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Abstract 

ln the framewerk of the development of superconducting coils for the stellarator 
physics experiment Wendelstein 7-X (W 7-X) the reduction of the critical current, 
better defined as characteristic current due to annealing was investigated. The 
characteristic current Ievei was defined using the 0.1 J1V/cm criterion. The techni­
cal superconductor for the magnets of this experiment is a cable-in-conduit con­
ductor with a co-extruded Al-alloy jacket. During the co-extrusion of this jacket 
onto the superconducting cable heat influx to the NbTi-strands occurs. This is 
also true for subsequent working steps like welding, brazing, and soldering. 
Therefore, a degradation of the characteristic current is expected for optimized 
NbTi-strands. ln order to clarify the behaviour of the NbTi-strands at temper­
atures which occur during the co-extrusion process and/or the working steps 
mentioned above a study was performed where the annealing temperature and 
annealing time was varied, the temperature up to 600 oc and the time up to 120 
s. The NbTi multifilamentary superconductor is commercially available. The re­
sults of the measurements of the characteristic current at 4.2 K in the field range 
from 2 T to 10 T are presented. A generalization of the results is made in order 
to point out the tendencies of the degradation of the characteristic current. These 
results were used to predict the behaviour of the W 7-X conductor cable itself. 

Degradation des charakteristischen Stromes von kommerziell 
verfügbaren NbTi-Multifilamentsupraleitern aufgrund von 
Wärmebehandlung 

Zusammenfassung: 

Im Zusammenhang mit der Entwicklung supraleitender Spulen für das Stellarator 
Physikexperiment Wendelstein 7-X (W 7-X) wurde die Reduktion des kritischen 
Stromes, besser definiert als charakteristischer Strom aufgrund von 
Wärmebehandlung, untersucht. Der charakteristische Strom wurde mit Hilfe des 
0.1 J1VIcm Kriteriums definiert. Der technische Supraleiter für die Magnete von 
W 7-X ist ein innengekühlter Kabelleiter mit einer koextrudierten Hülle aus einer 
Aluminiumverbindung. Während der Koextrusion dieser Hülle auf das supralei­
tende Kabel tritt Erwärmung der NbTi Drähte auf. Dies gilt auch für darauffol­
gende Arbeitschritte wie Schweißen, Hart- und Weichlöten. Aufgrund dieser 
Erwärmung ist eine Degradation des charakteristischen Stromes für optimierte 
NbTi Drähte zu erwarten. Um diesen Sachverhalt zu klären, wurde eine Studie 
durchgeführt, bei der die Temperatur bei der Wärmebehandlung bis zu 600 oc 
und die Zeit bis zu 120 s variiert wurde. Der NbTi Multifilamentdraht ist kom­
merziell erhältlich. ln diesem Bericht werden die Ergebnisse der Messungen des 
charakteristischen Stromes bei 4,2 K im Feldbereich von 2 T bis 10 T vorgestellt. 
Eine Verallgemeinerung der Resultate wurde gemacht, um das tendenzielle Ver­
halten der Degradation des charakteristischen Stromes aufzuzeigen. Diese Re­
sultate wurden benutzt, um das Verhalten des W 7-X Kabels vorauszusagen. 
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1. lntroduction 

Wendelstein 7-X (W 7-X) is a large plasma stellarator physics experiment which 
is currently built in Germany [1]. The coils of this experiment are superconduc­
tive. ln the case of the magnet system of the advanced modular stellarator Wen­
deistein 7-X the requirements on the conductor properlies are governed essen­
tially by mechanical properlies [2]. Primary goal was the development of a flexi­
ble conductor which can be wound into the nonplanar shape of a modular coil. 
The solution chosen is a cable-in-conduit (CIC) conductor with an aluminium 
jacket which is co-extruded or produced by a conform process. This co-extru­
sion or conform process takes place at a temperature of about 525 °C. During 
this process heat influx to the strands occurs. Also, during the fabrication of the 
superconductor and the coil, production processes like cabling, rolling, solder­
ing, brazing, and welding are necessary. This Ieads also to heat influx to the su­
perconducting strands. 

lt is common knowledge that the transperl current carrying capability (TCCC) of 
NbTi superconductors is optimized in a very sophisticated procedure between 
cold-work and heat treatment [3,4,5,6,7 ,8]. The latter is done, in general, at tem­
peratures between 350 and 400 °C. Once optimized, an additional heat treatment, 
however, or an unintentional overheating influences the superconducting proper­
ties [9,10]. ln general, the TCCC degrades. Therefore, a degradation of the TCCC 
of the Wendelstein 7-X superconductor is expected due to the possible heat in­
flux mentioned above. The question arises which heat treatments are tolerable 
without too severe a degradation of the critical current, better defined as charac­
teristic current of the superconductor. This notion is used throughout this reporl. 
The characteristic current Ievei was defined using the 0.1 p.V/cm criterion. 

There is a large experience with superconductors stabilized with aluminium go­
ing back to the early seventies [11,12]. Especially in the field of detectors in par­
ticle physics, a great deal of experience is available [13, 14, 15]. However, the alu­
minium-stabilized conductors for detectors or even a stellarator (Large Helical 
Device) [16], are different from the conductor used for W 7-X. These differences 
of the two conductor classes are listed in Table 1. 

Table 1. Differences of the two conductor classes using Al material 

Property Aluminlum-stabllized conduc- W 7-X stellarator conductor tor 

Type Monolithic Cable-in-conduit 

Kind of Al High purity Al Al-alloy 

Purpose Electrical stability Mechanical stability 

RRR Several hundred 2- 3 

Al or Cu to Sc ratlo High(> 10) (Al) Low("" 2) (Cu) 

Cable Soldered Rutherford Transparent for Helium 

Fabrication of jacket Co-extrusion 
Co-extrusion 

or conform process 

Tamperature of co-extru-
""400 °C ""' 500 °C slon 

Desired quality of bond Strong Weak cable/jacket 

Cooling Pool boiling, lndirect Interna I 
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Several authors report a degradation of the superconductor after the fabrication 
[17,18,19,20,21,22,23]. lt is the consequence and the combined effect ofthe cabl­
ing of the strands and the extrusion or conform process. A degradation of the 
transport current carrying capability (TCCC) of an optimized NbTi superconduc­
tor is generally expected beyond 200°C [6,20]. The degradation strongly de­
pends an the temperature Ievei and the time of annealing. 

ln [17], the production of the DELPHI conductor is described. A high-purity alu­
minium jacket is co-extruded araund a Rutherford cable. The extrusion temper­
ature, extrusion time, and stop durations were kept at a Ievei that the character­
istic current of the NbTi-superconductor is not degraded below the specified val­
ue. Final performance tests showed that the total degradation was at no more 
than 13 %. 

ln [18], the degradation of the DELPHI conductor is shown as a result of a sys­
tematic annealing of the conductor. The annealing temperatures were 350 °C, 
375 °C, and 400 °C and the annealing times 1.5 min, 3 min, 6 min, and 12 min. At 
the warst combination (400 °C and 12 min) the degradation of the characteristic 
current was less than 12 %. 

ln [19], the aluminium stabilized superconductor for the ALEPH solenoid is de­
scribed. Aluminium is continuously co-extruded araund a Cu/NbTi-cable at a 
temperature of about 450 °C. At 2 Ta degradation of the characteristic current of 
< 4 % was observed which is tolerable. 

ln [20], the aluminium stabilized superconductor for the ZEUS thin solenoid is 
described. Sampies of the basic strand for the Rutherford cable have been heat­
ed in a range of temperatures and time pertinent to the scheduled production 
process. The tests have shown that the characteristic current decreases at an­
nealing temperatures above 200 °C. Tests an the final composite conductor at 5.8 
T showed a characteristic current degradation of 35 % due to the fabrication. lt 
was found that a certain amount of the basic strand have been broken but the 
major source of the observed degradation is the heat treatment performed an 
the NbTi strands before and during the co-extrusion process. The pre-heating is 
necessary in order to prevent the chilling effect an the cladding material, and the 
heating during co-extrusion is unavoidable. Measurements an basic strands tak­
en from a Ruthertord cable subjected to the pre-extrusion heating showed an ad­
ditional 8 % decrease of the characteristic current. 

ln [21 ,22], the development af alumini um clad superconductors is described, and 
a characterization is given. Sampies of multifilamentary Cu/NbTi-wires with vary­
ing thicknesses of the aluminium cladding were used with final outer diameters 
of 3 mm, 4 mm, and 5 mm. Co-extrusion temperatures have been varied from 
365 °C to 450 °C, and the extrusion speed ranged from 15 m/min to over 80 
m/min. No effect an the characteristic current has been found explainable by the 
very short residence times which the superconductive core is actually in contact 
with the hat aluminium. 

These results prove that one has to compromise between a good metallurgical 
bonding between aluminium and the Rutherford cable and the attainable current 
density. Also apparent is the strong influence of the annealing temperature, the 
annealing time, and the co-extrusion speed. 

The aim of the investigation presented here is to study the annealing behaviour 
of a commercially available superconductive strand at high annealing temper-
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ature and to apply the results to cable-in-conduit conductors. The experimental 
conditions are: 

• Measurement temperature: 4.2 K 

• Full scale magnetic field range for NbTi, i.e., up to 10 T 

• Annealing temperature: 400 °C, 500 °C, 550 °C, and 600 °C 

• Annealing times: 10 s, 30 s, and 120 s (according to the practical experi­
ence) 

The data achieved were generalized and applied in order to predict the perform­
ance of the W 7-X conductor cable. 
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2. Annealing behaviour of a commercially available strand 
(Swissmetal) 

The goal of this investigation was to get information for the practically working 
engineer about the annealing behaviour of a commercially available strand mate­
rial during the fabrication of a technical superconductor and the confectioning of 
superconductive coils. lt should give a help and rules for the engineer in the 
workshop. 

lt is not the aim to explain the metallurgical behaviour. 

2.1 Description of superconductive strand 

A commercially available strand was chosen as canditate for an annealing study 
of the expected degradation. The characteristics are given in Table 2. The strand 
was chosen by chance because it was available as surplus. 

Table 2. Characteristic data of the strand material [24] 

Parameter Values 

Manufacturer Swissmetal, Dornach, Switzerland 

Strand type S-48 

Diameter of strand 0.58 mm 

Superconducting material Nb 47 wt% Ti 

Matrix material Cu 

Ratio Cu/NbTi 2.14: 1 

Filament number 48 

Filament diameter ~50 J.Lm 

Twist pitch 25 mm 

Weight 2.12 g/rn 

Length Up to several km 

Residual resistivity ratio RRR > 100 

Magnetic field B Critical current lco (taken from picture on 
data sheet) 

1 T 715 A 
2T 495 A 
3T 396 A 
4T 325 A 
5T 265 A 
6T 210 A 
7T 155 A 
8 T 105 A 
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2.2 Preparation of samples 

From a practical viewpoint a temperature region up to 600 oc and a time scale 
up to 120 s was chosen for the annealing conditions. The annealing temperatures 
are 400°C, 500°C, 550°C, and 600°C, and the annealing times are 10 s, 30 s, and 
120 s. The heat treatment for the NbTi strands which simulates the conditions 
during the production steps mentioned above were performed at the IPP Garch­
ing. The treatment of the samples is shown in Table 3 on page 6. 

Table 3. Annealing conditions of the samples 

Sampie number Temperature (°C) Time of heat treatment (s) 

1 as delivered no heat treatment 

2 400 10 

3 400 30 

4 400 120 

5 500 10 

6 500 30 

7 500 120 

8 550 10 

9 550 30 

10 550 120 

11 600 10 

12 600 30 

13 600 120 

The arrangement for the heat treatment was the following. The strand was in­
serted into the grooves of two plates of stainless steel over a length of about 105 
mm. 8oth plates were heated by a gas flame to the required temperature meas­
ured by a contact thermometer. The decrease of the temperature during the max­
imum measurement time was about 10 °C. For shorter tim es it was negligible. 
The accuracy of the temperature measurement is estimated to be + 5 °C. The 
annealed zone of 105 mm length is in the middle of the 2.5 m long sample. Fig­
ure 1 on page 7 shows a picture of samples prepared for the measurement. 
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Figure 1. Sampie prepared for the measurement. 

The sample was wound into a helical form onto a copper/G10/copper sample 
holder at a pitch of 1 mm. The wire was soldered in the copper regions and fur­
ther restrained by the use of stycast. Valtage taps were soldered across the 
length of the annealed conductor. 

2.3 Measurement conditions and procedure 

The main characteristics of the measurement are given in Table 4 an page 8. 
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Table 4. Main characteristics of the measurement. 

Parameter Values 

Number of samples 3 x 4 = 12 ( + 1 without annealing) 

Test temperature 4.2 K 

Test magnetic field Up to 10 T from 2 T in steps of 1 T 

Test current Up to 500 A (3000 A) depending on testing rig and 
sample 

Test cryostat Bath cooled with insert for samples 

Shape of sample Spiral on sample holder (0 = 33.3 mm or 90 mm) 

Length of sample 2.5 m minimum 

Total number of turns 15 

Length of heat treated zone One turn of 105 mm (ideal) 

Location of heat treated zone ln the middle of the sample (to be seen by the 
temper colour) 

The valtage vs current characteristic for the measurement af the characteristic 
current was obtained by using a new methad. The sample current was increased 
in steps. lt was constant during the period of the valtage measurements in arder 
ta exclude any naise voltage. All measurements reparted here were perfarmed 
at 4.2 K with the external field perpendicular ta the canductar. The characteristic 
current Ievei was defined using the 0.1 J1VIcm criterion. ln all measurements, na 
effects due to degradatian ar darnage by strain or mavements were observed. 
Figure 2 shaws an example af the valtage vs current characteristic. 
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Figure 2. Typical log (Eiectric field) vs current characteristic. 
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2.4 Measurement results 

The results of the measurements are collected in Table 5 on page 10 
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Table 5. Characteristic current of all samp!es 

Characteristlc current lca(B) in [A] at annealing temperature and annealing time 

Annealing temperature -+ 400°C 500°C 550 °C 

Annealing time -+ 10 s 30 s. 120 s 10 s 30s 120 s 10 s 30 s 

B[T] No an-
nealing 

2 461.3 440.1 419.1 402.1 426.0 372.7 235.5 263.2 161.5 

3 369.1 351.6 332.4 315.3 337.2 289.9 177.0 201.6 120.8 

4 304.2 284.6 266.9 252.0 271.8 231.4 139.5 160.9 95.8 

5 248.3 229.2 213.16 200.8 218.0 185.0 111.8 130.2 77.8 

6 195.2 178.6 166.2 155.3 169.7 144.3 88.0 104.3 62.9 

1 145.4 131.2 121.8 113.2 124.6 107.4 67.1 80.6 49.7 

8 94.7 86.0 79.7 73.4 81.1 71.7 46.9 57.5 37.0 

9 47.0 43.9 40.1 36.6 41.2 37.5 26.6 33.3 23.3 

10 12.1 11.9 10.0 8.8 11.0 9.5 7.7 9.7 8.4 
- ,_ ·--- -

··-

I 

600 °C 
I 

120 s 10 s 30 s 120 s 

92.0 113.9 49.7 -

64.6 83.0 28.4 -

45.2 63.3 17.7 -

34.2 48.8 11.8 -

26.3 38.4 8.7 -

19.8 31.2 6.9 -

15.4 25.1 5.4 -

12.9 17.5 4.2 -
I 

6.4 7.7 4.1 -



2.5 Evaluation of test results 

The results of the measurement are given in the following figures. Different 
views are chosen in order to show the tendencies of the behaviour. They form 
groups in the following way: 

1. lc vs B for a certain annealing temperature and the annealing time as pa­
rameter 

2. lc vs B for a certain annealing time and the annealing temperature as pa­
rameter 

3. lc vs annealing time for a certain magnetic field and the annealing temper­
ature as parameter 

4. lc vs annealing temperature for a certain magnetic field and the annealing 
time as parameter 

The grouping of the figures is as follows: 

To group 1: 

Figure 3 an page 14: lc vs B for an annealing temperature of 400 °C and the 
annealing time as parameter 

Figure 4 an page 14: lc vs B for an annealing temperature of 500 °C and the 
annealing time as parameter 

Figure 5 an page 15: lc vs B for an annealing temperature of 550 °C and the 
annealing time as parameter 

Figure 6 an page 15: lc vs B for an annealing temperature of 600 °C and the 
annealing time as parameter 

To group 2: 

Figure 7 on page 17: lc vs B for an annealing time of 10 s and the annealing 
temperature as parameter 

Figure 8 an page 17: lc vs B for an annealing time of 30 s and the annealing 
temperature as parameter 

Figure 9 an page 18: lc vs B for an annealing time of 120 s and the annealing 
temperature as parameter 

To group 3: 

Figure 10 an page 20: lc vs annealing time for 2 T and the annealing temper­
ature as parameter 

Figure 11 an page 20: lc vs annealing time for 3 T and the annealing temper­
ature as parameter 

Figure 12 an page 21: lc vs annealing time for 4 T and the annealing temper­
ature as parameter 

2. Annealing behaviour of a commercially available strand (Swissmetal) 11 



Figure 13 on page 21: lc vs annealing time for 5 T and the annealing temper­
ature as parameter 

Figure 14 on page 22: lc vs annealing time for 6 T and the annealing temper­
ature as parameter 

Figure 15 on page 22: lc vs annealing time for 7 T and the annealing temper­
ature as parameter 

Figure 16 on page 23: lc vs annealing time for 8 T and the annealing temper­
ature as parameter 

Figure 17 on page 23: lc vs annealing time for 9 T and the annealing temper­
ature as parameter 

Figure 18 on page 24: lc vs annealing time for 10 T and the annealing temper­
ature as parameter 

To group 4: 

Figure 19 on page 26: lc vs annealing temperature for 2 T and the annealing 
time as parameter 

Figure 20 on page 26: lc vs annealing temperature for 3 T and the annealing 
time as parameter 

Figure 21 on page 27: lc vs annealing temperature for 4 T and the annealing 
time as parameter 

Figure 22 on page 27: lc vs annealing temperature for 5 T and the annealing 
time as parameter 

Figure 23 on page 28: lc vs annealing temperature for 6 T and the annealing 
time as parameter 

Figure 24 on page 28: lc vs annealing temperature for 7 T and the annealing 
time as parameter 

Figure 25 on page 29: lc vs annealing temperature for 8 T and the annealing 
time as parameter 

Figure 26 on page 29: lc vs annealing temperature for 9 T and the annealing 
time as parameter 

Figure 27 on page 30: lc vs annealing temperature for 10 T and the annealing 
time as parameter 
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Figures of group 1 

To group 1: 

Figure 3 on page 14: lc vs B for an annealing temperature of 400 °C and the 
annealing time as parameter 

Figure 4 on page 14: lc vs B for an annealing temperature of 500 °C and the 
annealing time as parameter 

Figure 5 on page 15: lc vs B for an annealing temperature of 550 °C and the 
annealing time as parameter 

Figure 6 on page 15: lc vs B for an annealing temperature of 600 °C and the 
annealing time as parameter 
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Figure 5. Characteristic current vs magnetic field. for an annealing temperature of 
550 °C and the annealing time as parameter 
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Figure 6. Characteristic current vs magnetic field. for an annealing temperature of 
600 °C and the annealing time as parameter 
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Figures of group 2 

To group 2: 

Figure 7 on page 17: lc V5 B for an annealing time of 10 s and the annealing 
temperature a5 parameter 

Figure 8 on page 17: lc V5 8 for an annealing time of 30 5 and the annealing 
temperature a5 parameter 

Figure 9 on page 18: lc V5 8 for an annealing time of 120 5 and the annealing 
temperature as parameter 
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Figure 7. Characteristic current vs magnetic field. for an annealing time of 10 s and 
the annealing temperature as parameter 

Figure 7 shows measured characteristic current curves vs the applied magnetic field for an an­
nealing time of 10 s and for different temperature Ieveis. A catastrophic deterioration of the 
transport current carrying capability (TCCC) occurs at temperatures > 550 oc even at ten sec­
onds. However, the degradation for temperatures less than 500 oc lies in the range of only a few 
percent. 
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Figure 8. Characteristic current vs magnetic field. for an annealing time of 30 s and 
the annealing temperature as parameter 
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Figure 8 shows measured characteristic current curves vs the applied magnetic field for an an­
nealing time of 30 s and for different temperature Ieveis. A distinct splitting of the curves forT < 
500 oc is the consequence of the three times Ionger annealing time. For temperatures > 550 oc 
the TCCC is only about one third of the Initial ones. 
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Figure 9. Characteristic current vs magnetic field. for an annealing time of 120 s 
and the annealing temperature as parameter 

Figure 9 shows measured characteristic current curves vs the applied magnetic field for an an­
nealing time of 120 s and for different temperature Ieveis. Compared to Figure 7 on page 17 and 
Figure 8 on page 17 the catastrophic degradation of the TCCC starts between 400 oc and 500 
°C. For 600 oc a nearly complete lass of the TCCC is found. 
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Figures of group 3 

To group 3: 

Figure 10 on page 20: lc vs annealing time for 2 T and the annealing temper­
ature as parameter 

Figure 11 on page 20: lc vs annealing time for 3 T and the annealing temper­
ature as parameter 

Figure 12 on page 21: lc vs annealing time for 4 T and the annealing temper­
ature as parameter 

Figure 13 on page 21: lc vs annealing time for 5 T and the annealing temper­
ature as parameter 

Figure 14 on page 22: lc vs annealing time for 6 T and the annealing temper­
ature as parameter 

Figure 15 on page 22: lc vs annealing time for 7 T and the annealing temper­
ature as parameter 

Figure 16 on page 23: lc vs annealing time for 8 T and the annealing temper­
ature as parameter 

Figure 17 on page 23: lc vs annealing time for 9 T and the annealing temper­
ature as parameter 

Figure 18 on page 24: lc vs annealing time for 10 T and the annealing temper­
ature as parameter 
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Figures of group 4 

To group 4: 

Figure 19 on page 26: lc vs annealing temperature for 2 T and the annealing 
time as parameter 

Figure 20 on page 26: lc vs annealing temperature for 3 T and the annealing 
time as parameter 

Figure 21 on page 27: lc vs annealing temperature for 4 T and the annealing 
time as parameter 

Figure 22 on page 27: lc vs annealing temperature for 5 T and the annealing 
time as parameter 

Figure 23 on page 28: lc vs annealing temperature for 6 T and the annealing 
time as parameter 

Figure 24 on page 28: lc vs annealing temperature for 7 T and the annealing 
time as parameter 

Figure 25 on page 29: lc vs annealing temperature for 8 T and the annealing 
time as parameter 

Figure 26 on page 29: lc vs annealing temperature for 9 T and the annealing 
time as parameter 

Figure 27 on page 30: lc vs annealing temperature for 10 T and the annealing 
time as parameter 
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2.6 Generalization 

ln order to interpret the test results and to find a general behaviour, the previous 
Table 5 on page 10 is translated into normalized values. The following Table 6 
on page 32 shows all the values as overview. This procedure must not be over­
estimated since other commercial superconducting strands are optimized in an­
other way (e.g., for low or high field) but, in general, a tendency can be seen. 
However, the measurement must be repeated in each special case to get the cor­
rect absolute values. 

The table is self-explaining. lt shows clearly the desasterat temperatures beyend 
550 °C even for an annealing time of only 10 s. ln general, the TCCC is less than 
30 % compared to the original ones. Also 500 °C and 30 s annealing time show 
a non-tolerable degradation of more than 50 % of the TCCC. 

For estimation of a general tendency two kinds of figure groups are interesting: 

A. Normalized current vs annealing time for a certain annealing temperature 
with the magnetic field as parameter 

B. Normalized current vs annealing temperature for a certain annealing time 
with the magnetic field as parameter 

The following three pictures after the table beleng to the group A: 

Figure 28 on page 33: Normalized current vs annealing time for an annealing 
temperature of 400 °C with the magnetic field as parameter 

Figure 29 on page 33: Normalized current vs annealing time for an annealing 
temperature of 500 °C with the magnetic field as parameter 

Figure 30 on page 34: Normalized current vs annealing time for an annealing 
temperature of 550 °C with the magnetic field as parameter 

No picture is drawn for an annealing temperature of 600 °C due to the too low 
values for the current. 
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Table 6. Normalized characteristic current of all samples 

Characteristic current lca(B) at annealing temperature and time normalized to the value lc:O(B) without annealing 

Annealing temperature ~ 400°C 500 °C 550 °C 

Annealing time ~ 10 s 30 s 120 s 10 s 30 s 120 s 10 s 30s 120 s 10 s 

B[T] No an-
nealing 

2 1.0 0.954 0.909 0.872 0.923 0.808 0.511 0.571 0.35 0.199 0.247 

3 1.0 0.953 0.901 0.854 0.914 0.785 0.48 0.546 0.327 0.175 0.225 

4 1.0 0.936 0.877 0.828 0.893 0.761 0.459 0.529 0.315 0.149 0.208 

5 1.0 0.923 0.86 0.809 0.878 0.745 0.45 0.524 0.313 0.138 0.197 

6 1.0 0.915 0.851 0.796 0.869 0.739 0.451 0.534 0.322 0.135 0.197 

1 1.0 0.902 0.838 0.779 0.857 0.739 0.461 0.554 0.342 0.136 0.215 

8 1.0 0.908 0.842 0.775 0.856 0.757 0.495 0.607 0.391 0.163 0.265 

9 1.0 0.934 0.853 0.779 0.877 0.798 0.566 0.709 0.496 0.274 0.372 

10 1.0 0.983 0.826 0.727 0.909 0.785 0.636 0.802 0.694 0.529 0.636 
- --- L .. _. _________ '----- -···-·-L_ -- - -

600 °C 

30 s 120 s 
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Figure 28. Normalized current vs annealing time. for an annealing temperature of 
400 °C with the magnetic field as parameter 
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Figure 29. Normalized current vs annealing time. for an annealing temperature of 
500 °C with the magnetic field as parameter 
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550 °C with the magnetic field as parameter 
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The following three pictures belang to the group B: 

Figure 31 on page 36: Normalized current vs annealing temperature for an annealing time of 10 
s with the magnetic field as parameter 

Figure 32 on page 36: Normalized current vs annealing temperature for an annealing time of 30 
s with the magnetic field as parameter 

Figure 33 on page 37: Normalized current vs annealing temperature for an annealing time of 
120 s with the magnetic fieldas parameter 
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Figure 32. Normalized current vs annealing temperature. 
30 s with the magnetic field as parameter 
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3. Application to the W 7-X conductor cable 

As already mentioned in the introduction, a special conductor was developed for 
W 7-X. This conductor is already fabricated in several hundreds of meters by 
LMI, ltaly, and also by Noell, Germany. 8oth conductors are very similar. 

3.1 Description of superconductor 

ln order to fulfil a good windability, e.g., the required minimum bending radius is 
only 20 cm, the technical superconductor consists of a forced flow cooled 
NbTi/Cu cable within an aluminium alloy conduit. The staged cable (3 x 4 x 4 x 4) 
is fabricated from commercially available strands. The aluminium jacket is co-ex­
truded areund the cable and is relatively soft during the three-dimensional wind­
ing process. Afterwards it is subsequently hardened to meet the mechanical re­
quirements. Table 7 contains the main characteristics of the LMI superconductor 
according to [25] and additional information [26]. 

Table 7. Characteristic data of the LMI superconductor [25] 

Parameter Values 

Manufacturer EM-LMI,Italy 

Basic strand Cu/Nb-Ti 

Diameter of strand 0.55 mm 

Matrix material Cu 

Ratio Cu/NbTi 2 : 1 

RRR > 180 

Filament number 132 

Filament diameter ~ 27 11m 

Twist pitch length 20 mm 

Number of Sc strands 192 

Cabling sequence 3x4x4x4 

Jacket material Al 6060T6-AIMgSi1 

RRR of jacket material 2.8 

Solution heat treatment temperature "" 525°C. 

External jacket dimension 13.8 mm x 13.8 mm 
(14.8 mm x 14.8 mm) 

Interna! jacket dimension 010 mm 

Void fraction 40% 

Critical current at 6.2 T and 4.2 K 32.8 kA 

Critical current density at 6.2 T and 4.2 K 2150 A/mm 2 

figure 34 on page 40 shows the cross section of the technical superconductor 
for W 7-X; the left side and the centre show the complete conductor, the right 
side the strand. 
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Figure 34. Technical superconductor (LMI) for W 7-X. (Right side: cross section of 
the strand, left side and centre: complete conductor) 
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3.2 Application to the W 7-X conductor cable 

EM-LMI reports 2 - 10 % degradation for 500°C/30 s heat treatment and 28- 30 
% for 500°C/60 s. For the case of 500°/30 s, the characteristic current at 6 T and 
4.2 K is still > 33 kA. 

According to Table 7 the critical current of the cable is 32.8 kA at 6.2 T and 4.2 K. 
Then, the generalized data were applied to the stellarator conductor. The result 
is shown in the following cable. 

Table 8. Application to the 16 kA cable 

Time of heat treat- 30 s 120 s 
ment 

Temperature of heat lc(kA) % lc(kA) % 
treatment (°C) 

no annealing 32.8 100 32.8 100 

400 27.9 85 26.1 79.6 

500 24.2 74 14.8 45 

550 10.9 32 4.4 13.5 

600 1.5 4 - -

These values show the sensitiveness of the characteristic current from annealing 
time and temperature. A consequence for the jacket fabrication of the stellarator 
conductor is that the heat during the extrusion process should have an influence 
on the superconducting strands in the cable only for a few seconds. Also the ex­
trusion speed should be as high as possible. 
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4. Summary and conclusion 

The transport current carrying capability of commercially available NbTi super­
conducting wires is optimized in a very sophisticated procedure by means of 
cold-work and heat treatment or (annealing). The latter is done, in general, at 
temperatures between about 350 and 400 °e. Once optimized, an additional heat 
treatment, however, or an unintentional overheatung influences the supercon­
ducting current carrying capability. ln general, it degrades. 

The cable-in-conduit superconductor for W 7-X consists of a cable with supercon­
ducting wires and a co-extruded jacket out of an Aluminium alloy for mechanical 
stability. This alloy must be co-extruded at a temperature > 500 °e. Therefore, a 
degradation of the characteristic current capability of the superconducting NbTi 
cable is expected. 

ln the investigation performed, the results of the annealing behaviour of a com­
mercially available superconducting wire (or strand) are presented and dis­
cussed. The experimental parameters are: 

Annealing temperatures: 400 oe, 500 oe, 550 oe, 600 oe 
Annealing times: 10 s, 30 s, 120 s 
Measurement temperature: 4.2 K 
Magnetic field: up to 10 T 

The results of the lc(B) measurements for the parameters annealing time and 
temperature are presented in tables and figures in different kinds of presentation 
in order to stress the tendencies of the behaviour. 

Several conclusions can be drawn: 

1. The degradation of the characteristic current of a Nbli multfilament 
conductor for temperatures less than 400 oc and times less than 30 s 
is tolerable for all magnetic fields. This degradation should be taken 
into account during design. 

2. The results of the measurement in Table 5 show clearly a very strong 
degradation at an annealing temperature of 600 °C. The current de­
gradation is about 75% for an annealing time of only 10 s and about 
90% for 30 s. Therefore, 600 °C is not tolerable at all. 

3. The results of lc vs B for a certain annealing temperature and the 
annealing time as parameter show a strong enhancement of the de­
gradation with rising annealing temperature for all magnetic fields. At 
the extrusion process, the speed should be high and the conductor 
should be quenched (in this case: quenched means here very fast 
cool down). 

4. The results of lc vs B for a certain annealing time and the annealing 
ternperature as pararneter show a strong acceleration of the degrada" 

4. Summary and conclusion 43 



tion between the annealing temperatures 500 oc and 550 oc for all 
magnetic fields. 

5. The results of lc vs annealing time for a certain magnetic field and the 
annealing temperature as parameter show that the period of the first 
30 s is unquestionably the decisive time. 

6. The results of lc vs annealing temperature for a certain magnetic field 
and the annealing time as parameter show again that the the degra­
dation is accelerated between the annealing temperatures 500 oc and 
550 °C for all magnetic fields. 

7. The generalized presentation of the results can help to estimate the 
degradation of the superconductor for a special production process. 

8. These results show that the mass production process for the W 7-X 
conductor requires a permanet and careful quality control especially 
for the extrusion process. 

At the end of this summary, the results are shown in a 3-dimensional 
histogram for the critical current, annealing time, annealing temperature 
and for 2 T. 
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Figure 35. Histogram for the crltlcal current, aneallng time and temperature for 2T. 
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