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Laminar mixed convection in far wakes 

Model and experiments related to laminar mixed convection in 
two-dimensional far wakes above heated/cooled borlies 

1 

In a vertically rising forced flow a heated or cooled body is positioned. This develops both 
a kinematic and a thermal wake, the latter one stipulates buoyant effects in the otherwise 
forced flow field. An asymptotic model is developed to treat this mixed convection in 
both plane and axisymmetric geometry. The model holds for laminar flow in boundary 
layer approximation and engages in a far-wake expansion for weak buoyant forces. For 
plane geometry the model is validated agairrst both experiments in water and FEM 
simulations. 

It is found for a heated wake that buoyant forces aceeierate the fluid in the thermal 
wake such that the vertical velocity defizit in the kinematic wake is reduced. This may 
for strong heating even lead to vertical velocities larger than the forced flow amplitude. 
In conjunction the entrainment is intensified in a heated wake. The effects in a cooled 
wake are opposit in that the vertical velocity defizit is increased within the thermal 
wake and the horizontal flow into the wake is weakened. In a strongly cooled wake the 
horizontal flow may even be inverted, leading from the wake centre into the ambient. 
The Prandtl number controles the width of the thermal wake and, thus, the portion of 
the kinematic wake which is effected by buoyant forces. Large Prandtl numbers result in 
narrow thermal wakes, small Prandtl numbers give wide thermal wakes. 

Modell und Experimente zur laminaren Mischkonvektion im 
zweidimensionalen Nachlauf über beheizten/ gekühlten Körpern 

In einer von unten nach oben verlaufenden Zwangsströmung wird ein beheizter oder 
gekühlter Körper positioniert. Dies bedingt einen kinematischen und einen thermi
schen Nachlauf, wobei der letztere Auftriebseffekte in die Zwangsströmung einbringt. 
Ein asymptotisches Modell wird entwickelt, welches diese Mischkonvektion in ebener 
und achsensymmetrischer Geometrie beschreibt. Das Modell ist für laminare Strömung 
in Grenzschichtapproximation sowie für den fernen Nachlauf bei schwachem Auftrieb 
gültig. Für die ebene Geometrie wird eine Validierung anhand von Experimenten in 
Wasser und anhand von FEM-Simulationen durchgeführt. 

Im beheizten Nachlauf beschleunigen die Auftriebskräfte das Fluid in der erwärmten 
Zone, sodaß sich das Defizit der vertikalen Geschwindigkeit reduziert. Dies kann bei 
starker Beheizung sogar zu Vertikalgeschwindigkeiten führen, welche größer als die Ge
schwindigkeit der Anströmung sind. In Verbindung damit wird die horizontale Zuströ
mung von Fluid in den Nachlauf verstärkt. Die Auswirkung eines gekühlten Körpers 
ist gerade umgekehrt. Hier führt das kalte Fluid im Nachlauf zu einer Verstärkung des 
Geschwindigkeitsdefizits und so zu einer schwächeren horizontalen Zuströmung. Für 
stark gekühlte Körper ist gar eine Strömung aus dem Nachlauf in den Außenbereich 
möglich. Die Prandtl-Zahl kontrolliert die Breite des thermischen Nachlaufs und somit 
die Zone in welcher Auftriebskräfte wirksam werden. Große Prandtl-Zahlen bedingen 
einen schlanken thermischen Nachlauf, kleine Prandtl-Zahlen bedingen einen weiten ther
mischen Nachlauf. 
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1. lntroduction 

Problems involving the combined effects of forced and natural heat convection typically 
receive little attention. This seems to be the case because in most practical applications 
either the forced convection or the natural convection dominates and the secondary effects 
can be neglected in a first approximation. In many important applications, however, 
both convective modes play an equally-important roJe and, thus, have to be considered 
simultaneously. This article relates to such a problem. 

We consider specifically a vertically rising forced flow, which passes in cross-flow a 
cylindrical (or spherical) body and develops a wake downstream. The body is at high 
temperature, such that the transfered heat Ieads to buoyant forces in the wake. This situ
ation is of relevance for a number of engineering applications as e.g. hot-wire anemometry 
or heat exchangers. The flow is assumed to be laminar, which is true only in a limited 
range of parameters. Therefore, the prctical relevance may be limited, as in many ap
plications wake flows turn turbulent due to inflection-type velocity profiles. The method 
of treating this mixed-convection problem, however, should apply likewise to turbulent 
flows in conjunction with simple (analytical) turbulence models. 

We may roughly understand this mixed-convection problern as a superposition of a 
wake flow and a buoyant plume. The first incredience, thus, is the wake flow. We shall 
focus onto far laminar wakes. The theoretical treatment of far wakes starts with the 
work of Tollmien (1931). Based on boundary layer theory he develops a first-order ap
proximation to the asymptotic form of a plane far wake behind a slender body, valid for 
!arge distances downstream. Goldstein (1933) proceeds to a second-order approximation 
to the asymptotic form and, moreover, attemps to derive a third-order approximation. 
Due to a singular behaviour of the third-order approximation, he rejects this approxima
tion. It is Stewartson (1957), finally, who explains the origin of the difficulty at the third 
stage of approximation and who resolves the problern by adding an appropriate term. A 
detailed review and discussion of the stages of approximation is given by Berger (1971). 
In summary, for the plane far wake an asymptotic solution is available, refined to a 
third-order expansion. This solution in all stages of approximation gives self-similar ve
locity profiles far downstream of the body. For the axisymmetric far wake equivalent 
methods have been applied e.g. by Berger (1968) and an analogaus asymptotic solution 
has been obtained. Again, Berger (1971) reviews the progress and the solution of the 
axisymmetric problern in full detail. 

The second incredience of this mixed convection problern is the buoyant plume. Once 
more, we concentrate on the laminar flow and temperature field above a line (point) 
heat source. Plumes generated by free convection are the subject of numerous investi
gations. Zeldovich (1937) is to our knowledge the first author to theoretically recognize 
the self-similar form of flow and temperature fields in buoyant plumes. Schuh (1948) in 
turn presents a complete analysis based on boundary layer theory. He derives the cou
pled set of differential equations and boundary conditions for the problem. Yih (1952) 
infers closed-form solutions to this set of equations for the specific Prandtl numbers 
Pr = ~, ~. A more complete theoretical treatment of plane laminar plumes is con
ducted by Fujii (1963). He derives a closed-form solution for Pr = 2 and, moreover, 
uses numerical integration to solve the two point boundary value problern for Pr = 
0.01,0.7,10. Aside of a further exact solution for Pr=~ by Brand & Lahey (1967), 
Gehhart et al. (1970) give a systematic review of the theoretical approaches and pro
vide further solutions in the complete range 0.01 ~ Pr ~ 100, obtained by numerical 
integration. A recent numerical, fully nonlinear treatment of the plane laminar prob
lern is conducted by Lifian & Kurdyumov (1998). Further, asymptotic methods are 
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engaged to develop solutions for the limiting cases of small and large Prandtl num
bers by e.g. Spalding & Cruddace (1961) or Kuiken & Rotem (1971). The above list 
of theoretical studies by far is not complete, but an extensive review can be found 
in the book of Gebhart et al. (1988). There are likewise experimental investigations 
of the problern in literature. The work of Rouse et al. (1952) e.g. relates to a plane 
plume, rising above a line of small gas flames. Further examples are the experiments of 
Brodowicz & Kierkus (1966) or Forstrom & Sparrow (1967), where precise flow and tem
perature fields are measured above heated wires in air. Again, a complete review of the ex
perimental investigations can be found in Gebhart et al. (1988). To summarize, the prob
lern of a plane, laminar plume above a line heat source can be treated within the frame
work of boundary layer theory and self-similar solutions are obtained. The theoretical 
and experimental treatment of axisymmetric, laminar plumes has been developed to an 
equivalent stage, as discussed theoretically e.g. by Schuh (1948), Yih (1951), Fujii (1963), 
Brand & Lahey (1967), Crane (1975), experimentally e.g. by Rouse et al. (1952) andre
viewed by Gebhart et al. (1988). 

The combined occurance of both phenomena, namely forced and natural convection 
behind a heated cylindrical or spherical body, has also been studied in the past. In 
a first dass of theoretical investigations the body is idealized as a line or point heat 
source, positioned in an otherwise undisturbed, parallel flow. Thus, the presence of the 
body of finite size is ignored kinematically and only buoyant forces due to the introduced 
heat are present. Basedon boundary layer theory Afzal (1981) develops two expansions, 
valid for weak/strong buoyant forces in the near/far-field of a line heat source. The 
forced flow is upward or downward in the gravitational field, such that buoyant forces 
are favourable or adverse with respect to the forced flow. The corresponding axisym
metric problern of mixed convection behind a point heat source is theoretically treated 
by Riley & Drake (1983), Afzal (1983) and Afzal (1985). All authors invoke boundary 
layer theory and infer solutions by means of asymptotic methods. Riley & Drake (1983) 
develop two solutions for weak/strong buoyant forces, uniformly valid downstream of the 
heat source in the entire region. Similarly, in the study of Afzal (1983) two expansions 
for weakjstrong buoyant forces in conjunction with a spatial change over are obtained. 
Finally, Afzal (1985) presents a new formulation, capturing both the weakly- and the 
strongly-buoyant regime in a single set of equations. Wesseling (1975), in cantrast to 
the above authors, avoids boundary layer approximation and uses instead the Oseen
Boussinesq equations as basis of his analysis. He develops asymptotic solutions for weak 
buoyant forces, which enable to access the field variables in the near field of the (line) 
point heat source. 

The second dass of theoretical investigations consideres the finite size of the body to 
some extend. Here, the deflection of the flow around the body, the no-slip condition and 
some thermal condition on the body contour arise. Wood (1972) develops a three-zone 
model for the plane mixed convection around a heated cylinder. He consideres (i) an 
inner, diffusive zone immediately around the cylinder, (ii) a wake zone downstream of 
the cylinder and (iii) an outer zone with irrotational flow and works out the dominant 
physics and coupling of these zones. The corresponding axisymmetric problem, i.e. mixed 
convection from a sphere, is treated by Hieber & Gebhart (1969). 

There are likewise some experimental investigations of mixed convection from cylin
ders (wires) in the literature. Collis & Williams (1959) or Hatton et al. (1970) are just 
a few examples. A more complete review of the experimental work can be found in 
Gebhart & Pera (1970). In summary, experiments cover a range of Prandtl numbers 
0.7 :::; Pr :::; 63 (air, silicone oils) and focus mostly onto the integral heat transfer from 
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the cylinder. Measurements of field variables around the body and downstream in the 
wake are not available to our knowledge. 

The present article concentrates on the wake of a heated cylindrical (spherical) body 
in some distance downstream of its position. This follows to some extend the idea of 
Wood (1972), particularly with respect to the 'wake zone'. Based on boundary layer 
theory, we shall develop an asymptotic model by means of a two-parameter expansion. 
The small parameters are (i) an inverse power of the downstream coordinate and (ii) the 
ratio of buoyancy and inertia forces. Thus, the model holds far downstream for weakly
buoyant conditions. For such a model the details of the flow and temperature fields 
around the body are not really relevant. Instead, an integral representation of the effects 
of the body is sufficient. Firstly, the loss of momentum in the flow is introduced via the 
drag coefficient of the body. With respect to the pure wake, the model is of second order, 
in accordance with the expansions of Goldstein (1933) and Berger (1968). Secondly, an 
intregral amount of heat is introduced at the position of the body. Here the present model 
is in accord with Wood (1972) as far as the plane formulation is concerned. With respect 
to Wood (1972) the difference lies in the presence of second-order, nonlinear terms, which 
allow for a more accurate description of the wake. The present axisymmetric formulation 
should occur for the first time in literature. 

The results from the asymptotic models are worked out with respect to both flow 
and temperature fields for realistic values of the parameters. This goes far beyond the 
intention of Wood (1972). Detailed experiments in water, capturing all field variables 
downstream of a cylinder are further employed to verify the results from the asymptotic 
model. Suchexperimentsare to our knowledge not yet present in the literature. Numer
ical (FEM) simulations of the full plane problern serve as a further means to elucidate 
possible deficiencies of the approximations. 

2. Formulation 

2.1. Description of the problern 

Let us consider a cylindrical or spherical body in a parallel flow of speed W 00 and temper
ature T 00 as sketched in figure 1. The flow is upward against the gravitational field. In 
addition through a constant body temperature n > T oo an integral heat flux Q (respec
tively a heat flux per unit length q for the plane problem) is added to the flow. Firstly, 
due to the pure presence of the body of diameter d the flow will be deflected as it passes 
the body. At very low W 00 the flow will be attached around the complete body. If W 00 

is increased the flow will form a steady recirculating zone behind the body extending a 
few diameters d downstream. Further downstream streamlines of both sides reapproach 
each other. At even larger W 00 the flow will be time-dependent and an oscillatory wake 
will be observed. We shall restriet the analysis to the steady regime, i.e. to laminar 
and steady wakes. The second effect of the body is due to the no-slip condition on the 
body contour, resulting in an integral loss of momentum. Consequently a drag force Fz 
(respectively a drag force per unit length fz for the plane problem) applies to the body 
and reduced velocity amplitudes are a characteristic of the downstream wake. Up to this 
point we have no buoyant effects involved. If we heat the body, thirdly, we will have 
hot fluid in the wake. Due to a reduced density of the heated fluid, buoyant forces will 
tend to aceeierate the fluid in the wake. Thus, a faster fill up of the wake, or velocity 
amplitudes even above W 00 will be the consequence. 
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FIGURE 1. Sketch of the problern given for both an isothermal body and a heated body 

2.2. Basic equations and scaling 

If we consider a Newtonian fluid and invoke the Boussinesq approximation, the steady 
velocity and temperature fields in the fluid are governed by the Navier-Stokes, the con
tinuity and the heat transport equations. Thus, we have 

V·v=O, 

(2.1) 

(2.2) 

(2.3) 

Here ez = (o, o, 1) is the unit vector in the z-direction and the velocity vector is given 
by v = (u, v, w). The deviation from a hydrostatic pressure field is denoted by p and 
T the temperature of the fluid. The material properties of the fluid P=, f-l, cp, A denote 
density, viscosity, specific heat and heat conductivity, which are all taken to be constant. 
The buoyant term features a linear dependence on temperature T around the reference 
density Poo (at T00 ). Volume expansion o: and gravitational acceleration g are likewise 
constant. 

The above conservation equations for momentum, mass and energy in the two-dimensional 
problern are subject to the boundary conditions 

x,z -t ±oo: u -t O,w -t w=,T -t Too, 
d ow 8T 

x = 0, lzl > - : u = 0, -;- = 0,-;- = 0, 
2 ux ux 

ou 
x -t ±oo,z: ox -t O,w -t W 00 ,T -t T=, 

J x2 + z2 = ~ : u = 0, w = 0, T = Tb. 
2 

(2.4p) 

(2.5p) 

(2.6p) 

(2.7p) 



Laminar mixed convection in far wakes 

r, z -t ±oo: u -t o, w -t Woo, T -t Too, 
d 8w 8T 

r = 0, lzl > - : u = 0, -
8 

= 0, -
8 

= 0, 
2 r r 

8u 
r -t oo,z: 

8
1' -t O,w -t W 00 ,T -t T00 , 

)r2 + z2 = ~: u = O,w = 0, T =Tb. 
2 
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(2.4a) 

(2.5a) 

(2.6a) 

(2.7 a) 

Thus, we assume an undisturbed parallel and isothermal flow both far upstream and 
far downstream of the body. Symmetry with respect to both velocity and temperature 
fields is assumed with respect to the z-axis. On the body contour (cylinder, sphere) the 
no-slip condition and a constant temperature is applied. Sufficiently far aside of the body 
the flow is undisturbed with respect to W 00 and T oo, allowing in general a non-zero u in 
that region. 

It is convenient at this stage to scale the problern in order to infer both dimensionless 
equations and dimensionless groups. We use the scales 

(X,Z) = (x,z)' 
d 

(R,Z)= (r,z), 
d 

(U,W)=(u,w), 
Woo 

p 
P= --2-, 

PooWoo 

G= (T-Too), 
(n- Too) 

and, therefrom, obtain the dimensionless set of conservation equations 

1 2 Gr 
(V·V)V=-VP+-V V+-8ez, 

Re Re2 

and boundary conditions 

V·V=O, 

1 2 (V·V)8= -V e, 
Pr Re 

X, Z -t ±oo : U -t 0, W -t 1, e -t o, 
1 8W 8e 

x = o, IZI > 2 : u = o, 8X = o, ax = o, 
8U x -t ±oo, z: 
8
x -t o, w -t 1, e -t o, 

)x2 + z2 = ~: u = o, w = o, e = 1. 

(2.8p) 

(2.8a) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15p) 

(2.16p) 

(2.17p) 

(2.18p) 
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R, Z -+ ±oo : U -+ 0, W -+ 1, 0 -+ 0, 
1 aw ae 

R = 0, IZI > 2 : u = 0, 8R = 0, 8R = o, 
au 

R-+ oo, Z: aR -+ 0, W-+ 1, e-+ 0, 

J R2 + z2 = ~ : U = 0, W = 0, 0 = 1. 
2 

(2.15a) 

(2.16a) 

(2.17a) 

(2.18a) 

The above scaling assumes the forced flow around the body tobe dominant and, thus, 
uses the diameter d of the body, the far field velocity W 00 and the dynamic pressure 
(p00 w!,) to normalize length, velocity and pressure. The temperature scale is built up 
using the applied temperature difference (Tb - T00 ) such that 0 :S e :S 1 holds. The 
dimensionless groups in the above conservation equations (2.12-2.14) are identified as 
Reynolds number, Grashof number and Prandtl number. The definitions are 

Re= W
00 d' 
V 

(2.19) 

(2.20) 

V 
Pr= - (2.21) 

"' The Reynolds number represents the ratio of inertia forces and viscous forces due to 
the forced flow. It, therefore, characterizes the strength of the forced flow in the problem. 
The Grashof number represents the ratio of the product of buoyancy forces and inertia 
forces and the square of viscous forces. It, thus, is a relative measure of the strength 
of the buoyant effects in the problem. Finally, the Prandtl number is the ratio of the 
transport coefficients of momentum and heat. The Prandtl number, therefore, is a fluid 
property, characterizing the fluid with respect to the molecular diffusion of momentum 
and heat. 

The plane-flow behaviour, which we expect araund a cylinder for pure forced-flow 
conditions is weil known and has been discussed qualitatively in section 2.1. Using 
the Reynold number, we are now able to define the different regimes quantitatively. 
According to e.g. Zukauskas & Ziugzda (1985) we find in the range Re < 1 a steady 
flow araund the cylinder without separation. In the range 3 < Re < 5 the separation 
immediately behind the cylinder in conjunction with two symmetric vortices develops. 
Up to Re < 40 the flow remains steady and the size of the separation zone downstream 
increases. For Re > 40 the flow develops time-dependency in form of the so-called von
Karmau vortex street. This type of flow is characterized by periodic vortex detachment. 
The character of the near flow field araund the cylinder to a first approximation is 
responsable for the type of flow in the wake. We can, therefore, conclude that under 
pure forced flow conditions we shall observe a steady plane wake behind the cylinder in 
the range Re< 40. That is precisely the range, which we shall restriet to in this article. 

The axisymmetric flow behind a sphere behaves similarly. Following e.g. Lugt (1979) 
the flow remains attached in the range Re < 20. In the range 20 < Re < 400 a torus 
shaped steady recirculating vortex behind the sphere is present and increases in size 
with increasing Re. For values Re > 400 unsteady behaviour develops. Thus, for the 
example of the sphere we can expect a steady flow in the near field for Reynolds numbers 
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Re < 400. If we, therefore, restriet the analysis to the range Re < 400 we shall observe 
a steady axisymmetric wake behind the sphere. In general bodies of more streamlined 
shape exhibit a wider range of Reynolds numbers, in which a steady wake, plane or 
axisymmetrie, is observed. This is worth to notiee, as the asymptotie model applies in 
the far wake for hoclies of arbitrary shape. Thus, the range of validity for such bodies is 
fairly wide. 

In principle, there are two possible reasons for a time-dependent wake. The first 
reason, of course, is the above described flow in the near field around the body. If 
that flow remains steady, there will be no excitation of the wake flow and from that 
source no time-dependeney shall arrise. The second reason for a time-dependent wake 
might be an instability of the velocity profile in the wake further downstream. Following 
Betchov & Criminale (1967) inflection-type velocity profiles, as present in the wake, tend 
to go unstable for values Re;p > 200. The Reynolds nurober Re;p is defined based on the 
shear layer thiekness (li/2) and the velocity difference [woo- w(O, z)) in the wake. Thus, 
the definition is 

Re;p = [woo- w(O, z)) Ii. 
2v 

(2.22) 

As we shall restriet to steady wakes within this article, we have always to ensure that 
both conditions promise both a steady near field flow around the body and a stable 
(and thus steady) velocity profile in the wake further downstream. Given that, we can 
expeet to a first approximation that the eomplete problern is steady. It remains at this 
stage, however, uncertain to whieh extend the buoyant aceeleration of the fluid effeets 
the stability of the velocity proflies in the wake. In general it is possible, that buoyant 
effects will shift the stability limit of the wake velocity proflies significantly. Similar 
effeets of the buoyant forces onto the flow in the near field of the heated body may 
influence the steady /time-dependent transition. As we shall restriet to weakly-heated 
bodies throughout most of this article, we consider these effects to be of minor importanee 
and judge the behaviour in time purely based on the forced flow stability limits. 

2.3. FEM simulation of the plane fiow 

In order to obtain a full solution to the plane problem, we solve the above dimensionless 
equations (2.12-2.14) numerically, using the standard FEM eode FIDAP 7.6. Although 
the boundary eonditions (2.15-2.18) are mathematically formulated partly at infinite 
distances from the cylinder, we have to restriet the eomputational domain to a reasonable 
degree, while the appropriate boundary conditions now have to be formulated on the 
boundaries of the eomputational domain. Numerous tests have led us to chose the range 
of spatial coordinates for the numerieal simulation as 

0 ~X~ 30, 

-50~ z ~ 60. 

(2.23p) 

(2.24p) 

Thus, for reason of symmetry, we diseretize one half of the flow field and grid that 
region using nine-node quadrilateral elements, whieh employ biquadratie interpolation 
functions to approximate the velocity and temperature degrees of freedom within each 
element. The standard mesh for the computations is shown in figure 2. From the 
details of the mesh around the cylinder, which is given enlarged in figure 2, it is obvious 
that we employ mostly reetangular elements and only depart from rectangles in the 
immediate vincinity of the cylinder. Here, a transition region is constructed to integrate 
the cylinder geometry into the reetangular computational domain. The aspect ratio of 
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FIGURE 2. Employed FEM standard mesh 

the elements has been kept close to one in all high gradient regions. Very few elements, 
in particular in the outlet plane C B, have aspect ratios which depart from one and ratio 
at most 1:12. For standard computations we use about 6000 elements, corresponding to 
about 25,000 nodes, whereas numerous tests with strongly refined meshes and strongly 
increased computational domain have proven that all velocity and temperature profiles 
in the wake (5 :S: Z :S: 50) experience very little relative changes. Thus, we are confident 
that our standard mesh in extend and refinement guarantees a solution which is accurate 
to ±0.2%. Typical computational efforts on an IBM RS/6000-580 workstation with 256 
MB RAM range around 2000 CPU seconds. 

We have in addition installed a procedure, which allows for an integration of all vari
ables of the solution (and functions therefrom) along the 'open' boundaries of the com
putational domain, namely along DC, C B. This integration is based on the trapezoidal 
scheme and allows us e.g. to check quantitatively the integral mass balance, which al
ways remains accurate to ±0.1%. Moreover, this procedure allows us to infer, from the 
velocity and temperature on those boundaries, the integral amount of heat q (per unit 
length), which has actually been added to the ßow. In similar fashion the integral bal
ance with respect to the momentum ßux is computed, which leads to a determination of 
the force (per unit length) fz acting at the cylinder for the case of pure forced ßow. The 
determination of q and fz is essential as input for the asymptotic model, which will be 
described in the section below. 

The boundary conditions which we apply to the computational domain, have for several 
reasons to depart from the ideal ones, formulated in equations (2.15-2.18). We use 

0 :S: X :S: 30, Z = -50, (AD) : U = 0, W = 1, 0 = 0, (2.25p) 
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- au aw Re ae 

o s x s 30, z = 60, (BC) : az = o, az - 2 P = o, az = o, 
1 _ aw ae x = o, -5os z s - 2, (AE): u = o, ax = o, ax = o, 

1 - aw ae x = o, 2 s z s 60, (F B) : u = o, ax = o, ax = o, 
- au aw x = 30, -5os z s 60, (CD): ax = o, ax = o, e = o, 

JX2 + z2 = ~' (EF): U = 0, W = 0, e = 1. 
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(2.26p) 

(2.27p) 

(2.28p) 

(2.29p) 

(2.30p) 

Thus, mainly on the outflow boundary BC and the side boundary CD the conditions 
are modified, such that those boundary conditions do as little as possible influence the 
decaying profiles of velocities and temperature. The given set proves to behave in that 
manner. 

2.4. Asymptotic model for the far wake of weakly-heated bodies 

It is well known in literatme (cf. Schlichting (1982)) that far laminar (and even turbulent) 
wakes behind bodies, both plane and axisymmetric, are well described using the boundary 
layer approximation. Similarly, buoyant plumes, in a sufficiently !arge distance above 
both line and point heat sources, allow for a theoretical modeHing based on boundary 
layer theory. As both single effects in the problern develop a boundary layer type of flow 
sufficiently far downstream, it seems reasonable to expect that the combined and aligned 
occurance in a buoyant wake above a heated body likewise results in a flow field which 
has boundary-layer character. 

A further idea on which this model is based is to assume that we have dominantly 
a forced flow, which develops a corresponding wake. As a disturbance to that flow we 
shall add weak heating, such that the contribution of the buoyant forces to the flow field 
remains small. This method allows to express the flow and temperature fields in a much 
simpler fashion if compared to the full problem, given in equations (2.12-2.18). It should 
be pointed out that the following asymptotic model holds for bodies of arbitrary shape 
of plane or axisymmetric geometry. This is a consequence of the far wake expansion, 
where the near field around the body is not resolved. 

It occurs that both the far wake and the buoyant plume, whether plane or axisym
metric, within a boundary layer approximation willlead to a power-law dependency on 
the steamwise coordinate Z. As discussed e.g. by Berger (1971) for the far wake, the 
(singular) origin Z = 0 ofthispower law in general is not identical with the centre of the 
body, nor with the trailing edge. A similar statement should hold for the buoyant plume 
with respect to the (singular) heat source, particularly if the body has a finite extent. 
Taking the origin Z = 0 in the centre of the heated body, thus, in several respects is an 
approximation, while the error due to this approximation decays rapidly with increasing 
distance Z. 

2.4.1. Rescaling and boundary layer approximation 

If we focus on the boundary layer type of flow sufficiently far downstream above the 
body, it occurs reasonable to rescale the spatial coordinates such that the separate scales 
within the boundary layer are reflected. On one hand, within the far wake the diameter of 
the body d will not play an important role as a length scale, since the size and geometry 
of the body will only enter via an integral loss of momentum. On the other hand, the 
body diameter d is the only defined length and W00 the only defined velocity. Thus, we 
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maintain to some degree the scales given in equations (2.8-2.11), but rescale one of the 
spatial coordinates, by using the modified scales 

(2.31p) 

(2.31a) 

(2.32) 

This separates the spatial scales by introducing the small parameter t:1 = (1/Vfu). 
We furtheran take advantage of the smallness of t:1 , i.e. we restriet to the case 

VRe » 1, (2.33) 

and readily infer the leading order of an asymptotic expansion of the conservation 
equations (2.12-2.14). Thus, we obtain the boundary layer equations for the problem, 
namely 

ü8~ +W8W =82~ + Gr 8 +0(__!_) 
8X 8Z 8X2 Re2 Re ' 

(2.34p) 

8ü 8W 
85c + az = 0' 

(2.35p) 

- 88 88 1 828 1 u-_ + w8z = -P --- +O(P R ); 8X r8X2 r e 
(2.36p) 

ü8~ + w8W = 8
2

~ + 2. 8~ + Gr 8 + O( __!_) 
8R BZ 8R2 R 8R Re2 Re ' 

(2.34a) 

8(RÜ) 8(RW) 
8R + 8Z = 0' 

(2.35a) 

- 88 88 1 ( 82 8 1 88) 1 
u BR + w az =Pr 8R2 + R8R + O(PrRe). (2.36a) 

As obvious from the above given accuracy of approximation within the heat transport 
equation (2.36), we restriet additionally to ftuids with Prandtl numbers not too small, 
i.e. we assume 

JPrRe » 1. 

The boundary conditions within this approximation reduce to 

- 8W 88 
X = 0, Z > 0 : U = 0, -- = 0, -- = 0, 

8X 8X 
X~ ±oo,Z > o: W ~ 1,8 ~ 0; 

- 8W 88 
R = 0, Z > 0 : U = 0, -- = 0, -- = 0, 

8R 8R 

(2.37) 

(2.38p) 

(2.39p) 

(2.38a) 
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R--+ oo, z > o : w --+ 1, e --+ o. 
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(2.39a) 

Since the asymptotic model is valid only far downstream of the body, the no-slip 
condition and the isothermal condition on the body contour cannot be enforced. Instead, 
we have to specify integral conditions for both the ftux of momentum and the ftux of heat. 
We pick a sufficiently large control volume around the body and balance mass, momentum 
and heat across the boundaries of the control volume. The drag force (respectively the 
drag force per unit length in the plane problem) is linked via 

(2.40p) 

2 d2 
F _ PooW00 1f ( ) 
z- Cw-

2
-4, 2.40a 

to the dimensionless drag coefficient Cw, the dynamic pressure and the cross sectional 
area (respectively cross sectional areaper unit length for the plane problem) of the body. 
At the centre of the body we allow additionally for the input of an integral heat ftux Q 
(respectively an integral heat ftux per unit length q for the plane problem) into the ftow. 
Within the framework of boundary layer approximation the integral conditions for the 
ftux of momentum and the ftux of heat turn out to be 

[

oo Zoo l 1 fz 1 - Gr - 1 
-cw = 2 d = I'T'l: J W(1- W)dX + - 2 J J GdXdZ + 0( -R ) , (2.41p) 
2 PooW00 y Re Re e 

-~ -~-~ 

(2.42p) 

1 Fz 1 
-Cw = =-
16 Poow'?xo21fd2 Re [

oo Zoo l I RW(1- W)dR+ :; _i I RGdRdZ + O(~e) , 

(2.41 a) 

Q ~oo- - 1 
S1 = d(T, _ T. ) = 21r RWGdR+ O(p R ). 

PooCp b oo v r e 
(2.42a) 

0 

The dimensionless group S1 quantifies the integral amount of heat, transfered to the 
body. It is linked to the a Nusselt number, as shown in section 3.2. 

2.4.2. Asymptotic expansion for the far wake 

As we consider the development of the wake as the dominant physics in the problem, 
it is appropriate to invoke the approximations for the description of far wakes, as e.g. 
given by Schlichting (1982). This is, as we shall see, another asymptotic expansion in 
terms of the small parameter 

(2.43p) 
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Ez = 1/Z. (2.43a) 

Formally, we apply the expansions 

(2.44) 

W = 1 - Ez Wt - t:~Wz + ... , (2.45) 

8 = E281 + E~82 + ... , (2.46) 

which are strictly valid in the Iimit Ez ---t 0. At this stage we have to decide on the 
magnitude ofthe buoyant term in the momentum equations (2.34). As mentioned above, 
we shall consider only weak buoyant effects. Thus, we pick the Grashof number such that 

Gr 
- 2 = O(t:z) 
Re 

(2.47) 

holds. This restricts the validity of the model with respect to large Gr. On the other 
hand it allows to shift the buoyant term into the second order of the expansion and, thus, 
provides a means of developing a solution. We shall discuss the range of validity of the 
model below in full detail. Using the expansions (2.44-2.46) and the above magnitude 
of Gr ( cf. 2.4 7), we are able to break up the problern into a infinite number of simpler 
problems, whereas the two leading orders will be solved subsequently. The equations to 
first order are homogeneaus and come to be 

1 8(t:2 Wl) _ 82Wt _ 
0 

Ez 8Z 8X2 - ' 

8U1 1 8(t:2 Wt) 
-- -- =0, 
8X f2 8Z 

1 8(t:281) 1 8 281 
- -----0· 
Ez 8Z Pr 8X2 - ' 

8(RUt) R8(t:2Wt) ---'----::--'- - - = 0' 
8R E2 8Z 

_!__ 8(t:z8t) - _!_ (82 ~1 + : 8C:t) = o, 
E2 8Z Pr 8R2 R 8R 

with the corresponding boundary and integral conditions 

- 8W1 881 
X = 0, Z > 0 : Ut = 0, --- = 0, --- = 0, 

8X 8X 
X ---t ±oo, z > 0 : Wt ---t o, el ---t 0, 

(2.48p) 

(2.49p) 

(2.50p) 

(2.48a) 

(2.49a) 

(2.50a) 

(2.51p) 

(2.52p) 
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00 

j W1 dX = c; VReVZ, 
-oo 

-oo 

- aw1 ae1 
R = o, z > o : u1 = o, --- = o, -- = o, 

8R 8R 
il -+ oo, z > o : w1 -+ o, e1 -+ o, 

00 

j RW1dR = ~~ReZ, 
0 
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(2.53p) 

(2.54p) 

(2.51 a) 

(2.52a) 

(2.53a) 

(2.54a) 

This set of equations (2.48-2.54) can be solved analytically by introducing the similarity 
variable 

x 
71 = vz' (2.55p) 

il 
71 = v-z· (2.55a) 

Using 71 the solution is 

(2.56p) 

(2.57p) 

(2.58p) 

(2.56a) 

(2.57 a) 

(2.58a) 

With respect to the ftow field, this solution is equivalent to the results for the linearized 
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far wake, given in the Iiterature (e.g. Schlichting (1982), Loitsianski (1967)). The tem
perature field within this approximation reflects the passive transport of the added heat 
due to diffusion and convection, based on the undisturbed, parallel flow. Of course, no 
coupling (via buoyancy forces) of the temperature field towards the flow field is present. 

Within the second order the equations turn non-homogeneous, whereas the inhomogen
ity is governed by non-linearities and the buoyant term. The conservation equations, thus, 
read 

2_ 8(E~W2)- 82~2 =- c~Re ex (- 7]2) - !1GrV'Pi-VZ ex (-Pr 7]2) (2.59p) 
f~ 8Z 8X2 327rZ P 2 2foRe512 P 4 ' 

8U2 _ 2_ 8(E~W2) _ 
0 8X E~ 8z - ' (2.60p) 

(2.61p) 

2_ 8(E~W2 ) _ (82~2 + ~ 8~2 ) = _ c~Re
2 

ex (- 7]
2

) _ !1GrPrZ exp (-Pr7J
4

2
), 

E~ 8Z 8R2 R 8R 1024Z p 2 47rRe2 

8(RU2) _ A 8(E~W2) = 
0 

8R E~ 8Z ' 

2_ 8(E~82 ) _ __!_ (82 ~2 + 2,_ 8~2) = _ cw!1PrRe ex (-(1 +Pr) 7]
2

) . 
E~ 8Z Pr 8R2 R 8R 1281rZ p 4 

The corresponding boundary and integral conditions are 

- 8W2 882 x = o, z > o : u2 = o, --- = o, --- = o, 
8X 8X 

X-+ ±oo,Z > 0: w2-+ 0,82-+ 0, 

-oo 

Gr6.mZ 

Re2 

!
00 

8 dX = Cw!1VZ J Pr . 
2 

4fo 1 +Pr' 
-oo 

- 8W2 882 
R = o, z > o : u2 = o, --- = o, --- = o, 

8R 8R 
A-+ oo, z > o : w2 -+ o, 82 -+ o, 

(2.59a) 

(2.60a) 

(2.61 a) 

(2.62p) 

(2.63p) 

(2.64p) 

(2.65p) 

(2.62a) 

(2.63a) 
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00 

J RG
2
dR = cwO.ReZ Pr . 

64n 1 +Pr 
0 
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(2.64a) 

(2.65a) 

.6.m denotes the constant of integration, which occurs by integrating the temperature 
field in equation (2.41). Here the integral of the buoyant forces across the entire control 
volume is required. Since the true temperature 8(X, Z) is not known in the near field, 
we replace the definite integral with respect to Z in equation (2.41) by an indefinite 
integral. 

With respect to the fiow field the set of equations (2.59-2.65) introduces nonlinearities 
of the convective terms and includes the weak buoyant forces, resulting from the first 
order temperature field. For the non-buoyant far wake fiow, i.e. in the limit Gr --7 0, 
the above equations agree with the second order expansion of Goldstein (1933). The 
convective temperature transport within this approximation is based on the first order 
wake velocity profiles. It is, however, important to keep in mind that buoyant effects are 
still dependent on the first order temperature field, i.e. the wake fiow field does not yet 
recouple via the buoyant forces. 

We transform the set of equations (2.59-2.65) to a corresponding set of ordinary dif
ferential equations by means of the similarity transformation 

(2.66p) 

(2.67p) 

(2.68p) 

U = c~Re2 

G( ) + O.GrZ
3
1

2 
I( ) + Gr.6.mVZ ex (- ry

2
) 

2 1024VZ 'fJ 6n Re2 'fJ 4Re2 'fJ p 4 ' 
(2.66a) 

W = c~Re2 

F( ) O.GrZ
2 
K( ) _ Gr.6.mZ e (- ry

2
) 

2 1024 'fJ + 6nRe2 'fJ 2Re2 xp 4 ' (2.67 a) 

e = CwO.Re ___!2___H( ). 
2 64n 1 +Pr 'fJ 

(2.68a) 

This generalized transformation leads to a set ordinary differential equations for the 
shape functions G(ry), J(ry), F(ry), K(ry), H(ry), which is readily inferred tobe 

F" + '2. F' + F = - 1
- exp (- 'f/

2

) 
2 y'8ir 2 ' 

(2.69p) 

11 'f/ 1 1 ffr ( 'f/
2 

) K + - K - - K = -- exp -Pr-
2 2 2,fif 4 ' 

(2.70p) 
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G' + !l.F' +F = 0 
2 ' 

I' + !1. K' - ~ K = 0 
2 2 ' 

" 77 Prv1 +Pr ( 71
2

) H +Pr"iH'+PrH= 
4
-0f exp -(1+Pr)4 ; 

F" + ( ~ + ~) F' + 2F = exp (- ~
2

) , 

K" + ( ~ + ~) K' = exp (-Pr :) , 

G' + ~G + !l.F' + 2F = 0, 
71 2 

I'+ ~I+ !l.K' = 0, 
71 2 

H" + (Pr~+ ~) H' + 2Pr H = Pr(\+ Pr) exp ( -(1 +Pr):) . 

The corresponding boundary and integral conditions are 

71 = 0 : I = 0, G = 0, F' = 0, K' = 0, H' = 0, 

71 -+ ±oo : F -+ 0, K -+ 0, H -+ 0, 

00 I Fd77 = 1, 
-00 

00 I Kd77 = -1, 
-oo 

00 I Hd77=1; 
-oo 

00 I 77Fd77 = 1, 
0 
00 I 77Kd77 = -1, 

0 
00 

I 77Hd77 = 1. 
0 

(2.71p) 

(2.72p) 

(2.73p) 

(2.69a) 

(2. 70a) 

(2.71a) 

(2.72a) 

(2. 73a) 

(2.74) 

(2.75) 

(2.76p) 

(2.77p) 

(2.78p) 

(2. 76a) 

(2. 77 a) 

(2. 78a) 

We apply a multiple shooting method, based on a fourth order Runge-Kutta scheme for 
the integration of the associated initial value problem, to solve the above set of ordinary 
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differential equations, boundary and integral conditions (2.69-2. 78). Given a solution to 
the shape functions, we can summarize the results for the flow and temperature fields as 
follows 

- Ew "(Re ( ry 2
) J2c~ Re fl Gr 

U =- 8VifZ TJ exp -4 + 16VifZ3/2G(ry) + Re5fzi(ry) + ... , (2.79p) 

W _ _ cwVRC (- ry
2

) _ J2c~Re F( ) _ flGNZ K( ) 
- 1 4VifVZ exp 4 16VifZ TJ Re512 TJ + '· ·' (2.80p) 

flffr ( ry2
) cwfl ~ 

8 = 2VifVJfeVZ exp -Pr4 + 4VifZY ~ H(ry) + ... ; (2.81p) 

(2.79a) 

c Re ( ry2 
) c2 Re

2 n Gr 
W = 1 - 3~Z exp -4 - 1~24Z2 F(ry)- 6nRe2 K(ry) + · · ·' (2.80a) 

flPr ( ry2
) cwflRe Pr 

8 = 4nZ exp -Pr4 + 64nZ2 (1 +Pr) H(ry) + · · · · (2.81 a) 

Within equations (2.80) we have introduced an effective drag coefficient Ew, defined by 

2Grfl.m 
Cw = Cw- Re5/2 ' 

16Gr.6.m 
Cw=Cw- Ri 

(2.82p) 

(2.82a) 

The effective drag coefficient Cw includes both the forced flow drag coefficient Cw of the 
body and the constant of integration fl.m. For an isothermal flow Cw = Cw is obvious. 

2.4.3. Limitations of the model 

At this stage it seems reasonable to summarize the assumptions and limitations which 
restriet the range of validity of the above model. Firstly, applying the boundary layer 
approximation within both the transport equations of momentum and heat restricts us to 
the range of large Reynolds numbers and fluids featuring not too small Prandtl numbers. 
Thus we have to have 

(2.83) 

vPrRe » 1. (2.84) 

Secondly, the far wake approximation restricts to large Z. To be precise, given the 
actual Reynolds number, we infer from the approximative solution (2.80), that the ex
pansion holds if 

(2.85p) 
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Z CwRe 
» 32' (2.85a) 

is fullfilled. Thirdly, we have a Iimitation from the assumption of a weakly-heated 
body. The buoyant contributions in (2.80) remain small if 

holds. 

Re5/2 
fWr« VZ, 

n Gr « 61r Re2
, 

(2.86p) 

(2.86a) 

Conditions (2.83,2.84) are immediately transparent, in that a sufficiently large Reynolds 
number is required. Conditions (2.85,2.86) per se are likewise physically clear as weak 
buoyant effects are considered. However, the combined application of conditions (2.85p) 
and (2.86p) for the plane problern gives 

cw..flfe Re512 

40f « VZ « f1Gr · (2.87p) 

This is different for the axisymmetric problem, where Z is allowed in a range 

CwRe 
32 « z « oo. (2.87 a) 

Particularly condition (2.87p) is an unexpected result, which is caused by the growth 
of the buoyant term downstream for the plane case (cf. equation (2.80p)). 

3. Experimental methods 
We aim to assess experimental data for the laminar mixed convective flow in the wake 

of a heated body. We restriet our experiment to a plane situation in that we pick a heated 
cylinder and realize a plane flow and temperature field in the wake above this cylinder. 
We, therefore, have to establish a homogeneaus laminar flow, rising in a vertical channel. 
This flow has to be controlled carefully with respect to flow rate and temperature. We 
have, finally, to control the temperature of the cylinder. The measuring technique has 
to monitor the flow and temperature fields in the wake above the cylinder to allow for a 
quantitative comparison of the experimental situation with the theoretical predictions. 
Based on the above ideas, we have designed the experimental channel, which is described 
in detail in the following chapter. 

3.1. Setup and measuring technique 

The actual test section is sketched in figure 3. Water enters the test channel at a well 
controlled temperature T oo from below via two horizontal pipes, which are perforated 
to allow for a horizontal outlet, homogeneously into the lowest chamber. Through a 
sequence of two honeycomb inserts (H1 , H2 ) and two fine screens (S1 , S2 ), in conjunction 
with the contraction (cf. figure 3), the flow is made parallel and homogeneaus across 
most of the channels cross section. Leaving the most upper screen S2 , the flow passes 
the cylinder of diameter d = 6 mm. The channel in that region has parallel walls and a 
square cross section of 30 x 30 cm. The water leaves the channel after a length of about 
50 cm via a free interface outflow. A constant integral flow rate through the test channel 
and a constant entrance temperature of the water is achieved by a controlled pump, a 
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FIGURE 3. Sketch of the test section and measuring technique 
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complete insulation of the test channel and all elements of the water circuit and two heat 
exchangers, which see an extremely carefully controlled temperature at their secondary 
side. These measures allow to keep the velocity W 00 in the cylinder plane constant to ±1% 
and the inlet temperature T00 constant to ±0.05 degC. The cylinder is likewise kept at 
constant temperature n. This is achieved by circulating water of constant temperature 
through a pipe of 6 mm outer diameter, which gives a temperature constance of about 
±0.02degC. 

The measuring technique consists of a number of thermocouples mounted on travers
ing drives, which allow for the measurement of temperature profiles T;(x) at three dis
tances z1 , z2 , z3 above the cylinder. In dimensionless scale, those planes are located at 
Z1 = 7.75, Z2 = 12.75, Z3 = 17.75. The temperature profiles T;(x) are taken in the 
middle of the channel, where an almost undisturbed plane situation is present. More
over, the homogenity of temperature T 00 in the plane of the most upper screen S2 is 
monitared by another three thermocouples at different positions. All temperature mea
surements are taken in difference to the inlet temperature T 00 , which is picked within a 
copper cube of 3cm side length positioned within the lowest chamber. Additionally three 
PT100 resistant thermometers monitor at higher accuracy the cylinder temperature at 
two positions and once more the inlet temperature T oo. Accuracy of the thermocouple 
difference measurements is ±0.05 degC, while the PT100 probes are typically accurate 
to ±0.01 degC. 

The flow field is registered using two one-component 1aser Doppler Anemometers. 
The first LDA maesuring volume is at a fixed point between the cylinder axis and the 
channel wall. The orientation is such that the undisturbed velocity w00 is measured us
ing the forward scattered light. The second LDA features a relatively small optical head 
conmkted via fiber optics to a stationary unit with Laser, Bragg cell, photomultipliers, 
etc .. Its maesuring volume is traversed along identicallines as described for the thermo
couples by means of another stepping motor drive. The orientation is such that profiles 
w;(x) are measured at three distances z1 ,z2 ,z3 above the cylinder, while in this case the 
backscattered light is picked up by the optical head. Likewise these velocity profiles are 
taken in the middle of the channel to focus mainly on plane effects. Precision of both 
LDA measuring systems, due to a sophisticated transient recorder based evaluation of 
the signals should rangearaund ±0.2mm/ s, positioning of traversing drives (velocity and 
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property symbol value units 
density Poo 9.9705 . 102 kg m-3 

specific heat Cp 4.1790. 103 Ws kg- 1K- 1 

thermal expansion Q 2.5720 . w-4 K-1 

heat conductivity "\ 6.0720 . w- 5 W m-1K- 1 

viscosity V 8.93oo . w- 7 m2s-1 

TABLE 1. Properties of the testliquid (water) for To = 25degC,po = 1bar 

temperature probes) is highly accurate to ±0.01 mm. Typically, profiles of temperature 
and velocity are taken in steps down to ~x = 1 mm. 

3.2. Scaling and preliminary measurements 

In order to apply the asymptotic model to the experimental conditions we need to deter
mine several (integral) parameters, namely the dimensionless groups Re, Cw, Cw, Gr, n, Pr. 
Moreover, the quantities in the scaling relations (2.8-2.11) w,x:" Tb, T= need tobe deter
mined. The temperatures n and T = of the cylinder and of the fluid upstream are directly 
available from measurements. Thus, as T = is kept constant at T = = 25degC all liquid 
properties P=, cp, a, >., v are known. These properties are summarized in table 1. The 
velocity w= is directly measured by the stationary LDA system in height of the cylinder 
(Z = 0). As we have a finite cross section of the channel, the no-slip condition Ieads to 
the development of kinematic boundary layers at all four vertical walls downstream of 
the last screen insert S2 . For reasons of continuity, the presence of low velocity regions 
at the walls causes inreased velocity amplitudes in the intermediate region between the 
wake and the wall boundary layers. As the wall boundary layers increase in thickness 
downstream, an acceleration of the flow in the intermediate region is the consequence. 
Thus, in the measuring planes Z; = 7. 75, 12. 75, 17.75 we expect values w=,i > w= in the 
outer region. In fact, we find due to these imperfections an increase of w= by about 18% 
along the channel. For scaling of the velocity proflies we therefore use the spatially av
eraged plateau value w=,i in the outer region of the respective plane Z;, which typically 
occurs in a region lXI > 4. For the determination of the Reynolds number Re (cf. eq. 
(2.19)), in contrast, we use an averaged value from the two planes Z = 0 and Z = 17.75. 

The drag coefficient Cw of the cylinder for forced flow conditions depends purely on 
the Reynolds number Re. Schlichting (1982) gives for our experimental Reynolds number 
Re = 39.4 a value of Cw = 1.8. It is alternatively possible to use our numerical (FEM) 
results for the determination of Cw. This can be achieved by two methods, namely 
by an integration of the stress field around the cylinder contour, which provides both 
components of the acting force f per unit length. From the vertical component fz 
the drag coefficient Cw can be computed by means of equation (2.40p). The second 
method engages in an integral momentum balance of the entire computational domain. 
This method is outlined in section 2.3 and provides likewise a value for Cw. The values 
obtained from these two methods for forced-flow conditions are Cw = 1.475, 1.499. All 
values are given in figure 4a for Gr = 0. 

For mixed-convection conditions we may still use an integration of the stress field 
around the cylinder contour to determine the force, and thus cw, acting at the heated 
cylinder ( Gr > 0). Using this method we find increasing values of Cw for increasing 
Grashof numbers Gr (cf. circles in figure 4a). An inspection of the flow field reveals that 
this increase of drag is due to the disappearance of the recirculation zone behind the 
cylinder. Thus, for !arge Grashof numbers the flow is attached to the complete cylinder 
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FIGURE 4. Drag coefficient Cw, effective drag coefficient Cw and heat transfer coefficient n as 
function of Gr 

contour and a stronger interaction occurs. The integral momentum balance around the 
computational domain, of course, is not suitable to determine Cw in a non-isothermal 
situation. Here only the sum of all acting forces (including buoyant forces) is obtained. 

As inferred in section 2.4.2, the asymptotic model is based on an effective drag co
effi.cient Cw, defined by equation (2.82p). The constant of integration b.m in equation 
(2.82p) is strictly constant with respect to the spatial coordinates X, Z, ry. The values Cw 

employed within the asymptotic model for different Grashof numbers are given in figure 
4a as triangles. These values are inferred from the corresponding FEM Simulations. For 
small Grashof numbers a linear decrease of Cw with increasing Gr is obvious, precisely 
as predicted by equation (2.82p). The departure from the linear behaviour for !arge Gr 
is not surprising, as b.m develops a dependency on Gr. In this range of !arge Grashof 
numbers the asymptotic model is no Ionger valid. 

The Prandtl number Pr is available from the fluid properties given in table 1. At 
a reference temperature ofT= = 25degC we find Pr= 6.128. Within the asymptotic 
model the heat input is encoded in the parameters Gr and n. The Grashof number 
is readily computed from the fluid properties and the measured temperatures n, T=. 
The dimensionless heat transfer coeffi.cient n is linked to the Nusselt number Nu and 
quantifies the integral heat transfer. In fact, we have used our numerical (FEM) results 
to determine the transferred heat q. The method is outlined in section 2.3. Basedon q we 
determine n via equation (2.42p). The obtained values n for various Grashof numbers 
are plotted in figure 4b as squares. An increase of n with increasing Gr is obvious. We 
check these heat transfer data by using Iiterature correlations for the forced flow and 
natural convective flow heat transfer from a cylinder. Following Gnielinski (1975) and 
Churchill & Chu (1975) for laminar flow the empirical correlations 

(3.1) 

_ 1 [ 0.387(PrGr)11
6 

]

2 

Dnc = 2Nu Pr = 2Pr 0.6 + 8; 27 , 

( 1 + (O~~g)9/16) 
(3.2) 

hold. For the specific Reynolds and Prandtl numbers in the experiment Re= 39.4, Pr= 
6.128 the correlations yield 
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O.jc = 3.12, 

O.nc = ( 0.43 + 0.279 G?fB) 
2 

The Nusselt number is deflned by 

Nu='!!_ h d 
2 ,\ , 

(3.3) 

(3.4) 

(3.5) 

where h is the heat transfer coefficient. Both O.Jc and O.nc are given in flgure 4b by 
solid and dashed lines. Our results from the FEM simulations for 0. ( cf. squares in 
flgure 4b) compare reasonably well with the correlations (3.3,3.4). Firstly, the value 0.1c 

is about 10% lower than the extrapolated value for Gr --+ 0 from our data. Secondly, 
the increase of 0. with increasing Gr occurs perfectly parallel to the increase of O.nc in 
correlation (3.4). The curve O.nc( Gr) is shifted to lower values, though. This is due to 
the presence of the forced flow within the present heat transfer data in flgure 4b (symbols 
0). 

4. Results 
In the following sections we shall give results obtained for the flow fleld in various 

parameter regimes. As we irrtend to compare with plane experiments, we restriet our
selves to the plane problern below. We shall mainly focus on the dimensionless vertical 
velocity proflies W(X, Z;) in three different planes downstream, above the cylinder. In 
fact, temperature profiles 0(X, Z;) of reasonable quality have only be obtained for the 
case of a strongly-heated cylinder. Thus, the discussion of the temperature fleld remains 
restricted to this case. 

The isothermal problern is discussed to check the various results from the experiments, 
the asymptotic model and the numerical (FEM) simulations for consistency. Here, the 
particular aspects of the forced flow can be verifled, such as the development of the far 
(and near) wake. This part does not contain new results, as all features of far wakes 
presented here areweil known in Iiterature (e.g. Berger (1971)). The part related to the 
weakly-heated cylinder is devoted to verify the particular aspects of weak buoyant forces 
within the asymptotic model. Thus, the parameters are chosen such, that the asymptotic 
model applies. Finally, the part related to the stongly-heated cylinder gives results for 
parameter regimes outside the validity range of the asymptotic model. Here mixed 
convection with strong buoyant forces is present and only a comparison of experimental 
flndings and numerical (FEM) simulations occurs reasonable. 

4.1. Isothermal wake 

In flgure 5 our results for the flow fleld are collated for an isothermal situation. We 
recognize in flgure 5a measured vertical velocity proflies W(X, Z;) in three planes Z; 
above the cylinder. The data points are given on both sides of the symmetry line X = 0 
in addition to Ieast-square flts of the symmetric form 

(4.1) 

We recognize in the plane Z = 7. 75 (symbols V') a pronounced wake proflle with 
a substantial velocity deflcit on the centre line X = 0. As we move downstream to 
Z = 12.75,17.75 (symbols D, o) the velocity deflcit decreases. Moreover, the width of 
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FIGURE 5. Profiles of the dimensionless vertical velocity W(X, Zi) downstream of an isother
malal cylinder. a) gives the experimental data and corresponding Ieast-square fits, b) 
gives results from the asymptotic theory and c) gives results from the numerical simula
tions. The distances above the cylinder are Z; = 7.75, 12.75, 17.75, the parameters are 
Re = 39.4, Cw = Cw = 1.8. 

the wake (in X) increases downstream. Employing equation (2.85p) we can estimate the 
small parameter in the asymptotic representation to be 

CwVRe 
r;;; 177 = 0.57, 0.45, 0.38, 

4v"vzi 
(4.2) 

for the planes Zi = 7.75, 12.75, 17.75. Thus, particularly for Z1 the asymptotic repre
sentation may be critical. 

Figure Sc shows the corresponding profiles obtained by means of the numerical (FEM) 
simulations. Here the identical features of the wake are observed, namely a widening 
and a fill-up of the wake profile with increasing Z. Quantitatively, two characteristic 
differences arise in comparison with the experimental profiles in figure 5a. Firstly, the 
numerical simulations give velocities W > 1 ouside the wake. In contrast, the exper
imental profiles feature W :::; 1 in the outer region. This discrepancy arises from the 
different methods of scaling. In the numerical Simulations we force W = 1 at the inflow 
boundary and W oo --+ 1 is obtained at the side boundary for large X. The flow field 
ouside the wake region, thus, has velocity amplitudes W > 1 for reasons of continuity. 
In the experiments the velocity W 00 for x --+ oo is not accessible, since the channel has 
a finite width in both horizontal directions. Therefore, W 00 is taken from the plateau 
of the measured profiles w(x, z;), which typically occurs in some outer region lXI > 4. 
By scaling with the averaged plateau value, all experimental profiles approach W 00 = 1 
outside the wake region. This discrepancy, therefore, is introduced artificially by the 
non-perfect scaling of the experimental data. 

Secondly, the velocity defizit in the centre of the wake (X = 0) from the numerical 
simulation occurs smaller by about 12 % if compared to the experimental findings. This 
is likewise a consequence of the non-perfect experimental conditions. While the numeri
cal and asymptotical results are obtained for a perfectly two-dimensional situation, the 
experimental results suffer to some degree from the presence of the walls. We, thus, have 
in the experiment a slight acceleration of the forced flow in the outer region and not 
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a perfectly-constant w=. These experimental imperfections are outlined in section 3.2 
in some detail. In fact, three-dimensional numerical simulations have shown, that this 
discrepancy with respect to the wake amplitude is caused by the acceleration of the outer 
flow. While we have tobe aware that the velocity amplitudes arenot perfectly in accord, 
a careful analysis of the width of the wakes from both experimental measurements and 
numerical simulations proves excellent agreement. 

The results for the vertical velocity profiles W(X, Z;) from the asymptotic model are 
collated in figure 5b. Following Schlichting (1982), we use a resistance coefficient of 
Cw = 1.8 for the Reynolds nurober Re = 39.4. We have compared our (numerically 
integrated) asymptotic results against the second-order expansion of Goldstein (1933), 
given likewise in Berger (1971). The proflies of both velocity components agree perfectly. 
Moreover, we find perfect agreement both with respect to the amplitude and the width of 
the wake between asymptotic model and experimental data. The asymptotic theory does 
not take into account the displacement effect of the cylinder as a solution for !arge z is 
ii::tferred. This gives proflies with W :S 1 outside the wake region. The loss of momentum 
due to the presence of the cylinder, on the other band, is correctly reflected within the 
asymptotic model. 

We find experimentally the power law 

1- W(O, Z) <X z-0 .63 (4.3) 

for the wake amplitude. The corresponding asymptotic and numerical dependencies 
are 

1 - W(O, Z) <X z-o.596' (4.4) 

1- W(O, Z) <X z-0
·
608

. ( 4.5) 

In all cases the power laws give an excellent representation of the data in the complete 
range 7.75 :S Z :S 17.75. The width of the wake J in the following is based on the 
criterion 

1- W(ö, Z) 
1- W(O,Z) 

1 

100 
(4.6) 

For the width J we find experimentally no single power law dependency for the complete 
range in Z. On the other band both asymptotic and numerical results are perfectly 
represented by the power laws 

(4.7) 

5 <X zo.461. (4.8) 

These power laws are obtained from Ieast-square fits. The experimental data for Z > 
10., though, follow closely the above given theoretical dependencies. 

4.2. Weakly-heated cylinder 

In this section we shall give two typical results for flow fields featuring weak buoy
ant forces. The first example is obtained for a Grashof nurober of Gr = 102.5. Em
ploying equation (2.86p) for the validity of the asymptotic model, we obtain for Z; = 
7.75, 12.75, 17.75, 
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FIGURE 6. Profiles of the dimensionless vertical velocity W(X, Z;) and its buoyant contribu
tion WA(X, Z;) downstream of a weakly-heated cylinder. a) gives the experimental data and 
corresponding Ieast-square fits, b) gives results from the asymptotic theory and c) gives results 
from the numerical simulations. The distances above the cylinder are Z; = 7.75, 12.75, 17.75, 
the parameters are Re= 39.4, cw = 1.3, Gr = 102.5, !1 = 3.49, Pr= 6.13. 

r!Gr"[Zi 
5/2 = 0.10, 0.13, 0.15 « 1. 

Re 
(4.9) 

Thus, we have ensured that the asymptotic model is valid for all Z;. The results on 
the profiles W(X, Z;) are collated in figure 6. Even though t.he profiles look qualitatively 
similar in comparison to the forced flow profiles ( cf. figure 5), an inspection of the 
amplitudes reveals, that buoyant forces have accelerated the flow in the wake centre. 
Given identical Reynolds numbers (Re= 39.4), the measured profiles for forced flow give 
values of W(O, 7. 75) ~ 0.24 on the centre line. For the weak buoyant flow ( Gr = 102.5) 
we find, in contrast, W(O, 7.75) ~ 0.52. The velocity deficit in the wake centre is, thus, 
reduced by a considerable amount due to buoyant foces. 

In figure 6a the measured data from the experiment are plotted as symbols and Ieast
square fits of the symmetric form 

(4.10) 

are given as solid lines. The last term in the form (4.10) is supposed to account for the 
buoyant contribution in the profiles. The form ( 4.10) allows for a reasonably-accurate fit 
to all experimental data and has been chosen based on the asymptotic results in equation 
(2.80p). In figure 6a in addition to the measured profiles W(X, Z;) the contribution from 
the buoyant forces 

(4.11) 

is plotted. This is obtained experimentally from the difference between the actual 
profiles for Gr = 102.5 and the profiles for pure forced flow ( Gr = 0). The experimental 
data in figure 6a suggest, firstly, wake-type profiles W(X, Z;), whereas the velocity defizit 
decreases downstream for increasing Z. Even though the data and fits indicate to some 
degree that the width of the wake increases downstream, a definitiv statement on this 
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FIGURE 7. Profiles of the dimensionless vertical velocity W(X, Z;) and its buoyant contribu
tion WA(X, Z;) downstream of a weakly-heated cylinder. a) gives the experimental data and 
corresponding Ieast-square fits, b) gives results from the asymptotic theory and c) gives results 
from the numerical simulations. The distances above the cylinder are Z; = 7.75, 12.75, 17.75, 
the parameters are Re= 39.4, cw = 1.0, Gr = 341.7, Q = 3.56, Pr= 6.13. 

question cannot be given due to slightly-scattered data. Secondly, the extracted profiles 
W A (X, Z;) of the buoyant contribution have a narrow Gaussian shape at the first plane 
zl = 7.75 (symbols \7) which develops downstream into a broader shape with smaller 
amplitudes. 

The results from the asymptotic model occur in figure 6b. The overall profiles W (X, Z;) 
agree perfectly in both amplitude and width with the measured profiles at alllocations Z; 
(cf. figure 6a). From the asymptotic profilesadefinite increase ofthe wake width down
stream can be inferred. Inspecting the buoyant contribution WA(X, Z;), we recognize 
the asymptotic results to perfectly resemble the experimental data from figure 6a. Again 
a Gaussian profile, which decreases in amplitude and develops a broader shape down
stream is obtained. The numerical-simulation results in figure 6c, finally, agree well with 
both the experimental and the asymptotic results as far as the overall profiles W(X, Z;) 
are concerned. The buoyant contribution WA(X, Z;), in contrast, exhibits in allplanes 
Z; smaller amplitudes. Moreover, the amplitudes of the buoyant contribution remain 
almost identical in all three planes Z;. Here some discrepancy remains in comparison 
with both experimental and asymptotic findings, which both give decreasing amplitudes 
of the buoyant contribution downstream. This discrepancy is a direct consequence of 
the numerical forced-flow results (cf. figure 5c). Here the velocity defizit in the wake 
has been underpredicted, such that the difference between forced flow profiles and weak 
buoyant profiles gives likewise poor results. 

Figure 7 relates to a somewhat higher temperature of the cylinder. In this case we 
have a Grashof number of Gr = 341.7 and can already infer from the velocity profiles 
W(X, Z;), that buoyant forces have led to a characteristic change. From relation (2.86p) 
we estimate the small parameter within the asymptotic model. We find in the three 
planes Z; = 7.75, 12.75,17.75 

OGrVZi 
5/2 = 0.35, 0.45, 0.53. 

Re 
(4.12) 
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FIGURE 8. Profiles of the dimensionless vertical velocity W(X, Z;) and its buoyant contribu
tion WA(X,Z;) downstream of a strongly-heated cylinder. a) gives the experimental data and 
corresponding Ieast-square fits, b) gives results from the asymptotic theory and c) gives results 
from the numerical simulations. The distances above the cylinder are Z; = 7.75, 12.75, 17.75, 
the parameters are Re= 39.4, cw = 0.9, Gr = 1025.1, n = 3.89, Pr= 6.13. 

These numbers indicate that at least for !arge Z; we are at the Iimit of the asymptotic 
model, as buoyant forces develop a substantial contribution to the flow field. 

We continue to discuss the experimental findings, as collated in figure 7a. All mea
sured velocity proflies W(X, Z;) indicate a pronounced buoyant acceleration of the fluid 
in the wake centre. The experimental Observations are in good agreement with the corre
sponding asymptotic and numerical proflies W(X, Z;) (cf. figures 7b, 7c). This indicates 
that the asymptotic model remains perfectly valid even for this !arge Grashof number of 
Gr = 341.7. Aside of the velocity amplitudes, likewise the total width of the wake and the 
width of the inner buoyant zone are predicted correctly, both by the asymptotic model 
and the numerical simulation. If we focus onto the buoyant contribution WA(X, Z;), we 
find in all proflies consistently a decrease of the amplitudes and an increase of the width 
of the buoyant zone downstream. The amplitudes of WA(X, Z;) from the numerical sim
ulation again have some discrepancies in comparison with the experimental amplitudes 
in figure 7a. The reason for this discrepancies is outlined above. 

4.3. Strongly-heated cylinder 

In figure 8 we have collated velocity profiles, obtained for a !arge Grashof number of 
Gr = 1025.1. For such a high cylinder temperature the hot fluid in the wake develops 
strong buoyant forces, comparable to inertial forces. This can be checked via relation 
(2.86p), which gives in the three planes Z; = 7.75, 12.75,17.75 

0-GrVZ:. 
5/2 = 1.14, 1.46, 1.72. 

Re 
(4.13) 

Clearly, within this range of parameters the asymptotic model is not expected to be 
valid. Therefore, only a comparison of experimental and numerical (FEM) data occurs 
reasonable. 

The experimental velocity proflies W(X, Z;) in figure 8a show only in the first plane 
Z 1 = 7. 75 a discernible wake contribution ( cf. symbols 6). The proflies further down-
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F!GURE 9. Profiles of the dimensionless temperature e(X, Zi) downstream of a strongly-heated 
cylinder. a) gives the experimental data and corresponding Ieast-square fits for Z1, Z3 , b) 
gives results from the asymptotic theory and c) gives results from the numerical simula
tions. The distances above the cylinder are Z; = 7.75, 12.75, 17.75, the parameters are 
Re= 39.4, Cw == 0.9, Gr == 1025.1,0 == 3.89, Pr== 6.13. 

stream (Z2 = 12.75,Za = 17.75) are dominated by a strong buoyant jet in the centre. 
An inspection of the buoyant contribution W A (X, Z;) reveals, in accord with the weakly
heated cases, a narrow Gaussian profile with decreasing centre amplitude and increasing 
width downstream. The asymptotic model ( cf. figure 8b) fails to predict these profiles 
at a reasonable accuracy. Firstly, the overall profiles W(X, Z;) exhibit far to high am
plitudes in the centre. Secondly, the buoyant contribution WA (X, Z;) in figure 8b shows 
even increasing amplitudes downstream. This is qualitatively in contradiction with the 
experimental findings in figure 8a. The widening of the Gaussian profile of WA (X, Z;) 
from experiment and asymptotic model, though, happens to be in accord. To summarize, 
the asymptotic model for large Gr, outside its range of validity, overpredicts the buoyant 
effects. 

The results from the corresponding numerical simulation are collated in figure 8c. The 
overall velocity profiles W(X, Z;) show a reasonable agreement with respect to the ex
perimental data in figure 8a. The acceleration of the flow in the centre as one moves 
downstream, though, is slightly overpredicted by the numerical simulation. The buoy
ant contribution W A (X, Z;) reveals a Gaussian profile of constant centre amplitude (in 
Z), which develops broader downstream. Once more, there remains a discrepancy with 
respect to the amplitude WA(O, Z;): The experiment indicates a distinct decrease of the 
centre amplitude downstream. 

As mentioned above, temperature profiles 0(X, Z;) have been measured in the exper
iments at much lower accuracy. This is due , firstly, to a temperature increase of always 
less than 0.2K in the first measuring plane and even smaller temperature amplitudes in 
the measuring planes downstream. Secondly, for high cylinder temperatures the situation 
is not perfectly stationary, leading to further errors from time-averaging. Nevertheless, 
it occurs useful to compare temperature profiles for the strongly-heated cylinder at least. 
The data are collated in figure 9. The experimental data occur in figure 9a for two planes, 
namely Z1 = 7.75, Z3 = 17.75, in form of the symbols o and 6. Moreover, least-square 
fits of the form 
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FIGURE 10. Profiles of a) the dimensionless horizontal velocity Ü(X, Z3 ), b) the dimen
sionless vertical Velocity W(X, Z3), c) the dimensionless temperature e(X, Z3) downstream 
of a weakly-heated body. The distance above the body is Z3 = 17.75, the parameters are 
Re= 39.4, cw = 1.0, Gr = 341.7, r! = 3.56. 

(4.14) 

are given by the solid and dotted lines. The profiles are of Gaussian type, whereas the 
peaktemperaturein the centre 0(0, Z;) decrease downstream and the width ofthe heated 
zone Oth increases downstream. A qualitatively identical behaviour is obvious from the 
numerical simulation profiles in figure 9c. Quantitatively, however, the peak temperatures 
0(0, Z;) from the numerical simulation are somewhat higher. Further, the widening of 
the heated zone Oth downstream appears more pronounced in the experimental data. 
This discrepancy is presumably caused by slight temporal oscillations downstream of the 
cylinder in the experiment. This causes a more effective transport of momentum and 
heat in the horizontal direction X. Moreover, the time-averaging during the temperature 
measurements may Iead to a smearing of the profiles. 

Finally, the temperature profiles from the asymptotic model in figure 9b dramatically 
overestimate the peak temperature 0(0, Z;). Moreover, the width development is not in 
accord with the experimental data. This is not surprising, as equation (4.13) proves that 
we stress this model outside of its range of validity. 

4.4. Effect of Prandtl number 

At this stage we discuss the influence of various parameters onto the flow and temperature 
fields. In section 4.1-4.3 we have verified the asymptotic model against both experimental 
and numerical (FEM) findings. Thus, we carry this discussion purely on base of the 
asymptotic model, always obeying its range of validity (cf. section 2.4.3). Moreover, we 
restriet to the plane problem. One interesting parameter to discuss is the Prandtl number 
Pr. The Prandtl number characterizes the ratio of molecular transport of momentum 
and heat within the fluid and, thus, is a fluid property. 

In figure 10 we collate a set of results, obtained for Prandtl numbers in the range 
0.1 ::; Pr::; 100. The results are obtained for mixed-convective conditions and a weakly
heated body, i.e. the parameters are Re= 39.4, Gr = 341. 7. The profiles are taken in a 
distance of Z3 = 17.75 downstream of the body. From the temperature profiles 0(X, Z3 ) 

in figure lOc the influence of the Prandtl number is immediately obvious. For a !arge 
Prandtl number of Pr= 100 we have a poorly-conducting fluid, causing a narrow heated 
zone of thickness Oth :::: 0.3. In contrast, a small Prandtl number of Pr = 0.1, due to 
good heat conduction in the fluid, Ieads to a wide heated zone of thickness Oth :::: 9. The 
thickness of the heated zone, hereby, is defined by 
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8(8th, Z;) 1 
8(0, Z;) = 100. (4.15) 

Similarly, the amplitude 8(0, Z3 ) of the Gaussian-type profiles is strongly dependent 
on the Prandtl number. Here we find an increase of the centre temperature 8(0, Z3 ) 

with increasing Prandtl number. A careful analysis of all data reveals that both the 
width of the heated zone 8th and the centre temperature 8(0, Z) follow a power law 
in the investigated range 5. S Z S 20. For the complete range of Prandtl numbers 
0.1 S Pr S 100 we find the behaviour 

(4.16) 

8(0, Z) oc Pr0
·
523

. ( 4.17) 

The power law behaviour of both quantities can likewise be found from the leading
order term in equation (2.81p). The second-order term in equation (2.8lp) does not 
change this behaviour significantly. 

Depending on the temperature field, the buoyant forces will either be concentrated in 
the centre (cf. Pr= 100), or will be distributed over a wide range (cf. Pr= 0.1). The 
vertical velocity profiles W(X, Z3 ) in figure lOb reflect this, as for Pr = 100 only in a 
narrow centre zone the fluid is accelerated to velocities W(O, Z3 ) 2::: 1. For Pr= 0.1, in 
contrast, a wide range of fluid inside and outside of the wake experiences buoyant forces 
and, thus, only weak acceleration. For Pr = 1 we find the width of the heated zone 8th 
and the width of the wake 8, defined by equation (4.6), to be equal, i.e. 8 ~ 8th ~ 3. 
The width of the wake 8 remains independent of Prandtl number. The behaviour of 
the centre amplitude W(O, Z) has likewise been analyzed with respect to apower law 
behaviour. Here, only in the limited range 0.1 S Pr S 10 the data can be approximated 
by the power law 

W(O, Z) oc Pr0
·
032

. ( 4.18) 

For values Pr> 10 the amplitudes W(O, Z) asymptotically approach a constant value 
for Pr-+ oo in allplanes Z;. Physically this is expected, since even temperature profiles 
in form of a delta-function (for Pr-+ oo) due to viscous effects lead to buoyant jets of 
finite amplitude and width. 

The horizontal velocity profiles Ü(X, Z3 ) in figure lOa in all cases show a transport of 
fluid from the far-outside region into the wake. The maximum amplitude of Ü(X, Z3 ) 

occurs for Pr= 100 at a position X ~ 1.5. The curve for Pr-+ oo, in fact, cannot be 
distinguished from the curve obtained for Pr= 100. For smaller Prandtl numbers the 
amplitude of Ü(X, Z3 ) in the intermediate region decreases. The amplitude of Ü(X -+ 
oo, Z3) in the far-outside region, on the other band, is not dependent on Pr. 

4.5. Effect of Grashof number 

The influence of the Grashof number, or in physical terms of the body temperature, 
is a further interesting parameter. We carry this discussion, once more, for the plane 
problem, based on the asymptotic model. Even though the above verification of the 
asymptotic model is performed for a heated body ( Gr 2::: 0), we extend the discussion to 
a cooled body ( Gr < 0). In figure 11 a set of profiles, obtained for Grashof numbers in 
the range -300 S Gr S 300 is collated, whereas the Reynolds number is kept constant 
at Re = 39.4 and all profiles are taken in a distance Z3 = 17.75 downstream of the body. 
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FJGURE 11. Profiles of a) the dimensionless horizontal velocity Ü(X, Z3 ), b) the dimension
less vertical velocity W(X, Z3), c) the dimensionless temperature Gr e(X, Z3) downstream 
of a weakly-heated/weakly-cooled body. The distance above the body is Z3 = 17.75, the 
parameters are Re = 39.4 and Pr = 6.13. The further parameters are approximated by 
n ::= 3.5, cw ::= 1.8- 0.003Gr. 

Dimensionless profiles of the velocity components Ü(X, Z3 ) and W(X, Z3 ) are plotted 
in figures lla,b and the sign-sensitive quantity Gr G(X, Z3 ) occurs in figure 11c. The 
quantity Gr 6 is via 

(4.19) 

directly proportional to the actual temperature [T(X, Z)- T00 ] of the fluid. 
From the temperature profiles in figure llc we recognize the expected Gaussian profiles 

across the wake and we find from the dotted profiles increasingly hot fluid in the wake 
centre for increasing Grashof numbers (cf. Gr = 150, 300). For Gr = 0 we recover the 
isothermal wake (solid profile). With decreasing Grashof numbers (cf. Gr = -150, -300) 
we have the body cooler than the ambient fluid and, thus, the dashed temperature 
profiles show cold fluid in the wake centre. Independent of the Grashof number, the 
heatedjcooled zone is of thickness Öth ::= 1. The centre amplitude Gr 6(0, Z3 ) is found 
to behave like 

Gr6(0 Z) <X Gr0 ·
967 

, 3 , ( 4.20) 

which indicates that G(X, Z), following equation (2.81p), does not develop a depen
dency on Gr. The form function H(ry) in equation (2.81p) remains independent of Gr. 

The kinematic effect of the hot/cold fluid in the wake onto the vertical velocity 
W (X, Z3 ) can be inspected in figure 11 b. Here we find an acceleration of the hot fluid in 
the wake centre from the dotted profiles (cf. Gr = 150, 300) if compared to the isother
mal wake ( Gr = 0). This effect has already been discussed in sections 4.2 and 4.3. Cold 
fluid in the wake, in contrast, is retarded due to its higher specific weight. This can be 
inferred from the dashed profiles obtained for the cooled body (cf. Gr = -150, -300), 
which show an increasingly strong velocity deficit in the wake centre. Thus, cold fluid has 
a similar effect as an increase of the drag coefficient, as both lead to more pronounced 
wake profiles. The centre amplitude W(O, Z3 ) of the vertical velocity almost exactly 
follows the proportionality 

(4.21) 

As both form functions F(ry), K(ry) in equation (2.80p) are independent of Gr, this 
behaviour is in agreement with the explicit linear dependency in equation (2.80p). 
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FIGURE 12. Profiles of the dimensionless vertical velocity W(X, Z 1 ) downstream of the 
cylinder for various temperatures n. a) gives the experimental data and corresponding 
Ieast-square fits, b) gives results from the asyrnptotic theory and c) gives results from the 
numerical sirnulations. The distance above the cylinder is Zt == 7. 75, the parameters are 
Re== 39.4, Pr== 6.13, Gr == 0, 102.5, 341.7, 1025.1. 

The profiles of the horizontal velocity component U(X, Z3) are given in figure lla. 
For the isothermal body (cf. Gr == 0) the solid profile indicates a flow of ambient 
fluid into the wake centre (U < 0), which persists for X ---+ oo. The heated body (cf. 
Gr = 150, 300) clearly intensifies the inward flow, as the dotted profiles show !arger 
amplitudes for X ---+ oo. This is a consequence of the vertical acceleration of the hotfluid 
in the wake centre, which in turn demands a higher supply of fluid from the ambient. 
If the body is cooled (cf. Gr = -150, -300) the situation develops quite differently. 
Now the vertical retardation of the cold fluid in the wake centre may Iead even to a 
horizontal flow outward into the ambient (U > 0), as obvious from the dashed profiles. 
The amplitude U(X ---+ oo, Z3 ) of the horizontal velocity far outside follows the law 

( 4.22) 

The almost identical power laws in equations ( 4.21 ,4.22) prove the consistency of these 
results, asd independent of Gr conservation of mass (cf. equation (2.13)) is preserved. 
The last term in equation (2.79p) is responsible for the behaviour 71---+ oo. Both form 
functions G(ry),I(ry) do not have a depende~cy on Gr. Thus, in all cases (2.79p-2.81p) 
the dependencies on Gr are explicitely known. 

The above statements concerning the influence of the Grashof nurober Gr onto the flow 
field can be verified by the experimental measurements and by the numerical simulations 
of the vertical velocity profiles W(X, Z;). A comparison of these profiles in the plane 
Z1 = 7.75 is conducted in figure 12. We recognize a reasonably good agreement of the 
proflies obtained by all three methods. The agreement holds for all Grashof numbers, 
whereas slight discrepancies occur for the case of the strongly-heated cylinder with Gr == 
1025.1. Here the asymptotic model is stressed outside its range of validity. A further 
experimental verification can be obtained from a comparison of the measured centre 
amplitudes W(O, Z3) in the plane Z3 = 17.75 and the power law (4.21), found from the 
asymptotic model. We exclude the data for Gr = 1025.1 and find from the experimental 
data the Ieast-square fit 
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W(O, Z3) ~ 0.581 + 1.126 · 10-2 Gr1
. (4.23) 

Thus, the experimental data at good accuracy confirm the linear law in the range of 
moderate Grashof numbers. 

5. Conclusion 
We have studied the flow and temperature fields in wakes above heated bodies. The 

problern is either plane for infinitely long horizontal cylindrical hoclies or axisymmetric for 
spherical bodies. In all cases we consider the laminar flow of a Newtonian fluid, subject 
to inertial forces, viscous forces and buoyant forces. Buoyant forces are modelled by 
invoking the Boussinesq approximation. This mixed-convection problern is characterized 
by three dimensionless groups, namely the Reynolds number, the Grashof number and 
the Prandtl number. 

We use three principal means of investigation. (a) In the body of this article an 
asymptotic model for the problern is developed, which, based on boundary layer theory, 
is valid for !arge Reynolds numbers and large Peclet numbers Pe = RePr. Further 
expansions restriet to the far wake and to weak buoyant forces. Within the framework 
of the asymptotic model the buoyant effects occur essentially as a linear superposition 
to the forced flow. This model allows to deduce analytical expressions in selfsimilar 
form for the flow and temperature fields in both plane and axisymmetric geometry. 
The analytical expressions explicitely give most of the parameter dependencies, while 
a system of ordinary differential equations for the shape functions is left for numerical 
integration. Only the thermal shape functions exhibit a dependency on the Prandtl 
number. To validate the asymtotic model, experiments and FEM simulations in a plane 
geometry are employed. (b) The experiments are performed in a vertical water channel 
(Pr~ 6), where a horizontal isothermal cylinder of 6mm diameter is positioned. Both, 
proflies of the vertical velocity and proflies of the temperature are measured in distances 
7.75 ::::; z/d ::::; 17.75 above the cylinder by means of Laser Doppler Anemometry and 
thermocouples. The parameter range in the experiments is Re ~ 40, 0 ::::; Gr ::::; 1025. 
(c) The FEM simulations use a commercial code (FIDAP 7.6) to compute the flow and 
temperature fields on a mesh of about 25,000 nodes. The computational domain extends 
horizontally from the symmetry line sufficiently outward, i.e. 0 ::::; x/d::::; 30. Vertically 
it extends sufficiently far into both upstream and downstream direction and cover the 
range-50::::; z/d::::; 60. 

We find in the heated wake above the cylinder buoyant forces leading to an acceleration 
of the flow and, thus, to a faster reduction of the velocity deficit in the wake centre. For 
strong heating this acceleration may even Iead to vertical velocity amplitudes !arger than 
the forced flow amplitude, particularly in the wake centre. The amplitude of the buoyant 
contribution in the vertical velocity profile increases with increasing Grashof number. 
To be precise, the buoyant forces are governed by the group Gr/ Re2

• In conjunction 
with the vertical movement of fluid, a horizontal transport of fluid from far outside into 
the wake centre is characteristic for the isothermal wake. This horizontal transport is 
also modified by buoyant forces. For the heated wake strong buoyant forces demand a 
more intense horizontal transport of fluid into the wake centre. Therefore, the horizontal 
velocity far outside the wake increases likewise with increasing Grashof number. For a 
cooled wake, instead, a retardation of the fluid in the wake centre is present. This reduces 
the horizontal flow into the wake centre and may even cause a horizontal flow outward 
from the wake centre into the ambient. 
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The Prantdl number governs the width of the thermal wake, which in general is dif
ferent from the width of the kinematic wake. Small Prandtl numbers result in a wide 
thermal wake causing buoyant forces across the complete kinematic wake and outside 
therefrom. Thus, as heat is distributed over a wide range, the local temperature rise and 
the resulting buoyant force appear relatively weak. In contrast, large Prandtl numbers 
are responsible for narrow thermal wakes, liberating buoyant forces in a narrow subregion 
of the kinematic wake. Thus, a slender buoyant jet in the wake centre with relatively 
strong acceleration develops. 

The asymptotic model has been validated against both experiments and FEM simula
tions. This implies that for plane geometry the model predictions compare weil with the 
results obtained from experimens and numerics and the range of validity is carefully eval
uated. As the model is likewise developed for axisymmetric geometry, an experimental 
or numerical validation of this aspect occurs worthwhile. There are further possibilities 
to extend the model. Of course, the laminar assumption restricts to a limited parameter 
range and, therefore, does not permit to apply the model to technical apparatuses as e.g. 
heat exchangers. An extension of the present model towards turbulent flow, therefore, 
occurs highly attractive. In fact, the Reynolds-averaged conservation equations could 
serve as basis for the development of an analogaus turbulent model. After the boundary 
layer approximation, the far-wake expansion and the assumption of weak buoyant forces 
are applied, these equations for the time-averaged velocities and temperature are almost 
identical with the laminar set of equations. However, we would have a turbulent shear 
stress and a turbulent heat flux present as opposed to the diffusive terms in the lami
nar set of equations. Here reasonable closure conditions would be required. Thus, the 
laminar model may deliver the scheme for the treatment of the turbulent problern under 
similar assumptions and approximations. 
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