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Abstract

A model describing formation and evolution of the anode plasma in the
accelerating gap of an applied-B ion diode is developed. Ionization processes
in the gap and hydrogen release from a Ti-Pd film are included. The
developed model was used to analyze the quasineutral layer containing a
self-consistent electric field and the pre-anode electrostatic sheath from which
the ion beam is extracted. Electron diffusion from the cathode is assumed to
be anomalous resulting in homogeneous electron density over the main
volume of the gap. Scenario calculations have been carried out for diode
voltages rising from zero up to several million volts and operation times of
several tenths of nanoseconds. For the analysis an analytical and a 2 dim
numerical model are used. Regimes are found with complete exhaustion of
the quasineutral layer followed within a few nanoseconds by diode current
interruption.

Zusammenfassung

Das Anodenplasma in einer fremdmagnetisch isolierten
Ionendiode

Ein Modell zur Beschreibung von Aufbau und zeitlicher Entwicklung des
Anodenplasmas im Beschleunigungsspalt einer fremdmagnetisch isolierten
Ionendiode wurde entwickelt. Wasserstofffreisetzung aus einem Ti-Pd Film
und Ionisationsprozesse im Spalt werden in Modell berücksichtigt. Das Modell
wird zur Analyse der quasineutralen Zone mit ihrem selbstkonsistenten
elektrischen Feld und der Preanodenschicht mit elektrischem Potential von
welcher der Ionenstrahl extrahiert wird, verwendet. Die Elektronendiffusion
von der Kathode wird als turbulent angenommen. Damit stellt sich eine
konstante Elektronendichte im Spalt ein. Die Untersuchungen wurden für
verschiedene zeitabhängige Diodenspannungen mit Maximalspannung bis zu
mehreren Megavolts und für Zeiten bis zu 100 ns durchgeführt. Für die
Rechnungen wurden ein analytisches und ein 2 dim numerisches Modell
verwendet. Im Verlauf des Diodenbetriebes kommt es zum vollständigen
Abbau des Plasmas in der quasineutralen Zone und als Folge davon zum
Zusammenbruch des Diodenstromes innerhalb weniger Nanosekunden.
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1. INTRODUCTION

In applied-B ion diodes schematically shown in Fig. 1 ion beams are generated
by acceleration of the ions in an electric field E applied across the anode-cathode
gap1. The external magnetic field B applied parallel to the electrodes prevents a free
propagation of electrons thus providing mainly an ion current. A theoretical modeling
of different physical phenomena in the accelerating gap should accompany the design
of the ion diodes. The different processes in the gap can be divided in those
developing in the main volume of the gap and those occuring in a rather thin plasma
layer near the anode from which the ions are extracted before the acceleration.
Properties of the anode plasma, such as its non-homogeneity along the anode surface,
its thickness and chemical content, are important for formation of an ion beam of
small microdivergence. In this work mainly processes occuring in the thin anode
plasma layer are analyzed. The discussed model covers also those processes occuring
in the gap being necessary for a consistent theoretical description of the diode. Further
implementation of additional mechanisms important for a realistic comparison of
theoretical and experimental results will be done in a second step of the modeling.

Up to now no consistent model of the anode plasma including the plasma
formation, the self-consistent discharge development and the mechanism of ion
extraction from the anode plasma during the operation cycle is existing. Such a model
would be useful for better understanding of the processes in the anode plasma of
applied−B ion diodes.

In this report it is assumed that the anode plasma is produced by a
perpendicular electric field E rising up for further acceleration of the ions across the
gap between the anode plate and the virtual cathode. Such approach seems to be
reasonable as an intermediate step on the way to a self-consistent numerical modeling
of the ion diode in which the principal mechanisms of the anode plasma production
are taken into account.

For investigation of the anode plasma during the operation cycle of
102 ns with gradual increase of the gap voltage ϕa from zero up to a maximal voltage
ϕmax both the development of the neutral gas layer and the dynamics of the breakdown
in the applied magnetic field are important. In this work an analysis appropriate for
such problems is done. As an example it is shown that at short delay times between
the heating of the hydride film and the application of the perpendicular electric field
the anode plasma layer exists only for some limited time of several tenths of
nanoseconds. Then the operational cycle interrupts because of the exhaustion of the
ion source. Thus the lower limit for the delay time is obtained. Numerical simulations
of the ion diode start from an initially empty gap. Then during a few nanoseconds
hydrogen gradually vaporizes from the anode due to the heating of the film. The
process of the hydrogen release from the film is simulated using the simple model for
hydrogen diffusion in solid material. The vaporization continues during all the
operational cycle up to reaching ϕmax.

The modeling is split into two parts. The first part contains a preliminary
analysis based on analytical models in which a non-homogeneous gas layer of neutral
atomic hydrogen is assumed beforehand. Anode plasma formation is discussed and
the main equations for the anode plasma are derived. Then processes of electron
diffusion and ionization in crossed E and B fields, structure of a pre-anode
electrostatic sheath and development of a quasi-neutral layer are considered without
accounting for the erosion of the anode plasma. This analysis is necessary for a
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principal understanding of the interaction between the physical processes, which
allows to simplify the numerical simulation of the anode plasma layer carried out
afterwards. In the second part a detailed description of a code for a self-consistent
calculation up to ϕa = ϕmax is given. First numerical calculations showed a physically
reasonable development of the discharge both for the initial stage of the external
electric field applied across the gap and for the second stage with prevailing role of
the self-consistent field and of erosion effect. Results for calculated scenarios with
ϕmax = 1, 2 and 5 MV are presented. Despite the rather early stage of modeling the
obtained characteristic plasma parameters are discussed in relation to the available
experiments2-5.

2. STATE OF THE ART IN ANODE PLASMA FORMATION AND
MODELING

There are several ways for formation of anode plasma. For example, it can be
produced by photon ionization of the background gas irradiated with a flash lamp6.
Rather robust for production of the anode plasma are anode flashover discharges7 and
discharges in an additional electric field parallel to the anode8. In the flashover
discharge the anode plasma is produced due to application of the accelerating voltage.
Electrons available in the gap impact the anode plate and cause a breakdown in the
gas desorbed from the anode surface after the impact. Because the accelerating
voltage is a necessary condition for the anode plasma production, this is an example
of ‘passive’ discharge. By applying an additional electric field near the anode surface
an ‘active’ discharge is obtained. If assuming the possibility for a voltage drive at
initial stage of the pulse, this traditional separation becomes rather conventional. A
substantial shortcoming of the passive flashover discharge is the rather complicated
chemical content of the anode plasma.

Since several years developments of active sliding discharges for production
of the anode plasma are under way9,10. The sliding discharge develops at the anode
plate made of a dielectric material after a breakdown in the parallel electric field,
which also is directed parallel to the magnetic field. In order to improve the
homogeneity of the anode plasma, the anode plate is covered by a thin titanium film
of controlled thickness 500 Å, and Ti is protected from oxygenation by palladium film
of thickness 200 Å.  Beforehand this film structure is filled with hydrogen, which
accumulates mainly in Ti.  Initially the electric field produces a current in the hydride
film thus heating it and then releasing hydrogen. With increasing gas density the
breakdown condition near the anode is fulfilled and the sliding discharge develops
creating the anode plasma. After this stage the accelerating electric field E is applied
perpendicularly to the anode.

The physics of magnetically insulated ion diodes and of anode plasmas is
described in Refs. 11 and 12. In Ref. 11 the investigations concerning the flashover
anode plasma and in Ref. 12 also those for the sliding discharge plasma are reviewed
comprehensively. Recently experimental investigations were carried out on anode
plasmas produced by the sliding discharge2 and on plasmas in the main volume of the
gap3. The gap plasma is investigated in many details although there are remaining
principally not solved problems. Good agreement between theory (the Desjarlais
model13) and experimental observations is obtained during the most important stage
of rising up the voltage. This phase of the diode operation is followed after about
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102 ns by a breakdown between the anode and cathode electrodes. Attempts to
develop numerical and analytical models for the gap breakdown are described in
Refs. 14 and 15.

As to the modeling of the anode plasma, there are still many questions
concerning its behavior and formation of such important parameters as the plasma
density and temperature. For example the role of the self-consistent electric field,
which remains in the anode plasma after development of the discharge, seems to be
not investigated properly. One of the available theoretical analyses5 addresses the
flashover discharge. The electric field in the anode plasma was ignored. The density
of the desorbed gas was not mentioned, perhaps because it was implicitly assumed to
be rather small and comparable with the electron density of 2⋅1015 cm−3. This value is
much less than the gas density in the sliding discharge with previously vaporized gas,
which is about three orders of magnitude larger9. The analysis of Ref. 9, although
addressing the sliding discharge, concentrates mainly on the development of
avalanches in the pre-anode layer of the vaporized hydrogen thus predicting only a
maximal value of the electric field. The electron density was obtained to be much less
than that of the gas. Thus the anode plasma is rather weakly ionized.

Recently a 1 dim hydrodynamics model for the atomic hydrogen anode plasma
was presented16 including references describing details of the algorithms used in
previously developed codes17,18. The investigation concerns mainly flashover
discharges because the initial density is rather small and the anode plasma get to be
fully ionized. The electric field is directed perpendicularly to the anode. It was
assumed that initially near the anode exists either a hydrogen plasma or a neutral gas
of hydrogen atoms of density 1016 cm−3 occupying homogeneously a pre-anode layer
of 2 mm thickness. Calculations were carried out for only 4 ns having been started
after the instantaneously applied maximal voltage across the gap ϕmax. In the
modeling a gap size of 1.5 cm and an applied magnetic field B of 4 T were used.
Results were given for ϕmax = 5 MV and 10 MV. The erosion rate of the anode plasma
was obtained. From the mentioned references it is not clear how the elementary
kinetic processes in the applied magnetic field, which play a decisive role in the
discharge, such as ionization, charge exchange and elastic and inelastic collisions,
were modeled. Calculated values of the self-consistent electric field were not given.

The presence of the self-consistent electric field in the anode plasma can
substantially influence the energetic spectra of the charged particles thus making
necessary to account for the fields, e.g. in algorithms used for interpretation of
spectroscopy measurements. Slowly oscillating or quasi-stationary electric fields,
which are significantly perpendicular to the anode plate, had been measured in a
flashover discharge plasma experimentally11 but these fields rather arbitrarily were
prescribed to instabilities developing inside the plasma. In this respect the problem
may also concern the extraction of the ions from the edge of the plasma for further
acceleration. The extraction occurs in electrostatic sheaths enveloping the anode
plasma. The instabilities in the sheaths may also produce non-isotropic electric fields
vanishing inside the anode plasma. Thus investigation of the extraction mechanism,
which is coupled with the processes in the anode plasma, is also important.

This report presents only a very first step on this way. It is assumed that the
anode plasma is produced due to the accelerating electric field E at an early stage of
its rising up. Thus an intermediate conception of a passive discharge with a driving of
the voltage is suggested. The analysis of a passive discharge is reasonable at the
beginning of a consistent investigation concerning both the anode plasma and the
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main volume of the accelerating gap. The rather direct mechanism of plasma
production only by the perpendicular component of the electric field allows to analyze
in detail principally important processes in the frame of a rather compact modeling.
Moreover, as it is discussed in chapter 12, the active discharges may also transform
into passive discharges due to a self-consistent transformation of the initially parallel
electric field into the perpendicular field.

A simple model of the neutral gas production by an independent heating of the
hydride film covering the anode is presented. In experiments rather contaminated
plasmas are obtained but only the theoretical case of pure atomic hydrogen anode
plasma is analyzed in this work. Thus the modeling of hydrogen diffusion through the
protective film doesn’t include the reaction H + H → H2 at the anode surface, which
was considered in Ref. 9. Due to this simplification in diffusion equation the
boundary condition at the anode surface is given as nH|anode = 0 with nH the hydrogen
density in the film.

For the analysis of the anode plasma a rather moderate change of the applied
magnetic field during the operation time is not principally important. Thus B in this
work is assumed to be homogeneous across the gap and stationary. At least for the
first stage of the diode operation before the gap breakdown this assumption is
adequate. According to Ref. 3, during this stage B deviates from its average value of
3 T for not more than 30% what is quite sufficient for neglect in the simplified model.
It is shown that in the anode plasma the self-consistent electric field is getting much
less than in the main volume of the gap. Due to this the diamagnetic current of
electrons becomes rather small thus resulting in a homogeneous magnetic field inside
of the anode plasma. The current collapse13, which occurs after gap breakdown, is not
analyzed here. An adequate analysis for later stages seems to require not only to take
into account the change of the magnetic field in the gap but also the implementation
of some turbulent mechanisms for the gap plasma14, this is out of the scope of this
work.

It is assumed also that the values of B are not constrained by the critical
magnetic field Bс as B > Bc. The critical field defines a margin of magnetic insulation
against collisionless penetration of electrons through the gap after their starting from
the cathode in crossed homogeneous E and B fields. In order to avoid this kind of gap
breakdown it is assumed that near the cathode the electric field strength is always
small due to development of a virtual cathode and the cathode electrons cannot freely
increase their energy crossing the gap because of some mechanism of their cooling.
The nature of the cooling is not discussed here, but this assumption agrees well with
the experimental conclusions about rather small kinetic energies of electrons in the
gap. For example according to Ref. 3, from the measurements of the dispersion
coefficient in the gap plasma by an interferometer it was concluded that the plasma is
rather cold. More experimental information on the temperature of the gap plasma is
not available.

3. ZONE MODEL OF HYDROGEN DIFFUSION IN CRYSTALS

The problem to be considered here concerns the dynamics of the hydrogen
release from a structure consisting of a film covered by a thin protective layer of
thickness h2 after fast heating from the initial temperature Tmin to the final temperature
Tmax during the time th. This process is used for filling the pre-anode space with a
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neutral gas needed for the plasma formation before applying high voltage to the
anode-cathode gap. In Ref. 9 a Ti film covered by a Pd layer of h2 = 200 Å,
Tmin = 300 K, Tmax = 1900 K (melting temperature of Ti) and th ≈ 20 ns is used. A
rather simple zone model of hydrogen diffusion in the structure is considered below
and the gas distribution in the pre-anode is calculated providing initial and boundary
conditions at the anode for further consideration of the electric breakdown of the gas.

Particle energy states E of hydrogen atoms dissolved in a plane layer structure
are schematically shown in Fig. 2. The parameters E1 and E2 define the energy levels
of localized states in the layers, U1 and U2 define the bottom energies of the zone of
free states of hydrogen atoms relative to the neighboring layers (x > 0 describes the
empty space of the anode-cathode gap). The values of Ei and Ui (i = 1, 2) should be
chosen to fit appropriately needed properties of real films.

The population density of the dissolved gas at the localized states is designated
as nl1 and nl2, the gas density of free states as nf1 and nf2, the whole gas density as n1
and n2 (ni = nli + nfi). The free population obeys a diffusion equation accounting for
spatial changes of the potential energy of atoms, for excitations of atoms from
localized states to free states and for reverse transitions from free states to localized
states. The complete equation is given as
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with Di the diffusion coefficient, µi the mobility of the free atoms in the internal
potential field U(x), νei and νdi the transition frequencies between localized and free
states. The density of the localized states is described by the equation
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li e i fi d i= − + (2)

The spatial change of U(x) is shown in Fig. 2. The potential is constant inside
each layer of the film but jumps near the layer boundaries. The Einstein relation is
assumed for the coupling of the mobility and the diffusion coefficient: Di = µiT with T
the homogeneous temperature inside the film. For the diffusion coefficient the
approximate expression Di = CDiaiυT is used with ai the crystal elementary cell size,
υT characteristic velocity of free atoms given as υT = (2T/mH)1/2. The realistic
hydrogen mass mH is used in the expression for υT because the effect of mass re-
normalization of hydrogen quasi-particles is included into the fitting constant CDi as
well as the characteristic free path of the quasi-particles in the crystalline structure.
The relation between the frequencies νei and νdi is chosen in the simplest way by
assuming Local Thermodynamic Equilibrium (LTE). In this case the Boltzmann
distribution is valid for the ratio of the localized and free population densities. Then
the relation of the frequencies is given as νei/νdi = (T/Ei)exp(−Ei/T). The factor T/Ei
accounts qualitatively for the statistical weight gli and gfi of the localized and the free
states. The weights are assumed to be proportional to characteristic atomic energies:
gli ∝ Ei, gfi ∝ T.

For νdi it is assumed that its value is large enough to provide LTE at each
position x of the structure. In this case the value of νdi doesn’t appear in the diffusion
equation and thus is not important. The simplest estimation for νdi is used according
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to νdi = (υT/ai)(mH/mi). Nevertheless this estimation accounts for the large difference
of the hydrogen and crystals atomic masses (for Ti-Pd structure m1 = 46 mH,
m2 = 106 ma, a1 ≈ 3⋅10−8 cm, a2 ≈ 4⋅10−8 cm). At T = 1.9⋅103 K it is obtained
υT = 5⋅105 cm/s, νd1 ≈ 4⋅1011 s−1, νd2 ≈ 1011 s−1. From these estimations it follows that
LTE is valid for the time intervals of both heating (th = 2⋅10−8 s) and diode operation
(tmax = 5⋅10−8 s).

After replacing the last two terms of Eq. (1) by the Left Hand Side (LHS) of
Eq. (2) and then in case of LTE neglecting LHS in Eq. (2), Eq. (1) is transformed into
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Defining then the new function
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Eq. (3) is transformed finally into the diffusion equation for Ni as
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Boundary conditions for Eq. (5) are defined as

∂
∂
N
x

x1 0→ → −∞at , N x2 0 0= =at (6)

The boundary condition at x = 0 is approximate. It is valid in case of small density of
the neutral gas near the anode plate compared to the characteristic gas density in the
transition layer (layer 2). This condition is always fulfilled because of the large
difference of the diffusion velocity through the structure and the expansion velocity of
the gas across the gap. Calculating the flux of hydrogen atoms through the anode
surface on the base of Eq. (5) and Eq. (6), the distribution of neutral gas in the gap is
obtained in the next chapters. There independent problem of the gas expansion is
solved using obtained in this chapter time dependent number flux of the gas at x = 0.

The results of solution of Eq. (6) for the case of E1 = E2 = U1 = U2 = 0.5 eV,
CD1 = 4, CD2 = 3.8, Tmin = 300 K, Tmax = 1900 K are shown in Fig. 3 and Fig. 4. Fig. 3
demonstrates that the change of the gas density in the storage layer (layer 1) is
negligibly small. In the calculation the temperature rises up linearly reaching Tmax at
time 20 ns and then keeps constant. Due to this after 20 ns the evolution becomes
quasi-stationary with the gas distribution in the transition layer being practically
constant. Fig. 4 shows the time dependence of the hydrogen number flux from the
anode plate. The flux reaches the value of 2⋅1023 cm−2s−1 during 20 ns and then keeps
practically constant.
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4. ANODE PLASMA FORMATION

At a given initial distribution of the neutral gas main features of the operation
scenario can be qualitatively described in the following way. In the course of the
voltage increase electron impact ionization of the neutral gas produces a quasi-neutral
plasma layer which occupies the volume of the gas distribution near the anode
(starting electrons can be provided anyhow and the reason of their appearance in the
anode-cathode gap is not important). The plasma layer screens the anode from the
cathode thus an electric potential drop arises mainly between the layer and the
cathode. This layer plays the role of a virtual anode from which ions start to accelerate
freely across the applied magnetic field. The voltage distribution is given in Fig. 5 as
well as the densities of the neutral gas and the plasma components - ions and
electrons.

Fig. 5 not only demonstrates the behavior of the main parameters but also
shows some results of the calculations for maximal voltage increase ∆ϕ of 1 MV and
a gas density ng of 1017 cm−3. The plasma is accumulated according to the thickness of
the neutral gas distribution and is weakly ionized (the electron and ion densities ne
and ni in the layer are two orders of magnitude smaller than ng). Three regions are to
be considered separately, the anode electrostatic sheath in which ne and ni are
significantly different, the quasineutral plasma layer with ne ≈ ni and the main volume
of the gap which is also an electrostatic sheath with different ne and ni adjusted to the
cathode. The voltage changes mainly in the cathode sheath in which the ion beam is
accelerated. But despite the small voltages the anode sheath and the quasineutral layer
are necessary for the generation of the ion beam.

As it is shown in chapter 8, in the quasineutral layer ionization may increase
the plasma density but don’t contribute to the ion flux through the diode. The ion flux
arises due to ionization in the anode electrostatic sheath where quasineutrality fails
and electric charge separation becomes significant. The more general calculations of
the second part of this report based on a numerical model (chapters 9 and 10) account
also for the contribution in the quasineutral layer and for the contribution of the
cathode sheath.

Principally important may be the rather thin anode sheath. Due to the large
variation of the electric field and the maximal density of the neutral gas the ion
production in the anode sheath may dominate. This could result in a destabilizing role
for the ion current through the diode and it could induce field emission (desorption) of
impurities from the anode plate. Therefore its proper consideration is necessary. Due
to earlier exhaustion of the neutral gas in the sheath at a low density of the neutrals, it
may get not attached to the anode during all the operation time tmax. In this case an
ionization wave arises causing erosion of the quasineutral layer from the anode edge.
At the wave front ionized atoms leave the anode sheath moving through the rest of the
quasi-neutral layer to the cathode. As will be shown in the second part, at the cathode
edge the erosion can dominate resulting in complete exhaustion of the anode plasma.

In the first part a preliminary case without accounting for the exhaustion of the
anode plasma is analyzed using mainly analytical method. Pure atomic hydrogen is
chosen as neutral gas. The anode plasma is assumed to weakly ionized. The main
parameters of the applied-B ion diode are chosen for this case as follows:

Size of the gap between the anode and the virtual cathode L = 1 cm
Maximal time of the diode operation tmax = 5⋅10−8 s
Thickness of the neutral gas near the anode l = 0.1 cm
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Density of the neutral gas ng0       = 1017 cm−3

Maximal voltage between the electrodes ϕmax = 106 V
Strength of applied magnetic field B = 3 T
Maximal ion flux to the cathode jmax=2⋅1021cm−2s−1

5. MAIN EQUATIONS DESCRIBING THE ANODE PLASMA
                AND QUALITATIVE ANALYSIS

Due to the rather strong magnetic field electron diffusion in the quasineutral
layer towards the anode plate is rather weak, therefore a fluid dynamic description of
electrons is useful (but it is shown below that it is not sufficient). The lifetime of an
electron in the gap could exceed tmax thus the electron fluid is described by the non-
stationary continuity equation for the electron density ne:

∂
∂

∂ υ
∂

ν
n
t

n
x

ne e e
i e+ = (7)

with t the time, x the distance from the anode plate, υe the diffusion velocity of
electrons to the anode across the magnetic field and νi the electron impact ionization
frequency. For weakly ionized plasmas both υe and νi are given as function of the
electric field strength E and they are directly proportional to the neutral gas density ng.
For short times tmax recombination is small, but an accurate calculation of the
dependencies of υe(E) and νi(E) is important for an adequate description of the
electron fluid. The calculation of υe(E) and νi(E) is a kinetic problem which is
separated from the hydrodynamic problem of Eq. (7).

The lifetime of an ion that crosses the gap or the anode sheath is much shorter
than tmax, hence the accelerated ions are treated as quasi-stationary. Ions are
collisionless in the sheaths, their Larmor radius is much larger than the free path and
the gap size. Collisionless ions are described by a kinetic equation. Its solution in the
cathode sheath is given as:
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with ma the ion mass, ϕ the electric potential (E = −dϕ/dx), j0 the ion flux incoming to
the cathode sheath. The parameter xb denotes conventional separation boundary
between the cathode sheath and the quasineutral layer, ϕb the potential at the
boundary. A similar equation is valid in the anode sheath (at this xb → 0, ϕb → ϕa
with ϕa the anode potential, but j0 → 0 because no incoming flux from the anode plate
is assumed).

The collisionless approximation for ions is not valid in the quasineutral layer.
There the most important collision process is charge-exchange. For hydrogen its
cross-section is σex ≈ 5⋅10−15 cm2. The cross-section depends rather weakly on the ion
velocity thus this dependence is neglected. The ion free path λ i at the density of
neutral gas ng ~ 1017 cm−3 is λ i ~ 1/ngσex = 2⋅10−3 cm. Thus in the quasineutral layer of
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thickness of l = 0.1 cm charge exchange processes dominate. Therefore in the layer
ions are described by the fluid equation for the plasma density n = ni = ne as:

∂
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νn
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n
x

ni
i+ = , υ λi i ae E m= 2 (9)

with υi the mean ion velocity. Eq. (9) describes in simple way ions appearing after
charge exchange or those produced by ionization and then accelerated in the electric
field between collisions. Between the collisions the electric field is assumed to be
locally homogeneous. After passing the distance λ i ions transfer their positive charge
to neutral atoms which start from zero velocity after ionization. The mean velocity of
neutral atoms is negligibly small (see the Conclusions) and thus not calculated in this
part.

The electric potential is described by the Poisson equation:

( )d
dx

e n n ne e c i

2

2 4
ϕ

π= + − . (10)

The density nec describes electrons appearing in the gap not due to ionization but after
emission from the virtual cathode situated at x = L . The boundary condition for
Eq. (10) at x = 0 is chosen as ϕ(0) = ϕa. The anode potential ϕa is given as rising up
function of t. At the cathode it is valid ϕ(L) = 0. If considering the cathode sheath an
additional boundary condition E(L) = 0 should be used at the virtual cathode in order
to obtain nec. The density nec is assumed to be homogeneous due to an effective
turbulent diffusion caused by a strong electric field in the gap outside the region of the
anode plasma.

In the analysis carried out in the first part the problem is split into the
following three sub-tasks.
1. Calculation of the distribution of electrons in crossed magnetic and electric fields

for obtaining the diffusion velocity υe(E) and the ionization frequency νi(E)
(chapter 6).

2. Analysis of the anode sheath for formulation of the boundary conditions at the
anode edge of the quasi-neutral plasma including the value of the potential drop
and the energy spectrum of ions which come from the sheath (chapter 7).

3. Calculation of the potential drop and the density distribution in the quasineutral
anode plasma and estimations of ionization for the cathode sheath (chapter 8).

A comprehensive analysis of the cathode sheath has been done elsewhere13,19.
There potential distributions in the gap and space charge limited Child-Langmuir
number fluxes of ions jCL (amplified by electrons coming from the virtual cathode) are
analyzed. The potential drop across the anode plasma layer is much less than that
across the cathode sheath. Therefore the ion flux ji is practically determined by the
values of ϕa and L and is equal to the Child-Langmuir flux given according to

( ) ( )j j e m
Li CL a a
a≈ =

−ϕ π ϕ
8

2
1 2

3 2

2 . (11)

With L = 1 cm and ϕa = 106 V it is obtained jCL = 2⋅1021 cm−2s−1.
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The system of Eqs. (7) – Eq. (11) mathematically defines the problem to be
solved. In the following a short review of the problem is given. In accordance with
Eq. (11), the flux ji is a given function of time because of a given time dependence of
ϕa. As it will be shown in the next chapters, the thickness a of the anode sheath is
rather small: a << l. In a thin sheath the time derivative term in Eq. (7) is neglected
resulting in a quasi-stationary problem for the anode sheath (the same is valid for the
cathode sheath). In the relatively thick quasineutral layer the spatial derivative term is
neglected in Eq. (7) because of the small diffusion velocity of the electrons. Thus
comparing Eqs. (7) and (9) at ne = n and υi >> υe it is obtained that the flux ji(x) = nυi
is constant over the quasineutral layer: ji ≈ j0. If the whole ion flux is produced in the
anode sheath, then the density in the quasineutral layer is obtained from Eq. (9) as:

n
j

e E mi a

≈ 0

2λ
(12)

Making time derivative of Eq. (12) and replacing ∂n/∂t at n = ne by the Right Hand
Side (RHS) of Eq. (7) (in which the spatial derivative term is neglected), the equation
for the electric field in the layer is obtained using Eq. (11) as:

( )1
2

3
2E

E
t

E
d
dti

a

a∂
∂

ν
ϕ

ϕ
+ = (13)

To demonstrate the character of the solution of Eq. (13) an exponential dependence of
ϕa on the operation time tmax is assumed: ϕa ∝ exp(t/tmax). In this case a stationary
solution E(x) exists. Assuming for simplicity for the ionization frequency a linear
function of E: νi ∝ ngE, the solution of Eq. (13) is obtained as E ∝ 1/ng(x). Hence the
electric field increases with decreasing gas density. At the edge of the gas distribution
the electric field increases rapidly and the quasi-neutrality fails. Thus in the cathode
sheath the Poisson equation has to be solved. A detailed analysis is given in chapters 6
to 8.

6. ELECTRON DIFFUSION AND IONIZATION
                IN CROSSED ELECTRIC AND MAGNETIC FIELDS

For calculation of the electron diffusion velocity υe(E) and the ionization
frequency νi(E) the following assumptions are used: the magnetic field B is directed
along the z-axis, the electric field E is directed along the x axis, the y-axis is
perpendicular to both vectors, along the y- and z-axis translational symmetry is valid.
The fields are homogeneous and stationary. The electron motion in crossed electric
and magnetic fields is shown schematically in Fig. 6. The trajectory of collisionless
electrons in a magnetic field is a circle. The presence of the electric field causes an
E×B drift along the y-axis. The x-coordinate of an electron can only slightly deviate
from the position xc of the leading center. Collisions cause a shift of the electron
trajectories in x-direction. Only the interaction of electrons with the neutral gas is
taken into account because the ionization degree is assumed to be small. The gyration
frequency ωLe is assumed to be much larger than the characteristic frequency of
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elastic and non-elastic electron scattering by the gas. The collisions are assumed to be
instantaneous and isotropic.

The equation for the collisionless motion of electrons is given as20

[ ]m d
dt

e
ce

v E vB= − +�
�
� �

�
�1 (14)

The solution of Eq. (14) is well known as gyration in a frame moving along the y-axis
with the velocity υD = cE/B of the E×B drift:

θυυ cos⊥=x ,   Dy υθυυ −= ⊥ sin ,   υ z = const ,   x xc
Le

= + ⊥υ
ω θsin (15)

with υ⊥  the constant projection of the electron velocity onto the xy-plane in the
moving frame, θ = ωLet + θ0 the angle of the gyration phase, ωLe = eB/mec the electron
Larmor frequency and xc the x-coordinate of the leading center.

Ionization in crossed magnetic and electric fields is quite different from that in
parallel fields. Electrons cannot directly accelerate along the electric field lines. They
increase their kinetic energy in the electric field only in the course of relatively slow
diffusion across the magnetic field due to elastic collisions with the atoms. Such
electrical heating up to the ionization threshold energy is significantly hampered by a
relatively small energy loss at elastic collisions and by non-elastic collisions with
excitation of atoms. In principle the problem of the kinetic energy balance should
include electron collisions with excited atoms, but in our simplified analysis all atoms
are assumed to be in their ground state. Hence only three kinds of electron impact
with neutral atoms are considered: elastic collisions, excitation, and ionization.

Elastic collisions with hydrogen atoms are described by the following
approximate expression for the cross-section21:

( )
σ

σ
ε ε

e l
e l

e l k ik
=

+
0

2
1

(16)

with σ0el = 4⋅10−15 cm2 the maximal cross-section at εk = 0, εi the ionization threshold
energy with εi = 13.6 eV, εk the electron kinetic energy with εk = meυ2/2. The factor
1+kel with kel = 8 is a decreasing factor of the elastic collision cross-section at the
kinetic energy equal to the ionization threshold energy.

Collisional excitation is described by the Van-Regemorter formula22 as:

( )
σ σ

ε
ε

γ ε ε
ε εe x e x n

n

i

n

k n

k n

f=
�

�
�

�

�
�

−
�0

2 1
(17)

with σ0ex the characteristic cross-section with σ0ex = 1.3⋅10−15 cm2. The summation is
over the excited energy levels of the atoms. fn are the oscillator strengths and εn the
excitation energies of the levels. The function γ is approximated analytically as

( ) ( )γ u u u u= − + + −0 01 015 6 5 6 7 0 852 3. . . . . (at 0 < u < 6)



12

The terms of the sum in Eq. (4) vanish below the excitation thresholds: γ = 0 at u < 0.
At u > 6 the function γ is approximated as γ(u) = (√3/2π)ln(1+u). The oscillator
strengths and energy levels for excitations from the ground state (the Layman series)
are given23 as (f1,ε1[eV]) = (0.416,10.2), (f2,ε2) = (0.079,12.09), etc. Due to the fact
that the oscillator strength of the transition (0 → 1) is much larger than other ones,
only one level (n = 1) is implemented now.

The ionization cross-section is given by an approximation formula according
to

( )σ σ
ε ε

ε ε
i i

k i

k i

=
−

+
0 2

1

2
(at εk > εi) (18)

with σ0i the characteristic cross-section with σ0i = 7⋅10−16 cm2. At εk < εi the
ionization cross-section is equal to zero. The maximum of function σi(εk) occurs at
εk = 4εi ≈ 54 eV. At ionization collision the impacting electron losses amount εi of its
kinetic energy for release of a secondary electron. It is assumed that the rest of kinetic
energy is afterwards divided equally between both the electrons.

For an adequate calculation of the diffusion velocity, and the ionization
frequency and the distribution function of electrons electron collisions are simulated
by the Monte-Carlo method, i.e. by random tests for electron evolution with averaging
of the results. The Uniform Random Generator (URG) is used. Initially an electron is
starting having zero velocity, gyrating in crossed fields and is undergoing collisions
from time to time. The cycle of calculation corresponds to a collision. At each
collision the gyration phase θ is chosen as θ = 2πr with r the next URG value. The
x−coordinate of the electron and its velocity vector at the collision as well as its
kinetic energy is calculated using Eq. (15). The whole cross-section σ is calculated on
the base of Eqs. (16) – (18) as σ = σel + σex + σi. The time since the previous collision
is given as

τ
υσc

gn
=

1
(19)

with υ the velocity at the moment of the collision. The kinetic energy after the
collision changed according to −2εkme/ma if the probability σel/σ gets large enough:
σel/σ > r1 with r1 the next URG value. Otherwise the kinetic energy is changed as
(εk − εi)/2 if σi/σ > (1 − r1), otherwise as εk − εex (in the modeling εex = ε1 is used). The
random vector of the electron velocity after the collision is calculated as

υ υ πx a pr r= −1 22 cos ,   υ υ πy a pr r= −1 22 sin ,   υ υz ar= (20)

with ra and rp the next URG values. Then the new position of the leading center is
calculated using Eq. (15) and this cycle is repeated until fluctuations of the results
become negligibly small (practically it is enough to simulate about a million collision
cycles). Counters for the ionization collisions N, for the final position xc of the leading
center and for the collision times t give then the averaged diffusion velocity and
ionization frequency as
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υe
cx
t

= , ν i

N
t

= (21)

For the calculation of the energy distribution function Fe(εk) it is assumed that
during the interval τc given by Eq. (19) the electron has the kinetic energy of the next
collision moment. This assumption would give exact result for Fe at the limit of
infinitely long calculation. The function Fe(εk) is given as a table with values in some
definite energy intervals εj < εk < εj+1 with j the index of the intervals ∆εj = εj+1 − εj.
Each table value Fj is collected as the sum of times τc for which the kinetic energy
belongs to the interval ∆εj. Finally the distribution function is normalized per one
electron, i.e. Fj obeys the condition

Fj j
j

∆ε =� 1 (22)

From Eq. (19) follows that τc is reversely proportional to ng. The same is valid
for the time collector t. Thus if running up to a given number of ionization collisions
N then νi ∝ ng in accordance with Eq. (21). The change of the leading center at
collisions doesn’t depend on ng (it depends only on the value of the magnetic field and
on the kinetic energy of the electron), the same is valid for the final position xc.
Therefore it is valid υe ∝ ng in accordance with Eq. (20). Thus there is a scaling law
for ng due to which it is sufficient to calculate νi and υe for only one neutral gas
density. The distribution function F(ε) after normalization doesn’t depend on ng.

Another scaling law concerns the magnetic field strength B . The symbol B
appears only in the electric drift velocity υD = cE/B and in the electron Larmor radius
rLe = υ⊥ /ωLe ∝ 1/B . Thus the electric field strength E appears only in Eq. (15) together
with B . Hence in order to keep the same values of electron kinetic energy and the
same evolution in the velocity space at a change of B it should be changed also E
proportionally to B . Electron shifts in the collisions are proportional to the Larmor
radius, thus the final position of the leading center xc changes reversely proportional
to B. As a result it is obtained:

( )ν χνi gn E B= ,   ( )υ χµe
gn

B
E B= ,   ( )F E Be F k= χ ε , (23)

It is sufficient to calculate the functions χν, χµ, χF at some B as functions of E and εk
only and then to use these functions for arbitrary B.

Results of calculations at ng = 1017 cm-3 and B = 3 T are shown at Figs. 7 – 9
for the functions νi(E), υe(E), εmid(E) with εmid = �εFe(ε)dε  the mean kinetic energy of
the electron. The distribution function Fe is shown in Fig. 10 for different electric
field strengths E. Table 1 demonstrates the distribution of energy loss of electron for
elastic and non-elastic collisions at B = 3 T.
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7. ANODE ELECTROSTATIC SHEATH

As will be shown below, the anode sheath is rather thin, hence if neglecting
the neutral gas exhaustion a quasi-stationary approximation of Eq. (7) can be applied
as

dn
dx

ne e
i e

υ
ν= (24)

This results in the solution ne obtained as:

( )( )n
j

xe
e

= −0

υ
ξexp , ( ) ( )

( )ξ
ν
υ

x
x
x

dxi

e

x

=
′
′

′�
0

(25)

If neglecting the electron flux from the quasineutral layer, the electron flux
towards the anode at x = 0 is equal to the backward ion flux j0 at the boundary
between the anode sheath and the quasineutral plasma layer of thickness l. In the
analysis of the quasi-stationary problem the flux j0 is considered as a given constant
parameter. As it follows from Eq. (23), the relation νi/υe under the integral of Eq. (25)
doesn’t depend on ng. This function has a maximum value equal to 750 cm−1. Because
at constant B it depends on x only via E. After normalization on the maximum this
function is designated as k(E) and is shown at Fig. 11 for B = 3 T . In the anode sheath
the values of E are rather large, thus in accordance with Eq. (25) it is valid ξ ~ 1 at
x = a = 1/750 = 1.3⋅10−3 cm. The parameter a with a ∝ 1/B is used as the
characteristic sheath thickness. Since a << l, the investigation of the anode sheath for
the limit a/l → 0 is completed. In this limit charge-exchange collisions in the sheath
are neglected.

The ions are described by Eq. (8) and the electric potential by Eq. (10)
neglecting the small contribution of the cathode electrons (nec = 0). The boundary
condition for Eq. (10) at x = 0 is given as ϕ(0) = ϕa with ϕa the anode potential. If
a/l → 0, another boundary condition is given as ϕ(x) → ϕa − ∆ϕa at x → ∞ on an
infinitely small scale of the anode sheath with ∆ϕa the still unknown potential drop
over the sheath. Thus the equation for ϕ becomes

( )( )
( )

( )( ) ( )
( ) ( ) ( )( )

d
dx

e j
x

x
x d x

e m x xe a

x2

2 0
0

4
2

ϕ π
ξ

υ
ξ ξ

ϕ ϕ
=

−
−

− ′ ′

′ −

�

�

�
�

�

�

�
��

exp exp
(26)

The value of ∆ϕa is obtained from the requirement of smooth transition of the solution
of Eq. (26) to the solution of the quasineutrality equation ne = ni. The quasineutrality
equation at x → ∞ is obtained requiring in Eq. (26) the RHS to be zero. For a rather
small electric field E (E < 105 V/cm) a linear fitting for |υe| is used: |υe| ≈ µE with
µ = 50 cm2/s/V for ng = 1017 cm−3 and B = 3 T. It is valid µ ∝ ng/B2 at a constant E/B.

To solve the problem of Eq. (26) it is convenient to use ξ as a new coordinate
instead of x and the function u defined below in Eq. (29) instead of ϕ. The ion flux j0
is expressed via the maximal Child-Langmuir flux jCL(ϕmax) given by Eq. (11) as
j0 = Γ0jCL(ϕmax). Thus Eq. (26) is transformed as:
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( ) ( )
k

d
d

k
du
d

q
g kdu dξ ξ

η ξ
ξ
ξ

�

�
�

�

�
� = −

−�

�
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�

�
��

exp
, ( )u 0 0= , ( )u u∞ = ∞ (27)

with the parameters η, u, q, k and g given as:

η
π ϕ

ϕ
=

�

�
�

�

�
�

�
�
�

�
�
�

2

0

3 2 2

4
Γ max

*

a
L

(28)

( )
u a=

−ϕ ϕ
ϕ * , ϕ

µ
* =

2 2

2

e a
ma

(29)

( ) ( )
( ) ( )

q
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u u
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ξ ξ

ξ ξ

ξ
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d
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, E* = ϕ*/a (31)

The function q depends not only on ξ but also on the behavior of u(ξ′ ) for all ξ′  < ξ.
u∞ should be found from the requirement of zero RHS of Eq. (27).

For a = 1.3 10−3 cm and µ = 1.5⋅104 in CGS units it is obtained ϕ* = 1.3⋅103 V.
It is obtained also that ϕ* ∝ (B/ng)2. From Eq. (28) follows a limitation of parameter
η. For example for ϕmax = 106 V, L = 1 cm and if Γ0 < 1 it is obtained η < 0.1. At
other conditions, e.g. at larger ϕmax, η may get much larger.

From Eq. (31) it is concluded that the function k(du/dx) is a solution of an
algebraic equation. The function g accounts for deviations from the fitting function
|υe| ≈ µE. The function g is shown in Fig. 11 together with k. The electric field
strength E* = 106 V/cm. It is valid E*/B ∝ (B/ng)2 thus the range of the argument E in
Fig. 11 is sufficient if ng and B are limited as B3/2/ng ≤ 5⋅10−11 in CGS units. For others
ng and B the range has to be expanded by additional tabulation.

The solution of Eq. (27) is estimated for k = g = 1 in the following way. At
small ξ the ion contribution q(ξ) at the RHS of Eq. (27) can be neglected. Thus a
simplest approximate solution is obtained as:

u ≈ − +α ξ ηξ α0
1
2

2
0 ... (ξ << 1) (32)

The constant α0 is given as α0 = du(0)/dξ. Then the ion contribution is obtained as

( )q ξ ξ α≈ 2 0 (ξ << 1) (33)

At η >> 1 the transition to the quasineutrality region occurs at ξ << 1. To fit
the regions of the Poisson and quasineutrality solutions together at some point ξ = ξ1
the ion and electron densities there as well as their derivatives should be of the same
order. Thus, according to Eq. (27), it is valid dq/dξ ~ −(du/dξ)−2d2u/dξ2 and
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q ~ (du/dξ)−1. Using Eq. (32) and Eq. (33) for the estimation at the point ξ1, the
equations for ξ1 and α0 are obtained as

ξ
α α

1

0 0

1
~ ,

1

1 0 0
3ξα

η
α

~ (34)

From Eq. (34) it is obtained α0 ~ η1/3, ξ1 ~ 1/η1/3 and u(ξ1) ~ 1. Thus the initial
condition for the quasineutrality equation du/dξ = q−1exp(−ξ), which is valid at ξ > ξ1,
is established as u(1/η1/3) ~ 1. Using the dependence u = u(ξ1) + α0ξ for the estimation
of q(ξ) at ξ < 1, it is obtained du/dξ ~ (η1/6/ξ1/2)exp(−ξ). Integration of this estimation
equation results in u∞ ~ η1/6. Hence at η >> 1 the value of u∞ is formed mainly in the
quasineutral region.

Now it will be shown that at η << 1 it is valid ξ1 >> 1 and the value of u∞ is
formed mainly in the Poisson region. After neglecting q, a solution u(ξ) of the Poisson
equation with du/dξ vanishing at large ξ is obtained at 1 << ξ << ξ1 as

( )( )u = − −2 2 1 2η ξexp (35)

The calculation of q(ξ) with this u(ξ) after neglecting a small contribution of
exp(−ξ/2) under the square root in the integral of Eq. (30) gives q ~ 1/η1/4. Because it
is valid q(ξ1) ~ (du/dξ)-1exp(-ξ1) with u given by Eq. (12), it is obtained
ξ1 ≈ ln(1/√η) >> 1. The logarithm here is really of the order of one, i.e. it is valid
ξ1 > 1. Nevertheless in the estimation the inequality ξ1 >> 1 is used. Then from the
integration of the quasineutrality equation du/dξ = exp(-ξ)/q for ξ1 < ξ < ∞ the
increment of u is obtained as u∞ − u(ξ1) ~ η3/4. This is much less than the result of
Eq. (35) at ξ = ξ1. Hence in accordance with Eq. (35) it is obtained u∞ ≈ 23/2η1/2 at
η << 1.

This estimation demonstrates the existence and the principal physical features
of a solution describing the transition from the Poisson region with a strong electric
field to the quasineutral region with zero electric field. To obtain the numerical
solution it is necessary to account for the behavior of the function k and g . Since
k → 0 at small E, it is impossible to obtain formally a physically reasonable stationary
solution at x → ∞. But the real problem is a non-stationary one. Due to this at some
finite x the term ∂ne/∂t of Eq. (7) becomes larger than ∂(neυe)/∂x thus making the
consideration of exact limit E → 0 senseless. In order to keep the physical picture of a
smooth transition from the narrow sheath to a wide quasineutral layer a limitation of k
from below at small E is applied in the calculation (k > k0). Due to a rather weak
influence of k0 for u∞ the appropriate artificial value k0 = 0.2 is chosen.

From Eq. (8) follows the expression for the energy distribution function fi(ε)
of ions leaving the anode sheath as fi(ε) = (e−1E−1(x)dni/dx)|x:{eϕ(x)=ε} with ε the ion
kinetic energy.

The values of ∆ϕa = ϕ*u∞ for a possible range of η are shown in Fig. 12 as
results of the calculation using the function g and the corrected function k of the
Fig. 11. The electric field strength E for each η is maximal at the anode. This
maximum Ea increases as η increases and is equal to the maximal table value
Ea = 106 V/cm at η = 0.046. For this reason larger values of η are not considered. The
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values of η in the calculations are much less than in the estimation because typically
the values of k are significantly less than those used in the estimation. The mean
energy εimid of ions leaving the sheath for further propagation in the quasi-neutral
anode plasma layer is defined as εimid = �εfidε/ni. εimid is also shown in Fig. 12. The
mean ion energy is significantly less than the potential drop over the sheath
determined by the behavior of fi.

The sheath thickness is defined as the distance to the anode corresponding to
E/Ea = 0.1. The dependence of the thickness on η is shown at Fig. 13. It increases
significantly at rather small values of η. The thickness is much less than l hence the
smallness of the sheath compared to the anode plasma layer is confirmed. The
calculated behavior of the electric field and the densities of ions and electrons across
the sheath are shown in Fig. 14. In this calculation the anode electric field is equal to
320 kV/cm. The energy distribution function of ions at the boundary between the
sheath and the quasineutral layer is shown in Fig. 15 for η = 0.028. The maximum of
the distribution function at the ion energy of about 60 eV corresponds to the
maximum of the ionization cross-section and thus to the region of most effective
ionization in the sheath with E ≈ 80 keV/cm according to Fig. 7.

8. QUASINEUTRAL LAYER OF THE ANODE PLASMA

In the quasi-neutral layer the collisionless approximation for ions is no longer
valid. The most important ion collision process is charge-exchange schematically
shown in Fig. 16. Estimating the ion free path at a density of 1017 cm−3 of the neutral
gas it is obtained, that even for the sheath in principle the collisions are becoming
substantial. Hence in the quasineutral layer the charge exchange dominates. Therefore
in this layer ions are described by a fluid equation with υi mean ion velocity. Such a
model describes ions exchanging the neutral atoms after coming from the anode
sheath or those produced by ionization and then in both cases accelerated in the
electric field until the next collision. After passing the distance λex ions transfer their
positive charge to neutral atoms and then new ions accelerate starting from a
negligibly small velocity.

The ion current after leaving the anode sheath penetrates through the
quasineutral layer of the anode plasma. The thickness l of the layer is rather large
compared to the thickness a of the anode sheath (l >> a). For this reason at the
analysis of the layer the thickness of the anode sheath is neglected. Thus in the
modeling it is assumed that the ions enter the layer at the anode position x = 0. From
another hand, the layer thickness is much less than the gap size: l << L. Due to this
smallness the analysis of the layer is completed adequately for l/L → 0. The charge-
exchange collisions in the layer change the ion energy distribution function
significantly compared to the distribution of the entering ions. This change happens in
a ‘pre-sheath’ of the thickness λ i between the anode sheath and the layer. The pre-
sheath is not analyzed in this work because the drop of electric potential over it is
small compared to the potential drop over the anode sheath and over the quasineutral
layer.

In chapter 5 it was mentioned that the ion flux is constant over the quasineutral
layer. Due to this and using Eq. (9) the plasma density n in the layer is obtained as
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( ) ( ) ( )n x j m n x e E xa e x g= 0 2 σ (36)

with j0 the incoming ion flux. In Eq. (36) dependence on t is also assumed.
As was shown in chapter 7, the quasi-stationary ionization vanishes across the

anode sheath as a result of transition to the rather thick quasineutral layer. Formally
this is a consequence of neglecting the term ∂ne/∂t in Eq. (7). In the quasineutral layer
the term ∂(neυe)/∂x of Eq. (7) is neglected. The ionization doesn’t vanish only due to
the term ∂ne/∂t. Therefore Eq. (7) transforms as:

∂
∂

ν
n
t

ni= (37)

The initial condition for Eq. (37) is given as n(x) → 0 at t → −∞.
As was shown qualitatively in chapter 5, a rather simple solution is possible if

the voltage ϕa increases exponentially. If j0 is increasing exponentially, a simple
solution of Eq. (36) and Eq. (37) is possible as well. Such kind of scenario with
j0(t) = jCL(ϕmax)exp(3t/2tmax) providing appropriate understanding of the anode plasma
behavior is considered in this chapter. In addition the spatial dependence
ng(x) = ng0exp(-x2/l2) is assumed with l the thickness parameter of the layer. The time
dependence of j0 induces exponential increase of the plasma density, but the electric
field strength in the layer is obtained to keep constant. Thus it is valid:

( )n t t∝ exp max3 2 , ( )E E x= (38)

For the further analysis a convenient set of dimensionless variables is used as:

w
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exp
3

2
(39)

The potential ϕ* is defined by Eq. (29). The density n* is defined as

( )n j m l n eCL a a e x g
*

max
*= ϕ σ ϕ2 0 (40)

At ϕmax = 106 V, ϕ* = 1.3⋅103 V, l = 0.1 cm, σex = 5⋅10−15 cm2 and ng0 = 1017 cm−3 the
value of n* is obtained as n* ≈ 5⋅1014 cm−3. In accordance with Eq. (28), the time
dependence of the parameter η at these values of ϕmax and ϕ*, at the anode sheath
thickness parameter a = 1.3⋅10−3 cm and at the gap size L = 1 cm is obtained as
η ≈ 0.1Γ0 with Γ0 = exp(3t/2tmax). The given function Γ0(t) determines the evolution
of the anode sheath completely. Using the new variables Eqs. (1) and (2) are
transformed as:

( ) ( ) ( )ρ ξ ξ ξ= g w (41)

( ) ( )g wiξ ν α= (42)
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with g(ξ) = ng(ξ)/ng0 the normalized density of the neutral gas, ν i  = νi/νmax the
ionization frequency normalized at ng = ng0, νmax the maximal ionization frequency
(see the Fig. 7), α = 3/(2νmaxtmax) a dimensionless parameter. At tmax = 5⋅10−8 s and
νmax = 2.5⋅109 s−1 it is obtained α ≈ 10−2.

For α << 1 there are existing two formal solutions w of Eq. (42) corresponding
to the non-monotonic behavior of the ionization frequency. Only the solution of a
smaller value of w is physically reasonable in accordance with a decrease of the
electric field strength at α → 0. This branch of the reversed function Λ = −νi

1  is
shown at Fig. 17. Hence the dimensionless electric field strength is obtained as

( )( )w g≈ Λ α ξ (43)

As an example, the corresponding electric field strength E = (ϕ*/l)w, the potential
drop ∆ϕ(x) in the layer and the plasma density n = n*ρexp(3t/2tmax) obtained for the
mentioned scenario on the base of Eq. (41) and Eq. (43) are shown in Figs. 18 - 20.
The potential drop is given as

( ) ( )∆ϕ ϕ ϕ ϕ ξ ξ= − = �0
0

x w d
x l

*
/

(44)

The derivative of E in Fig. 18 tends to infinity at the right edge of ξ = ξm of the
quasineutral layer. Near this edge the term dE/dx is becoming comparable with the
term 4πeni of Eq. (10). Estimating Eq. (43) near ξ = ξm with the sign ‘−’ at ξ < ξm it is
obtained

( ) ( )22 exp1011.07 ξξ −−−≈w (45)

The size ∆x of the right charge separation region is obtained from the criterion
(ϕ*/l2)dw/dξ = 4πen*ρ as ∆x ~ 10−3 cm. Thus the charge separation near the
singularity at ξ = ξm is negligible.

Qualitative profiles of voltage and density distributions are shown in Fig. 5 at
ϕmax = 1 MV for the exponential increase of the anode potential. In the analytical
model the ion flux to the cathode is equal to the electron flux to the anode. At
ϕmax = 1 MV the maximal ion flux is obtained as jmax = 2⋅1021 cm−2s−1. For
tmax = 5⋅10−8 s the number of ions reaching the cathode is estimated as
Jmax = 1014 cm−2. The exhaustion of the neutral gas in the anode sheath is estimated by
the factor ι  = Jmax/ang0 with a the anode sheath thickness, ng0 the initial neutral gas
density near the anode. In accordance with Fig. 13 for a = 3⋅10−3 cm and
ng0 = 1017 cm−3 it is obtained ι  = 1/3. Hence for the mentioned scenario the exhaustion
of neutrals is almost reached.

The quasineutral solution formally continues at ξ > ξm where for calculation of
the ionization the right wing of the function νi(E) should be used. In reality it is
unstable and thus not realizes at all. As it will be shown numerically, the cathode edge
of the quasineutral layer is the additional source of ions accelerated in the gap due to
erosion of the edge. The erosion is caused by the strong electric field in the gap
separating electrons and ions at the edge. The separated electrons penetrate the
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quasineutral layer diffusing towards the anode. If the erosion is significant, the
simplified approach is not sufficient quantitatively but always remains useful for
qualitative interpretation of the physical processes in the anode plasma. In the cases
with the edge erosion the production of ions in the anode sheath decreases thus the
exhaustion of neutrals there may become not substantial.

The ionization production of the ion flux in the cathode sheath and thus the
erosion is negligibly small in case of the small density of the neutral gas and small
rate of the ionization at the right wing of νi(E). If the ionization rate at ξ > ξm would
keep at its maximum, the contribution to the ion flux is estimated as

∆j n dx n l e e di i e
l m m

= <
∞

− −
∞

� �ν ν ξ
ξ

ξ ξ

ξ
max

* 2 21
7 (46)

This contribution doesn’t exceed 2⋅1020 cm−2s−1, which is much less than the maximal
Child-Langmuir flux jCL(ϕmax) = 2⋅1021 cm−2s−1. A correction δji of the ion flux ji
caused by the term ∂(υen)/∂x, which is omitted in Eq. (37), is obtained to be rather
small for the considered scenario: δji/ji ~ 0.1. Hence in this case the ion flux is
produced mainly in the anode sheath.

To find the neutral gas velocity υg the work A of the electric field for the gas
acceleration is estimated on the base of Fig. 19 at ∆ϕ = 500 V as
A = ej0(tmax)∆ϕtmax ≈ 105 erg/cm2. Thus from the energy balance malng(υg)2/2 = A it is
obtained υg ≈ 3⋅106 cm/s, thus resulting in a displacement of the gas distribution by
the distance υgtmax = 0.15 cm.

9. NUMERICAL MODELING OF AN APPLIED-B ION DIODE

From the above analysis follows that both the anode sheath and the
quasineutral layer seem to be important subjects for more detailed theoretical
investigations at larger voltages (ϕmax > 1 MV). Further increase of the voltage or
analysis for scenarios in which the density of neutrals at the cathode edge of the
quasineutral layer are not small require take into account such phenomena as the edge
erosion, the exhaustion of neutrals and motion of the neutral gas. This may open new
interesting features of the anode plasma behavior. For many cases the analytical
approach presented in the previous chapters cannot describe the physical processes in
the diode and its operation scenarios properly. In order to be able to simulate
numerically the characteristic features of the diode operation a 2 dim code for x- and
υ- coordinates was developed. A description of this code as well as the results of the
calculations are given below. The following problems are treated numerically:

Dynamics of the neutral gas with evaporation from the anode, ionization and
acceleration due to the charge-exchange processes.

Dynamics of ions taking into account acceleration by the electric field and the
charge-exchange deceleration.

Dynamics of electrons with diffusion in crossed E and B fields.
Electric field with solving the Poisson equation.
Of special concern is the 2 dim grid (x,υx). It has to fit the following regions:

x- coordinate: the anode sheaths (10-4 – 10-3 cm)
quasineutral layer (10-2 – 10-1 cm)
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the whole gap (~ 1 cm)
υ - coordinate: the neutral gas velocities (0.1 – 100 eV)

the anode plasma ions (0.1 – 104 eV)
the accelerated ions (103 – 107 eV)

The x coordinate corresponds to the spatial coordinate across the anode-
cathode gap with x = 0 at the anode surface and x = L at the cathode. The velocity
coordinate υ describes ions or neutrals. Only the most important x-component of the
velocities of these particles is taken into account. Thus ions and neutrals are described
using the Boltzmann equation with the collision term taking into account only most
principal charge-exchange process. As to electrons, the hydrodynamics approach
developed in the previous chapters is applied. The electric field E is directed
perpendicularly to the electrodes and changes in space and time. The applied
magnetic field is assumed to be strong enough for neglecting changes of B caused by
the diamagnetic effect.

The details of the calculation are discussed in the following chapters: main
equations of the problem are considered in chapter 9.1, the description of the features
of the code is given in chapter 9.2, the results of the calculation are presented in
chapter 10.

9.1. MATHEMATICAL PROBLEM

The model of hydrogen diffusion through the thin Ti−Pd structure describing
the release of neutral gas from the anode surface into the gap is represented in
chapter 3. According to this model, for establishing adequate boundary conditions at
the anode the neutral gas flux at x = 0 is approximated as

( ) ( )( )j t t jg g g0
1
2

1= − cos max maxπ  at t < tgmax and ( )j jg g0 = max  at t ≥ tgmax (47)

In this work maximal gas flux jgmax = 2⋅1023 cm−2s−1 and the time of the flux increase
tgmax = 20 ns are given constants. The released atoms are assumed to have a Maxwell
distribution function according to

( ) ( )f
m
T
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m

Tg
p
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g

p
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0 0
2

2

, expυ
υ

= −
�

�
�

�

�
�  at υ > 0 (48)

with mp the proton mass, Ta the anode surface temperature assumed to be a linear
function of time at t < tgmax/2 given as

( ) ( )T t t t Ta g a= +
1
2

1 2 max max  at t < tgmax/2 and ( )T t Ta a= max  at t ≥ tgmax/2 (49)

Below the given maximal temperature of the anode Tamax is assumed to be equal to the
melting temperature of Pd: Tamax = 1900 K.

The distribution of the neutral gas is described by the Boltzmann equation as

( )∂
∂

υ
∂
∂

f
t

f
x

s f fg g
i g i+ = − + St , (50)



22

with fg the distribution function of the gas and si the ionization loss term. The ‘Stoβ-
term’ describes the charge-exchange collisions with ions. Other kinds of collisions
between the atoms or ions as well as elastic collisions of atoms with ions and
scattering by electrons are not accounted for. The Boltzmann equation for the ion
distribution function fi takes into account the acceleration by the electric field:

( )∂
∂

υ
∂
∂

∂
∂υ

f
t

f
x

e
m

E
f

s f fi i

p

i
i i g+ + = + St , (51)

If the si- and St-terms are known, the problem for Eq. (50) and Eq. (51) is
mathematically defined after establishing boundary conditions for fg and fi at x = 0 and
x = L. In case of a monotonic electric potential the distribution functions may be
defined only for υ > 0, but the structure of the developed code is suitable also for
calculations with non-monotonic potential in which negative velocities are also
possible. For υ > 0 the boundary conditions are given at x = 0 as fi(0,υ) = 0 for ions
and by Eq. (48) for neutrals. For υ ≤ 0 the boundary conditions are established at
x = L as fg(L,υ) = fi(L,υ) = 0.

Density and averaged velocity of ions or atoms are obtained by the integration
of their distribution functions as:

n f dg g= � υ ,  n f di i= � υ ,  V f dg g= �υ υ ,  V f di i= �υ υ (52)

Electrons are described, like in the previous modeling, by the hydrodynamics
continuity equation in which their averaged velocity is determined by the local
electric field taking into account collisions with the neutral atoms occupying the
ground state. The continuity equation for electrons is given as

( )∂
∂

∂
∂

n
t x

V n Se
e e i+ = (53)

The dependencies of the velocity Ve and the ionization source Si on E/B and on the gas
density ng are discussed in chapter 6. Hence the approach for electrons is valid as long
as the plasma, including the quasineutral layer, is weakly ionized: ni, ne << ng. In case
of monotonic potential electrons always diffuse to the anode, thus Ve < 0 and the
boundary condition has to be defined only at the cathode. In any case due to the anode
sheath at the anode always is valid E > 0, i.e. the anode absorbs electrons but doesn’t
emit them. Thus a boundary condition for electrons at the anode is not necessary.

In solving Eq. (53) it is formally chosen ne(L) = 0 neglecting by this way the
density of electrons coming from the cathode. But in the other equations the cathode
electrons are accounted for. For the sake of physical clarity the electrons from the
cathode and electrons produced by ionization between the anode and the cathode form
two different populations. In the thin quasineutral plasma layer of thickness l the
density nec of the cathode electrons becomes much smaller than the density ne of
electrons produced by ionization but in the main volume of the gap the cathode
electrons dominate: nec >> ne at l << x < L. In the modeling it is assumed that due to
the development of turbulence in the region of rare plasma outside the quasineutral
layer the cathode electrons propagate rather freely through the gap. The dynamics of
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electrons in the layer is described by Eq. (53), but the density of the cathode electrons
is independent from x due to enhanced turbulent diffusion in the main volume:
nec = nec(t). The equation for nec follows from the boundary condition E(L) = 0 and is
given below.

The expression for si is obtained assuming that the ionization rate of atoms
doesn’t depend on their velocity, thus si ∝ fg. From this follows:

s S f ni i g g= (54)

The charge-exchange term of Eq. (50) and Eq. (51) is given as

( ) ( ) ( ) ( ) ( ) ( )( )St Stf f f f f f f f dg i i g ce i g g i, ,= − = − ′ ′ − ′ ′
∞

�σ υ υ υ υ υ υ υ
0

(55)

The charge-exchange cross-section σce is assumed to not depend on the velocities of
the participating particles and is given as σce = 5⋅10−15 cm2.

The electric field is described by the Poisson equation as:

( )∂ ϕ
∂

π
2

2 4
x

e n n ne ec i= + − ,  ϕ(0) = ϕa(t),  ϕ(L) = 0,  E(L) = −∂ϕ/∂x(L) = 0  (56)

In the carried out calculations the anode potential ϕa(t) of Eq. (56) is given as
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Typically the delay time t0 and the time of reaching the maximal voltage tmax was
chosen as t0 = 14 ns and tmax = t0 + 50 ns = 64 ns.

The boundary conditions of Eq. (56) over-determine the mathematical
problem for the Poisson equation. This allows to find both the electric potential ϕ(t,x)
and the density nec(t). If knowing the functions ne(x) and ni(x) as results of solving
Eq. (51) and Eq. (53) with the calculation of ni according to Eq. (52), the Poisson
equation is solved integrating Eq. (56) two times over x. After first integration the
electric field strength E = −∂ϕ/∂x is obtained as:

( )( )E E e q x n xa ec= + −4π , ( ) ( ) ( )( )q x n x n x dxi e

x

= ′ − ′ ′�
0

(58)

Ea ≡ E(0). After second integration the potential is obtained as:

( ) ( )ϕ ϕ πx E x e n
x

Q xa a ec= − + −
�

�
�

�

�
�4

2

2

, ( ) ( )Q x q x dx
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0

(59)
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Considering then Eq. (58) and Eq. (59) at x = L and using the boundary conditions of
Eq. (56), a system of two equations for the two unknown variables Ea and nec is
obtained as:

( )( )E e n L q La ec= −4π , ( )− + = −
�

�
�

�

�
�ϕ πa a ecE L e n

L
Q L4

2

2

(60)

The solution of Eq. (60) is obtained as

( ) ( )( )E eq L
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eQ La a= + −4
2

4π ϕ π , ( ) ( )
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(61)

9.2. DESCRIPTION OF THE CODE

In order to simplify the algorithm, the self-consistent problem of Eqs. (50),
(51), (53) and (59) is solved numerically using the splitting method. During each time
step τ the following sub-cycles are completed:

1. Calculation of ni, Vi, ng and Vg using fi and fg of the previous cycle
2. Calculation of the electric field and the cathode electron density using

Eqs. (59) and (61)
3. Ionization sub-step of Eq. (50), Eq. (51) and Eq. (53)
4. Electron convection hydrodynamics sub-step of Eq. (53)
5. Gas convection kinetic sub-step of Eq. (50)
6. Ion convection and ion acceleration joined kinetic sub-step of Eq. (51)
7. Charge-exchange sub-step
8. Correction of spatial meshes

For numerical treatment the coordinates x and υ are simulated with monotonic
successions of their values xk and υj at the boundaries of the meshes (k = 0, 1, .. kmax;
j = 0, 1, .. jmax; 0 = x0 < x1 < .. < xK = L; υimin = υ0 < υ1 < .. < υJi = υimax). The structure
of the numerical grid is shown at Fig. 21. In Fig. 21 the kinetic energy Ekin = mpυ2/2 is
used as axis instead of the velocity υ. In the calculations the maximal spatial mesh
index used was kmax = 100, the maximal energy mesh index jmax = 50, the minimal
velocity was υimin = 0, the maximal velocity υimax ≈ 4.5⋅109 cm/s, corresponding to
Ekin = 10 MeV. For neutral atoms the same set of spatial meshes and a sub-set of the
ion velocity mesh is used: 0 = υ0 < υ1 < .. < υJg = υgmax. The velocities change over
rather wide range because for adequate simulation of the distribution function of the
entering gas it is necessary to have a relatively small velocity mesh size at small
velocities. It was chosen υ1 ≈ 2.5⋅105 cm/s, which corresponds to Ekin ≈ 0.037 eV
≈ 400 K. For this reason a geometric progression of the mesh sizes ∆υj = υj − υj-1 is
used: ∆υj = υ1qj−1 with increment factor q ≈ 1.15. Such a value of q seems quite
appropriate to be sure that neighbor meshes have like sizes. The maximal gas velocity
mesh index used was jgmax = 20 corresponding to the maximal kinetic energy of atoms
of 360 eV. This is sufficient for an adequate representation of the distribution function
of the atoms.

For the size of the spatial meshes a mesh correction procedure is used being
described below in detail. Change of the mesh sizes in the course of the calculation is
necessary because of the existence of a rather thin electrostatic sheath at the cathode
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edge of the quasineutral layer. The ions are extracted from this edge and accelerated
through the gap by the electric field. In the course of the diode operation cycle the
cathode edge gradually moves along the x-axis, thus the region of denser meshes
should follow the edge. For the sheath located near the anode there is no mesh size
problem if using the geometric progression for the sizes ∆xk = xk − xk-1 of initial spatial
mesh as ∆xk = x1pi−1 with x1 = 10−4 cm and the increment factor p ≈ 1.07. Hence in
order to make the meshes denser the region including the cathode edge is slightly
corrected after each time step. But far enough from the edge during the run the
geometric progression sizes are kept.

9.2.1. CALCULATION OF HYDRODYNAMICS MOMENTS

The moments are given as:
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(62)

with the substance index α = i or g , nαk = nα(xmk) the substance density in the center
of the k-th spatial mesh, Vαk = Vα(xmk) substance velocity at the center,
fαkj = fα(xmk,υmj) the substance distribution function at the center. The center
coordinate xmk = (xk−1+xk)/2, the velocity in center of j-th velocity mesh
υmj = (υj−1+υj)/2. It is valid jmax ≡ jimax. The moments and the distribution functions are
calculated from the previous time step.

9.2.2. ELECTRIC FIELD CALCULATION

Because the Poisson equation is already solved, Eq. (59) is rewritten as an expression
for the electric potential ϕk = ϕ(xk) in terms of the numerically calculated integrals for
qk = q(xk) and Qk = Q(xk) at the boundaries of the meshes as:

( )kkeckaak QxnexE −+−= 24 2πϕϕ (63)

The anode electric field Ea and the cathode electron density and nck are given by
Eq. (61) at Q(L) = QK, q(L) = qK. It is valid K ≡ kmax, Q0 = 0, q0 = 0. The numerical
integrals are given as
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1
,    k = 1, 2, .. kmax, (64)

The electric field strength at the mesh centers is calculated as Ek = (ϕk−1 − ϕk)/∆xk. In
the calculation of qk the densities ni and ne from the previous time step are used.

9.2.3. IONIZATION SUB-STEP

The change of the electron density and the distribution functions of ions and neutral
atoms caused by ionization is calculated using the explicit scheme as:
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Here the index 1 denotes the results of the ionization sub-step obtained after
calculation for Eq. (65), wk = (nek + nec)νi(Ek,ngk). The ionization frequency νi is
obtained from a table of the ionization frequencies. This table is calculated as
described in chapter 6.

9.2.4. SUB-STEP FOR ELECTRON CONVECTION

At this sub-step the electron density gets an additional change in accordance with the
contribution of the convective term of Eq. (53). The density change is calculated
using the implicit scheme as:
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The index 2 denotes the results of this sub-step, the hydrodynamics electron velocity
Vek = Ve(Ek,ngk) is obtained from the table obtained in chapter 6 together with the
ionization frequency. The ‘shifted to the right’ numerical scheme is applied according
to the motion of electrons to the left. Namely such scheme is necessary from physical
point of view because the electrons come through the right boundary xk of k-th cell
thus bringing the information about (k+1)-th cell by the values ne(k+1) and Ve(k+1). The
scheme of Eq. (66) is conservative. This means that the whole number of electrons in
the gap changes only due to the fluxes of electrons through the anode or due to the
cathode electrons. The hyperbolic scheme of Eq. (66) needs only a boundary
condition at k = K. This condition is given as neK2 = 0. The values of the density are
obtained from Eq. (66) completing the recurrence cycle for k = 1, 2, .. K-1 as:
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It should be noted that an additional investigation of the transition region with
sharp gradients at the cathode edge of the quasineutral layer is desirable aiming in
elimination of numerical oscillations there, which are obtained in the calculations.
However those oscillations cannot make the conservative solution wrong, therefore
their elimination is not urgent. Further discussion on how separate the regions of the
anode plasma and the cathode sheath in numerical calculations is given in chapter 12.

9.2.5. GAS CONVECTION SUB-STEP

The density of the neutral gas changes at this sub-step according to the convective
term of Eq. (50):
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The index 2 denotes the results of this sub-step. Eq. (68) describes the implicit scheme
equation solved recurrently as
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The boundary condition for Eq. (69) is given at k = 0 using the Maxwellian function
of Eq. (48) with the anode temperature and the anode gas flux given at this sub-step.

9.2.6. ION CONVECTION SUB-STEP

The convective dynamics of ions and their acceleration by the electric field is
described simultaneously by the following implicit scheme:
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The index 2 denotes the results of this sub-step. The recurrent solution of Eq. (70) is
obtained as
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Boundary condition for Eq. (71) are given at j = 0 as fik0 = 0 and at k = 0 as fi0j = 0.

9.2.7. CHARGE-EXCHANGE SUB-STEP

At this sub-step the contribution of the St-term to Eqs. (50) and (51) is calculated
using the following implicit scheme:
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The index 3 denotes the results of this sub-step. Collision frequencies are given as
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The linear system of Eq. (72) for fgkj3 and fikj3 is solved resulting in

( )( )f d f f fikj ikj ikj ikj gkj3
1

2 2 2= + +− ν τ , ( )( )f d f f fgkj gkj gkj ikj gkj3
1

2 2 2= + +− τν (74)

The factor d is given as d = 1 + (νikj + νgkj)τ.
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9.2.8. CORRECTION OF SPATIAL MESHES

This sub-step is activated after formation of a rather narrow layer of quasineutral
plasma. This happens at ϕa ≈ 102 kV. The edge position of the layer from the cathode
side is defined as the center of a mesh in which the electric field strength changes
most significantly. The criterion for the edge position is defined via the maximum of
the special function χ(x) given in the mesh centers as
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The index of the mesh of the edge position is designated as kc. At k = kc the meshes
are most dense as it is shown in the central part of the Fig. 21.

The sizes of the meshes surrounding the edge position are decreased at each
time step according to
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Thus the size decrease is more significant for mesh indexes k being near kc.
For keeping the sizes of the more distant meshes the following transformation

is used:
( )∆ ∆ ∆ ∆x x x xk k k k+ − →ς 0 (77)

with ∆x0k the initial (corresponding to the start of calculation) geometric progression
succession. The factor ζ is obtained from the requirement of keeping the gap size as:
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By this way new mesh boundary coordinates xnk are obtained for the next time
step. Redistribution of ne(x) and fα(x,υ) to the new meshes is provided keeping the
conservation of particles by introducing the particle number functions as:
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The index o denotes the old values obtained after the previous sub-steps. The particle
number functions are linearly approximated at the new mesh boundaries, e.g. as:
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It is valid xo(m−1) ≤ xnk < xom. Finally the new densities and the distribution functions
are obtained as
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The schemes used in the calculation are stable as long as the time increment τ
is small enough. The calculations have been carried out with time step of value
τ ≥ 10−3 ns.

10. RESULTS OF NUMERICAL CALCULATIONS

Initially (at time t = 0) the diode gap is empty. There is no voltage applied
between the electrodes. At t > 0 the voltage is still zero but the anode plate is
becoming gradually heated resulting in the appearance of vaporized neutral hydrogen
atoms in the gap. After some time delay t0 the voltage starts to increase, thus an
electric field appears between the electrodes. In the course of the increase of the
electric field strength E the electrons coming from the cathode are occupying
uniformly the whole gap and providing the necessary boundary condition at the
virtual cathode E(L) = 0. The cathode is assumed to be motionless in the considered
scenario because for taking into account its motion the spatial variation of B has to be
calculated13. Electrons coming from the cathode produce impact ionization of the
vaporized gas. Afterwards the secondary electrons also participate in the ionization.
As a result a dense quasineutral plasma layer develops near the anode. The self-
consistent electric field E decreases in the quasineutral layer drastically. The electrons
diffuse slowly through the layer and across the lines of the applied magnetic field to
the anode. The ions are flowing through the layer in the reverse direction being
slowed down by the charge-exchange collisions. The ions arriving at the cathode edge
of the quasineutral layer are extracted by a strong edge electric field and are
accelerated across the gap to the cathode. The increase of the electric field strength at
the cathode edge due to the increase of the voltage causes the increase of ion
extraction from the anode plasma. This results in a regime where the self-consistent
electric field strength becomes too small for compensation of the ion extraction by
ionization in the anode sheath and in the quasineutral layer. Thus starts an operational
phase in which the layer provides the necessary Child-Langmuir ion flux mainly due
to its erosion. Due to that in the course of the voltage increase the layer becomes
thinner and finally disappears. After this the electric current through the diode
decreases by orders of value because of rather weak ionization in strong electric field
at E >> 105 V/cm according to the analysis of chapter 6.

Acceptable regimes of diode operation correspond to the disappearance of the
anode plasma after the moment of reaching the maximal voltage. Calculating with
different delay times t0 it was discovered that the longer t0 the later the anode plasma
exhaustion. Thus the regimes with the exhaustion of the anode plasma at the moment
of reaching the maximal voltage establish the minimal delay times.

Such a scenario with the minimal t0 is demonstrated in Figs. 22 − Fig. 29 for a
gap width of L = 1 cm. The anode voltage ϕa starts with t0 of 50 ns and then rises
during 50 ns up to ϕmax = 5 MV (in the figures ϕmax is designated as Umax). Similar
scenarios for other maximal voltages have been calculated as well. As examples,
Figs. 30 − 33 show the evolution of the ion density and of the electric fields for
ϕmax = 1 and 2 MV, and Figs. 34 and 35 show the distribution functions of ions and
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neutral atoms for ϕmax = 1 MV. In Table 2 the dependence of the minimal delay time
t0, the maximal ion density in the quasineutral layer and the maximal electron density
in the gap on ϕmax are presented.

Independently from ϕmax the gas vaporization flux from the anode reaches its
maximum after t = 20 ns after starting the heating of the Ti−Pd film and then remains
constant. The voltage applied across the gap starts after t = t0 and reaches ϕa = ϕmax at
t = tmax = t0 + 50 ns (see Fig. 22). During most time within the time interval (t0, tmax)
the fluxes of ions and electrons through the diode rise up according to the Child-
Langmuir law of Eq. (11). The quasineutral layer exists during the current increase
and thus provides the boundary condition with a small electric field at the anode
plasma edge. The electron flux only weakly exceeds the ion flux due to the
contribution of electrons from the cathode (Fig. 23).

The formation of the self-consistent electric field in the anode plasma is shown
in Fig. 24. Initially (at t ≤ 52 ns) only the electrons coming from the cathode
determine the behavior of the electric field. They homogeneously occupy the main
volume of the gap (see Fig. 25) and thus provide the boundary condition E = 0 at the
virtual cathode. At later times due to ionization in the vaporized gas the anode plasma
appears. The applied electric field causes charge separation in the plasma and thus the
development of the reversed induced electric field. The composition of the applied
and the induced electric fields constitutes the self-consistent electric field. Because of
rather small values of the self-consistent electric field, charge separation in the anode
plasma results in a practically complete compensation of the applied field by the
induced field in the region of the anode plasma as is clearly seen from Fig. 24. As
shown in Fig. 25, during the anode plasma formation phase (at 50 < t < 60 ns) a
quasineutral layer of thickness of about 0.5 mm forms. It is enveloped from both sides
by the anode sheath and by the ion accelerating cathode sheath. In the sheaths the
quasineutrality fails. Charge separation is seen as an accumulation of negative charge
in the anode sheath (because there is valid ne > ni) and of positive charge at the
opposite side of the quasineutral layer (because there is valid ne < ni). Due to the small
magnitude of the electric field at the cathode edge of the anode plasma and at the
cathode the whole electric charge of the main volume of the gap is negligibly small.
Thus averaged ion density there is equal to the density nec of electrons coming from
the virtual cathode.

Figs. 26 and 27 show the exhaustion phase. In the quasineutral layer the self-
consistent electric field changes reversely to the drastic rise of the gap voltage.
Without the preliminary qualitative analysis would be impossible to explain such
behavior. This occurs due to the non-exponential increase of the anode plasma density
in the course of ionization in the self-consistent electric field. If the electric field in
the layer would be constant the ionization would result in an exponentially fast rising
anode plasma density, which could be possible only at exponentially rising voltage as
was analyzed in the first part of this work. But in the numerical calculation the voltage
increase remains below an exponential increase. Thus the ionization increase also
remains below an exponentially rising function. To provide such a behavior the self-
consistent field automatically decreases in the course of the diode operation.
Characteristic values of the self-consistent electric field are of the order of
3 − 7 kV/cm (see Fig. 26). According to Fig. 9 this corresponds to the mean kinetic
energy of electrons in the anode plasma of 7 − 10 eV.

The maximal density of the anode plasma is of 7⋅1015 cm-3. According to
Fig. 28 the density of the neutral hydrogen is by a factor of 50 larger than the plasma
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density. Thus the anode plasma is weakly ionized. The thickness of the layer of the
vaporized gas is much larger than the thickness of the anode plasma. However the
thickness ratio depends on the regime of the voltage increase. As was shown
analytically in the first part the thickness ratio is of 1 for the regime with the
exponential increase of the voltage at least for an initial stage without sufficient
erosion at the cathode edge.

Mean velocities of ions and of neutral atoms are shown in Fig. 29. The ions
produced by ionization in the anode sheath move rather evenly and slowly through the
quasineutral layer with the velocity of 1÷2 cm/µs. Finally they cross the edge of the
anode plasma and accelerate in the gap. The neutral atoms increase their velocity due
to charge exchange process schematically shown in Fig. 16. The velocities of the
neutrals in the gap are of 107 cm/s thus corresponding to the neutral kinetic energies
of 102 eV. According to Fig. 28 the neutral density in the gap is of the order of
1015 cm−3 thus being several orders of magnitude smaller than in the layer of the
vaporized gas near the anode but significantly larger than the averaged densities of
ions and the cathode electrons.

The calculations with lower maximal voltages (1 and 2 MV) showed a rather
similar behavior of the anode plasma. As it follows from the values of the ion density
shown in Figs. 30 and 32 the anode plasma is always weakly ionized. The self-
consistent electric field shown in Figs. 31 and 33 also decreases down to 7 and finally
to 3 kV/cm thus resulting in an effective electron temperature in the quasineutral layer
of around 7 − 10 eV.

Examples of 2 dim ion and neutral distributions in the gap are given in
Figs. 34 and 35 for ϕmax = 1 MV. They are rather similar for 2 and 5 MV. In Fig. 34
there are seen two regions in the ion distribution. At low velocities ions mainly are
located in the thin quasineutral layer. Here maximal values are reached. In the main
volume of the gap the accelerated ions as seen in Fig. 34 are forming a beam. In
reality the width of the accelerated ion beam at the velocity axis should be narrower
as shown in Fig. 34 where numerical diffusion slightly broadens the ion distribution.
The position of the anode plasma edge is the starting position of the accelerated ions.
This is seen in Fig. 34 as the edge of the ion distribution at small velocities. In Fig. 35
the influence of charge exchange processes on the distribution of neutrals is seen as a
widening of the distribution function at enlarged velocities. The energetic tail of the
distribution function shows similarities to the ion distribution shown in the previous
picture. Thus charge exchange contributes also in the cathode sheath near the anode
plasma region. By comparing Figs. 34 and 35, it is seen that the position of the edge
of the neutral distribution is located deeper in the gap as that of the ion distribution.

Concerning the position of the edge of the neutral distribution, three
mechanisms principally are influencing the numerical results. These are the
penetration of the neutrals acquiring sufficient velocity in the quasineutral layer into
the gap, the free expansion of the neutrals vaporized from the anode at t << t0 across
the gap and numerical diffusion. Presently a clear discrimination between the different
contributions of these mechanisms is not possible.

11. COMPARISON WITH EXPERIMENTS

The main objective of this work is to demonstrate a consistent but preliminary
modeling for applied−B ion diodes. At the level achieved up to now it would be too
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ambitious to simulate existing installations. Therefore only some first remarks
concerning the relation of the obtained numerical results to available measurements
on the anode plasma in applied−B ion diodes are given. As source of experimental
information Refs. 2−5 are analyzed with respect to electron and hydrogen components
in the discharges. Results related to discharge impurities are not commented here.

In Ref. 2 spectroscopic measurements were carried out. On the base of the
Seeman splitting of atomic energy levels the electron density and the electron
temperature in the anode plasma were estimated. For this reason the applied magnetic
field B in the gap was measured. During the pulsed gap voltage of ϕmax ≈ 1.7 MV with
pulse front time of 30 ns the magnitude of B was changing from 3 T up to 5 T.  The
anode plasma is created after application of a preliminary electric pulse to the ends of
the anode plate in order to breakdown hydrogen released after heating of the Ti-Pd
film as is described in chapter 2. Both heating and breakdown voltages are applied
parallel to the anode plate and are independent on the gap voltage. From the
measurements it was concluded that the electron temperature in the discharge rises
fast up to 7 eV and then keeps rather constant. During the operation the hydrogen
atomic density continuously increased and the averaged electron density of the anode
plasma was risen from 1016 up to 5⋅1017 cm−3. The divergence of the ion beam in the
gap was determined from the Doppler frequency shift of the line radiation. It was
concluded that a considerable part of the divergence is already created at the anode
plasma edge thus indicating a rather inhomogeneous edge surface.

In Ref. 3 details on evolution of B and of electron density are discussed.
Initially the magnitude of B increases from 1.9 T at the cathode up to 3.3 T at the
anode over the gap of width of 8.5 mm. Thus at the beginning of the pulse the field B
is not uniform in the gap. The anode plate width is given as 2.7 cm and the anode
emission area as 123 cm2. The gap voltage rises from zero up to 2 MV during the first
40 ns and then decreases again to zero during the next 60 ns. During the whole 100 ns
the ion beam current rises up to 0.5 MA. This information is useful in future
adjustments of the calculations to the experimental conditions. The electron density in
the gap was measured by interferometer. Farther than 3 mm from the anode it is
homogeneous and rises up to 2⋅1013 cm−3 during first 30 ns and then keeps constant
for about 20 ns. At the following decrease of the voltage the density at the center of
the gap continues to increase reaching finally the magnitude of 7⋅1013 cm−3. At the
stage of the voltage decrease the density is inhomogeneous. It gets minimal at the gap
center and larger of a factor of 3÷5 near the electrodes. At a distance to the anode less
than 0.7 mm the density drastically rises up reaching the upper measurement limit of
2⋅1014 cm−3 during first 15 ns and then always remains larger. At the distance of 1 mm
the density rises up during the first 10 ns, then reaches a maximum of 7⋅1013 cm−3 and
then decreases down to (1÷2)⋅1013 cm−3 after the next 20 ns. The density behavior
during the stage of the voltage decrease is not presented. At the distance of 2 mm the
behavior of the density is rather similar to that for 1 mm but the maximum is lower
(3⋅1013 cm−3) and, after the density decreased, it starts to increase again up to values
larger than 1014 cm−3. Thus the behavior gets more similar to those in the gap. The
density behavior near the anode (up to 1 mm) is explained for the stage of the voltage
increase in terms of the moving edge due to the anode plasma expansion and erosion.
From the measurements of the dispersion coefficient it was concluded that the plasma
in the gap is ‘rather cold’.
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In Refs. 4 and 5 the anode plasma is formed over a dielectric surface. The
maximal voltage ϕmax was 0.27 MV, the applied magnetic field 0.5 - 1 T and the gap
width 8 mm. At 30 ns the plasma occupies a pre-anode region of 1.5 mm width. The
kinetic energies of protons and electrons were found to be of 5 − 8 eV. The ions
acquire their energy within 10−2 cm from the anode. The expansion velocity of the
anode plasma Vexp was 3 cm/µs and the plasma density 3⋅1015 cm−3. A reference to
another work24 was done where for ϕmax with 0.7 MV the density was measured to be
4⋅1016 cm−3 and Vexp 2 cm/µs. It was concluded that classical diffusion doesn’t explain
such expansion velocities. They were attributed to anomalous diffusion caused by the
lower hybrid drift instability.

A comparison of available experimental plasma parameters with those
obtained in this work is presented in Table 3. The ‘effective electron temperature’ Te
is in good agreement with all mentioned experiments on the applied−B ion diodes
both for the pre-anode discharge and for the flashover anode plasma. This indicates
that the model of electron motion in crossed electric and magnetic fields, presented in
chapter 6, is rather adequate for the problem under investigation. The difference of a
factor 4 in the electron densities in the gap negap can be easily explained by different
gap sizes, which would increase the calculated density by a factor (1/0.85)2 ≈ 1.4, and
by approaching of the virtual cathode to the anode due to diamagnetic effects in the
experiment, which was not taken into account in the calculations.

The calculated electron density of the anode plasma differs drastically from
the experiments. The maximal numerical magnitude of ne in Table 2 corresponds to
ϕmax of 5 MV being of the order of experimental results as measured for ϕmax with
0.27 MV. The difference at comparable values of ϕmax is more than one order of
magnitude. The explanation of the difference now may be only speculative. Perhaps
the reason is ignoring in modeling the impurities, which are ionized much easier than
atomic hydrogen thus providing faster ionization during the pulse time of several
tenths of nanoseconds. Another reason is that much larger amount of anode plasma
can be created before application of the gap voltage because of preliminary ionization
in the parallel electric field, which is not implemented in modeling. The difference of
factor 3 - 5 in the thickness of the anode plasma can also be caused by the absence of
mentioned ionization mechanisms in the modeling. Perhaps the rise up behavior of the
gap voltage also influences significantly the thickness. Because the difference in the
anode plasma thickness for the cases of exponential and sinusoidal voltage rise up
obtained in calculations indicates important role of the voltage drive for the plasma
thickness.

The plasma expansion velocity often is interpreted in terms of fluid models as
the velocity Vi of ions coming off the anode. With such an interpretation the plasma
expansion across the magnetic field lines should be attributed to anomalous diffusion
because with classical diffusion Vexp would be smaller than in experiments by an order
of magnitude. In the modeling presented no anomalous diffusion was implemented
but ions were calculated in a rather general way by solving the kinetic equation with
charge exchange St-term as discussed in chapter 9. According to the numerical
results, the plasma expansion arises due to formation of a plasma layer with
increasing thickness in external electric field applied to the previously expanded gas
layer of neutrals. Thus the plasma front expansion doesn’t concern motion of plasma
particles. As it is clearly seen from Table 2, the magnitude of Vexp in the presented
modeling is obtained to be of the experimental one. This indicates that turbulent
diffusion of the anode plasma might be absent. The calculated ion velocity Vi, which
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is formed in the quasineutral layer by charge-exchange processes, is in rather good
agreement with the experimental value.

12. NECESSARY MODEL IMPROVEMENTS

A still more realistic ion diode simulation requires implementation of the
following physical processes into the presently existing code:

1. The dynamics of the magnetic field B(t,x) (diamagnetic effect)
2. The motion of the virtual cathode towards the anode
3. The dynamics of impurities in the anode plasma

More attention has to be paid to the voltage drives in order to understand properly its
influence for the expansion velocity of the anode plasma. The calculations have to be
carried out with larger delay times thus investigating anode plasmas with larger
densities and larger thickness being closer to the presently performed experiments.
However it seems that the regimes resulting in the exhaustion of the anode plasma at
approaching the maximal voltage may be also interesting for further investigations.
After exhaustion the diode current interrupts in a few nanoseconds. If such effect
would be discovered experimentally, the finding may be used for amplification of the
maximal voltage by means of including an additional conductivity in the diode circuit.

Taking into account impurities will approach the goal of using the code for
interpretation of the spectroscopy measurements because radiation spectra of
impurities can be calculated. This task will require the self-consistent calculation of
the dynamics of the excited levels influenced by collisions and radiation decay. An
appropriate solver for such problem is available25.

Concerning the further development the following should be investigated
additionally. The principal similarity of discharges in parallel and perpendicular
electric fields mentioned in chapter 2 is substantiated in the following way. At a very
early stage the electric field in the gap is an externally applied field, thus its spatial
shape is determined by the boundary conditions at the surrounding electrodes. After
the development of the quasineutral layer the electric field is becoming a self-
consistent field, thus its shape is determined mainly by the quasineutral layer playing
the role of an additional ‘plasma electrode’ in the gap. A qualitative example of the
shape of the initial electric field and of the field after the development of the
quasineutral layer is shown in Fig. 36 for a case with the auxiliary voltage ϕ|| applied
to the ends of the anode plate. By this way an electric field initially parallel to the
anode is produced. The quasineutral layer may be modeled as a volumetric electrode
having approximately constant electric potential of ϕ||/2 along the field lines of the
applied magnetic field B. The electric current is going along the anode plate (Ia, as it
is shown in Fig. 36) and along the quasineutral layer (Ip). For a developed
quasineutral layer of impedance smaller than that of the anode plate it is valid
|Ip| > |Ia|. The quasineutral layer electrically contacts the ends of the anode plate where
the electric field is rather perpendicular to B.  Hence during the most important stage
with applied accelerating voltage ϕa and developed quasineutral layer the processes
analyzed in this work should be valid also for the case with an initially parallel
electric field. But from the discharge geometry schematically shown in Fig. 36 it is
clear that an adequate description of this case is a spatial 2 dim problem having to be
also investigated in future.
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In order to avoid numerical oscillations at the cathode edge of the anode
plasma (see Fig. 26), the meshes for the gap and for the anode plasma should be
separated. A possible way how to do this is suggested considering a rather small part
of the gap around the edge. The extracted ion flux ji is assumed to be given by
Eq. (11). Physical parameters at the edge position are given below with zero index.
The edge electric field E0 inside of the quasineutral layer causes a flux ji0 of ions from
the depth of the anode plasma. These ions are produced in the pre-anode electrostatic
sheath and in the quasineutral layer. In case without edge erosion it is valid ji0 = ji but
generally ji0 < ji because due to the erosion a part of the extracted ions starts from the
edge. Thus it is valid

ji = ji0 − n0V0 (82)

with n0 the density of the quasineutral plasma at the edge and V0 the erosion velocity
(V0 < 0). The ions of the eroding quasineutral plasma edge after separation from
electrons accelerate across the gap but electrons remain at the moving edge thus their
hydrodynamics velocity υe is equal to V0.

The density n0 is determined by the previous ionization in the quasineutral
layer described by Eq. (7) thus at the analysis of the edge n0 is given. The parameters
ji0 and V0 with V0 = υe are obtained from the equations of motion Eqs. (9) and (23) at
the current edge position. The field E0 drags the electrons towards the anode thus the
velocity V0 is given as V0 = −µE0 with µ the electron mobility coefficient (see chapter
7) determined by their gyration motion in the applied magnetic field and by their
collisions with the neutrals, which are assumed to occupy a rather wide region near
the anode. Also E0 drags the ions in the opposite direction. The ions colliding with
neutrals undergo charge exchange. Their flux ji0 is given as ji0 = n0(eE0λ i/2ma)1/2.

Subsituting the given expressions for ji0 and V0 into Eq. (82), the equation for
E0 is obtained as µE0 + (eE0λ i/2ma)1/2 − ji/n0 = 0. Its solution is given as
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Using E0 of Eq. (83), the erosion velocity of the edge and the ion flux ji0 are
obtained. By this way the problem for the anode plasma is provided with the
necessary boundary conditions at the edge for electric field E as E|edge = E0 and for the
edge velocity as V|edge = V0 thus separating the numerical problem for the anode
plasma from that of the gap with fitting their boundary.

The problem of anode plasma stability is not considered in this work.
According to Ref. 2 the plasma edge can become unstable thus this problem is
important for focusing of the accelerated ion beam. A first step in this direction would
be the analysis of small perturbations starting from solutions provided by the
described code. In case of evolving instabilities of the anode plasma a code with 2
spatial dimensions has to be developed. Such a code would allow to investigate non-
linear stages of the instabilities. For the development of such a code the discussed
above fitting the boundary of the anode plasma and the gap region seems to be
necessary.
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13. CONCLUSIONS

The mechanisms of ion flux production in the anode plasma are analyzed
using an analytical approach for rather moderate values of the diode voltage
(ϕmax ≤ 1 MV) in the first part of the work. In the second part numerically the anode
plasma is investigated for values of ϕmax from 1 MV up to 5 MV. In the first part the
modeling with exponentially increasing voltage at the given profile of the neutral
density near the anode is carried out and the erosion of the anode plasma is neglected.
In this case the thickness of the anode plasma is of the thickness of the given layer of
neutrals. In the second part a consistent 2 dim model of the anode plasma is
developed. Filling of the pre-anode space with neutrals is implemented using the
results of an independent analysis of hydrogen diffusion in the Ti−Pd film structure
covering the anode plate. Formation and behavior of the quasineutral anode plasma
layer are analyzed in detail calculating both the plasma kinetic dynamics and the self-
consistent electric field in the gap and in the anode plasma. The charge exchange
dynamics of neutrals in the gap is coupled with the ion dynamics. In contrast to the
results of the first part, the thickness of the anode plasma is obtained to be much less
than the thickness of the layer of neutrals produced by the accompanying vaporization
near the anode. The erosion at the edge of the anode plasma causes this difference.
The anode plasma is always weakly ionized. Charge-exchange processes in the
quasineutral layer are producing neutral atoms of energies of 102 eV. The electrostatic
sheaths adjacent to the anode and at the cathode edge of the anode plasma are the
main regions of ion flux production. A regime with complete exhaustion of the anode
plasma when reaching the maximal voltage is found. Minimum delay times between
start of the heating of the hydride film and application of the gradually increasing
accelerating voltage are obtained. At smaller delay times a fast interruption of the
diode current would occur before reaching the maximal voltage. Finally comparing
the numerical results with available experimental data a good agreement with the
experiments for the effective electron temperature and the ion velocity in the anode
plasma is obtained. The obtained disagreement for the plasma density and the plasma
thickness requires further development of the modeling. The next steps for
improvement of the anode plasma numerical simulations are discussed.
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Table 1. Electron energy losses for different kinds of
collisions

Table 2. Final ion density, gap electron density and
voltage delay time for operation with complete
exhaustion of the quasineutral layer as function of
the maximal voltage

Table 3. Comparison of experimental and numerical results

E [kV/cm] 1 10 100 1000
elastic loss 0.68 0.02 0.001 3⋅10-4

excitations 0.29 0.59 0.5 0.6
ionization 0.03 0.39 0.5 0.4

ϕmax (MV) nimax(cm−3) negap(cm−3) t0 (ns)
1 4.5⋅1014 2⋅1012 15
2 1.9⋅1015 5⋅1012 32
5 6.8⋅1015 1.3⋅1012 50

Physical parameters Experimental results Numerical results

Te (eV) 5 − 8 7 − 10
negap (cm−3) 2⋅1013 5⋅1012

ne (cm−3) 3⋅1015 − 5⋅1017 5⋅1014 − 7⋅1015

l (mm) 1 − 1.5 0.2 − 0.5
Vexp (cm/µs) 2 − 5 1 − 3
Vi (cm/µs) 3 1 − 2
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Fig. 1. 1 dim scheme of an applied-B ion diode with details of the anode plasma: the
gas supplying Ti-Pd film, the applied magnetic field B, the voltage ϕa(t) applied
across the diode gap and ion beam production in the anode sheath and in the edge of
the anode plasma.

Fig. 2. Hydrogen energy states in the Ti-Pd structure at an anode plate
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Fig. 3. Density distribution of hydrogen in the storage layer (0 − 500 Å) and in the
transition layer (500 − 700 Å).

Fig. 4. Time dependence of the hydrogen particle flux jg from the anode.
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Fig. 5. Distribution of voltage and densities in the anode-cathode gap
(hydrogen, B = 3 T)

Fig. 6 The motion of electrons in crossed E and B fields



43

Fig. 7 Ionization frequency as function of the electric field strength
(hydrogen, ng = 1017 cm-3 and B = 3 T)

Fig. 8 Diffusion drift velocity of electrons as function of the electric field strength
(hydrogen, ng = 1017 cm-3 and B = 3 T)
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Fig. 9 Mean electron kinetic energy as function of the electric field strength
(hydrogen, B = 3 T)

Fig. 10. Electron energy distribution function at different electric field strengths
(hydrogen, B = 3 T)
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Fig. 11 The functions k(E) = aνi/υe and g(E) = |υe|/µE.

Fig. 12. Sheath potential ∆ϕa = ϕa − ϕ = ϕ*u∞ and mean kinetic energy of ions leaving
the anode sheath as function of the parameter η.
(hydrogen, ng = 1017 cm-3 and B = 3 T)
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Fig. 13. Dependence of the anode sheath thickness on the parameter η.
(hydrogen, ng = 1017 cm-3 and B = 3 T)

Fig. 14. The sheath structure for the case of η = 0.028
(hydrogen, ng = 1017 cm-3 and B = 3 T)
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Fig. 15. The distribution function of ions produced and accelerated in the sheath.

Fig. 16 Principal scheme of charge-exchange. Atoms are shown as circles. Positive
charge e (simulating absence of the ionized electron) indicates an atom as ion. The
charge jumps from the ion to a neutral at their rapprochement. Then the just charged
atom accelerates in the electric field E while the discharged one continues to move
with the previously acquired velocity.
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Fig. 17. The function w = Λ(νi/νimax) reversed to the normalized ionization frequency
(hydrogen, ng = 1017 cm-3 and B = 3 T)

Fig. 18. Electric field strength in the quasineutral layer E(x) = (ϕ*/l)w(x/l).
(hydrogen, ng = 1017 cm-3 and B = 3 T)
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Fig. 19. Drop of the electric potential in the quasineutral layer.

Fig. 20. Evolution of plasma density in the quasineutral layer.
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Fig. 21 The numerical grid schematically. Spatial mesh indexes j (1≤ j ≤jmax).
Velocity mesh indexes k (1≤ k ≤kmax). It is logarithmic in υ- and in x-directions except
of the narrow region describing the cathode edge of the anode plasma.

Fig. 22 Development of anode potential and gas influx from the Ti-Pd film. It is valid
Umax ≡ ϕmax.
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Fig. 23 Development of the electron flux onto the anode and the ion fluxes to the
cathode. The final disruption of the fluxes corresponds to the exhaustion of the
quasineutral layer near the anode.

Fig. 24. Development of the electric field in the gap during the stage of formation of
the self-consistent field and the quasineutral layer.
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Fig. 25. Development of electron and ion densities in the gap during the stage of the
quasineutral layer formation.

Fig. 26. Evolution of the electric field during the main phase of the diode operation.
From the propagation of the position of the maximal field gradient towards the anode
exhaustion of the quasineutral layer is evident. Near this position numerical
oscillations develop.
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Fig. 27. Evolution of the ion density near the anode during the main stage of the diode
operation. Exhaustion of the quasineutral layer is clearly seen as shift of the right edge
of the ion density towards the anode.

Fig. 28. Distribution of neutral gas density and densities of electrons and ions in the
gap in the final phase of the diode operation. The quasineutrality fails in the pre-anode
sheath and in the main volume of the gap. In the main volume the cathode electrons
(nec) dominate over those produced by ionization (ne).
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Fig. 29. Mean velocities of ions and of neutral atoms in the gap in the final phase of
the diode operation. Maximal ion velocity corresponds to the kinetic energy of ϕmax.
Maximal atomic velocity corresponds to their kinetic energy of 5⋅102 eV.

Fig. 30. Evolution of the ion density near the anode for Umax = 2 MV. The time tmax is
the moment of reaching the maximal voltage: ϕa(tmax) = Umax.
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Fig. 31. Evolution of the electric field near the anode for Umax = 2 MV

Fig. 32. Evolution of the ion density near the anode for Umax = 1 MV.
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Fig. 33 Evolution of the electric field near the anode for Umax = 1 MV

Fig. 34. Typical ion distribution in the gap. The υ-axis is represented by the mesh
indexes k divided by 5. The x-axis is represented by the mesh indexes j divided by 10.
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Fig. 35 Typical distribution of neutral atoms in the gap. The υ-axis is represented by
the mesh indexes k divided by 5. The x-axis is represented by the mesh indexes j
divided by 10.

Fig. 36 Typical spatial distribution of electric field at the early stage of the pre-anode
discharge (the dashed lines of the field E) and at the developed stage with formed
quasineutral layer (the solid field lines).
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