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Abstract 

Within the European Structural lntegrity Society (ESIS), a Round Robin was launched 
by the Technical Committee 8: Numerical Methods with the objective to establish repro­
ducible numerical procedures for the identification of parameters for numerical modeHing of 
ductile and cleavage failure. A ferritic steel with the German designation of 22 NiMoCr 3 7 
was chosen as reference material. The present report contains the results of the FZK con­
tribution to Phase II, Task Bl of the Round Robin, which is aimed at the identification 
of cleavage fracture parameters from the numerical analysis of notched tensile specimen 
cleavage fracture data. The results comprise deformation behaviour, Weibull stress at 
fracture, and statistical parameters of the critical Weibull stress including confidence in­
tervals. The FZK code WEISTRABA [1] was employed for the calculations. The results are 
obtained for a subset of the specimens as well as for the complete data set, because some 
scatter in the load-displacement records up to fracture was observed. Novel statistical 
techniques were used to obtain confidence intervals for the distribution parameters of the 
Weibull stress at fracture by stochastic simulation. These techniques also provide informa­
tion about the joint statistical distribution of the estimates for the distribution parameters 
which, in turn, indicate whether the statistical rnethods used are indeed applicable in this 
particular case. 

Zusammenfassung 

Numerischer ESIS-Round Robin: Mikromechanische Modelle; 
Phase II, Task Bl 

Innerhalb eines numerischen Round Robins, der vorn Technischen Ausschuß 8 (Numerische 
Methoden) der Europäischen Gesellschaft für strukturelle Integrität (ESIS) angeregt wur­
de, soll auf Grundlage einer Datenbasis für den Referenzwerkstoff 22 NiMoCr 3 7 die Repro­
duzierbarkeit numerischer Auswerteverfahren zur Ermittlung der Parameter für mikrome­
chanische Modelle zur Beschreibung des spröden und duktilen Versagensverhaltens ferriti­
scher Stähle untersucht werden. Der vorliegende Bericht enthält den Beitrag des FZK 
zur Aufgabe Bl innerhalb der Phase II dieses Round Robins, nämlich die Identifizierung 
der Spaltbruchparameter aus den Ergebnissen an Zugversuchen mit gekerbten Rundzug­
proben. Die Ergebnisse umfassen sowohl die Beschreibung des Deformationsverhaltens 
als auch die daraus gewonnenen Werte der Weibullspannung beim Bruch und die Be­
stimmung der statistischen Parameter der Weibullspannung beim Bruch einschließlich der 
entsprechenden Konfidenzintervalle. Die statistische Auswertung wurde mit dem am FZK 
entwickelten Programmsystem WEISTRABA [1] durchgeführt. Aufgrund von beobachteten 
Abweichungen im Kraft-Verformungsverhalten wurde die Analyse sowohl für einen aus­
gewählten Teil mit relativ kleinen Abweichungen als auch für den gesamten Satz der 
getesteten Proben durchgeführt. Zusätzlich zu den üblicherweise augewandten Verfahren 
wurden neue stochastische Methoden eingesetzt, die auf Simulationsmethoden basieren und 
sowohl die Ermittlung von Konfidenzintervallen für die Verteilungsparameter als auch von 
Konfidenzbereichen für die statistische Verteilung der Weibullspannung selbst erlauben. 
Darüberhinaus liefern sie Informationen über die gemeinsame statistische Verteilung der 
Schätzer für die Verteilungsparameter selbst und damit wichtige Hinweise über die Trag­
fähigkeit der eingesetzten statistischen Methoden. 
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1 

Introduction 

The present analysis is part of the European Structural Integrity Society (ESIS) -
Numerical Round Robin on Micromechanical Models. It is related to the present Phase 
li of the Round Robin, Numerical simulation of fracture mechanics tests, Task Bl 
Cleavage fracture of notched tensile bars .. 

The preceding Phase I of the Round Robin concentrated on the simulation of standard 
smooth and notched tensile bar specimens and the identification of critical darnage pa­
rameters for ductile tearing at room temperature and for cleavage fracture at -196° C 
[2]. 

Some of the results of Phase I had to be re-evaluated in Phase li due to an extension of 
the underlying database. This was clone under Tasks Al and Bl of Phase li. 

The following Phase III is intended to model fracture mechanics tests to predict the fracture 
toughness behaviour in the ductile-to-brittle transition regime. 

Evaluation procedures for the parameters of the Weibull stress at the onset of cleavage 
fracture for notched round bar specimens are compared within the present Task Bl. 

The procedure requires some non-standard techniques in different fields of engineering 
knowledge. Advanced continuum mechanics stress analysis is combined with non-standard 
approaches for the statistical evaluation of the results. Statistical inference is used to assess 
the uncertainty of the results and to draw conclusions regarding the significant differences 
between different data sets. For the evaluation of the local approach fracture parameters, 
a hybrid technique is applied using experimentally determined fracture data and adapting 
numerical results before evaluating them statistically. Results of the Round Robin are 
felt to contribute to revealing the impact of differences in numerical analysis, statistical 
evaluation, or data processing strategies pursued by the various participants. The results 
obtained will give confidence of or allow for an appropriate modification of the ESIS P6 
procedure [3] for the determination of local approach cleavage fracture parameters. 

The FZK contribution to the Round Robin is described in the sequel where the procedure 
was split up into different steps. 

First, a stress / displacement analysis is performed using three given reference load cases 
"1", "2", and "3" with prescribed imposed axial displacements as specified in the task 
description. 
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Second, the stress field at fracture was calculated. The corresponding parameters of the 
Weibull stress were then determined according to the ESIS P6 procedure [3] and using the 
WEISTRABA [1] code. 

Following the suggestions of the task description, the analysis was, in a first step, restricted 
to the 7 specimens in the so-called "layer 4". A statistical evaluation of the Weibull stress 
is of somewhat limited value due to the very small number of tested specimens, and the 
results are mainly useful to check and compare the different numerical procedures involved 
and used by the different participants of the Round Robin. Therefore, the analysis of the 
fracture stress for the entire set of specimens was performed in a second step. Some 
remarks are given finally on the scatter in the load-deformation behaviour of specimens 
resulting from different locations (i.e. different "layers") of the forged ring segment from 
which the specimens were obtained. 

The report is completed by a Section containing some results of a novel statistical evalua­
tion procedure for the assessment of uncertainties in the statistical inference of distribution 
parameters using so-called bootstrap or resampling methods. It is felt that especially in 
the present case, where the random variable, namely the Weibull stress, depends on the 
(unknown) value of one distribution parameter, these methods overcome the inherent lim­
itations of the ordinary maximum-likelihood procedure. 
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2 

Procedure 

This report covers the FZK contribution to the analyses for task Bl. In the following 
Sections, meshing of the specimen, stress I displacement analyses, and ow-analyses are 
presented. 

If not stated otherwise, all stresses are given in MPa, lengths are in mm, and strains are 
dimensionless. 

2.1 FE specifications and meshing 

The general purposeFinite Elementcode ABAQUS [4] was used throughout these Round 
Robin calculations. An axisymmetric 2-D model of the simplified notched round bar 
geometry as specified in the task description was set up and is shown in Fig. B.l. Only 
one half of the specimen was modelled for symmetry reasons. The model contains 496 
elements and 1585 nodes. Axisymmetric isoparametric quadratic CAX8R-elements with 
8 nodes and reduced integration were used. ABAQUS large displacement analysis was 
performed for all calculations. The element size at the notch root was 0.065x0.130 mm2

• 

There were 18 elements in the fracture plane at z = 0. 

The element size and the reference volume Vo are chosen independently in subsequent 
calculations. In fact, Vo only serves as a reference volume for dimensional purposes and 
hereinafter is set to Vo = 1mm3 . 

Boundary conditions due to symmetry were: 

Uz = 0 at z = 0 and Ur= 0 at r = 0 (2.1) 

Loading was applied by prescribed z-displacement boundary conditions for the nodes at 
Uz = 28. 

The external force, F, was calculated from the axial stresses at Uz = 28. 

2.2 Analysis of reference Ioad cases 

A conventionallarge displacement elasto-plastic analysis was perforrned using the stress 
I strain data given in the task description for a piecewise linear approximation of the true 
stress - true strain input for ABAQUS. 
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According to the task description, the yield stress ReL was 720 MPa with ReLIE = 
0.00338028 and a Young's modulus of E = 213.000 GPa. Poisson's ratio was set to 
v = 0.3. The stress-strain law was given by ln( o'fMPa) = 0.16824ln t + 7.206 for a true 
stress of t ;::: 0.03. 

For the stress I displacement analysis of the reference steps designated "1", "2", and 
"3", the prescribed z-displacement boundary conditions for the nodes at Uz = 28 were 
.1mm, .2mm, and .3mm, respectively. A complete F- ßD curve containing the reference 
steps was generated from the FE results in order to facilitate the "layer 4" stress and 
displacement analysis for the Weibull stress evaluation. 

Plots of the axial stress and the equivalent plastic strain distribution along the z-symmetry 
line z = 0 were generated. They give ·some overall information about the mechanical 
conditions in the specimen. 

2.3 "Layer 4" stress / displacement analysis 

For the stress I displacement analysis of the "layer 4" specimens at fracture, the z­
displacement boundary conditions for the nodes at Uz = 28 were determined from the 
F - ßD curve of the reference steps. Iterative adaptation of the displacement boundary 
conditions at Uz = 28 was necessary to meet the ßD-values at fracture with sufficient 
accuracy and to avoid interpolation between subsequent load steps. 

2.4 Weibull stress analysis 

The Weibull stress at cleavage fracture is a random variable that characterizes the fracture 
resistance of the material agairrst cleavage (brittle) fracture. 

2.4.1 Weibull stress calculation 

The Weibull stress aw is defined by 

(2.2) 

where m is the so-called Weibull slope, Vo is a reference volume, Yp1 is the volume of the 
plastic zone, and a 1 is the first principal stress. 

The statistical distribution of its critical value, i.e. the value at cleavage fracture, is given 
by 

(2.3) 

The distributionparametersau and m of the Weibull stress ow at fracture are determined 
by the maximum likelihood procedure as given in [3]. 
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For numerical reasons, the integration of the Weibull stress according to eq. (2.2) is 
performed after normalizing 0'1 by a suitably chosen reference stress, e.g. the flow stress. 
This is clone to avoid numerical difficulties resulting from large values of the Weibull 
exponent m which is typically in the range of 10-30. The correction is removed after the 
numerical integration has been completed. Eq. (2.2) then reads: 

(2.4) 

and final adjustment is simply made by multiplying the resulting integral value by the 
value of the reference stress O'~r· 

The first principal stress values at the integration points of the ABAQUS elements are 
obtained with the help of a post-processing routine [1]. If reduced integration is used, which 
means that we have 2x2=4 integration points per element in the 2D case, integration of 
the Weibull stress can be re-written as the sum over the elements 

O'W 

1 

O'ref [~ 2: O'Well m 
0 el 

with 

(2.5) 

with ki, k3 denoting the number of integration points in each dimension and wi, Wj being 
the respective weights of the Gauss quadrature. Det J is the determinant of the mapping 
to the natural element coordinates. An appropriate symmetry factor has to be applied. In 
the present axisymmetric 2-D analysis the symmetry factor is 2 * 271", as the total volume 
of the specimen is twice that of the model. 

A plastic zone indicator flag (in terms of a von Mises yield criterion) is used to extend 
numerical integration over the plastic zone only and not over the entire volume of the 
specimen. Any stress averaging procedures are avoided. 

For each FE load step, corresponding to a specimen fracture event, the first principal 
stress values are checked against the values of the previous step and a stress envelope is 
constructed to take into account locally decreasing stresses due to stress redistribution 
which might otherwise lead to decreasing values of the local risk of rupture. This stress 
envelope containing the maximum of the first principal stress at each node is used for the 
calculation of the Weibull stress. 

2.4.2 Maximum likelihood procedure 

The determination of the two parameters m and O'u has to be performed iteratively as 
O'W depends on the (unknown) parameter m. The WEISTRABA post-processor developed at 
FZK was used (1] in accordance with the procedure fully described in ESIS P6 [3]. For 
the sake of completeness, the essential steps are given in Appendix A. 

Though the procedure does not rely on probability plotting except for visualization of the 
results, some remarks on probability plotting seem to be appropriate. 
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In the task description, it was suggested to use hi = (i - 0.5)/n as plotting position 
for the cumulative fracture probability. We decided to choose instead hi = i / ( n + 1) as 
plotting position for the probability axis in the Weibull plot. This choice corresponds to 
the expectation value of the cumulative frequency [5] of the i-th value of an ordered sample 
of size n: F(x(i)) = i/(n + 1) and is consistent with the ESIS P6 procedure. 

However, as early as 1960, Kimball [6] noted: 

.. . it is to be noted that the simplification afforded by the use of probability­
scale graph paper is a visual simplification .... If the approach is to be purely 
analytical, there is no point in using the special scale paper. 

Thus, in case of the use of a maximum likelihood procedure, results are in no way affected 
by different choices for the definition of hi. Nevertheless, the choice of hi = i/(n + 1) 
is strongly recommended because of its well-known statistical properties1 (at least in the 
case of non-iterative estimates ). 

2.4.3 Use of advanced statistical methods 

It should be emphasized that the evaluation of the distribution parameters of ow, namely 
m and O"u, is based on statistical inference methods that are applied without fully meeting 
the conditions of their applicability. It is not clear beforehand whether the maximum 
likelihood parameter estimation gives valid results for the present case, where the random 
variate depends on the distribution parameter itself and an iterative procedure is used 
to obtain consistent results. There are no methods available to quantify the statistical 
properties of the estimators of the Weibull parameters. 

For these reasons, the confidence intervals based on the results found by Thoman et al. 
[7] and used in the ESIS P6 procedure [3] may only approximately reflect the statistical 
uncertainty of the parameter estimates. This situation is completetly different from the 
Weibull parameter estimation in the strength measurement for ceramics, where no iterative 
procedure is required. 

There are novel statistical techniques capable to reflect the complex behaviour of ran­
dom variates because they are not based on parametric models: so-called bootstrap or 
resampling methods can be used to generate confidence intervals by simulation [8]. The 
parent distribution used for the simulation is the empirical distribution of the available 
experimental sample. The essential advantage over classical statistical inference methods 
is the fact that these methods use empirical distributions of statistical estimates for the 
generation of confidence intervals. Thus, there is no need to know the closed-form solu­
tion for the distribution of the statistical estimate as is the case in the classical methods. 
From a statistical point of view, this is equivalent to the use of non-parametric maximum­
likelihood estimators instead of parametric maximum-likelihood estimators, for which the 
usual confidence intervals are generated [9]. 

Resampling methods are well-known in the field of medicine and biology, but only begin 
to enter in materials science [10], though there is some effort to base coding schemes on 
resampling ideas [11]. 

1 I th · f th · th f · · k · 2 ( D • ) - i(n-i+l) - F{i)(l-F{i!) (5] a so, e vanance o e 1- requenc1es 18 nown. u r( 1 ) - (n+ 2)(n+l)2 - n+2 
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In Chapter 4, results for parameter correlation and confidence intervals are given and 
compared with standard Weibull evaluation results. 
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3 

Reporting of the results 

According to the task description which is given in Appendix C, results are presented in 
the suggested order within the following subsections: 

3.1 FE meshing 

The geometry of the FE mesh is shown in Fig. B.l. 8-noded axisymmetric isoparametric 
quadratic elements with reduced integration (ABAQUS designation: CAXSR) were used. 
18 elements were located in the fracture plane at z = 0 (see Fig. B.2). The notch root 
element size was 0.065x0.130 mm2

• Only one half of the specimen was modelled due to 
symmetry. 

3.2 FE code & algorithms 

ABAQUS 5.7/5.8 was employed [4). Elastic-plastic material behaviour was modelled using 
a Mises yield surface and isotropic hardening. Large strain analysis was used for all 
calculations. Updated Lagrange-Jaumann formulation is used by ABAQUS. 

3.3 Cleavage fracture models 

The Beremin model with no strain correction is used for the calculation of aw as described 
above. The iterative procedure for the determination of the parameters m and au is 
described in Appendix A. 

3.4 Stress averaging procedure 

No stress averaging is performed. Gauss quadrature is applied with stresses at the inte­
gration points within each element using a plastic zone flag as described above. 
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3.5 Load vs. reduction of diameter calculation 

The simulation results are tabulated in Table B.1 up to ßd = .6 mm and shown in Fig. 
B.5. 

3.6 Table of local quantities 

Table B.2 contains the prescribed displacements at Uz = 28 mm for the layer 4 specimens 
as well as some local quantities for stresses and plastic strains in the centre and the notch 
root elements, respectively. 

Additional results are presented in Figures B.3 and B.4. Figure B.3 shows the axial stress 
distribution along a line z = 0 from the specimen centre (left) to the notch root (right) 
for the three reference load cases. Figure B.4 shows the corresponding distribution of the 
equivalent plastic strains along the same line. 

3. 7 o-w-results for m == 22 

Table B.3 shows the calculated Weibull stresses for an initial value for the Weibull modulus 
set to m = 22. This is considered to contain much more information than the O"u-value 
alone. No confidence intervals are given for this case, because the confidence limits only 
apply to maximum likelihood estimates. 

The value of O"u after the first step was jo-u = 1839.9 MPa j; the value of mcor calculated 

from the first iteration was I mcor = 42.51. 

3.8 Weibull parameter estimation results 

The final results of the Weibull parameter estimation procedure are also given in Table 
B.3. The iteration procedure converged after 3 iterations. The allowed difference of mcor 

between two subsequent iterationswas ßm = 0.1. 

Final results were: Im = 54.61 and j O"u = 1706.9 MPa I· 
Bias correction ( N = 7) gives I mcor = 43.2j. 

The symmetrical90% confidence intervals for m and O"u are: 

25.0 ~ m ~ 77.0 I and I 1681.2 MPa ~ O"u ~ 1734.5 MPa I· 

3.9 Global quantities 

Table B.3 additionally contains the required global quantities for the prescribed values of 
the diameter reduction at fracture for the 'layer 4' specimens. Theseare the prescribed dis­
placement Uz(z = 28) (calculated from the FE load-displacement curve) and the reaction 
force F ( calculated from the nodal axial stress values o-zz at z = 28mm). 
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Table B.3 also contains the sample of ow-values for the initial m = 22 and for the final 
value of m after termination of the iteration procedure. 

3.10 Comments 

Due to the small sample size, the confidence intervals for m are quite large. 

Convergence of the iterative ML-procedure was achieved after 3 steps using a starting 
value of m = 22 and a tolerance of tl.m = 0.1. 

Interpretation of the results in terms of statistical inference seems tobe of no value because 
of the small sample size. Interpretation of the results actually is only possible in terms of 
the numerical results and the accuracy of the numerical values obtained for the Weibull 
stress at fracture and its distribution parameters m and O"u, respectively, from other Round 
Robin contributions. 

Chapter 4 will reveal some specific features of the small sample estimation for m in this 
case. 

3.11 ModeHing of the complete set of N == 32 specimens 

An attempt was made to evaluate the complete set of specimens and obtain results for the 
Weibull stress parameters. Figure B.6 shows the F- tl.D records of all tested specimens. 
Considerable scatter in the load-displacement behaviour can be observed. However, a 
closer look on the data shows that the scatter is present within various layers, especially 
layers 5 and 6, whereas the scatter between the layers is not so pronounced, showing, 
however, a slight tendency of the force F to increase for fixed tl.D from the inside layer 1 
towards the outside layers 5 and 6. 

Scatter of the load values for a given notch root displacement of tl.D = 0.2mm is approx­
imately ±3%. The FE simulation meets the mean behaviour of all specimens quite well 
with some tendency to overestimate layer 1-3 forces and to (moderately) underestimate 
the layer 5-6 forces. 

Considering that tl.D is the essential parameter controlling fracture, it was decided to 
regard the observed scatter in the load-deformation characteristics as negligible. 

The question that was raised in the task description with respect to ranking does not seem 
to pose any severe problems, because the ranking parameter for the statistical evaluation 
has to be aw and so the ranking problern only enters into the load step control of the FE 
analysis, but not into the evaluation process of the Weibull parameters. (Finally, if the 
maximum likelihood method is used, no ranking of the results is necessary at all!) 

Proceeding that way, we finally end up with some kind of implicit scaling which is clone by 
using a "mean" stress-strain curve and tl.D as a control parameter for the fracture load 
and the stress distribution at fracture to be determined by FEM analysis. 

Simple scaling of the stress field does not seem to be appropriate. Scaling could map the 
deformation curves of the different layers onto one average curve, but it would still not be 
able to reftect the non-linear behaviour of the plastic zone evolution. 
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3.12 Results 

Table B.4 shows the results for the global quantities of the complete set of N = 32 
specimens. No table of local results was generated. The maximum likelihood estimates of 
the Weibull stress parameters were Im = 20.9 (mcor = 20.0) I and I O"u = 1913.6 MPa I· The 
90% maximum likelihood confidence intervals for m and O" u are: 

115.9 :::; m :::; 25.41, and 11884.3 MPa :::; O"u :::; 1943.6 MPa I· 
From the results it can be seen that there is a large difference between the layer 4 results 
and the results from the analysis of the complete set of specimens (layers 1-6). The 
confidence intervals for m, however, slightly overlap ([25.0, 77.0] for layer 4 and [15.9, 
25.4) for all specimens) which is not the case for O"u results ([1681.2, 1734.5] for layer 4 
and [1884.3, 1943.6] for all specimens). 

The distinct difference in the Weibull stress is obvious from the Weibull plot which is 
shown in Fig. B.7. The seven specimens with the highest uw-values are contained in 
layers 5 and 6. The full ranking scheme is given in Table B.5. The curve for all specimens 
shows a pronounced kink with these seven values being at the right side of the kink. These 
values contribute essentially to the lowering of the m value compared to the layer 4 results. 

The pronounced kink of the Weibull plot indicates that uw is possibly bi-modally dis­
tributed. This, in principle, calls for additional fractographic investigations which have 
to reveal different fracture mechanisms present in the different layers, thus leading to a 
different behaviour at low and high uw-values, respectively. 

From this it can be concluded that the main source of scatter is not generated by varying 
stress-strain law characteristics. Scatter in the ö.D at fracture would still be present, 
even if the Variation of stress-strain law characteristics was accounted for by some scaling 
procedures. 

From Fig. B. 7 it is also evident, that there is a tendency for the two parameters m and 
au to be statistically dependent, i.e. high m-values lead to lower au-values. 

12 



4 

Beneficial use of bootstrap simulations 

This chapter contains results obtained with the help of some novel statistical techniques, 
known as bootstrap or resampling techniques. These methods have been well-known since 
about 20 years in the field of biological and medical research [8] both because of the 
large economic impact of statistically-based decisions and because of the lack of analytical 
solutions for sophisticated statistical models, but they are relatively unknown in materials 
science. The methods rely heavily on the availability of su:fficient computing power, which 
is the main reason for their coming up recently only. 

Their essential advantage is that analytical solutions are replaced by suitably designed 
statistical simulations. Parametrie as well as non-parametric stochastic models can be 
used which makes it possible to adapt modeHing to the available knowledge. 

4.1 Background and procedure 

Traditional methods of statistical inference are based on the fact that estimates of pa­
rameters calculated from random samples are themselves random variates (also known as 
statistics ). Often, they have known statistical distributions, at least under certain condi­
tions with respect to the sample value distribution and/ or the sample size. As an example, 
the mean of a sample of independent identically distributed variables is known to follow a 
normal distribution for large sample sizes, the variance of a random sample of known mean 
value is x2-distributed. If closed-form distributions cannot be obtained, it is sometimes 
possible to obtain special-case solutions and to derive general solutions by an appropriate 
transformation of the variables. This is for instance done in [7] for the distribution of the 
maximum likelihood estimates m and 0: which can be obtained from the special case of a 
Weibull distribution with m = CJu = 1, i.e. a standard exponential distribution. 

From the known statistical distributions, confidence intervals are obtained easily by using 
quantiles of the respective distributions. 

In the present case, however, where the Weibull stress aw is the random variable under 
consideration, the situation becomes somewhat di:fficult. From the definition of aw (see Eq. 
(2.2)), it follows that aw itself contains the (originally unknown) distribution parameter 
m. This, in principle, violates the conditions of applicability of conventional methods 
of statistical inference. The results obtained for estimates and confidence intervals are 
therefore only approximate. 
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4.1.1 Basic idea of bootstrapping 

One way of dealing with the lack of closed-form expressions for statistical quantities is 
to use Monte Carlo methods. Bootstrapping is one of them. In the following, a very 
concise description of the bootstrap method mainly based on [8] is given. (We use the 
traditional nomenclature, hats n denote estimates, asterisks (.*) denote quantities related 
to bootstrap samples, n is the sample size, B is the number of bootstrap simulations.) 

Suppose we observe x 1 , ... , Xn independent data points, from which we compute a statistic 
of interest s(x1, ... , Xn)· 

A bootstrap sample x* = (xi, ... , x~) is obtained by randomly sampling, n times, with 
replacement, from the original data points x 1 , •.. , Xn. If this is repeated B times, we can 
generate a large number of independent bootstrap samples x*l, ... , x*B, each of size n. 

Corresponding to each bootstrap sample x*b there is a bootstrap replication of s, namely 
s(x*b), the value of the statistic of interest computed for sample x*b. 

Besides s(x*b), we also obtain a bootstrap estimate for its standard deviation, namely 

(4.1) 

where s(.) = L,~=l s(x*b)j Bis the mean value of the statistic s after B bootstrap simula­
tions. 

4.1.2 Bootstrap confidence intervals 

Using seboot and s(. ), it is possible to attribute confidence intervals to bootstrap estimates 
0*(.) = L,~=l O*(b)/ B, where B*(b) = s(x*b) is the bootstrap replication of B = s(x1 , .•• , xn) 
as defined above. For example, we obtain the usual standard normal (1 - 2a)-confidence 
interval for 0, which is 

( 4.2) 

where z(a) is the a-quantile of a standard normal distribution, e.g. z(0 ·95) = 1.645 for 
the 90% confidence intervals. This leads to the so-called standard bootstrap confidence 
intervals which still rely on normal theory assumptions as can be seen from Eq. ( 4.2), 
which only holds exactly if 0 follows a normal distribution. 

But it is also possible to obtain accurate confidence intervals for non-normally distributed 
statistics, i.e. without relying on normal theory assumptions. This is clone by using G, the 
cumulative distribution of the bootstrap replications 0*. The 1- 2a percentile interval for 
(} is defined by the a- and (1- a)-quantiles of G. From Bindependent bootstrap samples, 
we obtain the percentile confidence intervals by taking the B x ath value in the ordered 
list of the B bootstrap replications of B* as the lower limit and the B x ( 1 - a )th value 
of the list as the upper limit of the confidence interval. These empirical percentiles are 
denoted {;~(a) and {;~(1-a) respectively and the percentile confidence interval reads 

[o*(a) 0*(1-a)] 
B ' B (4.3) 
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for a confidence level of 1 - 2o:. 

Some drawbacks of the percentile intervals with respect to coverage probabilities are han­
dled by an improved version of the percentile method including bias correction in the 
bootstrap replications. Bias correction z0 is obtained from the cumulative distribution 
function G of the bootstrap replication and the original estimate 0 of the original sample 
VIa 

( 4.4) 

where <I>-1 (.) is the inversestandardnormal cumulative distribution function (CDF). We 
obtain the bias-corrected bootstrap confidence intervals as 

( 4.5) 

with z0 from Eq. ( 4.4). Confidence intervals according to Eq. ( 4.5) are used throughout the 
presentation of the bootstrap results in the following section. Calculation of z0 is indicated 
in some of the Figures, e.g. B.ll, B.12, B.13. z0 = 0 indicates no bias correction. In that 
case, the lower limits of the confidence intervals would coincide with the empirical CDF 
shown, as nearly is the case in Figure B.13. z0 -j. 0 leads to a shift of the confidence 
intervals. 

Further improvements of confidence levels can be obtained by application of still more 
advanced methods like the BCa-method or the ABC-method suggested in the statistical 
literature. These methods have not yet been implemented and therefore are not used in 
the sequel. 

4.2 Results 

The general ideas presented in the previous section are now applied to the specific case of 
the Weibull parameter estimation of the Weibull stress. 

4.2.1 Weibull stress bootstrapping procedure 

In the present case, where we are interested in statistical inference about the distribution 
parameters m and a u of aw, the basic situation is as follows: the original sample consists 
of the n values of ßD at fracture or - equivalently - of the n maximum principal stress 
envelopes at fracture, from which the aw-values are computed. In this case, the statistic 
under consideration is not available as an analytical expression, but only numerically as 
a result of an iteration algorithm. When doing bootstrap simulations, this does not cause 
any problem. The procedure is explained for the parameter m for the sake of simplicity; 
more accurately, we should use (m, au) as a two-dimensional statistic. 

From the original sample, we obtain the original estimate 0 = m using the iterative max­
imum likelihood procedure together with the usual maximum likelihood confidence inter­
vals. 
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Bootstrapping is now performed by randomly sampling, n times, with replacement, from 
the sample of the l::!.D at fracture, from which n values, o-w l, ... , o-w l, are computed. 

(1 (n 

This is repeated B times, thus giving B samples o-~. Foreach bootstrap sample, a value 
of m"'(b) is obtained by the iterative maximum likelihood procedure. 

After completion of the bootstrap simulations, the bootstrap confidence intervals are gen­
erated according to Eq. (4.5) for confidence Ievels a = 0.02; 0.05; 0.10 in agreement with 
the maximum likelihood confidence intervals available from Iiterature [3, 7]. 

4.2.2 Bootstrap results for parameter estimation 

The pairs of corresponding outcomes for the parameters of the Weibull stress distribution, 
(m"'(b), du*(b)), b = 1, ... , B are directly available from the bootstrap simulation. m 
and O"u appear to be strongly correlated as can be seen from Figure B.8 for the layer 4 
data. There is a large variability in m* with values as large as ~ 400, which obviously 
originates from the quite small sample containing l::!.D-values that are very close to each 
other and Iead to very high m-estimates if they dominate a bootstrap sample. 

The strong dependency between m and O"u is also apparent for the complete set of 32 
specimens, as visible in Figure B.9. 

An interesting feature can be observed in Fig. B.10. There are two slightly overlapping 
regions of pairs (m"', du"') corresponding to layer 4 results and to results ofthe complete set 
of 32 specimens, indicating that the correlation of both variables is indeed very strong and 
that small sample results, though fully contained in a larger sample, may have completely 
different statistical properties. In the present case, bi-modality appears in the complete 
sample, but not in the small subsample. 

Incidentally, this remarkably strong dependency of the two parameters does not occur 
in the case of a Weibull parameter estimation for strength measurements in ceramics. 
Even if a strong R-curve behaviour suggests some deviation from the Weibull distribution 
assumptions, the correlation seems to be very small [12]. 

4.2.3 Bootstrap results for confidence intervals 

Figure B.ll shows the bootstrap results for m in terms of the empirical CDF G for the 
layer 4 specimens. Bootstrap confidence intervals for confidence Ievels are indicated by 
horizontallines at the appropriate CDF Ievels of 2, 5, and 10%, respectively, corresponding 
to 96%-, 90%-, and 80%- confidence intervals. From the value of the bias correction variable 
zo = -0.52, it can be seen that there is a considerable bias in the bootstrap estimate 
towards higher values. The confidence intervallimits are therefore shifted towards lower 
m-values, as can be seen in Figure B.ll (see also Table B.6 for the numerical results). 
The shape of G( m) indicates that there is a considerable fraction of quite large values of 
m in the simulation. 

This is not the case if all specimens are considered. Figure B.12 shows the corresponding 
results. The bias of m is quite small, as indicated by z0 = -0.11. Hence, the confidence 
Iimits are quite close to the corresponding CDF values. The results for O"u are shown in 
Figure B.13 (numerical results can be found in Table B.7). For o-u, we notice a slight 
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bias towards lower values, which has to be taken into account. Results for both layer 4 
and the complete set are compared in Figure B.14. There is a pronounced kink in the 
layer 4 curve, which is not present in the curve for all specimens. For clarity, overlapping 
confidence intervals are marked with arrows. A comparison with ML confidence intervals 
is given in Tables B.6 and B.7. 

Contrary to the distribution of cfu, which is quite symmetric, there is a pronounced un­
symmetry in the distribution of m, with a long tail for large m-values for both the layer 
4 subset and the complete set of specimens. 

4.2.4 Bootstrap results for probabilities 

Bootstrapping does not only allow conclusions to be drawn with regard to parameters, 
but also inferences to be made regarding the entire CDF. This is not possible using ML 
confidence intervals. As an example, layer 4 results of the experimentally obtained sample 
(n=7) Weibull stresses at fracture are shown as an empirical cumulative distribution func­
tion, the dashed step curve in Fig. B.15. The dashed smooth curve shows the ordinary ML 
approximation, while the solid curves are obtained for the confidence limits for the lower 
regime of the Weibull stress, i.e. the lower and upper limits for m and au, respectively. 
The two solid step curves are results of bootstrap simulations. They show 90% confidence 
intervals for the i-th value of an ordered sample of Weibull stresses and give some idea 
about the scatter of the data without using any assumption of distributions. 

The same confidence intervals are shown in Fig. B.16 for all specimens, where also the 
influence of increasing bootstrap sample size is shown. Increasing the bootstrap sample 
size from B = 200 toB= 1000 does not have any significant influence on the width of the 
confidence intervals. This confirms that bootstrap simulations usually tend to give stable 
results with a quite small number of simulations. 

In Figure B.17, bootstrap confidence limits of the empirical CDF both for layer 4 and for 
all specimens are plotted. It can be seen that, except in the very low tail of the curves, 
the 90% confidence bands of the empirical CDF do not overlap, which indicates that both 
samples are not statistically compatible. 

This is a consequence of our attempt to fit a unimodal CDF to a bi-modal distribution. 
Additionally, we must take into account that m itself influences the aw-value. A smaller 
m-value will tend to shift the aw-sample towards higher values, whereas for larger values 
of m there will be a tendency for aw in the opposite direction, giving smaller Weibull 
stresses. 
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5 

Summary and conclusions 

Aspart of an ESIS Round Robin activity coordinated by GKSS, Geesthacht, the Weibull 
stress parameters of a ferritic steel with the German designation of 22 NiMoCr 3 7 have 
been determined using the ESIS P6 procedure. 

The overall goal of the Round Robin was to assess uncertainties in the identification of 
cleavage fracture parameters from numerical analysis of notched tensile specimen cleavage 
fracture data due to numerical differences and due to different procedures in the statistical 
inference methods used for parameter evaluation. 

In the contribution presented in this paper, the main effort was put on a comprehensive 
stochastic analysis of the data using standard and advanced stochastic methods, while 
continuum mechanics models were taken from standard FE materiallibraries. 

The evaluationwas divided into two steps, as suggested by the task description (Appendix 
C) due to some scatter in the stress-strain behaviour of the material, possibly caused by 
local Variations of the material which was taken from different places of a forged ring 
segment. 

In a first step, specimens from a prescribed subset (layer 4) were selected for evaluation. 
Due to the fact that the sample size was seven specimens only, the statistical evaluation 
will contribute mostly to a numerical comparison of the results between the participants 
of the Round Robin. 

In a second step, the complete set of 32 specimens were analysed, which allowed to perform 
a statistical analysis. Results of the Weibull stress at fracture show that there may be a 
change in the fracture behaviour between lower and higher ow-values leading to a bi­
modal distribution of ow. The reason for this, e.g. different fracture mechanisms, has to 
be confirmed by additional fractographic investigations. 

The numerical procedure for the determination of the parameters of ow did not cause any 
difficulties. Convergence was very fast, even in the case of the small sample size. 

A third step was additionally performed. Originally, it was not intended to be part of 
the Round Robin activity. Within this step, an attempt was made to apply advanced 
stochastic methods for the calculation of distributions and confidence intervals for the 
statistical parameters of ow. These so-called bootstrap or resampling methods do not 
necessarily rely on specific distribution assumptions, but use the empirical distribution 
of the sample for the determination of the relevant quantities by statistical simulation. A 
strong correlation between m and O"u was found as a result of the simulation. 
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From the simulation, it was also possible to obtain the statistical distribution of the boot­
strap estimates of m and O'u, which allowed the determination of confidence intervals for 
m and O'u· 

Moreover, confidence limitss for the entire distribution function of O'W could be obtained 
by this method with quite moderate bootstrap sample sizes. With respect to computing 
time, this is an important aspect because of the iterative procedure used to calculate O'W 

which calls for efficient numerical procedures. 

A comparison of the bootstrap results with the ML results (Tables B.6 and B.7) is made 
on the basis of the 90% confidence intervals (i.e. the 0.05- and 0.95-quantiles ). The results 
show that for the layer 4 results the BC 90% intervalform is much more narrow than its 
ML counterpart, especially on the right side, towards larger m-values. The lower limitss 
of the O'u-confidence intervalss nearly coincide for both methods, the upper BC limits, if 
available, are considerably larger than the corresponding ML limitss. This is mainly due 
tothelarge bias correction z0 = 0.482 in this case and leads to a BC intervallength which 
it almost twice that of the ML counterpart. 

For the complete set, the BC 90% interval for m is not so much different from its ML 
counterpart, but shifted to the right and gives somewhat higher values for both left and 
right confidence limits. The O'u-confidence intervals in this case are considerably wider 
compared to those based on the ML estimates. The width ofthe O'u interval is an indication 
of the correlation of m and O'u, due to the fact that an increase in m leads to decreasing 
values of O'u. 

Finally, it should be noted that an evaluation of the cleavage fracture data consists of ( at 
least) two parts which should be equally emphasized. One part is the numerical evaluation 
of the cleavage fracture parameters using appropriate continuum mechanics and stochastic 
tools and models. The other, at least as important, part is the fractographic investigation 
of the fractured specimens. Interpretation of the numerical results is incomplete without 
fractography. Conversely, results of the numerical analysis indicate possible topics of 
fractographic investigations. 
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Appendix A 

Scheme of the iterative maximum 
likelihood procedure 

The determination of the two parameters m and O'u was performed iteratively according 
to the following scheme, since O'W depends on the (unknown) parameter m. 

Step 1: A starting value of e.g. m = 20 is used and the Weibull stress O'W at fracture is 
calculated for each fractured specimen (i.e. at different load steps according to the 
experimentalloading parameter) as described above. 

Step 2: A plot file is generated containing the results in increasing order of Weibull stress 
O'W together with lnln[1/(1- F(O'W(;)))] as a function of lnO"w(i)' where O'W(i) is the 

Weibull stress of the specimen with rank i and F(O"w(i)) = i/(N + 1) is the mean 
( cumulative) frequency of the i-th observation ( use of i / ( N + 1) as plotting position 
is generally recommended for statistical reasons - e.g. [5] -, although it does not 
play any role provided that the maximum likelihood method is used for parameter 
estimation). As the theoretical relation between failure probability and O'W is given 
by 

a plot of lnln[1/(1- F(O'W(;)))] versus lnO"w(i>' where O'W(i) is the "experimental" 
Weibull stress for the specimen with rank i, should give an approximately linear 
relation. 
(Step 2 is only for illustrative purposes and, thus, not necessary for Step 3) 

Step 3: The maximum likelihood method is used to determine the parameters m and O'u of 
the Weibull distribution of the Weibull stress. The maximum likelihood estimators 
of m and O'u are denoted by m and 0:, respectively. m is the solution of the non-linear 
equation 
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which is obtained by e.g. an interval sectioning procedure. Using m, the maximum 
likelihood estimator 0: is obtained from the equation 

The parameter m is corrected with the unbiasing factor b( N) according to munb = 
m * b(N). 

Step 4: If the maximum likelihood estimators 0: and munb agree within a fixed tolerance 
with those of the previous iteration, their values are considered acceptable. Other­
wise, steps 2-4 are repeated. A ftow diagram is given in Figure A.1 to illustrate the 
iterative procedure. 

I Fixinitial m = m0 I 
+ 

Step 1: Calculation of Weibull stress values X(i) 

Step 2 (optional): Plot of lnln[1/(1- F(x(i)))] as a function of ln X(i) 

Step 3: ML estimation of munb and 0: 

I Step 1: m = munb I~ no Step 4: munb = initial m ? 

yes-!-

Figure A.1: Flow diagram for the iterative Weibull parameter estimation procedure 
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Appendix B 

Figures and Tables 
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Figure B.3: Axial stress distribution along z = 0 
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Figure B.6: F- t::..D records of all tested specimens in the ESIS Round Robin 
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Figure B.8: Bootstrap results for layer 4 
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f:).ljmm -f:).djmm F/kN 
.00 .00000 .00 
.01 .00044 9.45 
.02 .00090 18.93 
.03 .00202 28.17 
.04 .00525 37.10 
.05 .01158 45.26 
.06 .02544 50.49 
.07 .04471 53.42 
.08 .06645 55.42 
.09 .09004 56.80 
.10 .11476 57.88 
.12 .16675 59.42 
.14 .21960 60.65 
.16 .27280 61.58 
.18 .32560 62.19 
.20 .37860 62.65 
.22 .43180 62.96 
.24 .48540 63.11 
.26 .53920 63.11 
.28 .59380 63.11 
.30 .64880 62.96 
.32 .70460 62.65 
.34 .76140 62.34 
.36 .81880 62.04 
.38 .87720 61.73 
.40 .93640 61.27 

Table B.1: Force and diameter contraction of FE calculation at prescribed imposed dis­
placements /:).[ at Uz = 28 mm ( reference steps "1", "2", and "3" are indicated) 
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in the centre element; in the notch root element; 
averaged over Gauss points averaged over Gauss points 

step prescribed 
designation displacement Ep fJ[ Ep fJ[ 

Uz [mm] [-] MPa [-] MPa 
"1" 0.1 .004388 1410. . 06985 979 . 
"2" 0.2 .04355 1700. .1935 1152.5 
"3" 0.3 .08578 1855. .3195 1240. 

"Df4" .1194 .01108 1541.02 .09388 1026.12 
"Df16" .1366 .0177 1626.21 .1153 1058.25 
"DflO" .1379 .0182 1632.62 .1168 1060.39 
"Df25" .1389 .0186 1635.95 .1180 1062.05 
"Df31" .1501 .02325 1668.27 .1318 1081.43 
"Df28" .1671 .03038 1681.16 .1530 1110.40 
"Df34" .1694 .03128 1683.26 .1560 1113.42 

Table B.2: Local quantities in the centre and notch root element, respectively, for layer 4 
spec1mens. 

m= 22 m = 43.2 
step prescribed reduction of 

designation displacement diameter Force fJW PJ(fJw) fJW PJ(fJw) 
Uz [mm] ~D [mm) [kN] [MPa] [%] [MPa] [%] 

"1" 0.1 .11476 57.88 - -- - --

"2" 0.2 .37860 62.65 - - - --

"3" 0.3 .64880 62.96 - - - -

"Pf10%m22" 1661.0 10 - -

"PflO%" - - 1620.3 10 
"Df4" .1194 0.1672 59.36 1743.8 26.5 1613.5 8.40 
"Df16" .1366 0.2124 60.45 1804.0 47.70 1674.6 35.45 
"DflO" .1379 0.2158 60.51 1808.0 49.37 1678.6 38.45 
"Df25" .1389 0.2184 60.57 1810.9 50.59 1681.6 40.80 
"Df31" .1501 0.2484 61.11 1837.5 62.15 1707.0 63.30 
"Df28" .1671 0.2928 61.81 1868.3 75.36 1732.3 84.95 
"Df34" .1694 0.2986 61.90 1872.6 77.08 1736.0 87.46 

Table B.3: Global quantities for layer 4 specimens. 
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m= 22 m = 20.0 
step prescribed reduction of 

designation displacement diameter Force ow PJ(ow) ow PJ( aw) 
Uz (mm] [mm) [kN) [MPa) [%] [MPa) [%] 

"1" 0.1 .11476 57.88 - - - -

"2" 0.2 .37860 62.65 - - - -

"3" 0.3 .64880 62.96 - - - -

"Pf10%m22" 1681.27 10 - -

"PflO%" - - 1710.36 10 
1 .1122 .15002 58.77 1702.3 12.63 1732.5 12.75 
2 .1149 .15675 58.99 1716.7 14.77 1747.0 14.88 
3 .1152 .15750 59.00 1718.3 15.03 1748.6 15.14 
4 .1194 .16813 59.36 1738.8 18.65 1769.2 18.74 
5 .1279 .19010 59.92 1773.6 26.42 1804.0 26.42 
6 .1281 .19062 59.94 1774.4 26.62 1804.8 26.62 
7 .1350 .20860 60.37 1798.3 33.28 1828.9 33.21 
8 .1366 .21280 60.45 1803.4 34.82 1834.0 34.73 
9 .1376 .21540 60.51 1806.4 35.77 1837.0 35.68 

10 .1379 .21620 60.53 1807.3 36.06 1837.9 35.96 
11 .1389 .21880 60.57 1810.3 37.01 1840.9 36.90 
12 .1399 .22140 60.64 1813.2 37.95 1843.9 37.83 
13 .1399 .22140 60.64 1813.2 37.95 1843.9 37.83 
14 .1405 .22300 60.67 1814.9 38.51 1845.6 38.39 
15 .1423 .22760 60.76 1819.8 40.15 1850.6 40.02 
16 .1441 .23240 60.85 1824.4 41.71 1855.2 41.57 
17 .1479 .24220 61.04 1833.2 44.80 1864.1 44.66 
18 .1501 .24800 61.13 1838.1 46.56 1869.1 46.42 
19 .1533 .25660 61.27 1844.7 49.01 1875.9 48.89 
20 .1538 .25780 61.30 1845.8 49.40 1876.9 49.28 
21 .1573 .26700 61.45 1852.4 51.90 1883.8 51.81 
22 .1611 .27700 61.61 1859.0 54.43 1890.6 54.39 
23 .1641 .28500 61.71 1864.2 56.42 1895.9 56.42 
24 .1671 .29280 61.82 1869.1 58.36 1901.1 58.40 
25 .1694 .29880 61.90 1873.1 59.91 1905.2 59.98 
26 .1839 .33700 62.34 1900.3 70.44 1932.9 70.57 
27 .1943 .36440 62.58 1920.0 77.64 1952.9 77.77 
28 .1998 .37900 62.68 1930.0 81.04 1963.1 81.17 
29 .2070 .39800 62.81 1942.9 85.04 1976.2 85.15 
30 .2182 .42780 62.95 1962.8 90.25 1996.3 90.33 
31 .2332 .46780 63.07 1988.1 95.06 2021.9 95.10 
32 .2858 .61000 63.01 2074.4 99.91 2108.8 99.91 

Table B.4: Global quantities (all spec's). 

36 



specimen rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
layer No. 2 6 2 4 1 1 2 4 5 4 4 2 1 3 3 3 

specimen rank 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
layer No. 1 4 6 5 5 5 6 4 4 5 6 6 6 5 6 6 

Table B.5: Ranking of specimens and corresponding layers 

ML intervals BC intervals 
Quantiles m O"u m O"u 

0.02 20.7 1672.2 27.8 1669.0 
0.05 25.0 1681.2 28.6 1675.3 
0.10 29.3 1688.3 28.6 1683.3 

0.90 69.5 1727.4 54.5 1755.1 
0.95 77.0 1734.5 62.0 1765.4 
0.98 85.4 1744.7 66.2 -

Table B.6: Maximum iikelihood (ML) confidence intervals of layer 4 results compared 
with bias-corrected (BC) bootstrap confidence intervals 

ML intervals BC intervals 
Quantiles m O"u m O"u 

0.02 16.8 1891.1 16.2 1778.6 
0.05 15.9 1884.3 16.5 1794.9 
0.10 14.9 1875.5 16.9 1821.2 

0.90 24.2 1936.9 26.9 2006.7 
0.95 25.4 1943.6 29.3 2022.1 
0.98 26.7 1951.2 31.4 2028.7 

Table B.7: Maximum likelihood (ML) confidence intervals of all specimens compared with 
bias-corrected (BC) bootstrap confidence intervals 
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Appendix C 

Task Description 

The description of the ESIS Round Robin Phase II Task Blas issued by GKSS, Geesthacht, 
is enclosed in Appendix C. 
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G. Bemauer 
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Round Robin on Micro-Mechanical Models, Phase II, Task Bl 
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Appendix: Equations and parameters of the BEREMIN model for the analysis of 
cleavage fracture 

1. Subject 

The tasks Al and A2 of Phase II of the ESIS TC8 numerical round robin on micro-mechanical 
models were distributed in September 1997 and March 1998, respectively. This document now 
represents the continuation of the round robin which covers Task B 1: 

Numerical analysis of notched tensile specimens in order to identify critical parameters for 
cleavage at low temperatures. 

• The first part of task B 1 is obligatory. It is concemed with the application of the BEREMIN 
model to a subset of specimens which have been taken out of a limited region of the material 
block and which show a nearly identical Ioad deformation behaviour up to the respective 
failure point. 

• In a voluntary second part, the complete set of all performed tests will be utilised. It is Iet to 
the participant to make use of these experimental results with regard to a mcaningful 
statistical characterisation of the conditions for dcavage fracture. 



The model which shall be applied is the local approach to cleavage fracture of BEREMIN. In 
addition, also another statistical model can be taken. 

The objective of Task B 1 is to determine the model parameters. At the end of the work the 
results of all participants will be compared in order to get information about the dependencies of 
the parameters on the finite element programmes and parameter evaluation programmes applied. 

In a further step, Task B2, it will be investigated whether it is possible to predict realistic failure 
probabilities of a C(T) specimen if the critical cleavage parameters determined here are used. 

2. Notched round tensile bar tests 

The basis for the investigations are notched round tensile bars tested at a temperature of 
T = 15 0 o C. The specimens were machined from a forged ring segment. A sketch of the 
position of the specimens is given in Fig. 1. The dimensions of the specimens are outlined in 
Fig. 2. 

® 7 GD 0 @ 3 © 6 ... layer "6" 

® 6 GD 9 GD 2 CD .. layer "5" 

(J;) GD CD 1 ® 4 
... layer "4" 

G) G) Q 8 .. layer "3" 

G) Q Q Q ... layer "2" 

G) Q Q Q ... layer"1" 

forged ring segment 

Fig. 1: Plan of specimen locations. Specimens with numbers in brackets have not been tested. 



~ JF===-====::p..;[l 
,' ·l 

.·:::.M20x 1 

J 
R 4 

Fig. 2: Test specimen: notched round tensile bar. 

The specimens were subjected to a quasi-static displacement controlled loading in axial direction 
at -150°C. The loading rate was 0.2 mm/rnin. All specimens failed by instable fracture, and the 
fracture surfaces show pure cleavage facets. 

The Ioad vs. reduction of diameter curves of the specimens (Fig. 3 and 4) up to the point of 
fracture are at the participants' disposal. L1D was measured in the notch root area. 

The data of the curves will be sent in ASCII format to the participants either by e-mail or on a 
3.5" diskette. 

The tests of the notched tensile specimens bave shown a correlation between the Ioad 
displacement behaviour and the position of the specimens in the material block. It could be 
shown that small variations in the geometry alone cannot be responsible for the differences in 
the displacement bebaviour. That means that not all specimens have the same material 
properties. Whether the dependence of the material properties on the position concems only the 
flow curve or also the WErnULLparameters is an open problem. The analyses within the present 
round robin rnight contribute to a solution of this problem. 

Section 2.1. shows the test results of the specimens which have been taken from layer "4" of 
the block (Fig. 1). They show nearly the same Ioad deformation patb. Section 2.2. presents 
the results of all specimens tested. 



2.1. Specimens of layer "4" 
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Fig. 3: Load, F, vs. reduction of diameter, AD, of the notched tensile specimens of layer "4" 
up to their respective fracture. 

specimen no. F [kN] AD [mm] 
4 60.18 0.167 

. 16 60.94 0.212 . 
10 61.08 . 0.216 
25 60.42 0.218. 
31 61.70 0.248 
28 62.42 0.293 
34 62.69 0.299 

Tab. 1: Load, F, and reduction of diameter, AD, of the notched tensile specimens at the onset 
of cleavage fracture. 



2.2. All specimens 
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Fig. 4: Load, F, vs. reduction of diameter, L1D, of al1 notched tensile specimens up to their 
respective fracture. 

specimen no. F [kN] iiD [nun] 
14 58.69 0.149 
30 61.47 0.156 
20 58.52 0.157 
4 60.18 0.167 
1 58.42 0.189 

19 59.77 0.190 
8 60.50 0.208 
16 60.94 0.212 
32 61.79 0.215 
10 61.08 0.216 
25 _§0.42 0.218 
2 58.79 0.221 
7 60.06 0.221 
3 59.00 0.223 
9 60.59 0.228 
15 60.88 0.232 
13 60.66 0.242 



31 61.70 0.248 
12 61.46 0.257 
35 63.09 0.258 
26 63.31 0.267 
11 61.06 0.277 
33 64.17 0.285 
28 62.42 0.293 
34 62.69 0.299 
29 63.92 0.337 
24 63.85 0.365 
27 65.12 0.379 
18 64.00 0.398 
17 63.45 0.428 
23 63.69 0.468 
36 65.36 0.610 

Tab. 2: Load, F, and reduction of diameter, MJ, of al/notched tensile specimens at the onset of 

cleavage fracture. 

3. Task 

3.1. Analysis of the specimens of Iayer "4" (obligatory) 

3.1.1. Meshing and FE formulation 

Since geometry and loading are axisymmetric and symmetric to the line bisecting the length, 
only an axisymmetric quarter section has tobe modelled (Fig. 5). The co-ordinate system as 
shown in the figure together with the following notations shall be used: 

index "r" or "1" for the radial direction, 

index "z" or "3" for the axial direction. 
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N 

Fig. 5: Axisymmetric quarter section of the specimen, co-ordinate system and boundary 
conditions. The thin lines outline the specimen, the thick lines show the pm1 of the specimen 
which is relevant to be modelled. Alldimensions in mm. 

Meshing is free. Nevertheless, you should keep to the ESIS P6 98 guideline [1] or the 
following recornrnendations. An example of a mesh is shown in Fig. 6. Isoparametrie quadratic 
(8 node) elements with reduced integration are recornrnended. At the not eh root an element size 
between 0. 1 x 0. 1 mm 2 and 0.15 x 0.15 mm 2 and at least 8 elements in the fracture plane at 
z = 0 should be used. This size relates to V0 (eq. (A2) in the Appendix) which will be settobe 
V0 = (0.1)3 mm3 and which is of the same order as the dimensions of microstructural features 
like ferrite grains. If other than the recornrnended elements are used, element sizes and 
integration should guarantee a similar accuracy and resolution. Please, report and explain all 
deviations from the recornrnendations. 

notch root element 

~ 
t/')1 

I 
/ 

centre element 

Fig. 6: Example of a FE meshfor the notched tensile specimen. 



Boundary conditions, i.e. zero nonnal displacements, have to be imposed at the two symmetry 
lines; displacements in length direction at the centre line and in radial direction at the bisection 
line, respectively, are free. Referring to Fig. 5, the boundary conditions are 

u,= 0 if z = 0, 

u,= 0 if r = 0. 

Loading is applied as homogeneaus prescribed displacements u: = f(t) in axial direction at the 
left edge of the model (Fig. 5). All nodes on this line undergo the same displacement. The 
simulation should be driven that far that all the test are covered, i.e. jj[) = 0.299 mm for the 
tests of Tab. I, or L1D = 0.61 mrn for the tests of Tab. 2. The time function and the time steps 
are defined by each participant. However, for the sake of comparison the individually chosen 
Ioad history has to include the steps which are described in the following table: 

step designation at which the ... 
flllt ... prescribed (imposed) displ. is u, = 0.1 mrn 
"2" ... prescribed (imposed) displ. is u, = 0.2 mm 
"3" ... prescribed (imposed) displ. is u, = 0.3 mm 

Tab. 3: Definition ofprescribed steps in order to enable comparisons. 

These steps have to be identified by the numbers given in the table. The displacements uz are 
those of one half of the specimen. 

The total extemal force, F, results from the sumrnation of all nodal forces at the right edge 
(Fig. 5), multiplied by 27t if the unit thickness of the FE model is 1 rad. 

A !arge strain analysis should be preferred. Details of the fonnulation as, e.g., updated 
Lagrange-Jaumann, used in the FE codeshall be reported tagether with the results. 

3.1.2. Material properties 

Young's modulus at -150°C is E = 213 000 MPa and Poisson's ratio v = 0.3. 

A true stress vs. true (total) strain curve of the steel at -150°C is presented in Fig. 7. With this 
curve the author of this task was able to simulate the notched tensile specimens quite well. It 
results from a test of a smooth tensile specimen. 



. . . . . . 

···· ······ , ····r·· .... T : ·· ··i··········· ··s~~~ 
......•.. :. ..•..... ~............................... ,. . . 

1200 

..... : ' I r ~~;=+-+-~··········· ................... : .......... ······ ········ 
I··· ·······<,············1···· ...... ! ..... ; .... ·I· ..... i ·····i············i············+· 

....... ; .• ·····!··· . !····· .. , ....•... . ····· ... ···i·· .. 

(]) 

.5 
b ; 

illlt::····,·········· : 
400~~~--+--+--r-~~--+-~--r-~~--~~--r-~~--+-~~ 

............... ; ......... . 

···········:·············r············~············t············· ·············!·············;·············r···········.··············· ·············;···········.··~·············r························· : 

r 1~:1:.;:.::: :~:.f:r-. r-:11::······· ..................... , .......... . 
0o.o ' 0.5 1.0 1.5 2.0 

e true, total 

Fig. 7: True stress vs. true (total) strain curvefor the simulation ofthe specimens oflayer "4". 

The digitised data are given in the following table and will be sent in ASCIT format to the 
participants either by e-mail or on a 3.5" diskette: 

true stress a [MPa] true (total) strain e 
R,~, = 720.0 R,,!E = 0.00338028 

747.0 0.03 
784.0 0.04 
814.0 0.05 
861.4 0.07 
914.7 0.10 
979.3 0.15 
1027.9 0.20 
1100.4 0.30 
1155.0 0.40 
1199.2 0.50 
1269.0 0.70 
1347.5 1.00 
1442.6 1.50 
1514.2 2.00 

Tab. 4: Data points which define the true Stress true strain curve. Beyond e = 0.03 the curve 

can be calculated by Zn ( a/ MPa) = 0.16824ln e + 7.206. 



The definitions of Stresses and strains refer to an updated Lagrangian formulation. If, due to a 
different large strain formulation, other definitions of stresses and strains are used, the 
participant has to make the necessary conversions and to document this in his/her repor1. 

3.1.3. Calculation of fracture probabilities and determination of \VEIBULL 

parameters 

For the following steps the same procedure as in the preceding round robins [2, 3] can be 
applied. For details, see the ESIS procedure [ 1] and the Appendix. 

A conventional elastic-plastic analysis based on the theory of von MI SES, PRANDTL and REuss is 
recommended. According to the BEREMIN model [4, 5], the probability of failure is described by 
means of WEIBULL statistics. The main outcome of this numerical simulation is the WEIBULL 

stress, a;,., which is a value computed on the whole specimen for a given WEIBULL modulus, m, 
as a function of a monotonically increasing ranking parameter. Here, the change of diameter, 
.MJ, should be taken for this purpese and for ranking the fractured specimens according to 

eq. (A3). As described in the Appendix, the WEIBULL Stress, aw, has to be calculated with 

m = 22 for the seven time steps, ("Df .. " in Tab. 5), which beleng to the experimental 

cleavage fracture events. aw is usually calculated by interpolation between neighbouring time 

steps ofthe FE analysis. The reference volume is prescribed tobe V 0 = 0.001 mm3 for the 
present calculations. This value relates to microstructural dimensions as weil as to the element 
size of the FE mesh. When performing the summation over the plastically deformed part of the 
volume of the specimen, be aware that the FE model is axisymmetric, has unit thickness and is 

symmetric to the centre plane. Hence, if thickness is i rad the volume factor equals 47t. 

Assurne that the N = 7 values of aw follow a WEIBULL distribution (eq. (Al)) and calculate au 
with 

(1) 

where m = 22. Now, calculate the value of aw which corresponds to a failure probability of 

10% (eq. (Al)) and give approximate values for the respective load and diameter reduction of 
the specimen (Tab. 7 in section 4, line "Pf10%rn22"). 



step designation at which the ... 
n 1'' ... prescribed (imposed) displ. is u. = 0.1 mm 
"2" ... prescribed (imposed) displ. is u. = 0.2 mm 
"3" ... prescribed (imposed) displ. is u. = 0.3 mm 

"Df4" ... reduction of diameter, L1D = 2 u,, meets the experimental fracture value 
of specimen no. 4, 2u, = 0.167 mm 

"Df16" ... reduction of diameter, L1D = 2 u,, meets the experimental fracture value 
of specimen no. 16, 2u, = 0.212 mm 

"DflO" ... reduction of diameter, L1D = 2 u, , meets the experimental fracture value 
of specimen no. 10, 2u, = 0.216 mm 

"Df25" ... reduction of diameter, L1D = 2 u,, meets the experimental fracture value 
of specimen no. 25, 2u = 0.218 mm 

"Dß1" ... reduction of diameter, L1D = 2 u, , meets the experimental fracture value 
of specimen no. 31, 2ur = 0.248 mm 

"Df28" ... reduction of diameter, L1D = 2 u, , meets the experimental fracture value 
of specimen no. 28, 2u, = 0.293 mm 

"Dß4" ... reduction of diameter, L1D = 2 u,, meets the experimental fracture value 
of specimen no. 34, 2u, = 0.299 mm 

Tab. 5: Time steps for calculation of local and global quantities. 

Additionally to this task, the WEIBULL parameters, au V0
11111 and m, shall be detennined from the 

test results of the notched specimens. The pararneters can be assessed by the maximum 
likelihood method [6]. The procedure should follow the ESIS procedure [1]. The basic 
equations of the procedure are given in the Appendix. Seven tests do, of course, not allow for a 
satisfactory statistical evaluation, but seem to be sufficient to compare the FE analyses and the 
evaluation procedures. 

Again, calculate a"' and give values for the Ioad and reduction of diarneter for a failure 

probability of 10% (Tab. 7 in section 4, line "PflO%"). 

A bias correction of the WEIBULL modulus, m, shall be applied. 

Only a lirnited number of specimens was tested in order to characterise the material. Therefore, 
the true, unknown WEIBULL pararneters of the material cannot be detennined exactly. Only 
intervals can be given, which cover the true pararneters with a certain probability. For both 
WEIBULL parameters, these confidence intervals shall be given, for which the probability is 
90 % that the true unknown pararneters lie within these intervals. That means that the 
confidence Ievel for the intervals is 90% (see eq. (A5) and (A6)). 

3.2. Analysis of the entire set of specimens (voluntary) 

For an application of the BEREMIN model, the stress distributions of all specimens at the moment 
of cleav:.Jge fracturc initiation have to be available. A view on Fig. 4 indicates that a singlc FE 
simulation will evaluate the stresses of the specimens very insufficiently, because they are 



determined by non-uniform flow curves. On the other band, it is circumstantial to model every 
specimen with a respective FE calculation. However, the information that specimens show also 
varying deformation behaviour must not get lost. 

The objective of this part of the round robin is to find and to apply a method to use the BEREMJN 

model in cases, where both, the Ioad deformation paths due to a varying flow behaviour and the 
onset of cleavage fracture are subject to scatter. 

Two ideas for a strategy are suggested: 

• Suppose that a"' is mainly determined by the Ioad, F. Therefore, F could be taken as ranking 

parameter, neglecting that the condition for its monotonic increase for any specimen may not 
be fulfilled. As the material of the specimen, which shows the highest fracture Ioad, is 
characterised by a stress strain curve which is different from that given in Tab. 4, you may 
now scale the stress strain curve of Tab. 4 in an appropriate way, so that the test with the 
highest fracture Ioad can be modelled. For this purpose it might be useful to keep the 

hardening exponent, which is defined by (d Jna I d lnt:), and which is used in the subtitle of 

Tab. 4, and vary the yield point alone. Now assign the stresses which you have calculated 
with this simulation to the respective fracture Ioads of the specimens - the usual application of 
the BEREMJN model with F as parameter for ranking the fractured specimens according 
eq. (A3). 

• The following, alternative proposal may Iead to comparable results. Suppose that the 
different Ioad deformation curves are caused by different stress strain curves which can be 
converted to each other by simple scaling, e.g. changing the yield point and keeping the 
hardening exponent. As a consequence, the effect of scaling the stress strain curves used in 
the FE calculation could also be achieved by taking the FE simulation of section 3 .1. and 
multiplying the stresses with different factors which can be read from the ratio of the 
specimens Ioad Ievel and the Ioad Ievel of the simulation. 

Please, report on your method, the idea and the assumptions you have made. Determine the 
WEJBULL parameters and calculate the respective 90% confidence intervals. 

4. Reporting of the results 

Each participant shall report the following details and results: 

1 . plot of the FE mesh of the specimen and dimensions of the notch root elements; 

2. information about the FE code and the algorithms used, especially if self developed 
codes or user supplied routines have been applied; 

3. description of the equations and procedures if other cleavage fracture models or 
procedures than that described in the appendix are applied; 

4. information, whether or not the stresses are averaged within the elements before they are 
put to the power m (see the Appendix); 



5. graph of load vs. reduction of diameter (twice u, ); send an ASCII data table of the data 
points, which describe the curve, via e-mail or 31

/ 2" diskette. 

6. send an ASCII data table of local quantities either via e-mail or 31 
/ 2" diskette, including 

the following lines (see section 3.1. for the definition of the step designations): 

in the centre element, in the notch root element, 
averaged over the Gauss points averaged over the Gauss points 

step prescribed 
designation displace- t:P Oi t:P Oi 

ment uz 
[mm] [-] [MPa] [-] [MPa] 

"1" 0.1 
"2" 0.2 
"3" 0.3 

"Df4" 
"Df16" 
"DflO" 
"Dt25" 
"Df31" 
"Dt28" 
"Df34" 

Tab. 6: Results ofTask BI: Local quantities in the centre elementandin the notch root element, 

averaged over the Gauss points: accumulated plastic strain, t:P' and first principle stress, Oi· 

7. result of determination of O'u with given m = 22, V0 = 0.001 mm3
: 

O'u = _____ .MPa 

bias correction (N = 7): 

lncor = -----
90% confidence intervals (N = 7, a = 0.1): 

_____ < m ~ ----- _____ MPa ~ O'u ~ _____ MPa 

8. result of WEIBULL parameter estimation procedure (V0 = 0.001 mm3
): 

m = _____ , au = _____ MPa 

bias correction (N = 7): 

mcor=-----

90 % confidence intervals (N = 7, a = 0.1): 

_____ < m ~ ----- _____ MPa ~ au ~ _____ .MPa 



9. send an ASCII data table of global quantities either via e-mail or 31
/ 2" diskette, 

including the following lines (see section 3.1. for the definition of the step 
designations): 

m = 22 m= 
step prescribed reduction reaction 

designation displ. uz of force 
(half of the diameter F aw Pja,..) a ... 
specimen) t1D = 2u, 

[mm] [N] [MPa] [%] [MPa] 
[mm] 

"1" 0.1 ------- ------- -------
"2" 0.2 ------- ------- -------
"3" 0.3 ------- ------- -------

"Pfl O%m22" 10 -------
"PflO%" ------- -------

"Df4" 0.167 
"Df16" 0.212 
"DflO" 0.216 
"Df25" 0.218 
"Df31" 0.248 
"Df28" 0.293 
"Df34" 0.299 

Pja,..) 

[%] 

-------
-------
-------
-------

10 

Tab. 7: Results of Task BI: Global quantities: prescribed displacement, uz, reduction of 

diameter, t1D, reactionforce, F, WEIBUU stress, aw, andfailure probability, Pf' for 111 = 22, 

WEIBUU stress, a"" and failure probability, P1 for detennined m. 

10. any other information and comments which the participant considers tobe of 
importance. 

lf you have made an attempt to characterise the whole sample of the N = 32 specimens with the 
BEREMIN model (section 3.2.) give information about the following: 

11. idea and assumptions you have made to apply the BEREMIN model to all specimens in 
order to statistically characterise the conditions for cleavage fracture. 

12. result of WEIBULL parameter estimation procedure (V0 = 0.001 mm3
): 

m = ____ , a" = ____ MPa 

bias correction (N = 32): 

1ncor=----

90% confidence intervals (N = 32, a = 0.1): 

<m5: ----- ----- ____ MPa 5: au 5: ____ MPa 



5. Contact address and deadline 

If you have any questions or need any further inforrnation please contact 

Günter Bemauer 

Institut für Werkstofforschung 

GKSS Forschungszentrum 

Postfach 1160 

D- 21494 Geesthacht 

Phone: ++49- 4152- 87- 2618 

Fax: ++49 - 4152 - 87 - 2625 

e-mail: guenter.bemauer@ gkss.de 

Piease send the results of Task B 1 to the address above before 

June 30, 1999 

ASCII data of the graphs and tables should be sent either via e-mail or 3.5" diskette. 
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Appendix: Equations and parameters of the BEREMIN model 
f or the analysis of cleavage fracture 

Based on the weakest link assumption and WEIBULL statistics, the fracture probability of the 
entire structure follows a two parameter distribution function 

(Al) 

where 

au is the scaling factor which describes the point of the distribution function on the stress 

axis at log 11(1-?1) = 0 or P1= 0.632, i.e. 63.2% failure probability; 

m is the WEIBULL exponent or WEIBULL modulus which describes the scatter of the 
distribution. 

The \VEIBULL stress, a"', is defined by a summation of the maximum principal stress, a1, 

(A2) 

Since plastic deformations are a prerequisite for cleavage fracture, the summation is taken over 
the plastically deformed part of the volume, only, i.e. the nP1 elements which have already 
experienced plastic deformations. 

The WErnULL pararneters are au V0
11

"' and m. au itself depends on the choice of the reference 
volume V0 • A comparison of WEIBULL distributions is, hence, only admissible for a fixed 
reference volume. 

The evaluation of eq. (A2) can be donein a post-processor prograrnme. The summation over 
the GAuss points of an element may be performed before or after putting a1 to the power m. In 
the frrst case, stresses are linearly averaged within each element. When performing the 
summation over the volume of the specimen one has to pay attention that the FE model may 
have unit thickness which may be 1 rad in the axisymmetric case, and may be symmetric to the 
centre plane. Hence, a respective volume factor has to be applied for the calculation of V;. 

a"' has to be calculated for every specimen, i.e. at the time step which corresponds to the 
fracture event of the respective specimen. An interpolation between time steps might be 
necessary. The correlation between the experimental fracture event and the time step in the FE 
analysis has tobe realised with a monotonically increasing parameter, e.g. the elongation, AL, 
or diameter reduction, AD. If N specimens have been tested, the relative fracture probability 

h. = j -0.5 (A3) 
' N 

is assigned to the j-th rank in an ascendingly sequenced sample of the N specimens. The 

parameters au and m in eq. (Al) are to be determined, so that the values of P1 fit to the 



experimental hj values best. Since a"' is dependent on m, an iterative procedure is necessary to 

detennine au and m. They can be assessed by the maximum likelihood method [6]. In their 

investigations, BEREMIN [4] found a value of m = 22 for ferritic pressure vessel steels which 
may be used as a starting value in the first iteration. If the calculated value of m deviates from 
that used in the previous iteration, the procedure is repeated until the difference of two iteration 
steps, .1m , is less than, e.g., 0.1. 

The data are often plotted as 1 

yj =log log( 
1 
~hJ vs. xj = loga~n (A4) 

in order to assure that they follow a WEIBULL distribution, eq. (Al), with sufficient accuracy. 

Since the estimation is only based on a sample of size N, the parameters of the entire population 
of all possible specimens from the material cannot exactly be detennined. Only confidence 

intervals can be evaluated. A confidence level, (1-a), is introduced, which is the required 

probability that any one estimate will fall within the confidence interval. If the results of the 

parameter estimation procedure are called auO and m0, and (1-a) is the desired confidence level, 

the following statement about m and au can be made: 

(A5) 

and 

( 
t1 ) < < ( tu ) auoexp -- _au -D"uoexp --

111o mo 
(A6) 

with a probability of at least (1-a)·lOO %. 

11, lu, t1 and tu are numbers which only depend on N and a. They are listed in Tab. Al and A2. 

If m is not expressed by a confidence interval, another procedure has to be followed: When 
going from the sample to the entire population, the parameter m has to be bias corrected. It will 
then be denoted mror: 

(A7) 

where b only depends on N. b is listed in Tab. A3. This bias correction is important as soon as 
the WErnULL parameters shall be applied to other specimens or structures and predictions will be 
made. 

1log is the natural (Napierian) logarithm. 



Ccnfidence Ievel, 1-a ~ 0,90 0,80 0,80 0,90 0,9, 

N Value of Iu for o./2 Value of 11 for 1 • o/2 ~? 
0,021{ 0,05 0,10 0,90 0,95 o.~ 

5 0,604 0,683 0,766 2,277 2,779 3,518 

6 0,623 0,697 0,878 2,030 2,436 3,067 

7 0,639 0,709 0,785 1,861 2,183 2,640 

8 0,653 0,720 0,792 1,747 2,015 2,377 

9 0,665 0,729 0,979 1,665 1,896 2,199 

10 0,676 0,738 0,802 1,602 1,807 2,070 

11 0,686 0,745 0,807 1,553 1,738 1,972 

12 0,695 0,752 0,811 1,513 1,682 1,894 

13 0,703 0,759 0,815 1,480 1,636 1,830 

14 0,710 0,764 0,819 1,452 1,597 1,777 

15 0,716 0,770 0,823 1,427 1,564 1,737 

16 0,723 0,775 0,826 1,406 1,535 1,693 

17 0,728 0,779 0,829 1,388 1,510 1,660 

18 0,734 0,784 0,832 1,371 1,487 1,630 

19 0,739 0,788 0,835 1,356 1,467 1,603 

20 0,743 0,791 0,838 1,343 1,449 1,579 

22 0,752 0,798 0,843 1,320 1,418 1,538 

24 0,759 0,805 0,848 1 ,.301 1,392 1,504 

26 0,766 0,810 0,852 1,284 1,370 1,475 

28 0,772 0,815 0,856 1,269 1,351 1,450 

30 0,778 0,820 0,860 1,2..57 1,334 1,429 

32 0,783 0,824 0,863 1,246 1,319 1,409 

34 0,788 0,828 0,866 1,236 1,306 1,392 

36 0,793 0,832 0,869 1,227 1,294 1,377 

38 0,797 0,835 0,872 1,219 1,283 1,363 

40 0,801 0,839 0,875 1,211 1,273 1,351 

42 0,804 0,842 0,877 1,204 1,265 1,339 

44 0,808 0,845 0,880 1,198 1,256 1,329 

46 0,811 0,847 0,882 1,192 1,249 1,319 

48 0,814 0,850 0,884. 1,187 1,242 1,310 

50 0,817 0,852 0,886 1,182 1,235 1,.301 

52 0,820 0,854 0,888 1,177 1,229 1,294 

54 0,822 0,857 0,890 1,173 1,224 1,286 

56 0,825 0,859 0,891 1,169 1,218 1,280 

58 0,827 0,861 0,893 1,165 1,213 1,273 

60 0,830 0,863 0,894 1,162 1,208 1,267 

62 0,832 0,864 0,896 1,158 1,204 1,262 

64 0,834 0,866 0,897 1,155 1,200 1,256 

66 0,836 0,868 0,899 1,152 1,196 1,251 

68 0,838 0,869 0,900 1,149 1,192 1,246 

70 0,840 0,871 0,901 1,146 1,188 1,242 

72 0,841 0,872 0,903 1,144 1,185 1,237 

74 0,843 0,874 0,904 1,141 1,182 1,233 

76 0,845 0,875 0,905 1,139 1,179 1,229 

78 0,846 0,876 0,906 1,136 1,176 1,225 

80 0,848 0,878 0,907 1,134 1,173 1,222 

85 0,852 0,881 0,910 1,129 1,166 1,213 

90 0,855 0,883 0,912 1,124 1,160 1,206 

95 0,858 0,886 0,914 1,120 1,155 1,199 

100 0,861 0,888 0,916 1,116 1,150 1,192 

110 0,866 0,893 0,920 1,110 1,141 1,181 

120 0,871 0,897 0,923 1,104 1,133 1,171 

Tab. Al: Confldence factorsfor m (also in [ 1]). 



Confidencc Ievel, 1-a 0,95' 0,90 0,80 0,80 0,90 ~ 
' 

N oLalue of Iu for afl Value of t1 for 1 • afl .! ~ 
0, 0,05 0,10 0,90 0,95 o.~ 

5 ·1,631 ·1,247 -0,888 0,772 1,107 1,582 

6 ·1,386 ·1,007 -0,740 0,666 0,939 1,291 
7 ·1,196 -0,874 -0,652 0,598 0,829 1,120 

8 ·1,056 -0,784 -0,591 0,547 0,751 1,003 

9 -0,954 -0,717 -0,544 i 0,507 0,691 0,917 

10 -0,876 -0,665 -0,507 0,475 0,644 0,851 

11 -0,813 -0,622 -0,477 0,448 0,605 0,797 

12 -0,762 -0,587 -0,451 0,425 0,572 0,752 

13 -0,719 .{),567 .{),429 0,406 0,544 0,714 

14 -0,683 -0,532 -0,410 0,389 0,520 0,681 

15 -0,651 .{),509 -0,393 0,374 0,499 0,653 

16 -0,624 -0,489 -0,379 0,360 0,480 0,627 

17 -0,599 .0,471 -0,365 0,348 0,463 0,605 

18 -0,578 -0,455 -0,353 0,338 0,447 0,584 

19 .0,558 -0,441 -0,342 0,328 0,433 0,566 

20 -0,540 -0,428 -0.332 0,318 0,421 0,549 

22 -0,509 -0,404 -0,314 0,302 0,398 0,519 
24 -0,483 .{),384 -0,299 0,288 0,379 0,494 

26 -0,460 -0,367 -0,286 0,276 0,362 0,472 

28 .{),441 .{),352 -0,274 0,265 0,347 0,453 

30 .0,423 -0,338 -0,264 0,256 0,334 0,435 

32 .{),408 .{),326 .{),254 0,247 0,323 0,420 

34 -0,394 .{),315 -0,246 0,239 0,312 0,406 

36 -0,382 -0,305 -0,238 0,232 0,302 0,393 

38 -0,370 -0,296 -0,231 0,226 0,293 0,382 

40 .{),360 .{),288 .{),224 0,220 0,285 0,371 
42 .{),350 .{),280 -0,218 0,214 0,278 0,361 
44 -0,341 -0,273 -0,213 0,209 0,271 0,352 
46 -0,333 ..(),266 -0,208 0,204 0,264 0,344 
48 ..(),325- -0,260 .{),203 0,199 0,258 0,336 
50 -0,318 ..(),254 -0,198 0,195 0,253 0,328 

52 -0,312 .{),249 -0,194 0,191 0,247 0,321 
54 -0,305 .{),244 .{),190 0,187 0,243 0,315 
56 .0,299 ..(),239 -0,186 0,184 0,238 0,309 
58 ..(),294 -0,234 -0,183 0,181 0,233 0,303 
60 -0,289 ..(),230 -0,179 0,177 0,229 0,297 
62 .{),284 .{),226 .{),176 0,174 0,225 0,292 
64 .{),279 .{),222 -0,173 0,171 0,221 0,287 
66 .{),274 .{),218 .{),170 0,169 0,218 0,282 
68 -0,270 .{),215 ..(),167 0,166 0,214 0,278 
70 -0,266 -0,211 -0,165 0,164 0,211 0,274 
72 -0,262 .{),208 -0,162 0,161 0,208 0,269 
74 .{),259 -0,205 -0,160 0,159 0,205 0,266 
76 -0,255 .{),202 ..(),158 0,157 0,202 0,262 
78 -0,252 -0,199 -0,155 0,155 0,199 0,258 
80 -0,248 .{),197 .{),153 0,153 0,197 0,255 
85 -0,241 -0,190 -0,148 0,148 0,190 0,246 
90 -0,234 -0,184 -0,144 0,143 0,185 0,239 
95 -0,227 .{),179 -0,139 0,139 0,179 0,232 
100 -0,221 .{),174 -0,136 0,136 0,175 0,226 
110 -0,212 -0,165 -0.129 0,129 0,166 0,215 
120 -0.202 .{),158 -0.123 0.123 0,159 0.205 

Tab. A2: Confidencefactorsfor au (also in [ 1]). 



·-

I N I b II N I b I 
5 0,700 42 0,968 

6 0,752 44 0,970 

7 0,792 46 0,971 

8 0,820 48 0,972 

9 0,842 50 0,973 

10 0,859 52 0,974 

11 0,872 54 0,975 

12 0,883 56 0,976 

13 0,893 58 0,977 

14 0,901 60 0,978 

15 0,908 62 0,979 

16 0,914 64 0,980 

18 0,923 66 0,980 

20 0,931 68 0,981 

22 0,938 70 0,981 

24 0,943 72 0,982 

26 0,947 74 0,982 

28 0,951 76 0,983 

30 0,955 78 0,983 

32 0,958 80 0,984 

34 0,960 85 0,985 

36 0,962 90 0,986 

38 0,964 100 0,987 

40 0,966 120 0,990 

Tab. A3: Unbiasing factor form (also in [ 1] ). 




