
Forschungszentrum Karlsruhe

Technik und Umwelt

Wissenschaftliche Berichte

FZKA 6325

VorTess

Generation of 2-D random Poisson-Voronoi mosaics

as framework for the

micromechanical modelling of polycrystalline materials

| algorithm and subroutines description |

H. Riesch-Oppermann

Institut f�ur Materialforschung

Forschungszentrum Karlsruhe GmbH, Karlsruhe

1999

Als Manuskript gedruckt

F�ur diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe

Mitglied der Hermann von Helmholtz-Gemeinschaft

Deutscher Forschungszentren (HGF)

ISSN 0947-8620

Abstract

The present report contains a code and algorithm description of the code VorTess. Purpose

of VorTess is to provide a framework for the stochastic description of polycrystalline materials

on the basis of the grain and grain boundary structure. A 2-D random Poisson-Voronoi tesse-

lation is generated by the code and handling of evolving crack patterns is done by speci�cally

tailoured crack extraction subroutines. Interfaces for data storage and retrieval of tesselations

and related crack patterns allow easy coupling with advanced models for intercrystalline crack

initiation and propagation e.g. based on fracture mechanics considerations. Auxiliary routines are

provided for crack interaction handling and evaluation of statistical properties of crack patterns

and tesselations. Recent application �elds are mentioned brie
y.

VorTess: Erzeugung zweidimensionaler Poisson-Voronoi Mosaike als Grundlage f�ur

die mikromechanische Modellierung polykristalliner Werksto�e | Programmbeschrei-

bung und Algorithmus |

Zusammenfassung

Der vorliegende Bericht enth�alt eine Beschreibung des Programmsystems VorTess einschlie�lich

des zugrundeliegenden mathematischen Algorithmus. Das Programmsystem VorTess liefert den

Rahmen f�ur eine stochastische Beschreibung polykristalliner Materialien auf der Basis der Korn-

bzw. Korngrenzenstruktur. Zu diesem Zweck wird eine ebene zuf�allige Poisson-Voronoi Zerlegung

erzeugt. Auf der Basis dieser Zerlegung ist mittels spezieller Unterprogramme eine Extraktion

und Weiterverarbeitung entstehender Ri�muster m�oglich. Schnittstellen f�ur Daten
u� und zur

Verbindung von Zerlegung mit entsprechenden Ri�mustern erm�oglichen eine elegante Kopplung

mit fortgeschrittenen Modellen zur Ri�entstehung und -fortp
anzung interkristalliner Risse etwa

auf der Basis bruchmechanischer Betrachtungen. Zus�atzlich stehen Hilfsprogramme f�ur die Be-

handlung von Ri�wechselwirkung sowie zur statistischen Auswertung von Kenngr�o�en f�ur Ri�-

muster und Zerlegungen zur Verf�ugung. Einige typische Anwendungsbereiche der letzten Zeit

werden kurz gestreift.

Contents

1 Introduction 1

2 Scheme of the algorithm 3

2.1 General : 3

2.2 Nomenclature : 3

2.3 Algorithm : 4

2.4 Data storage and retrieval : 5

2.4.1 Tesselation �les format : 6

2.4.2 Crack pattern �les format : 7

3 Programming considerations 9

3.1 General : 9

3.2 Dirichlet tesselation library : 9

3.3 Damage simulation library : 9

3.4 Crack extraction and facet characterization library : : : : : : : : : : : : : : : : : 10

3.5 Data
ow subroutines : 12

3.6 Graphics : 12

4 Applications 13

References 15

A Dirichlet tesselation library 17

A.1 Subroutine TESSEL : 17

A.2 Subroutine RAHMEN : 18

A.3 Subroutine PUNKTE : 19

A.4 Subroutine ANFANG : 19

A.5 Subroutine UPDATE : 20

A.6 Subroutine NACHB (IPUNKT,NNACHB) : 20

A.7 Subroutine NACHF (NEXTP,NEUP,NEXPOS) : 21

i

A.8 Subroutine NEXTT (IPUNKT,NEXTP,NEUP,EX,EY,IUHRZ) : : : : : : : : : : : : : : 22

A.9 Subroutine CONLIA (NEUP,IPUNKT,NEXTP,ECKX,ECKY) : : : : : : : : : : : : : : : 23

A.10 Subroutine CONLIN (IPUNKT,NEUP,ECKX,ECKY) : : : : : : : : : : : : : : : : : : : 24

A.11 Subroutine COLIRA (NEUP,IPUNKT,NEXTP) : 24

A.12 Subroutine GNEU (IPUNKT,NEXTP,NEUP,NEXPOS,ECKX,ECKY) : : : : : : : : : : : 25

A.13 Subroutine DELCON (NEXTP,IPUNKT,NEUP,ECKX,ECKY) : : : : : : : : : : : : : : : 26

A.14 Subroutine DECORA (NEXTP,IPUNKT,NEUP) : 26

A.15 Integer function MODP : 27

A.16 Integer function MODR : 28

A.17 Integer function ISTART : 28

A.18 Integer function IENDE : 29

A.19 Integer function IFINDE : 29

A.20 Subroutine DRUCK (IP) : 30

A.21 Subroutine DRURA (IP) : 30

A.22 Subroutine DKOMP (IP) : 31

A.23 Subroutine VOLL (IP) : 31

A.24 Double precision function SGN (IARG) : 32

A.25 Double precision function DIST (IP1,IP2) : 32

A.26 Subroutine EINGAB : 33

A.27 Subroutine AUSGAB : 33

B Damage simulation library 35

B.1 Subroutine CAVIT : 35

B.2 Subroutine CAVNEU : 36

B.3 Subroutine PFAD (IRAND,EXALT,EYALT,UX,UY) : : : : : : : : : : : : : : : : : : : 37

B.4 Subroutine DAMAGE (I,NACHB,IWW,KAPUTT) : 38

B.5 Integer function IWCAV (NEXTP,NEUP) : 38

B.6 Integer function IWICHT (NEXTP,NEUP) : 39

B.7 Subroutine MODELL (KONF,IWW,IWC,VSTERK) : 40

C Crack extraction and facet characterization library 41

C.1 Subroutine CRACKI (NCRACK) : 41

C.2 Subroutine CRACK (NEXTP,NEUP,NCRACK) : 42

C.3 Subroutine DIRECT (NXP,NUP,NRP,NLP,ILNRP,KM0) : : : : : : : : : : : : : : : : 43

C.4 Subroutine CHARAK (NCRACK) : 43

C.5 Subroutine BNRR0 (KR,KL,KM,ICRACK) : 45

C.6 Subroutine BNRR1 (KD,KM,ICRACK) : 45

C.7 Subroutine SETCAV (K1,K2) : 46

C.8 Subroutine DRUNRR : 46

C.9 Integer function KM0 (KR,KL) : 47

ii

D Data
ow subroutines 49

D.1 Subroutine TLOAD : 50

D.2 Subroutine TSTORE : 51

D.3 Subroutine RLOAD (NCRACK) : 51

D.4 Subroutine RSTORE (NCRACK,IUNIT) : 52

E Auxiliary subroutines 53

E.1 Subroutine ERSDZ (NCRACK,ICONR,PXR,PYR) : 53

E.2 Subroutine AREA : 54

iii

iv

1

Introduction

The following report contains a description of the code VorTess. The development of the code

extended over several years and was possible by �nancial support of the Deutsche Forschungs-

gemeinschaft (DFG) under grants No. Mu-466/15 (creep lifetime prediction), Mu-466/20 and

Mi-362/5 (thermal fatigue lifetime).

The purpose of this code is to generate a random cell structure, the so-called Dirichlet tesselation

or Poisson-Voronoi mosaic, which can be used to simulate grain structures as obtained by planar

modelling of polycrystalline materials.

The obtained Dirichlet tesselation is used to deal with certain mechanisms of damage in these

polycrystalline materials. Basically, all kinds of damage which a�ect the grain boundaries can be

handled. Damaged grain boundaries are marked and can be extracted from the grain structure

given by the Dirichlet tesselation to allow separate treatment, e.g. as cracks in the material.

Apart from the attractive modelling capabilities of this approach, the algorithm is also able to

handle con�gurations with comparatively large numbers of grains in a very e�cient way by keeping

track of relations between grains located next to each other.

Up to now, most of the simulations that deal with multiple crack interactions have led to a pro-

hibitively large computational e�ort caused by the steep increase of potential interaction partners

for a given crack with increasing number of cracks. This e�ect is avoided by using the Dirichlet

tesselation, because for every crack it is possible to reduce the potential interaction partners to

those located in the immediate neighbourhood.

The main part of the following report shall give an overview of the scheme of the algorithm used

for the construction of the Dirichlet tesselation.

Then, the program structure and the meaning of the variables is given.

Possible application �elds that developed during the past few years are indicated mainly for

reference purposes.

The description of the di�erent subroutines is given in the Appendix which is divided into di�erent

parts.

Appendix A describes subroutines related to the creation of a Dirichlet tesselation.

Appendix B describes subroutines related to the simulation of damage of the facets of the Dirichlet

tesselation.

Appendix C describes subroutines related to the separate treatment of damaged facets as cracks

and their relation to the underlying mosaic.

1

Finally, in Appendix D some auxiliary routines are given which can be used to determine some

useful quantities characterizing the mosaic or the crack patterns due to damage simulation. This

includes a subroutine for the e�cient handling of crack interaction e�ects in the fracturemechanics

description of neighbouring cracks.

The subroutine libraries are organized in such a way that creating a Dirichlet tesselation and

simulating damage of facets are independent tasks. Therefore, great
exibility is obtained and it

is no problem to incorporate di�erent damage simulation models, as long as the grain boundary

facets are the only elements su�ering from damage. It is only neccessary to provide suitable

subroutines for the damage simulation library.

The present algorithm for the underlying point process which generates the Dirichlet tesselation

give uniformly distributed points within a rectangular window. This corresponds to a POISSON

point process. Other point processes in polyhedral-shaped windows may be easily incorporated

by changes of the subroutine PUNKTE (e.g. to allow for hardcore or cluster processes) or the input

data for the window coordinates, respectively.

Note: If the shape of the window is changed from rectangular to polyhedral, it will be necessary

to adapt the point-generating subroutine PUNKTE accordingly in order to avoid points generated

outside of the window. A suitable algorithm is given e.g. in Ref. [1].

Acknowledgement

The code VorTess was developed during several research projects sponsored by the Deutsche

Forschungsgemeinschaft (DFG) under grants No. Mu-466/15, Mu-466/20 and Mi-362/5. Finan-

cial support of the DFG is gratefully acknowledged.

2

2

Scheme of the algorithm

2.1 General

The Dirichlet or Voronoi tesselation of the plane represents a special case of a partition of the plane

into convex open polygons, called the tessels (or cells, or grains) of the mosaic. In mathematical

terms, a tesselation means that the polygons are pairwise disjoint and the union of their closures

�lls the plane. In our case, the Dirichlet tesselation is generated using central points of the

polygons, which are denoted simply as the points of the tesselation. Only a �nite part of the

plane is considered, bounded by a �nite number of edges whose vertices are given. This model

is also referred to as a germ-grain model because each point can be seen as a germ for a certain

polygon, the grain.

2.2 Nomenclature

For brevity, the following terms are used to characterize the elements of a tesselation.

tessel element of a tesselation

grain synonym for tessel (used in view of its possible physical interpretation)

window the �nite part of the plane, in which the Dirichlet tesselation is to be constructed

germs the convex polygons which are located in a certain surrounding of the germs

neighbours neighbours of a grain are all grains sharing a common edge with it

contiguity list list of all neighbours of a speci�c grain

vertex list list of the coordinates of all vertices of a speci�c grain

In the following, a grain is often referred to by its germ, and the term 'point' is used as a general

term for germ, grain or tessel, respectively. 'Contiguity list of a point' and 'contiguity list of a

grain' therefore have an identical meaning.

3

2.3 Algorithm

An algorithm based on ideas given by Green and Sibson [2] was used to construct a Dirichlet

tesselation of a set of given points at random locations within a prescribed window. This algorithm

is based on the fact that it is possible to order the neighbours of a given grain in a clockwise or

anticlockwise manner. This is a speci�c feature of this kind of planar mosaics and essential to

establish relations between adjacent grains.

The algorithm allows to generate the Dirichlet tesselation point by point. Starting from an initial

stage, where the �rst point constitutes the �rst grain which is identical with the whole window,

each further step means that one additional point is added to the tesselation and the tesselation

is updated. This means that all tessels that are a�ected by the new point have to be modi�ed.

Thus, it is necessary

� to generate the contiguity list of the additional point including its vertex list and

� to modify the contiguity list of tessels which are a�ected by the introduction of the new

point.

A detailed view on the used algorithm shows that an additional point IPUNKT is introduced in an

existing tesselation performing the following steps:

1. search for the point NNACHB in the existing tesselation in whose tessel the new point IPUNKT

is located

2. determine the midpoint of the line connecting IPUNKT with its nearest neighbour NNACHB;

this is the starting point from which the search for the succeeding neighbours of the new

point begins

3. search for the intersection point (ECKX, ECKY) of a straight hal
ine originating from the

starting point with one of the edges of NNACHB, where the orientation of the hal
ine is

anticlockwise with respect to IPUNKT

4. determine the neighbour NEUP of NNACHB lying adjacent to the edge containing the intersec-

tion point (ECKX, ECKY)

5. insert entry IPUNKT into the contiguity list and entries (ECKX, ECKY) into the vertex list of

NEUP

6. set NEXTP=NEUP, set starting point for search equal to (ECKX, ECKY)

7. look for the intersection point (ECKX, ECKY) of a straight hal
ine originating from the start-

ing point with one of the edges of NEXTP, where the orientation of the hal
ine is anticlockwise

with respect to IPUNKT

8. insert entry NEXTP into the contiguity list and entries (ECKX, ECKY) in the vertex list of

IPUNKT

9. delete super
uous entries in the contiguity list and the vertex list of NEXTP; insert vertex

(ECKX, ECKY) in the vertex list of NEXTP

10. if NEXTP = NNACHB, the tessel is complete; otherwise continue with step 5

If NEUP is an edge of the window (i.e. it has negative sign), the steps 5 to 8 have to be replaced

by the following steps:

4

0

2

4

6

8

10

0 2 4 6 8 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

Figure 2.1: Insertion of tessel No. 51 into existing tesselation

1. determine succeeding neighbour NEXPOS of NEXTP on the edge NEUP

2. insert entry IPUNKT into the contiguity list of NEUP

3. set NEXTP=NEUP

4. determine the succeeding point NEUP on the edge NEXTP and the corresponding vertex (ECKX,

ECKY)

5. insert entry NEXTP into the contiguity list and entries (ECKX, ECKY) in the vertex list of

IPUNKT

Figure 2.1 shows an intermediate stage of generating a new tessel. It can be seen how the inserted

tessel 'cuts out' parts of the adjacent tessels. From Figure 2.1 it also becomes clear that the

computing expenditure required to generate an additional tessel is largely independent of the

number of tessels already present in the tesselation. Only step 1 will require additional e�ort

with increasing number of points, but due to the search algorithm applied and the randomness of

the generated point locations, computational e�ort will increase not more than proportionally to

the square of the number of points, which is reasonably slow.

Upon completion of the algorithm, a contiguity list and a vertex list is available for each tessel.

The described algorithm mainly relies on the fact that in 2-D it is possible to establish unique

and ordered neighbour lists (e.g. by clockwise recording of neighbours). A generalization to the

3-D case is therefore not straightforward, however, there are other algorithms available in the

literature based on vertex recording [3].

2.4 Data storage and retrieval

A common data storage and retrieval format is used for tesselation data and for the subsequently

generated crack patterns.

5

0

2

4

6

8

10

0 2 4 6 8 10

 1

 2

 3

 4

 5

 6

 7
 8

 9

 10

 11 12

 13

 14
 15

 16

 17
 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32
 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49 50

 51

 52
 53

 54

 55

 56

 57

 58
 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

Figure 2.2: Example of a tesselation with 99 tessels

2.4.1 Tesselation �les format

The following example shows the lists for point number one and its neighbours in a given tesselation

with 99 tessels (see Figure 2.2).

5 ELEMENTE IN ZELLE # 1

60 -1 5 41 27

0 0 0 0 0

9.5555118 10.0000000 10.0000000 8.9214689 9.0537732

2.0990241 2.0219145 3.6072218 2.9802236 2.3758535

9.6622007 2.6071079

...

6 ELEMENTE IN ZELLE # 5

41 1 -1 65 28 24

0 0 0 0 0 0

8.1604141 8.9214689 10.0000000 10.0000000 8.2071629 7.9018173

3.2684964 2.9802236 3.6072218 4.6634964 4.1100933 3.7389704

8.9637537 3.8085417

...

4 ELEMENTE IN ZELLE # 27

1 41 73 60

0 0 0 0

9.5555118 9.0537732 8.4728504 9.1914379

2.0990241 2.3758535 1.6146726 1.3804673

9.1825869 1.7378334

6

...

6 ELEMENTE IN ZELLE # 41

27 1 5 24 95 73

0 0 0 0 0 1

8.4728504 9.0537732 8.9214689 8.1604141 7.7300267 8.3235545

1.6146726 2.3758535 2.9802236 3.2684964 2.3806201 1.5458367

8.4043751 2.3317539

...

5 ELEMENTE IN ZELLE # 60

27 73 25 -1 1

0 0 0 0 0

9.5555118 9.1914379 9.5463706 10.0000000 10.0000000

2.0990241 1.3804673 1.0085193 1.0316146 2.0219145

9.4848328 1.5846933

For each tessel, there are 6 output lines.

The �rst line contains the number of entries in the list together with the number of the tessel.

In the second line, the number of each neighbour is shown (i.e. the contiguity list). Negative

values indicate edges of the window.

The third line is for future use and will contain the marks for damaged facets (see below).

Lines four and �ve contain the vertex coordinates ECKX and ECKY of the �rst vertex of the facet

(clockwise).

The last line contains the coordinates of the generating point of the tessel.

2.4.2 Crack pattern �les format

There are two di�erent options for crack pattern recording. First, crack patterns can be simply

retrieved from tesselation �les using the information in line three (see above) of each grain, which

indicates whether the facet adjacent to the neighbouring grain given in line two of the same column

is damaged (i.e. cracked) or not. In that case, there is no information available about the shape

and neighbourhood of cracks. Therefore, a second option is provided where information on all

facets of an isolated crack is combined. This information is collected in a crack pattern �le where

separate cracks are recorded according to the following scheme:

1 4 RISS-NR. MIT ANZAHL DER KANTEN

0 1 2 0 0

22 22 164 164 1178

342 342 342 1178 342

152 164 1178 950 771

14.3769318 13.9972848 13.9300368 13.6038238 14.1085188

5.0973754 5.2855169 5.0374576 4.9151133 4.9325897

...

7

12 5 RISS-NR. MIT ANZAHL DER KANTEN

0 2 1 1 0 0

997 997 997 997 1140 1398

173 173 1398 827 827 173

1064 1398 827 1140 803 380

15.7723154 16.2326262 16.3774962 16.3592704 16.3810994 16.2636056

13.4069869 13.8886717 13.4920480 12.9671421 12.9576569 14.1214094

...

70 1 RISS-NR. MIT ANZAHL DER KANTEN

0 0

1246 1246

1315 1315

619 1161

22.1362192 22.4237149

8.2840217 8.2692065

Each crack occupies 7 lines of information. In the �rst line, the number of the crack is given

together with the number of facets it contains. The second line contains
ags that indicate the

shape of the crack and are important for the plotting subroutine as well as for the potential fracture

mechanics description (0 - end point; 1 - kink point; 2 - branching point; 3 - closed loop point).

Lines 3-5 contain the connection to the Dirichlet tesselation, namely, the numbers of the grains

on the left and right side of the facet (looking from the starting point of the facet) as well as that

ahead adjacent to the facet end point, and lines 6 and 7 contain the x- and y- coordinates of the

starting point of the current crack facet.

There is no header in the crack pattern �le because all information about the window and the

contiguity lists of the frame is already contained in the corresponding tesselation �le.

Generating crack pattern �les and preserving grain boundary facet cracking information is the

main di�erence to other codes dealing with di�erent aspects of random mosaics that are available

in the literature or on the internet. This was the main reason for developing an own code instead

of simply adopting existing programs.

8

3

Programming considerations

3.1 General

The programing language used is FORTRAN 77. Variants of the program are running on IBM MVS

3090, under UNIX and also under LINUX. Variables are mainly communicated between di�erent

subroutines via COMMON blocks. Maximum array bounds are given in PARAMETER statements (see

Table 3.1), which allows a
exible memory adjustment for test runs with a usually small number

of tessels and production runs which may contain a very large number of tessels within one

tesselation. The whole program is organized within separate libraries described below.

3.2 Dirichlet tesselation library

Most of the variables and arrays are transferred to the subroutines via the di�erent COMMON-blocks

which are given in Table 3.2, together with the bounds of the arrays. The COMMON blocks of Table

3.2 are compiled in a separate �le which is included in the respective subroutines via the FORTRAN

statement INCLUDE (COMTESS), where COMTESS is the name of the �le.

The maximum bounds of the arrays can be adjusted by changing the PARAMETER statements which

are given in Table 3.1; the actual bounds (i.e. the part of the array that is really used) depend on

the number of points of the tesselation and have to be given in the input data set.

3.3 Damage simulation library

The variables described in Table 3.3 are related to a phenomenological way of introducing dam-

age into the tesselation. The COMMON blocks of Table 3.3 are compiled in a separate �le which

is included in the respective subroutines via the FORTRAN statement INCLUDE (COMKAV), where

Variable Description

NP Maximum number of points for tesselation

NR Maximum number of edges of the window

NMOD Maximum number of entries (neighbours) in contiguity list of a point

NMODR Maximum number of entries (neighbours) in contiguity list of an edge

Table 3.1: Variables de�ned in PARAMETER statements

Variables are used to adjust array dimensions in COMMON blocks in order to save memory.

9

COMMON block Variable (bounds) Description

CONLIS ICONLI(-NR:NP,-1:NMOD+1) Contiguity list array for points

IMOD Actual dimension of ICONLI

CORA ICORA (-NR:-1,-1:NMODR+1) Contiguity list array for edges

IMODR Actual dimension of ICORA

ECKEN ECKEX (-NR:NP, 0:NMOD) x-coordinates of tessel vertices

ECKEY (-NR:NP, 0:NMOD) y-coordinates of tessel vertices

ORTE PX (-NR:NP) x-coordinates of points

PY (-NR:NP) y-coordinates of points

NPAR NPUNKT Number of points in the window

NRAHM Number of edges of the window

LAUF KONF Auxiliary variable

NKONF Auxiliary variable

AREAL FLAECH (NP) Area of tessels

Table 3.2: Variables in COMMON blocks related to the Dirichlet tesselation

COMMON Variable Description

block (bounds)

FACETT ICAVIT Cavitation list array for points

(1:NP,-1:NMOD+1)

ZUFALL SCHAED Damage level of initial con�guration

SCHINK Damage level of succeeding con�gurations

ISEEDT Random number generator seed for tesselation

ISEEDS Random number generator seed for damage

PATH IAC Counter for number of cavitated facets

NAC Counter for total number of facets

IC Counter for weighted number of cavitated facets

ICAVI NCAV Counter for number of cavitated facets

NGES Counter for total number of facets

DCAV Fraction of cavitated facets contained in the tesselation

Table 3.3: Variables in COMMON blocks related to damage simulation

COMKAV is the name of the �le. Fracture mechanics variables which are necessary for a physically

based damage simulation are not included in this report.

3.4 Crack extraction and facet characterization library

Damage is introduced into a tesselation facet by facet. Therefore, cracks (i.e. connected cavitated

facets) have to be extracted from the tesselation in a convenient way. The extraction is done by the

subroutine CRACK and consists in the determination of the nodes of the cracks and of their adjacent

grains as well as in the characterization of the nodes (end nodes, middle nodes or branching nodes,

respectively).

Subsequently, facet characterization is performed by the subroutine CHARAKT. The dimensions of

the arrays can be adjusted by changing the PARAMETER statements which are given in Table 3.4;

the related data blocks are given in Table 3.5. The COMMON blocks of Table 3.5 are compiled in a

separate �le which is included in the respective subroutines via the FORTRAN statement INCLUDE

(COMRISS), where COMRISS is the name of the �le.

10

Variable Description

NKMAX Maximum number of nodes within one crack

NCMAX Maximum number of cracks within one tesselation

Table 3.4: Variables de�ned in PARAMETER statements

Variables are used to adjust array dimensions in COMMON blocks in order to save memory.

COMMON Variable Description

block (bounds)

RISSE IRCAV Characterization list array for facets of

(1:NP,-1:NMOD+1) Dirichlet tesselation

KNOTEN NNODE Node characterization
ags for each crack

(1:NCMAX,0:NKMAX)

NKR Right grain of a crack facet

(1:NCMAX,0:NKMAX)

NKL Left grain of a crack facet

(1:NCMAX,0:NKMAX)

NKM Grain between NKL and NKM

(1:NCMAX,0:NKMAX)

INODE Number of facets of one crack

(1:NCMAX)

KOORD DDNODX x-coordinates of crack nodes

(1:NCMAX,0:NKMAX)

DDNODY y-coordinates of crack nodes

(1:NCMAX,0:NKMAX)

BEWERT NRR1 Auxiliary array for facet characterization

(1:NP, 1:NMOD-1)

NRR2 Auxiliary array for facet characterization

(1:NP, 1:NMOD-1)

Table 3.5: Variables related to crack extraction and facet characterization.

11

3.5 Data
ow subroutines

Construction of the Dirichlet tesselation without damage and introducing damage can be per-

formed separately. This allows the use of 'model' tesselations with di�erent amounts of damage.

Therefore, data
ow subroutines are supported for storage (subroutine TSTORE) and retrieval

(subroutine TLOAD) of a given tesselation with or without damage.

Additionally, the resulting crack patterns which are generated by the crack extraction routines

can be stored in �les (subroutine RSTORE). Also a retrieval subroutine (RLOAD) exists for the crack

patterns to be loaded e.g. for graphical presentation. Details are given in the corresponding

paragraph.

3.6 Graphics

Graphics interfaces for both GKS (on MVS systems) and gnuplot (on UNIX/LINUX systems)

are available, but not described in this report. For GKS, a GKS meta�le is generated for further

processing. For gnuplot, a set of two �les is generated for each plot, the �rst containing plotting

format speci�cations and the second containing the data.

Presentation of complete tesselations as well as crack patterns is possible. Crack patterns can

be plotted from tesselation �les using the information in array ICAVIT as well as from crack

extraction �les. In both cases, labelling is supported for better identi�cation of tessels and cracks

especially for demonstration purposes.

The graphics interfaces use the routines TLOAD and RLOAD, respectively, for data retrieval.

12

4

Applications

During the last years, a variety of possible application �elds opened up because of the increasing

interest in stochasticmodelling of polycrystalline solids on amesoscopic scale. A phenomenological

damage model was applied for intergranular creep cavitation [4]. A fracture mechanics model for

cracking under thermal shock loading was developed, leading to a largely sophisticated version of

the subroutine DAMAGE for crack facet failure [5]. Failure due to creep-assisted intergranular stress

corrosion cracking was also modelled [6]. The tesselation algorithm was used to model the spatial

distribution of �bres in reinforced ceramic materials [7] together with their respective �bre volume

fraction and to obtain an interpretation of results for the slice compression test experiments for

this class of materials.

Current applications focus on modelling of fatigue crack growth for martensitic steels [8], inden-

tation loading for ceramics [9] and domain characterization together with constitutive behaviour

modelling for piezoelectric material [10].

Only recently, a number of papers were published by di�erent authors showing the advantageous

use of the tesselation approach in materials science. These papers covered a wide range of appli-

cations, such as the Voronoi cell-based �nite element method for elastic analysis of heterogeneous

structures [13], micro-shear banding in crystal plasticity [12], and creep and grain boundary sliding

of polycrystals [14].

13

14

References

[1] F.C. Hsuan, Generating Uniform Polygonal Random Pairs, Appl. Statist. 28 (1979), 170-172.

[2] P.J. Green, R. Sibson, Computing Dirichlet tesselations in the plane, The Computer Journal

21 (1978), 168-173.

[3] J.L. Finney, A Procedure for the Construction of Voronoi Polyhedra, J. Comp. Phys. 32

(1979), 137-142.

[4] H. Riesch-Oppermann, A. Br�uckner-Foit, Grain Boundary Failure and Geometrical Models

of Creep Damage, in: P.D. Spanos, Y.-T. Wu (eds.), Probabilistic Structural Mechanics:

Advances in Structural Reliability Methods, IUTAM Symposium, San Antonio, Texas, USA,

June 7-10, 1993, Springer, Berlin (1994), 442-454.

[5] T. Johansson, E. Kullig, A. Br�uckner-Foit, H. Riesch-Oppermann, A fracture mechanics

model for interacting cracks in thermal fatigue, in: J. Petit (ed.), Mechanisms and Mechanics

of Damage and Failure: Proc.of the 11th Biennial European Conf. on Fracture (ECF 11),

Poitiers, September 3-6, 1996, Vol. I, 275-262, EMAS, Warley, 1996.

[6] L. Cizelj, H. Riesch-Oppermann, Modelling the early development of secondary side stress

corrosion cracks in steam generator tubes using incomplete random tesselations, Proc. Inter-

national symposium Fontevraud IV - Contribution of Material Investigation to the Resolution

of Problems Encountered in Pressurized Water Reactors, Sept 14-18 1998, Soci�et�e Fran�caise

d'Energie Nucl�eaire, 1998, Vol. I, 583-594.

[7] T. Johansson, Analytische Beschreibung von Experimenten an faserverst�arkten Keramiken

zur Bestimmung von Grenz
�achenparametern, Fortschr.-Ber. VDI Reihe 18 Nr. 170.

D�usseldorf, VDI-Verlag 1995.

[8] J. Bertsch, A. M�oslang, H. Riesch-Oppermann, Fatigue crack initiation in a ferritic-

martensitic steel under irradiated and unirradiated conditions, in: M.W. Brown, E.R. de los

Rios, K.J. Miller (eds.), Fracture from Defects: Proc. of the 12th Biennial European Conf.

on Fracture (ECF 12), She�eld, September 14-18, 1998, Vol. I, 363-368, EMAS, Cradley

Heath, 1998.

[9] S. Weyer, L. Cizelj et al., Automatic Finite Element Meshing of Planar Dirichlet-Voronoi

Tesselations, in preparation.

[10] A. Fr�ohlich, unpublished research.

[11] P. Cannmo, An Interface Model Based on Damage Coupled to Slip and Dilatation, in: M.W.

Brown, E.R. de los Rios, K.J. Miller (eds.), Fracture from Defects: Proc. of the 12th Biennial

European Conf. on Fracture (ECF 12), She�eld, September 14-18, 1998, Vol. II, 957-962,

EMAS, Cradley Heath, 1998.

[12] O. Watanabe, H.M. Zib, E. Takenouchi, Crystal plasticity: Micro-shear banding in polycrys-

tals using Voronoi tesselation, Int. J. Plasticity 14 (1998), 771-.

15

[13] S. Ghosh, K. Lee, S. Moorthy, Multiple scale analysis of heterogeneous elastic structures

using homogenisation theory and Voronoi cell �nite element method, Int. J. Solids Struct. 32

(1994), 27-62.

[14] P. Onck, E. van der Giessen, In
uence of microstructural variations on steady state creep and

fracture stresses in 2-D freely sliding polycrystals, Int. J. Solids Struct. 34 (1997), 703-726.

[15] T. Winkler, B. Michel, E. Kullig, T. Johansson, A. Br�uckner-Foit, H. Riesch-Oppermann, D.

Munz, Ermittlung der Lebensdauerverteilung bei Thermoerm�udung mit den Methoden der

Stochastischen Geometrie, FZKA-Bericht 5692, Februar 1996.

16

Appendix A

Dirichlet tesselation library

The Dirichlet tesselation library contains all subroutines which are necessary to obtain a Dirichlet

tesselation in a convex window with a given number of edges and their respective vertices. The

number of points in the window as well as the coordinates of the vertices of the window and

some starting value for the random number generator have to be supplied by the input data set.

The main program has to organize data input; subroutine TESSEL is then called to complete the

construction of the Dirichlet tesselation, control is then returned to the calling main program.

Data output or damage simulation may follow, if convenient.

The subroutines of the Dirichlet tesselation library shall now be described in detail.

A.1 Subroutine TESSEL

Description

This is the main program, organized as a subroutine. Its purpose is to construct the Dirichlet

tesselation of a window containing a certain number points at prescribed random locations. The

tesselation is performed iteratively. The tesselation containing only the �rst point comprises the

complete window. Subsequently, the tesselation is updated pointwise until all points are recorded

and their respective contiguity lists are completed.

Parameters In:

None

Parameters Out:

None

External Subroutines:

RAHMEN de�ne window

PUNKTE generate randomly distributed points in the window

ANFANG construct the contiguity list of the �rst point in the window

UPDATE construct the contiguity list of one subsequent point

DRUCK generate printout of the contiguity list of one point

DRURA generate printout of the contiguity list of one edge

17

VOLL determine the maximum number of neighbours in the contiguity list of all points of a

tesselation

External Functions:

None

Local Variables:

IPUNKT auxiliary variable (usually IPUNKT=1)

IP counter for tessel which is presently being constructed

I loop counter

A.2 Subroutine RAHMEN

Description

Generate contiguity list of all edges of the window. Edges are treated in a similar way as points,

but with a negative sign and modi�ed contiguity lists because of the larger number of possible

neighbours.

Parameters In:

None

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

IP loop counter

IPM, IPP auxiliary variable

18

A.3 Subroutine PUNKTE

Description

Generate sample of random points within a prede�ned window.

Parameters In:

None

Parameters Out:

None

External Subroutines:

None

External Functions:

DRNUNF uniform random number generator (IMSL library)

Local Variables:

IZ loop counter

XSI, YSI auxiliary variables

A.4 Subroutine ANFANG

Description

Create the contiguity list of the �rst point in the window.

Parameters In:

None

Parameters Out:

None

External Subroutines:

None

External Functions:

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

I, IP loop counters

I1, IP1 auxiliary variables

19

A.5 Subroutine UPDATE

Description

Update a given tesselation by adding a new point. Construct the contiguity list of the new point.

Update the contiguity lists of the adjacent points.

Parameters In:

IPUNKT point for which contiguity list is currently being constructed

Parameters Out:

None

External Subroutines:

NACHB determine nearest neighbour of IPUNKT

NEXTT determine next neighbour to be inserted into the contiguity list of IPUNKT

CONLIA insert point IPUNKT into the contiguity list of the next neighbour, determined by NEXTT

CONLIN insert the next neighbour, determined in NEXTT, into the contiguity list of IPUNKT

NACHF determine the next neighbour to be inserted into the contiguity list of IPUNKT, if the

tessel of IPUNKT lies adjacent to an edge of the window

COLIRA insert number IPUNKT into the contiguity list of an edge of the window

GNEU determine next neighbour to be inserted into the contiguity list of IPUNKT, if the tessel

of IPUNKT lies adjacent to an edge of the window

DELCON delete members of the contiguity list of neighbours replaced by IPUNKT

External Functions:

None

Local Variables:

NNACHB nearest neighbour of IPUNKT

IUHRZ
ag to determine search direction for subroutine NEXTT

NEXTP, NEUP, NEXPOS temporary variables for construction of contiguity list

ECKX, ECKY coordinates of next vertex to be inserted into contiguity list

A.6 Subroutine NACHB (IPUNKT,NNACHB)

Description

Find tessel in which the point IPUNKT which is to be added to the tesselation is situated. Starting

from an initial point (which is arbitrarily set to 1) the search is performed along the contiguity

list of successive points, jumping to the next point whenever its distance to IPUNKT becomes less

than the distance of the present point to IPUNKT, until there is no such point in the complete

contiguity list. This point is then the nearest neighbour of IPUNKT, i.e. IPUNKT is situated within

its tessel.

Parameters In:

20

IPUNKT point for which contiguity list is currently being constructed

Parameters Out:

NNACHB nearest neighbour of IPUNKT

External Subroutines:

None

External Functions:

DIST calculate distance between two grain centres

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

ISTART starting point for search (set to ISTART=1)

I, IZ loop counters

ABST0, ABST1, ICON auxiliary variables

A.7 Subroutine NACHF (NEXTP,NEUP,NEXPOS)

Description

Find successor NEXPOS of NEXTP in the contiguity list of the edge NEXTP in a clockwise search

direction. (NACHF and GNEU are called instead of NEXTT, if edge e�ects have to be considered)

Parameters In:

NEXTP point whose successor is searched

NEUP edge of the window whose contiguity list has to be checked for NEXPOS

Parameters Out:

NEXPOS successor of NEXTP in the contiguity list of the edge NEUP in clockwise direction

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

IFINDE �nd location of a certain point in the contiguity list of another point

MODR calculate modulus of an integer with respect to IMODR

Local Variables:

I, I1 temporary variables for loop counters

IBEG, IEND temporary variables for �rst and last entry of contiguity list

IFIND, IFIRA, INEXT temporary variables for entry points in contiguity lists

21

A.8 Subroutine NEXTT (IPUNKT,NEXTP,NEUP,EX,EY,IUHRZ)

Description

Find next point NEUP to be inserted into the contiguity list of the present point IPUNKT. Also

the coordinates of the vertex of the edge between IPUNKT and NEUP are determined. The search

for NEUP is performed by looking for the intersection point of a straight line starting from the

midpoint of the line connecting IPUNKT and NEXTP in a prescribed search direction (i.e. clockwise

with respect to IPUNKT) with the edges of the tessel containing the point NEXTP. The neighbour

of NEXTP whose common edge with NEXTP contains the intersection point of the search line is the

desired point NEUP.

Note: NEXTT is also called as auxiliary routine by the subroutine GNEU.

Parameters In:

IPUNKT point for which contiguity list is currently being constructed

NEXTP number of the last already found member of the contiguity list of IPUNKT

IUHRZ
ag to determine search direction

1 normal search in clockwise direction

-1 search direction anticlockwise

-2 search direction anticlockwise; perform search until NEUP is negative

Parameters Out:

NEUP next neighbour in the contiguity list of IPUNKT

EX, EY coordinates of vertex at the beginning of the edge between IPUNKT and NEUP to be

added in contiguity list of IPUNKT

IUHRZ
ag for GNEU to indicate failure of search for intersection point

-5 no intersection point found

External Subroutines:

DKOMP auxiliary printing routine for debugging purposes

External Functions:

SGN determine sign of an integer

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

IFINDE �nd point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

IPRINT control variable for printout

X, Y, U1, U2, VORZ temporary variables to determine unit vector of search direction

PXI, PYI, PXN, PYN temporary variables for point coordinates

22

IBEG, IEND temporary variables for �rst and last entry of contiguity list

IFIND temporary variable for entry of a point in contiguity list of an other point

IZIEL, I auxiliary variables for loop range

I1, I11, IECK, IECK1 auxiliary variables for loop

EXALT, EYALT temporary variables for vertex coordinates

D, DL, DM, DLAM, DMUE temporary variables for the calculation of the next vertex

IERR error
ag

A.9 Subroutine CONLIA (NEUP,IPUNKT,NEXTP,ECKX,ECKY)

Description

Insert the new point IPUNKT into the contiguity list of the neighbour NEUP. Insert the vertex

coordinates of the edge between IPUNKT and NEUP into the vertex list of NEUP.

Parameters In:

IPUNKT point for which contiguity list is currently being constructed

NEXTP number of the last already found member of the contiguity list of IPUNKT

NEUP point whose contiguity list is updated

ECKX, ECKY coordinates of the vertex of the edge between NEUP and IPUNKT

Parameters Out:

None

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

I, J, J1 temporary variables for loop counters

IBEG, IEND temporary variables for �rst and last entry of contiguity list

ICON temporary variable for entry in contiguity list

IHILF, XHILF, YHILF, IHILF1, XHILF1, YHILF1 auxiliary variables

23

A.10 Subroutine CONLIN (IPUNKT,NEUP,ECKX,ECKY)

Description

Insert a new point NEUP into contiguity list of IPUNKT. Insert vertex coordinates of edge between

IPUNKT and NEUP into the vertex list of IPUNKT.

Parameters In:

IPUNKT point for which contiguity list is currently being constructed

NEUP point whose contiguity list is updated

ECKX, ECKY coordinates of the vertex of the edge between IPUNKT and NEUP

Parameters Out:

None

External Subroutines:

None

External Functions:

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

I loop counter

ICON temporary variable for entry in contiguity list

A.11 Subroutine COLIRA (NEUP,IPUNKT,NEXTP)

Description

Version of subroutine CONLIA if NEUP is an edge of the window.

Parameters In:

IPUNKT point for which contiguity list is currently being constructed

NEXTP number of the last already found member of the contiguity list of IPUNKT

NEUP edge whose contiguity list is updated

Parameters Out:

None

External Subroutines:

DKOMP auxiliary printout routine for debugging purposes

24

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

MODR calculate modulus of an integer with respect to IMODR

Local Variables:

I, J, J1 temporary variables for loop counters

IBEG, IEND temporary variables for �rst and last entry of contiguity list

ICON, IHILF, IHILF1 temporary variables for entries in contiguity list

A.12 Subroutine GNEU (IPUNKT,NEXTP,NEUP,NEXPOS,ECKX,ECKY)

Description

GNEU is called by subroutine UPDATE instead of subroutine NEXTT, if NEXTP is not a point but an

edge of the window.

Parameters In:

IPUNKT point for which contiguity list is currently being constructed

NEXTP number of the last already found member of the contiguity list of IPUNKT (NEXTP is an

edge of the window)

NEXPOS next entry (clockwise) in the contiguity list of the edge NEXTP (this may be a point (if

NEXPOS positive) or an edge of the window (if NEXPOS negative)

Parameters Out:

NEUP next neighbour in the contiguity list of IPUNKT

ECKX, ECKY coordinates of the next vertex for contiguity list

External Subroutines:

NEXTT determine next point and corresponding vertex coordinates on edge of the window

NACHF update of NEXPOS

External Functions:

None

Local Variables:

IUHRZ
ag to determine search direction

ECKXR, ECKYR temporary variables for vertex coordinates

IRAND temporary variable for number of edge of the window

25

A.13 Subroutine DELCON (NEXTP,IPUNKT,NEUP,ECKX,ECKY)

Description

Remove those entries from the contiguity list of NEXTP which are replaced by IPUNKT. Also the

respective vertices are removed from the vertex list and the new vertex coordinates of the edge

between NEXTP and IPUNKT are inserted. All entries between IPUNKT and NEUP are removed.

Parameters In:

IPUNKT point for which contiguity list is currently being constructed

NEXTP number of the last already found member of the contiguity list of IPUNKT

NEUP next neighbour in the contiguity list of IPUNKT, determined by subroutine NEXTT or

GNEU

Parameters Out:

None

External Subroutines:

DECORA is called if NEXTP is an edge of the window ('edge version' of DELCON)

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

IFINDE �nd entry of a certain point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

I, I1, J, J1 temporary variables for loop counters

IBEG, IEND temporary variables for �rst and last entry of contiguity list

ICON temporary variable for entry in contiguity list

A.14 Subroutine DECORA (NEXTP,IPUNKT,NEUP)

Description

Variant of DELCON if NEXTP is an edge of the window.

Parameters In:

IPUNKT point for which contiguity list is currently being constructed

NEXTP number of the last already found member of the contiguity list of IPUNKT (NEXTP is an

edge of the window)

NEUP next neighbour in the contiguity list of IPUNKT, determined by subroutine NEXTT or

GNEU

26

Parameters Out:

None

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

MODR calculate modulus of an integer with respect to IMODR

Local Variables:

I, I1, J, J1 temporary variables for loop counters

IBEG, IEND temporary variables for �rst and last entry of contiguity list

ICON temporary variable for entry in contiguity list

A.15 Integer function MODP

Description

Calculate the modulus of an integer with respect to IMOD. If necessary, the result is shifted by

IMOD in order to be positive.

Parameters In:

I integer variable

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

None

27

A.16 Integer function MODR

Description

Calculate the modulus of an integer with respect to IMODR. If necessary, the result is shifted by

IMODR in order to be positive.

Parameters In:

I integer variable

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

None

A.17 Integer function ISTART

Description

Find �rst entry in the contiguity list of point NEXTP.

Parameters In:

NEXTP number of point

Parameters Out:

None

External Subroutines:

DKOMP printout routine (called if contiguity list is empty for debugging purposes)

External Functions:

None

Local Variables:

None

28

A.18 Integer function IENDE

Description

Find last element in the contiguity list of point IP.

Parameters In:

IP number of point

Parameters Out:

None

External Subroutines:

DKOMP printout routine (called if contiguity list is empty for debugging purposes)

External Functions:

None

Local Variables:

None

A.19 Integer function IFINDE

Description

Find entry of point IFIND in contiguity list of point ISUCH.

Parameters In:

ISUCH point whose contiguity list is checked for IFIND

IFIND neighbour whose entry is to be found in the contiguity list of ISUCH

Parameters Out:

None

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

MODP calculate modulus of an integer with respect to IMOD

MODR calculate modulus of an integer with respect to IMODR

Local Variables:

I, I1 temporary variables for loop counters

IBEG, IEND temporary variables for �rst and last entry of contiguity list

ICON temporary variable for entry in contiguity list

29

A.20 Subroutine DRUCK (IP)

Description

Generate printout of the contiguity list of the point IP

Parameters In:

IP point whose contiguity list is to be printed

Parameters Out:

None

External Subroutines:

DRURA generate printout if IP is an edge of the window

External Functions:

ISTART �nd �rst entry of contiguity list

Local Variables:

KSTART, KEND auxiliary variables indicating �rst and last entry of contiguity list

A.21 Subroutine DRURA (IP)

Description

Generate printout of the contiguity list of the edge IP of the window.

Parameters In:

IP number of the edge to be printed

Parameters Out:

None

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

Local Variables:

KSTART, KEND auxiliary variables indicating �rst and last entry of contiguity list

30

A.22 Subroutine DKOMP (IP)

Description

Generate printout of the contiguity list of one point in compressed format; auxiliary routine for

debugging purposes

Parameters In:

IP point whose contiguity list is to be printed

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

KSTART, KEND auxiliary variables indicating �rst and last entry of contiguity list

A.23 Subroutine VOLL (IP)

Description

Determine maximum number of entries in the contiguity list of points 1 to IP.

Parameters In:

IP number of points

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

I loop counter

IMAX auxiliary variable indicating number of entries of contiguity list

IPMAX, IRMAX auxiliary variables indicating point or edge with maximum of entries

31

A.24 Double precision function SGN (IARG)

Description

Calculate sign of an integer.

Parameters In:

IARG Integer number

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

None

A.25 Double precision function DIST (IP1,IP2)

Description

Calculate the distance between two points in the window.

Parameters In:

IP1, IP2 Points for which distance is to be calculated.

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

DX, DY auxiliary variables

32

A.26 Subroutine EINGAB

Description

Initialize all arrays and read input quantities for the construction of the Dirichlet tesselation from

�le on unit 11. The structure of the input �le is given in the following example together with

comments on the meaning of the quantities:

15 400 NMOD, NMODR

10 NPUNKT

4 NRAHM

10. 0. 0. 10. ECKEX(*)

10. 10. 0. 0. ECKEY(*)

123456789 ISEEDT

1 NKONF

.0D0 .0D0 ENDE DER KONFIGURATION <-- this line reserved for future use

Free �eld format is used by subroutine EINGAB. NKONF tesselations can be obtained in a single run

by an appropriate modi�cation of the input �le (the lines shown above have to be repeated NKONF

times). This allows NKONF tesselations to be generated with the option of e.g. di�erent starting

values ISEEDT for the IMSL random number generator or di�erent number of points NPUNKT.

Parameters In:

None

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

I, J loop counters

A.27 Subroutine AUSGAB

Description

Print echo of input quantities read by subroutine EINGAB. Perform consistency check of input

quantities.

Parameters In:

33

None

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

I loop counter

IERR (not used)

34

Appendix B

Damage simulation library

The damage simulation library contains subroutines which are used to complete the array ICAVIT,

which indicates whether a facet is damaged (ICAVIT=1) or not (ICAVIT=0). Subroutine CAVIT is

used for previously undamaged tesselations, whereas subroutine CAVNEU allows additional cavi-

tated facets to be introduced into previously existing pre-damaged tesselations. Di�erent damage

models can be introduced, which may re
ect the surroundings of previously cavitated facets in a

di�erent manner. This may be done with the help of subroutines DAMAGE and MODELL.

The subroutines described in this section provide a framework for introducing more sophisticated

fracture mechanics-based damage models, the description of which is beyond the scope of this

report. The fracture mechanics background and damage simulation results can be found in Refs.

[5],[6] and [15].

B.1 Subroutine CAVIT

Description

Subroutine controlling the simulation of damage of the facets of the tesselation.

Parameters In:

None

Parameters Out:

None

External Subroutines:

DAMAGE control damage of the facet between two given facets

DRUCK printout of the contiguity list of one point

External Functions:

MODP calculate modulus of an integer with respect to IMOD

IFINDE �nd entry of a certain point in the contiguity list of another point

Local Variables:

35

I, J loop counters

NCAV, NGES counters for cavitated and total number of facets, respectively

IWW
ag indicating whether interaction of cavitated facets is to be modelled

JSTART, JEND temporary variables for �rst and last entry of contiguity list

JMOD, NPOS auxiliary variables

B.2 Subroutine CAVNEU

Description

Subroutine controlling the damage evaluation of a tesselation with damaged facets by introducing

additional cavitated facets. CAVNEU is essentially identical with CAVIT.

Parameters In:

None

Parameters Out:

None

External Subroutines:

DAMAGE control damage of the facet between two given facets

DRUCK printout of the contiguity list of one point

External Functions:

MODP calculate modulus of an integer with respect to IMOD

IFINDE �nd entry of a certain point in contiguity list of another point

Local Variables:

ICNEU temporary array for storing new values of ICAVIT. ICAVIT is set to ICNEU upon the

end of the subroutine.

I, J loop counters

NCAV, NGES counters for cavitated and total number of facets, respectively

IWW
ag indicating whether interaction of cavitated facets is to be modelled

JSTART, JEND temporary variables for �rst and last entry of contiguity list

JMOD, NPOS auxiliary variables

36

B.3 Subroutine PFAD (IRAND,EXALT,EYALT,UX,UY)

Description

Determine fraction of cavitated facets hit by a line starting from the point (EXALT, EYALT) at

one edge of the window and crossing the window in the direction selected by the direction vector

(UX, UY) which can be selected arbitrarily. Subroutine PFAD provides a damage parameter that

is used for creep damage by grain boundary cavitation [4].

Parameters In:

IRAND number of the edge of the window containing the starting point

EXALT, EYALT coordinates of the starting point (modi�ed upon completion)

UX, UY line direction vector

Parameters Out:

None

External Subroutines:

DRUCK auxiliary printing routine for debugging purposes

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

IFINDE �nd location of a point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

MODR calculate modulus of an integer with respect to IMODR

IWICHT calculate weighting factor for cavitated facets

Local Variables:

IPRINT control variable for printing output

U1, U2 line direction unit vector

DNORM length of line direction vector

IBEG, IEND, IBEGP, IENDP temporary variables for �rst and last entry of contiguity list

IFIND, IFIND1 temporary variables for entry of a point in contiguity list of another point

IZIEL auxiliary variable for loop range

I, I1, IECK, IECK1 auxiliary variables for loop

D, DL, DM, DLAM, DMUE, DMIN, DLAMX, DLAMY temporary variables

AX, AY, BX, BY, EX, EY, ECKY, ECKY, ECKX1, ECKY1 temporary variables for vertex coordi-

nates

IERR error
ag

IAC, IC, NAC counter for cavitated facets

37

B.4 Subroutine DAMAGE (I,NACHB,IWW,KAPUTT)

Description

Simulate the damage of a single facet of the tesselation.

Parameters In:

I, NACHB neighbouring tessels of the considered facet

IWW
ag indicating whether interaction of cavitated facets is to be modelled

Parameters Out:

KAPUTT
ag indicating whether the facet is cavitated (1) or not (0)

External Subroutines:

MODELL supply di�erent models for the interaction of damaged facets

External Functions:

IWCAV determine
ag for con�guration of adjacent cavitated facets

DRNUNF uniform random number generator (IMSL library)

Local Variables:

XCAV, IWC, XSI auxiliary variables

B.5 Integer function IWCAV (NEXTP,NEUP)

Description

Determine
ag for adjacent cavitated facets of a non-cavitated facet. IWCAV is set to

0 if no cavitated facet adjacent

1 if one cavitated facet adjacent

2 if two cavitated facets adjacent; one at each side of the facet

-2 if two cavitated facets adjacent at one side of the facet

-3 if three cavitated facets adjacent; i.e. two at one side of the facet and one at the other side of

the facet

-4 if four cavitated facets adjacent; two at each side of the facet.

Parameters In:

NEXTP, NEUP neighbouring tessels of the considered facet

Parameters Out:

38

None

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

IFINDE �nd location of a point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

NXP, NUP, NXPN, NUPN temporary variables for �rst and last entry of contiguity list

IBNXP, IBNUP, IENXP, IENUP temporary variables for �rst and last entry of contiguity list

IXUPN, IUNXP temporary variables for entries in contiguity list

ICXPN, ICUPX temporary variables for cavitated facets in contiguity list

IWC1, IWC2 temporary variables for adjacent cavitated facets at each side

IPP, IPM auxiliary variables

B.6 Integer function IWICHT (NEXTP,NEUP)

Description

Determine number of connected cavitated facets containing the facet between the tessels NEXTP

and NEUP.

Parameters In:

NEXTP, NEUP tessels adjacent to the cavitated facet

Parameters Out:

None

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

IFINDE �nd location of a point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

39

Local Variables:

NXP, NUP, NXPN, NUPN temporary variables for �rst and last entry of contiguity list

IBNXP, IBNUP, IENXP, IENUP temporary variables for �rst and last entry of contiguity list

IXUPN, IUNXP temporary variables for entries in contiguity list

ICXPN, ICUPX temporary variables for cavitated facets in contiguity list

IPP, IPM auxiliary variables

B.7 Subroutine MODELL (KONF,IWW,IWC,VSTERK)

Description

Supply di�erent models for the interaction of damaged facets. Calculate enhancement factor

VSTERK according to the selected model. VSTERK depends on the con�guration of the adjacent

damaged facets, which is given by the parameter IWC. Subroutine MODELL provides a very rough

way of interaction modelling, but can be taken as an interface for the introduction of fracture

mechanics-based models.

Parameters In:

KONF control
ag for the selection of the appropriate damage model

IWW
ag indicating whether interaction of cavitated facets is to be modelled

IWC
ag indicating con�guration of cavitated facets

Parameters Out:

VSTERK enhancement factor for the calculation of the damage probability of a facet in subroutine

DAMAGE.

External Subroutines:

None

External Functions:

None

Local Variables:

None

40

Appendix C

Crack extraction and facet

characterization library

C.1 Subroutine CRACKI (NCRACK)

Description

Subroutine controlling the extraction of cracks from a Dirichlet tesselation containing damaged

facets. The algorithm is as follows: For each tessel, the facets of the tessel are checked for damage.

If so, the number of adjacent damaged facets IWCAV is determined. If IWCAV 6= 1, the facet is

skipped. Otherwise, this facet is a facet located at the end of a crack, whose facets are then

recorded by the subroutine CRACK. This is continued until all tessels are checked.

Parameters In:

None

Parameters Out:

NCRACK number of cracks in the tesselation

External Subroutines:

DRUCK printout of the contiguity list of one point

CRACK perform extraction of one isolated crack from the tesselation

External Functions:

IFINDE �nd location of a point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

IWCAV determine number of adjacent damaged facets

Local Variables:

I, J loop counters

NCFAC counter for cavitated number of facets per tessel

JSTART, JEND temporary variables for �rst and last entry of contiguity list

JMOD, NPOS auxiliary variables

NACHB, NEXTP, NEUP auxiliary variables

ICR auxiliary variable

41

C.2 Subroutine CRACK (NEXTP,NEUP,NCRACK)

Description

Subroutine for the extraction of one isolated crack from a tesselation containing cavitated facets.

CRACK is called by CRACKI.

The extraction starts from the facet between NEXTP and NEUP, which is a facet at the end of a

crack, and is continued node by node until all facets of the crack are reached. At each branching

node, the right branch is selected, the node is marked incomplete and recording of the facets

continues until an end node is reached. Execution then continues with the left branch of the last

incomplete branching node. If an end node is reached and no branching node is left incomplete,

the crack is recorded completely.

Note: If closed cracks occur, a warning message is issued. These cracks are,however, still

recorded completely. As this occurs only at the very �nal stage of damage modelling, where the

physical basis of the model is breaking down, no e�ort was made to allow 'closed-loop-cracks' to

be recorded.

Parameters In:

NEXTP, NEUP tessels adjacent to the �rst facet of the crack

NCRACK number of crack extracted from the tesselation

Parameters Out:

None

External Subroutines:

DIRECT determine left and right tessel of the �rst facet of a crack in the direction of the following

facets of the crack

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

IFINDE �nd location of a point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

I, J loop counters

KNODE, LNODE counters for nodes of a crack

IVZW counter for incomplete branching nodes of a crack

NXP, NUP, NRP, NLP, NRPN, NLPN, KM0 temporary variables for adjacent tessels of a crack

IBNLP, IENLP, IBNRP, IENRP, ILNRP, IRNLP temporary variables for the beginning, end and

entries of contiguity lists

ICLPN, ICRPN temporary variables for damaged facets

IPP, IPM, ISTOP auxiliary variables

NODE, KL, KR, KM temporary arrays for node marks and adjacent tessels

DNODEX, DNODEY temporary arrays for coordinates of crack nodes

IV counter for branching nodes

KSD
ag for recording branching nodes of a crack

42

C.3 Subroutine DIRECT (NXP,NUP,NRP,NLP,ILNRP,KM0)

Description

Determine left and right tessel of the �rst facet of a crack in direction of the following facets of

the crack.

Parameters In:

NXP, NUP tessels adjacent to the �rst facet of the crack

Parameters Out:

NRP, NLP tessels adjacent to the �rst facet of the crack ordered in a way that NRP is at the right

side and NLP is at the left side of the crack.

ILNRP entry of NRP in contiguity list of NLP

KM0 tessel between NLP and NRP in opposite direction (stored in NKM(0)).

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

IFINDE �nd location of a point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

IBNXP, IENXP, IBNUP, IENUP, IUNXP, IXNUP temporary variables for beginning, end and en-

tries of contiguity lists

NXPN, NUPN, NUPV temporary variables for adjacent tessels of a crack

ICXPN, ICUPN temporary variables for damaged facets

IPP, IPM auxiliary variables

C.4 Subroutine CHARAK (NCRACK)

Description

Characterize undamaged facets of a tesselation according to the number of damaged facets in its

surroundings.

CHARAK determines the array IRCAV which, for every facet of a tessel, is set to one, if the facet is

cavitated; i.e. belongs to an existing crack. For facets which are undamaged, IRCAV attains the

following values:

0 if undamaged facet adjacent to no crack

43

2 if undamaged facet adjacent to end node of one crack

3 if undamaged facet adjacent to middle node of one crack

4 if undamaged facet adjacent to 2 end nodes of 2 di�erent cracks

-4 if undamaged facet adjacent to 2 end nodes of 1 single crack

5 if undamaged facet adjacent to 1 end and 1 middle node of 2 di�erent cracks

-5 if undamaged facet adjacent to 1 end and 1 middle node of 1 single crack

6 if undamaged facet adjacent to 2 midle nodes of 2 di�erent cracks

-6 if undamaged facet adjacent to 2 middle nodes of 1 single crack

which means that positive values of IRCAV denote di�erent cracks (if any), whereas negative values

denote di�erent nodes of identical cracks being connected to the undamaged facet.

In a �rst step, two auxiliary arrays NRR1 and NRR2 are calculated, which contain the cracks

adjacent to each facet of each tessel and IRCAV is set to ICAVIT for all facets belonging to cracks.

The second step, where IRCAV is determined for all remaining facets of the tesselation (i.e. those

not belonging to cracks), completes the characterization of the facets.

Parameters In:

NCRACK Number of cracks

Parameters Out:

None

External Subroutines:

BNRR0 calculate auxiliary arrays NRR1 and NRR2 for end nodes of a crack

BNRR1 calculate auxiliary arrays NRR1 and NRR2 for middle nodes of a crack

SETCAV set ICAVIT = 1 for facets belonging to a crack

DRUNRR auxiliary printing routine for debugging purposes only

External Functions:

KM0 determine KM(0), if not already available

Local Variables:

I, J, ICRACK, IK loop counters

JSTART, JEND temporary variables for �rst and last entry of contiguity list

IKN temporary variable for number of nodes

KR, KL, KM temporary variables for adjacent tessels

44

C.5 Subroutine BNRR0 (KR,KL,KM,ICRACK)

Description

Calculate values of the auxiliary arrays NRR1 and NRR2 for undamaged facets adjacent to end

nodes of a crack. If NRR1 is equal to zero, NRR1 is set to ICRACK, otherwise NRR1 is left unchanged

and NRR2 is set to ICRACK.

Parameters In:

KR, KL, KM tessels adjacent to the facet of the crack

ICRACK crack presently being recorded

Parameters Out:

None

External Subroutines:

None

External Functions:

IFINDE �nd location of a point in contiguity list of another point

Local Variables:

IFMR, IFRM, IFML, IFLM auxiliary variables for entries of contiguity lists

C.6 Subroutine BNRR1 (KD,KM,ICRACK)

Description

Calculate values of the auxiliary arrays NRR1 and NRR2 for undamaged facets adjacent to middle

nodes of a crack. If NRR1 is equal to zero, NRR1 is set to ICRACK, otherwise NRR1 is left unchanged

and NRR2 is set to ICRACK.

Parameters In:

KD, KM tessels adjacent to the facet of the crack

ICRACK crack presently being recorded

Parameters Out:

None

External Subroutines:

None

External Functions:

IFINDE �nd location of a point in contiguity list of another point

Local Variables:

IFMD, IFDM auxiliary variables for entries of contiguity lists

45

C.7 Subroutine SETCAV (K1,K2)

Description

Set ICAVIT = 1 for damaged facets lying between two tessels K1 and K2.

Parameters In:

K1, K2 number of adjacent tessels

Parameters Out:

None

External Subroutines:

None

External Functions:

IFINDE �nd location of a point in contiguity list of another point

Local Variables:

IF12, IF21 auxiliary variables for entries of contiguity lists

C.8 Subroutine DRUNRR

Description

Auxiliary printing routine for printout of NRR1 and NRR2 together with IRCAV for every facet of

the tesselation. Used only for debugging purposes.

Parameters In:

None

Parameters Out:

None

External Subroutines:

None

External Functions:

IFINDE �nd location of a point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

IP loop counter

KSTART, KEND auxiliary variables

46

C.9 Integer function KM0 (KR,KL)

Description

Determine NKM(0), if not already available in a stored crack pattern.

Parameters In:

KR, KL tessels adjacent to the �rst facet of the crack; KR is at the right side and KL is at the

left side of the crack

Parameters Out:

None

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

IENDE �nd last entry of contiguity list

IFINDE �nd location of a point in contiguity list of another point

MODP calculate modulus of an integer with respect to IMOD

Local Variables:

IBKR, IEKR, IFRL temporary variables for beginning, end, and entries of contiguity lists

IPM, KMR auxiliary variables

47

48

Appendix D

Data
ow subroutines

Storage and retrieval of Dirichlet tesselations with or without damaged facets is performed with

the help of the subroutines TSTORE and TLOAD, respectively.

Storage and retrieval of the corresponding crack patterns is performed with the help of the sub-

routines RSTORE and RLOAD, respectively.

Files containing the Dirichlet tesselation are organized in the following way:

1st line:

seed for random number generator and value for damage level

2nd line:

Number of points in the Dirichlet tesselation (NPUNKT), number of edges of the window

(NRAHM), current bounds of the contiguity list of a point in the Dirichlet tesselation (IMOD)

(must not exceed NMOD), current bounds of the contiguity list of an edge of the window

(IMODR) (must not exceed NMODR)

3rd line:

number of entries in the contiguity list of the edge # 1 of the window

4th line:

contiguity list of the edge # 1 of the window

5th line:

vertex coordinates of the edge # 1 of the window

The lines 3 - 5 are repeated for all NRAHM edges of the window. Line 3 * NRAHM + 3 contains

the 1st line for point # 1 of the Dirichlet tesselation. For each point of the Dirichlet tesselation,

there are 6 lines in the data �le. An example is given in the introduction.

The �rst line contains the number of entries in the list together with the number of the tessel.

In the second line, the number of each neighbour (i.e. the contiguity list) is shown. Negative

values indicate edges of the window.

The third line is for future use and will contain the marks for damaged facets (see below).

Lines four and �ve contain the vertex coordinates ECKX and ECKY of the �rst vertex of the facet

(clockwise).

The last line contains the coordinates of the generating point of the tessel.

Files containing crack patterns are organized in the following way: For each crack, there are 7

lines in the data set.

49

1st line:

number of crack and number of crack facets

2nd line:

ag characterizing kind of nodes

3rd line:

number of grain located at the right side of the crack facet (NKR)

4th line:

number of grain located at the left side of the crack facet (NKL)

5th line:

number of grain located between NKR and NKL (NKM)

6th line:

x-coordinates of the crack nodes (DDNODX)

7th line:

y-coordinates of the crack nodes (DDNODY)

A consistency check is performed by the subroutines RLOAD and TLOAD to ensure that the maximum

allowable array bounds are not exceeded.

D.1 Subroutine TLOAD

Description

Initialize all arrays and load a Dirichlet tesselation from �le on unit 40.

Parameters In:

None

Parameters Out:

None

External Subroutines:

None

External Functions:

None

Local Variables:

I, J, K loop counters

JBEG temporary variable indicating the beginning of contiguity list (set to 0)

JP, JR temporary variables indicating number of entries in contiguity list

IPM, IPP auxiliary variables

50

D.2 Subroutine TSTORE

Description

Store a Dirichlet tesselation in �le on unit 30.

Parameters In:

None

Parameters Out:

None

External Subroutines:

None

External Functions:

ISTART �nd �rst entry of contiguity list

MODP calculate modulus of an integer with respect to IMOD

MODR calculate modulus of an integer with respect to IMODR

Local Variables:

I, K loop counters

JBEG, JR, JP auxiliary variables

D.3 Subroutine RLOAD (NCRACK)

Description

Initialize all arrays and load a crack pattern from �le on unit 50.

Parameters In:

None

Parameters Out:

NCRACK number of cracks contained in the crack pattern

External Subroutines:

None

External Functions:

None

Local Variables:

IUNIT FORTRAN �le unit (set to 50)

I, IC, IK loop counters

IHILF temporary variable indicating number of facets of a crack

IERR error
ag

51

D.4 Subroutine RSTORE (NCRACK,IUNIT)

Description

Store a crack pattern in �le on unit IUNIT.

Parameters In:

NCRACK number of cracks in pattern

IUNIT FORTRAN �le unit (set to 33, if IUNIT = 0)

Parameters Out:

IUNIT (see above)

External Subroutines:

None

External Functions:

None

Local Variables:

I, ICRACK loop counters

IERR error
ag

IHILF auxiliary variable

52

Appendix E

Auxiliary subroutines

Several auxiliary subroutines are available, e.g. for the calculation of the area of the grains of a

Dirichlet tesselation (subroutine AREA).

Handling of crack interaction in the fracture mechanics description of crack patterns is done with

help of auxiliary tesselations generated by subroutine ERSDZ which is described below.

E.1 Subroutine ERSDZ (NCRACK,ICONR,PXR,PYR)

Description

Generate auxiliary tesselation with the centres of gravity of the NCRACK cracks of an existing

crack pattern as generating points. Provide list of neighbouring cracks for interaction e�ects.

Subroutine ERSDZ utilizes the same arrays as the original algorithm. Auxiliary arrays therefore

have to be provided to preserve the contiguity list and coordinate arrays of the original tesselation

and to restore these after completion of the auxiliary tesselation.

Parameters In:

NCRACK number of cracks in the given crack pattern

Parameters Out:

ICONR list of neighbouring cracks

PXR array of x-coordinates for centres of gravity

PYR array of y-coordinates for centres of gravity

External Subroutines:

RAHMEN de�ne window

ANFANG construct the contiguity list of the �rst point in the window

UPDATE construct the contiguity list of one subsequent point

DRUCK generate printout of the contiguity list of one point

DRURA generate printout of the contiguity list of one edge

VOLL determine the maximum number of neighbours in the contiguity list of all points of a

tesselation

53

TSTORE Store a Dirichlet tesselation in �le on unit 30

External Functions:

None

Local Variables:

I, J loop counters

IP counter for tessel which is presently being constructed

NPKTH temporary variable to preserve NPUNKT

ICONH, ICORH temporary array to preserve ICONLI, ICORA

ECKEXH temporary array to preserve ECKEX

ECKEYH temporary array to preserve ECKEY

PXH, PYH temporary arrays to preserve PX, PY

NKI auxiliary variable (number of facets of one crack)

E.2 Subroutine AREA

Description

Provide list of area values for the grains of a given tesselation. The area of grains is calculated by

summing up contibutions from triangles given by centre and 2 consecutive points in the contiguity

list.

Parameters In:

None

Parameters Out:

None

External Subroutines:

None

External Functions:

DIST calculate distance between two grain centres

Local Variables:

I, K loop counters

JP temporary variable indicating number of entries in contiguity list

JBEG temporary variable indicating beginning of contiguity list

GESAMT temporary variable for grain area summation

ZX, ZY coordinates of tip of triangle

54

L, L1 counters for base line points of triangle

NACHB neighbouring grain at base line of triangle

HOEHE height of triangle

U1, U2 auxiliary variables for height calculation

DNORM auxiliary variable for height calculation

BASIS auxiliary variable for height calculation

55

