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Abstract

In the large scale computation of turbulent bubbly flow limited computer re-
sources imply that not all phase interfaces and adjoining boundary layers may be
resolved. The problem of devising appropriate closure models thus arises. Two
closure problems are considered in this report. The computational procedure is
assumed to be based upon the center of mass conservation equations. The first
closure problem considered is the discrepancy between the center of mass momen-
tum flux and the true momentum flux in a grid cell. This discrepancy is expressed
by a momentum drift flux (MDF) term. Two models allowing computation of the
MDF term are presented. The first model uses a viscid-inviscid interaction analysis
of the flow around a single bubble and is suitable for laminar flow. The second
model modifies the Helmholtz decomposition of the turbulent velocity field into a
scalar and a vector potential. The Poisson equations giving the two potentials are
solved with modified right hand side terms. The modifications reflect the influence
of the unresolved boundary conditions on the bubble interfaces. The second closure
problem considered is the derivation of a subgrid scale stress (SGS) model for un-
resolved turbulent motion. The unresolved bubbles are represented through their
hydrodynamic potential. Kinetic theory is applied to derive an additional viscosity
due to the unresolved bubbles. This effect is used in a renormalization group analy-
sis to derive an SGS model. The report closes with some considerations on minimal
surface energy interface reconstruction.

This report was prepared while the author was in residence at the Institut fir Reak-
torsicherheit, Forschungszentrum Karlsruhe as Gastwissenschaftler, 1 October, 1998 to 31

July, 1999.



Zusammenfassung

SchlieBungsmodelle fiir die numerische Berechnung von
Blasenstromungen mit geringem Gasanteil

Der hohe numerische Aufwand und die begrenzte Leistung heutiger Computer
erlauben es bei grofiskaligen numerischen Berechnungen von turbulenten Blasen-
stromungen nicht, die Phasengrenzflichen und die entsprechenden Grenzschichten
detailliert aufzulosen. Damit ergibt sich das Problem, geeignete Schliefungsmod-
elle zu entwickeln. In diesem Bericht werden zwei SchlieSungsprobleme betrachtet.
Dabei wird davon ausgegangen, dafl das Berechnungsverfahren auf den Erhaltungs-
gleichungen fiir die Massenschwerpunktgrofien der Zweiphasenstromung basiert. Das
erste SchlieBungsproblem behandelt die Abweichung zwischen dem Impulsflufl des
Massenschwerpunkts und dem wahren Impulsflufl in einer Gitterzelle. Diese Ab-
weichung wird ausgedriickt durch einen Drift-Impulsfluf. Es werden zwei Modelle
zur Berechnung des Drift-Impulsflusses vorgestellt. Das erste Modell verwendet eine
Kombination aus reibungsfreier und reibungsbehafteter Analyse der Umstromung
einer Einzelblase und ist fiir laminare Stromung geeignet. Das zweite Modell basiert
auf der Helmholtz-Zerlegung des turbulenten Geschwindigkeitsfeldes in ein skalares
Potential und ein Vektorpotential. Zur Bestimmung der beiden Potentiale wer-
den Poisson-Gleichungen mit modifizierter rechter Seite gelost. Die Modifikationen
spiegeln dabei den Einflufl der nicht aufgelosten Grenzschichtbedingungen an der
Phasengrenze der Blase wider. Das zweite SchlieBungsproblem behandelt die Ent-
wicklung eines Feinstrukturmodells fiir raumlich nicht aufgeloste turbulente Fluk-
tuationen. Die nicht aufgelosten Blasen werden iiber ihr hydrodynamisches Poten-
tial dargestellt. Mit Hilfe der kinetischen Theorie wird fiir die nicht aufgelosten
Blasen eine zusatzliche Viskositat abgeleitet. Darauf aufbauend wird mit einer
Renormalisierungsgruppen-Analyse ein Feinstrukturmodell entwickelt. Der Bericht
schlieft mit Uberlegungen zur Rekonstruktion von Phasengrenzflichen basierend auf
dem Prinzip der Minimierung der Oberflachenenergie.
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Preface

This report is concerned with the theoretical analysis and numerical simulation of
bubbly flow. The paradigm situation considered is that of air bubbles in water. The
main focus of the report is on the dilute regime, when the volume fraction of air is
small. The main objective of this investigation is to determine appropriate closures
for the large-scale computation of bubbly flow. Typical procedures proposed for such
computation include the level-set method or the volume-of-fluid method (VOF). The
practical objective for these computations is to provide accurate assessments of heat,
mass and momentum transfer in geometries representative of industrial applications
such as reactor cooling. Given the large physical domain of interest in the final
application, it is unlikely that a full resolution of all phase inclusions is within the
capacity of current, or future, computational facilities. Moreover, it is apparent that
such detailed information is not of prime engineering interest. In the analysis of the
technical flow systems to be computed it is useful to consider three scales:

1. a large-scale given by the overall dimensions of the flow domain;
2. a meso-scale given by the largest observed flow structures;

3. a micro-scale given roughly by the onset of dominant viscous behavior.

Experimental observations suggest that meso-scale structures involving signif-
icant void fractions do occur in geometries similar to that of the intended final
applications. Bubble columns are an example in point, in which random, large
groups of bubbles, or a single large bubble formed by coalescence, are seen to arise
from time to time. Such large scale structures render inoperative standard statistical
treatments of physical systems with a large number of degrees of freedom, methods
which have been used with efficacy in the description of the physics of gases or spin
systems among other applications. The physics of the flow system of interest in
bubbly flow is seen to have both a fine-scale random behavior and a medium scale
partially cooperative behavior between the various bubble sizes. Purely theoretical
analysis is of limited use in the description of such a system.

In the absence of a general theoretical framework in which to treat such a system,
and given the great experimental difficulties in extracting detailed flow information,
numerical simulation on the flow mesoscale is perceived as a useful tool to further
knowledge of such flows. Akin to the large-eddy simulation (LES) method one may
envisage a procedure in which the large-scale bubbles that arise from cooperative
behavior of void inclusions, and which dominate the flow behavior at the mesoscale,
are directly simulated by a numerical procedure. At the micro-scale there would
still remain unresolved bubbles. The influence of these bubbles upon the large-
scale flow is one of the closures needed for a complete numerical description of the
flow. If it is admitted that small scale bubbles are not to be resolved by brute
computational force, it is also the case that flow structures within any one of the
phases are also unresolved. In particular, the boundary layers formed in the vicinity



of meso-scale bubbles are also unlikely to be resolved. An appropriate closure is
needed for this effect also. Finally, the bubbly flows of interest in applications are
almost invariantly turbulent. A direct numerical simulation of turbulence in flows
of industrial interest remains a far goal. A closure is needed therefore to account for
the transfer of momentum and energy from the resolved meso-scales to the micro-
scales, i.e. a subgrid scale (SGS) stress model. The problem of constructing a SGS
model is compounded by the need to take into account small scale bubbles. The
effect of the bubbles upon turbulent energy transfer has been shown to be significant
by experimental investigations.

In summary, the computation by a VOF method of a complex bubbly flow of
industrial interest is seen to require at least the following closures:

1. influence of unresolved boundary layers within a single phase upon the overall
flow;

2. asubgrid turbulence model which takes into account the presence of unresolved
bubbles;

3. hydrodynamic coupling between resolved and unresolved bubbles.

This however does not conclude the enumeration of difficulties inherent in a
computational approach. A fundamental aspect which must be addressed is the
attainment of thermodynamic behavior of the computed system. Essentially, when
applying the mass, momentum and energy transport equations to a bubbly flow, we
are using reversible mechanics in order to simulate a system for which large-scale,
irreversible thermodynamic behavior is readily observed. The situation most akin
to the proposed application of a VOF (or similar procedure) to bubbly flow is that
of molecular dynamics computations. There also, a large number of degrees of free-
dom are computed and for given micro-scale interactions (e.g. the Lennard-Jones
potential), overall behavior is computed. This approaches thermodynamic behav-
ior even though the much larger number of degrees of freedom existing in a real
physical system are neglected (a physical system would have a number of degrees of
freedom given by the Avogadro number, while the molecular dynamics simulation
would at best be able to deal with ~ 10® degrees of freedom). In the case of bubbly
flow the situation is more complicated at the conceptual level. A limited number
of degrees of freedom are to be computed. These are appropriately counted using
the resolved wave-number range for the continuous system considered here. A much
larger number of degrees of freedom, the high wave-number range, is modeled. It
would seem at this level that there might be some hope that a situation similar to
that found in molecular dynamics would be found. This remains an open question
until large scale computations are carried out. Irrespective of the result of these
computations a fundamental problem still remains. The transport equations used
in the numerical simulation, i.e. the Navier-Stokes equations, are themselves the re-
sult of averaging over the scales of molecular motion. In the case of multi-phase flow
there is significant activity at the molecular level which influences the overall flow,
namely that associated with the formation of a phase interface. The phase inter-
face is almost universally represented as a singularity in the Navier-Stokes equations
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across which appropriate boundary conditions are applied. But the formation of an
interface, that is the attainment of a specific shape, is still governed by processes
at a molecular level. In numerical simulations of bubbly flow it is often assumed
that reconstruction of a phase interface is possible just by using the Navier-Stokes
equations. Typical procedures include advection of an interface by the surrounding
flow field, or reconstruction of the interface from a void fraction distribution or level
set function. Theoretical, a priori considerations, lead to the conclusion that none
of these procedures fully captures the physics of interface formation. The practical
success of such procedures is still an open point; even though qualitatively simi-
lar structures have been seen to develop, detailed experimental comparison is still
lacking. Even more poignantly, simulations of bubble separation and coalescence
in which no considerations of the energetics of the interface are made, should be
regarded with a healthy dose of skepticism. In order to provide some theoretical
guidance to the problem of interface formation, a study of the local processes in-
volved is required. Such a study may be carried out at the molecular level or by a
consideration of the local thermodynamics, especially the local free energy.

From the above considerations arise the principal subjects of investigation in this
report. The main thrust is, as initially stated, in providing appropriate closures for
the computation of complex bubbly flow. Part I concentrates on the first of the
closure problems enumerated above, that of accounting for the effect of unresolved
boundary layers in the vicinity of resolved bubbles. A first estimate of this effect is
carried out by application of a viscid-inviscid interaction algorithm for axisymmetric
bubbles. Though useful as a first attempt in quantifying the effect of unresolved
boundary layers, the model is essentially limited to laminar flow. An important
distinction with respect to the flow around solid objects arises early on in the study
of bubble boundary layers. In classical boundary layer theory one may extend the
methods developed for laminar boundary layers to the study of turbulent boundary
layers by the definition of an appropriately enhanced momentum transfer term (e.g.
the eddy viscosity). This is not possible for bubbles because the bubble shape in
itself is unsteady under the influence of turbulent velocity fluctuations. Bubble
oscillations excited by turbulent fluctuations provoke more fluctuations themselves
and the conceptual framework for a simple eddy viscosity type treatment is lacking.
Any treatment of a bubble in a surrounding turbulent velocity field must therefore
provide a description of the changes in bubble shape also. Such a description is
obtainable (in part) from a VOF or level-set method. The problem that then arises
is how to account for unresolved boundary layers given a complete description of
the turbulent flow field and the bubble on the scale of the bubble diameter. A
method based upon the Helmholtz decomposition of the surrounding velocity field
is presented in Part I.

In Part II, attention is shifted to the problem of constructing an appropriate
SGS turbulence model. The approach taken here is to give a description of the
SGS bubbles using a statistical thermodynamics approach. This alleviates many
of the conceptual difficulties brought about by averaging procedures. Given the
interest in small, SGS bubbles, these may safely be assumed to be of simple shapes,
spherical or ellipsoidal, constrained by strong surface tension effects. Hydrodynamics
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provides an interaction potential between the bubbles. The bubbles may then be
regarded as point singularities interacting through the surrounding fluid medium by
means of a known potential, a situation akin to the interaction of gas molecules for
instance. The additional hydrodynamic interactions lead to a modification of the
constitutive relationships between stress and strain for the fluid, which now depend
on the local void fraction distributions. The system has been shown to exhibit
a phase transition between a clustered and a dispersed bubble state. It is shown
in this part how the phase transition is intimately connected to the modification
of the turbulent momentum transfer observed in bubbly flow. A renormalization
group technique is suitable to the analysis of the phase transition and provides a
SGS eddy-viscosity type model which exhibits qualitatively different behavior as
the void fraction passes through the transition point. A remarkable feature of the
analysis is the role played by the turbulent fluctuations of the surrounding fluid as
providing a random motion background, akin to the role of temperature in molecular
systems. The SGS turbulence model is compared to available experimental results.
A simple direct numerical simulation of the behavior of a periodic bubble array in
a surrounding turbulent fluid is set up in order to test the model.

Finally, in Part III a local thermodynamic analysis of the processes of interface
formation is carried out. The minimization of local free energy leads to a bubble
reconstruction procedure which is physically based, as opposed to the purely geo-
metric considerations applied in VOF or level-set methods. The advantages of such
a procedure, especially in providing a pathway for investigating bubble coalescence
and breakup are presented.

The report contains a number of appendices containing documentation of the
various software developed in the course of this work or adjacent numerical proce-
dures. Appendix A covers procedures useful for distribution of flow quantities over a
Cartesian grid. Appendix B furnishes a documentation of the AxiBubble program in
which the viscid-inviscid interaction algorithm presented in Part I is implemented.
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Part 1

Unresolved Boundary Layer
Closures



Chapter 1

Problem formulation

A possible attack on the problem of numerical simulation of complex bubbly flow is
to attempt to directly compute as much of the flow field as possible. This approach
is akin to the direct numerical simulation of turbulence. However, it is unlikely
that a full resolution of all bubbles and small scale flow structures in a complex
industrial flow will be computed in the near future. This state of affairs leads to the
consideration of the explicit computation of flow features down to the meso-scale,
i.e. large, partially coherent turbulent structures and large bubbles, an approach
close in spirit to that of large eddy simulation (LES).

It is known from analytical studies of the viscid flow around a bubble [33], [34],
that the boundary condition of continuity of tangential stress across a fluid interface
leads to the formation of a viscous boundary layer around a bubble immersed in a
flow of moderately high Reynolds number (Re = 10! + 10%, based upon average
velocity around bubble and equivalent diameter d). The boundary layer is quite
thin, typically 6/d ~ 0.03. A full resolution of a bubble’s shape requires a mesh size
Az of at most Az = d/10. For these bubbles, which are at the grid resolution limit,
Ax = 3.36. The conclusion is that the boundary layers around bubbles close to the
grid resolution limit shall not be resolved.

Once we recognize that full resolution of bubble boundary layers is not feasible,
the question that naturally arises is what influence this would have on the overall flow
computation. The main physical observation that may be made is that the velocity
values defined for a grid cell containing an unresolved boundary layer provide a poor
estimate of the overall momentum contained in the cell. The specific means through
which this fact arises in a computation is somewhat dependent on the numerical
procedure adopted. The discussion here is made in terms of the volume-of-fluid
(VOF) [14] approach. In this approach a spatial averaging procedure over the phase
k is defined by

1
(Wk)y, = 7/ WiydV, (1.1)
kE Jv

where Uy, is the quantity being averaged, -, is a phase indicator function, and Vj
is the volume occupied by phase k. Averaging of the momentum equations for the
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two phases of an adiabatic bubbly flow leads to an averaged Navier-Stokes equation
0
5PU+V - (U U) = ~Vp+ V- T+ 4> Bp+m, -V-D. (L2
The flow quantities that appear are averages computed from the component phases,

i.e.

p= P+ A=) pa)ys p=Flp+ 1= 1) p2)y, (1.3)

U= (o (Ui + (1= Doy (Uda). = Vi +10). (1)

It is evident that in this approach the fluid’s motion is described by the center-
of-mass velocity of a control volume, the control volume implicitly defined by the
spatial averaging procedure (1.1). Motion on scales beneath that of the control
volume influence the larger scale motions through the last term in (1.2)

D = s - R Uy, - () 0 (O, - W), 09)

a term neglected in published works on the VOF method but noticed by Worner
[2]. This term expresses the difference between the true momentum flux and the
average flux of the averaged momentum as seen from the relation

D = £ () (Un), ® (Un)y + (L= F) {pa) (U) ® (Un)y = gU U
True momentum flux Average momentum flux

(1.6)

and therefore shall be referred to as a momentum drift-fluz term (MDF term) in the
following. It is similar to the drift-velocity from the standard two-fluid approaches
[16], [42].

Since the main focus of this investigation is on the bubbly flow of air in water it is
of interest to carry out an initial order of magnitude analysis to ascertain the effect
of the greatly different densities, p; > p,, on the MDF term. Representative scalar
velocities Uy, Us replace Up, Uy in this analysis and p;, p, are assumed constant.
The ratio of the MDF term to the averaged momentum flux is

_ D (U -
with
f(l - f)ppo x _1—Ffp Q209
C = = r=—2 2R 1.8
[for+ (1= fp,)?  (L+2)* [ aip (18)

The non-dimensional drift velocity term is

g -l Ui-U
U _CL1U1—|—CL2U2

(1.9)



with
1 x
— s a2 = .
142z 14+
From the above it is apparent that the controlling parameter is x, the product of
the density and volume fraction ratios. The limiting cases of interest are:

ai

(1.10)

1. x —0, in which case a; — 1, as — 0,
Uy — U,

C ~ AU =
x, U,

(1.11)

so the MDF term is small

D~z (1.12)

For interface cells in air water flow this situation will be the most common
except for cells in which the water fraction is very low, on the order of

P2

f~=. (1.13)
P1
2. x ~ 1, in which case a; — %, as — %,
[ U — U,
Cr~—, AU=2—-— 1.14
4’ U+ Us ( )
_ 11U, —Us
D~——-. 1.15
20U, + U, ( )
3. x — 00, in which case a; — 0, as — 1,
1 — U —-0U;
C~— AU=—— 1.16
:1;’ U2 ( )
_ 1
D~ —. 1.17
. (117)

Given that the drift velocity AU cannot significantly exceed unity, we see that
the MDF term is generally small for air-water bubbly flow with the significant ex-
ception of those cells in which the water fraction is on the order of the density
ratio. This is another aspect of the stiffness induced by the widely different fluid
densities. This observation immediately brings out the importance of an accurate
interface reconstruction procedure and f advection algorithm. The MDF term acts
basically as a source term for the averaged momentum equations (1.2), showing in
which cells the difference between the true momentum flux of the two phases is not
well approximated by the center of mass momentum flux. We see that the source
distribution may be expected to be quite concentrated for air-water flows, namely
in those cells in which f ~ 1073 (fig. 1.1).

The main objective of this part is to develop physical models capable of ac-
curately estimating the contribution of the MDF term to the overall momentum
transport in a bubbly flow.
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Figure 1.1: Log 10 plot of C'(x) with visual representation of types of interface cells
associated with x values for air-water flow.



Chapter 2

A Boundary Element Method for
Axisymmetric Bubbles

A first approach to the problem of determining the contribution of the MDF term
is to limit one’s attention to laminar flow conditions and use boundary layer theory
to estimate D. The results thus obtained may furnish a first estimate of the MDF
term. Admittedly, the application of such a model to a large scale computation
of bubbly flow is limited in scope. One may confidently apply such a model only
to bubbles for which local conditions are nearly laminar. The size of such bubbles
would be at most 10 <+ 100 times the viscous cut-off length.

The method adopted in the boundary element (BEM) treatment of a bubble is
that of viscid-inviscid interaction. The potential flow field around a bubble is first
determined by solving an integral equation for a singularity distribution on the bub-
ble surface. This procedure is an extension and refinement of that developed in [29].
Attention is limited to axisymmetric bubbles. The presentation of the boundary
element method follows that from an earlier report [3] with some modifications that
have improved the overall robustness of the method.

2.1 Potential flow around a non-buoyant axisym-
metric bubble

2.1.1 Differential equation formulation

The problem to be solved is to determine the velocity potential ¢ and axisymmetric
bubble shape ¥ = {r = r(t), z = z(t)} that satisfy

Ag =0
91 _y (2.1)

on |,

Vol = UF = 2H =~



Pb

Figure 2.1: Geometric description and discretization of an axisymmetric bubble.
where 7 is the shape parameter introduced in [29],

UL\ (PUL\"
vz(pb—pm—pQ ><p2 ) (2.2)

and H is the mean curvature. The second boundary condition in (2.1) arises from
the normal stress boundary condition for a bubble with constant internal pressure

Po = poc + g(Ufo — U?) + 20H (2.3)

after expressing all quantities in non-dimensional terms. The reference velocity is
U, and the reference length is D = 20/pUZ%. The bubble is assumed to be placed
in a uniform flow of velocity U, of a liquid with density p and surface tension o.
The mean curvature is given by

1 /da sina
MTCN, o

r

where «(t) is the angle between the r axis and the tangent vector at arc length ¢
along the bubble (fig. 2.1). The parameter ¢ is assumed to be the arc length so we
have

r'=cosa, 2 =sina. (2.5)
The Weber number is defined by

2pr U2
W= 2Pl

(o)

with 7. the radius of a sphere having the same volume as the bubble.
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2.1.2 Integral equation formulation

The differential problem (2.1) may be reformulated as an integral equation for the
function f introduced in [29] defined as f = ¢ — z. The integral equation is

£(6) = [ N(s.007(6)ds + g 27)
with the kernel
N(s,t) =2r(s) {— sin a(s)g—f(s,t) + cos a(s)%(s,t)} (2.8)

and the inhomogeneous term

L L

g(t) = / 2(5)G (s, 1) cos a(s) ds — / G(s,t)ds . (2.9)

0 0

The variables s,t are used to denote the arc parameter under and outside of the
integral sign respectively. Coordinates outside the integral sign are denoted by
(R,Z) = (r(t),2(t)) and those inside by (r,z) = (r(s),z(s)). The axisymmetric
Green function G(s,t) is defined by

G(s,t) =Glr,z,R, 7] = 1 K(k)
”¢W+Rf+@—zf

with K the complete elliptic integral of first kind
w/2 o
K =K(k)= / —_—
0 1-— /{,’2 sin 29

of modulus

k:2¢ T . (2.10)
(r+R)"+(z2— %)

The details of obtaining (2.7) from (2.1) are presented in [3]. Note that the function
f goes to zero far away from the bubble using the reference lengths and velocities
adopted here.

2.1.3 Numerical solution of the integral equation
Discrete description of the bubble geometry

A uniform discretization {0 = tg,¢,... ,t, 1,t, = L} of the bubble semi-perimeter
L is introduced,

tk:tk_l—i—h,k:l,Z,...,n, (211)



with the step size h = L/n. A discrete approximation to the bubble geometry is
specified by the nodal values oy, = «(tx). From these the cylindrical coordinates r, z
may be determined by solving the differential equations

r'(t) = cos ot Z'(t) = sin ot
S R war (212)

To solve these equations, for given nodal tangent directions ay, the spline interpo-
lations of the cos(ay) and sin(ay) are integrated.

Splitting of kernel into singular and non-singular parts

For a bubble of known shape, given in the parametrized form r = r(t), z = z(t),
the integral equation (2.7) is solved by reduction to a linear system through the
application of numerical quadrature. The kernel N(s,t) is separated into a regular
part Ni(s,t) and a singular part Ny(s, 1)

N(s,t) = Ny(s,t) + Nao(s,t), (2.13)
. _ 2rje E—-(1-k)K B (z—2Z)Kr'
Ni(s,t) - {k2 [(r+ R)? + (2 — Z)Q]l/z [(r+R)?+ (2 — Z)2]3/2}7 (2.14)

2r (r+ R)sina

S e e

(2.15)

The complete elliptic integral of the second kind

w/2
E:E(k)z/ V1 —k?sin?0do, (2.16)
0
and the auxiliary function
k . Ok Ok
e= 173 (— sin oo - + COSOz&) (2.17)

_ (z—=2Z)r' —(r+ R)2 (r—R)Z —(z2—2Z)r
(r+R)?+ (z — Z)? (r—R)2?+(z2—2)? "’

(2.18)

have been introduced. The e(s,t) function is continuous along a smooth bubble

1

da  sina
li t)y==|—— 2.1
limn (5, ) g(ﬁ R) (2.19)
The limiting value of the regular kernel as s — ¢ is
1 (sina da
lim Ny (s, t) = — —— . 2.2
lim N1 (s, ) 27r( R dt) (220)
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The limiting behavior of the singular kernel is

sin «v sin « 4
N. t,t) ~ — Kk—1)~— | 2.21
2(3_>7) 2R (_>) Zﬂ_ankl ( )
The leading order behavior of the modulus k(s,t) as s — t is given by
N Gt
k(s,t) 21— S (2.22)
so the leading order behavior of Ny is
sin « 8R
No(s,t) = — 1 . 2.2
2(s1) orR |s —t (2.23)

Approximation of integral equation by numeric quadrature

A linear system for the nodal values fi, = f(tx) is obtained from (2.7) by applying
the integral equation at the nodes ?y,

Je= /N s,tx) f(s) ds + gi (2.24)

with, gr = g(tx), k = 1,n — 1. The integrals are split along subintervals containing
() nodes

L np iR
/N s, tk) f(s)ds = Z / N(s,tg)f(s)ds (2.25)
0 =1 :_1)Rn
L np iR
gk = /G(s,tk) ds =) / N(s,t) f(s)ds (2.26)
0 =1 (i_1)Rh

with R = @ — 1, ng = n/R. Numerical quadrature rules using () points are applied
over each subinterval.
For regular integrands we have

iRh

R
Ily = / N1 S tk dS =h ZAZNI(Sj(l)7tk)fj(l) (227)
(i—1)Rh 1=0

()= (i—1)R+1 (2.28)

11



where A; are the quadrature coefficients. These are determined so that the quadra-
ture formula is exact for polynomials of degree up to R

Rm+1

Zlm m=0,...,R. (2.29)

The same quadrature rule is applied for the integrals of Na(s,t), G(s,tx) when
these remain regular within the integration interval, that is when k& ¢ [(: — 1) R,iR)].
If k € [(1 — 1)R,iR], Na(s,t), G(s,tx) are singular within the integration interval.
The singularity is of the logarithmic type and therefore integrable. An appropriate
numeric treatment is to factor out the singular factor and use a weighted quadrature
rule

iRh iRh
8r _
It = / Ny(s, ta) f(s)ds = / I = (o, 1) (5)s (2.30)
(i—1)Rh (i—1)Rh
R —
= hZBZkN2(3j(l);tk)fj(l) (2.31)
=0
iRh iRh
k 87“]6 =
Ji = G(s,tx)ds = In St ’G(s,tk)ds (2.32)
S J—
(i—1)Rh (i—1)Rh £
R —
> 1Y BfG(sju). t)- (2.33)

The logarithmic weight function is given by the leading order behavior of Ny and
G (2.23). It is natural therefore that the functions from which a logarithmic factor
has been forced are regular

sina(t) . - cos o (t)
, limG(s,t) =— :
2R s—t (5,1) s
The B; quadrature coefficients are again determined so that the quadrature formulas
are exact for polynomials of degree up to R

limt Ny(s,t) = — (2.34)

R
> (iR—R+1-k)"Bf =L\, m=0,... R, (2.35)
1=0
with the analytical evaluation of the intervening integrals
LF =0 Ai—A, (i—1)R<Ek<iR (2.36)
_Ai—l iR=kF
(iR — k)m™t! (8rk/h) 1
A; = 1 2.
m+1 | [iR—k  m+1 (2:37)

The system (2.35) must be solved for each k since the local values ry and h appear
in the rhs. This is to be expected since the leading order behavior depends on the
local geometry according to (2.23).

12



Approximating linear system

After applying the numerical quadrature rules a linear system
M-f=p (2.38)
is obtained for the vector of unknowns

f:[fo fl fn

The matrix elements are collected from each term in the quadrature rules using the
algorithm

1" (2.39)

M~0, p+<20 (2.40)
k=1,...,n—1
[ My, — 1
i=1,...,n—1
1=0,....R
j=(i—1)R+1

M]g,j — M]g,j -+ hAlNl(Sj, tk)
if (i—1)R<k<iR

Compute B
[=0,...,R (2.41)
[ j=(i—1)R+1

M]gyj — M]gyj -+ hBlNg(Sj,tk)

| Px — pr — hBiG (s, tx)

[=0,... R
[ j=(i—1)R+1

M]ﬁj — M]ﬁj 4+ hAlNQ(Sj,tk)
| pe — pr — hAG(s5, L)

The system is closed by imposing
fi=0, f,=0. (2.42)

Accuracy of discretization

The above numerical procedure was tested for accuracy by comparison to the known
analytical solution around an ellipsoidal bubble (see B.4). The relative errors in the
potential and the surface velocity

6(1/5 _ ||¢n - gbe:l}act”l7 efo — ||¢n - ¢ezact||oo (243)
||¢ezact||1 ||¢ezact||oo
If _ Hun_uexactHl, go _ ||un_uexact||oo (244)

HueractHl ||uemct||oo
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are represented in fig. 2.2 in logarithmic coordinates. The results show improved
accuracy as () increases. The overall procedure does not attain the theoretically
predicted () order of convergence. Analysis of the results shows that this is due
mainly to implementation of the end conditions. The differences in the convergence
analysis in the co-norm and the 1-norm bring this out. However, for () > 4 at least
third order accuracy is achieved which is sufficient for practical computations.

2.1.4 Procedure for determining the bubble shape

For a given bubble shape the procedure presented in 2.1.3 allows the computa-
tion of potential at the nodal points. An iterative procedure is now set up to
compute the bubble shape so that the second boundary condition in (2.1) is also
satisfied. The bubble shape is described by the vector of geometric quantities

X = [ Ry a7y -+ «ap,q1 R, L }T with Ry R, the radii of curvature at the fore
and aft stagnation points. We must impose n + 2 conditions to determine X. The
normal stress boundary condition is applied at nodes £k =0,... ,n
da sin «
RO = U4y () - (2.45)
dt k Tk
and the condition of closed bubble shape is imposed
Foi1(X)=r, (2.46)
to obtain the final equation needed.
A nonlinear system of equations has thus been obtained
F(X)=0 (2.47)

with F = {Fy(X),...,F1(X)}T. This system may be solved using standard
algorithms. The Broyden secant update available in the IMSL routine DNEQBF is
used here.

2.1.5 Geometric characteristics of the bubble

After the solution to (2.47) is found the volume V', surface area A and aspect ratio
x of the bubble may be computed

orr [* 4
v="" (r'z —2'r)yrdt = —Wrg’ (2.48)
3/, 3
L
A=2r / r(t) dt (2.49)
0
X = Mmax (2.50)

Zn — 20
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Figure 2.2: Convergence of the integral equation solver.
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ab,V

Figure 2.3: Dependence of bubble semiaxes a, b and volume V on Weber number W
for g = 0.
When expressing r, in units of D = 20/pUZ2 the Weber number is simply

W = 4r,. (2.51)

The dependence of the above quantities on the Weber number W is given in fig.
2.3-2.4. The evolution of bubble shapes as v increases is given in fig. 2.5-2.6

2.1.6 Evaluation of the velocity field around a bubble of
known shape

Computation of velocity by convolution

Once a bubble shape has been determined by the secant procedure presented above
one may compute the velocity potential and the velocity at any point (R, Z) in the
flow field outside of the bubble. The integral equation (2.7) may be written as

F(R, 7) = /0 N=t(s; R, Z) f(s)ds + g='(R, ) (2.52)

with
N“YR,Z) =r(s) {— sin a(s)g—f(s; R, Z) + cos a(s)%(s; R,7) (2.53)
gt (t) = /r(s)g(s; R, Z) cos a(s) ds. (2.54)

0
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Figure 2.4: Dependence of bubble aspect ratio y and area A on Weber number W
for 7 = 0. Also relationship between + parameter and W.
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Figure 2.5: Sequence of bubble shapes at =0 for y=1,2,...,10.
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0.25

05

0.75

Figure 2.6: Sequence of bubble shapes at § =0 for v = —0.2,-0.1,... ,1.0.

The change in numeric factors with respect to (2.7) is a result of not evaluating f
on the bubble surface. Since

V=V®d=Vf+e, (2.55)

we have
. L
V= / V(Ryz)Nemt(S; R, Z) f(s)ds+V(R,Z)gem(R, Z) +€z (256)
0

The above formula may be evaluated analytically but the computations are exces-
sively lengthy. A quicker evaluation is given by numeric approximation,

®(R+h,7Z)— ®(R—h,Z)
2h

O(R,Z+h) — (R, Z—h)
2h

-

€r

V(R,Z) =

g,. (2.57)

Formula (2.57) works well for points which are not very close to the bubble
surface. The evaluation of the potential is however error-prone very close to the
bubble surface (within one tenth of the bubble diameter, fig. 2.7) due to the large
variations in the N kernel. This may be remedied by evaluating the integral using
a much finer discretization of the bubble boundary than that needed for finding
f(s), typically using 10N integration nodes. The resulting algorithm is, however,
inefficient because it requires O(40N M?) operations to evaluate the velocities on a
3D grid with M nodes in one direction.
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Figure 2.7: Evaluation of velocity field close to the bubble surface using (2.57).
Large numerical errors are observed.

Computation of velocity by applying a fast Poisson solver

A more computationally effective procedure is to compute ® on a rectangular mesh
enclosing the bubble by solving the Neumann problem from the first two equations
in (2.1), the bubble shape being known. Since the values of f on the bubble surface
have already been computed to a high order of precision by the integral equation
solver, it is possible to apply a fast Poisson solver to compute ® on the mesh by
adapting the procedures pioneered in [26]. The cost in this case is O(5M3log; M),
typically leading to a reduction in the computation time by a factor of 4 +— 8 by
comparison to (2.57). Moreover, the fast Poisson solver approach is better suited to
evaluation of the momentum drift-flux term D from (1.5) and to extensions of the
viscid-inviscid model to three dimensions.

The representation of f by single and double layers. The integral equation
(2.7) was obtained from an application of Green’s second identity giving

10 =1 [ |15 (52) - @ g ] a5, (259)

7= |7 — 4l
with p, ¢ position vectors pointing to points not on the bubble, and on the bubble,
respectively. One may interpret (2.58) as giving a representation of f through a
single layer potential of intensity

19f

" 4ron (2.59)

7
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and a double layer potential of intensity
Ly (2.60)
g = —— . .
4

One knows from general potential theory [18] that the values of the single layer
potential on a point on S specify the jump in the normal derivative of the represented
function when crossing the point

{af} _oft of” Ay — of

on| On on ™= on (2.61)

where the rhs term is evaluated on S. Similarly, the double layer potential specifies
the jump in the function itself

fr=fr=f (2.62)
from which tangential derivatives may also be computed

okt obfT
otk otk Otk
to whatever order k needed.

From (2.61) and (2.63) jumps in the higher derivatives may also be computed.
Derivatives up to the third order shall be required later and are evaluated here.
Consider that a local, curvilinear coordinate system (¢,n) is defined. On the bub-
ble we would have n = 0, with ¢ corresponding to the arc length along the bubble
perimeter. We suppose that, in general, changes in (¢,n) give the arc length tra-
versed so that the Lamé parameters are L; = L, = 1. Explicit construction of the
(t,n) coordinate system would seem to be necessary in order to evaluate the normal
derivatives. This is difficult generally, but fortunately not actually required since we
can use the bubble boundary conditions and the Laplace equation to conveniently
transform normal derivatives to tangential derivatives. Let us now compute the
jumps in ¢ and its derivatives up to third order. Recall that f = ® — z, with z and
its derivatives continuous so that jumps in f are equal to jumps in ®

= f® (2.63)

ore) [0
{W] - L?Tﬂ =f® k=01,... . (2.64)

Turning now to the normal derivatives we have

0o 0d 0z
L}—n} =5, "5, = —osa (2.65)

because of the no through-flow boundary condition (0®/9ng = 0) and the definition
of a. Differentiation of (2.65) along n leads to
] PP 0%
on2|  On2  On?’

(2.66)

20



Both ® and 2z are harmonic and the values of these functions and their derivatives
are so defined that

0*d 0*d 0%z 0%z

W_FW:O’ ﬁ—FW:O (2.67)

on the bubble surface S also (the Laplace operator has the standard form in the
(t,n) coordinate system since the coordinates are orthonormal). Therefore we have

029 b 9%z .
L’)—} == (a—t - aT) =/ (2.68)

Another differentiation leads to

ou) 00 i 0 (0 0=\ (0w 0\ o
on3|  on3 om3  onm\Ot2 0ot2)  ot2\on On '
or, taking the no-through flow boundary condition into account,
3
{%} — —asina — (o)’ cos . (2.70)

Finally, we have the cross derivative jumps

0*® 03P oRL"
[Gtan} = d'sinq, [m} = o’ sina + (a')*cos {61&6712} =—f". (2.71)

The equivalent Poisson equation on a rectangular grid. One may use (2.64)-
(2.71) to solve the problem

Ad =] (2.72)
o, =F, (2.73)

with R a rectangular domain enclosing the bubble, rather than the original problem
(2.1). The boundary values of ® on R may be computed by evaluating the con-
volution integral (2.52). The size of R may be made large enough to ensure that
F is evaluated with good precision. The right hand side term J accounts for the
jumps that occur when crossing the bubble surface. The above problem (2.72) may
be solved efficiently by applying a fast Poisson solver over the entire domain R if
a method of determining the effect of the bubble surface singularities is devised.
Consider the discretization of the Laplace operator using a standard seven point
stencil

1
AP =N, D = ﬁ (q)i+1,j,k + (I)ifl,j,k + q)i,jJrl,k + (I)i,jfl,lﬁ- (2.74)

This discretization of second order if the stencil arms do not cross the bubble surface.
If a stencil arm does cross the surface the jumps in ® and its derivatives across the
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surface must be accounted for. Consider that the (4,7, k) — (i + 1, j, k) stencil arm
is cut by the bubble surface into subsegments of length h; and hy. A second order
approximation of the second x derivative of ® is now

1
(Paz)ije = 73 (Pirrge = 2P + Pivi ) = (2.76)
I 2 .
i (1814 o+ o]+ 0.,

A derivation of the above formula may be found in 3.1.4. The more convenient
subscript notation for the derivatives is used from here on. This formula is obtained
by patching the Taylor series up to and from = = x;41 — he = 2; + hy. The J; 1
term is in this case

h3 h3
Jijie = [®] + ho [®.] + 52 (@] + FQ [@0a] - (2.77)

Similar formulas are derived for other intersections of the bubble surface and stencil
arms. If the (i, j, k) —(i—1, j, k) arm is intersected formula (2.76) with hs replaced by
—ho is applied, x = x;_1 + hy = x; — hy. Derivatives along other directions are found
by circular permutation. The relations between derivatives along the Cartesian axis
and those along the bubble surface are

( 2 = 0 oa— — inozi
e cos cos 5 S n
) 0 . 0
a_y = sm@ (COS Oda — S1n Oé&) (278)
2 = [ sin aé + cos Oz2
| 0z ot on

where the circumferential coordinate 6 has been introduced. Analogous relations
hold for jumps

[®;] = cos ([P¢] cosa — [D,,] sin «v)
[®,] = sin 0 ([@;] cos a — [®@,,] sin @)
[©.] = [®]sina + [P,,] cos o

(2.79)

Relations for the higher order derivatives may be found by repeated application of
the above formulas

4 a_k B . ; 2 . 3 k
i cos Ccos & Y sin o n
. k
a—y’“ = sin® 0 (cos a% — sin a%) (2.80)
a_k = sina2 + COSOz3 '
\ Ozk ot on

22



This leads to the following jump relations

[@,5] = cos? 0 ([@y] cos? o — 2 [Py, cos asin o + [Py, sin® )
[®,,] = sin® 6 ([®y] cos® v — 2 [Dy,] cos arsin v + [@y,,,] sin” @) (2.81)
[@..] = [®@4] sin? a + 2 [®y,] sin acos a + [@,,,] cos?

[Paga) = 08?0 ([Dpre] cOs® v — 3 [Py, cOS? arsin v + 3 [Piyes] cOS @ sin® a + [@pnp) sin® @)

(@] = sin® 0 ([Byy] cos® a — 3 [Pyyy,] cOs® v sin v + 3 [Dyyy] cOs arsin® o + [@yyy5,,] sin® )
[@...] = [®u] sin® & + 3 [@4,] sin® a cos a + 3 [@yy,,,] sin v cO8? @ + [@ 0] cOS® v

Replacing (2.64-2.71) in the above we obtain

[®,] = (f' +sina)cosacosb
[®,] = (f' +sina) cosasind (2.82)
[@,] = f'sina — cos? «

[@,0] = {f" (cos® & — sin® @) — o sinasin 2a } cos? 6
[®,,] = {f" (cos® & — sin® a) — o' sin avsin 2 | sin® § (2.83)
[@..] = — {f” (cos® @ — sin® a) — o sin avsin 20} sin

[®p0e] = Acos® 0, [Dy,,] = Asin®
[@...] = f” (sina — 3 cos ) sin? a+ (2.84)
{a”sina + (a/)? cosa} (3sina — cos a) cos®

A={f" (cos®a —3sin’a) cosa + {a"sina + (o/)* cosa} (—3 cos® o + sin’ @) sina } .
(2.85)

Note that in order to ensure second order accuracy of the Poisson solver the
f function must be evaluated with fourth order precision and « with third order
precision. The accuracy of the integral equation solver thus plays an essential role
in the correct evaluation of the velocities through the fast Poisson solver technique
presented here. When evaluating f, o and their derivatives care must be exercised
that the required order of precision is obtained. The strategy adopted here is to
use at least a fourth order integral equation solver and then use cubic interpolation
for the derivative of f. This gives the minimum required O(h*) behavior for the
function f itself. The following formulas give fourth order accurate approximations
of f on a uniform grid

—25f; + 48 fiy1 — 36 fiyo + 16 fii3 — 3 fiqa
12h

fl = (2.86)

= —3fic1 —10f; + 18fix1 — 6fiyo + firs
! 12h

(2.87)
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Figure 2.8: Intersection of stencil arm with a member of the bubble surface trian-
gulation.

) Jica = 8fia +8fip1 — firo

f — (2.88)
— Ji— 6 i—2 ].8 i— ].0 7 3 i
= Jicz+6fi o 12fh 1+ 10fi + 3fina (2.89)
i—a — 16 f;_ i—o — 48fi_1+25f;

12h

Fourth order accurate formulas for the second derivatives are required at the end
points
—IOfi_5 + 61fi_4 — 156f1_3 + 214f2—2 - 154f1_1 + 45]‘1z

p ADfi — 154 fi 0 + 214 i 0 — 156 fi 3 + 61 fi14 — 10fiy5

L 24h? '
An alternative would be to apply the technique widely employed in integral equation
analysis of using the integral equation formula (2.7) itself as an interpolation formula.
This leads to a more complicated implementation though since new weight functions
for the point of interest at coordinate ¢ must be constructed.

(2.92)

Algorithm for intersection of bubble and discrete Laplace stencil. In order
to apply the above formulas the intersections of the bubble surface with the discrete
Laplace stencil must be determined. Consider the bubble surface to be given by a
triangulation and let (), pa2, p5) be the position vectors of the vertices of one the
triangles. A translation of the coordinate system so that p; = 0 is convenient. It
is assumed that the position vectors reflect this translation. An arm of the discrete
Laplace stencil is given by the segment (7, pp) (fig. 2.8). A point on the stencil arm
is given by

ﬁ/\ = ﬁa + )‘(ﬁb - ﬁa) . (293)
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If P\ lies in the plane defined by the triangle (pi,ps,p3) then the volume of the
tetrahedron (pi, ps, s, Pi) is zero, a condition which may be expressed as

1 1 1 1
0 zo o3 xg+ AMxp —24)

0 %2 Y3 Yat+ MU — ¥a)
0 2o 23 2o+ A2o— 2a)

—0 (2.94)

or, after expanding along the first column and using the determinant addition for-
mula on the last,

To T3 Tg To X3 Tp — Tg
Y2 Ys Ya |TA[ Y2 Ys Yp—Ya | =0. (2.95)
Z2 23 Zg 22 23 Zp— Zq

Equation (2.95) has a single solution if

To T3 Tp — Tg

Yo Y3 Yo—Ya | # 0. (2.96)
Z9 Z3 RZp — Zg

If the determinant is zero, then the stencil arm is either completely in the triangle
or parallel to it. If it is completely in the triangle, there are no discontinuities in the
standard discrete approximation of the derivative along the stencil arm direction. If
the stencil arm is parallel to the triangle, it does not cross the bubble surface within
this triangle and again there are no discontinuities to be accounted for in the discrete
Laplace operator. If (2.96) holds, the stencil arm crosses the plane defined by the
(P1, D2, p3)- It is still necessary to verify whether the intersection point, denoted by
Do, is inside the triangle. This is established in a local 2D coordinate system (&, 7)
in the plane of the triangle, centered on p;, and defined by the unit vectors

—

> _ P2 . D3 (P5 - €¢)ée
ef - — 9 677 - — — -\ = .
172 175 — (P53 - @) é|
In the above, the fact that p; = 0 was used. Global coordinates are transformed to
local coordinates using the identity

(2.97)

P =i +yj+ 2k = EG +nE, + (& (2.98)
with
_’C = 55 X en . (299)

In the (£,n) plane one verifies that gy is within the triangle by checking that it is
one the same side of each of the triangles edges as the remaining node opposite the
edge.

Assuming that in the (p,, p,) segment p, is always at the center of the discrete
Laplace stencil, the lengths hq, ho required in the approximation of a discontinuous
derivative (2.76) are

hi = MIpy = Pall s ha = (1= N [IPs — Pall - (2.100)
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The algorithm for computing the J term from (2.72) is

Build bubble surface triangulation
Loop over (x,y) = const lines
[ Loop over triangulation
[ If an intersection point within
i triangle is found then add effects to J; ; x
Loop over (y,z) = const lines
[ Loop over triangulation . (2.101)
[ If an intersection point within
triangle is found then add effects to J; ; «
Loop over (z,z) = const lines
[ Loop over triangulation
If an intersection point within
triangle is found then add effects to J; ; «

2.2 Buoyancy effects

When the bubble is placed in a gravitational field g there is an additional change
in the liquid pressure from this effect. The normal stress boundary condition now
becomes

U? =2H — v+ Bz (2.102)
with
4og
— , 2.103
f=rr (2.103)

The same numerical procedure is applied for the new boundary condition (2.102).
The effect of gravitational forces upon the bubble geometry is presented in fig. (2.9)-
(2.13). A remarkable result is the large change in fore-aft asymmetry observed as (3
increases (2.13). The change in bubble shape as [ increases for W = 2 is shown in
fig. 2.14.

A first comparison may be made with experimental results. Duineveld [8] studied
the rise of air bubbles in highly purified water. Surfactant effects are thus minimized
and the no tangential stress boundary condition is satisfied. For W = 2.3 the bubble
shape is reasonably close to that measured (2.15) even when no viscous effects are
considered. At the highest Weber number measured by Duineveld W = 3.36 the
computed shape differs markedly from that measured (fig. 2.16). At this high Weber
number the bubble’s shape and rise velocity are unsteady however, with the bubble
rising in a zigzag motion. The steady, axisymmetric model of the bubble used in
the computation is therefore inappropriate.
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Figure 2.10: Effect of 5 on (W, A) relationship.
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Figure 2.11: Effect of 5 on (W, V) relationship.
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Figure 2.12: Effect of 5 on (W, x) relationship.
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Figure 2.13: Effect of 3 on fore-aft asymmetry of the bubble. Some numerical
noise is still apparent in the graph. The fore-aft asymmetry is the parameter most
sensitive to numerical convergence effects.
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Figure 2.14: Change in shape for W = 2 bubble as 3 goes from 0 to 1 in increments
of AG=0.1.
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Figure 2.15: Comparison of computed (solid line) and experimental (dotted line,
[8]) shape for a air bubble rising in pure water at W = 2.3. Computation without
viscous effects. Streamwise bubble axis from computation is fitted to measurement
by least squares method.

Figure 2.16: Comparison of computed (solid line) and experimental (dotted line,
[8]) shape for a air bubble rising in pure water at W = 3.36. Computation without
viscous effects.
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Figure 2.17: Void fraction distribution for a W = 2.15 bubble discretized over a
rectangular 32x32x32 Cartesian grid in a x = const plane.

2.3 Inviscid, axisymmetric momentum drift-flux
term

A first estimate of the MDF term in (1.5) may be obtained by applying the above
inviscid model. Note that the MDF term D reflects flow phenomena beneath the grid
resolution of the VOF method. For any given discrete approximation of a bubble
shape, the integral equation method presented above furnishes a more accurate
description of the flow around a bubble than extrapolation from the velocities defined
on the VOF grid. So even neglecting viscous effects it is of some interest to obtain
some preliminary information on the magnitude of the MDF term. The void fraction
distributions and norm of the divergence of the MDF term are shown in figures 2.17-
2.20 for a W = 2.15 bubble at # = 0 and density ratio p,/p; = 0.001 representative
for an air bubble in water. One may note that the general features of the qualitative
analysis presented in chapter 1 are observed. The bubble interface is captured along
an average of two cells of the Cartesian grid so the bubble may be considered to
be fully resolved within the framework of a VOF method. The MDF term varies
in magnitude by a factor around 20 and shows spikes that are associated with the
relative position of the bubble with respect to the Cartesian grid. Since a divergence
is taken the MDF term is spread out over more cells of the Cartesian grid.
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Figure 2.18: The norm of the divergence of the MDF term, |V - D|| corresponding
to plane in fig. 2.17.
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Figure 2.19: Same as previous figures for a z = const plane.
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Figure 2.20: Same as 2.18 for a z = const plane.

2.4 Viscous Effects

It is assumed that the bubble interface is incapable of sustaining a jump in tangential
stress (i.e. there are no surfactants present). Since the gas inside the bubble is
assumed to be stationary in the model considered here the continuity of tangential
stress condition implies that

ou
7 =0 (2.104)

or that the normal derivative of the tangential velocity is zero at the bubble surface.
This condition is not satisfied in general by the potential flow solution. In the
immediate vicinity of the bubble surface a boundary layer therefore forms in which
the viscous effects are significant and the potential flow field is modified so as to
satisfy (2.104). There are two viscous effects that are important:

1. the effect of the normal deviatoric stress which will modify the bubble shape

2. the change in the velocity distribution very close to the bubble surface

2.4.1 Effect upon bubble shape

The bubble shape is determined by the balance of normal stresses. The pressure
drop across the boundary layer is known to be negligible. The only viscous effect of
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significance is the normal deviatoric stress

2pv—. 2.1
m (2.105)

After reducing the above term to non-dimensional form the normal stress bound-
ary condition becomes [30]

4 9%

F(X)=Ul+~v—2Hp — B2p — — —— 2.106
K(X) =Up +7v—2H, — Bz Ro 912 ( )
where the Reynolds number is defined by
2 e o0
Re — 2V (2.107)
1%

with r, given in units of D = 20/pUZ . In general, the effect of the normal deviatoric
stress upon the bubble shape is quite small, confirming the initial argument made in
this chapter that the overall flow is dominated by non-viscous effects. Large effects
are seen at the low Reynolds number range (Re ~ 50) when the flow changes from
one being dominated by convection effects to one in which viscous effects become
dominant (and therefore better described by the Stokes equations). Some of the
changes in the geometric characteristics of the bubble brought about by changes in
the Reynolds number are shown in figures 2.21-2.22. A comparison of a computed
bubble with the Duineveld experiments is shown in fig. 2.23. There is no discernible
change in the bubble shape by comparison to the inviscid computation.

2.4.2 Effect upon velocity distribution

The change in the velocity distribution close to the bubble surface may be mod-
eled in a number of ways. One technique is to adapt the standard methods from
boundary layer theory [40]. An example is the thesis by Bekkum [43] in which
the Pohlhausen technique of fitting the velocity distribution with a fourth-degree
polynomial is applied. This technique is appropriate if the boundary layer is not of
negligible thickness. If the boundary layer thickness is negligible, then the analysis
of Moore [33] is applicable. This basically amounts to a change in the boundary con-
dition of the inviscid flow to account for the continuous tangential stress condition.
Bekkum has shown [43] that the parameter separating the domains of applicabil-
ity of the two techniques is the product of the curvature and the boundary layer
thickness

k=Hé= (2.108)

since § ~ 1/v/Re. If k = O(8) then the boundary layer thickness is negligible. If k =
O(1) the boundary layer has an appreciable thickness and the velocity distribution
in this layer should be accounted for. It is of interest to verify the magnitude of the
k parameter. The limit of applicability of the procedures described in this chapter
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Figure 2.22: Variation of fore-aft asymmetry with Reynolds number (Ay = 0.25).
The parameter is sensitive to numerical errors.
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Figure 2.23: Comparison between computed shape (continuous line) and experimen-
tal result [8], W =1.919, Re = 4.15- 10°.

is at W ~ 3 at which the axes ratio of the bubble is x ~ 2. The curvature along the
computed bubble solution is shown in fig. 2.24 and has a maximum value of H ~ 5.
For the minimum Reynolds number at which convection effects dominate, Re ~ 100,
we would have & = 0.5 and for the normal range of Reynolds numbers representative
for air-water bubbles k£ < 0.1. We conclude that the boundary layer thickness may be
considered negligible in the general framework of the approximations of the present
analysis. In order to account for the change in the velocity distribution close to
the bubble surface it is sufficient to introduce a vorticity distribution on the bubble
surface. The local intensity may be derived from the tangential stress boundary
condition to be
_ 99
T o
since a vorticity layer of intensity v produces a velocity jump of magnitude ~ and
we need to model a jump from the zero velocity inside the bubble to the velocity
0¢/0t = u on the bubble surface. The additional vorticity enters the computation

(2.109)

of the velocity components V = ué, + vé, through the standard formulas
1 [ Y —y(s

wxy) =5 [ "5 oL S

o IX — ()P Y - y(s)

ds (2.110)

1 [t X —z(s)
v(X,)Y)=— (s)
o / ! VIX —2(s) +[Y - y(s))?

ds. (2.111)
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Figure 2.24: Curvature along a bubble with y ~ 2
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Figure 2.25: Velocity field around a bubble (W = 1.9) with viscous correction.
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Chapter 3

The Dynamic Momentum
Drift-Flux Model

We now turn to a different type of MDF model, that eliminates most of the restric-
tion of the viscid-inviscid approach at the price of increased computational effort.

The basic components of the drift-flux model developed here, named the Dy-
namic Momentum Drift-Flux (DMDF) model, are now presented. The model is
said to be “dynamic” in that the instantaneous bubble shape and surrounding flow
conditions are taken into account; there is no over-all prescription for computing
the drift-flux term. Rather an algorithm is devised to evaluate this term based
upon local flow conditions, which change dynamically during the course of the VOF
computation. In this section an overview of the model is presented. The explicit
formulations for 2D and 3D are presented in sections §3.2 and §3.3, respectively. In
the following it is assumed that a projection method is used to solve the averaged
Navier-Stokes equations. This is not required though, and the DMDF model may
easily be adapted to other VOF solvers. The main numerical algorithm used for the
bubbly flow simulation shall be referred to as the underlying or overall computational
method.

3.1 An overview

3.1.1 Decomposition of the velocity field

The flow is assumed to contain two phases which may be either incompressible or
compressible. It is also assumed that the bubble shapes have been determined from
the application of a reconstruction procedure to the f field and that a rectangular
box surrounding a bubble may be identified (dilute bubbly flow). Let U" be the
numeric velocity field, at a given time step, as provided by the overall VOF com-
putation on an uniform Cartesian grid. This field is defined only at the grid points
x". Let U be a continuous extension U" that satisfies U(x") = U"(x"). Typically
U”, and therefore U, would partially reflect the influence of the boundary condi-
tions on the bubble interface through an appropriate momentum source, such as the
fe** term in (1.2). Effects below the grid resolution scale that give the difference in
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Figure 3.1: A resolved bubble in a local, rectangular bounding box. Irregular grid
cells containing an interface are shaded.

average phase velocities (U;); — (Us), would not, however, be captured. Let U* be
a velocity field that includes the subgrid effects associated with a fluid interface. It
is the goal of the DMDF model to accurately estimate and efficiently compute U*.
The presence of the phase interface induces additional vorticity so that the tan-
gential stress boundary condition is satisfied. Surface phase changes would lead to
sources and sinks of mass in the fluids on each side of the interface. It is, therefore,
convenient to adopt a formulation in which the physical quantities of interest appear
directly. From the U vector field we may compute the divergence and the curl

g=V- U, w=VxU. (3.1)

The Helmholtz theorem states that a vector field of known divergence and curl may
be decomposed into a part given by the gradient of a scalar potential and a part
given by the curl of a vector potential

U=U’+U"=Vp+Vx1. (3.2)
The potentials satisfy Poisson equations

assuming that a gauge has been chosen for v so that it is divergence-free. The
representation of the velocity field by the potentials ¢, 1 is adopted in the DMDF
model since the physical quantities of interest ¢, w appear directly.

3.1.2 Modified representation due to interface effects

All the fields in (3.1)-(3.3) are continuously defined. As the grid cell size goes to
zero the corresponding numeric fields from the VOF computation would have the
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above fields as their limits, i.e. U" — U and so on. The influence of the interface
upon these fields could come from an external force term f*' defined to model
interfacial effects. In the limit of infinitesimal control volumes all interfacial effects
would be captured. In a numeric solution there is of necessity a finite grid cell size,
so the external force term should be seen as capturing interfacial effects only at the
grid resolution scale. The consequences of adopting a finite grid cell size are now
investigated. The VOF formulation furnishes a discrete approximation of the source
terms in (3.1),

""" =v, U" o"x"=v, x U", (3.4)

with V), the discrete nabla operator defined on the underlying VOF grid. These
source terms ¢",w" do not fully take into account the presence of an interface. In
the DMDF model a modified volume source distribution ¢* and a modified vortic-
ity distribution w* are introduced. The source terms ¢*, w* are chosen to reflect
boundary conditions on the interface, at the subgrid scale. This leads to a modified
velocity field representation

U =Vo" +V x . (3.5)

Along the interface normal stresses arising from fluid pressure, normal viscous
stress and surface tension effects must balance. This boundary condition typically
arises in solving a pressure equation for the overall flow field. This is not of direct
interest in determining the drift-flux term, where only velocities appear. Of course
the overall VOF computation is expected to provide the correct relationship between
the phase-averaged pressure and the U” velocity field.

If the interface is considered to be infinitesimal, tangential stresses must be the
same on both sides. Since the two fluids typically have different viscosities, boundary
layers form in the vicinity of the interface. In this region viscous effects lead to the
formation of sufficient vorticity to ensure that the continuity of tangential stress
condition is met. In the DMDF model this effect is modeled by changing the source
term w in cells containing a portion of the interface. Such cells are called irregular
grid cells. Let I* denote the set of grid nodes belonging to irregular cells (fig. 3.1).
Instead of solving (3.3), the equation

AY* = — w* (3.6)

is solved with

w+C xher

w@%:{ w xrglI (3.7)

The correction term C may be determined from the continuity of tangential stress
as shown in §3.2 for the 2D case and in §3.3 for the 3D case.

In addition to the boundary conditions imposed on the fluid stresses, mass trans-
fer conditions may also be imposed at the interface. These are typically associated
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with phase change phenomena at the interface. Similarly to the above technique, a
modified source term is introduced for the irregular cells

re={, 0 Wil (39)

g+D xhelrIr
and the modified scalar potential is given by
NQ* = q*. (3.9)

Within the volume occupied by any one phase the potentials ¢*, ¥* may be
assumed continuous and differentiable. Knowledge of the source terms and boundary
conditions allow direct evaluation of the potentials through the application of the
fundamental representation formula [28, p. 63]. For example, for the scalar potential
and with P € V; this would give

5(P) = /MS (lw—gb*(M)M) as— L [ M) 3

T 4r r  on on d Jy, o
where r = |r| = |PM]|. Evaluation of the volume integral is computationally costly

however. It is more convenient to split the potentials into two parts
Y=+, (3.11)
¢F = ¢+ ¢7 (3.12)

with

AY® = —w*, AYPp® =0 (3.13)
At =q*, N¢° =0. (3.14)

The values of ¢?, 1 at the grid points x® may be efficiently computed by apply-
ing a fast Poisson solver on V; U S; UV, with some conveniently simple boundary
conditions. Discontinuities arising in the discrete Laplace operator may be taken
into account by adapting the procedures pioneered in [26]. Once ¢?(x"), ¥*(x") are
known, interpolation procedures that include any discontinuities associated with the
presence of the interface may be used to compute ¢?(x), 1*(x) and their derivatives
for x € S5. These values enter into the boundary problems for ¢° and 1 which
are solved by setting up appropriate integral equations along the bubble. In the
decompositions (3.11-3.12) ¢%, 1“ have the role of modeling the subgrid interface
effects while ¢° and 1° ensure that S, is either a streamline when there is no mass
flow through the interface or S, is a surface with prescribed mass flow.

3.1.3 Swubgrid-scale effects given by the DMDF model

After carrying out the above computations a new velocity field

U* = Vo' + V x ¢, (3.15)
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Figure 3.2: The one-dimensional irregular stencil.

that includes the physical effects of the bubble interface at the subgrid scale, may
be computed. However, the U* field is not directly required in evaluating the mo-
mentum drift-flux term (1.5). In the MDF term D, the phase-averaged quantities
(U1),, (Usy), appear. These involve an integration over the volume occupied by
each phase in an irregular grid cell G*,

1

(Uk)y = A /V . (Vo* +V x ") dV . (3.16)

Using the divergence and curl theorems [46, Chap. IV] the above volume integrals
may be conveniently transformed to surface integrals so ¢* and 1™ appear directly

(U, = i/ (¢"n+n x ¥*)dS. (3.17)
B(VenG)

Vi
Equation (3.17) shows how naturally the subgrid, phase-averaged velocity is ex-
pressed in terms of the scalar and vector potentials introduced in (3.2).

The corrected velocity field U* is largely determined by the initial velocity field
U” furnished by the VOF computation, since U” is used to determine the source
terms ¢*, w* in the regular grid cells. Of course, it is not identical to the U” field
since subgrid scale interface effects have been added. The influence of these effects
is transmitted to the VOF computation by way of the drift-flux term.

3.1.4 Finite difference approximation of derivatives func-
tions with discontinuities

The computational efficiency of the DMDF model is based upon the possibility of
using fast Poisson solvers over rectangular domains which contain the bubble inter-
face. The interface is modeled by a singularity distribution which induces jumps in
the function satisfying the Poisson equation. These jumps are derived from physical
conditions. The Poisson equation right hand side term is modified in order to ac-
count for the known jumps. The required corrections may be built up from a series
of one-dimensional problems. We now derive the required 1D formula that accounts
for the known jumps. This formula may be applied along each the spatial directions
of a 2D or 3D Poisson solver.

Consider a function f(x) which has a discontinuous second derivative at =z =
x; + hy. The jump in the derivative is [f”] = fJ — f{. The standard finite difference
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formula

J = (i = 2fi + fia) /1 (3.18)

is not an O(h?) approximation of the second derivative because of the discontinuity
at x; + hi. Denote by the index 1 the values of the function and its derivatives to
the left of x; + hy and by index 2 those to the right (fig. 3.2). The following series
expansions are valid

fix1 = fo+ hafs + %h% 5 + %h% 5 + 2_14h%f2(iv) . (3.19)
fo=fit hofl+ S03F7+ LR3FT + SRLF 4+ (3.20)
fi=fihafl + 2+ R (3.21)

V= f b L2 (3.22)
fior=fi— hf+ 302 F) = SRPF 4+ FRAE 4 (3.23)

The jump conditions may be introduced by

L=L-H+hAH=[fl+h (3.24)

and similar relations for the derivatives. Evaluation of (3.18) gives

(firr = 2fi + fic1) = ]+ ha [fT+ 5R3 ST+ $R3 1] + . .. (3.25)
PR AR (3.26)

The resulting O(h?) accurate approximation of the second derivative is

= (fiyr = 2fi + fis)/W* — (3.27)
LF1/0% =[] (he/?) = 5 [f"] (ha/h)* = § [f"] (h/1?) + O(h?). (3.28)

3.2 The 2D Case

The details of the 2D DMDF model are now presented. The procedure is simpler in
two dimensions since the vector potential and the vorticity have only one component
w = wk, ¥ = ¢k, so (3.3) becomes a scalar Poisson equation

Ap=—w. (3.29)

The vector potential reduces to the standard stream function. The notation (i, j, k)
is used for the Cartesian unit vectors.
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3.2.1 The stream function problems

Recall that the modified stream function is to be determined in two steps using the
decomposition

v =¥ + 7. (3.30)

Boundary value problems for the two components are now derived. The additional
vorticity generated by the boundary condition of continuity of tangential stress shall
be captured in the ¢ term. The ¢° correction shall ensure that the interface is
a streamline at the subgrid-scale level. The DMDF model may be applied in two
ways:

1. compute both ¥* and ¢° and set ¢* = * + ¢°

2. compute only ¢* and set ¢* = ¢*

The first procedure is more accurate but shall be shown to require the solution
of an additional integral equation on the bubble surface. The second procedure
avoids the necessity of solving an integral equation at the price of not imposing the
bubble surface to be a streamline at the subgrid scale level. The second procedure
is typically acceptable from the viewpoint of the overall VOF computation. In the
VOF computation the velocities and void fractions are defined upon a Cartesian
grid. The bubble surface is reconstructed through some procedure. Usually, the
procedure is not of very high order so that computational time may be kept within
acceptable levels. Typically a first order bubble reconstruction procedure is used
[39]. Tt is, therefore, counterproductive to insist that an inaccurately determined
interface be a streamline, since the additional computational expense is significant
even in 2D.

Tangential stress boundary condition

The continuity of tangential stress may be stated as

OUn Uy,

H1 on st = H2 on o (3.31)
for x € Sy, with
U=Ut+ U,n = ui + vj, (3.32)
and t, n the unit tangent and normal vectors to Ss,
t==ti+1t]) n=nid+n,j=—tji+tj. (3.33)

S, refers to the limit reached from fluid 2 in volume V3, Sy that reached from fluid
1 in volume V;. The normal is assumed to point outward from the bubble fluid 2
into the surrounding fluid 1 (fig. 3.1).
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Condition (3.31) is assumed to be satisfied over a computational cell G on average

ou,
dV == / /1/2 a 12
S5 VaNG n

/ y oUn
NG ' 877,

Sy

dv .

(3.34)

This is typically achieved in the overall VOF computation by adding an appropriate

volume force term £*** in (1.2).
Using the decomposition (3.2),

Ur = (u” +u?)ty + (0% +0¥)t, = (% * %) et (

ot dy ox ot ox
_9 oy
ot + on

The normal derivative of the tangential velocity is therefore

ou, 9% N 0%
on  Ondt On?’

Since the bubble is a streamline,
U-n=(U’+U" n=U2+U=0.
If the condition
Ys, =0
is imposed then U? = U¥ = 0. Condition (3.37) implies

8% B 82¢ B 8Ug) B
ondt  Otdn Ot

0

so that (3.35) becomes

ov,_ o

On  On?

for x € Sy. The continuity of tangential stress (3.31) may be written as

8%
= Ho W

8%
251 W

S5 Sy

= % + (3_¢tm — a—wty> = % + (%ny + 3_¢n1>

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

Assume that (n,t) form a natural coordinate system, i.e. coordinate differences

equal arc lengths. Then (3.29) becomes

8% 8%
92 T onz

—Ww
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in the (n,t) coordinate system. The velocity decomposition (3.2) is assumed to hold
throughout the bounding box enclosed by S1. On S; one has 15, = 0 and, therefore,
all tangential derivatives are also zero. Applying (3.41) on Sy would give

0%
on?

= —Wwg, - (342)
So

Because of (3.40) a discontinuity in the second normal derivative of the stream
function appears, such that

0% 0%
e TV .o — (3.43)
on? 52+ on? Sy
Applying (3.40) the simple condition
fhywn = fig (3.44)

is obtained. Equation (3.42) would be valid if there were no singularity, that is if the
interface were disregarded. This is exactly the assumption in the underlying VOF
computation. The vorticity value wyop given by the VOF computation at a point
on S, may thus be seen as the average value of the vorticities on the two sides of
the interface

Wi+ wo = QWVOF . (345)
The values
219 2ty
wi = wWyor, Wz = Wy or (3.46)
Hp Tt o Py T+ Ho
result immediately and the jump in vorticity at the interface may be evaluated as
Ho — My
[w] = W1 — Wy = 2 WV or - (347)
Myt fho

The conclusion is that the continuity of tangential stress across the interface
leads to a discontinuity in 8?1/0n? of known magnitude,

I

on2|  On? S;'_ Onz2 = —[w]. (3.48)

Sy

The effect of this discontinuity appears only in the rhs term and thus only affects
Ung

Modified Poisson equation for *

Having determined the effect of the tangential stress boundary condition, the cor-
rections C' that arise in w* = w + C are now evaluated. We wish to apply a fast
Poisson solver to the inhomogeneous problem

{AW’—w*xemu&u%

" — 0 ey (3.49)
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Figure 3.3: The discrete Laplace stencil for an irregular node.

As noted by Mayo [26], for an irregular cell the standard 5-point stencil formula
A 2 (W + Vi T U W — A5 R = A (3.50)

does not furnish a O(h?) truncation error due to the discontinuities in §%¢*/On?. If
the magnitude of the discontinuity is known, then the correction required to restore
O(h?) truncation error may be evaluated. This turns out to be a modification of
the rhs term, w* =w + C.

Discrete Laplace operator for irregular cells

The one-dimensional result (3.27) may be directly applied in evaluating a second
order approximation of the Laplace operator for cells with discontinuities. Consider
an interface that intersects the (i, j) to (i + 1, 7) branch of the standard 5-point dis-
crete Laplace stencil (fig. 3.3). The discontinuity in §%1* /9n* may be decomposed
along the Cartesian axes

5L [ ( eo

0x? on? 0y? on?
Applying the same series expansion procedures,

Uiy F U TV T — W 1[0 (e
-5 (3.52)

h? 02 h

N

is obtained. The correction to the vorticity is
1 [8%¢*] [(ha\®
=42 (1 o5
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Similar formulas may be written for the cases where the interface intersects other
segments of the stencil. The w* term may now be computed, and the solution to
(3.49) determined using a fast Poisson solver.

The homogeneous stream function problem

The ¢° component of the stream function is now determined. The required condi-
tions on 1° are

{ Awsz() xeViuUSyUVy (354)
" .

S:—wwE X € 9y

Note that the boundary condition on ¥° in the above problem is such that the
combined stream function

Y =9+ =0 on S, (3.55)

i.e., the bubble surface S, is a streamline. The values of ¥* for x € Sy are interpo-
lated from the grid node values using third-order accurate formulas that take into
account the jump in the second derivatives. The solution to (3.54) is represented as
a distribution of a double layer potential p(y) on Sy

1 0
00 = 3= [ nl)znoely — x| dy. (3.56)

From general potential theory [18],

im oS _L/ 9 _ 1

lim ¢%(y + an) = o Slu(y)an log |y — x| dy+5u(y) (3.57)
lim 45 +an)—i/ )2 tog ly — x| dy—u(y) (3.58)
lim " (y = 9r [, )5, loely y—5hy :

with y € S;. The above Plemelj formulas imply that we must seek a two branch
representation of 1°

1 + )
S(y) — ﬁfslﬂ (¥)z;logly — x| dy xeW 250
v { %fsllf(Y)a%logW—ﬂ dy xeVy -’ (3.59)

The required double-layer potentials are determined by solving the integral equa-
tions

[ )5z ogly x| dymu () = 221 (3) (3.60)
[ n 0)gosly = x| dy-m () =2e(3). (3.61)
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These equations have a nonsingular kernel since

0
}1{1}; I logly — x| = —@ (3.62)
where H(y) is the local curvature, which is smooth for smooth bubbles. The in-
tegral equations (3.60) and (3.61) are solved using a Nystrom method [12]. The
discretization nodes for the Nystrom procedure are the intersections of the bubble
with the VOF Cartesian grid. Denote this set by I;.

Once pt, p~ are determined ¢°(x) and its derivatives may be determined from
(3.59) for all x € I; and irregular grid nodes x € I*. If M is the number of nodes in
I; the evaluation of (3.59) costs O(M) operations so the total computational effort
for applying (3.59) is O(3M?) since, on average, for every x € I; there are two
irregular grid nodes. The alternative to applying (3.59) directly is to apply a fast
Laplace solver. In this case one would solve

{ AY°=0 x €W (3.63)

¢S:f2 X €5y

for the bubble exterior with the f, along Sy given by applying (3.59). One would
need to solve a separate problem for the bubble interior. Since in the DMDF method
we are only interested in evaluating 1° at comparatively few points, those in the
irregular grid cells, the direct application of (3.59) is usually preferable.

3.2.2 The scalar potential problems

The two components of the scalar potential decomposition ¢* = ¢? + ¢° are now
determined. The procedure is similar to that adopted for the stream function. The
modified source term ¢* models the overall effects of mass flow through the interface.
The ¢° term shall ensure that the mass flow is of the prescribed velocity.

Mass flow boundary condition

The Poisson equation to find ¢? is

q __ %
{A¢ =q xeWViuS U, (364)

¢q20 X €5

A mass flow through the interface may exist as a result of phase transition phenom-
ena. The mass conservation condition at the interface is

Ty = 1y, (3.65)

i.e., the mass flow of the condensing vapor must equal that of the resulting liquid.
Equation (3.65) implies

PLU1 = PyUa. (3.66)
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But, at the interface

09 _ 09
Vv = an S;, Vg = an 5 (367)
and we obtain
do| 09
pl an S; - p2 877, SZ— . (368)

This equation is the analog of (3.40). The VOF method furnishes a value for the
normal derivative of ¢ in which jump effects are not accounted for. Similarly to
the procedure for the stream function, we assume that the VOF procedure gives an

average value
1({0
_1(92 | (3.69)
vor 2\ On Sy

We are therefore able to compute the jump in the normal derivative of ¢

{@} :2P2—P1 %
on p1+py On

99
on

09

S; 87?

(3.70)

VOF

The source term from the VOF computation ¢ is modified to account for the jump
of known magnitude in d¢/0n. For instance, if the interface intersects the (7, 7) to
(¢ + 1, 7) branch of the Laplace stencil the (i, j) second order approximation of the
Poisson equation is

Ly T O T O+ 0l — 041 h
+1,5 J+1 hz,] 1 JH1 J — q”—|— |:%:| h_; (371)
with
967 [0¢
|- 5] 872)

The homogeneous scalar potential problem

It is sometimes the case that the normal velocities vg, at the interface are pre-
scribed. This usually is the result of including a specific phase transition model for
the interface. The combined effect of the ¢ source term from the VOF computation
and the correction imposed by the continuity of mass flow condition (3.65) is such
that the normal velocity at the interface is not that prescribed by the phase transi-
tion model. An additional correction ¢° may be computed in order to recover the
prescribed normal velocity vg, by solving

A¢S:O xeViuUSy UV,
0¢° D" : (3.73)

¢
=g, — — —¥ = X €S
on 27 "on g 2



Again, the boundary condition is such that the total normal velocity takes on the
prescribed value

= = .74
V= + 5 = Us: (3.74)

on Sy. We now have a Neumann problem (3.73) in contrast to the analogous Dirichlet
problem (3.54) encountered previously. The appropriate representation is in this case
in terms of a single-layer potential

1
Cor

6(x) / v(y)logly — x| dy. (3.75)

The single-layer potential induces a jump in the normal derivative given by

. 0¢(y+an) 1 1

li YL ) ogly — x| dy+5(y) (3.76)
. 0¢(y+an) 1 1

liy 0 ) ogly — x| dy—3v(y). (3.77)

Again, a two-branch representation is adopted

3 o, v (y)logly — x| dy xeV;
ool wla 3.78
#x) {%fsﬂ(Y)logly—Xl dy x €V, (8.78)
The integral equations to be solved are

[ v ) logly = x| dy+m*(y) = 2mg(y) (3.79)

S1
[ v ) togly —x| dy—mv () = 2mg() (3.80)

S1

Once vt v~ are determined the convolution formula (3.78) may be applied to eval-
uate ¢ and its derivatives at the points of interest x € I, x € IT*.

3.2.3 Algorithm schematic and computational effort

The 2D DDF algorithm is presented schematically in fig. 3.4. Let N be the linear
dimension of the bounding box and M the number of intersection points of the
bubble with the Cartesian grid. The required computational effort is:

e O(M) for computing w*
e O(N?%log, N?) for applying a fast Poisson solver to eq. (3.49) to compute 9*

e O(4M?3/3) to solve the four integral equations (3.60), (3.61), (3.79), (3.80)
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e O(6M?) for applying (3.59) to compute derivatives of 1/° thus giving U¥
e O(6M?) for applying (3.78) to compute derivatives of ¢ thus giving U?
e O(5M) for evaluating (Uy),, (Us),

The total cost is thus O(4M?3/3+12M?+ N*?log, N?). Typically 16 < M, N < 32
so the cost is on the order of 10 to 62 KFLOPs for each bubble.

3.3 The 3D Case

The three-dimensional algorithm follows the same general procedures as for the 2D
model. There are two additional difficulties though:

1. the rotational part of the flow is now represented by a vector potential ¥ so we
shall require the solution of 3 Poisson equations to find each of the components

of 1;

2. the solution of the integral equations in order to find ¥° or ¢° must be carried
out over a surface

The first difficulty is of manageable proportions due to the efficiency of the fast
Poisson solvers. However, solving the integral equations required for ¥° and ¢°
is prohibitively expensive. This would require a triangulation of the surface fine
enough so that fourth order accuracy of the integral equation solver is actually
achieved. Since the DMDF procedure is envisaged to applied at each time step of
the underlying VOF method, the computational penalty is severe. We therefore
abandon the corrections given by 1° and ¢° and compute only those given by 1*
and ¢?. This corresponds to:

1. taking into account the additional vorticity produced by the interface and the
continuity of mass flow across the interface in the case of phase transitions,
but

2. not imposing that the interface be a stream surface or a surface of prescribed
velocity at the subgrid scale level.

The last emphasis is important. The underlying VOF computation furnishes
an approximation of the bubble surface through the reconstruction procedure. In
general the interface reconstructed from the void fraction field f is not a stream
surface within a computational cell. This is an error accepted in the overall VOF
computation. The role of the ¥° and ¢° corrections would be to ensure that the
reconstructed interface would be indeed a stream surface (or a surface of prescribed
normal velocity). The computational effort for this is however too high so we revert
to the approximations accepted within the VOF method in this regard. The ¥* and
¢? corrections from the DMDF model are however included and they account for the
essential effects induced by the presence of an interface that were not captured by
the VOF method: generation of additional vorticity and jump in normal velocities
due to phase transitions.
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2D DDF Algorithm

Reconstruct bubble and bounding box

Compute divergence and curl of
VOF velocity field
g=V-U,o=(VxU)-k

Modify vorticity to impose
tangential stress condition

®; =, +C;

Apply Fast Poisson Solver to
Ay® =-o

Solve integral equations for surface
potential representations of
vo.0

Evaluate modified representation
of velocity field on irregular cells

U* = Vhd) + vh XW

Use modified velocity to evaluate
drift-flux terms

<U1>1’ <U2>2

Figure 3.4: The 2D DDF algorithm.
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3.3.1 The vorticity correction

The procedure is essentially similar to that from the 2D case. The only difference
is that we now have a vector continuity of tangential stress condition

aUtl 8Ut2 aUtl 8Ut2
= . . 1
H ( on bt on t2> st Ha ( on bt on t2> sy (3:81)

The vorticity from the VOF method is

The jumps for the two tangential components of the vorticity are

0% —
fonl = | G| = 22 b (559
0*W —
foal = | | = 22 o (384
g 2 1

We compute the three components of the modified vector stream function

by solving three Poisson equations

APT* = —™* xeViuUSyuUV,
pre 3.85
0 =U-i X €5 ( )
on
AUV = —w¥* xe V1US, UV,
ovv* 3.86
=U-j X € 51 ( )
on
AU = —** xeViuUSyuUV,
s : 3.87
0 =U-k X €5 ( )
on
The modified source terms are given by
1
W™ = wiop + w2 {1 [WE] (h3, cos bt + h3, cos 9?’;1 + h3, cos 021) + (3.88)
3 [V ] (h3, cos 05 + h3, cos 0 + h3, cos 02) } + O(h) (3.89)

where 9;1, 9;1, 9? are the angles of the t; tangential vector with respect to the (i, j, k)

system and 6%, 9’;2, 0" those of the t, tangential vector. Similar relations hold for

the other two components and the relation may be extended to higher order (O(h?))
by including the jumps [WE ], [WEl 1.
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Figure 3.5: ||V - DJ| from DMDF model for a p,/p; = 1072 bubble.

3.3.2 The normal velocity correction

There is no essential difference with respect to the 2D formulation. We solve

AT =g x€VLUS, UV,
qu:O x € 51

with the jump in the normal derivative given by the continuity of mass condition
% _ 2P2 — P %
on p1+py On

Of course the Poisson problem (3.90) is now over a 3D domain.

(3.90)

(3.91)

VOF

3.4 Typical computational result

A full test of the MDF model requires the development of an underlying compu-
tational procedure (e.g. TURBIT-VOF) to provide the required turbulent velocity
fields. Until this development is completed an initial verification may be made by
using the viscid-inviscid model from the previous chapter. This verification is how-
ever trivial since the procedure for the computation of the velocities over Cartesian
grid outlined in 2.1.6 is exactly the restriction of the DMDF model to the case of
potential flow. It is, therefore, no surprise that the computed MDF term (fig. 3.5)
is identical to that computed in 2.3.

3.5 Conclusions

A model for the sub-grid scale flow arising in the presence of a fluid interface has
been constructed for both two- and three-dimensional bubbly flow. The model has
the following characteristics:
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1. Tt takes into account the local, turbulent flow conditions as given by the under-
lying bubbly flow computation (e.g. VOF method). This may be contrasted
with the previous viscid-inviscid model in which laminar conditions had to be
imposed on the box surrounding the bubble.

2. It imposes physical corrections on the underlying velocity field that account
for the tangential stress boundary condition and the stream surface condition
at the interface.

The most attractive feature of the model is that it dynamically adapts to the
local flow conditions. This is important in the context of numerical simulation of
turbulent bubbly flow in which considerable effort is expended to ensure a good
representation of turbulent effects away from the interfaces. The accuracy of this
information would be wasted if simplified subgrid scale models were applied. The
DMDF model adds the minimal corrections to the turbulent velocity field that take
into account the physical effects of a fluid interface.

The DMDF model may be applied in one of two ways:

1. disregarding the condition that the bubble interface must be an stream surface;

2. imposing the condition that the bubble interface must be an stream surface.

It is suggested that the first method is sufficiently accurate for the purposes of the
overall VOF computation. It accounts for the most important effect of interest in the
computation of turbulent bubbly flow, namely the generation of additional vorticity
due to the boundary conditions on the bubble interface. The second method requires
the triangulation of the bubble surface and the solution of an integral equation on
this surface. This leads to an unacceptably large time penalty for the overall VOF
computation since the DMDF model is envisaged as being applied at each time step
of the computation for each of the bubbles.
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Part 11

Turbulent Subgrid Stress Closures
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Chapter 4

Problem formulation and overview
of research

The second closure problem arising in a computation of a bubbly flow using a large
eddy simulation method studied in this report is that of deriving an appropriate
subgrid scale turbulence model. Recall the center of mass momentum transport
equation

0
5PU+V (U U) = —Vp+ V- T+ 4> Bpy+mf, - V-D.  (41)
In the derivation of this equation a spatial averaging operation was carried out so
the p, p, U fields are spatial averages. Let the velocity, pressure, density fluctuations
be denoted by p’, p’, U’. The effect of these fluctuations upon the averaged fields is
captured by the By, term [2]

Bi= V- {rf) 4+ V- (rt) — = (ol U}) - (4.2
Ve ({0 (UL 2 Up) +2(00), @ (U + (AU @ Uy ) ). (43)

The most difficult step in evaluating By is modeling (U}, ® U} ), the second mo-
ment of the velocity fluctuations. For single phase flow there exist quite a number
of procedures to compute this subgrid stress (SGS) term. The most successful is
probably the dynamic SGS model devised by Germano [11]. For bubbly flow the
question that arises is how to account for unresolved bubbles. The interaction be-
tween these bubbles and between the bubbles and the turbulent velocity field are
not well known at this time. There have been a number of qualitative experimen-
tal observations [23], [45] that show that the turbulence of the continuous phase
is strongly modified by the presence of a dispersed phase, even for very small void
fractions. The additional fluctuations that are observed have been tentatively clas-
sified into “true turbulence” and “pseudo turbulence”. The second term refers to
the additional fluctuations associated with the bubbles motion, which enhance over-
all momentum transport but do not give rise to an entire spectrum of fluctuations
through the well-established cascade mechanism of true turbulence.
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The theoretical identification of which effects should be classified as “true turbu-
lence” and which as “pseudo turbulence” is lacking at present. Also the mechanism
by which the turbulence of the liquid phase is affected by the motion of the dispersed
phase is not well understood. In this research a rational explanation of these effects
is proposed for dilute bubbly flow. The viewpoint taken here is that:

1. The turbulence within the gas phase may be considered to have negligible
effect upon the overall flow. Only the turbulence in the liquid phase is of
interest due to the large density differential between the two phases.

2. The essential effects of the bubbles upon the liquid turbulence are:

(a) volume displacement of the liquid,
(b) excitation of turbulent wavemodes associated with bubble oscillation modes;

(c) filtering of the turbulent energy transfer in Fourier space due to collective
behavior of bubble clusters.

The first point may be taken as a working hypothesis for this research. Some
discussion of the second point is warranted though. We have seen in the first part
of this report that the potential flow approximation furnishes a good description of
the flow of a liquid around a gas bubble. Moreover, the viscid corrections required
for satisfying the continuity of tangential stress boundary condition have been seen
to be small. Thus, the additional vorticity generated by the presence of the bubbles
is hypothesized to be small in relation to the vorticity induced by the large scales
of motion. The question that then naturally arises is why there should be a marked
change in the behavior of turbulence when bubbles are present? The viewpoint
taken here is that while the bubbles do not generate significant amounts of vorticity
in themselves, they do modify the turbulent cascade mechanism of the liquid phase.
Admittedly this picture of dilute bubbly flow is not universal. Duineveld [9] has
studied the approximate ranges of Weber number in which such a hypothesis might
be valid. The main interest here is not on the description of the properties of the
mixture of bubbles and liquid in itself but rather in identifying the procedures by
which physical knowledge about this mixture might be used to construct turbulence
models for bubbly flow.

In this viewpoint, the viscid effects on a bubble’s boundary are of secondary
interest. The main effect is conjectured to be potential in nature, namely the modi-
fication of the liquid pressure field due to the presence and motion of the bubbles. In
pursuing this viewpoint it is therefore appropriate to introduce a potential model for
the motion of the bubbles and investigate the consequences of such a representation
for the liquid motion. For the dilute bubbly flow regime it is natural to consider that
the bubbles form, collectively, a weakly interacting gas. The interactions between
bubbles are potential in nature. The appropriate physical techniques for studying
particles interacting by means of a potential are those of statistical thermodynam-
ics. This is the approach taken here. Contrary to the statistical thermodynamics
of other systems of particles (i.e. electrons, molecules) the potential interaction
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between bubbles is not of constant intensity since it reflects locally changing flow
conditions. However, some first order variations may be considered from which to
start the analysis. The most interesting consequence of this viewpoint is that the
turbulent fluctuations of the fluid may be identified as a system temperature for the
bubbles. This provides a means of linking the statistical thermodynamic treatment
of the bubbles with the liquid turbulence. In particular, one may apply the stan-
dard techniques used in kinetic theory [5], [19], [37] to study the physical behavior
of systems of particles which interact through the means of a known potential. The
standard Chapman-Enskog expansion then furnishes an expression for the apparent
viscosity, interpreted here as an overall intensity of interaction between the liquid
and dispersed phase.

Once a mechanism for the interaction of the bubble motion with the liquid turbu-
lence is identified, a turbulence model may be derived. This may be accomplished
by a variety of means including heuristic reasoning, analogy with gas kinetics or
theoretical field methods. The last approach is adopted here, mainly because it is
more rational in nature and thus allows the verification of the initial hypotheses of
this model, free from any heuristic uncertainty. The technique that is adopted is
that of the renormalization group. This technique has been used to derive constants
for a number of widely used turbulence models [48] that are close to those derived
from experimental correlations. It is assumed in the research presented here that
the technique is appropriate for isolating the effect of groups of differently sized
bubbles on the overall flow. The renormalization group is used both to derive an
overall model and an SGS model.

In order to test the models derived in this work a model computational problem
is defined and its solution attempted. The problem consists of a periodic bubble
array interacting with a liquid in which the turbulence is produced by forcing at
low wave numbers. The progress achieved in solving this problem is presented in
§7. Some proposals regarding relevant experimental verifications are also made.
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Chapter 5

Statistical Thermodynamics of
Ideal Bubbly Flow

5.1 Motivation

Experimental observations [44], [20], [21], [9] have shown that well separated bubbles
interact in a fashion reminiscent of particle interactions (e.g., molecules interacting
through electric fields). Domains of the flow parameters (mainly the Weber number)
have been observed [9] in which bubble coalescence is reduced so individual particles
maintain their identity. The interaction between the particles is hydrodynamic in
nature and very well approximated by the potential interaction, i.e. viscous effects
play only a small role in these interactions. This observation suggests that the
methods of kinetic theory and statistical thermodynamics may furnish insights in
to the behavior of dilute bubbly flow. The intuitive reasoning is that there exists
an analogy with the situation typically encountered in molecular dynamics (fig.
5.1). From kinetic theory and statistical thermodynamics we know [5], [19] that
global properties of the ensemble of particles may be obtained. Significant examples
include the estimates of viscosity available from kinetic theory or the prediction
of cooperative behavior which may be obtained from statistical thermodynamics.
The investigation of the analogous quantities for bubbly flow presents some interest.
Since the hydrodynamic potential of a bubble may be estimated (§ 2) one may
investigate the consequences of this type of potential interaction, similarly to the
molecular dynamics case in which a known (e.g. Lennard-Jones) potential is used
to investigate the overall properties of a system (fig. 5.2).

The application of statistical thermodynamics to bubbly flow has been previously
suggested by Smerka [41], mainly with a view to establishing constitutive relation-
ships for bubbly fluids. Yurkovetsky and Brady [49] carried out a computation of
the collective properties of a bubbly flow with the bubbles modeled as dipoles. The
main new points studied in the present research are:

1. the possibility of defining a rational procedure to isolate velocity fluctuations
brought about by the hydrodynamic interactions between bubbles from those

associated with the liquid turbulence;
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Figure 5.1: Analogy between molecules interacting through electric fields and bub-
bles interacting through hydrodynamic fields.

2. the implications of collective bubble behavior for the turbulence of the liquid
phase.

5.2 Bulk behavior estimates from pairwise inter-
action potential

5.2.1 Some results from kinetic theory

It is well known from kinetic theory [19] that simple models of molecular interaction
furnish insight into the bulk properties of fluids. For instance, the hypothesis of an
ideal gas, interacting only through elastic collisions, leads to an estimate of the bulk
viscosity
L

p=35 puL (5.1)
(p - bulk density, v - mean molecular viscosity, L - mean free path length) that
furnishes estimates within 10-20% of the measured dynamic viscosity. More refined
estimates, furnishing 2 or 3 significant digits of the viscosity, may be obtained by
introducing more realistic models of molecular interaction. A widely used interaction
model is that suggested by Lennard-Jones [25]

P=——— (5.2)

which gives estimates precise enough for most practical applications. P is the inter-
action force. The corresponding force potential would have the form

o g

-1 yn—1"

Tm
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The details of obtaining the viscosity from the above interaction force model involves
computation of the so-called “collision-integrals”, a tedious procedure which shall
not be reproduced here. The final result [5] of interest is the estimate of dynamic
viscosity,

,u:,uo{l—i-S(Zk‘T)%} (5.3)
with
= hm) ETA-Z) (5.4)

5

™ a

2

my kT (21€T>m

Ho = 9
(I pys

(5.5)

for a long range n = 3 attractive interaction. In the above p, represents the viscosity
of a gas interacting through collisions (a limiting case of the potential interaction
model with no attraction, and strong repulsion on distances on the order of the
molecular diameter). Other quantities are T - the temperature, I" - the Euler gamma
function, mj, - the molecular mass and k - the Boltzmann constant. The numerical
coefficients A, and By depend on the details of the interaction potential and are
given in the following table.

Table of Ay(m), Ba(m) coeflicients [5]

‘ m | Ay(m) | Ba(m) |
5 10436 | -0.4829
7 10.357 | -0.2758
9 10.332 |-0.1649
11 1 0.319 | -0.0953
151 0.309 | -0.0177
21 |1 0.307 | 0.0514
251 0.306 | 0.0804
oo | 0.333 | 0.2337

A final point from the kinetic treatment of gases that is significant is the observa-
tion that viscosity arises as a result of the departure of the velocity distribution from
the Maxwell distribution. This is the molecular level explanation of why viscosity
appears only as a result of fluid motion. The fluid motion introduces a bias in the
average molecular velocities that gives a deviation from the Maxwell distribution.
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Figure 5.2: Analogy between pairwise potential interactions for molecular dynamics
and bubble hydrodynamics.

5.3 Some results from statistical thermodynamics
of gases

Another aspect of interest in the study of gases is the prediction of phase transitions.
It is known that the ideal gas model leads to an equation of state

E-2 (5.6)

which exhibits no phase transition. This is to be expected from the molecular
viewpoint since the interaction is strictly collisional corresponding to a repulsive
short range potential and no attractive longer range component. It is, therefore,
not possible to have the sort of collective behavior necessary for modeling a phase
transition. The simplest model exhibiting a phase transition is the Van der Waals
gas for which the equation of state becomes

%:%(ur@). (5.7)

The initial derivation by Van der Waals of the above equation was heuristic. Further
research [19], [37] showed that (5.7) is the first term in a general expansion, the so-

called “virial expansion”
R B(T C(T
:_(1+—( ), @) )+...> (5.8)

v v V2

NS

in which the coefficients B(T"),C(T), ... model pair, triplet interactions and so on.
These coefficients may be computed from a model of the interaction potential. The
most important is the pair interaction coefficient, also known as the second virial
coefficient, which is

B = % /0 {1 = exp [V(r)/ BT} 4mrdr (5.9)
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with R the gas constant. The critical state (where a phase transition occurs) is then

predicted by
dp
et =0. .10
(31))TCT (5.10)

5.4 Analogous quantities for dilute bubbly flow

We now turn to the problem of determining analogous quantities for ideal dilute
bubbly flow. The first important aspect is to identify how a system temperature
may be gainfully defined. Recall that our final objective is to furnish a rational means
of separating fluctuations in a bubbly flow that are due to true liquid turbulence
from those that are associated with bubble motion. The mixture exhibits enhanced
transport properties, typically captured in an increased transport coefficient such as
a mixture effective viscosity. The interest here is to investigate the means by which
the mixture effective viscosity may be determined from the molecular viscosity of the
liquid and a model of the interaction between the bubbles. Given the negligible mass
of the bubbles with respect to the liquid it is natural to assume that the fluctuations
of the turbulent liquid flow form a thermal background for the bubbles. A rigorous
argument, based upon defining the equilibrium of the canonical ensemble for ideal
bubbly flow, leads to the same conclusion [49]. The appropriate replacement for the
temperature is therefore

1 1
ET — — =
- 6 3pTN

(p-M-p) (5.11)

where p is the liquid density, N - the number of bubbles, 7 = 47 R3/3 - the bubble
volume, p - the vector of all the bubbles’ fluctuating impulse and M - the virtual
mass matrix of the system. The virtual mass matrix of an ensemble of N bubbles
has been computed by Yurkovetsky and Brady as

M=—(I1-M;)"' My, (5.12)

with M; and M, reflecting the relative positions of the bubbles,

0 1 AVAV/S vw;&
vv%;,i vv%;,; . 0
R*3II VVry - vw;&
Mgz—%3 vv:rgl 3:31 VV:TZ_N (5.14)
vvﬁﬁ er&é R
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and r;; the relative position vector between bubbles ¢ and j, r;; = ||r;;|| . The kinetic
energy of the bubble ensemble may be expressed in terms of the virtual mass matrix
as

1
K:§p7U~M~U (5.15)

where U is the vector of bubble center velocities. The molecular mass appearing in

the kinetic theory formula (5.5) is therefore appropriately replaced by the norm of
the virtual mass matrix

-
M % M| (5.16)
with NV the number of bubbles.

The last quantity for which an analogy must be established is the second virial
coefficient which is now expressed as [24]

B9 = 5 [ 11— exp(-pv) a0 (5.17)

the integration running over the volume of interest. The second order approximation
to the equation of state for the bubbly flow is

=L (14 20). -

5.5 Predictions from the analogy

Carrying out the above analogy in full would require knowledge of the bubble dis-
tribution. This type of information is, however, superfluous if all we’re interested in
is to construct a subgrid scale turbulence model. In order to make progress towards
this goal an assumed local distribution and estimate of the norm of the virtual mass
matrix may be made. The most natural hypothesis is to assume a uniform spatial
distribution of the unresolved bubbles within a computational grid cell of volume
Vo = Az Ay Az. Let X(R) be the normalized distribution of bubbles of radius R
within the grid cell, so that the total void volume is

4 o0
V= %/ X(R)R*R (5.19)
0
and the local void fraction is
%4
= —. 5.20

Isolate a band of radius values (R, R + dR). The average separation between these
bubbles is

re= (Vo —V)* =1 - fp)\Pv3 (5.21)
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where fg is the void fraction of the (R, R + dR) band,
f= / X(R)frdR. (5.22)
0
The Hessian VVri_jl is of order

I

VVr;t e ) (5.23)
R

in this case. Using the 2-norm in (5.16), the contribution to the virtual mass from

this band of radius values is

pT 1+ 2¢
= —- 5.24
MR 4 1-—¢ ( )
with
1R3
_ - 5.25
© 2 r% ( )

Since we are considering dilute bubbly flow, the bubble radius R is much less than
the average separation r so ¢ is small and

3
_PT ~ PT P 3 (R
mag = (1+2e)(1+e+...) = -(1+3¢) = 7 {1+2<TR> } (5.26)

The typical virtual mass associated with one bubble may now be estimated as

:%T/OOOX(R){Hg(%)g}dR (5.27)

/X { 3(1_]2%}613. (5.28)

The simplest case is when all unresolved bubbles are assumed to be of a single radius,
say Ry, in which case X (R) = 6(R — Ryp) and the virtual mass estimate becomes

T §i}
M= 4{1+2( AR (5.29)

or

5.5.1 Estimates of the additional viscosity

In order to use (5.3) we must adopt a hydrodynamic interaction potential. The
analysis of chapter 2 and the analytical representation of the potential low around
spheres and ellipsoids [22] give the first approximation potential as that between
dipoles. The pairwise attractive potential is in this case ~ r—2. The short range
repulsive behavior of bubbles interacting through an inviscid potential and which
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do not coalesce is ~ r~% so the appropriate total pairwise interaction force has the
form

b
p==- (5.30)

Replacing m = 7 and n = 3 in (5.3) we obtain

b
v My
1y = 03102@”%’5 T (5.32)

For single radius unresolved bubbles we may use (5.29) and obtain

_0.155 ] 3 R}
o= s\ 77 { T2 f)VG} '

The question naturally arises as to the significance of this viscosity. Recall that
for molecular viscosity the interpretation is the transfer of momentum tangentially,
typically visualized as the lateral transfer of a packet of fluid into a region of different
streamwise momentum. The bubbles are also able to transfer momentum laterally
through the interaction of their hydrodynamic fields. The interpretation of u is

therefore that it represents an additional tangential momentum transfer coefficient.
The shear it induces is also proportional to the strain rate

14
v ,u_ aUz aU]
i T (axﬁami '

This is understandable since there must be difference in the relative velocities of a
bubble pair in order for one to accelerate the other in the streamwise direction. The
kinetic viscosity is obtained by dividing by the virtual density

1% 3 -1

v 7 0.155 T 3 R3

= = - 1+=-——— . .33

’ p[1+§( T } a5\ p | 21— Ve (5:3)
2(1-f)Vg

5.5.2 Phase transition prediction

The second prediction of the statistical thermodynamic approach is the existence of a
phase transition between “gas”-like behavior in which the bubbles have independent
fluctuating velocities and “gas”-like behavior in which the bubbles form a cluster.
The transition occurs at a temperature given by the solution of

(%)ﬂ =0. (5.34)

cr
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Using (5.18) the critical value of [ is the solution of

(Y

B(3,.) = —3 (5.35)
Replacing (5.30) in the expression for the second virial coefficient, expanding the
exponential and keeping only first order terms leads to

B = —4rfln % (5.36)

with R a radius representative of the grid cell volume

1/3
Rg = <%> . (5.37)
4

The above evaluation disregards bubble interactions separated by more than a repre-
sentative dimension of the grid cell. This cutoff is similar to the screened potential
appearing in evaluations in which the integration domain is extended to infinity.
The above expression of the virial coefficient leads to a critical value for 3 of

1w 1

fer = 8rbln(Re/R)

(5.38)

The above formula predicts that the critical temperature

1 1 N Nr 1V
oL LN _Nt 1V _f (5.39)
ﬁcr v Va Var TV T

is proportional to the void fraction.

The interpretation of the phase transition is that in ideal, dilute bubbly flow there
is a threshold value for the liquid turbulence intensity under which the bubbles tend
to form clusters and above which they behave independently. This is important for
turbulence models since it suggests that the relevant physical length scale is the
correlation length when the bubbles form clusters and the mean distance between
the bubbles when they behave independently.

5.6 Current experimental evidence and sugges-
tions for further verifications

Detailed quantitative experiments on bubbly flow are still rare. There are some
indications of the domain of validity of the potential interaction approach from
Duineveld [9]. The important implication from Duineveld’s experiments for this
work is that a domain in which the current approach may be tested does exist. This
furnishes a test bed on which the turbulence models may be tested.

Another set of experiments of interest are those by Lance and Bataille [23]. Fig-
ure 5.3 reproduced from that work shows evidence of a change in the excess turbulent
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Figure 5.3: Change in excess turbulent fluctuations as a function of the void fraction.
Experimental results from Lance and Bataille [23].

fluctuations when the void fraction exceeds a critical value. The qualitative observa-
tion is in line with the predictions of a phase transition from the potential interaction
approach, even though the quantitative values at which the phase transition occurs
are not in agreement with the theory.

The above summary inspections of the available experimental data suggest that
the interaction potential approach is viable but the exact form of the potential
used is open to question. In particular the dipolar interaction potential used in the
previous sections is hardly a comprehensive description of the interaction process.
The principal critique of the dipolar interaction potential is that it does not include
any deformation effects of the bubble arising from compression of the gas under the
influence of the liquid velocity fluctuations and from bubble surface oscillations.

The above observations indicate that the most important piece of information
that should be obtained from experiment or numerical simulation is a more precise
approximation of the pairwise interaction potential, especially under turbulent flow
conditions. From the point of view of numerical simulation this would require di-
rect numerical simulations of a pair of bubbles in a turbulent flow field. From the
experimental viewpoint, one may envisage an experiment in which bubble pairs are
tracked while in a turbulent flow field and use the measured trajectories to obtain
a least-squares estimate of the pairwise interaction potential parameters.
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Chapter 6
Turbulence models for bubbly flow

The problem of the derivation of turbulence models for bubbly flow is now consid-
ered. Through the statistical thermodynamics treatment presented in the previous
chapter an effective “viscosity” of the interacting bubbles has been determined.
This information may be used in building turbulence models in a variety of means,
similarly to the construction of turbulence models for single phase flow. One partic-
ular technique is studied here, namely the application of the renormalization group
to the Navier-Stokes equations for the liquid phase in which the viscosity is modified
in order to reflect the interaction of the liquid with the gas bubbles.

6.1 General principles of the renormalization group

The renormalization group (RNG) is a general field theoretic technique used to study
the behavior of systems with many degrees of freedom. The technique involves the
study of the properties of the system are modified under operations of changes of
scale and has had its most notable success in the study of phase transitions [47].
The technique has also been suggested as a means of studying the general turbulence
problem [48], in which application it has had limited success. An exposition of the
RNG applications to turbulence may be found in McComb [27] and some recent
developments in an ICASE report [50]. The simplest application of RNG is probably
the study of phase transitions of discrete spin systems. This classic example has been
presented extensively in the RNG literature. Just a few points are made here in order
to better understand the application of RNG to the more complicated situation of
turbulent flow.

A spin system consists of particles placed at the nodes of a discrete lattice. In one
such model system (known as the Ising model 6.1) the spins are assumed to interact
only with their nearest neighbor. The model is a simplification of the physics of
magnetism. The interest is to establish whether such a simple model can exhibit
some of the phenomena of real magnetic systems, mainly the existence of phase
transitions. In a phase transition a physical system exhibits some overall change in
its properties. Such changes can only be realized if the components of the system
interact collectively. For the Ising model the question is whether the large number of
pair interactions present in the model can lead to cooperative behavior. Cooperative
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Figure 6.1: Representation of RNG applied to 2D Ising model.

behavior is understood here as correlated values of the spin over a large number of
sites.
The physical behavior of the initial system is completely contained in the Hamil-

tonian function
Ho=Ko Y Y Vs, (6.1)

The above formula affirms that the system Hamiltonian is the sum over all lattice
points (_, ;) of all nearest-neighbors (3_) pair interactions Kos( ) ( ). For a given

nn

lattice node (i, j) the nearest neighbor would be (i +1, j), (i,7 £ 1). The specifics of
the physical situation are not of direct interest here. The only important piece of in-
formation is that the coupling constant K = K is small so perturbation expansions
are possible. The effects of a change of scale operation are now investigated. If the
system were to be looked at with half the original resolution the outer sum would
run over only half of the lattice nodes (3, ,). The same physical system must be de-
scribed so the inner sum cannot include just the nearest neighbor interactions since
this would leave out some of the interactions. We must also include next-nearest
neighbor interactions (), corresponding to (i £ 1,5 4+ 1)) in the Hamiltonian

nnn

A1—+23122 D5 1B Y3 sWsst) 4L (6.2)

2,2 nn 2,2 nnn
_A—+KIZZ s+ LY D sis
3,2 nn 4,2 nnn

The Hamiltonian is now computed by a sum with half as many terms as before
but has a more complicated structure because of the nnn term. The new coupling
constants may be expressed in terms of the old as

Aj(K)=2In2+2K*+ O(K*) B(K)=K?*+ O(K*). (6.3)

Since we would like to apply the procedure recursively, we define an average of the
spins included in the 4,2 sum (step 2 of fig. 6.1), and try to rewrite the Hamiltonian
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in a similar form (6.2) but with different coupling constants

N? . W .1 .0
HZZAZ?‘i‘KlZZSi S; +leZsi Si 8y Tt . (6.4)

3,2 nn ,2 nnn

The sequence of operations is therefore

1. averaging of spins to obtain a “block spin”;

2. rewriting the Hamiltonian in order to obtain a form similar to the original
form.

It may be repeated indefinitely leading to the recursion relations for the coupling
constants

K; =2K? |+ L, (6.5)
L; = K2 (6.6)

The important physical question is now to ask whether there exist fixed points
of the above system (6.5). If such points exist, then the coupling constants would no
longer change under the scale transformation. We can then affirm that all relevant
physical degrees of freedom have been accounted for. In order to seek fixed points
we solve the system

K,=2K*+ L, (6.7)
L.=K: (6.8)
and obtain the solutions

The first two solutions are not interesting physically. They correspond to perfectly
disordered and perfectly ordered systems. When (K, L,) = (1/3,1/9) we have an
interesting situation in that there exists cooperative behavior between the block
spins and the coupling constants remain constant.

The relevance of this for fluid turbulence is that we hope to find for the Navier-
Stokes solution also a fixed point at which the coupling constant (i.e. the turbulent
viscosity) remains constant.

6.2 Derivation of an eddy-viscosity model for
single phase flow by RNG

There are a number of variants of the RNG technique applications to turbulence
48], [27], [35]. The specific technique adopted here is that of “iterative averaging”
[35]. A summary of the application of this technique to single-phase flows is now
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Figure 6.2: Wavebands of turbulent energy eliminated in the RNG process.
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presented. The velocity field of a fluid is separated into an average part (U;) and a
fluctuating part (u;) by appropriately truncating their Fourier expansions

Uilx,t) = Y Uik, t) exp(ik - x) (6.10)
wi(x,t) = > ui(k,t) exp(ik - x) (6.11)

with A, the wavenumber of the energetic eddies. Note that this corresponds to the
spatial averaging technique used in LES. We are interested in finding what effect the
fluctuations have upon the average velocities. This is to be studied by systematically
eliminating some of the degrees of freedom of the system. The wavenumber range
is divided into slices S, = (Ap41,A,) with

Apir = (1— €A, (6.12)

and 0 < e < 1. We seek to successively eliminate each waveband S, by computing
its influence upon the velocities at lower wavenumbers.

The fluctuating velocity is split into a part outside the waveband to be eliminated
u~ and a part within this waveband u~. For the first waveband this may be written
as:

sk, ) = us (K, £) + u (k, 1) (6.13)
= (k, 1) :{ ui(gat) Z;gg Cwr(kt) :{ “i(lg’t) Z;gg S (6.14)
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In order to eliminate the Sy waveband we must compute its effect upon the other
velocity components. This is similar to the operation of rewriting the Hamiltonian
in the Ising model above. In our case the equation governing the physics is the
Navier Stokes equation. It is convenient to use this equation in Fourier space

0 9 i
(a + vok ) ui(k,t) = —§Pimn(k) Eq:um(q, tu,(k —q,t) (6.15)
where
Pimn(K) = ki Pin (k) + ki Py (k) (6.16)
kik;
Py(k) = by — 2. (6.17)

The nonlinearity of the Navier-Stokes equations in real space leads to the convolution
sum in (6.15). This is the term which shall give the effect of the high-k£ modes upon
the low-k modes.

Similarly to the definition of block spins in the Ising model an averaging operation
must also be introduced. The averaging should be over the scales which are to be
eliminated, and is called a conditional average [27], [35]. It affects only the high-k
modes with S,. The conditional average of the convolution product gives

<Z umun> = <Z Ut U, +u,uy + u7>nu2> : (6.18)
q c q

C

We have

<Z ufnu§> = Zufnurf (6.19)
q ¢ 4

since the conditional average does not affect the low-k modes. For the same reason
we obtain

<Z“§“3> = u (ug). =0 (6.20)
<Z“i“§> = (up)ouy =0 (6.21)

q

so the average of the convolution sum comes out as
<Z umun> = Z U Upy + Z (upu, ), (6.22)
q c q q

76



as might have been expected. We encounter the typical situation in which the effect
upon the larger scales of motion is through a correlation of the product of smaller
scale fluctuations. The conditional average of the small scale fluctuations may be
estimated by a perturbation expansion of the transport equation for the second order
velocity correlation [35]

Z <ur>nur>z>c = —ViSmn (623)
q
with
S = § (kmﬁn n kn(fm) (6.24)
7 [™E()
=Avg= —— dq . 6.25
V1 Vo 300, /A1 o q ( )

The situation is similar to that encountered in the Ising model. A new coupling con-
stant 1 has been introduced which captures the effect of the eliminated waveband
Sl.

The procedure may be repeated and we obtain a recursion relation for the effec-
tive viscosity

Uni1 = Up + Ay (6.26)
A
)
Avy = " / @)y, (6.27)
30v, Anis 4

In the case of fluid turbulence a fixed point would be obtained when there are
no more significant changes to v,, that is when E(q)/q® starts having negligible
contributions to the above integral.

If all of the scales of motion, up to that of the energy containing eddies A., are
included in the above process we obtain in the end an eddy viscosity model. The
final effective viscosity is

To _ _
v =1 3p5 AN = A7) (6.28)

but since Ay < Ay we have

To
40

In this formula Nagano and Itazu [35] have set Ay = A, and used the relation
between the total turbulent kinetic energy K and the dissipation rate

3a\*? ¢
A= (7) &P (6.30)
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to obtain

KZ
Veff = CM? (6.31)

C, = \/% (3%)2 (6.32)

or using the accepted o = 1.6 value for the Kolmogorov constant

with

C, = 0.092 (6.33)

a value in good agreement with standard eddy viscosity models.
For a SGS model we would set Ay equal to the largest wave number resolved by
the grid.

6.3 Derivation of an eddy-viscosity model for
bubbly flow by RNG

6.3.1 Using an assumed turbulent kinetic energy spectrum

We now turn to how the above technique may be applied to bubbly flow. The
additional viscosity at each step of the RNG procedure was determined above (6.27)
by using the Kolmogorov spectrum for the turbulent kinetic energy

E(k) = ag®3k /3. (6.34)

In bubbly flow, experimental results [23] suggest that the dependence of the tur-
bulent kinetic energy on the wavenumber is F (k) ~ k~%3. If such a dependence is
accepted we may use the following turbulent energy spectrum

E(k) = ag®3k 83\ (6.35)

in (6.27) where X is a length indicative of the bubble interactions needed to ensure
dimensional homogeneity. Carrying out the computations we find that

2 _ — 2 2\ _ — — 2 7o 2/3 (A —11/3 —11/3
Vn = (V¢+1 —v;) =2 viAv; + Z (Av;)” = %8 Ay — A, /A
i=0 i=0 i=0
O(e2)

An eddy-viscosity model may now be written as

KZ
v=Ci—, Cy= 0.078/V/\.
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If an SGS model is sought the appropriate expression is

Ta _ _
2 _ (O 93 11/3 A —11/3
Vi = 522 (AN A )/)\ (6.36)

with Ay the highest wavenumber resolved by the grid. Since Ay < Ay we have

[Ta eY/3
UN =] ——=. (6.37)

5% Ajl\}/ 6
The difficulty that arises in this approach is what length A should be used in
the above models to describe the interaction range of the bubbles. To answer this
question further experimental and numerical simulation results must be waited for.
The existence of a phase transition in the clustering behavior of the bubbles does
however suggest that A should be taken as rg, the average separation between two
bubbles when there is no clustering (high thermal background motion). When the
thermal background is low, and bubble clusters form, A should be taken as repre-

senting the average cluster size (e.g. a correlation length). This observation leads
to a turbulence model which dynamically adapts to the local state of the bubbles.

6.3.2 Using a bubbly mixture viscosity

Another approach is to employ the results from the statistical thermodynamics anal-
ysis presented in §5. The attractive aspect of this approach is that it is more rational.
If an acceptable approximation of the bubble pairwise interaction potentials can be
achieved then the bubbly mixture viscosity ¥ may be computed. The mixture vis-
cosity corresponding to a specific waveband being eliminated may then be used in
the RNG computation

7 (M E
Vni1 = Un + Avp + vy, = Uy + / (zq) dq+ vy, (6.38)
301/n Ani1 q
0.155 |1 3 R -1
Vo s 6.39
Vn a1/365/6\/ P { + 2 (1 _ fn)VG} ( )

and an overall effective viscosity or an SGS model determined. In the above R, is
the size of the bubbles whose influence is being considered in step n of the RNG
procedure, f, is the void fraction of the bubbles of radius R,, and 7,, is their volume
defined as

4

3 RXH(f,). (6.40)

Tn =

The Heaviside function H(f,) appears so as to zero out any contributions when
there are no bubbles of size R,, in the mixture, i.e. when f, = 0.
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In order to carry out the above strategy a procedure must be established which
selects which bubbles are included in the elimination of a spectral waveband. When
the wavenumber is in the (A1, A,) waveband the relevant length scale is

2
l, = —. 6.41
. (6:41)
The bubble sizes to be considered in this waveband must be small enough so that
the dilute bubbly flow hypothesis remains valid. Let fu.x be the limiting upper
value of the void fraction that defines dilute bubbly flow. Typically fua.x < 0.05.
The bubble sizes that should be included in this waveband are then

3 frnas | * 3 fmax |/ 27
R, = l, = —. 6.42
( 47 ) 47 A, ( )
The volume over which the dilute bubbly flow hypothesis is being applied at stage
n of the RNG procedure is

Vo =1. (6.43)

Using (6.40)-(6.43) the additional viscosity due to the bubbles comes out as

0.155 | foacH(fn) £ 27\° Ofmax |
i = () o] o

The sum of all these contributions over the entire wavenumber range eliminated in
the RNG procedure is

1/2 —1/2
v_ 2.44 frhs Z\/ (fn) { 9fmax )] . (6.45)

B a1/3ﬁ5/6 1/2 3/2 Ar(1— f,

N-1

4
n=0

The evaluation of the above sum generally requires knowledge of the distribution of
bubble sizes (the f,, term). This, of course, shall not be available for unresolved grid
cells and a hypothesis must be made about this distribution. Lacking experimental
data at present, we make the simplest choice

fn = const = f > 0. (6.46)

The additional viscosity may now be estimated as

=, 122£2 Ofmax | 7% 1
Z Yn = 1/335/6 pl/2 1+ Ar(l — f A2 (6.47)

and the effective SGS turbulent viscosity comes out as

[Ta /3 1.22 fal2 Ifmae |77 1
VN = 4_3 64/3 —+ 13 5{6 1/2 |:1 + 471_({ _ f—)} T/Z (648)
Ay atlf Ay
The SGS eddy viscosity model given by (6.48) has a number of attractive prop-
erties:
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1. The eddy viscosity depends on the liquid turbulence level through the gener-
alized inverse temperature 5. When there is a high liquid turbulence level (T
large, (3 small) the eddy viscosity model predicts a greater momentum transfer
effect associated with the bubbles. This sort of dependency of the overall tur-
bulent bubbly flow aspect on the liquid turbulence intensity has been observed
experimentally [23]. To the author’s knowledge (6.48) is the only model that
exhibits this property.

2. The model may be tuned by measurements in simplified situations. The prin-
cipal parameters arising in the model are a and f. The first reflects the re-
pulsive behavior associated with two-bubble interactions in a laminar flow. It
is much easier to carry out complete experimental measurements of the fluid
flow around a configuration of two interacting bubbles than to study a gen-
eral, turbulent bubbly flow. The f parameter may be measured from void
distributions in turbulent bubbly flow directly. By contrast, in the previous
SGS model (6.37) the A parameter reflects a local correlation length between
bubbles in turbulent flow. This is much harder to obtain from measurements
and also much more likely not to be universal in nature but to depend on the
overall flow boundary conditions.

The (6.48) model should form the main objective of numerical and experimental
verification. A model problem solved by numerical means is presented in the next
chapter. From the experimental side the most useful information would be that
of the interaction of bubble pairs over a wide variety of flow regimes so that an
empirical estimate of the interaction force may be educed.
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Chapter 7

Direct Numerical Simulation of a
Model of Turbulent Bubbly Flow

In order to test the interaction between the liquid turbulence and gas bubbles numer-
ical simulation provides the most flexible technique. The details of the modification
of the turbulent energy spectrum may be investigated in depth. In this chapter the
progress achieved in carrying out such a simulation for a model problem is presented.

7.1 A model turbulent bubbly flow problem

There are at present no full numerical simulations of the interaction of turbulence
in a liquid phase with a gas bubble with full tracking of the bubble surface. Most
of the current direct numerical simulations of turbulent two-phase flow are oriented
to particulate flows [4]. The simulations for bubbly flows are usually limited to an
assumed shape for the bubble or to two-dimensional flow [10]. Given this situation it
is advisable to start with the definition of a model flow problem, sufficiently simple
to enable study of basic aspects of the interaction between turbulence and phase
interfaces. Taking a cue from single phase turbulence simulations, the simplest
problems arise when considering isotropic, homogeneous turbulence. Such a case
may be simulated by solving the flow equations in a periodic box with forcing of the
flow at low wave numbers. In order to include phase interface effects the standard
setup is modified by the placement of a gas bubble inside the box. Since the box is
periodically repeated in space, the setup corresponds to a simple model of forced,
turbulent, bubbly flow.

In order to enable comparison and overall validation of the procedures with the
known results from single phase flow the parameters of the simulation are chosen
to be identical to those from [17]. The same overall numerical parameters defining
the geometric domain and the low wave number forcing are used as surmised in the
following table (see [17], Table 1)
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|Rex | L |L/A|L/n|
35.11.97]255] 30
61.1]1.76 | 3.34 | 52
94.11.37[4.39 [ 84

The Reynolds number used here is defined in terms of the Taylor microscale A,
Rey, = U)\/v and 7 is the Kolmogorov scale n = (v®/£)!/4. The forcing is achieved
by using a negative viscosity coefficient for the low wavenumbers k = k| < 2.5 [17].
The main difference from the single phase simulation of Jimenez et al. [17] is the
placement of a bubble in the turbulent flow field. The bubble diameter a may be
varied. The ratios of bubble size to Taylor microscale ratios a/A = 1,10, 100 have
been attempted. A visual depiction of the test problem is presented in fig. 7.1.

O o o

O o o

Figure 7.1: A model problem for the study of turbulence - phase interface interac-
tions.
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7.2 Overview of numerical techniques applied in

OCTLES

For the solution of the above model problem a modification of the OCTLES code
is used. OCTLES is a research code intended as a test-bed for various numerical
techniques. It includes the following features:

e truly multi-dimensional discretization procedures;
e application of different sets of conservation laws on computational subdomains;

e dynamically adaptive, unstructured grids.

The possibility of dynamic adaptation of the grid to the motion of the bubble
interface makes OCTLES an attractive technique for the study of the problem of
interaction of turbulence with phase interfaces. The possibility of applying differ-
ent sets of conservation laws to different subdomains is used in order to solve the
standard conservation equations for the gas phase and a pseudo-compressibility for-
mulation for the liquid phase. A summary of the numerical techniques applied in
OCTLES is now presented. In addition, in appendix C essential features of OCTLES
data structure and procedures are given.

7.2.1 Multidimensional discretization procedures

Most of the numeric techniques applied to multidimensional flow simulations are first
obtained by analysis in an 1D setting. Common examples include upwinding, TVD
schemes, ENO schemes. They are generally extended to multi-dimensional flow by
applying the relevant discretization formulas along each coordinate direction. This
procedure is known as dimensional splitting. It is known [38] that this procedure
induces spurious oscillations in the numerical solution. This may be exemplified on
the simpler case of the 2D Euler equations

q: +Aq, + Bg, =0 (7.1)
T
q= [ p u v p } (7.2)
v p 00 v 0 p O
10w 0 1/p 10 v 0 O
A=1o00 wo B=1010 4 1/p (73)
0 c?p 0 w 00 c¢%p v

with ¢ the sound velocity. All practical numerical methods for solving the above
equations use some sort of local linearization. The local behavior of the numerical
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scheme may therefore be theoretically analyzed in terms of the Fourier decompo-
sition with frozen matrix coefficients A, B. If we seek wave like (Fourier mode)
solutions

qg=rexp{i(k-x— )} (7.4)

the following eigenvalue problem is obtained

(ksA+ E,B)r = Ar
with the well known solution \° = \* = k,u + k,v, \** = ku + kv + ¢
r® = (1,0,0,0)"; r*=(0,—k,, k;,0)"; 1= = (p,+k,c, £kye,pc?)T.  (7.5)

The above eigenvectors depend on the direction upon which the Jacobian matri-
ces A, B are projected. In a dimensionally split method the (k;,k,) = (1,0) and
(kz,ky) = (0,1) directions are used. Roe [38] showed how this procedure leads
to non-physical modes. Consider the propagation of an acoustic mode that is not
aligned with the grid in the step where x derivatives are taken. No matter what
particular numerical method is used, the acoustic mode is described in terms of the
eigenvectors associated with the (k,, k,) = (1,0) direction

p 1 0 P P
ka - e 0 + O + a+ Cc + a— —C
Fd | = Jo | T o7 Lo [T o
pc? 0 0 pc? pc?

(k:c;]:yr):(LO)

It is apparent that the only way of satisfying the above equation is for a® # 0. This
implies the acoustic wave is described by the numerical scheme as a combination
of acoustic and shear modes (a® # 0). The shear mode is non-physical. It is a
numerical artefact produced by dimensional splitting.

7.2.2 Residual distribution schemes

OCTLES utilizes a class of discretization methods that include true multidimen-
sional flow physics. The schemes are specially adapted to a geometric discretization
into simplicial elements, triangles in 2D, tetrahedra in 3D. A piecewise linear rep-
resentation of the flow variables along each simplicial element is used. The flow
variables are stored at each node. The piecewise linear representation along each
cell allows an exact formulation [38] of the linearized time evolution problem as the
superposition of waves corresponding to the eigenmodes of the convective part of
the flow equations. The wave propagation directions may be oriented at arbitrary
directions in the cell thus allowing true multidimensional transmission of informa-
tion in a time step. This is sometimes too costly in terms of computer time and
a simplified, partially multidimensional approach may be used whereby the residue
over a cell is distributed to the cell nodes in accordance with some scheme reflecting
the true wave propagation direction. [15]
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The basic idea in one dimension

Following [6] we present the basic ideas underlying the residual distribution approach
for the simplified, one-dimensional conservation law

Let ¢ = Fj, be the propagation velocity. Considering an initially piecewise linear
approximation a wave type solution for each cell [z;, ;1] of measure Az, /2 =
Zi11 — x; may be defined by

g t) =g+ I et —tm), (7.7)

Tiy1 — Ty

with @ some average velocity over the considered computational cell. Taking ¢ =
t"tl = 4" + At, we obtain

ar
AZL‘l’

n+1

G =q + (Bi10®@ivry2 + Bi1oPic12) (7.8)

with Ax; = % (AmiH/g + A.Ti_l/g) the ¢ node median cell and ®;,/5 the residue on
cell i + 1/2 defined by

Q10 =—C (CI?H - qzn) . (7.9)

The distribution coefficients § are defined in accordance with a physical analysis of
the domains of influence and dependence

Biprp=0and i}, =1if >0

Bitrjp =1 and B, =0if ¢ <0, (7.10)
which leads to a scheme identical to that of standard upwinding

At
=g -5 [Q}m (g1 —aF') +¢ ) (@ - Q?_l)} : (7.11)

The difference is that the above procedure has a natural generalization to multi-

dimensional flow whereas simple upwinding is usually implemented in a split flux
formulation based upon the coordinate axes.

2D Euler equations

Consider now a discretization of the flow domain into triangles. The equivalent of
7.8 for the 2D Euler equations is

At :
n+l _ n %
g  =q + E ZT:ﬁT(I)T (7-12)
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with the sum running over all triangles that share the vertex ¢. The surface of area
S; is the dual median cell surrounding a node.
The distribution coefficients 3 must satisfy

> B =1 (7.13)
j=1
a generalization of 7.10. The residual (or fluctuation) is defined by
By — —fﬁ Fdl = — [ VF(u(@)ds. (7.14)
I'r Sr

Using a constant Jacobian matrix over a cell we have
. 3
i=1

with

ﬁ

1
2
and 77; the inward pointing normal opposite to node .

Any given residual distribution scheme is specified by a choice of the 3, coef-
ficients subject to restriction 7.13. A typical choice is the N scheme, used in this
investigation, for which the 3 coefficients are given by

i in i(j
Br==L 3" =ap, (7.17)

. K+t &

V=5 > K (4 — 4] (7.18)
> K=l
j=1

The physical interpretation of the N scheme is the decomposition of each in-
flowing eigenmode along the cell edges. There may be two or only one downstream
node. If there is only one, then that node receives the entire fluctuation associated
with the considered eigenmode. If there are two downstream nodes the fluctuation
is split proportionally to the decomposition of the wave vector along the cell edges.

The above scheme is of first order. It may be made of formal second order by
the use of limiters [32]. All of the standard limiters (Super Bee, Albado, etc.) may
be applied in conjunction with the above formulation.
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Viscosity effects

Viscosity effects do not affect the basic multidimensional splitting procedure pre-
sented above. These effects are included using a standard Galerkin formulation in
the computation. To ease notation we present the procedure as applied to the simple
scalar diffusion equation

% + X Vu = vAu. (7.19)

The procedure may be easily extended to the full Navier-Stokes equations.
Integrating over a control volume (the dual median cell) 2 we obtain

ou >

/ —w,;dQ) + / A - Vuw;dS) = / v Auw,;dSQ (7.20)
o Ot Q Q

with w a weight function describing the residual procedure presented above. In order

to eliminate the second order derivative (inappropriate in as much as we are using

a piecewise linear representation of the flow variables) we integrate by parts

ou > ou
QawidQ—i- XT:/TA VuwdQ = $ w=—dof) — zT:y/vai - VudQ.  (7.21)

The viscosity term contains now only first order derivatives. We introduce a
Galerkin representation for the viscous term

where NV; are the standard shape functions associated with linear interpolation over
a cell.

Modifications for the liquid phase

The fluctuation distribution schemes described above are appropriate for compress-
ible flows. The compressibility of the liquid phase for the model problem considered
here is very low. In order to overcome the stiffness associated with this term the
standard technique of pseudo-compressibility is used [13, 23.3.2] with the continuity
equation for the liquid phase being written as

1 0%P

7.3 Initial results

At the time this report was written the full simulation of the interaction of a bubble
array with the liquid turbulence was not completed. Problems with the interface
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tracking procedure have not yet allowed the runs to be conducted for sufficiently
long times in order to accumulate the statistics required for analysis of the turbulent
flow field. Snapshots of the instantaneous flow before a breakdown in the tracking
procedure occurs have been obtained though. A typical result, for the first test case
of the model problem is presented in fig. 7.2.
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Figure 7.2: Typical snapshot of the flow on a gas bubble immersed in a liquid. The
contour lines on the bubble indicate pressure levels. Velocity vectors on the bubble
surface are also represented.
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Part 111

Local Thermodynamic Analysis of
Phase Interface Formation
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Chapter 8

Considerations on interface
reconstruction procedures

A number of computational procedures for multiphase flow use an additional field in
order to determine the phase interface. The VOF method uses a transport equation
for the void fraction f while the Level Set Method uses an additional function g
whose null lines determine the interface. In both of these cases the evolution in
time of the interface is assumed to be given by the local advection velocity, so the
Navier-Stokes equations determine this advection process.

However, the processes involved in phase interface formation are molecular. The
scales of motion involved are not included in the Navier-Stokes equations. Since the
Navier-Stokes equations may be obtained by the first order expansion of the Boltz-
mann kinetic equation, we may say that the relevant scales of motion for interface
formation have been averaged out of the Navier-Stokes equations. It is, therefore,
not to be expected that the interface shapes predicted by advection imposed by the
Navier-Stokes equations is the true physical interface since the physical processes
involved in interface formation are not captured.

This type of situation has been met before in fluid dynamics computations in
connection with the computation of shock waves in gas dynamics. There also the
shock wave internal structure depends on the motion of gas molecules on scales of
motion averaged out of the Navier-Stokes equations. In order to obtain correct shock
behavior additional constraints are imposed on the numeric approximations, such
as the entropy condition [13].

8.1 The MFEIR Algorithm

Given the existent experience with the treatment of shock waves in gas dynamics it is
natural to inquire how an interface reconstruction procedure that includes physical
information lacking in the Navier-Stokes equations themselves may be constructed.
The main aspect neglected is the energetics of interface formation. But we know
that locally the interface shall always assume a shape in which the free energy is
minimized [36], [7].
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The Minimum Free Energy Interface Reconstruction Algorithm (MFEIR) is de-
fined so that local patches of the interface minimize the surface free energy. The
algorithm uses a piecewise spline approximation of the surface. The degree of the
spline approximation is chosen so that information available from the underlying
VOF procedure may be used and also that conditions of minimum free energy may
be imposed. The data from the VOF method are typically a set of normal vectors n;
and their application points b; defining a tangent plane to the surface at a particular
point. Since the points b; are not necessarily ordered a non-uniform rational basis
spline (or NURBS) is the best suited type of spline approximation

S¥(u,v) = Z > NP(u)NE(v)b¥), (8.1)

where

ve{a -+ a;b -~ bhve{ec -+ ¢c;d - d} (8.2)

AN J/

pjrrl le prl le
and N7(u) is the standard normal basis function of degree p.
The conditions imposed on the surface are:

1. that it have the normals specified by the VOF procedure

ou ov .
H osv_oasv] | ~ ™ (8.3)

ETR

2. that the free energy of the surface is at a stationary (minimal) value

5f° = du® — T8s° = 0. (8.4)

The second condition is variational in nature. It can therefore be used to deter-
mine as many parameters of the NURBS surface as desired. If we do not consider
any heat transfer, chemical or phase transition effects we have

6s7 =0 (8.5)
and therefore
Of7 = du’. (8.6)
The internal energy may be computed as the work done to deform the surface
ou’ = —dw (8.7)

with

g (Rl + RQ)Z
= — ~ 2 dxdy. .
w // R, xdy (8.8)
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8.2 Comparisons with other Interface Reconstruc-
tion Algorithms

The MFEIR algorithm is currently being implemented so detailed comparisons with
other reconstruction procedures have not been obtained at the time of this report.
However, from the theoretical point of view we may observe that:

1. it provides a rational means of carrying out higher order reconstruction of a
phase interface as opposed to the zero or first order reconstruction procedures
commonly encountered at present (e.g. the FLAIR algorithm [1]);

2. it includes physical effects typically neglected in interface tracking or recon-
struction procedures namely the condition of local minimum free energy;

3. it is extendable to include phase transition and chemical effects.
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Part IV

Conclusions
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This investigation has concentrated on the means whereby closures for the large-
scale computation of bubbly flow may be obtained. The two principal closure prob-
lems that have been considered are:

1. The effect of the momentum drift flux term (1.5);

2. The effect of subgrid scale momentum transfer due to turbulence effects mod-
eled in the VOF computation by a subgrid scale stress term.

For the first closure problem two methods have been studied. The main conclu-
sions regarding these models may be stated as follows.

1. The wviscid-inviscid azisymmetric bubble model. This model provides an esti-
mate of the magnitude of the MDF term in the simplified case of a bubble
placed in an uniform flow. Parameter variations (Weber, Reynolds numbers)
may allow a correlation to be devised in which the order of magnitude effects
of the MDF term are captured. The basic limitation of the model is the re-
striction to simple flow conditions around the bubble, i.e. bubble placed in
an uniform flow. This limits the applicability to devising an MDF model for
turbulent flow.

2. The dynamic momentum drift-flurx model. In this model the true, turbulent
flow field around a model is taken into account. The model modifies the vor-
ticity field of the volume of fluid computation to account for under-resolved
boundary conditions on the bubble surface. The model uses fast Poisson
solvers in order to ensure computational efficiency. The model may be ap-
plied in one of two fashions:

(a) by disregarding the condition that a bubble should be a stream surface
at the subgrid scale level. This leads to an acceptable computational
effort, suitable for inclusion as a correction of each time step of the VOF
computation.

(b) by imposing the stream surface condition. This requires solving an ad-
ditional integral equation on the bubble surface which usually leads to
unacceptably large computational time penalties in the context of a tur-
bulent VOF computation. The procedure is suitable for achieving greater
precision in simpler flows though.

In order to achieve some progress on the second closure problem, a statistical
thermodynamic treatment of dilute bubbly flow has been proposed. In this ap-
proach the bubble interactions are modeled through hydrodynamic potentials. The
general results of kinetic theory and statistical hydrodynamics allow estimates of the
additional momentum transfer associated with the presence of the bubbles. The ad-
ditional momentum transfer is included in the flow equations for the liquid through
an additional viscosity coefficient. The equations are then subjected to a renormal-
ization group procedure in order to devise subgrid scale turbulence models.
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Two procedures are studied for the construction of SGS models for dilute bubbly
flow. The first, which uses measured turbulence energy spectra, requires informa-
tion about the local correlation length of the bubbles’ motion, a quantity difficult
to obtain from experiments. The second, which uses the results of the statistical
treatment of the bubbles, furnishes an expression for the turbulent eddy viscosity
with a number of desirable features. These include a dependence on the overall
liquid turbulence intensity level and the possibility of tuning the model constants
from measurements of bubble interactions in laminar flow, much easier to set up
experimentally. Some suggestions for experiments needed for verifying the model
coefficients have been presented.

In order to verify the predictions of this approach a model problem involving
a bubble placed in a periodically repeated box has been defined. The progress on
carrying out a full DNS simulation while tracking the bubble boundary has been
presented. This computation is not complete at present.

Finally some considerations on the algorithms used in interface reconstruction
are presented. It is argued that a rational reconstruction procedure should include
a formulation of the energetics of the process. A procedure has been proposed in
which the interface is reconstructed in accordance with the physical criterion of
minimization of the surface free energy.
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Appendix A

Partition over Cartesian grid
algorithms

A common problem that arises in numerical descriptions of bubbly flow is the par-
tition of a bubble over grid cells. A few efficient algorithms for the partitioning of
convex shapes over a Cartesian grid are presented here.

A.1 The two-dimensional case

A 2D Cartesian grid cell is denoted by Ci; = [z;, z;41] X [yj,yj41]. It has the area
D;;j = (xi+1 — xi)(yj+1 — yj)- We introduce the indicator function f;; of C;; which
is equal to 1 for (z,y) € C;; and zero otherwise. Let S;; be the area of the convex
body S within Cj;. There are many relative positions of an arbitrary cell C;; with
respect to S (as may be seen by observing fig. A.1). Rather than treat each case
separately it is preferable to reduce the problem to a simpler one suggested by the
expansion of the indicator function of Cj;.

The indicator function may be expressed in terms of the Heaviside step function
H(z) as

fij(@,y) = [H(x — x;) — H(z — 2i01)| [H(y — y;) — H(y — yj11)] (A1)

which, when expanded, gives

fij(z,y) = H(z — 2;)H(y — y;) — H(z — zi01)H(y — y;) — (A.2)

H(z —2;)H(y — yj+1) + H(z — 2i1) H(y — yj1) - (A.3)

This formula may be interpreted as specifying how to combine areas in the first
quadrant relative to the point (z;,y;) so as to obtain C;;. Let );; be the area in the
first quadrant of the point (z;,y;). We assume that there exists a cutoff at the grid

boundaries defined by * = s, y = yn, so that the areas ();; are finite. The area
addition formula for D;; derived from (A.2) is

Dij = Qij — Qiy1j — Qijy1 + Qiy1511 (A.4)
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Figure A.2: Depiction of the area addition formulas (A.4) and (A.5).
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which has the pictorial depiction represented in fig. A.2.
This suggests that we introduce the area of S in the first quadrant relative to
point (x;,y;) which we denote by A;;. The formula analogous to (A.4) is

Sij = Aij — Aiv1j — Aijrr + Ay (A.5)

There are nine possible relative positions between a convex body and the axes that
form the first quadrant of the plane. These are depicted in fig. A.3. Only four of
these have a non-zero part of the body inside the first quadrant, so we have five
distinct cases:

1. z; < Zyin and y; < Ymin for which A;; =S
2. ZTmin < T < Tmax and ¥j < Ymin

3. Ti < Trmin ANd Ymin < Y5 < Ymax

4. Trin < T < Tax a0 Ymin < Y5 < Ymax

5. Zmax < Tj OF Ymax < y; for which A;; =0

In cases 2 and 3 there are two, while in case 4 there are four intersection points
between the © = z;, y = y,; axes and S. Let {z = z(s), y = y(s)} be the natural
parametrization of the boundary of S. Denote by s; the arc coordinates of the
intersection points of S with the axes and assume sx,; > sx. We introduce the
notation z*) = x(s;), y® = y(sp).

We now compute A;;. This may be done through an area integral, but it is more
convenient to transform this into a contour integral using the divergence theorem

// V.Vdszfx?.ﬁds (A.6)
S
oS

for the field V = (27 4 yj)/2. The unit vector 7 is the outward normal to the
boundary of S and is given by

ﬁ(s) _ y/(S);— .”L’,(S); (A?)
VI (9 + [ (s)P

where it is assumed that as s increases the interior of S is always on the left-hand
side. The areas A;; for the four non-zero cases considered above are as follows.

1.

)l g

e /wms P+ [y (s

with p denoting the perimeter of S.
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B CE <>'<>d5+%<y<l>—y@>>- (A9

VO + o)

(S)w’(S)dS n % (2® — 20 (A.10)

/ wx (5)] _+[y (s))

4. We may identify a number of subcases, depending on the position of the in-
tersection points (z*)y*)) with respect to (z;,y;). Let k = 1,4 correspond
to the intersections of S with the y = y axis and k& = 2,3 to those of S with
the x = 2; axis and assume z(!) > z®) and y® > y®).

(a) Z/(Z), y(3) > y; and m(l), x® < x,;. This reduces to case 2.
(b) 2, 2W > z; and y®, y® <y;. This reduces to case 3.
(c) y@,y® > y; and 2™, 2@ > z; (ig. A.4).

2 z(s)y'(s) — y(s)z'(s) Yi (. 1
/ e ds + 5 (x( ) — g )) + (A.11)

¢ o) + (s
/4 sV (s) — y(s)z (S)ds . % (y(:a) _ y(Z)) , (A.12)
VI () + [y ()]

(d) y@ >y; > y® and 2@ > z; > 2.

/

Aij = / \/y )y, 5 (= y?) + 5 (@ - ) |

()] + [y (s)]?

(e) zM) < z; and y® < y;. This gives a zero contribution (case 5).

A.1.1 Example: partition of an ellipse

The parametric representation of an ellipse of semi-axes a,b, centered at (z¢,yc)
with the a axis at angle 1 from the z axis is

z(0) = x¢ + acos B cosp — bsinfsin (A.14)
y(0) = yo + acosfsiny + bsinf cos ) . (A.15)
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Figure A.4: Subcase 4b, four intersection points between the convex body S and
the axes.

In order to apply formulas (A.8)-(A.11) we need to compute the natural parameter
integral along an arbitrary arc from ), to Oy (or sy, to sy in terms of the natural
parameter)

H00:05) =5 [ lalo)nals) + y(s)ny (s)) s (A.16)
_ % /9 MN [2(8)n2(8) + y(8)ny ()] %d@. (A.17)

From (ds)® = (dz)’+(dy)® we obtain ds = (a?sin?# + b? cos? 0) Y2 49. The outward-
pointing, unit normal vector is

(—asinsin @ + beospcos )i + (acos¢sin9+bsin¢cos€)j

n(0) = (A.18)
(a?sin® 6 + b? cos? 0) Y2
The integral may be evaluated analytically, and we obtain
1
I(0p,0n) = 5 [a(cos Oy — cosOy)(xesiny — ye cos )+ (A.19)
b(sin 9]\[ — sin GM)<.CL'C COs w + yc sin w) + ab(GN — 0]\[)] . (A20)

The positions along the ellipse corresponding t0 & .y, Tmin may be determined from
2'(0) = 0 which leads to tan @ = —(b/a) tan . Likewise tan @ = (b/a) cot ¢ gives the
extremal y positions. Intersections of z = const lines with the ellipse are determined
from x(0) = z; and those of y = const from y(#) = y;. Both lead to a trigonometric
equation of the form

pcosf + gsinf =r (A.21)
which may be solved by introducing tan ¢ = p/q and obtaining

sin(0 + ¢) = a cos p = 0 = (—1)"arcsin (C Ccos go) —p+km. (A.22)
q q
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An example is presented in fig. A.5 for a coarse grid. Processing for a 100x100 grid
and 10-20 ellipses is carried out in a few seconds on a typical Pentium PC.

A.2 The three-dimensional case
The above procedure may be readily extended to 3D. The analogue of (A.5) is

Sije = Aijie — Aiv1k — Aijiie — A1 + (A.23)

Atk + Aiviiri + Aijorkrr — A1 jitipst (A.24)

with S;ji the volume of S within the cell Cjjx = [z, Tit1] X [y, Yj41] ¥ [2k, 2+1], and
A;jr the volume of S within the first octant. There are now 27 relative positions
of S with respect to an octant. Of these only 8 give a non-zero value of A;j; so
we obtain 9 distinct cases. Again it is easier to evaluate the volume through an
equivalent surface integral, using V = (21 + yj + zk) /3 = 7/3 in the divergence
theorem. Let {z = x(s,t), y = y(s,t), z = z(s,t)} be the natural parametrization
of the boundary surface of S. The outward normal to the surface is

i ]k
N = gs S gs (A.25)
gr gy 9z
ot ot ot
with the unit normal vector being of course
N
n=i—. (A.26)
N

Formulas involving surface integrals may be written for all the cases mentioned
above. As an example, for z; < Twin, ¥j < Ymin, 2k < Zmin We have

q(t) 7(
SRt
mk

with p the perimeter along the ¢ natural coordinate and ¢(t) the perimeter along
the s natural coordinate for a given ¢. Even for simple bodies (e.g. ellipsoids) the
evaluation of these integrals becomes error-prone though. We therefore turn to a
procedure that may be easily automated with minimum effort.

5Y) dsdt (A.27)

s,t) - N
N(s

A.3 Extensions to arbitrary bodies

Since computation of the surface integrals arising in the above algorithm is tedious
for bodies of general shape, it is more convenient to apply a hybrid numerical-
analytical algorithm. An arbitrary body V may be discretized into tetrahedra T; to
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any required precision
V =UT;, (A.28)

so we need only consider the problem of partitioning of a single tetrahedron 7" on a
Cartesian grid. By applying (A.23) the problem reduces to finding the portion of a
tetrahedron in the first octant of the point (z;, y;, z). This problem may in turn be
reduced to finding the portion of a tetrahedron above a plane

V(Ti2>x,y>yi2>26) = V(Lo >x) NV (T > ) N V(T2 > ),
(A.29)

where V(T; cond) signifies the volume of the portion of 7" that satisfies conditions
cond. It is straightforward to split a tetrahedron along the intersection points with a
plane to obtain smaller tetrahedrons satisfying the conditions x > z;,y > y;;2 > 2.

This algorithm is used in the MDFTerm program (Appendix B) to compute
the void fractions corresponding to the partition of a bubble over a Cartesian grid,
information that is required in the computation of the MDF term.
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Appendix B

The AxiBubble program

The procedures described in chapter 2 have been implemented in an user-friendly
program named AxiBubble. The source code and distribution package for this pro-
gram are available on \\IRSSERVO5\IRS3\AxiBubble (as of July 1999). A descrip-
tion is provided here of the general program construction, input and output data
and compilation procedures. Files are referred according to the top level directory.

B.1 Main program components

AxiBubble is built from the following files:

1.

AxiBubbleEngine\AxiBubbleEngine.f90. This Fortran 90 source file con-
tains all of the computational procedures in AxiBubble.

. AxiBubbleEngine\AxiBubbleCommon.f90. This Fortran 90 source file con-

tains declarations for the variables in the global common area. Most of the
geometric and flow data needed by the various AxiBubble routines are stored
here.

AxiBubbleEngine\DLLInterface.f90. This Fortran 90 source file is the in-
terface of the computational routines to the graphical user interface (GUI).
The GUI never calls routines in AxiBubbleEngine directly, rather the inter-
face routines given here.

AxiBubbleEngine\GUICommon.£90. This Fortran 90 source file contains global
data for the GUI routines.

AxiBubbleEngine.frm. This Visual Basic file is the main interface to Ax-
iBubble (fig. B.1).

. Dialog2.frm, Dialog3.frm, Tetra.frm, frmAbout.frm. These Visual Ba-

sic files contain the additional dialogs in AxiBubble.

AxiBubbleGlobal.bas. This Visual Basic file contains the declarations for
global data within the GUI. It also contains the calling specifications towards
routines in DLLInterface.£90.
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Figure B.1: AxiBubble graphical user interface.

B.2 Program input, output, flowchart

B.2.1 Tetra.dat

This file contains a tetrahedral discretization of the bubble. The file is in text format
and contains the following fields:

nNodes nTets The number of nodes and of tetrahedra

x1 y1 z1 - The coordinates of the first node
Xn yn zn - The coordinates of the last node
il j1 k1 11 - The node numbers forming the first tetrahedron

in jn kn 1n - The node numbers forming the last tetrahedron
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B.2.2 SurfTri.dat

This file contains a triangular discretization of the bubble surface. The file is in text
format and contains the following fields:

nNodes nTri - The number of nodes and of triangles

x1 y1 z1 - The coordinates of the first node

Xn yn zn - The coordinates of the last node

il j1 k1 - The node numbers forming the first triangle
in jn kn - The node numbers forming the last triangle

B.2.3 grid.dat

This file contains the x, y, z coordinates defining the Cartesian grid used in comput-
ing the velocity field around the bubble. The file is in text format and contains the
following fields:

nX nY nZz - The number of x,y,z coordinates
x1 — The first x coordinate
Xxn - The last x coordinate
y1 - The first y coordinate
yn - The last y coordinate
z1 — The first z coordinate
zn - The last z coordinate

B.2.4 gridvel.dat

This file contains the velocities on the Cartesian grid surrounding a bubble. It is
generated by the instructions

DO k=2,Nz-1
DO j=2,Ny-1
DO i=2,Nx-1
WRITE(1,2004)x,y,z,Phi(i,j,k)-z,Jumps(i,j,k),u,v,w
WRITE(2,2004)u,v,w
2004 FORMAT(7(E14.7,2x))
END DO
END DO
END DO
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B.2.5 mdfterm.dat

This file contains the MDF tensor D. It is output by the postprocessing utility
mdfterm. It is provided outside of the AxiBubble program due to the large memory
requirements of the computation of the f field over a Cartesian grid. The mdfterm
utility reads the files newtetra.dat (similar to tetra.dat but with the bubble
rotated and translated by user specified amounts), grid.dat, gridvel.dat, and
outputs the mdfterm.dat file. The mdfterm.dat file is output by the instructions:

do k=2,nz-1
zC=0.5%(zGrid (k) +zGrid (k+1))
do j=2,ny-1
yC=0.5*(yGrid (j)+yGrid(j+1))
do i=2,nx-1
xC=0.5*%(xGrid (i) +xGrid (i+1))
divDnorm=0.0
f=part(i,j,k)
do 1=1,3
divD(1)= &
(D(i+1,j,k,1,1)-D(i-1,j,k,1,1))/(xGrid(i+1)-xGrid(i-1)) + &
(D(i,j+1,k,1,2)-D(i,j-1,k,1,2))/(yGrid(j+1)-yGrid(j-1)) + &
(D(i,j,k+1,1,3)-D(i,j,k-1,1,3))/(zGrid (k+1)-zGrid(k-1))
divDnorm=divDnorm+divD (1) **2
end do
write(1,1005)xC,yC,zC,divDnorm, (divD(1D),1D=1,3), &
((b(i,j,k,1D,mD),1D=1,3) ,mD=1,3)
1005 format (16(E14.7,2x))
end do
end do
end do

Each line of the file contains

,9,2,||V - D[, (V- D), (V- D)y, (V- D)y, (B.1)
D:mc? Dyz; sz,Dzy; Dyy; Dzy,DIZ7 Dyz; Dzz (B2)

that is the cell center coordinates, norm of the divergence of the MDF term, the
divergence of the MDF term and the MDF term itself (a tensor with 9 components)

B.2.6 Flowchart

The computation of a bubble involves the following steps:

1. A call to the subroutine Init in AxiBubbleEngine to initialize all data;

2. A call to the subroutine Secant in order to carry out one or steps of the secant
procedure used in solving F'(X) = 0;
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3. Further calls to the subroutines that carry out postprocessing including:

(a) GenTriangles to output a triangular discretization of the bubble surface;
(b) GenTetrahedra to output a tetrahedral discretization of the bubble vol-
ume;

(c) PoissonPhi to compute the potential and velocities on Cartesian grid
surrounding the bubble using the fast Poisson solver technique.

B.3 Program installation

The AxiBubble program is distributed as a standard Windows installation package
(available in the Package) subdirectory. The package is generated semi-automatically
by the deployment tool within Visual Basic. Some required files are not recognized
by the deployment tools and must be manually included in the distribution. These
are:

e MSSTDFMT.DLL - a standard Windows file;
e DFORRT.DLL - Digital Visual Fortran Library;

e MDFTerm.exe - The MDFTerm post processing utility.

B.4 Ellipsoid of revolution test case

The practical order of convergence of the integral equation solver was determined
by comparison to the known analytical solution for an ellipsoid of revolution (fig.
2.2). The parametric equations for an ellipsoid of revolution, expressed so that the
radius of curvature at n = 0 is equal to 1, are

z=a*(1—cosn), r=asiny (B.3)

with o the aspect ratio of the ellipsoid. The semi-axes are (a,b) = (a? a) along

(z,7). The analytic expression for the potential of the uniform motion with velocity
U of the ellipsoid through a fluid is [31]

Q)

¢:2_a0Uz (B.4)
with
> X 2ab? 20
a2 _ 2 72 2y _ 2 2 4
ap = ab /0 CESNCES\CAE RD(b,b,a)—TRD(a,a,a) (B.5)

where Rp is Carlson’s elliptic integral of the second kind
)= 3 / < dt
2Jo J{t+a)(t+y)(t+2)3"

a standard function of special mathematics libraries (e.g. IMSL).

Rp(z,y,2 (B.6)
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Appendix C

Essential features of OCTLES data
structures and procedures

C.1 Ancestor, parent and child volumes

In order to provide maximum flexibility in the ability to describe complicated geo-
metrical domains OCTLES uses tetrahedral grids exclusively. The principal benefits
of tetrahedral coverings are:

e ability to easily describe sharp variations in geometric surfaces;

e an extensive body of formulas is available to describe geometric quantities
through the mathematical theory of simplexes;

e the possibility to efficiently subdivide and reassemble computational cells;

e the possibility to formulate simple relationships between an initial computa-
tional cell and the elements of its subdivision.

The key to computational efficiency in OCTLES is the procedure by which a single
tetrahedron is subdivided into smaller elements. Consider an initial tetrahedron
named a parent volume. A standard numbering procedure (fig. C.1) is adopted for
nodes, edges and faces. The parent tetrahedron may be subdivided into smaller
child tetrahedra in many ways. Omne possibility which allows significant benefits
is to divide the tetrahedron into eight child volumes using the edge midpoints as
exemplified in fig. C.2. A solid with eight faces remains at the center of the parent
volume. This is subdivided into four tetrahedra which have one of the diagonals
as a common edge. Four of the resulting child tetrahedra are similar to the initial
tetrahedron and therefore named [like children. The other four, resulting from the
division of the central volume /56789 are called unlike children.

It is apparent that many similarities exist between the parent volume and the
child volumes. These similarities may be intensively exploited by only storing geo-
metric quantities associated with the parent volume and regenerating as needed the
child geometric quantities. There is an execution time penalty for this but it is negli-
gible since all arithmetic operations that arise are multiplications by a power of two.
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Figure C.1: Standard numbering conventions on a tetrahedron.

Figure C.2: Standard splitting of a parent tetrahedron into eight children.
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Figure C.3: The main data structures in OCTLES.
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Figure C.4: Octal tree storage of parent and child tetrahedra.

Such operations may be implemented as bit shifts in the standard binary floating
representations. The benefit obtained is enormous if the procedure is not applied
only one time but repeatedly by subdividing the child volumes in the same manner
until the required grid resolution is reached. This leads to the consideration of the
initial volume as an ancestor for a tree of descendents. The initial discretization of
the computational domain is kept intentionally coarse so as to have a small (~ 10%)
number of ancestor volumes. The ancestor volumes and their nodes are stored in
two global program lists (fig. C.3). Ancestor volumes are closely identifiable to
subdomains upon which different simulation equations are solved.

C.2 Framework for actions upon the program data

The benefits of a the octal tree data structure are made available by a standard
mechanism for applying transformations on the simulation data. It would of course
be wasteful to include in the flux calculation procedures the details of obtaining
geometric data from an ancestor volume or of maintaining adjacency relationships.
All of these basic operations are taken care of by a general stack-based procedure.
The desire is that at all times all data relating to the current computational cell
are available on the top of the stack. A general procedure is available for reading
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Figure C.5: State of the stack at a stage of the octal tree traversal procedure.

the top of stack data, called the top stack frame (fig. C.5). When adding a new
flux calculation procedure to the program all data relating to a cell is ensured to
be available to the procedure in a transparent manner. In writing a flux calculation
procedure there is no need to be concerned about the mechanics of traversing the
list of octal trees. A typical stack frame record is

typedef struct {
FieldVarPrec q[NrOfNodes] [NrOfFieldVars];
CoordPrec X[NrOfNodes] [NrOfDims] ;
AreaPrec S[NrOfFaces] [NrOfDims];
VolumePrec V;
GenericNode* nodes[NrOfNodes];
EdgeTypes edges;
FaceParametrization* Face[NrOfFaces];
GenericDescendents *parent;
int branch;

} VolumeInformation;

This mechanism allows the independent addition of different flux calculation
procedures. OCTLES acts on the program data through three basic mechanisms:

e ApplyOnLeaves - applies a user function on all nodes of the octal tree that
have no further children, these are called tree leaves;

e ApplyOnLevels - applies a user function on all nodes of the octal tree that are
at a certain distance from the top, root level or from the bottom, leaf level,

e ApplyOnNodes - applies a user function on all nodes of the octal tree;

All of these mechanisms traverse the tree and when the conditions for applying
the user function are satisfied it is called. Data relating to computational cells is
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Figure C.6: Action of ApplyOnLeaves.

automatically updated on a stack associated with each octal tree. As the octal
tree is traversed the conditions for invoking the user specified function are checked.
When satisfied the function is invoked. The action of ApplyOnLeaves is exemplified
in fig. C.6.
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