sketch of a core-catcher.

The inertial/gravitational regime imposes no limiting conditions on the spreading process,

whereas the viscous/gravitational regime and in particular the crust controlled regime lead

to critical conditions for the spreading and the subsequent coolability of the corium melt.

The isothermal spreading over a horizontal substrate within the viscous/gravitational regime

is well studied. Huppert [3] found a similarity solution for the height pro�le of the spreading

ow in a plane or axisymmetric geometry using lubrication theory.

The objective of this study is to investigate the spreading under the inuence of solidi�-

cation for uids of poor thermal conductivity within the viscous/gravitational regime. We

derive an analytically based scheme to describe the inuence of solidi�cation, whereby the

process of solidi�cation starts from the substrate. Solutions for both the velocity and the

temperature �eld are derived in cartesian coordinates for the plane spreading. The inuence

of solidi�cation on the spreading ow is discussed in terms of the spreading length history

as it depends on various parameters, as e.q. inow rate and solidi�cation temperature.

2



Chapter 2

Theory

2.1 Basic equations

2.1.1 Dimensional formulation

The basic conservation equations that describe the plane spreading process under the inu-

ence of gravity for incompressible Newtonian uids in cartesian (x; z)-coordinates are the

continuity equation

ux + wz = 0 ; (2.1)

the Navier-Stokes equations

% (ut + uux + wuz) = �px + � (uxx + uzz) ; (2.2)

% (wt + uwx + wwz) = �pz + � (wxx + wzz)� %g ; (2.3)

and the energy equation

%cp (Tt + uTx + wTz) = � (Txx + Tzz) (2.4)

(cf. Schlichting [5]). This set of equations has to be solved with respect to the boundary

conditions of the speci�c spreading problem.

2.1.2 Nondimensional formulation

To estimate the order of magnitude of the terms in the basic equations (2.1-2.4) a nondi-

mensional formulation will help to clarify. From �gure 2.1, where a sketch of the plane

3
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Figure 2.1: Sketch of a spreading ow.

spreading ow is shown, it is obvious that two di�erent length scales are present within

the problem. Introducing two separate length scales in the vertical and horizontal direction

leads to

X =
x

l0
; Z =

z

h0
:

The velocity is described by a typical horizontal inow u0. The vertical velocity scale w0 is

unknown. The two dimensionless velocities are

U =
u

u0
; W =

w

w0
:

A typical time scale within the problem is the horizontal transport time. Thus, we nondi-

mensionalize the time by

� =
t

l0=u0
:

To obtain a nondimensional pressure it is useful to introduce an unknown pressure scale p0,

which can be �xed during the calculation to obtain the pressure in an order of magnitude

suitable to the spreading process, i.e. we use

P =
p

p0
:

4



The temperature scale includes the initial temperature T0 of the uid and the ambient

temperature T1. The nondimensional temperature is

� =
T � T1
T0 � T1

:

The nondimensional temperature varies in the range 0 � � � 1. Substituting the nondi-

mensional variables into the continuity equation (2.1) yields

u0
l0
UX +

w0

h0
WZ = 0 :

In order to keep both terms in the same order of magnitude, to satisfy continuity, the

following relationship holds
u0
l0
� w0

h0
: (2.5)

Thus, we �x the vertical velocity scale to be

w0 =
h0
l0
u0 = �u0 : (2.6)

We obtain the nondimensional continuity equation

UX +WZ = 0 :

For the horizontal momentum equation (2.2) we obtain

%
u20
l0

(U� + UUX +WUZ) = �p0
l0
PX +

�u0
h20

�
�2UXX + UZZ

�
:

To keep the pressure bounded we have to have

p0
l0
� �u0

h20
: (2.7)

We, therefore, set the pressure scale

p0 =
�u0
h0

l0
h0

=
�u0
h0

1

�
: (2.8)

The pressure p0 is a viscous pressure scale which is appropriate to describe the viscous/gravi-

tational regime of the spreading process. Introducing the nondimensional groups Re =

(u0h0)=� and Fr = u20=(gh0) with the kinematic viscosity � = �=%, we obtain the nondi-

mensional horizontal momentum equation

�Re (U� + UUX +WUZ) = �PX + UZZ +O(�2) :

5



For the vertical momentum equation (2.3) we obtain

%
�u20
l0

(W� + UWX +WWZ) = ��u0
h20

1

�
PZ +

��u0
h20

�
�2WXX +WZZ

�
� %g ;

which can be rewritten as

�3Re (W� + UWX +WWZ) = �PZ � �Re

Fr
+O(�2) :

For the energy equation (2.4) we obtain

%cp(T0 � T1)
u0
l0

(�� + U�X +W�Z) = �(T0 � T1)
1

h20

�
�2�XX +�ZZ

�
:

Introducing the nondimensional group Pr = �=� with � = �=(%cp), the �nal form writes

�RePr (�� + U�X +W�Z) = �ZZ +O(�2) :

This leads to the following system of nondimensional equations

UX +WZ = 0 ; (2.9)

�Re (U� + UUX +WUZ) = �PX + UZZ +O(�2) ; (2.10)

�3Re (W� + UWX +WWZ) = �PZ � �Re

Fr
+O(�2) ; (2.11)

�RePr (�� + U�X +W�Z) = �ZZ +O(�2) : (2.12)

The nondimensional groups are

� =
h0
l0

; (2.13)

Re =
u0h0
�

; (2.14)

Fr =
u20
gh0

; (2.15)

Pr =
�

�
: (2.16)

The scaling is given by

X =
x

l0
; (2.17)

Z =
z

h0
; (2.18)

U =
u

u0
; (2.19)
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W =
u

�u0
; (2.20)

P =
p

(�u0)=(�h0)
; (2.21)

� =
t

l0=u0
; (2.22)

� =
T � T1
T0 � T1

: (2.23)

2.2 Kinematic boundary conditions for spreading without so-

lidi�cation

2.2.1 Dimensional formulation

To describe the spreading ow, boundary conditions need to be �xed for both the ow

�eld and the temperature �eld. In a �rst approach we focus on the ow �eld neglecting

the inuence of temperature (s(x; t) = 0). The function h(x; t) yields the position of the

unknown l/g-interface and a(t) is the position of the contact line, where the l/g-interface is

in contact with the solid substrate, (cf. �gure 2.1).

At the substrate the kinematic boundary conditions are

x; z = 0 : u = w = 0 ; (2.24)

at the l/g-interface h(x; t), the shear stresses are continuous, so that

x; z = h : �l
@j~vlj
@~n

= �g
@j~vgj
@~n

;

where l; g refer to liquid and ambient gas. A comparison of the viscosities

�g
�l
� 1 ; (2.25)

yields for the shear stress at the l/g-interface

x; z = h :
@j~vlj
@~n

= 0 : (2.26)

The kinematic boundary condition at the l/g-interface is

x; z = h : hxu = w � ht : (2.27)

7



The pressure at the upper boundary h(x; t) writes

x; z = h : pl = pg +�p :

The pressure di�erence �p across the interface due to capillary forces is

�p =
�hxx�

1 + (hx)
2
�3=2 � :

Neglecting pressure gradients in the ambient gas due to %l � %g, we obtain a constant

pressure pg �= 0 in the ambient gas. Thus, we have

x; z = h : pl �= �p : (2.28)

For the volume V (t) we have the integral conditions

V (t) = qt� =

a(t)Z
0

h(x; t) dx ; (2.29)

and

_V (t) = �qt��1 =

h(0;t)Z
0

u(x; z; t) dz : (2.30)

Finally, the height of the liquid has to be zero at the contact line and ahead of the contact

line, i.e. we have the condition

x � a(t) : h(x; t) = 0 : (2.31)

2.2.2 Nondimensional formulation

For more information about the signi�cant terms in the boundary conditions it is necessary

to have a nondimensional form. Formally, this is obtained by substituting the nondimen-

sional variables (2.17-2.23) into the boundary conditions. The no-slip condition (2.24) at

the substrate yields

X;Z = 0 : U =W = 0 : (2.32)

The free-slip condition (2.26) at the l/g-interface together with

~n =
1q

1 + (hx)
2

0
@ �hx

1

1
A

8



yields

X;Z = H :
1q

1 + (�HX)
2
� 1p

U2 + (�W )2
�
�
(U2 + (�W )2)Z � �2HX(U

2 + (�W )2)X
�
= 0:

(2.33)

The kinematic boundary condition (2.27) at the l/g-interface yields

X;Z = H : W = HXU +H� : (2.34)

From equation (2.28) we �nd that the liquid pressure P at the l/g-interface is

X;Z = H : P = ��3 1

Ca
HXX

1�
1 + (�HX)

2
�3=2 ; (2.35)

with the capillary number Ca = (�u0)=�. The integral condition (2.29) for the volume

yields
A(�)Z
0

H(X; �) dX = CV �
� with CV =

q

h0l0

�
l0
u0

��
: (2.36)

From condition (2.30) for the volume ux we obtain

H(0;�)Z
0

U(X;Z; �) dZ = �CV �
��1 : (2.37)

At the contact line condition (2.31) yields

X � A(�) : H(X; �) = 0 : (2.38)

2.3 Lubrication Theory

The nondimensional equations involve several groups, which, under certain assumptions,

allow to deduce a simpli�ed description of the problem. Focusing on spreading ows which

are dominated by viscous and gravitational forces we have

Re = O(1) and
�Re

Fr
= O(1) :

Furthermore we have in a late stage of the spreading

� =
h0
l0
� 1 :

9



This allows to simplify the original system of conservation equations (2.9-2.12) to

UX +WZ = 0 ; (2.39)

0 = �PX + UZZ ; (2.40)

0 = �PZ � �Re

Fr
; (2.41)

�RePr (�� + U�X +W�Z) = �ZZ : (2.42)

The boundary conditions (2.32-2.35) can be simpli�ed for �� 1 to give

X;Z = 0 : U =W = 0 ; (2.43)

X;Z = H(X; �) : UZ = 0 ; (2.44)

W = HXU +H� ; (2.45)

P = 0 (2.46)

for the ow �eld. The boundary condition (2.46) for the pressure at the l/g-interface is

valid for capillary numbers

Ca =
�u0
�

> �2 :

Thermal boundary conditions will be inferred speci�cally in chapter 4.1 for nonisothermal

spreading.
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Chapter 3

Isothermal spreading

The isothermal spreading problem, based on lubrication theory, has been solved by Huppert

[3]. His solution yields analytical expressions for the pressure P and for the velocities U

and W , depending on the unknown position of the free l/g-interface H(X; �). He obtains

an evolution equation for H(X; �) to describe the l/g-interface. Using a similarity transfor-

mation, he �nds for special cases analytical similarity solutions for H(X; �), but generally

the resulting ordinary di�erential equation has to be solved numerically. It is also possi-

ble to �nd approximations to the similarity solution. To get a more general approach we

additionally solve the the evolution equation using a fully-numerical approach.

3.1 Velocity and pressure �eld

Integrating equation (2.41) with respect to Z gives

P = ��Re
Fr

Z + P1 :

From (2.46) the constant of integration is

P1 =
�Re

Fr
H(X; �) :

The pressure �eld is given by

P =
�Re

Fr
(H � Z) : (3.1)

Substituting the pressure �eld (3.1) into the horizontal momentum equation (2.40) yields

UZZ =
�Re

Fr
HX :

11



Integration with respect to Z yields

U =
1

2

�Re

Fr
HXZ

2 + U1Z + U2 :

Based on the free-slip condition (2.44) and the no-slip condition (2.43) we obtain the con-

stants of integration

U1 = ��Re
Fr

HXH ; U2 = 0 :

Thus, the horizontal velocity �eld is given by

U =
�Re

Fr
HX

 
Z2

2
�HZ

!
: (3.2)

The vertical velocity W can be expressed from the continuity equation (2.39). Substituting

(3.2) for U we obtain

WZ =
�Re

Fr

 
HXXHZ +H2

XZ �HXX
Z2

2

!
:

Integration with respect to Z in conjunction with the no-slip condition (2.43) yields

W =
1

6

�Re

Fr
Z2
�
3H2

X +HXX(3H � Z)
�

: (3.3)

It is useful to represent the ow �eld as a streamfunction. Therefore, we introduce a

streamfunction 	 which satis�es

U = 	Z ; W = �	X :

Integrating both equations yields

	 =

Z
U dZ +	1(X) ;

	 = �
Z
W dX +	2(Z) :

Using equations (3.2-3.3) we obtain for the streamfunction

	 =
�Re

Fr
HX

Z2

6
(Z � 3H) : (3.4)

The streamfunction is normed to zero at the substrate (Z = 0), since the substrate in all

cases represents a line 	 = constant.
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3.2 Evolution equation for H(X; �)

Up to now we have analytical expressions for the ow and pressure �eld, involving the

unknown position of the l/g-interface H(X; �). Therefore, an equation for the evolution of

the l/g-interface H(X; �) has to be found. Substituting the velocities (3.2, 3.3) into the

kinematic boundary condition (2.45), we directly obtain

H� � �Re

3Fr
H2

�
3H2

X +HHXX

�
= 0 :

This simpli�es to

H� � �Re

3Fr

�
H3HX

�
X
= 0 :

This partial di�erential equation describes the position of the l/g-interface H(X; �) for the

isothermal spreading problem. Substituting the velocity U , equation (3.2), into the integral

condition (2.37) leads to

H� � �Re

3Fr

�
H3HX

�
X
= 0 ; (3.5)

X = 0 : � �Re

3Fr
H3HX = �CV �

��1 ; (3.6)

X � A(�) : H = 0 ; (3.7)

volume constraint :

A(�)Z
0

H dX = CV �
� : (3.8)

For the solution of this set of equations we can use either a similarity transformation to

arrive at an ordinary di�erential equation, which has analytical solutions in some special

cases. Alternatively, we can solve the problem numerically, which allows for a more general

treatment of initial conditions. Both methods are described in the next sections.

3.2.1 Dependence of the conditions at X = 0 and X � A(�)

The conditions (3.6) and (3.7) are not independent. To show this we �rst integrate the

evolution equation (3.5) in the following form

A(�)Z
0

H� dX � 1

3

�Re

Fr

A(�)Z
0

�
H3HX

�
X
dX = 0 :

13



The second integral yields

A(�)Z
0

H� dX � 1

3

�Re

Fr
H3HX

����A(�)
0

= 0 :

In the limit X ! A(�), we assume that H3HX ! 0. This is valid if H3 is dominant in this

limit, since H ! 0, HX ! �1 may occur simultaneously. Thus, we have

A(�)Z
0

H� dX +
1

3

�Re

Fr
H3(0; �)HX (0; �) = 0 : (3.9)

The identity

0
B@

A(�)Z
0

H(X; �) dX

1
CA
�

=

A(�)Z
0

H� (X; �) dX +H(A(�); �)A� (�) ;

together with condition (3.7) yields

0
B@

A(�)Z
0

H(X; �) dX

1
CA
�

=

A(�)Z
0

H� (X; �) dX :

From equation (3.9) we infer

0
B@

A(�)Z
0

H(X; �) dX

1
CA
�

+
1

3

�Re

Fr
H3(0; �)HX(0; �) = 0 : (3.10)

The condition for the volume ux (2.37) can be written as

H(0;�)Z
0

U(X;Z; �) dZ =

0
B@

A(�)Z
0

H(X; �) dX

1
CA
�

= �CV �
��1 : (3.11)

Substituting (3.11) into (3.10) �nally yields

�CV �
��1 +

1

3

�Re

Fr
H3(0; �)HX (0; �) = 0 ; (3.12)

which is equivalent to condition (3.6). Hence, condition (3.7) and (3.6) are not independent

(cf. Pert [4]).
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3.2.2 Similarity transformation

To derive an analytical solution for the evolution equation (3.5) it is useful to employ a

similarity transformation, which transforms the partial di�erential equation (3.5) into an

ordinary di�erential equation.

Based on a similarity variable �, with 0 � � � �N , we can �nd solutions of the form

H(X; �) = C1�
n ~H(�=�N ) : (3.13)

We use

� =
X

C0
��m ; (3.14)

where

�N =
A(�)

C0
��m (3.15)

describes the position of the contact line. Thus, a normalized variable � may be introduced

as

� =
�

�N
; 0 � � � 1 : (3.16)

Substituting (3.13) and (3.14) into the evolution equation (3.5) yields

C1�
n�1

�
n ~H �m� ~H�

�
� 1

3

�Re

Fr

C4
1

C2
0

�4n�2m
1

�2N

�
~H3 ~H�

�
�
= 0 :

To transform this equation into an ordinary di�erential equation we set

4n� 2m = n� 1 (3.17)

For the volume ux at � = 0 we obtain with (3.6)

�1

3

�Re

Fr

C4
1

C0
�4n�m

1

�N
~H3 ~H� = �CV �

��1 : (3.18)

At � = 1 equation (3.7) yields

~H = 0 ; (3.19)

and the integral condition (3.8) yields

C0C1�
m+n�N

1Z
0

~H d� = CV �
� : (3.20)
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The time dependency in (3.18, 3.20) cancels if equations

4n�m = �� 1 ; (3.21)

m+ n = � (3.22)

hold. Solving the system (3.17, 3.21, 3.22), �nally, yields

m =
3� + 1

5
; (3.23)

n =
2� � 1

5
: (3.24)

In similarity form we have the following system of ordinary di�erential equation, boundary

and integral conditions

( ~H3 ~H�)� � 3Fr

�Re

C2
0

C3
1

�2N

�
2�� 1

5
~H � 3�+ 1

5
� ~H�

�
= 0 ; (3.25)

� = 0 : ~H3 ~H� = ��CV
3Fr

�Re

C0

C4
1

�N ; (3.26)

� = 1 : ~H = 0 ; (3.27)

integral constraint

1Z
0

~H d� =
CV

C0C1�N
: (3.28)

The constants C0 and C1 and the value of �N remain to be determined. The values C0 and

C1 de�ne the length scales of � and ~H. Obeying the orders of magnitude in the system (3.25-

3.28), the choice is largely free. The backward transformation from � to X; � -coordinates

will cancel the inuence of this arbitrary choice for C0 and C1.

In equation (3.25) we choose
3Fr

�Re

C2
0

C3
1

�2N = 1 : (3.29)

To determine the length scale for �N we substitute the group of constants in (3.28) to be

1Z
0

~H d� =
CV

C0C1�N
= K : (3.30)

Evaluating condition (3.29) and (3.30) we �nd

C0 =

�
�Re

3Fr

�1=5 �CV

K

�3=5 1

�N
;

C1 =

�
3Fr

�Re

�1=5 �CV

K

�2=5
:
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From (3.15) it is obvious that C0 has to be independent of �N . Thus,

K = (�N )
�5=3 ; (3.31)

is readily inferred and the constants are

C0 =

�
�Re

3Fr

�1=5
C
3=5
V ; (3.32)

C1 =

�
3Fr

�Re

�1=5
C
2=5
V �

2=3
N : (3.33)

1Z
0

~H d� = �
�5=3
N : (3.34)

In summary we obtain for the evolution equation

( ~H3 ~H�)� +
3�+ 1

5
� ~H� � 2�� 1

5
~H = 0 ; (3.35)

together with the boundary conditions

� = 0 : ~H3 ~H� = � �

�
5=3
N

; (3.36)

� = 1 : ~H = 0 : (3.37)

The complete set of equations and the similarity transformation is summarized in table 3.1.

The solution of the resulting ordinary di�erential equation (3.35) can generally be found by

means of a numerical integration algorithm, or for the special case of � = 0 in an analytical

form.

3.2.2.1 Analytical solutions

For the analytical solution of the transformed evolution equation (3.35) we assume solutions

of the form

~H(�) = c(1� �a)b : (3.38)

This form automatically ful�lls the boundary condition (3.37). Substituting (3.38) into

(3.35) yields

� 1

5�2

n
c(1� �a)b�2

�
5abc3�a(1� �a)3b (1� �a + a (4b�a � 1))

�
�

�2(1� �a) (2�� 1 + �a (1� 2�+ a (b+ 3b�)))
o

= 0 :
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H(X; �) =

�
3Fr

�Re

�1=5
C
2=5
V � (2��1)=5�

2=3
N

~H(�=�N )

A(�) =

�
�Re

3Fr

�1=5
C
3=5
V � (3�+1)=5�N

with

� =

�
�Re

3Fr

�
�1=5

C
�3=5
V X ��(3�+1)=5 0 � � � �N

� =
�

�N
0 � � � 1

( ~H3 ~H�)� +
3�+ 1

5
� ~H� � 2�� 1

5
~H = 0

� = 0 : ~H3 ~H� = � �

�
5=3
N

� = 1 : ~H = 0

volume constraint

1Z
0

~H(�) d� = �
�5=3
N

Table 3.1: Similarity transformation and system of ordinary di�erential equation, boundary

and integral conditions for H(X; �).
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For

a = 2 ;

b = 1=3 ;

the above equation simpli�es to

c

45(1 � �2)2=3

�
10c3(5�2 � 3)� 3(5�2 + 6�� 3)

�
= 0 :

This equation is identically ful�lled if the bracket evaluates to zero. We immediately �nd

� = 0 : (3.39)

The above equation reads
c(10c3 � 3)(5�2 � 3)

45(1 � �2)2=3
= 0 :

We neglect complex and trivial solutions for c and obtain

c =

�
3

10

�1=3
: (3.40)

Thus, we have for � = 0

~H(�) =

�
3

10

�1=3
(1� �2)1=3 ; (3.41)

as a special analytical solution of the evolution equation (3.35).

3.2.2.2 Numerical solutions

As shown in the previous section it is possible to �nd an analytical solution for � = 0. For

the general case � 6= 0 we have to integrate equation (3.35) numerically. Two di�culties

are encountered using a numerical method. Firstly, standard integration routines solve an

initial value problem by forward (or backward) integration. Here, boundary conditions are

given on both sides of the integration interval. Secondly, the singularity at � = 1 can

hardly be resolved by a numerical routine. To resolve both problems we will seek a solution

within the interval � 2 [0; �max] with �max ! 1. The boundary conditions at � = �max are

approximated in the form

~H(�) = c(1� �)1=3 :
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Figure 3.1: Shooting parameter for the numerical solution of ~H(�).

The parameter c is found by iteration from a shooting method. For the shooting method

we use

( ~H3 ~H�)� +
3�+ 1

5
� ~H� � 2�� 1

5
~H = 0 ; (3.42)

~H(�max) = c(1 � �max)
1=3 ; (3.43)

~H�(�max) = � c

3
(1� �max)

�2=3 : (3.44)

We start with an initial guess for the value c and verify after the numerical integration

whether the condition

~H(0)3 ~H�(0) = ��
1Z

0

~H d� (3.45)

is satis�ed. In �gure 3.1 the development of the solution for di�erent values of c is shown.

Starting with c = 8 we �nd that the shooting condition (3.45) is satis�ed for c = 1:34 to a

given accuracy.

3.2.2.3 Approximations

It is useful to have also an analytical approximation of the exact numerical solution ~H(�).

Two di�erent methods are employed to �nd an approximation for ~H(�). This simpli�es the

subsequent calculations of the temperature �eld.
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Expansion for � ! 1

An expansion of the form

~Hexp(�) = c(1� �)1=3
�
1 + c1(1� �) + c2(1� �)2 + : : :

�
; (3.46)

yields an approximation for � ! 1. Furthermore, we can verify from equation (3.46) the

shooting parameter c in section 3.2.2.2. Substituting (3.46) into (3.35) yields

O(1) : c

 
c3

9
� 1

5

�
�+

1

3

�!
= 0 ;

O((1� �)1) : c1

�
28

9
c4 � 4c

5

�
�+

1

3

��
+

c

5

�
4

3
� �

�
= 0 ;

O((1� �)2) : 7c2

�
10

9
c4 � c

5

�
�+

1

3

��
+

35

3
c4c21 +

1

5
cc1

�
2� +

7

3

�
= 0 :

For the constants c; c1; c2 we obtain

c =

�
3

5

�1=3
(1 + 3�)1=3 ;

c1 =
3�� 4

24(3� + 1)
;

c2 = �153�2 � 288� + 112

4032(3� + 1)2
:

Thus, the approximation (3.46) is summarized to the leading order by

~Hexp(�) =

�
3

5
(1 + 3�)

�1=3
(1 � �)1=3

�
1 +

3�� 4

24(3� + 1)
(1� �) +O((1� �)2)

�
: (3.47)

Weighted residual method

A more general approximation, which is valid in the interval � 2 [0; 1], can be found by a

weighted residual method. We use as a trial solution

~HWRM (�) = c(1� �)b ; (3.48)

which yields for the residual of equation (3.35)

R = b(4b� 1)c4(1� �)4b�2 � c

5
(1� �)b�1(�1 + �(1 + b) + �(2 + (3b� 2)�)) : (3.49)

Using two weighting functions w1(�) and w2(�) we can formulate two equations

1Z
0

(Rwi) d� = 0 ; i = 1; 2 :

Thus, we have two conditions to infer the unknown parameters b; c. For two sets of weighting

functions we obtain
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� w1(�) = 1; w2(�) = �:

~HWRM1(�) = c(1� �)b ; (3.50)

b =
10�

4 + 27�
;

c =

 
(4 + 27�)2

40 + 370�

!1=3

:

� w1(�) = 1; w2(�) = c(1� �)b:

~HWRM2(�) = c(1� �)b ; (3.51)

b =
4�� 2 +

p
9 + �(44 + 151�)

5 + 45�
;

c =

 
�347�2 + 42� � 3 + (1 + 53�)

p
9 + �(44 + 151�)

50(1 + 3�)

!1=3

:

3.2.3 Numerical solution of the evolution equation for H(X; �)

To solve equation (3.5) numerically we have to address to the problem of the moving contact

line A(�), which is shown in �gure 3.2. We need a very �ne numerical grid in the vicinity

of A(�) to resolve the singular behaviour of H(X; �). The similarity solution shows close to

the contact line the following behaviour

X ! A(�) : H ! 0 ;

HX ! �1 :

To solve the problem in X; � -coordinates we need an adaptive mesh moving with the contact

line A(�). Hereby, A(�) is part of the solution of the spreading problem. Alternatively, we

may resolve the complete X; � -domain with a suitable �ne grid, which inicts a large number

of nodes. A more e�cient method to obtain a numerical solution de�nes a new variable

� =
X

A(�)
; (3.52)

in order to transform the spreading problem onto a �xed domain. In a �xed domain we

are free to resolve the region around the contact line in particular with a very �ne grid to

obtain an adequate numerical approximation of H(X; �) for X ! A(�).
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Figure 3.2: Sketch of the numerical solution of H(X; �).

3.2.3.1 Transformation (X; �)! (�; �)

Substituting equation (3.52) into the equations (3.5-3.8) yields

H� � �
A�

A
H� � 1

3

�Re

Fr

1

A2

�
H3H�

�
�
= 0 ; (3.53)

� = 0 : �1

3

�Re

Fr

1

A
H3H� = �CV �

��1 ; (3.54)

� = 1 : H = 0 ; (3.55)

integral constraint :

1Z
0

H d� =
CV �

�

A
: (3.56)

The transformation allows to formulated the spreading problem on a rectangular domain,

as shown in �gure 3.3.

3.2.3.2 Method of lines for the evolution equation of H(�; �)

Equation (3.53) is a nonlinear di�usion equation, �rst order in time and second order in

space. As equation (3.53) is nonlinear we use the method of lines to change the partial

di�erential equation into a system of ordinary di�erential equations, which can be integrated
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Figure 3.3: Sketch of the numerical solution of H(�; �).

numerically using a standard scheme like Adams or Gear (cf. [7]), depending on the sti�ness

of the resulting system. We replace the derivatives with respect to � by a �nite di�erence

approximation and obtain a system of (imax � 1) ordinary di�erential equations in time � .

We use non-uniform spacing

��i = �i � �i�1 ; i = 1; : : : ; imax ; (3.57)

as shown in �gure 3.4. Thus, we have a discrete representation of

Hi(�) ' H(�i; �) ; (3.58)

at discrete values � = �i within an interval �0 � � � �max.

We employ central di�erences for both the �rst derivatives, i.e.

H�(�i; �) � Hi+1 �Hi�1

��i+1 +��i
; i = 1; : : : ; imax � 1 (3.59)

and the second derivatives, i.e.

H��(�i; �) � 2
��iHi+1 � (��i+1 +��i)Hi +��i+1Hi�1

��i+1��i(��i+1 +��i)
; i = 1; : : : ; imax � 1 ; (3.60)
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Figure 3.4: Sketch of the method of lines for H(�; �).

in equation (3.53). Around � = 1 we, employ a �fth order backward di�erence to increase

accuracy around this singular point.

For a discretized formulation of equation (3.54) we use the forward di�erence for the deriva-

tive H�, i.e.

H�(0; �) � ���2(2��1 +��2)H0 + (��1 +��2)
2H1 ���21H2

��1��2(��1 +��2)
: (3.61)

To avoid multiple solutions we introduce for H

H(0; �) � H1(�) +
��1(��3(2��2 +��3)H1 � (��2 +��3)

2H2 +��22H3)

��2��3(��2 +��3)
: (3.62)

Expression (3.62) results from a Taylor-expansion around � = �1 and a forward di�erence

approximation of the respective derivatives.

The discrete formulation of the evolution equation and the boundary conditions represents

now a system of (imax�1) coupled ordinary di�erential equations together with two bound-

ary conditions at �0 and �imax.
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Figure 3.5: Subdomains for the shooting method for A(�).

3.2.3.3 Shooting method for A(�)

The position of the contact line A(�) is unknown and cannot be calculated from H(�; �).

Therefore, we use a shooting method together with the integral constraint (3.56) to calculate

A(�). The performance during the calculation can be improved, if we split the interval

�0 � � � �max into nmax subdomains as shown in �gure 3.5. Within each interval we

assume for A(�) a Taylor-expansion

An(�) = An�1 + cn � (� � �n�1) ;
n = 1; : : : ; nmax ;

�n�1 � � � �n :
(3.63)

For the calculation of the coe�cient cn we use equation (3.56) at � = �n. This yields

� = �n :

1Z
0

H d� =
CV �

�

A
: (3.64)
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3.3 Results

As shown in the previous section it is possible to �nd either similarity solutions or numer-

ical solutions for H(X; �). Based on this solutions we can determine the pressure P , the

velocities U , W and the streamfunction 	 using equations (3.1-3.4).

3.3.1 Position of the l/g-interface - H(X; �)

3.3.1.1 Similarity solution for H(X; �)

The similarity transformation of equation (3.5) reduces the partial di�erential equation to

an ordinary di�erential equation. The coe�cients in equation (3.35) no longer depend on the

nondimensional groups �;Re; Fr, but only on the parameter �. We solve for ~H depending

on the characteristic of the ow. Having solved equation (3.35) for the shape function ~H(�)

we can determine a solution for speci�c �;Re; Fr using equations (3.13-3.14).

Solution for ~H Figure 3.6 shows the results for ~H using the numerical method described

in section 3.2.2.2. We can see the signi�cant inuence of the parameter �. For � = 0 we

get the spreading of a constant volume, i.e. a drop. With increasing � the shape becomes

steeper due to an increased inow (cf. equation (3.36)).

Figure 3.7 shows the analytical solution (3.41) for � = 0 together with the numerical result

(cf. also �gure 3.6). The good agreement demonstrates that the numerical method is

suitable for this type of problem.

As shown in section 3.2.2.3 it is possible to �nd analytical approximations for ~H(�). Figure

3.8 shows results for ~H based on either the expansion ~Hexp, equation (3.47), or the numerical

solution. The agreement for � > 0 is good. For � = 0 there is a slight discrepancy as � ! 0.

From the analytical solution (3.41) we infer for � = 0

~H / (1� �2)1=3 :

In contrast, the expansion yields the form

~H / (1� �)1=3 :

Thus, we may expect some discrepancy for this case.
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Figure 3.7: Analytical and numerical solution for ~H, � = 0.
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Figure 3.8: Expansion ~Hexp, equation (3.47), and the numerical solution for ~H, � =

0; 1; 7=4; 2.

Using a weighted residual method for the approximation of ~H(�) yields again good agree-

ment for � > 0, as shown in �gure 3.9 and 3.10. Only for � = 0 the weighted residual

method fails due to inappropriate trial functions. The accuracy of the di�erent approx-

imations can be estimated, based on the value �N , equation (3.34). In �gure 3.11 �N is

plotted versus �. For ~Hexp, equation (3.47), the agreement is good and the discrepancy for

all values of � > 0 is of the order 10�5. The maximum error occurs around � = 0, where the

approximation ~Hexp yields values for �N , which are 0:2% lower than the numerical values.

Both solutions ~HWRM1 and ~HWRM2, equation (3.50) and (3.51), give good approximations

for � � 1. The discrepancy is lower than 0:4% in this range. However, the error is two

orders of magnitude larger if compared to the approximation ~Hexp, equation (3.47). On the

other hand ~HWRM1 and ~HWRM2 allow for a simpler mathematical formulation.

Solution for H(X; �) We have seen in the previous section, that the solution of ~H depends

only on the spatial coordinate � and the parameter �, which captures the volume history.

The nondimensional groups have no inuence on ~H. The inuence of the nondimensional

groups is encoded in the backward transformation from the similarity variable � to the
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Figure 3.9: Weighted residual solution ~HWRM1, equation (3.50), and the numerical solution

for ~H, � = 0; 1; 7=4; 2.
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Figure 3.10: Weighted residual solution ~HWRM2, equation (3.51), and the numerical solution

for ~H, � = 0; 1; 7=4; 2.
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Figure 3.11: Approximate and numerical solutions for �N .

X; � -coordinates.

Substituting the coe�cients m;n, equations (3.23, 3.24), the length scales C0; C1, equations

(3.32, 3.33), into equation (3.13), together with the similarity variable �, equation (3.14),

and �N , equation (3.15), we obtain for the interface

H(X; �) =

�
3Fr

�Re

�1=5
C
2=5
V �

2=3
N � (2��1)=5 ~H

 �
3Fr

�Re

�1=5 X

� (3�+1)=5C
3=5
V �N

!
; (3.65)

and for the contact line

A(�) =

�
�Re

3Fr

�1=5
C
3=5
V �N�

(3�+1)=5 : (3.66)

Depending on the required accuracy one of the approximations for ~H (cf. equations (3.47,

3.50, 3.51)) may be used to express H(X; �). In �gures 3.12, 3.13 the solution for H(X; �),

approximated by the numerical solution for ~H, is shown for di�erent values of �.

3.3.1.2 Numerical solution for H(X; �)

Solving the evolution equation (3.5) via a similarity transformation yields the long time

solution for H, see Smyth [6]. In this case it is not necessary to formulate an initial

condition at a time � = �0. The volume constraint (3.8) guarantees an unique solution.
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Figure 3.12: H(X; �), similarity transformation, � = 0; 1; 7=4; 2.
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Figure 3.13: Position of the contact line A(�), similarity transformation, � = 0; 1; 7=4; 2.

For the numerical integration of equation (3.53) we have to specify initial conditions at

� = �0. To ful�ll the boundary conditions (3.54, 3.55) and the volume constraint (3.56) we

use the initial shapes

H(�; �0) = c(1 � �2) ; � = 0 ; (3.67)

H(�; �0) = c(1 � �) ; � > 0 : (3.68)

Substituting (3.67) and (3.68) into the boundary conditions (3.54) and (3.56) for � = 0

yields

c =
3CV

2A(�0)
; A(�0) ! arbitrary :

For � > 0 we obtain

c =

�
6Fr�

�Re

�1=5
C
2=5
V �

(2��1)=5
0 ; A(�0) =

�
16�Re

3Fr�

�1=5
C
3=5
V �

(3��1)=5
0 :

For the following calculations the parameters are chosen as

Re = 1 ; F r = 0:01 ;

� = 0:01 ; CV = 1 :

The initial conditions for �0 = 0:5 are summarized in table 3.2. Figures 3.14-3.17 show
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� H(�; �0) A(�0)

0 3=2(1 � �2) 1

1 1:246(1 � �) 0:803

7=4 1:132(1 � �) 0:525

2 1:084(1 � �) 0:461

Table 3.2: Initial conditions for the numerical integration of H(�; �).
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Figure 3.14: Numerical solution of H(�; �), � = 0.

34



0

2

4

6

8

5

10

15

20

0

1

2

3

0

2

4

6

8

τ

H(X,τ)

X

Figure 3.15: Numerical solution of H(�; �), � = 1.
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Figure 3.16: Numerical solution of H(�; �), � = 7=4.
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Figure 3.17: Numerical solution of H(�; �), � = 2.

the solution for H(X; �) using the numerical method discussed in section 3.2.3 for � =

0; 1; 7=4; 2.

As expected the initial conditions have only an inuence for small times � ' �0. For

long times we obtain good agreement between the numerical and the similarity solution as

shown in �gure 3.18, which shows both solutions in normalized coordinates � = X=A(�).

The history of the contact line A(�) is shown in �gure 3.19. Again good agreement is

achieved, which veri�es the numerical method.

3.3.2 Velocity �elds

In section 3.1 we have inferred that the pressure P , which drives the spreading ow, the

velocities U , W and the streamfunction 	 all depend on the function H(X; �). Based

on either the similarity solution or the numerical solution for H we can compute these

quantities. Figure 3.20 shows streamlines for � = 0; 1; 7=4; 2. For � = 0 we have the

spreading of a constant volume, i.e. of a drop. Due to symmetry there is no horizontal

velocity component U at X = 0. The boundary condition (3.6) yields HX = 0 and from

equation (3.2) we have U(0; Z; �) = 0. For all other cases, � > 0, we have an inow at

X = 0, i.e. almost parallel streamlines. Thus, we expect a mainly horizontal ow for
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Figure 3.18: Comparison of the similarity transformation and the numerical solution for

H(�; �). � = 0; 1; 7=4; 2, � = 20.
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Figure 3.19: Comparison of the similarity transformation and the numerical solution for

A(�). � = 0; 1; 7=4; 2.
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� > 0. In contrast, for � = 0, vertical velocities are dominant. For Z ! 0 streamlines are

parallel to the substrate, which represents the streamline 	 = 0. At the l/g-interface we

get streamlines ending at H(X; �). This is a result of the time dependent l/g-interface.

Figure 3.21 shows the velocity components U and W at X = 0 and X = 0:9A(�). The

velocity plots con�rm the di�erent behavior for � = 0 and � > 0 at X = 0. For X ! A(�)

the balance between U and W obviously is independent of �. However, the amplitudes of

U;W increase with increasing �.
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Figure 3.20: Streamlines for isothermal spreading without crusting, � = 5.
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Figure 3.21: Velocity components at X = 0 and X = 0:9A(�), � = 5.
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Chapter 4

Nonisothermal spreading - without

solidi�cation

The energy equation (2.12) yields

�RePr (�� + U�X +W�Z) = �ZZ :

We shall focus onto melts with large Prandtl numbers, such that

�RePr � 1 (4.1)

holds. This assumption allows a matched-asymptotic formulation of the thermal �eld.

Furthermore, we restrict to the quasi-steady problem, thus

�� = 0 : (4.2)

The quasi-steady approximation will give the thickest possible thermal boundary layer and,

therefore, a 'worst-case approximation' for the inuence of nonisothermal e�ects on the

spreading process. A weighted residual method will give an estimation of � using the

transient energy equation (2.12).

With respect to the quasi-steady problem we restrict our calculations to spreading problems

with � > 0. Figure 3.21 shows that U(0; Z) = 0 for � = 0. The convective heat transport in

the horizontal direction vanishes and the remaining terms in the energy equation describe

only heat transport in the vertical direction. This will lead to unphysical results. For

spreading with � = 0 it seems not to be possible to calculate a quasi-steady solution for �

with an underlying lubrication approximation.
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4.1 Thermal boundary conditions

To solve the nonisothermal problem we have additionally to �x thermal boundary condi-

tions.

4.1.1 Dimensional formulation

For the analytical solution for the nonisothermal problem we will use T = T0 as inow

condition and two boundary conditions of the third kind (see Carslaw & Jaeger [1]). At the

inow, the substrate and the l/g-interface we have

x = 0; z : T = T0 ; (4.3)

x; z = 0 : �hl(T � T1) = �
@T

@~n
; (4.4)

x; z = h(x; t) : �hu(T � T1) = �
@T

@~n
: (4.5)

Here hl and hu are the heat transfer coe�cients at the substrate and at the l/g-interface.

The boundary conditions (4.4, 4.5) are fairly general and include through variable hi both,

the isothermal and the adiabatic case.

4.1.2 Nondimensional formulation

It is useful to derive a nondimensional formulation of the thermal boundary conditions to

recognize which terms are important and which terms can be neglected for simplicity. For

the normal derivative
@T

@~n
= ~n grad T ;

we obtain

x; z = 0 :
@T

@~n
= �Tz ; (4.6)

x; z = h(x; t) :
@T

@~n
=

1q
1 + h2x

(Tz � hxTx) : (4.7)

Substituting (4.6) and (4.7) in the boundary conditions (4.3-4.5) together with the scaling

(2.17, 2.23) yields in the nondimensional formulation

X = 0; Z : � = 1 ; (4.8)
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X;Z = 0 : � =
1

Bil
�Z ; (4.9)

X;Z = H(X; �) : � = � 1

Biu

1q
1 + �2H2

X

(�Z � �2HX�X) : (4.10)

In nondimensional form the heat transfer at both interfaces is encoded in the Biot numbers

Bil =
hlh0
�

; (4.11)

Biu =
huh0
�

: (4.12)

Using equation (2.13),

� =
h0
l0
� 1 ;

we �nd in a leading order

X = 0; Z : � = 1 ; (4.13)

X;Z = 0 : � =
1

Bil
�Z ; (4.14)

X;Z = H(X; �) : � = � 1

Biu
�Z : (4.15)

This is the approximated form of the thermal boundary conditions, valid within the lubri-

cation approximation (�� 1).

4.2 Matched asymptotic representation - heat losses at the

substrate

Figure 4.1 shows typical pro�les for the velocity U and the temperature � for the spreading

of a melt with a high Prandtl number. We have a outer region where � is equal to the

initial temperature �0 = 1. Only within a thin thermal boundary layer �th � h0 we have

a balance between heat transport due to convection and conduction.

Given the quasi-steady state approximation (4.2), the energy equation (2.12) reads

�RePr (U�X +W�Z) = �ZZ ;

�RePr � 1 :
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Figure 4.1: Sketch for spreading ows of high Prandtl number melts.

For the problem with heat losses at the perfectly conducting substrate and an adiabatic l/g-

interface we have Bil !1; Biu ! 0 and, thus, the thermal boundary conditions (4.13-4.15)

simplify to

X = 0; Z : � = 1 ; (4.16)

X;Z = 0 : � = 0; ; (4.17)

X;Z = H(X; �) : �Z = 0 : (4.18)

4.2.1 Outer solution

Within the outer region we have

U�X +W�Z = 0 :

Together with the boundary conditions (4.16) and (4.18) we obtain the outer solution

� = �0 = 1 : (4.19)

4.2.2 Inner solution

Inside the thermal boundary layer we have to keep the conductive term, i.e. we have

�RePr (U�X +W�Z) = �ZZ : (4.20)
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As we expect a balance between convection and conduction, the scaling of equation (4.20)

cannot be suitable. In particular, h0 is not the adequate length scale to describe the

processes within the thermal boundary layer. We introduce rescaled coordinates X̂; Ẑ to

obtain a correct description of the physics close to the substrate. We introduce the modi�ed

length scales

X̂ = X ; Ẑ =
h0
�th

Z ;

where �th is the thermal boundary layer thickness. For the velocities we introduce formally

Û =
U

U0
; Ŵ =

W

W0
:

From the continuity equation (2.39) we obtain

U0ÛX̂ +
W0

�th=h0
ŴẐ = 0 :

Assuming that U is a linear function in Z across the thermal boundary layer we take U0 =

�th=h0 as a horizontal velocity scale. From the continuity equation we infer W0 = (�th=h0)
2

and summarize the rescaling to be

X̂ = X ; (4.21)

Ẑ =
h0
�th

Z ; (4.22)

Û =
h0
�th

U ; (4.23)

Ŵ =

�
h0
�th

�2
W : (4.24)

Substituting the new variables (4.21-4.24) into the energy equation (4.20) yields

�RePr
�th
h0

�
Û�̂X̂ + Ŵ �̂Ẑ

�
=

�
h0
�th

�2
�̂ẐẐ : (4.25)

From equation (4.25), if a balance of convective and conductive transport is to be main-

tained, the factors have to be of the same order of magnitude, i.e.

�RePr
�th
h0
�
�
h0
�th

�2
: (4.26)

Thus, the thermal boundary layer thickness �th can be estimated to be

�th � h0
(�RePr)1=3

: (4.27)

45



Equation (4.27) yields a �rst idea for the inuence of nonisothermal e�ects within spreading

problems of high Prandtl number melts. We choose �th = h0=(�RePr)
1=3 and obtain

Û�̂X̂ + Ŵ �̂Ẑ = �̂ẐẐ : (4.28)

The boundary conditions are

X̂ = 0; Ẑ : �̂ = 1 ; (4.29)

X̂; Ẑ = 0 : �̂ = 0 ; (4.30)

X̂; Ẑ !1 : �̂ = 1 : (4.31)

For the streamfunction in rescaled coordinates we obtain,

	̂ =
�Re

6Fr

�
�th
h0

�2
ĤX̂Ẑ

2(Ẑ � 3Ĥ) : (4.32)

As we have a thin thermal boundary layer, we can simplify the convective terms within the

heat transport equation by a Taylor-expansion of 	̂ around Z = 0. The streamfunction,

thus, can be approximated by

	̂ ' 	̂
���
Ẑ=0

+ Ẑ � 	̂Ẑ

���
Ẑ=0

+
Ẑ2

2
� 	̂ẐZ

���
Ẑ=0

:

With

Û = 	̂Ẑ ; Ŵ = �	̂X̂ ;

the approximations for the velocities Û ; Ŵ are

Û ' ��Re
Fr

�
�th
h0

�2
ĤĤX̂Ẑ ; (4.33)

Ŵ ' �Re

Fr

�
�th
h0

�2 Ẑ2

2
(Ĥ2

X̂
+ ĤĤX̂X̂) : (4.34)

Substituting the velocities (4.33) and (4.34) into the energy equation (4.28) yields

�Re

Fr

�
�th
h0

�2
Ẑ

�
�ĤĤX̂�̂X̂ +

1

2
(ĤĤX̂)X̂ Ẑ�̂Ẑ

�
= �̂ẐẐ : (4.35)

We introduce a new function

f(X̂; �) = �ĤĤX̂ ; (4.36)

which allows to simplify the energy equation (4.35), i.e. we have

�Re

Fr

�
�th
h0

�2
Ẑ

�
f�̂X̂ �

1

2
fX̂Ẑ�̂Ẑ

�
= �̂ẐẐ : (4.37)
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We assume a solution in similarity form. Thus, a similarity variable

� =
Ẑ

k(X̂)
(4.38)

and a shape function

�̂ = F (�) (4.39)

is introduced to yield

F�� +
�Re

Fr

�
�th
h0

�2
(
1

2
k3fX̂ + fk2kX̂)| {z }

CF

�2F� = 0 : (4.40)

The boundary conditions (4.30, 4.31) in similarity form are given by

� = 0 : F = 0 ; (4.41)

� !1 : F = 1 : (4.42)

The reduction to an ordinary di�erential equation is only possible if the bracket is a constant.

With the choice

CF = 1 ;

we use
�Re

Fr

�
�th
h0

�2
(
1

2
k3fX̂ + fk2kX̂) = 1 ; (4.43)

to determine the function k. The solution is

k(X̂; �) =

 
3Fr

�Re

�
h0
�th

�2!1=3  
C +

R p
f dX̂

f3=2

!1=3

: (4.44)

To ful�ll boundary condition (4.29), we impose

X̂ = 0 : k = 0 :

This inow condition allows to �x the constant C in equation (4.44) and, thus, we have

k(X̂; �) =

 
3Fr

�Re

�
h0
�th

�2!1=3

0
BBBB@

X̂R
0

q
f(X̂?) dX̂?

f3=2

1
CCCCA
1=3

: (4.45)
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Figure 4.2: Solution for F (�).

Substituting (4.45) into (4.38) yields for the similarity variable

� =

 
�Re

3Fr

�
�th
h0

�2!1=3

Ẑ

0
BBBB@

X̂R
0

q
f(X̂?) dX̂?

f3=2

1
CCCCA
�1=3

: (4.46)

The energy equation (4.37) now simpli�es due to the similarity transformation. We obtain

F�� + �2F� = 0

and, applying the boundary conditions (4.41, 4.42), the solution is

F (�) = 1� �(1=3; �3=3)

�(1=3)
: (4.47)

The solution (4.47) is plotted in �gure 4.2. Table 4.1 summarizes the similarity transfor-

mation.
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energy equation:

�Re
Fr

�
�th
h0

�2
Ẑ

�
�ĤĤX̂�̂X̂ +

1

2
(ĤĤX̂)X̂ Ẑ�̂Ẑ

�
= �̂ẐẐ

simpli�ed energy equation:

�Re
Fr

�
�th
h0

�2
Ẑ
�
f�̂X̂ � 1

2fX̂Ẑ�̂Ẑ

�
= �̂ẐẐ

with

f = �ĤĤX̂

similarity variable:

� =

 
�Re

3Fr

�
�th
h0

�2!1=3

Ẑ

0
BBB@

X̂R
0

p
f(X̂?) dX̂?

f3=2

1
CCCA
�1=3

solution:

�̂ = F (�) = 1� �(1=3; �3=3)

�(1=3)

Table 4.1: Summary of the similarity transformation - heat losses at the substrate.
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4.3 Numerical solution of the temperature �eld

The asymptotic solution of the energy equation (2.12) is restricted to cases, where �RePr �
1 is valid, i.e. for spreading ows with thin thermal boundary layers. A more general solution

can be obtained via a numerical solution. The energy equation (2.12) together with the

quasi-steady approximation (4.2) yields

�RePr(U�X +W�Z) = �ZZ : (4.48)

Furthermore, a numerical solution allows the treatment of more general boundary conditions

at the l/g-interface and at the substrate. The quasi-steady approximation reduces the

independent variables to X and Z. Thus, we have to solve a two dimensional problem.

4.3.1 Transformation (X;Z)! (�; �)

Similar to the numerical solution of H(X; �) in section 3.2.3, the moving contact line A(�)

requires a moving mesh for the numerical solution of � in X;Z-coordinates. Furthermore,

the upper boundary at Z = H(X; �) varies in time and space. Thus, we introduce new

variables

� =
X

A(�)
; (4.49)

� =
Z

H(X; �)
: (4.50)

The transformation if valid for � > 0 and X < A(�), as A(0) ! 0 and H(A; �) = 0. This

allows a solution on a rectangular domain as shown in �gure 4.3. The spatial derivatives

can be expressed using the new variables,

@

@X
=

1

A

@

@�
� �

H�

AH

@

@�
;

@

@Z
=

1

H

@

@�
:

Substituting the velocities (3.2, 3.3) and the new variables (4.49, 4.50) into the energy

equation (4.48) yields

(�Re)2Pr

FrA2

(
H4H�

 
�2

2
� �

!
�� +

1

6
H3�2(3� �)

�
3H2

� +HH��

�
��

)
= ��� : (4.51)
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Figure 4.3: Transformation of coordinates (X;Z)! (�; �).

4.3.2 Method of lines for the transformed energy equation

As shown in section 3.2.3.2 the method of lines can be used to discretize the equations.

Thus, standard methods for the numerical integration may be employed. To resolve the

thin thermal boundary layer, �RePr � 1, we employ a non-uniform spacing

��j = �j � �j�1 ; j = 1; : : : ; jmax ; (4.52)

as shown in �gure 4.4.

This yields an approximation

�j ' �(�; �j) ; (4.53)

at discrete values of � = �j . Due to a singularity at � = 1, where � is not de�ned, we restrict

the integration to the semi open interval � 2 [0; 1[. We employ central di�erences for both

the �rst derivative

��(�; �i) ' �j+1 ��j�1

��j+1 +��j
; j = 1; : : : ; jmax � 1 (4.54)

and the second derivative

���(�; �i) ' 2
��j�j+1 � (��j+1 +��j)�j +��j+1�j�1

��j+1��j(��j+1 +��j)
; j = 1; : : : ; jmax � 1 ;

(4.55)

in equation (4.51). The discrete formulation of the energy equation consists of a system of

(jmax�1) coupled ordinary di�erential equations at discrete values �j, subject to boundary

conditions at �0 and �jmax. The boundary conditions depend on the heat transfer conditions

at the l/g-interface and at the substrate.
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Figure 4.4: Sketch of the method of lines for �(�; �).

4.3.3 Initial and boundary conditions - heat losses at the substrate

For the case of an adiabatic l/g-interface we have the thermal boundary conditions similar to

those in section 4.2. Introducing the new variables (4.49-4.50) into the boundary conditions

(4.16-4.18) yields

� = 0; � : � = 1 ; (4.56)

�; � = 0 : � = 0; ; (4.57)

�; � = 1 : �� = 0 : (4.58)

Using a backward di�erence for j = jmax

��(�; 1) '
��2j�j�2 � (��j +��j�1)

2�j�1 +��j�1(2��j +��j�1)�j

��j��j�1(��j +��j�1)
;

results in conjunction with equation (4.58)

�(�; 1) ' (��j +��j�1)
2�j�1 ���2j�j�2

��j�1(2��j +��j�1)
; j = jmax : (4.59)
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4.4 Results

4.4.1 Matched asymptotic solution

In section 4.2 we have obtained the similarity solution

F (�) = 1� �(1=3; �3=3)

�(1=3)

for the temperature �eld within the thermal boundary layer. Using the backward transfor-

mation (4.21, 4.22) yields the temperature �eld in X;Z; � -coordinates. For the similarity

variable we obtain

� =

 
(�Re)2Pr

3Fr

(�HHX)
3=2Z3RX

0

p�HHX dX?

!1=3

:

At this point we can make use of an approximation for H(X; �) (cf. section 3.2.2.3). Using

� = X=A(�) yields

� =

 
(�Re)2Pr

3FrA2

(�HH�)
3=2Z3R �

0

p�HH� d�?

!1=3

:

Solutions of the form

H = C1�
(2��1)=5 c(1� �)b| {z }

~H

;

allow to evaluate the integral. Thus, we �nd the analytical expression

� =

 
(�Re)2Pr

3FrA2

b(1 + 2b)c2C2
1 (1� �)3(b�1=2)�6=15(2��1)Z3

1� (1� �)1=2+b

!1=3

: (4.60)

For general functions H we have to evaluate the integral numerically. Thus, we have only a

numerical representation of � and cannot obtain an analytical solution. For the subsequent

results we use the approximation from the weighted residual method (3.51) for ~H, whereas

the constants b; c are given by

b =
4�� 2 +

p
9 + �(44 + 151�)

5 + 45�
;

c =

 
�347�2 + 42� � 3 + (1 + 53�)

p
9 + �(44 + 151�)

50(1 + 3�)

!1=3

Figures 4.5-4.7 show temperature �elds for � = 1; 7=4; 2 at � = 5 and � = 20 computed

based on equation (4.60).
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Figure 4.5: Temperature �eld - similarity solution, � = 1, � = 0:01, Re = 1, Fr = 0:01,

CV = 1, Pr = 10000.
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Figure 4.6: Temperature �eld - similarity solution, � = 7=4, � = 0:01, Re = 1, Fr = 0:01,

CV = 1, Pr = 10000.
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Figure 4.7: Temperature �eld - similarity solution, � = 2, � = 0:01, Re = 1, Fr = 0:01,

CV = 1, Pr = 10000.

4.4.2 Comparison matched asymptotic solution - numerical solution

Figure 4.8 shows vertical temperature pro�les for � = 1; 7=4; 2 at � = 5 calculated either

by the similarity transformation (section 4.2), or by numerical integration (section 4.3).

The agreement of both solutions is good. The similarity solution in all cases underpredicts

slightly the thickness of the thermal boundary layer. Due to the Taylor-expansion of the

velocities, equation (4.33, 4.34), we overestimate the convective heat transport with increas-

ing boundary layer thickness. As shown in �gure 4.8 this deviation is small and the model

will improve for increasing Prandtl numbers Pr. Close to the contact line at X = 0:9A(�)

the inuence of the boundary condition �Z = 0 at the upper boundary Z = H(X; �) leads

to small di�erences. For the similarity solution we locate the upper boundary at � ! 1,

i.e. we match the inner solution to the semi-in�nite outer region. At the contact line the

thickness of the liquid, and thus of the outer region tends to zero. As the semi-in�nite

assumption is violated, the thermal boundary condition �Z = 0 at the l/g-interface is not

ful�lled in this case.
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Figure 4.8: Comparison of the similarity solution and the numerical solution for �, � = 0:01,

Re = 1, Fr = 0:01, CV = 1, Pr = 10000, � = 5.
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4.4.3 Estimation of the quasi-steady approximation

For nuclear safety purposes the quasi-steady approximation (4.2) will be 'conservative' in

that way that it leads to a `worst-case approximation`, i.e. we expect the strongest possible

inuence of the temperature �eld onto the spreading process. To evaluate this approxima-

tion, we try to �nd an estimation for the importance of the transient term �� .

For a more accurate description of the thermal �eld we introduce a modi�ed similarity

variable

�t = Cm� �qs : (4.61)

Substituting the similarity solution (4.47)

� = F (�t) ; (4.62)

into the transient energy equation (2.12) in conjunction with a weighted residual method

allows to minimize the integral error. This procedure will not give the correct solution for

the temperature �eld, but we obtain an estimation of the transient e�ects onto the thickness

of the thermal boundary layer.

For the calculation of Cm� we useZ A

0

Z H

0
RdZ dX = 0 ; (4.63)

together with the residuum of equation (2.12), i.e.

R = �RePr (�� + U�X +W�Z)��ZZ : (4.64)

Figure 4.9 shows the residuum pro�le R=R0 for di�erent values of Cm�. For Cm� ' 1:2

the amplitude of R is about 40% of the amplitude of the quasi-steady solution (Cm� = 1).

Moreover, it is obvious, that the integral of R is zero for Cm� ' 1:2. The values of Cm� ,

which minimize the integral error of the residuum (cf. equation (4.63)) are plotted in �gure

4.10. For all values �, Cm� approaches a constant value for � � 1. For � = 1 the necessary

correction of the quasi-steady solution is less that 20%. Thus, the quasi-steady description

of the temperature �eld remains a reasonable approximation.

57



0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

C    = 1mη

C    = 1.1mη

C    = 1.2mη
X = 0.5 A

R/R

Z/H

0

Figure 4.9: Residuum R=R0 at X = 0:5A(�), � = 1, � = 5, Pr = 10000.

5 10 15 20

1.05

1.1

1.15

1.2

1.25

1.3

1.35

τ

C    mη

α = 1

α = 7/4

α = 2

Figure 4.10: Value of Cm�, � = 1; 7=4; 2, Pr = 10000.

58



Chapter 5

Modeling bottom crusting

5.1 Basic idea

For melts with a high Prandtl number we can expect thin thermal boundary layers and,

therefore, thin solidi�ed regions. Thus, solidi�cation should have a weak inuence onto

the spreading process. Given thin bottom crusts, we attempt to solve for the ow and

temperature �eld successively to avoid the fully-coupled problem, which mathematically

appears much more di�cult. Such a method should be adequate as long as the coupling

between the kinematics and the thermal �eld is weak. This is the case for Pr � 1.

The inuence of the bottom crust onto the spreading ow can be captured by successively

performing the following steps:

1. We infer a solution for the ow �eld of the isothermal spreading problem. Here no

inuence of solidi�cation occurs. This problem has been solved previously by Huppert

[3].

2. Based on the above ow �eld we solve for the temperature �eld, employing a similarity

transformation.

3. Given the thermal �eld, we determine the position of the s/l-interface S(X; �). Here,

we use the condition � = �S, where �S is the dimensionless solidi�cation tempera-

ture, to �nd S(X; �). As the s/l-interface follows the solidi�cation isotherm, we neglect

the liberation of latent heat. This is a reasonable approximation for low solidi�cation

speed or uids which solidify without crystallization (cf. Fink & Gri�ths [2]).
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4. We impose the no-slip condition at the s/l-interface S(X; �) and solve again the

spreading problem on top of the crust. Thus, we obtain a �rst approximation for

the kinematic inuence of the bottom crust.

5. We infer an improved temperature �eld, which includes both, the ow �eld in presence

of the crust and heat conduction within the crust.

6. Based on this improved temperature �eld, we infer an improved crust S2(X; �) at the

solidi�cation isotherm � = �S . From

E =
S2(X; �)

S1(X; �)
(5.1)

we judge the quality of the model.

5.2 Position of the s/l-interface

Using the similarity solution for the thermal �eld, section 4.4.1, we have for the similarity

variable

� = �S =

 
(�Re)2Pr

3Fr

(�HHX)
3=2Z3RX

0

p�HHX dX?

!1=3

(5.2)

to de�ne the isotherm � = �S . �S corresponds to the value of the inverse solution of

�S = F (�S) (cf. equation (4.47)). Solving equation (5.2) for Z yields for the bottom crust

S(X; �) = �S

 
3Fr

(�Re)2Pr

RX
0

p�HHX dX?

(�HHX)
3=2

!1=3

: (5.3)

We shall see that the velocity �eld depends on both the function S and the derivative SX .

From equation (5.3) the derivative evaluates to

SX(X; �) = �S

�
3Fr

(�Re)2Pr

�1=3
 
2� 3

RX
0

p�HHX dX?(�H2
X �HHXX)

(�HHX)
3=2

!

6(
RX
0

p�HHX dX?)2=3
:

Due to the lubrication approximation (cf. section 2.3) SX exhibits a singularity as X ! 0.

Thus, at X = 0 we have S = 0 and the uid hits a solidi�ed crust with a slope SX ! 1.

This will lead to high velocities in the vertical direction which are unphysical. Based

on the lubrication theory we have a balance of viscous and inertial forces. Hereby, the

contribution from the vertical velocity W is neglected against the contribution from the
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horizontal velocity U . To overcome this di�culty, we smooth the function S(X; �) at X = 0.

Thus, we use

S(X; �) = �S(1� e�CmSX=A(�))

 
3Fr

(�Re)2Pr

RX
0

p�HHX dX?

(�HHX)
3=2

!1=3

; (5.4)

with CmS � 1. The properties of this approach can be demonstrated by means of test-

functions

H = (1�X)1=3 ; A = 1 ;

which are typical for isothermal spreading ows (cf. section 3.3.1). Furthermore, we set

�S

�
3Fr

(�Re)2Pr

�1=3
= 1 :

From de�nition (5.3), a Taylor series expansion yields the leading order approximation

X ! 0 : S / X1=3 ; SX / X�2=3 :

The modi�ed de�nition results in

X ! 0 : S / X4=3 ; SX / X1=3 :

Thus, we have removed the singularity at X = 0.

In �gure 5.1 the modi�cation of the crust pro�le is shown for di�erent values of CmS close

to X = 0. For CmS � 500 the inuence is limited to a region 0 � X � 0:01A(�). In the

limit CmS !1 we recover the original, singular, crust pro�le based on equation (5.3). As

the inuence of the smoothing is present only in a narrow region, the main e�ect of the

crust onto the spreading ow should be una�ected.
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Chapter 6

Isothermal spreading - solidi�ed

crust at the bottom

6.1 Flow �eld with bottom crusting

6.1.1 Boundary conditions

In section 2.3 we have formulated the boundary conditions for the spreading ow at S(X; �) =

0 and H(X; �). Due to solidi�cation, we now have the no-slip condition at S(X; �). Kine-

matically, the boundary conditions are

X;Z = S(X; �) : U =W = 0 ; (6.1)

X;Z = H(X; �) : UZ = 0 ; (6.2)

W = HXU +H� ; (6.3)

P = 0 : (6.4)

6.1.2 Velocity and pressure �eld

The calculation of P , U , W and 	 follows the course of section 3.1. The main di�erence is

the no-slip condition (6.1) at S(X; �). For the pressure P we obtain from equation (3.1)

P =
�Re

Fr
(H � Z) : (6.5)
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Substituting P into equation (2.40) and integration with respect to Z yields

U =
�Re

2Fr
(Z � S)HX (Z � 2H + S) : (6.6)

where the boundary conditions (6.1, 6.2) have been applied.

The continuity equation (2.39) together with the no-slip condition (6.1) results in the vertical

velocity

W = � �Re

6Fr
(Z � S)

�
6(H � S)HXSX + (Z � S)(Z � 3H + 2S)HXX � 3(Z � S)H2

X

�
:

(6.7)

For the streamfunction we obtain

	 =
�Re

6Fr
(Z � S)2(Z � 3H + 2S)HX : (6.8)

6.2 Evolution equation for H(X; �) - general formulation

Similar to section 3.2 we substitute the velocities U and W into the kinematic boundary

condition (6.3) at the l/g-interface to derive an evolution equation for H, namely

H� � �Re

3Fr

�
(H � S)3HX

�
X
= 0 : (6.9)

As shown in section 3.2 it is possible to infer solutions to this nonlinear di�usion equation

(6.9) either by a similarity transformation or by using numerical methods. The above

evolution equation now includes the kinematic inuence of the bottom crust S(X; �) onto

the spreading ow.

6.3 Two strategies to formulate S(X; �) - the weakly- and the

fully-coupled problem

As shown in section 5.2 the bottom crust is a function of the l/g-interface position H(X; �).

Following our iterative scheme (cf. section 5.1) to model the inuence of bottom crusting,

we may express S(X; �) in two ways, based on two di�erent degrees of approximation,

namely H0;H1. Thus we have
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1. the weakly-coupled problem

S1(X; �) = f(H0(X; �)) : (6.10)

2. the fully-coupled problem

S1(X; �) = f(H1(X; �)) ; (6.11)

Figure 6.1 illustrates the characteristics of both approximations. While the fully-coupled

problem takes into account that the crust depends on the unknown l/g-interface H1(X; �),

which results from spreading with bottom crusting, the weakly-coupled problem uses as a

�rst approximation H0(X; �), the l/g-interface from the isothermal spreading problem. A

major di�erence arises in the mathematical formulation of both problems. For the fully-

coupled problem we have to solve a di�erential-integral equation. For the weakly-coupled

problem we can make use of approximations (cf. section 3.3.1.1) to express H0(X; �). This

allows to �nd an analytical solution for S1(X; �). The solution of the evolution equation in

this case occurs straight forward compared to the fully-coupled problem.

6.4 Evolution equation for H(X; �) - the weakly-coupled prob-

lem

As mentioned in the previous section, we use H0(X; �) based on a weighted residual approxi-

mation to express S1(X; �). To distinguish solutions from the zeroth and �rst approximation

for spreading under inuence of a bottom crust, we use the subscripts 0 for quantities from

zeroth and 1 for quantities from the �rst approximation. Equation (3.65) together with

equation (3.50) or (3.51) yields

H0(X; �) = cC1;0�
(2��1)=5

 
1� X��(3�+1)=5

C0;0�N;0

!b
: (6.12)

Equation (5.4) for S1(X; �) yields

S1(X; �) = �S(1� e
�
CmSX�

�(3�+1)=5

C0;0�N;0 )

 
6Fr

(�Re)2Pr

(C0;0�N;0)
2�2(2+�)=15

b(1 + 2b)(cC1;0)2

!1=3

 
1� X��(3�+1)=5

C0;0�N;0

!1=2�b
0
@1�

 
1� X��(3�+1)=5

C0;0�N;0

!1=2+b
1
A1=3

: (6.13)
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Figure 6.1: Two strategies to model S(X; �) - the weakly- and the fully-coupled problem.
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The resulting set of the evolution equation, the boundary and integral conditions is

H1;� � �Re

3Fr

�
(H1 � S1)

3H1;X

�
X
= 0 : (6.14)

X = 0 : � �Re

3Fr
H3

1H1;X = �CV �
��1 ; (6.15)

X = A(�) : H1 = S1 ; (6.16)

volume constraint :

A(�)Z
0

H1 dX = CV �
� : (6.17)

Compared to the isothermal problem (cf. equation (3.7)) we obtain a modi�ed boundary

condition at the contact line X = A(�). This is a result of the decreasing spreading velocity

due to the inuence of the bottom crust which reduces the driving pressure head.

6.4.1 Similarity transformation

For the similarity transformation of the weakly-coupled problem we have to be careful with

respect to the scales C0 and C1. From �gure 6.1 it is obvious that H0 and H1 do not have

the same contact line. To distinguish both cases we use

Hi(X; �) = C1;i�
n ~Hi(�=�N;i) ; (6.18)

� =
X

C0;0
��m : (6.19)

Thus, we employ a single similarity variable �, i.e. C0;0 = C0;1 (cf. equation (3.32)), but

allow di�erent positions of the contact lines �N;1 6= �N;0. For the normalized variable �i we

obtain

�i =
�

�N;i
; 0 � �i � 1 :

Substituting (6.18, 6.19) into equation (6.13) yields

S1 =

�
3Fr

�Re

�1=5
C
2=5
V P �2(2+�)=15Ŝ(�1) ; (6.20)

with

Ŝ =

�
1� e

�CmS
�N;1
�N;0

�1
� 

1� �N;1
�N;0

�1

!1=2�b
0
@1�

 
1� �N;1

�N;0
�1

!1=2+b
1
A1=3

; (6.21)
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P = �S

�
2�N;0

b(1 + 2b)c2Pr

�1=3  1

9C4
V Fr

2�Re

!1=5

: (6.22)

The quantities b, c, and �N;0 are part of the solution H0(X; �) (cf. equations (3.50,3.51))

From the evolution equation (6.14) we infer

m =
5

4
; n =

1

2
; � =

7

4
;

0
B@
0
@ ~H1 � P

�
2=3
N;1

Ŝ

1
A3

~H1;�1

1
CA
�1

+
5

4
�1 ~H1;�1 �

1

2
~H1 = 0 ; (6.23)

and for the length scale

C1;1 =

�
3Fr

�Re

�1=5
C
2=5
V �

2=3
N;1 : (6.24)

The boundary and integral conditions are

�1 = 0 : ~H3
1
~H1;�1 = �

7

4
�
�5=3
N;1 ; (6.25)

�1 = 1 : ~H1 =
P

�
2=3
N;1

Ŝ ; (6.26)

integral constraint :

1Z
0

~H1 d�1 = �
�5=3
N;1 : (6.27)

As we additionally introduce the time behavior of the crust, we can expect only similarity

transformations for which both, the thermal boundary layer and the height of the uid

behave in a consistent manner. This is the case for � = 7=4 only.

6.4.1.1 Numerical solution for the shape function ~H1

It was possible to �nd an analytical solution for the transformed evolution equation without

solidi�cation, (cf. section 3.2.2.1). However, for the present problem it is reasonable to

search only for numerical solutions in the case of spreading with solidi�cation. Similar to

section 3.2.2.2, we seek a numerical solution to the transformed evolution equation (6.23).

For the integration we use the same algorithm as in section 3.2.2.2. In the weakly-coupled

problem we have two shooting parameters and two shooting conditions. A further shooting

parameter is �N;1, the position of the contact line which results from the coupling between

�N;1 and ~H1. For the spreading process without solidi�cation �N has been directly calculated

from the solution of ~H, (cf. equation (3.34)). In summary we have the initial value problem
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0
B@
0
@ ~H1 � P

�
2=3
N;1

Ŝ

1
A3

~H1;�1

1
CA
�1

+
5

4
�1 ~H1;�1 �

1

2
~H1 = 0 ; (6.28)

with

Ŝ =

�
1� e

�CmS
�N;1
�N;0

�1
� 

1� �N;1
�N;0

�1

!1=2�b
0
@1�

 
1� �N;1

�N;0
�1

!1=2+b
1
A1=3

; (6.29)

P = �S

�
2�N;0

b(1 + 2b)c2Pr

�1=3  1

9C4
V Fr

2�Re

!1=5

; (6.30)

�1 = �1;max : ~H1 =
P

�
2=3
N;1

Ŝ(1) + c(1� �1)
1=3 ; (6.31)

~H1;�1 = � c

3
(1� �1)

�2=3 : (6.32)

The shooting conditions to determine c and �N;1 are

c : ~H1(0)
3 ~H1;�1(0) = �

7

4

Z �1;max

0

~H1 d�1 ; (6.33)

�N;1 : �
�5=3
N;1 =

Z �1;max

0

~H1 d�1 : (6.34)

6.4.2 Numerical solution of the nondimensional evolution equation for

H1(X; �)

After introducing transformation (3.52)

�1 =
X

A1(�)
;

we use the same algorithm as described in section 3.2.3.

6.4.2.1 Transformation (X; �)! (�1; �)

We substitute the transformation (3.52) into the evolution equation (6.14), the boundary

and integral conditions (6.15-6.17) and obtain the system

H1;� � �1
A1;�

A1
H1;�1 �

�Re

3Fr

1

A2
1

�
(H1 � S1)

3H1;�1

�
�1
= 0 : (6.35)
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with

�1 = 0 : �1

3

�Re

Fr

1

A1
H3

1H1;�1 = �CV �
��1 ; (6.36)

�1 = 1 : H1 = S1 ; (6.37)

integral constraint :

1Z
0

H1 d�1 =
CV �

�

A1
: (6.38)

We use the method of lines to solve for H1 and a shooting method to solve for A1. Both

methods have been used in sections 3.2.3.2, 3.2.3.3 and are described there in more detail.

6.5 Evolution equation for H(X; �) - the fully-coupled prob-

lem

A solution to the fully-coupled problemmay be found by substituting (5.4) into the evolution

equation (6.9), which yields

H1;�� �Re

3Fr

0
B@
0
@H1 � �S(1� e

�
CmSX

A1(�) )

 
3Fr

(�Re)2Pr

RX
0

p�H1H1;X dX?

(�H1H1;X)
3=2

!1=3
1
A3

H1;X

1
CA
X

= 0 :

With

G1 =

Z X

0

q
�H1H1;X dX? (6.39)

we arrive at a system of two coupled di�erential equations

H1;� � �Re

3Fr

0
B@
0
@H1 � �S(1� e

�

CmSX

A1(�) )

 
3Fr

(�Re)2Pr

G1

(�H1H1;X)
3=2

!1=3
1
A3

H1;X

1
CA
X

= 0 ;

(6.40)

G1;X =
q
�H1H1;X : (6.41)

The boundary and integral conditions for H1 are similar to (3.6-3.8) as S1 is zero at both

X = 0 and X � A1(�). We have

X = 0 : � �Re

3Fr
H3

1H1;X = �CV �
��1 ; (6.42)

G1 = 0 ; (6.43)

X � A1(�) : H1 = 0 ; (6.44)

volume constraint :

A1(�)Z
0

H1 dX = CV �
� : (6.45)
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6.5.1 Similarity transformation

As we use the fully-coupled description for S1(X; �), we avoid a coupling between the

zeroth and �rst approximation. We employ the similarity transformation from section 3.2.2

to obtain

H1(X; �) = C1�
n ~H1(�=�N;1) ; (6.46)

� =
X

C0
��m : (6.47)

With the normalized variable

�1 =
�

�N;1
; 0 � � � 1 ; (6.48)

we obtain for the function G1

G1 = (C0�N )
1=2C1�

n+m=2 ~G1 ; (6.49)

~G1 =

Z �1

0

q
� ~H1

~H1;�1 d�
? : (6.50)

Substituting equation (6.46) and (6.49) into the evolution equation (6.40) yields

m =
5

4
; n =

1

2
; � =

7

4
;

0
B@
0
@ ~H1 � �S(1� e�CmS�1)

 
3Fr

(�Re)2Pr

(C0�N;1)
2

C5
1

~G1

(� ~H1
~H1;�1)

3=2

!1=3
1
A3

~H1;�1

1
CA
�1

+
3Fr

�Re

(C0�N;1)
2

C3
1

�
5

4
�1 ~H1;�1 �

1

2
~H1

�
= 0 ;

~G1;� =
q
� ~H1

~H1;�1 :

Furthermore, we introduce the similarity transformation (6.46, 6.47) into the boundary

conditions and obtain from the inow condition (6.42)

~H3
1
~H1;�1 = ��CV

3Fr

�Re

C0

C4
1

�N;1 ;

and from the integral condition (6.45)

1Z
0

~H1 d�1 =
CV

C0C1�N;1
:
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Similar to section 6.4.1 we �nd similarity transformations only for � = 7=4, for which both,

the thermal layer and the height of the uid grow with the same power law in time.

We intend to compare the shape functions ~H1(�1) and ~H0(�0) for spreading with and without

solidi�cation. Thus, we use identical length scales (3.32, 3.33). Substituting C0 and C1 into

the di�erential equations and the boundary conditions yields0
B@
0
@ ~H1 � P

�
4=9
N;1

(1� e�CmS�1)
~G
1=3
1q

� ~H1
~H1;�1

1
A3

~H1;�1

1
CA
�1

+
5

4
�1 ~H1;�1 �

1

2
~H1 = 0 ; (6.51)

~G1;� =
q
� ~H1

~H1;�1 ; (6.52)

with

P = �S
�
9C4

V Fr
2(�Re)3Pr5

�
�1=15

; (6.53)

�1 = 0 : ~H3
1
~H1;�1 = �

7

4
�
�5=3
N;1 ; (6.54)

~G1 = 0 ; (6.55)

�1 = 1 : ~H1 = 0 ; (6.56)

integral constraint :

1Z
0

~H1 d�1 = �
�5=3
N;1 : (6.57)

6.5.1.1 Numerical solution for the shape functions ~H1 and ~G1

For the numerical integration we use the same algorithm as described in section 3.2.2.2

and section 6.4.1.1. To transform equations (6.51-6.57) into an initial value problem, we

additionally employ a new boundary condition for ~G1, i.e

�1 = �1;max : ~G1 = d ;

with d as a additional shooting parameter.

For the complete two-point boundary value problem we have the initial value problem0
B@
0
@ ~H1 � P

�
4=9
N;1

(1� e�CmS�1)
~G
1=3
1q

� ~H1
~H1;�1

1
A3

~H1;�1

1
CA
�1

+
5

4
�1 ~H1;�1 �

1

2
~H1 = 0 ; (6.58)

~G1;� =
q
� ~H1

~H1;�1 ; (6.59)
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with

P = �S
�
9C4

V Fr
2(�Re)3Pr5

�
�1=15

; (6.60)

�1 = �1;max : ~H1 = c(1 � �1)
1=3 ; (6.61)

~H1;�1 = � c

3
(1� �1)

�2=3 ; (6.62)

~G1 = d : (6.63)

The conditions to determine the shooting parameters c, d, �N are

c : ~H1(0)
3 ~H1;�1(0) = �

7

4

Z �1;max

0

~H1 d�1 ; (6.64)

d : ~G1(0) = 0 ; (6.65)

�N;1 : �
�5=3
N;1 =

Z �1;max

0

~H1 d�1 : (6.66)

6.5.2 Numerical solution of the nondimensional evolution equation for

H1(X; �)

For the numerical solution of equation (6.40) we use the same algorithm as discussed for

the evolution equation (3.5). After introducing the transformation (3.52), i.e.

�1 =
X

A1(�)
; (6.67)

we �nd solutions for H1 with a basal crust on a �xed domain 0 � �1 � 1. Contrary to

the previous section, where we solved two coupled di�erential equations for ~H1 and ~G1, we

solve only one equation, using a discretized form of equation (6.39).

6.5.2.1 Transformation (X; �)! (�1; �)

Introducing the transformation (6.67) into equations (6.39, 6.40) and boundary conditions

(6.42-6.45) results in

H1;� � �1
A1;�

A1
H1;�1 � (6.68)

�Re

3Fr

1

A2
1

0
B@
0
@H1 � �S(1� e�CmS�1)

 
3Fr

(�Re)2Pr

G1A
3=2
1

(�H1H1;�1)
3=2

!1=3
1
A
3

H1;�1

1
CA
�1

= 0;

G1 =
p
A1

�1Z
0

q
�H1H1;�1 d�1 ; (6.69)
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with

�1 = 0 : �1

3

�Re

Fr

1

A1
H3

1H1;�1 = �CV �
��1 ; (6.70)

�1 = 1 : H1 = 0 ; (6.71)

integral constraint :

1Z
0

H1 d�1 =
CV �

�

A1
: (6.72)

Equations (6.69-6.72) represent, similar to section 3.2.3.1, the transformed problem on a

rectangular domain as illustrated in �gure 3.3.

6.5.2.2 Modi�ed algorithm for numerical integration

For the numerical integration of equation (6.69) we have to approximate the function G1

at discrete values � = �i. Using a trapezoidal rule for the integral in equation (6.69) yields

G1(�i; �) =
p
A

iX
i?=0

1

2
(�i? � �i?�1)

�q
�HH�

���
�=�?i

+
q
�HH�

���
�=�?i�1

�
: (6.73)

We introduce approximation (6.73) into the evolution equation (6.69). This allows to use

the same algorithm as for the isothermal spreading problem. Again, we use the method of

lines for numerical integration (cf. section 3.2.3.2) and a shooting method to calculate the

position of the contact line (cf. section 3.2.3.3).

6.6 Results

6.6.1 Position of the l/g-interface, H1(X; �)

6.6.1.1 Similarity solution for H1(X; �)

As inferred in section 6.4.1 and 6.5.1, it is only possible to �nd a similarity solution for the

speci�c time behavior V / �7=4 of the volume. The solution is inuenced by the solidi�ed

crust at the bottom, which depends on the parameter P (cf. equations (6.22, 6.53)). We

will speci�cally focus onto the inuence of the solidi�cation temperature. Therefore, we �x

the other parameters to

Re = 1 ; � = 0:01 ;

F r = 0:01 ; CV = 1 ;

P r = 1000 ; CmS = 500 :
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Figure 6.2: Shape function ~H1(�) for di�erent nondimensional solidi�cation temperatures

�S - weakly-coupled problem.

Solution for ~H1(�) Figures 6.2 and 6.3 show the solution ~H1(�) (and ~G1(�)) for di�erent

solidi�cation temperatures �S . Due to the inuence of the solidi�ed crust, ~H1 (and ~G1)

are increasing with increasing solidi�cation temperatures. Increasing solidi�cation tem-

peratures �S lead to an increase of the crust thickness. As a consequence the value of

�N;1 decreases with increasing �S . Hereby, �N;1 represents a horizontal length scale of the

spreading. Thus, from decreasing values �N;1 we immediately recognize a slower spreading

in comparison to the isothermal case (cf. �gure 6.4).

Figures 6.5 and 6.6 show the inuence of the constant CmS on �N;1 for �S = 0:5. CmS has

been introduced in equation (5.4) to smooth out the singularity of S(X; �) and to allow for

a numerical treatment. For CmS !1 in equation (5.4) the inuence should be negligible.

For CmS > 300 the relative changes of �N;1 are less than 2 � 10�6. Thus, for CmS > 300 the

inuence of this modi�cation has almost no e�ect on the spreading process but allows for a

reasonable mathematical treatment.
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Figure 6.3: Shape functions ~H1(�) and ~G1(�) for di�erent nondimensional solidi�cation

temperatures �S - fully-coupled problem.
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problem.
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Figure 6.6: Sensitivity of �N;1 on the smoothing parameter CmS , �S = 0:5 - fully-coupled

problem.

Solution for H(X; �) For the backward transformation from the similarity variable � to

X; � -coordinates solidi�cation has no inuence. All the e�ects of the solidi�ed crust at the

bottom plate are encoded in the shape function ~H1 and the value of �N;1.

In agreement with section 3.3.1.1, we obtain from equations (6.18, 6.46) and equations

(6.19, 6.47) for the similarity variable and equations (3.32, 3.33) for the scales C0 and C1

the expression

H(X; �) =

�
3Fr

�Re

�1=5
C
2=5
V �

2=3
N �1=2 ~H

 �
3Fr

�Re

�1=5 X

�5=4C
3=5
V �N

!
: (6.74)

The contact line is at

A(�) =

�
�Re

3Fr

�1=5
C
3=5
V �N�

5=4 : (6.75)

6.6.1.2 Numerical solution for H1(X; �)

For a more general time behavior of the volume V (�), i.e. for arbitrary values of �, we have

to �nd a numerical solution for H1(X; �). In contrast to the similarity solution, we need to

specify an initial condition for H1. Based on the previous results in section 3.3, we use in
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normalized �; � -coordinates the approximation

H1(�1; �0) = c(1� �1)
1=3 + S(1; �0) : (6.76)

Substituting (6.76) into the boundary conditions (6.36, 6.70) and the integral constraints

(6.38, 6.72) gives two conditions which allow to calculate c and A1(�0).

The following results show the height pro�le H1(X; �) for di�erent nondimensional solidi�-

cation temperatures �S using the �xed parameters

Re = 1 ; � = 0:01 ;

F r = 0:01 ; CV = 1 ;

P r = 1000 ; CmS = 500 :

Figures 6.7 and 6.8 show a comparison between the numerical solutions and the similarity

solutions for A1(�) and H1(�; � = 20). The agreement is good, proving that both the

similarity solution and the numerical solution give identical results for � = 7=4. We can

view this as a veri�cation of the numerical procedure and, thus, can apply the numerical

method with con�dence for arbitrary values of �. In general we have an identical type of

evolution equation and boundary conditions for all values �.

Figures 6.9-6.14 show the front progression A1(�) and height pro�les for di�erent values of

� = 1; 7=4; 2 and varied solidi�cation temperature �S = 0; 0:1; 0:3; 0:5. All height pro�les

show a signi�cant inuence of the solidi�ed bottom crust. With increasing solidi�cation

temperature �S , we �nd an increasing crust thickness. Subsequently, the front propagation

slows down for increasing solidi�cation temperatures �S. Physically, this can be viewed

as an uphill spreading whereas the crust represents the locally inclined substrate. If we

compare �gures 6.9-6.14 we, moreover, recognize that the inuence of the crust is weak for

large � and strong for � = 1. This is physically expected, as strong feeding of melt into the

spreading allows only for a limited crust e�ect.

Furthermore, the characteristics of the speci�c value � = 7=4 can be shown in �gures 6.9-

6.14. For spreading ows with � < 7=4 the crust thickness S1 is growing faster in time

than the height H1. For � > 7=4, in contrast, H1 is growing faster in time than S1. As a

consequence, we can expect complete freezing for � < 7=4.
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Figure 6.7: Comparison of the similarity solution and the numerical solution for A1(�) and

H1(�1; � = 20) for di�erent nondimensional solidi�cation temperatures �S = 0:1; 0:3; 0:5,

and for � = 7=4 - weakly-coupled problem.
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Figure 6.8: Comparison of the similarity solution and the numerical solution for A1(�) and

H1(�1; � = 20) for di�erent nondimensional solidi�cation temperatures �S = 0:1; 0:3; 0:5,

and for � = 7=4 - fully-coupled problem.
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sional solidi�cation temperatures �S, � = 1 - weakly-coupled problem.
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Figure 6.10: Numerical results for A1(�), H1(X; 5) and H1(X; 20) for di�erent nondimen-

sional solidi�cation temperatures �S, � = 7=4 - weakly-coupled problem.
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Figure 6.11: Numerical results for A1(�), H1(X; 5) and H1(X; 20) for di�erent nondimen-

sional solidi�cation temperatures �S, � = 2 - weakly-coupled problem.
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Figure 6.12: Numerical results for A1(�), H1(X; 5) and H1(X; 20) for di�erent nondimen-

sional solidi�cation temperatures �S, � = 1 - fully-coupled problem.
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Figure 6.13: Numerical results for A1(�), H1(X; 5) and H1(X; 20) for di�erent nondimen-

sional solidi�cation temperatures �S, � = 7=4 - fully-coupled problem.
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Figure 6.14: Numerical results for A1(�), H1(X; 5) and H1(X; 20) for di�erent nondimen-

sional solidi�cation temperatures �S, � = 2 - fully-coupled problem.
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6.6.2 Velocity �elds

For a more detailed analysis of the phenomena of spreading with bottom crusting, we have

plotted the interfaces and streamlines for di�erent nondimensional solidi�cation tempera-

tures �S for both the weakly- and the fully-coupled problem in �gures 6.15 and 6.16. At the

s/l-interface the streamlines are parallel to S1(X; �) due to the no-slip condition (6.1). At

the l/g-interface the streamlines are not parallel to H1(X; �) due to the kinematic boundary

condition (6.3) in conjunction with the time dependent interface H1(X; �). For comparison,

we have given the isothermal l/g-interface as dashed lines.

Figures 6.17 and 6.18 show vertical pro�les of the velocity components U andW for di�erent

nondimensional solidi�cation temperatures �S at di�erent positions X. The horizontal

velocity U clearly shows the solidi�ed region, which increases in thickness for increasing

solidi�cation temperatures �S . The crust thickness likewise increases if we move toward the

contact line (compare X = 0:1A(�) and X = 0:9A(�)). In parallel the amplitude of U at the

l/g-interface increases with increasing X. The vertical velocity W is likewise inuenced by

the crust, as we see only downward (W < 0) movement for pure liquid spreading (�S = 0).

The crust may induce an upward ow (W > 0), particularly for small X.

To obtain an impression for the inuence of bottom crusting on the mass transport, �gures

6.19 and 6.20 show particle paths for four di�erent nondimensional solidi�cation tempera-

ture �S . At � = 5 we introduce four particles into the spreading ow on a vertical line, i.e.

the positions are

X = 0 ;

Z = i=5H(0; 5) ; i = 1 : : : 4 :

In time steps �� = 1 �gures 6.19 and 6.20 show the position of each particle together with

the actual l/g- and s/l-interfaces. Only particles, which are close to the l/g-interface at

X = 0; � = 5 have a chance to arrive at the s/l-interface. This is due to high velocities,

present at the l/g-interface (cf. �gures 6.17 and 6.18).
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Figure 6.15: Interfaces and isolines of the streamfunction 	 for di�erent nondimensional

solidi�cation temperatures �S, and for � = 7=4, � = 5 - weakly-coupled problem.
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Figure 6.16: Interfaces and isolines of the streamfunction 	 for di�erent nondimensional

solidi�cation temperatures �S, and for � = 7=4, � = 5 - fully-coupled problem.
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Figure 6.17: Vertical pro�les of U and W for di�erent nondimensional solidi�cation tem-

peratures �S at di�erent positions X and � = 7=4 - weakly-coupled problem.
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Figure 6.18: Vertical pro�les of U and W for di�erent nondimensional solidi�cation tem-

peratures �S at di�erent positions X and � = 7=4 - fully-coupled problem.
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Figure 6.19: Particle paths for di�erent nondimensional solidi�cation temperatures �S and

� = 7=4 - weakly-coupled problem.
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Figure 6.20: Particle paths for di�erent nondimensional solidi�cation temperatures �S and

� = 7=4 - fully-coupled problem.
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Figure 6.21: Convergence of the iterative scheme. The data are obtained for �S = 0:1,

� = 1, Pr = 10000, X = 1=2A(�) and averaged for three di�erent times � = 5; 12:5; 20.

6.6.3 Convergence of the iterative scheme

To judge the quality of the iterative scheme on the position of the s/l-interface S(X; �) we

introduce the ratio

E =
Si(X; �)

Si�1(X; �)
;

(cf. section 5.1). A perfect iteration is obtained if E ! 1. The evaluation of E is performed

at X = 1=2A(�) for three typical times � . The result is given in �gure 6.21. E shows

only a weak dependence on time, such that a time average can be used. As expected, only

a slightly disturbance of the crust S(X; �) onto the temperature �eld for melts with high

Prandtl numbers (Pr � 1) is present. Thus, in both the weakly-coupled and the fully-

coupled problem the error of the �rst iteration is less than 15% for this set of parameters.

Further, in both cases the second and third iteration rapidly converge.
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Chapter 7

Summary

We have derived a model to describe the inuence of basal solidi�cation onto the spreading

for a melt with a large Prandtl number. Based on an iterative scheme it occurs possible to

describe the inuence of bottom crusting in an mostly analytical fashion.

Starting with the isothermal spreading problem, which has been solved kinematically by

Huppert [3], we obtain an approximation for the temperature �eld and, thus, for the position

of the s/l-interface. In the next step we capture the inuence of the solidi�ed crust at the

substrate by solving a new spreading problem on top of the solidi�ed crust. A comparison

of similarity solutions and numerical solutions shows good agreement for both, the ow �eld

and the temperature �eld.

For the spreading we �nd only a weak inuence of solidi�cation onto the spreading ow due

to �th � h0. In all cases the spreading ow slows down for increasing crust thickness. For

the speci�c case V / �7=4 we �nd, that the crust thickness and the melt height grow with

identical power laws in time. This leads to the characterization of two regimes. For � < 7=4

the crust thickness grows faster than the melt height. This should lead to a complete stop of

the spreading process for t!1. For � > 7=4, the melt height grows faster than the crust

thickness, which means that solidi�cation cannot stop the spreading. Finally, an evaluation

of the iterative scheme shows, that only a few iterations are needed to obtain a perfect

approximation of the kinematic inuence of the crust onto the spreading ow.
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