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Preface

The present proceedings compile the presentations during the workshop ANI 99, held in

the Cosmic Ray Observatory of the Yerevan Physics Institute in Nor-Amberd (Arme-

nia), May 29 - June 3, 1999. The workshop has been thematically focused to investiga-

tions of Extensive Air Showers (EAS), the EAS parameter estimation from experimental

observations both of the KASCADE and ANI experiments, and the inference of spectra

and composition of the primary cosmic ray ux, in particular around the knee in the

primary spectrum. The collaborative groups of the Yerevan Physics Institute (ANI)

and Forschungszentrum Karlsruhe (KASCADE) discussed in an informal and fruit-

ful atmosphere various approaches and methodological aspects of the current analyses

and updated the present knowledge about the main goals of the experimental e�orts.

Special emphasis has been put on the presentation of modern analysis methods of non-

parametric multivariate distributions, comparing the experimental distributions with

the patterns predicted by Monte Carlo simulations. It has been stressed that such type

of analyses (for which rather sophisticated program packages ANI and CORSIKA have

been developped) need also a careful account for the detector e�ciencies and response,

as exercised by the CRES program for the KASCADE experiment and by ARES under

development for the ANI experiment. An interesting aspect arises from the fact that

the intrinsic uctuations of the EAS development are minimised for observations in

high mountain altitudes, which encourages combined analyses of the KASCADE and

ANI data. A step in this direction has been demonstrated by considerations of the

zenith angle dependence of the MAKET ANI (on Mt. Aragats at 3250 m a.s.l.) and

KASCADE (110 m a.s.l.) EAS size spectra, towards an understanding of the longi-

tudinal EAS development and of the EAS attenuation length. The signi�cance of the

observation muon arrival time and EAS age distributions for the EAS understanding

has been also emphasised. Related to studies of the longitudinal development is the

question of the dependence of the simulated EAS pattern from the hadronic interac-

tion models, used as generators of the Monte Carlo simulations. The model dependence

needs also a speci�c consideration with the e�orts to isolate by the advanced statistical

methods mononuclear beams from event-by-event EAS observations. We would like to

thank all colleagues who did contribute to the pleasant discussions with scienti�c ideas

to the discussed topics. We acknowledge the generous support of all sponsors who in

fact enabled a valuable meeting of scientists of di�erent laboratories, and we thank, in

particular, the sta� of the Yerevan Physics Institute and of the Nor Amberd station

for preparing a helpful infrastructure with a pleasant atmosphere, including a visit of

the Ashtarak wine factory.

Yerevan - Karlsruhe, April 2000

The editors
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What tell us Extensive Air Shower Observations about
Hadronic Interactions at Ultrahigh Energies?

H.Rebel1� for the KASCADE Collaborationy

1Institut f�ur Kernphysik, Forschungszentrum Karlsruhe, Germany

The interpretation of extensive air shower (EAS) observations needs a su�ciently

accurate knowledge of the interactions driving the cascade development in the at-

mosphere. While the electromagnetic and weak interaction parts do not provide

principal problems, the hadronic interaction is a subject of uncertainties and de-

bates, especially in the ultrahigh energy region extending the energy limits of man

made accelerators and experimental knowledge from collider experiments. Since the

EAS development is dominantly governed by soft processes, which are presently

not accessible to a perturbative QCD treatment, one has to rely on QCD inspired

phenomenological interaction models, in particular on string-models based on the

Gribov-Regge theory like QGSJET, VENUS and SYBILL. Recent results of the EAS

experiments KASCADE are scrutinized in terms of such models used as generators

in the Monte Carlo EAS simulation code CORSIKA.

1 Introduction

In cosmic ray investigations, in addition to the astrophysical items of origin, acceleration and prop-

agation of primary cosmic rays, there is the historically well developed aspect of the interaction of

high-energy particles with matter. Cosmic rays interacting with the atmosphere as target (on sea level

it is equivalent to a lead bloc of 1m thickness) produce the full zoo of elementary particles and induce

by cascading interactions intensive air showers (EAS) which we observe with large extended detector

arrays distributed in the landscapes, recording the features of di�erent particle EAS components.

The EAS development carries information about the hadronic interaction (but it has to be disentan-

gled from the unknown nature and quality of the beam). When realizing the present limits of man

made accelerators, it is immediately obvious why there appears a renaissance of interest in cosmic

ray studies from the point of view of particle physics. EAS observations of energies 1015 eV represent

an almost unique chance to test theoretical achievements of very high energy nuclear physics.

Actually the astrophysicist is faced with the situation that reliable interpretations of the features of

the secondary particle production, and of their relation to the characteristics of the primary particle

are necessarily related to our understanding of the hadronic interactions. This aspect is particularly

stimulating for high-energy physicists, since there is not yet an exact way to calculate the properties

of the bulk of hadronic interactions.

This lecture is directed to review some relevant aspects of hadronic interactions a�ecting the EAS

development, illustrated with recent results of EAS investigations of the KASCADE experiment [1],

especially of studies of the hadronic EAS component using the iron sampling calorimeter of the

KASCADE central detector.

�
corresponding author: rebel@ik3.fzk.de
y
full collaboration list see at the end of these proceedings



2 H. Rebel

2 EAS development and hadronic interactions

The basic ingredients for the understanding of EAS are the total cross sections of hadron air collisions

and the di�erential cross sections for multiparticle production. Actually our interest in the total cross

section is better speci�ed by the inelastic part, since the elastic part does not drive the EAS develop-

ment. Usually with ignoring coherence e�ects, the nucleon-nucleon cross section is considered to be

more fundamental than the nucleus-nucleus cross section, which is believed to be obtained in terms

of the �rst. Due to the short range of hadron interactions the proton will interact with only some,

the so-called wounded nucleons of the target. The number could be estimated on basis of geometrical

considerations, in which size and shape of the colliding nuclei enter. All this is mathematically for-

mulated in the Glauber multiple scattering formalism, ending up with nucleon-nucleus cross sections.

Looking for the cross features of the particle production, the experiments show that the bulk of it

consists of hadrons emitted with limited transverse momenta (< Pt >� 0:3GeV/c) with respect to

the direction of the incident nucleon. In these "soft" processes the momentum transfer is small. More

rarely, but existing, are hard scattering processes with large Pt-production.

It is useful to remind that cosmic ray observations of particle phenomena are strongly weighted to

sample the production in forward direction. The kinematic range of the rapidity distribution for

the Fermilab proton collider for 1.8 TeV in the c.m. system is equivalent to a laboratory case of

1.7 PeV. Here the energy ow is peaking near the kinematical limit. That means, most of the en-

ergy is carried away longitudinally. This dominance of longitudinal energy transport has initiated

the concept, suggested by Feynman: The inclusive cross sections are expressed by factorizing the

longitudinal part with an universal transverse momentum distribution G(Pt) and a function scaling

with the dimensionless Feyman variable xF , de�ned as the ratio of the longitudinal momentum to

the maximum momentum. Though this concept, expressing the invariant cross sections by

E � d3�=dp3 � xF � d3�=dxFdpT (1)

provides an orientation in extrapolating cross sections, it is not correct in reality, and the question

of scaling violation is a particular aspect in context of modeling ultrahigh-energy interactions.

3 Hadronic interaction models as generators of Monte-Carlo simu-

lations

Microscopic hadronic interaction models, i.e. models based on parton-parton interactions are ap-

proaches, inspired by the QCD and considering the lowest order Feyman graphs involving the el-

ementary constituents of hadrons (quarks and gluons). However, there are not yet exact ways to

calculate the bulk of soft processes since for small momentum transfer the coupling constant �s of

the strong interaction is so large that perturbative QCD fails. Thus we have to rely on phenomeno-

logical models which incorporate concepts from scattering theory.

A class of successful models are based on the Gribov-Regge theory. In the language of this theory

the interaction is mediated by exchange particles, so-called Reggeons. At high energies, when non-

resonant exchange is dominating, a special Reggeon without colour, charge and angular momentum,

the Pomeron, gets importance. In a parton model the Pomeron can be identi�ed as a complex gluon

network or generalised ladders i.e. a colourless, avourless multiple (two and more) gluon exchange.

For inelastic interactions such a Pomeron cylinder of gluon and quark loops is cut, thus enabling

colour exchange ("cut cylinder") and a re-arrangement of the quarks by a string formation. Fig.1

recalls the principles by displaying some parton interaction diagram's.
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� The interacting valence quarks of projectile and target rearrange by gluon exchange the color

structure of the system (the arrow indicates the colour exchange by opening the cylinder). As

a consequence, constituents of the projectile and target (a fast quark and slow di-quark e.g.)

for a colour singlet string with partons of large relative momenta. Due to the con�nement the

stretched chains start to fragment (i.e. a spontaneous q�q-production) in order to consume the

energy within the string. We recognize a target string (T) and a projectile string (P), which

are the only chains in pp collisions. In multiple collision processes in a nucleus, sea quarks are

additionally excited and may mediate nucleon-A interactions. While in the intermediate step

the projectile diquark remains inert, chains with the sea quark of the projectile are formed.

� Most important are di�ractive processes, signaled in the longitudinal momentum (xF ) distri-

bution by the di�ractive peak in forward directions. Here the interacting nucleon looks like a

spectator, in some kind of polarisation being slowed down a little bit due to a soft excitation

of another nucleon by a colour exchange with sea quarks (quark-antiquark pairs spontaneously

created in the sea).

� There is a number of such quark lines, representing nondi�ractive, di�ractive and double di�rac-

tive processes, with single and multiple colour exchange.

Figure 1: Parton interaction lines.

The various string models di�er by the types quark

lines included. For a given diagram the strings

are determined by Monte Carlo procedures. The

momenta of the participating partons are gener-

ated along the structure functions. The models

are also di�erent in the technical procedures, how

they incorporate hard processes, which can be cal-

culated by perturbative QCD. With increasing en-

ergy hard and semihard parton collisions get im-

portant, in particular minijets induced by gluon-

gluon scattering.

In summary, the string models VENUS [2],

QGSJET [3] and DPMJET [4] which are specif-

ically used as generators in Monte-Carlo EAS

simulations are based on the Gribov-Regge

theory.They describe soft particle interactions

by exchange of one or multiple Pomerons.

Inelastic reactions are simulated by cutting

Pomerons, �nally producing two color strings per

Pomerons which subsequently fragment into color-

neutral hadrons.All three models calculate de-

tailed nucleus-nucleus collisions by tracking the

participants nucleons both in target and projec-

tile.The di�erences between the models are due to

some technical details in the treatment and frag-

mentation of strings. An important di�erence is

that QGSJET and DPMJET are both able to treat

hard processes, whereas VENUS, in the present

form, does not. VENUS on the other hand al-

lows for secondary interactions of strings which



4 H. Rebel

are close to each other in space and time. That is not the case in QGSJET and DPMJET. SYBYLL

[5] and HDPM [6] extrapolate experimental data to high energies guided by simple theoretical ideas.

SIBYLL takes the production of minijets into account. These models are implemented in the Karls-

ruhe Monte Carlo simulation programm CORSIKA [6, 7] to which we refer in the analyses of data.An

extensive comparison of the various models and studies of their inuence on the simulated shower

development and EAS observables have been made in ref.[8]. There are distinct di�erences in the

average multiplicities and the multiplicity distributions generated by di�erent models. Nevertheless

the variations in the average longitudinal development, though visible, appear to be relatively small.

It should be noted that when inspecting the development of single showwers with identical initial

parameters, instead of average quantities, we get impressed by the remarkable uctuations and some-

times unusual EAS developments. A further aspect which a�ects the accuracy of the simulations

are the tracking algorithms propagating the particles through the atmosphere. In devising the COR-

SIKA code great care has been taken on this aspect, since the outcome for arrival time and lateral

distributions could be signi�cantly inuenced by the tracking procedures.

4 The KASCADE apparatus

From the very beginning, when planning the KASCADE experiment [1] the setup of an calorimeter for

e�cient studies of the hadronic component in the shower center has been foreseen with the intention

of checking the predictions of hadronic interaction models.

The KASCADE detector array consists of an �eld array of 252 detector stations, arranged in a regular

way in an area of 200 � 200m2, and of a complex central detector with a sampling calorimeter for

hadron detection. The �eld detectors identify the EAS event, they provide the principal trigger (a

lead shielding

top cluster

trigger layer

iron

TMS chambers

concrete

MWPC

Figure 2: Scheme of the KASCADE central detector.

coincidence in at least eight stations), the basic characterisation (angle of incidence, shower axis and

core location) and do sample the lateral distribution of the electron-photon and muon component from

which the shower size and quantities characterising the intensity and muon content of the showers are

determined. In the array stations the muon detectors are positioned directly below the scintillators

of the electron-photon detectors, shielded by lead and iron corresponding to 20 radiation lengths,
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imposing a energy detection threshold of about 300 MeV.

The central detector combines various types of detector installation with with an iron sampling

calorimeter of eight layers of active detectors.

The iron absorbers are 12-36 cm thick, increasingly in the deeper parts of calorimeter. Therefore the

energy resolution does not scale as 1=
p
E, but is rather constant, slowly varying from �

p
E = 20%

at 100 GeV to 10% at 10 TeV. In total (including the concrete ceiling) the calorimeter thickness

corresponds to 11 interaction lengths (�I = 16:7 cm Fe) for vertical muons. On top, a 5 cm lead layer

absorbs the electromagnetic component to a su�ciently low level.

The active detectors are 10.000 ionisation chambers using room temperature liquids tetramethylsilan

(TMS) and tetramethylpentane (TMP) operated with a large dynamical range (5:104). This ensures

that the calorimeter measures linearly the energy of single hadrons up to 15 TeV. The third layer

of the calorimeter setup is an "eye" of 456 plastic scintillator, which deliver a fast trigger signal.

Independently from hadron calorimetry, it is used as additional muon detector and as timing facility

for muon arrival time measurements. In the basement of the iron calorimeter there are position

sensitive multiwire proportional chamber (MWPC) installed for speci�c studies of the structure of

the shower core and of the EAS muon component with an energy threshold of 2 GeV.

The energy calibration of the energy deposit of single ionisations chambers is made by means of

the through-going muons, and the transition curves, i.e. the longitudinal pro�les of the energy

deposition are compared with simulations (using the detector simulation code GEANT [9] with the

FLUKA description).

5 Test of EAS observables
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Figure 3: Hadron number NH - shower size Ne

correlation.

The general scheme of the analysis of EAS ob-

servations involves Monte Carlo simulations con-

structing pseudo experimental data which can be

compared with the real data [10]. The king-way

of the comparison is the application of advanced

statistical techniques of multivariate analyses of

nonparametric distributions [11].

The mass composition of cosmic rays in the energy

region above 0.5 PeV is poorly known. Hence the

comparison of simulation results based on di�er-

ent interaction models has to consider two extreme

cases of the primary mass: protons and iron nu-

clei, and the criteria of our judgment of a model is

directed to the question, if the data are compatible

in the limits of the predicted extremes of protons

and iron nuclei. We consider the hadronic observ-

ables [12], in dependence from shower parameters

which characterize the registered EAS, in particu-

lar indicating the primary energy:

� The shower size Ne, i.e. the total electron num-

ber

� The muon content N tr
� which the number of muons obtained from an integration of the lateral dis-

tribution in the radial range from 40 to 200 m. It has been shown that this quantity is approximately

an mass independent energy estimator for the KASCADE layout, conveniently used for a �rst energy
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classi�cation of the showers [13].

First, the dependence of the average number of

hadrons NH with an energy EH > 100GeV from

the shower size is shown and compared with the

predictions of the VENUS and QGSJET model.

The energy range covers the range from 0.2 PeV

to 20 PeV. The result shows some preference for

the QGSJET model, and such an indication is cor-

roborated by other tests.

There is another feature obvious. When shower

observables are classi�ed along the electromag-

netic shower sizes Ne, a proton rich composition

is displayed. This e�ect is understood by the fact

that at the same energy protons produce larger

electromagnetic sizes than iron induced showers,

i.e. with the same shower size iron primaries have

higher energies, where the steeply falling primary

induces the dominance of protons in the sample.

Another example considers the frequency distribu-

tions of the energy of each single hadron EH with

respect to the energy of the most energetic hadron

Emax
H . The data are compared with predictions of

SYBILL and QGSJET for iron and proton induced

showers.

� For a primary proton one expects that the lead-

ing particle is accompanied by a swarm of hadron

of lower energies. For a primary iron nuclei the

energy distribution appears narrowed.

� The two upper curves display the case for a pri-
mary energy below the knee (about 3 PeV). The

de�ciencies of SYBYLL are obvious and have been

also evidenced by other tests, especially with the

muon content [12]. SYBILL seems to produce a

wrong EAS muon intensity, and it fair to mention

that just this observation has prompted the au-

thors to start a revision of the SYBILL model.

� At energies well above the knee (about 12 PeV) also the QGSJET exhibits discrepancies, at least in

the energy distribution of the hadrons of the shower core. Other observables like lateral distribution

and the total number of hadrons, however are appear more compatible with the model.

How to interpret this results? Tentatively we may understand that in the simulations Emax
H , the

energy of the leading hadrons is too large. Lowering Emax
H would lead to a redistribution of the

E=Emax
H distribution shifting the simulation curves in direction of the data.

A further test quantity is related to the spatial granularity of hadronic core of the EAS. The graph

(Fig.5 left) shows the spatial distribution of hadrons for a shower induced by a 15 PeV proton. The

size of the points represents the energy (on a logarithmic scale).
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Figure 5: Left: Example of a hadronic core observed in the calorimeter (top view). Right: Frequency

distributions of the distances of the minimum-spanning-tree.

For a characterisation of the pattern a minimum spanning tree is constructed. All hadron points

are connected by lines and the distances are weighted by the inverse sum of energies. The minimum

spanning tree minimizes the total sum of all weighted distances. The test quantity is the frequency

distribution of the weighted distances dMST . Results are shown for two di�erent bins of the truncated

muon size or of the primary energy (2 and 12 PeV), respectively (Fig.5 right). Again we are lead to

the impression that either the distribution pattern is not reproduced or the high-energy hadrons are

missing in the model.

Tentatively we may deduce from these indications, that the transfer of energy to the secondaries -

what we phenomenologically characterize with the not very well de�ned concept of the inelasticity of

the collision - appears to be underestimated.

In order to underline this feature we may inspect the variation of some other observables with

the quantity log10(N
tr
� ) / log10(Eprim): The so-called shower age s, which characterizes the stage

of the EAS development, the number of observed hadrons Nh with EH > 100GeV, the energy sumP
Eh of this hadrons and the energy of the highest energy hadrons Emax

H . Fig.6 compares with

predictions with the QGS model (with the limit log N tr
� < 4:6). The predictions of the VENUS

display the same features. Globally we realize the tendency that the experimental data approach

the predictions for iron induced showers, i.e. for faster developed EAS. But this may be hardly

interpreted as consequence of a heavier mass composition, rather as arising from a larger inelasticity

of the hadronic collisions e.g..
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Figure 6: Comparison of various experimentally accessible EAS variables with predictions of the the

QGSJET model. [14]

6 Concluding remarks

From the investigation of a series EAS observables and comparisons with di�erent hadronic interaction

models, en vogue for ultrahigh energy collisions, we conclude with following messages:

� The model SYBILL, in the present release, has problems, in particular when correlations with

the muon content of the showers are involved.

� The model VENUS is in fair agreement with the data, but it indicates also some problems at

high energies, when correlations with the shower sizes are considered.

� In the moment the model QGSJET, which includes the minijet production - in contrast to

VENUS - reproduces su�ciently well the data, though it underestimates the number of high

energy hadrons for high energies.

� In general there are tentative indications that the inelasticity in the fragmentation region is

underestimated especially with increasing energy.
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All models are in a process of re�nements. Actually somehow triggered by the experimental indica-

tions, there is a common enterprise of VENUS and QGSJET towards a combined model descriptions:

neXus [15]. That is a uni�ed approach combining coherently the Gribov-Regge theory and perturba-

tive QCD. Faced with the experimental endeavour to set up giant arrays for astrophysical observations

at extremely high energies, the Monte Carlo simulations need certainly a safer ground of model gen-

erators. Hence our e�orts in KASCADE are directed to extend the array and to re�ne the present

studies with results towards primary energies of 1017 eV.
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Towards Experiments with Mononuclear Cosmic Ray
Beams

A.Chilingarian1�, M.Roth2 and A.Vardanyan1 for the KASCADE Collaborationy

1Yerevan Physics Institute, Cosmic Ray Division, Armenia
2Institute f�ur Kernphysik, Forschungszentrum Karlsruhe, Germany

The KASCADE experiment measures a large number of EAS observables with an

improved degree of sampling of the electron-photon and muon components, with

additional information about the hadronic core. It provides accurate data for an

event-by-event analysis of the primary cosmic ray ux in the energy range of 1014�
1016 eV. Nonparametric procedures for the estimation of the energy spectrum and

mass composition are described. The possibility of studies with quasi-mononuclear

beams are discussed.

1 Introduction

The idea to use advanced statistical techniques of multivariate analyses [1] for isolating certain classes

of Extended Air Showers (EAS) stems from an early proposal of A. Chilingarian and H. Zazyan

[2, 3] to prepare quasi-mononuclear beams by mass discriminative analyses of event-by-event EAS

observations, planned for the ANI experiment [4] in context of investigations of inelastic cross

sections of very-high-energy cosmic ray interactions e.g. . The realisation of this proposal has become

realistic by the recent results of the multi-detector experiment KASCADE [5] which provide an

accurate experimental basis of event-by-event data of many EAS observables. In the contribution of

A. Vardanyan [6] the classi�cation procedure using KASCADE data (Ne; N
tr
� , age,....) is described

and the purity of the prepared proton and iron beams, the bias and accuracy of the mass and energy

estimates are discussed. The claimed results of ca. 70% purity of the beams exceed the expectations

inferred from the considerations of the situation of the ANI-experiment [4].

This approach appears to be very promising with the aspect of re�ned tests of current interaction

models and to pave the way to a consistent description [7] of the hadronic interaction at extremely

high energies by experimental road signs. Still the results of the KASCADE experiments concerning

the energy spectrum and mass composition of primary cosmic rays are considerably a�ected by a

model error, estimated for the energy slope to be 10 times larger than the statistical uncertainty [8].

The present report gives a brief description of the techniques of multivariate classi�cation and Monte

Carlo statistical inference and introduces in the use of the options of the ANI program package.

2 Monte Carlo Statistical Inference

2.1 Nonparametric Classi�cation

In cosmic ray physics the main technique of physical analysis is the Monte Carlo Statistical Inference

(MCSI), the detailed simulation of the CR traversal through the atmosphere and the response of the

experimental installation with a following comparison of the multivariate simulation and experimen-

tal data. Actually, an algorithm is constructed, which describes EAS development and registration

�
corresponding author: e-mail: chili@yerphi.am
y
full collaboration list see at the end of these proceedings
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of its di�erent components at the observation level, which is based on a certain family of models of

the physical processes investigated.

MCSI requires some speci�cations (basic physics, experimental techniques, data analysis techniques),

it generates families of models to meet this speci�cations and it synthesizes a priori knowledge and

experimental results to create new knowledge. Complexity of the MCSI is determined by its multi-

functionality, adaptability and exibility - attributes that one best realized in Neural Network models.

Neural models captures the statistics of processes directly from data vectors - collection of "pseudo-

experimental" variables, corresponding to all signi�cant variations of the model input parameters.

Herein lies MCSI exibility. It allows the input vectors to be formed directly from initial measure-

ments or from reconstructed EAS parameters.

Neural methods are universal and can deal with very big input vectors. A common complaint about

nonparametric techniques is the dependence of the results on the purity and �niteness of training

sets (small training samples e�ects). However, due to the inherent robust characteristics of Neural

Network (generalization ability), results from neural analyses are relatively insensitive to modest im-

purities in the training sets.

MCSI incorporates and uses such advanced nonparametric methods as Fuzzy Analysis, Adaptive

Multivariate Density Estimation, Fractal Dimensionality Analysis, etc, . . . . For net training the

Evolutionary Algorithms are used, Stopping Rules, based on the Prediction Error estimation and

Committee method provide high level of generalization, avoiding overtraining errors. For the train-

ing of very big networks hardware accelerators (neurochips) are used.

The overall scheme of learning from examples can be de�ned as following [10]:

1. random event generator, drawn independently from a �xed but unknown distribution mixture;

2. a supervisor (absolute decision rule) that returns an output vector for every input vector,

according to a unknown, but also �xed conditional distribution function;

3. a learning machine (algorithm) capable to implement a number (may be in�nite) of di�erent

approximation functions.

The problem of learning is that of choosing the appropriate set of functions, and then particular

member of this family, which predicts the supervisor's response in the best way (optimal decision

rule). The selection is based on the training set (sample), of independent and identically distributed

observations presented to the supervisor.

Let us consider the stochastic mechanism (A;P) which generates the observations v in a multivariate

feature space - V; v is a d-dimensional vector of EAS parameters measured experimentally. We

assume that observations are random and can be described by some conditional probability density

function depending on the primary particle type. The feature space V covers possible acceptable

values of EAS parameters including cuts on shower age and size, etc. . .

The basic states space A consists of di�erent primary nucleus. The appropriate statistical model

describing EAS initiated by various primaries is the probability mixture model:

p(v) =
LX
k=1

Pk p(v=Ak): (1)

The proportions (frequencies) of the probability mixture Pk of events in each category Ak, deter-

mine the mass composition of the primary ux. Unfortunately, we don't know the full statistical

description (conditional probability density functions p(v=Ak)) of how nature produces EAS from

incident primaries, that is why, to determine the mutual probability measure on the direct product

of A and V spaces, the total Monte-Carlo simulation of the EAS development in the atmosphere
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and in detectors is performed, including experimental data registration and reconstruction of EAS

parameters for di�erent primaries and alternative strong interaction models in a wide energy range.

The problem is how to introduce the probability measure in the primary particle parameters space

T (K-dimensional metric space). Usually following parameters are used as input for Monte-Carlo

simulation program:

� primary type;

� primary energy;

� angle of incident;

� strong interaction model (one of the CORSIKA alternatives [12]).

Of course, we have to implement the physical restriction and de�ne the bounded subspace of T ,
from which we randomly take the mesh points (ti; i = 1;M), M is number of simulation trials. The

primary particle classes will be restricted by 5 groups, including all primaries from proton to iron.

The set of corresponding d-dimensional (ui; i = 1;M) vectors obtained in simulations is an analog

of the experimentally measured values of (vi; i = 1;Mexp), where Mexp, is the number of detected

events. But, as opposed to experimental data, it is exactly known which primary particle was used

in simulations. These, labeled events include a priori information about dynamics of the EAS devel-

opment and registration with inherent uctuations. All statistical variability of events belonging to

the de�nite class is expressed in a nonparametric form, in form of simulation trials. The sequence

(ui; tj), i = 1;Mj ; j = 1; L; t� is the class index, and is generated with the CORSIKA simula-

tion program [12] and consists of L classes each containing Mj simulation trials. This "controlled"

stochastic mechanism we denote by (A; ~P) and will refer to it as training sample (TS). The training

sample is the basis of all statistical procedures in applied Bayesian and neural approaches. Usually

we denote a TS by Ak or explicitly by the primary group - P, O, . . . ,Fe.

The corresponding distribution mixture model takes the form:

p̂(v) =
LX
k=1

P̂kp̂(v=Ak) (2)

Of course this substitution of unknown conditional density function p(v=Ak) by "simulation" analog

p̂(v=Ak), estimated by means of the training sample fui; tjg, is only valid if the used model is

adequate. And validation of the model remain the most crucial and yet unsolved problem for EAS

data analysis.

For reliable estimation of conditional densities we'll need signi�cant amount of training trials to

cover all intrinsic variations of measurable EAS parameters and completely represent all categories

(primary nucleus). Since both physical processes of particle production and those of registration are

stochastic, only by careful measurement of probabilities we can gain an understanding of the EAS

phenomena. We can't expect simple solutions, as multidimensional distributions of EAS parameters

overlap signi�cantly and any decision on primary particle type and it's energy will contain uncertainty.

The only thing we can require when classifying a distribution mixture is to minimize the losses due to

incorrect classi�cation to some degree and to ensure the use of a priori information completely. Such

a procedure is the Bayes decision rule with nonparametric estimation of the multivariate probability

density function.
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2.2 Bayesian Decision Rules

The Nonparametric Bayesian decision rule have a form [13]

~A = �(v;A; ~P) = argmaxifCip̂(Ai=v)g; i = 1; : : : ; L: (3)

where ci are the losses connected with ~A decision, p̂(Ai=v) is the nonparametric estimate of the a

posteriori density, connected with conditional ones by the Bays theorem:

p̂(Ai=v) =
P̂ip̂(v=Ai)

p̂(v)
: (4)

Finally, substituting the a posteriori densities by the conditional ones we get the Bayesian decision

rule in the form
~A = argmaxifCiPip̂(v=Ai)g; i = 1; : : : ; L: (5)

Provision is made to avoid statistical decision if all classes are very far from experimental events

(outliers problem). If

p̂(v=Ai) < ST for all i = 1; : : : K; (6)

then the "outliers message" is send to output stream. ST is, so called, Strangeness Criteria, usually

set to a small number.

The Nonparametric Likelihood Ratio for classes A1; A2 and experimental event v can be represented

as:

LR(v) =
p̂(v=A1)

p̂(v=A2)
: (7)

The nonparametric Log-likelihood function for k � th class takes the form:

Lk =
MX
i=1

ln p̂(vi=Ak); k = 1; L; (8)

where M is number of experimental events. The negative of the Log-Likelihood function is also

calculated; the smaller values will correspond to the most probable model.

2.3 Nonparametric Probability Density Estimators

To estimate conditional densities, we use Parzen kernel [14, 15] and K Nearest Neighbors (KNN)

methods [16, 17] with an automatic adaptation of the method parameter (kernel width - for Parzen

estimate, and number of neighbors - for KNN estimate)[18]. Several probability density estimates

corresponding to di�erent values of parameters are calculated simultaneously. Then the obtain se-

quence is ordered and the median of this sequence is chosen as �nal estimate. Depending on the

intrinsic probability density in the vicinity of point v, where the density is estimated, due to stabi-

lizing properties of the median, each time the best estimate will be chosen [19]. The Parzen kernel

probability density is estimated by:

p̂(v=Ai) =
j �i j�0:5

(2�)d=2hd

MiX
j=1

e
�r2j =2h

2

!j; i = 1 : : : ; L;

MiX
j=1

!j = 1 (9)

where d is the feature space dimensionality, Mi is the number of events in the i�th TS, rj is the

distance from experimental event v to the j�th event of the TS in the Mahalanobis metric

r
2
j = (v � uj)

T��1
i (v � uj); (10)
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where �i is the sampling covariance matrix of the class to which uj belongs, !j are the event weights,

h is the kernel width (parameter controlling the degree of the "smoothness" of an estimate).

The K nearest neighbors estimate takes the form:

p̂(v=Ai) =
k � 1

MiVk(v)
; (11)

where Vk(v) is the volume of a d-dimensional hypersphere containing the k nearest neighbors to the

experimental event v,

Vk(v) = Vd j �i j1=2 rdk ; Vd =
�d=2

�(d=2 + 1)
; (12)

where rk is the distance to the k-th nearest neighbor of v, �(:) is the gamma function. j �i j is the
determinant of the covariance matrix of the class to which the k-th neighbor belongs.

2.4 Bayes Error Estimation

The classi�cation methods, like all the statistical ones, include a procedure quality test as a necessary

element. The most natural measure for quality test is the error probability which depends on both,

the degree of overlapping of alternative multivariate distributions and the decision rule being used:

R
B = Ef�[�(v;A;P)]g =

Z
vp(v)dv; (13)

where

�[�(v;A;P)] =
(

0 , for correct classi�cation,

1 , otherwise
(14)

The mathematical expectation is taken over the whole d�dimensional feature space V. In other words
the Bayes error is a measure of the overlapping of alternative distributions in the feature space V,
e.g. the expected proportion of the "incorrect" classi�cation. Since we do not know to which class

experimental vectors belong, we obtain an estimate of RB via the TS:

R̂
B = Ef 1

MTS

MTSX
i=1

�[�(ui;A; ~P)]g; (15)

i.e. we classify the fuig; i = 1;MTS and check the correctness of the classi�cation over the index of

the class tj; j = 1; L: The expectation is taken over all possible samples of the space MTS . However,

as numerous investigations have shown (e.g. [20]), this estimate is systematically biased and hence,

a one-leave-out-for-a-time estimate is preferable:

R̂e =
1

MTS

MTSX
i=1

�f�(ui;A; ~P(i))g; (16)

where (A; ~P(i)) is a TS with a removed i-th element, which is classi�ed and then "returned" to the

sample. This estimate is unbiased and has an essentially smaller m.s. deviation compared with

other estimators [21]. The advantage of R̂e is especially notable when the feature space has a high

dimensionality. Note, that we have the possibility to estimate the error probability of various types by

classifying various TS classes - fui; tjg; j = 1; L: By Re
ij (or simply Rij) we denote the probability of

classifying the i�th class events as belonging to the j�th class (misclassi�cation). By Rii the "true"



16 A. Chilingarian

classi�cation probability will be denoted. For EAS classi�cation according to 5 primary groups, each

element of the "classi�cation matrix" have to be determined, using the Bayes risk estimate (16).0BBBBB@
Rp!p Rp!� Rp!o Rp!si Rp!fe

R�!p R�!� R�!o R�!si R�!fe

Ro!p Ro!� Ro!o Ro!si Ro!fe

Rsi!p Rsi!� Rsi!o Rsi!si Rsi!fe

Rfe!p Rfe!� Rfe!o Rfe!si Rfe!fe

1CCCCCA
This matrix presents the accumulated a-priori knowledge on the possibility of data classi�cation into

5 categories. We introduce a separability index G, reecting the \goodness" of the classi�cation:

G =

 
LY
i=1

Rii

!1=L

: (17)

This averaged product of diagonal elements represents the "mean" probability of true classi�cation

into L categories. The separability index, of course, is directly connected with the Bayes error.

2.5 Feed-Forward Neural Networks

Feed-Forward Neural Networks (FFNN) represent very simple structures composed of processing

elements (nodes) and connections (weights). FFNN belongs to the general class of non-parametric

methods that do not require any assumption about the parametric form of the statistical model they

use. The central issue of FFNN is the implementation of the bounded mapping [22]:

f : U � Rn1 ! Rn2
; (18)

from a bounded subset V of n1 dimensional Euclidean space to a bounded subspace f [V] of n2-
dimensional Euclidean space (usually n1 > n2). The special case of such mapping when n1 = 1,

constitutes the classi�cation problem. Of course, for real live problems it is impossible to de�ne non-

overlapping devision of V corresponding to di�erent categories, but using the examples of mapping

action, a Network con�guration can be tuned to minimize the misclassi�cation errors near to minimal

achievable Bayes error (13).

The net architecture consists of L layers each having K nodes. The �rst layer consists of N1 elements

that simply accept the components of input vector v and distribute them, without modi�cation, to

all of the nodes of the second layer. The nodes of the second layer calculate a weighted sum of all

inputs and then transform it to some nonlinear (sigmoid) function. This output is distributed again

to all nodes of the third layer, and so on till the output layer with N2 nodes is reached. The output

of a FFNN can be used directly for classi�cation, in this case mapping takes a special form with aim

to "shift" di�erent classes of TS from each other as much as possible.

Therefore the \goal" output Ogoal(k) for events of the k-th category could be chosen as follows:

O
goal
k =

k � 1

K � 1
; k = 1;K: (19)

where K is total number of classes. For the multi-way classi�cation one can de�ne a set of non-

overlapping bounded intervals in (0�1) for each category. This sequence of bounded non-overlapping

sets Ok; k = 1;K, along with the chosen "goal" values (located within corresponding subsets), will

determine the mapping into the K class labels:

O(u) � Ok ! u belongs to kth category: (20)
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The objective (error) function to be minimized is simply the discrepancy of apparent and target

outputs over all training samples (so called classi�cation score):

Q =
KX
k=1

MkX
j=1

wk

�
O
j
k �O

goal
k

�2
;

KX
k=1

wk = 1: (21)

where O
j
k is the actual output value for the j-th training event, belonging to the k-th class, and the

O
goal
k is the target value for the k-th class output, where K is number of categories and Mk is the

number of examples for the k-th class.

The wk weight coe�cients controls the "contribution" of each particular class of TS to the overall

error function. For the identi�cation of the primary type by EAS observables, usually intermediate

nucleus (oxygen class) with masses between the lightest (proton class) and heaviest with signi�cant

abundance (iron class) are trained worse compared with edge classes. There are two possibilities of

checking the classi�cation accuracy of middle categories. First of all we can enlarge the category

acceptance region Omiddle, (a posteriori solution) (20). And, second, the corresponding weight value

in the error function could be enhanced before starting net training (a priory solution) (21).

2.6 Neural Estimation (Learning Regression Function)

Above we consider the classi�cation mode of the neural mapping (18). The recovering of the un-

known functional dependence is another realization of neural mapping possibilities implemented by

FFNN. This problem is of vital importance for EAS experiments for constructing the energy spectra

of the primary CR ux. And if the classi�cation statistical model is appropriate for mass composition

studies, the learning of the regression function is more appropriate for energy estimation.

Our fundamental assumption will be that we can generate examples of mapping f(V) by detailed

Monte-Carlo simulation of multidimensional random variables (ui; i = 1;M), in accordance with as-

signed probability measure on T initial parameters space ( as described in section 2.1). The bounded

subspace of T e.g. simulated primary energies, will be determined by the installation threshold and

acceptance and ux intensity (the information on the steeply fallen energy spectra will also be incor-

porated in preparing of simulation trials).

A primary advantage of mapping networks over classical statistical regression analysis is that the

FFNN have more general (algorithmic) functional forms than classical statistical methods can ef-

fectively deal with [22]. FFNN's are free from depending on linear superpositions or orthogonal

functions and can mimic sophisticated stochastic mechanism whereby the Nature generate the data.

Therefore, in contrast with classical regression problem, we've to specify not the particular mem-

ber of known analytic family of functions, rather the non-parametric algorithm (estimator), which

generalizes the unknown mapping rule, implementing learning strategy on the training sample. The

regression learning strategy will be based on the fundamental notion of the generalization.

The most common drawback in FFNN performance is the limited number of training and test sam-

ples. Usually, in CR physics applications we can't simulate enough simulation trials, especially for

most interesting ultra-high energies. And, therefore, we never can be sure that we use su�cient

number of examples to learn a general problem and not the speci�c training data set.

As we are not sure that the used training samples reect all variability of physical processes, learn-

ing of a particular training sample \too good" is also not desirable. What we need is to generalize

from the used training set to the entire problem. Therefore, the strategy, checking the expected

performance of FFNN during training is of crucial importance. The strategy, proposed in [23] is

connected with the Prediction Risk as performance measure. In general, particular FFNN model can
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be speci�ed (indexed) by the � parameter:

� � � � (V;G;W); (22)

� where V � V notes a chosen subset of variables from the set of all possible variables V;

� G is a selected architecture from the class of possible architectures G;

� and W is the set of net parameters (weights).

The prediction risk P (�) is de�ned as expected net performance on a �nite test set:

P (�) � Ef 1

M

MX
i=1

(t�j �O�(u
�

j))
2g; (23)

where (t�j ; u
�
j ) weren't used in training, O� - is the trained network output. The strategy exists in the

selection of the particular � from the model space �, which minimizes an estimate of the prediction

risk.

The procedure of the prediction risk estimation, which reuse data and gives unbiased estimate for

small sample sets, is connected with the generalization of one-leave-out-for-the-time estimate used

for the Bayes risk estimation (16). The k-fold cross-validation, introduced by Geisser [24] and Wahba

[25], instead of leaving only one event, delete larger subsets from training sample. Let the training

sample ( ~P � (tj ; uj); j = 1;M) be divided into k randomly selected disjoint subsets of the equal size

Mk =M=k, denoted by ~p. And the ~Pi will denote the training sample with deleted i� th subsample

~pi . Then the crossvalidation mean square error (MSE) for the selected subset ~pi is de�ned as

MSE ~Pi
(�) =

1

Mk

X
(tj ;uj)�~pi

(tj � O
�; ~Pi

(uj))
2
; (24)

and

MSE(�) =
1

k

kX
j=1

MSE ~Pi
(�): (25)

Typical choices of k are 5 and 10. An useful modi�cation of cross-validation mean square error,

penalizing complicated networks comprising many hidden units, is the Akaike's �nal prediction error

[26]. For large enough training sets it takes following form:

P (�) �MSE(�)

�
1 + 2

NTOT

M

�
; (26)

where NTOT is total number of networks weights. Just this expression is recommended by authors of

[23] as an estimate of prediction risk. Estimates of the prediction risk o�er a sound basis for assessing

the generalization performance of the model and can be used as a tool for architecture selection and

constructing the stopping rule. Therefore, it is important to check the training results not with the

"training error", but with the "generalization error", represented by the prediction risk.

The above described technique with an appropriate de�ned error function was used for the simulta-

neous estimation of the primary energy and mass. The following function have to be minimized

Q =
MX
j=1

!j � g (tj �Oj) ;
MX
j=1

!j = 1; (27)
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where,Oj is the vector output of the FFNNs last layer (note, that sigmoid function is not implemented

for the nodes in the output layer!) and tj is the vector of parameters used in simulation (primary

mass and energy of "pseudo-experimental" event). !j is the event weight (usually the highest energy

events get higher weights).

A weighted quadratic metric is used as measure of discrepancy of actual and "true" regression function

values:

g(:) � �( dmass(uj)�mass(uj))
2 + (1� �)(Ê(uj)�E(uj))

2 (28)

The � coe�cients are changing during training cycles to provide stable and reliable recovery of both

energy and mass. Setting � value to 0 and 1 we have the possibility to estimate �rst energy, and

then, primary mass or vice-versa.

2.7 Net Training

The only information to "train" network for "nonlinear" mapping is contained in a priory given pairs

- (ti; ui); i = 1;M , where M is the number of training events. During the minimization procedure the

calculated di�erences between the actual network output and the desired output are used to adjust

the weights.

The back-propagation (BP) algorithm of neural network training is one of the most important his-

torical developments in neurocomputing. The simple rule (based on gradient descent) of weights

updating after processing of one or more training examples in principle will lead to arbitrary small

mean square error of function approximation. The family of BP algorithms is realized in numerous

packages, with the Jetnet package being most popular in HEP community [27].

Generic Algorithms (GA) and Evolutionary Programming (EP) are both search techniques based on

an simulation of the evolutionary processes. The challenge is to �nd "good solutions" (chromosomes)

in very large search spaces. GA employ the successive reproduction among an assembly (pool) of best

parents using genetic operations such as crossover, inversion, mutation and selection with prede�ned

rules for constructing next generations. Di�erent m:n scenarios (m - number of parents, n - num-

ber of o�springs) can be realized. The current best chromosome (parent) undergoes the zero-mean

phenotypic mutation (realized by the random search algorithm with return at an unsuccessful step).

This kind of net training has been proved to be much more e�ective than simple random search al-

gorithms. The MULTI and SINGLE modes of the ANI program package [9] are designed for random

search correspondingly in all net parameter space and - to make random change of also randomly

chosen net parameter. Di�erent net training scenarios combine di�erent search modes with various

search parameters.

For fast scanning of the net weights space a deterministic algorithm is implemented. The error func-

tion is calculated in each point of the multidimensional quasi-random sieve [28] uniformly �lling the

N-dimensional cube. Positioning the sieve center at the previously found best point, and subsequently

decreasing sieve size, we'll arrive to the best net. Very essential question of scale invariance can be

addressed by changing value of step in the above described SOBOL mode [9].

3 High energy muons and hadrons detected with the KASCADE

Central Detector

The multivariate statistical technique has been used for isolating mononuclear beams from the KAS-

CADE data. Applying the energy estimation procedure and subsequently the 3-way classi�cation

using only KASCADE array information, beams with rather good "purity" have been obtained (the

detailed beam characteristics are given in ref. [14]).
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Figure 1: Energy dependence of the reconstructed

energy of the most energetic hadron in the CD

for proton and iron primaries.
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Total number of experimental events survived cuts: 17810

Figure 2: Energy dependence of the reconstructed

total hadronic energy for proton and iron pri-

maries.

In the present illustration a �rst attempt to analyze the hadron and muon distributions is given based

on data of the KASCADE Central Detector (CD). The estimated purity of the obtained beams and

the accuracy of the energy estimation suggests to consider the hadron component of EAS. Compar-

isons of predictions from CORSIKA simulations invoking the QGSJET model [29], with KASCADE

data are displayed in Figures 1-4. The event selection procedure is equivalently done. The simulated

and experimental data samples require at least one hadron (with energy larger than 100 GeV) and

5 muons (with energy larger than 2 GeV). The distance of the shower core of the EAS are restricted

to < 91m. The used event selection criteria suppress the selection e�ciency of lower-energy events,

but signi�cantly enlarge the number of more interesting high-energy events.

Due to the large statistical accuracy the experimental distributions of the hadronic parameters of the

showers originating from the primary protons demonstrate a rather smooth variation increasing with

the energy. On the other hand the corresponding distributions, originating from the primary iron

nuclei do less agree. However, in general, the overall dependences are in agreement with QGSJET

simulations [29]. It is worth to note, that contamination of both proton and iron induced events by

the intermediate nuclei has been ignored. The results in Figures 3-4 can be compared with ref. [30].

But in the present case the primary energy is determined event-by-event. If we take into account

the limited e�ciency (� 90%) of the muon detecting facility, the agreement of the experimental data

with the predictions is rather remarkable.

An improved statistical accuracy for simulation data is required, and the result are model-dependent.

Nevertheless, we emphasize that the advocated approach is the only one which takes into account the

shower uctuations properly and is able to specify in a transparent way, how conclusive the results

of the inference methods in the CR physics do appear.
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On the Possibility of Selecting Pure Nuclear Beams
from Measurements of the KASCADE Experiment

A. Vardanyan1�, A.A. Chilingarian1, M. Roth2 for the KASCADE Collaborationy

1Yerevan Physics Institute, Cosmic Ray Division, Armenia
2Institute f�ur Kernphysik, Forschungszentrum Karlsruhe, Germany

The possibility to select proton and iron induced extensive air shower (EAS) events

is scrutinized. After classifying the KASCADE experimental data into three nuclear

groups (light, intermediate, heavy), the observables used for the classi�cation are

compared with those of simulated EAS data. The achieved purity of the proton and

iron EAS classi�cation is about 70%, keeping approximately 50% e�ciency of event

selection. Energy spectra of three groups of primary nuclei are deduced.

1 Introduction

The determination of astrophysical sources of high-energy particles and acceleration mechanisms

requires an accurate knowledge on the primary CR ux spectra and mass composition in the knee

region [1]. The KASCADE experiment [2] measuring a large number of Extensive Air Shower (EAS)

observables in a wide energy range with high accuracy, as well as the availability of detailed Monte

Carlo simulations [3] of EAS along with accurate calculations of the detector response provide the

possibility to make an event-by-event analysis of experimental data. The nonparametric statistical

methods implemented in ANI statistical analysis package, developed at the Cosmic Ray Division of the

Yerevan Physics Institute [4, 5] enables the application of advanced multivariate statistical procedures

to obtain reliable results on the primary particle type and energy. In our previous paper [6] a tendency

of increasing mean mass above the knee was reported. In the present paper the possibility of a precise

and detailed description of three groups of primary masses (light, intermediate, and heavy) and their

energy spectra is investigated.

The selected ca. 710:000 experimental events within zenith angles from 15� to 20� in the energy

range of 5 � 1014 � 1016eV are analysed on event-by-event basis, using more then 21000 simulated

events per primary particle. The simulations have been performed with the QGSJet model [7] in the

energy range 1014 � 3 � 1016 eV using the CORSIKA code [3]. The core of the EAS is within a circle

of 91m around the center of the KASCADE �eld stations. The response function of the KASCADE

detectors is calculated in great detail using the GEANT code [8].

2 Primary energy estimation

The multi-layered perceptron (MLP) algorithm is used to analyze the mass composition and the

energy spectrum of the primary cosmic rays (PCR) in the knee region. This method gives the pos-

sibility of primary energy estimation as well as primary mass classi�cation into multiple categories.

The basics of neural regression and classi�cation are described in [9, 10, 11]. Further developments

of the neural regression and classi�cation techniques are described by A.A.Chilingarian [12].

For the estimation and classi�cation tasks the same EAS observables are used. These are observables

�
corresponding author: aro@crdlx5.yerphi.am
y
full collaboration list see at the end of these proceedings
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of the electromagnetic and muonic components measured by the KASCADE �led array detector in-

stallation:

� Ne: number of electrons in the EAS and

� the shower age parameter s, both associated with a Moli�ere radius of 89m,

� N tr
� : truncated number of muons (N tr

� = 2�
R 200m
40m ��(r)rdr)

Restricting these observables is justi�ed by following reasons:

� It is assumed that the electromagnetic and muonic component of EAS are described by the MC

models with su�cient accuracy (a partially insu�cient knowledge about the hadronic component is

illustrated in [13, 14]).

� Due to the larger statistical accuracy the uncertainties caused by strong EAS uctuations are elim-

inated as compared with hadronic information of EAS.

� The KASCADE Central Detector (CD) information can be used independently, after having per-

formed the estimates.

The energy estimates are performed using two sets of observables: (Ne, N
tr
� ) and (Ne, N

tr
� , s). The

results on the energy estimates, displayed in Figures 1-2 are obtained by applying the trained net-

work, obviously by adding the observable s the accuracy of the energy estimate is enhanced. Indeed,

the correlation of the Ne and N tr
� with primary energy is strong [6], and added the s parameter is

correlated with primary mass (see Table 1). Hence the use of all 3 parameters, "�xing" in some sense

the primary type, enlarges the overall accuracy of the energy estimate for all 3 groups of nuclei.

Another important characteristic is the bias of the estimator. Only if the bias is small, energy spec-

tra and and \knee position" can be adequately reconstructed. In Figures 1 2 the relative error of

the energy estimation is shown. For both sets of observables an almost unbiased estimate in the

full energy range (except at the lowest and highest energies) is apparent. Therefore we use a wider

energy interval for simulated events to avoid over- and underestimation of primary energies at the

boundaries.
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3 Primary mass determination

Table 1: Correlations between primary mass A0

and primary energy E0 with EAS observables.

A0 E0 Ne N tr
� s

A0 - 0.00 -0.19 0.07 0.31

E0 0.00 - 0.95 0.98 -0.47

Ne -0.19 0.95 - 0.94 -0.58

N tr
� 0.07 0.98 0.94 - -0.47

s 0.31 -0.47 -0.58 -0.47 -

After performing the energy estimation, each

EAS event is classi�ed as being induced by light

(H,He), intermediate (CNO) or heavy (Si-Fe) nu-

clei (we will refer these groups as "proton", "oxy-

gen", and "iron"). The parameters of experi-

mental events, classi�ed as initiated from pro-

tons and iron nuclei, are afterwards compared

with those of simulated ones. The results are

given in Figures 3-4. A very good agreement for

simulated and experimental proton and iron induced events is obvious.

As shown in Figure 5 the experimental mean shower age is shifted as compared with the simulated

data in the full energy interval, but there is still a clear di�erence between proton and iron events.

Although simulations do not describe correctly the observable s, the s parameter is nevertheless a

good signature of the primary mass. However the systematic bias of the s parameter can be mis-

leading. For example, a neural net (NN) trained by Ne, N
tr
� and s may result in a heavier mass

composition, when applying for experimental data classi�cation. A smaller s value corresponds to

lighter nuclei for simulated and experimental data. But the absolute values di�er signi�cantly and

thus, in mean, proton initiated events could be classi�ed as being of iron type with large probability

.

In Table 1 where the correlations between primary energy E0 and measured EAS parameters are

presented, a negative correlation of s with the primary energy is revealed. Applying a trained neural

network for energy estimation, the data sample have systematically larger values of s as compared

with the training sample. Therefore, the s parameter will lead to a systematic underestimation of
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experimental proton and iron events (the pri-

mary energy is estimated by neural regression

method). Used observables: Ne and N tr
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Table 2: Purity of classi�ed events. Used ob-

servables: Ne, N
tr
� and s

Pi�!j j=p [%] j=O [%] j=Fe [%]

p 77 22 1

O 18 63 19

Fe 3 28 69

Table 3: Purity of classi�ed events. Used ob-

servables: Ne and N tr
�

Pi�!j j=p [%] j=O [%] j=Fe [%]

p 80 18 2

O 19 58 23

Fe 2 23 75

higher energies and correspondingly to a bias of the energy spectrum. For that reason, we use for

energy estimation only Ne and N tr
� , which rather good agreement for simulated and experimental

samples.
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Figure 5: Shower age s versus E0 for simulated

and experimental events (the primary energy is

estimated by neural regression method). Used ob-

servables: Ne and N tr
� .

After estimating the misclassi�cation rates,

the possibility to select nuclear beams of maxi-

mum purez has been investigated. The used neu-

ral network allows to decrease the contamination

of misclassi�ed events in each class of nuclei. Of

course, the e�ciencyx of the classi�cation is si-

multaneously reduced.

The puri�cation has been done in the following

way: the neural network (NN) performs a non-

linear mapping of the multidimensional charac-

teristics of the EAS observables to the real num-

ber interval [0; 1]. Particular assignments for the

classi�cation in three classes are subintervals like

[0: � 0:33], [0:33 � 0:66] and [0:66 � 1:]. The

misclassi�cation matrices for this intervals are

given in Tables 2 and 3. If the NN is trained

well enough to have generalization capabilities,

the NN output distributions for di�erent classes

are overlapping at the boundaries of the subin-

tervals. Therefore by shrinking the ranges of the

subintervals a large proportion of misclassi�ed

events can be removed, but loosing a part of the

true classi�ed events.

Figure 6 shows the purity versus the e�ciency.

The purity of proton and iron beams are larger

than 90% with a remaining e�ciency of not less than 50%.

Purity estimates were obtained by classifying 4000 control events (not used for the training) per

class. For a given purity value the e�ciency of proton events classi�cation is always larger than the

e�ciency of iron event classi�cation. Thus the puri�cation of proton events turns out to be easier,

than the puri�cation of iron events. Due to the larger spread of the EAS observables for proton

primaries the contamination of protons in the \iron beam" is larger than vice-versa.

z
purity: fraction of true classi�ed events in actual number of events assigned to a given class
x
e�ciency: fraction of true classi�ed events in total number of events of a given class
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4 Discussion of the results
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Figure 6: Event selection e�ciency vs purity for

proton and iron events (obtained by the classi�-

cation of the control samples). Used observables:

Ne and N tr
� .

The inference of mass composition and energy

spectra of puri�ed nuclear beams needs an investi-

gation of the e�ciency of the classi�cation of dif-

ferent nuclear groups. Because of di�ering abun-

dances of primary nuclei in the CR ux, it is neces-

sary to measure the inuence of puri�cation on all

categories in terms of e�ciency reductions. Fur-

thermore, the dependence of such inuences from

the primary energy should be investigated as well,

in order to avoid a distortion of the energy spec-

tra caused by nonuniform changes of classi�cation

e�ciencies.

Figures 7-8 display the relative abundances of

three group of nuclei for di�erent energies and the

di�erential energy spectra, respectively, using Ne,

N tr
� and s parameters. Figure 7 shows the en-

ergy dependence of the mass composition of the

CR ux resulting from the analysis of all three

observables: the relative abundance of light nuclei

group appears to be decreasing when approaching

the knee, while the behavior of intermediate and

heavy groups of nuclei is just opposite. Figure 8

demonstrates the knee feature in the all-particle

and light nuclei spectra. A conclusion on the energy spectrum of the intermediate and heavy nuclei

is uncertain, due to the relatively large misclassi�cation rates in these groups (see Table 2).

Figures 9 and 10 present the relative abundances and the energy spectra of three group of nuclei

obtained by using only the Ne and N tr
� parameters Although the same quantitative variation of the

relative abundances on the primary energy is observed, the relative fraction of heavy and intermediate

nuclei is altered.

In both cases the knee feature is clearly seen for the all-particle and light nuclei spectra. For the

spectrum of intermediate nuclei group the di�erence of the slopes is negligible and there is no evidence

for a change in the spectral indices. An inverse knee as observed in the spectrum of the heavy group

of nuclei originates most probably from insu�cient correction of the misclassi�cation.

The main di�erence, which has to be seriously taken into account, is that the s parameter leads

signi�cantly to smaller values of the spectral indices below the knee. Additionally the knee position

gets shifted to the lower energies for the all-particle and light nuclei energy spectra, too. The �ts of

the energy spectra in both cases were done by a method described in ref. [15].

The indicated aspects of isolating pure nuclear beams from the EAS observables has to be further

studied by extending the set ob EAS observables and with improved interaction models.
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Methods for the Reconstruction of the Primary Energy
Spectrum at the KASCADE Experiment

A. Haungs1� for the KASCADE Collaborationy

1Institut f�ur Kernphysik, Forschungszentrum Karlsruhe, Germany

One of the main goals of the KASCADE experiment is the determination of the

primary energy spectrum around the socalled "knee". Due to the multi detector ar-

rangement, KASCADE is able to measure raw spectra in di�erent EAS observables

like shower size, muon numbers at di�erent energy thresholds, or hadronic parame-

ters. Methods for the reconstruction of the primary energy spectrum from this raw

spectra, as well as a nonparametric approach for the determination of the energy

spectrum are discussed and results compared. With help of classi�cation scenarios

to separate the cosmic rays in di�erent mass groups a determination of the chemical

composition is additionally possible and will be presented.

1 Introduction

The all particle cosmic ray spectrum follows over roughly 11 orders of magnitude (109 eV - 1020 eV) a

steeply falling power law with some disturbances in between. These are sun modulations at the lowest

energies; the socalled "knee" with a steepening of the spectrum around 5 � 1015 eV; and a attening

at highest energies may produced by a cuto� mechanism [1].

The source of the "knee" is still a unsolved question; several theoretical approaches of astrophysical

explanations exist, like a changing of the source composition may in combination with a transition

of the standard acceleration mechanisms of supernovae remnants to somewhat di�erent. Further the

knee can also be a result of an energy dependent transport mechanism of the particles in the Galaxy

(rigidity model). An exact knowledge of the position and structure of this "knee", as well as the

energy dependent primary mass composition would allow to distinguish these models or theoretical

approaches.

In the energy region of the knee direct measurements on the top of the atmosphere or in space are

impossible due to the low integral ux (�1 particle per m2 and year) of the cosmic rays. But the

primary particle produce an Extended Air Shower (EAS) in the Earth's atmosphere, leading to a

particle disc containing more than a million of secondaries (mainly electrons and gammas, with a

few percent of muons and some remaining hadrons in the shower center) on the surface. Measuring

these discs in di�erent shower observables allows the reconstruction of raw spectra, but unfortunately

not directly of the energy spectrum. For the conversion or transformation of the measured spectrum

(usually the total number of charged particles Nch measured by an array of small detectors) to the

energy spectrum, assumptions of the chemical composition and of the "observable-primary energy"-

dependence from a more or less detailed Monte Carlo simulation have to be taken into account (for

a review see e.g. [2]).

The KASCADE experiment [3, 4, 5] with its multi detector setup has now the possibility to measure

simultaneously spectra in observables of di�erent secondary particle components: electrons, muons

and hadrons. The CORSIKA EAS simulation tool [6] consisting of detailed (and di�erent) high-

energy interaction models and and a precise three dimensional shower development handling allows

�
corresponding author: haungs@ik3.fzk.de
y
full collaboration list see at the end of these proceedings
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at least a reduction of the uncertainties of the conversion due to the Monte Carlo. Di�erent ways to

estimate the primary energy spectrum are used in the analysis of the KASCADE data and will be

described in this article. Special attention will be given to the principal methods, its assumptions

and the succeeded uncertainties and problems of the methods.

2 The KASCADE Experiment

The idea of the KASCADE experiment is to measure as much as possible observables in each of

the three main components of EAS: the electromagnetic, the muonic and the hadronic component.

The KASCADE array consists of 252 detector huts in a 200 � 200m2 rectangular grid containing

unshielded liquid scintillation detectors (e=-detectors) and below 10 cm steel and 4 cm lead plastic

scintillators as muon-detectors. The total sensitive areas are 490m2 for the e=- and 622m2 for

the muon-detectors. In the center of the array a hadron calorimeter (16 � 20m2) consists of c.

200 m

 Zentral
Detektor

Myontunnel

13 m Cluster Kontrollstation

Detektorstation

20
0 

m

Figure 1: Schematic view of the KASCADE experiment consisting of 252 array detector stations, a

central detector and a 50 m muon tunnel.

40000 channels in 8 layers of liquid ionisation material is built up. Below the calorimeter a setup of

position sensitive multiwire proportional chambers in two layers measures muons in the shower with

an energy larger than 2 GeV. Observables for which spectra are reconstructed or which are relevant

for the described analyses are listed in Table 1.
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�;� shower direction array, e=-detectors

X0; Y0 shower core position array, e=-detectors

Ne shower size (total electron number) array, e=-detectors

N tr
� muon size (muon number in 40-200m) array, muon-detectors

NH hadron size (hadron number in 0-24m, Eh > 50GeV) central detector, calorimeter

N?
h reconstructed hadron number, Eh > 100GeV central detector, calorimeter

Eh sum of the reconstructed hadronic energy of N?
h central detector, calorimeter

Ehmax energy of the "leading" hadron central detector, calorimeter

N?
� reconstructed muon number central detector, MWPC

�?� local muon density central detector, MWPC

Table 1: List of reconstructed observables of the KASCADE experiment.

lead shielding

top cluster

trigger layer

iron

TMS chambers

concrete

MWPC

Figure 2: Schematic view of the KASCADE Central Detector.

3 Methods of the Energy Reconstruction

In the following six subsections di�erent methods for the estimation of the energy spectrum (and

sometimes in parallel for the chemical composition) used in the KASCADE experiment will be pre-

sented. Special attention is given to the method, the results will be summarized in the conclusions.

The methods can be classi�ed in following way:

1. spectrum of one measured observable + observable-energy relation calculated by Monte Carlo

simulations including an a-priori assumed chemical composition! conversion to the all particle

energy spectrum.

2. one observable for the mass discrimination and in parallel a linear approximation of two ob-

servables for the energy conversion + observable-energy relation calculated by Monte Carlo

simulations for each primary mass group ! conversion to single mass group energy spectra.

3. spectra of two observables + combined �t of energy and chemical composition (2 groups) with

a kernel function obtained by Monte Carlo calculations ! all particle energy spectrum, single

mass group spectra, and composition.



34 A. Haungs

4. one observable for the energy spectrum and independent observable for the mass classi�cation

+ observable-energy relation calculated by Monte Carlo simulations! conversion to the single

mass group energy spectra.

5. multivariate analysis (5 observables) for estimating the mass of single EAS + method 1 for spec-

tra of di�erent observables + observable-energy relation calculated by Monte Carlo simulations

! all particle and single mass group energy spectra

6. multivariate analysis (3 or more observables) for estimating the primary energy of single EAS

(needs Monte Carlo), and independent similar analysis for the chemical composition ! all

particle and single mass group energy spectra.

3.1 Hadron Number Spectrum

The conventional way to estimate the primary energy spectrum with help of an EAS experiment

is to reconstruct a "shower size" [2]. For the spectrum of the integrated particle number (usu-

ally number of all charged particles Nch, often simply called as Ne) a power law dependence from
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Figure 3: Reconstructed hadron number spectrum from

data of the KASCADE hadron calorimeter. The �'s

are the indices of �tted power laws to the spectrum.

the primary energy is assumed. Addition-

ally an a-priori knowledge of the chemical

composition is required to converse the re-

constructed spectrum to the energy spec-

trum.

An example of this method is the estima-

tion of the energy spectrum via the recon-

structed hadron number spectrum measured

at KASCADE. It is the �rst time that in

the hadronic part of EAS the knee could be

con�rmed (Fig.3) [7]. NH is the integrated

hadron number in the measured EAS be-

tween 0 and 24 m estimated from the num-

ber of reconstructed hadrons with energies

larger than 50 GeV and with help of the

measured average hadron lateral distribu-

tion. Only central EAS (core inside the cen-

tral detector) are taken into account for this

analysis.

The conversion from the �tted slopes and knee position of the measured spectrum to the indices and

knee position in the energy spectrum is done using the relation dN
dE0

= dN
dNH

dNH

dE0
/ E� assuming

power laws in both spectra (hadron number and energy spectra) and for the observable-energy rela-

tion. The latter one is calculated by Monte Carlo with a given chemical composition: NH / E0:98
0 .

Due to the limited size of the calorimeter and the concentration of the hadronic part of the EAS in

the center, the statistics of the raw spectrum is low and it need some more years of data taking for

a �nal result.

3.2 Ne - N
tr

�
Ratio

Since long time it is known that the muon-electron ratio is the most powerful mass classi�er in EAS

[8]. This ratio (indeed the ratio of the logarithms of the shower sizes: log(N tr
� )=log(Ne)) is used as

the mass sensitive parameter in the following analysis [9]. Speci�c for the KASCADE experiment it
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was found that the truncated muon number N tr
� , i.e. integrated number in the core distance range

of 40 m to 200 m, is a good energy estimator because of the nearly mass independent index � of the

relation N tr
� / E�

0 . Therefore for di�erent N tr
� -ranges the log(N

tr
� )=log(Ne)-ratio distribution (in a

1
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log(Eo/[ GeV ])

fl
ux

all P+He O+Fe
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Figure 4: Measured log(N tr
� )=log(Ne) for a N

tr
� -range just before the knee (left). Right: Sketch of the

resulting energy spectra for the light and heavy part of the cosmic rays. The ordinate is multiplied by

a factor of E2:5
0 .

certain zenith angular range, 18� < � < 25�) is �tted with a set of Gaussian distributions (Fig.4,

left). This set is obtained by �tting Monte Carlo distributions of the ratio for di�erent mass groups.

The resulting mass composition for each N tr
� -range is converted with the relation lg(E) as a function

of lg(Ne); lg(N
tr
� ) obtained from Monte Carlo simulations separately.

Regarding the right panel of Fig.4, it should be stressed, that this analysis is optimized to �nd the

chemical composition in the knee region, (whereas the largest methodical problem is the validation

of a Gaussian function as parameterization of the observable); the resulting energy spectra are only

welcome byproducts.

3.3 Ne - N
tr

�
Spectra

The KASCADE experiment with its special design give the possibility to estimate the total number of

electrons Ne and the truncated muon numberN
tr
� simultaneously in each single event. The idea of the

present method to estimate primary energy spectra is the combination of both observed spectra for a

global �t with the restriction to the chemical composition of two primary mass groups, only. This �t

leads to the spectra of the (two) single mass groups and therefore to the relative abundances of these

mass groups in dependence of the energy and the all particle energy spectrum. The requirement that

both measured spectra have to lead to the same energy spectrum and composition is the methodical

idea behind this analysis [10]. The �t function is an integral of Fredholm form with a kernel function

obtained by Monte Carlo:

dJA=dlgNe;� =
R
dJA=dlgE � pA(lgE ! lgN s

e;�) � dlgE .

The kernel function pA describes the probability that a primary of energy E leads to reconstructed

shower sizesNe;� including shower development, detector sampling, reconstruction and all uctuations

in between. Free parameters of the �t are the slopes 1, 2, the knee position Ek, and the ux jk of

the "proton"-part, and 1 = 2 and the ux jk of the heavy part of the spectrum. The �nal �t was

performed with this six parameters, whereas �ts with more free parameters has never shown a knee

in the heavy part. Fig.5 show both measured spectra for showers of a certain angular range including
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the relative abundances of proton and iron induced showers as estimated by the �t. The resulting

spectra (free parameters of the �t) is shown in Fig.6.

The crucial point of this very detailed method are uncertainties due to the model dependence of

the Monte Carlo simulations and the uncertainties of the amount of uctuations described in the

simulations. Additionally, the method have to be checked with other or more observed spectra,

other zenith angular ranges, and other or more primary mass groups. Never the less this method

is promising for the estimation of the "true" primary energy spectrum; because it handles the not

negligible uncertainty due to the large uctuations of EAS observables which are even gained by the

steeply fallen spectrum.

3.4 Muon Density Spectrum

All of the three methods before use total particle numbers (shower size) estimated per single shower.

This includes uncertainties due to the �t of the NKG-function to the measured particle densi-

ties. The idea of the muon density spectrum is to use the measured observable directly. For
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Figure 8: Example of the depen-

dence of the local muon density on

the primary energy for di�erent pri-

maries (CORSIKA simulations in-

cluding full detector simulations).

detector [11]. The resulting spectrum for showers of a certain

core distance and zenith angular range shows a power law de-

pendence with a clear kink on a certain muon density (Fig.7,

upper spectrum). The conversion of the measured spectra to

the primary energy spectra is conventional done (see section

3.1) with help of energy-observable relations (Fig.8) but dif-

ferent core distances are combined. This combination can be

used not only for a reduction of statistical uncertainties, it is

additionally a check of the Monte Carlo model (at least of the

lateral distributions of the muons): the resulting energy spec-

trum have to be the same for all core distances.

Independent shower observables (here the shower size ratio

log(N tr
� )=log(Ne) estimated from data of the array detectors)

can be used for a classi�cation in di�erent mass groups. The

conversion procedure described above applied to this single

mass spectra (Fig.7) leads to the energy spectra for di�er-

ent primaries. Due to the dividing of all showers in di�erent

core distance ranges a problem of the method is of statisti-

cal nature. Additionally the Monte Carlo statistics plays an

important role as a detailed detector simulation is required.

Advantages of the method are the saving of systematic uncertainties due to the �t and integration of

measured densities to reveal the shower size.

3.5 Core Structure Investigation

A multivariate analysis of the KASCADE data are applied for the investigation of the core struc-

ture of EAS. The MWPC system of KASCADE measures not only high-energy muons which are
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reconstructed as tracks, but additionally

low-energy secondaries produced in the ab-

sorber material of the calorimeter, espe-

cially at central fallen EAS. This hit pat-

tern reects the hadron and muon spatial

and energy distributions in the center of

the shower. The hit pattern can be anal-

ysed in terms of multifractal moments lead-

ing to two more observables per shower, the

socalled generalized multifractal dimensions

D6 and D�6. A detailed Monte Carlo sim-

ulation has shown, that these dimensions

improve the mass separation of the KAS-

CADE EAS signals [13]. An arti�cial neural

net analysis with �ve parameters per shower

(Ne, N?
�, D6, D�6, and �) estimates a

mass probability for each single EAS. With a

misclassi�cation matrix obtained by Monte

Carlo simulations relative abundances of dif-

ferent mass groups are reconstructed (Fig.9)

[14]. For this sample of central showers with

the "known" mass for each single EAS, inte-

gral spectra in di�erent observables can be

reconstructed (Ne, E
tot
h , N?

�, N
tr
� , N

?
h , E

max
h ,

for examples see Fig.10). These spectra

show "knees" in all observables (and there-

fore at all shower particle components) at the position of the same integral ux above the knee.

More, this knee is seen in all "light" induced spectra, too, but not in the spectra of the "heavy"

induced showers. The fact, that the position of the knee is found at the same ux in observables
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of each particle component is of importance: it gives a strong hint of a astrophysical source of the

"knee" (at a �xed primary energy), and make a change of the interaction procedure in the atmosphere

implausible.

Assuming the uncertainties in the measurements (uctuations, etc.) are low and constant for each

observable, and assuming the Monte Carlo simulations describes the shower development exactly

right, a conversion of each integral spectra should lead to the same indices of the primary energy

spectrum before and after the knee, at least for the separated spectra of the light and heavy primary

component. The one dimensional conversion of the spectrum measured with the Observable O to the

energy spectrum is estimated via the formula: dN
dE0

= dN
dO

dO
dE0

/ E
�
0 , with dN

dO
/ O�� and O / E �

0 .

Than  can be calculated, if � is measured and � obtained by simulations (including detector simu-

lation and reconstruction uncertainty of the observable). The results of this procedure shows large

di�erences in the resulting indices. This is based mainly on statistical uncertainties since only very

central showers can be used, but it can be also interpreted as a insu�cient simulation of the balance

of the energy and particle numbers of the di�erent EAS components. This gives a �rst hint to the

uncertainties of the Monte Carlo model (here QGSJet).

3.6 Multivariate Analysis of the Energy

Measuring several observables per single EAS makes it possible to estimate the primary energy of

each single shower with a nonparametric multivariate analysis directly [15]. Fig.11 shows the energy

resolution of this method in the relevant energy range and for di�erent primaries. A large statistics

in the Monte Carlo simulations allows the well trained net to calculate the energy of each measured

shower in a relatively mass independent way. The results are checked by using di�erent techniques

(Bayesian Classi�er, Neural Network, k-Nearest-Neighbors), di�erent samples of EAS (central showers

with more di�erent observables and showers with core inside the array with a high statistics) and

by using di�erent sets of observables (see Tab.1). Fig.12 shows the result of a neural net analysis

using Ne, N
tr
� and the shower age as input parameters. As multivariate methods based on a-priori
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Figure 11: Energy resolution obtained by a neural net analysis. Left the general resolution is given,

where on the right panel the resolution for di�erent primaries is shown.

knowledge won by Monte Carlo simulations, the model dependent uncertainty is the largest problem

of the method but it help to understand the physics and di�erences of the high-energy interaction
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models. Nevertheless only with such an analysis di�erent observables can be combined leading to

a useful result. It should be remarked that this is the only method to obtain the energy per single

primary particle.

Similar analysis are done for an estimation of the chemical composition of the primary cosmic rays

around the knee [16].
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Figure 12: Energy spectrum obtained by a neural net analysis for two di�erent high-energy interaction

models. The �t function is of the type f(E) = c � E�1 (1 + (E=Eknee)
� )

1�2
� , where � describes the

"smoothness" of the knee.

4 Results and Conclusions

The main aims of the KASCADE experiment, i.e the estimation of the chemical composition and

the primary energy spectrum of the high-energetic hadronic cosmic radiation around the "knee", are

tried to achieve in several directions. The di�erent principal methods are explained in a short way

in the last chapter. All methods are based on Monte Carlo simulations (CORSIKA with di�erent

high-energy interaction models plugged in), but studying the di�erent approaches using di�erent EAS

observables will put strong constraints on the interaction models.

Fig.13 shows the chemical composition obtained by di�erent methods at the KASCADE experiment

compared with other EAS experiments and the mean of direct measurements. Large di�erences,

especially using di�erent EAS particle components (e.g. only hadronic observables or only electro-

magnetic observables) give a strong hint for a unrealistic description of the balance of the electromag-

netic, muonic and hadronic energy part and/or particle numbers at the di�erent interaction models.

The two multivariate methods, using several observables in an nonparametric way, show reasonable

medial mean masses, though this is not a hint for the "true" mean mass. Promising is the fact that

all methods show the same tendency: The part of heavy primaries increase at energies above the

"knee".

Fig.14 compares the results of the six above described methods for the reconstructed spectral indices

below and above the "knee" of the all particle energy spectrum and the obtained positions of the

knee. Even due to the di�erent ways of estimating the given uncertainties, all the results are close

together.
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Figure 14: Compilation of the KASCADE results

on the position of the "knee" and on the spectral

indices below and above the "knee' obtained by the

di�erent methods described above.

For my personal opinion the variations of the

results are more due to the di�erent observ-

ables used than due to systematics of the meth-

ods. Combining composition and energy spec-

tra like it is done for the analysis of the N tr
� -

and Ne-size spectra show a sharper knee for the

"light" primary particles than the all-particle

spectrum, and show a very smooth or no knee

in the "heavy" part of the cosmic rays. This

is consistent with an increasing "heavy" part

regarding the results of analysing the chemical

composition independently of the energy recon-

struction.

Conclusions of the discussed results of the

KASCADE experiment can be summarized as

� The observation of a "knee" in all EAS par-

ticle components is a clear indication that the

kink is not produced in the atmosphere, i.e. it

is of astrophysical source.

� The transition from a light into a "more

heavy" chemical composition seems to be es-

tablished due to the consistent tendencies of

the energy dependence of the composition for
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di�erent methods.

� None of the existing high-energy interaction models can �t all results in a consisting way at an

absolute scale. An improved model is under development. It will be a new and more detailed theo-

retical approach to the high-energy nucleus-nucleus interaction based on the Gribbov-Regge theory

as used in QGSJet and VENUS [24]. The model will be named neXus, for further information see

[25].
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Determination of the EAS Attenuation Length from
Data of the ANI Experiment

A.A. Chilingarian, G.V. Gharagyozyan, S.S. Ghazaryan, G.G. Hovsepyan,

E.A. Mamidjanyan, L.G. Melkumyan, S.H. Sokhoyan�

Yerevan Physics Institute, Cosmic Ray Division, Armenia

Using the EAS size spectra measured with the MAKET ANI array on Mt. Aragats,

Armenia (3200m a.s.l.- 700g�cm�2) in the range ofNe = 105�107 for di�erent angles-
of-incidence, the EAS attenuation length has been determined applying di�erent

analysis methods. The analysis is based on a data sample of 2:5 �106 events collected
in the period of June, 97 - April, 99. The results are compared with results deduced

from data of the EAS TOP and KASCADE experiments.

1 Introduction

The intensity of Extensive Air Showers (EAS) with �xed shower sizes Ne is assumed to decrease

exponentially with increasing atmospheric depth of the observation level. This is considered to be

due to the absorption of the particles of the EAS cascade following an exponential law

Ne(X) = Ne(X0)exp

�
�X �X0

�

�
; with X � X0: (1)

X0 is a de�nite initial atmospheric depth after the maximum of the longitudinal development where

the number of (charged) particles is Ne(X0) and further decreasing exponentially, Ne(X) is the num-

ber of particles of the EAS at the slant depth X[g � cm�2].

The quantity � controls the attenuation of particles of the individual cascade [1] (size attenuation

length). It is related to the inelastic cross sections (to the mean free path length �A) of the interaction

of the primary cosmic ray particles with air nuclei. The attenuation of the ux intensity of Exten-

sive Air Showers is characterized by a related quantity �N (intensity attenuation length, absorption),

which can be directly measured by cosmic rays detector arrays. Thus measurements of the attenua-

tion of the EAS intensity in the atmosphere are considered to be an interesting source of information

about hadronic interactions, especially if extended to the ultrahigh energy region expected from the

forthcoming LHC and TESLA accelerators. In addition due to the sensitivity of the cross sections

to the mass of the primary, alterations of the attenuation length with the energy may be indicative

for the variations of the mass composition. Measured results imply tests of the energy dependence

of the extrapolated cross sections used for Monte Carlo simulations.

The investigations of the present paper are based on an EAS sample measured 1997-1999 with the

MAKET ANI array [2, 3] on Mt. Aragats station (Armenia) and registered for di�erent angles-of-

incidence in the zenith angle interval � = 0� 45�. The data basis of the analysis can be enlarged by

published data from KASCADE (1046 g�cm�2) [4] and EAS TOP (810 g�cm�2) [5] experiments. Spec-

tra measured by EAS TOP are given in Ref. [6]. Data and zenith angle dependence for KASCADE

results are obtained by scanning the spectrum plots communicated by the KASCADE collaboration

[7].

We apply di�erent procedures to deduce the attenuation. First we consider the degradation of the

�
corresponding author: e-mail: serg@crdlx5.yerphi.am
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EAS ux with �xed shower size Ne with increasing zenith angle i.e. increasing atmospheric thickness

of the shower development (characterized by the intensity attenuation length (�N ) [8]). Di�erently

the technique of the constant intensity cut (CIC) [9] considers the intensity spectrum of EAS events

and relates equal intensities observed at di�erent atmospheric depths.

There is the tacit assumption that the shower size reects the energy of the primary. The procedure

can be re�ned by using the knee position in the Ne spectrum as a bench mark for a well de�ned

energy, so far we may associate the knee phenomenon to a feature of the primary energy spectrum

of cosmic radiation.

2 Experimental spectra

The experimental basis of the present investigations are measurements of shower size spectra in the

knee region and their zenith-angle dependence performed with the MAKET ANI array of the Mt.

Aragats Cosmic Ray Station (3200 m a.s.l.) in Armenia. Details of the measurements and the ex-

perimental procedures taking into account the detector response are given elsewhere [10, 11]. For a

detailed description of the knee region the traditional approximation with two di�erent spectral in-

dices below and above the knee, de�ning the knee position as intersection of two lines in a logarithmic

presentation, appears to be insu�cient. Hence a more sophisticated method has been applied with

parameterization of the slope of the spectra (see Ref.[12]).

Tab.1 compiles the characteristics of the size spectra measured with the MAKET ANI installation,

the changes of the slopes in the knee region (�Nek), expressed by di�erent spectral indices below (1)

and above (2) the knee position Nek for the zenith-angle range of � = 0� 45�. For the display and

the analysis of the zenith-angle dependence, the size spectra are determined in 5 angular bins of equal

� sec� widths. The accuracy of the zenith angle determination is estimated to be about 1:5� [10].

A correction due to barometric pressure changes, which lead to small uctuations of the atmospheric

absorption, has not been made. Figure 1 displays the spectra of mean values of each atmospheric

depth bin and compares with the results from EAS-TOP [6] and KASCADE [7] experiments.

I(105 < Ne < 1:15 � 106) (8:95 � 0:18) � 10�11(Ne=10
5)1

I(Ne > 2:56 � 106) (3:23 � 0:40) � 10�13(Ne=10
6)2

1 �2:54� 0:012

2 �2:94� 0:042

�(Nek) (1:15 � 0:034) � 106 - (2:56 � 0:063) � 106

Nek (1:75 � 0:05) � 106

I(Nek) (5:83 � 0:14) � 10�14

Table 1: Flux [m�2s�1sr�1] and knee region parameters of the size spectra measured with the MAKET

ANI array.

Following �xed intensities of the experimental spectra (see sect.3.2) the average Ne cascade develop-

ment can be immediately reconstructed as shown in Figure 2. Note that the results in the range of

the slant depth observed with the ANI array deviate from the exponential decrease (eq.1). That is an

interesting feature which can be revealed more clearly when combining spectra accurately measured

on di�erent altitudes. In the present paper we base the formulation of the procedures estimating

the attenuation on the exponential decrease (eq.1). It is our interest to explore, if this assumption

applied to the ANI and KASCADE data lead to consistent results.
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Figure 2: Ne cascade in the observed range of the

atmospheric slant depth.

3 Procedures for inference of the attenuation length

from size spectra

We consider the di�erential and integral size spectra I(Ne; X) and I(> Ne;X), respectively. In

addition to the basic assumption of exponential attenuation of Ne (eq.1) a power-law dependence of

the size spectrum

I(Ne;X) / Ne
�
; (2)

with the spectral index  is adopted.

3.1 Attenuation of the intensity of �xed Ne: absorption length

For di�erent �xed values of shower size Ne, on di�erent depths in the atmosphere or/and di�erent

zenith angles of incidence, from measured spectra (see vertical dotted lines on Figure 3) we obtain

several values of corresponding intensities from the equivalent depths from 700 till 1280 g � cm�2.

Fitting the depth dependence of the intensities by the straight line (in logarithmic scale) according

to equation:

I(Ne;X) = I(Ne; X0)exp

�
�X �X0

�N

�
(3)

we obtain the estimate of the absorption length �N . The absorption length can be estimated both

by integral and di�erential spectra.
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3.2 Constant intensity cut

The basic idea of this procedure is to compare the average size of showers which have the same rate

(showers per m2 �s �sr) in the di�erent bins of the zenith angle of shower incidence and di�erent slant

depth, respectively [9].

Considering two di�erent depths in atmosphere X1,X2 > X0 the expressions of di�erential intensities

I(Ne;X) has the form

Ne(X1)
�
exp

�
� ( � 1)

X1 �X0

�

�
= Ne(X2)

�
exp

�
� ( � 1)

X2 �X0

�

�
(4)

With simple transformations we obtain:

�diff (I) =
 � 1



X2 �X1

ln

�
Ne(X1)
Ne(X2)

� (5)

The attenuation lengths, obtained by integral spectra do not depend explicitly on spectral index:

�int(I) =
X2 �X1

ln

�
Ne(X1)
Ne(X2)

� (6)

Practically the estimate of the attenuation length is obtained by �tting the Ne dependence on the

depth in atmosphere by the straight line according to the equation (1). The sequence of Ne values

is obtained according to the �xed values of the ux intensity, selected from the interpolation of the

di�erential or integral size spectra.
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For each Ne value, the slope index  used in equation 5, is obtained by averaging over all used slant

depths. Selecting equal intensities (� primary energies) corresponding to di�erent shower sizes Ne

and di�erent depths the value of �diff (I) is estimated. Intensity values from 10�9 to 5: � 10�6 were

used for CIC method.

3.3 Attenuation of the size of the knee

A special variant of the constant intensity cut is to follow the decrease of the shower size at a constant

primary energy in the size spectrum. Assuming that the knee phenomenon reects a feature of the

primary ux, the variation shower size at the knee with the zenith angle provides the possibility to

extract the attenuation length.

Considering the assigned knee position of the data from various experiments, di�erences within 30%

are noticed for all X-bins.

The knee positions obtained by the di�erential and integral spectra are a bit shifted to the smaller

Ne values (see Figure 4). The shift is approximately uniform over all investigated depths interval,

therefore the estimates of the attenuation length by the di�erential and integral size spectra are very

close to each other.

3.4 The relation between the absorption and attenuation length

We consider the quantity I(Ne;X)dNe - the number of EAS at the depth X which comprise Ne to

Ne + dNe particles:

I(Ne; X)dNe � N
�
e exp

�
� ( � 1)

X �X0

�

�
dNe (7)

With eq.3 we obtain:

�diff (Ne) = ((Ne)� 1)�N ; (8)

where, (Ne) is the di�erential size spectra index (here we indicate the Ne dependence of the slope

index explicitly). For the integral spectra:

�int(Ne) = (Ne)�N ; (9)

where, (Ne) is integral size spectra index.

For the evaluation of the inelastic cross section and for comparison of the three methods described

above we propose to use the calculated values of the attenuation length � (instead of using absorption

length �N ). The attenuation of the number of particles in the individual cascade is more directly

connected with the characteristics of the strong interaction and is independent from the parameters

of the cosmic ray ux incident on the atmosphere. In turn the absorption length, i.e. the attenuation

of the CR ux intensity, reects also characteristics of the primary ux and is dependent on the

change of the slope of the spectra.

3.5 Estimate of the inelastic cross section

The inelastic cross sections, of the primary nuclei with atmosphere nuclei is related by [9]:

�
inel
A�air(mbarn) =

2:41 � 104
�A(g � cm�2)

; (10)

where A denotes the primary nuclei. The quantity �A is the interaction length of the A-nucleus

in the atmosphere (note: in some publications the interaction length is denoted by �N , where N is
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primary nuclei, in contrast in this paper N is reserved for the shower size). The interaction length

�A is related with the absorption length �A by

�A = K(E) � �A (11)

The K(E) coe�cient reects peculiarities of the strong interaction model used for simulation. The

value of the parameter K has to be determined by simulations of the EAS development in the

atmosphere. Such studies require the development of procedures for the selection of EAS initiated

by primaries of a de�nite type (see for example in [13, 14]).

4 Application to the data

The mean values of the attenuation lengths obtained by various methods from data of the ANI and

KASCADE installations, as well as for the joint ANI & KASCADE data by the di�erential (�diff )

and integral spectra (�int) are compiled in the Tables 2,3,4.

Min.depth MAKET ANI ANI+KASCADE KASCADE

X0; g � cm�2 �int �dif �int �dif �int �dif

700 248 � 27 247 � 42 203 � 10 203 � 13 � �
758 236 � 32 237 � 51 195� 8 196 � 12 � �
816 211 � 43 218 � 70 186� 9 188 � 13 � �
1020 � � � � 181 � 14 182 � 23

Table 2: Attenuation lengths for the data from the MAKET ANI and KASCADE installations esti-

mated by the CIC method from di�erential and integral size spectra

Min.depth MAKET ANI ANI+KASCADE KASCADE

X0; g � cm�2 �int �dif �int �dif �int �dif

700 239� 14 240� 15 191� 11 193� 13 � �
758 232� 13 228� 19 186� 10 184� 17 � �
816 213� 14 219� 27 179� 11 181� 24 � �
1020 � � � � 181� 7 183 � 11

Table 3: Attenuation lengths for the data from the MAKET ANI and KASCADE installations esti-

mated by the recalculation from the absorption length for di�erential and integral size spectra

Min.depth MAKET ANI ANI+KASCADE KASCADE

X0; g � cm�2 �int �dif �int �dif �int �dif

700 302 � 71 295 � 83 241 � 17 237 � 15 � �
758 272 � 51 263 � 42 242 � 20 221 � 17 � �
816 � � 225 � 21 225 � 19 � �
1020 � � � � 232 � 26 222 � 28

Table 4: Attenuation lengths for the data from the MAKET ANI and KASCADE installations,

estimated by the "attenuation of knee position" method from di�erential and integral size spectra

The alternative estimates of the attenuation length reect the inherent uncertainties of the methods

and the statistical errors, as well as the uctuations of cascade development in the atmosphere, the
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of the MAKET ANI and KASCADE data.

energy dependence of the inelastic cross sec-

tion and possible changes in mass compo-

sition. As obvious in Figure 2, the val-

ues corresponding to the minimal equivalent

depths of used MAKET ANI data, deviate

signi�cantly from the exponential decrease.

The observations reects the attening of

the cascade curve just after the shower max-

imum in the altitude 500�600 g �cm�2. Due

to these features the attenuation lengths cal-

culated by MAKET ANI data appear to be

signi�cantly larger than those derived for

the KASCADE data (Tables 2, 3).

Therefore, for the combined analysis of the

KASCADE and ANI data we omitted the

�rst and the second zenith angle bins of

MAKET ANI and calculate the attenuation

lengths by the remaining 9 (minimal equiv-

alent depth 758 g � cm�2) and 8 (minimal

equivalent depth 816 g � cm�2) angular bins.

The dependences of estimated values of at-

tenuation length on the shower size and ux

intensity for di�erent amount of the angular

bins used, are displayed in Figures 5 (note,

that higher intensities on the X axes corre-

spond to the lower primary energies) and 6.
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The attenuation length estimates obtained from the di�erential and integral spectra agree fairly well.

The results of both CIC and recalculation from absorption length agree within the error bars. The

results obtained by the "attenuation of knee position" are larger for MAKET ANI and KASCADE.

As pointed out by S. Ostapchenko [15] it is the consequence of the large EAS uctuations with the

tendency to shift the knee position to the lower energies (and correspondingly to higher uxes) in a

way to "slow down" the cascade curve attenuation.

Well below the shower development maximum starting from 816g � cm�2 KASCADE and MAKET

ANI data could be �tted with one decay parameter (see Figure 7). There is a concentration of the

knee positions on the curve showing the dependence of the attenuation of the ux intensity (� pri-

mary energy). In turn, the curve displaying the dependence of the attenuation length on the shower

size demonstrates a rather large dispersion of the "knee positions". These observations in size and

energy scales may be interpreted as an indication of the astrophysical nature of the knee phenomenon.

5 Conclusion

Experimental studies of EAS characteristic like the depth of the shower maximum Xmax, the elonga-

tion rate dXmax=dlog10E and the attenuation length � are of particular importance, since they map

rather directly basic features of the hadronic interaction. Strictly, however, the interpretation of these

quantities in terms of hadronic cross sections cannot bypass the necessity of detailed calculations of

the shower development. Nevertheless these type of EAS quantities, if compared with Monte Carlo

simulation results, provide stringent tests of the interaction model ingredients of the simulations.

The recent results of various experimental installations are su�ciently accurate to enable relevant

studies of this kind, and combining the data from arrays situated on di�erent altitudes (like MAKET

ANI and KASCADE) allows a large span in the atmospheric slant depth for reconstructing the de-

velopment of the charge particle size. In fact such studies, if using a su�ciently large data sample,

could be continued in a more detailed manner by separating the muon component and taking into

account the deviations from the exponential shape of the cascade decline. The penetrating muon

component contributes with smaller attenuation to the development of the considered charged par-

ticle component, but hardly with an exponential degrading (according to eq.1). Actually by use of

methods in progress to isolate di�erent primary groups ("pure nuclear beams") of the size spectra

[14, 16], these kind of interaction studies would get of extreme interest.
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The Dependence of the Age Parameter from EAS Size
and Zenith Angle of Incidence

A.A. Chilingarian, G.V. Gharagyozyan�, S.S. Ghazaryan, G.G. Hovsepyan,

E.A. Mamidjanyan, L.G. Melkumyan, S.H. Sokhoyan

Yerevan Physics Institute, Cosmic Ray Division, Armenia

The quality of the MAKET-ANI detector installation in view of the uniformity of

the registration e�ciency is demonstrated. Based on a data sample collected by the

MAKET-ANI array in the period of June 1997 - March 1999, the dependencies of

the age parameter on the zenith angle and the EAS size (105�107) are studied. The

variation of the age parameter with the shower size can be approximately related to

the elongation rate.

1 Introduction

The lateral distribution of the charged particle component of extensive air showers (EAS) carries

information about the height of maximum of the EAS development. In NKG type parameterizations

of the lateral distribution this information is associated with the so-called age parameter s, originally

introduced by the analytic description of purely electromagnetic cascades for characterizing the ac-

tual stage of the EAS development.

In EAS experiments this parameter is usually extracted from �tting the distribution measured on

observed level, assuming that this lateral parameter reects the actual longitudinal EAS stage. In-

vestigations of the parameter s have been performed on various altitudes, with the aim to gain

information on the longitudinal EAS development and on the composition of primary cosmic rays

[1-7]. For example, from the analysis of the zenith angle dependence of the average value of s it has

been concluded that the mass composition gets either heavier primary energies larger than 1015 eV or

the multiplicity of secondary particle production in hadronic interactions is unexpectedly increasing.

In the present contribution experimental age distributions, dependent on the zenith angle � of EAS

incidence and of the shower size Ne as extracted from an actual data set of the MAKET-ANI array,

are communicated. As compared to earlier results [4] the statistical accuracy of the data is consid-

erably improved thanks to various modernizations of the installation [5]. The variation of the age

parameter with the observation depth X is considered by a simpli�ed approach.

2 Some characteristics of the data selection

With an e�ective running time of ca. 8000 h the array triggered for 2:6 � 106 showers. From this set

177066 showers have been selected with following criteria: Ne � 1 � 105, � < 45o, 0:3 � s � 1:7.

The procedures of data selection and further analyses are given in Ref. [5]. The e�ective area for

EAS registration, varying from 28 � 14m2 for Ne � 105 to 64 � 32m2 for Ne � 106. With Monte Carlo

simulations and experimental considerations of the angular accuracy following uncertainties of the

reconstructed EAS parameters were obtained: core location: �R ' 1:5m, �Ne ' 15% for Ne < 106,

�Ne ' 10% for Ne > 106, �s ' 7%, �� < 1:5o and �' < 5o.

Figures 1 and 2 display the good uniformity of the EAS registration; the maximum intensity results

�
corresponding author: gagik@crdlx5.yerphi.am
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Figure 3: Distribution of the core locations of

di�erent age classes of showers.

from the zenith angle of � ' 23o. For more de-

tailed analyses the EAS sample is divided in three

classes: "young" showers with 0:3 < s < 0:8, "ma-

ture" showers with 0:8 < s < 1:1, and "old" show-

ers with 1:1 < s < 1:7 .

Figure 3 display the uniform e�ciency of the age

selection of the procedures.

3 Age parameter distributions

The distributions of the age parameter values for

various EAS sizes are shown in Figure 4, displayed

for di�erent ranges of the zenith angles of EAS in-

cidence. The distributions get narrower and show

decreasing variances with increasing Ne in agree-

ment with Ref. [1]. This can be understood that

small size showers penetrating in the deeper atmo-

sphere show larger uctuations in s. The average

age is slightly, but systematically shifted to higher

values with increasing atmospheric depth.

For a consideration of the dependence of the aver-

age age from Ne and zenith angle a �ner binning

of the total angular range has been applied. As

examples in Figure 5 the dependence of the mean

age is shown for selected angular bins (represent-

ing "vertical", "inclined" and all showers). The

results are compared with the Norikura data [1],
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Figure 4: Age parameter distributions for various EAS sizes and angular ranges of EAS incidence: a-
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which show similar tendencies, but shifting the

global features to larger and younger EAS. It is not

clear if this �nding is due methodical e�ects of dif-

ferent evaluation procedures in both experiments.

The results of MAKET-ANI agree with the obser-

vations Ref. [7], if taking into account the di�erent

observation levels, but disagrees with the data of

the MSU group [3], the latter claiming an almost

constant mean age for EAS of Ne = 105 � 106.

There are results of EAS simulations, based on

the QGSJET model as generator [8], which show

fair agreement [9].

The variation of the average age is a�ected by the

primary energy spectrum, by the change of the

chemical composition and the hadronic interaction

characteristics, governing the EAS development.

As long as there is no noticeable change, the aver-

age depth of the shower maximum is expected to

be increasing monotonously. Hence the shallow slope of the average age for Ne > 106 may indicate a

faster EAS development due to an increasing multiplicity of the secondary production and a heavier

composition, respectively.

4 EAS size spectra of di�erent ages

Figure 6 shows the integral size spectra for "young", "mature" and "old" showers for two di�erent

angular ranges of shower incidence. While the young and mature shower spectra exhibit the knee

feature, a knee is not evident for old showers, which show obviously a di�erent variation with the

shower size. This behavior results also from an analysis of KASCADE data classi�ed along various

types of primaries by methods of advanced statistical analysis [10]. The old showers are tentatively

associated to iron-like showers with a di�erent knee position.
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The lower part of Figure 6, taken from Ref. [2], where the showers have been classi�ed by an analysis

of the appearance of the shower core, shows a good consistency. There are, however some di�erences

with the Tien-Shan data (given in Ref.[11]). While the slopes are identical for mature showers and

equal for old showers, the young showers do not display a knee in the data of Ref. [11]. Whether

these di�erences can be explained by the particular analysis procedures, is not yet clari�ed.

Figure 7 presents the spectra for di�erent values of the age parameters and characterized by the

spectral indices given Table 2 (extracted by the procedures of Ref. [12]). With increasing age values

the spectral slope gets atter before the knee as also evidenced by the KASCADE data [13]. Old

showers exhibit a quite di�erent slope.
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Table 1: Average age values and variances for di�erent zenith angles (� < 25o, 25o � � < 45o, � <

45o) and EAS sizes together with the values of the parameters A and s(� = 0) of the parameterization

of the sec � dependence.

� < 25o 25o � � < 45o � < 45o
Ne

s �s s �s s �s
A s(0)

1:6 � 105 0:96 0:15 0:98 0:15 0:97 0:15 0:126 � :002 0:968 � :001

4:0 � 105 0:92 0:13 0:95 0:13 0:93 0:13 0:194 � :004 0:902 � :005

9:7 � 105 0:89 0:11 0:93 0:12 0:91 0:12 0:241 � :006 0:872 � :007

2:4 � 106 0:88 0:10 0:92 0:11 0:89 0:11 0:274 � :008 0:855 � :009

6:0 � 106 0:87 0:11 0:92 0:12 0:89 0:11 0:316 � :2 0:852 � :032

� 105 0:93 0:14 0:96 0:14 0:94 0:14 0:161 � :002 0:934 � :001
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Table 2: Spectral slopes (dI=DNe / N�
e ) and knee positions for di�erent ranges of the age parameter

values.

� s 1 2 log(Nknee
e )

0o � 25o 0:3� 1:7 2:54 � 0:03 3:08 � 0:03 6:30

0:8� 1:1 2:45 � 0:03 2:92 � 0:07 6:13

0:3� 0:8 2:21 � 0:03 3:17 � 0:14 6:31

1:1� 1:7 3:68 � 0:08

25o � 45o 0:3� 1:7 2:50 � 0:02 2:82 � 0:04 6:08

0:8� 1:1 2:34 � 0:03 2:81 � 0:05 5:93

0:3� 0:8 2:20 � 0:02 2:70 � 0:07 5:91

1:1� 1:7 3:31 � :07

5 Variation of the age with the observation depth

Figure 8 shows the dependence of the mean age s(�) of particular EAS sizes from the zenith angle �,

as linear dependence from sec �.

The parameters s(0) and A, adjusted to the sec � dependence are given in Table 1.

With increasing Ne the slope A increases while s(0) is decreasing. There is a good agreement with the
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Figure 8: The dependence of the mean age s

from the zenith angle of EAS incidence for var-

ious shower sizes.

values of Ref. [1] obtained for Ne = 2:4 � 106. The
values averaged over all EAS sizes are A = 0:161�
0:002 and s(0) = 0:934� 0:001. With the approx-

imate relation sec � = X=Xv where Xv is depth

of the observation level and X the transverse at-

mospheric thickness (grammage) A can be related

to the change ds=dX of the average age with X.

With the average value of A inferred from the data

for the observation level Xv = 700 g/cm2 a value

ds=dX = 2:3 �10�4 cm2/g. This result can be com-

pared with ds=dX = 3:4 � 10�4 cm2/g given in [1].

A compilation [1] of the data from the literature

yields a range ds=dX = (1:9 � 4:3) � 10�4 cm2/g.

Associating the depth of the shower maximumXm

with s = 1, we reach the relation

s� 1 =
ds

dX
� (X �Xm); (1)

Thus an evaluation of the Ne dependence of �X =

(X�Xm) carries some information about the elon-

gation rate, as already indicated by Linsley [14].

6 Concluding Remarks

The present results deduced from the data of the MAKET-ANI array are in good agreement with

theoretical expectations. The analyses reveal that:

� Average age parameter gradually decreases with increasing shower size from 105 to 106, and for
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Ne > 106 it becomes almost constant.

� The knee of "young" showers is sharper than knee of the all particle spectra.

� The size spectra classi�ed by di�erent ages show di�erent attenuation.

� The change of age parameter with the zenith angle of EAS incidence can be related to the change

of the EAS maximum with Ne.
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Lateral Distribution Functions for EAS Charged
Particles

A. Haungs1� for the KASCADE Collaborationy

1Institut f�ur Kernphysik, Forschungszentrum Karlsruhe, Germany

Since the �rst measurements of extended air showers the lateral distributions of the

charged particles are most frequently considered observables and starting point of

further analyses like the estimation of a total number of muons and electrons in

the showers or toward the determination of the chemical composition. A historical

overview on the di�erent functional forms used for �tting the measurements will

be given. The di�erences and similarities of the distributions for di�erent parti-

cle components are discussed in context of actual applications at the KASCADE

experiment.

1 Introduction

Cosmic Rays with energies larger than � 1014 eV are measurable only indirectly by Earth bounded

experiments through secondary particle detection of an extended air shower (EAS). EAS are produced

in the Atmosphere by a cascading process of interactions of the primary cosmic ray and its subse-

quently successors with air molecules (Fig.1). The resulting measurable particle components of an
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Figure 1: Schematic view of EAS development at the Atmo-

sphere.

EAS are the electromagnetic, the

hadronic and the muonic part.

In general electromagnetic and

muonic particles are added to the

socalled charged component of the

EAS. As the atmosphere can be

regarded as a calorimeter, mea-

surements of the total number of

particles at a certain observation

level is strongly correlated with

the primaries energy. As most of

the charged particles are electrons

(with � 10% muons at sea level)

the electron or charged number was

the experimental access to the en-

ergy in most of the Earth bounded

experiments. The estimation of

the particle number in the EAS re-

quires spot tests of densities in a

(as large as possible) certain range

of the lateral extinction of the EAS.

Arrays of detector stations ful�ll

�
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Figure 2: Mean lateral distributions of charged particles in proton and iron induced showers of same

energy and zenith angle. The distributions are obtained by CORSIKA [1] simulations (QGSJET [2]).

these requirements; detector size,

observation level and grid size quantify the accessible primary energy range. Additional informa-

tions about the muon content measured by underground or shielded detectors are usually used for

the mass determination of the cosmic rays.

Taken these spot tests of densities, a well �tting functional dependency to the lateral density distri-

bution is searched (Fig.2). An Integration over the total range of core distance of this LDF results

in the socalled shower size, i.e. total number of particles. Beneath the energy range of the primaries

di�erent questions intend the LDF: Which secondary EAS component are measured by the used

detectors? What is the energy threshold of the measured particles? What kind of detectors are used?

In which range of the core distances are the detectors placed?

The experiences of a half of century of earthbounded EAS experiments shows the di�culties to �nd a

global function for all experiments, the whole energy range, or for all zenith angles of the primaries.

After a historical overview on used functions in the past, the situation of the LDF's at KASCADE

will be explained and discussed.

2 Historical Overview

2.1 Electrons, Charged Particles

The shapes of the lateral distributions of di�erent charged particles in showers are described mainly

by functions which led to the �rst type Euler integrals (plus some modi�cations) or by exponential

functions.

For the density function of charged particles there were:

-) The Nishimura{Kamata{Greisen approximation [3, 4]

�ch(r)dr =
Nch

2�r20
� C �

�
r

r0

�s�2

�
�
1 +

r

r0

�s�4:5

dr; (1)
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where

s - so called age parameter which describes the shape of the particle distribution,

r0 - Moliere unit (= 79m at the sea level)

Nch - total number of charged particles,

C =
�(4:5�s)

�(s)�(4:5�2s)
, � - gamma function.

This approximation is widely used in cosmic ray experiments; for electrons only and for charged

particles. The NKG function is based on a theoretical approach to describe a pure electromagnetic

shower in the atmosphere. It was very soon known that this function cannot describe a hadronic

shower in perfect, therefore the search for a more global function was motivated.

-) Greisen approximation [5, 6, 7]

�ch(r)dr =
Nch

2�r20
� C1 �

�
r

r0

�s�2

�
�
1 +

r

r0

�s�4:5

�
 
1 + C2

�
r

r0

�d!
dr; (2)

where C1 = [B(s; 4:5� 2s) + C2B(s+ d; 4:5 � d� 2s)]�1, and in Greisen's paper C2 = 1=11:4 and

d = 1; B is the Euler-function.

-) function, which was used for the investigations of large showers in Akeno [8]

�ch(r)dr =
Nch

2�r20
� C3 �

�
r

r0

�s�2

�
�
1 +

r

r0

�s�4:5

�
�
1 + �

r

r0

��
dr; (3)

for which a general integral from zero to in�nity does not exist.

-)Some Russian experiments (e.g. [9]) used the following approximation:

�ch(r)dr =
1:75 � 10�3Nch

r
exp� r

80
dr ; for r = 3� 140m

�ch(r)dr = 2:25 �Nchr
�2:8

dr ; for r = 140� 1000m

For the majority of early investigations the so called total electron number was accepted as a total

number of charged particles Ne � Nch. A modi�cation was introduced by Greisen 1960 [5] to formula

(1) in attempt to take into account the role that muons play at large distances from the axis in EAS.

Some attempts were also made at mountain level (Chacaltaya 5.2 km asl) to modify the formula (1)

in order to obtain a better description of average lateral distributions of charged particles in showers

[10]:

�ch(r)dr =
1:03 �Nch � C1

2�r20
�
�
r

r0

�s�2

�
�
1 +

r

r0

�s�4:5

�

 
1 + C2

�
r

r0

�2
!
�

0B@1� 0:2 � exp
�
�
ln r

r0
+ 0:3

�2
0:5

1CA dr; (4)

where C1 and C2 are constants, their values obtained from the best experimental �t.

The formula (4) is the best illustration of the problems which were met by experimental physicists

when they made attempts to describe the lateral distribution of charged particles in showers by one

universal function - a function describing the lateral distribution of all charged particles in showers.
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2.2 Muon Component

The shape of the function of the lateral distribution of muon density in the showers with both

di�erent total number of particles Nch and di�erent threshold energies of muons E� (GeV) was given

by Greisen 1960 [5]:

��(r)dr =
14:4 � r�0:75�
1 + r

320

�2:5 � �N�

106

�0:75

� 51

E� + 50

 
3

E� + 2

!0:14r0:37

dr; (5)

where E� describes the muon energy threshold in GeV.

Following functional form has also been used for an approximation of the lateral distribution of

muons in di�erent experiments [11, 12]:

��(r) / r
�� exp� r

r0
dr: (6)

More or less complicated factors are added depending on the experimental setup (e.g. observation

level, muon threshold energy and range of investigated core distance). For example at Tien-Shan

[13]:

��(r) = 5:95 � 10�4
r
�0:7 exp� r

80
dr:

2.3 Hadrons

Lateral distributions of hadrons in EAS with energies greater than a threshold energy Eh are usually

approximated by the function:

�h(r)dr = A � exp�
�
r

r0

��
dr: (7)

Or in some experiments (e.g. [14]) simply by

�h(r)dr = A � exp� r

r0
dr: (8)

In the region of a threshold energy of Eh = 100GeV { 10TeV a coe�cient � may change in the

interval � = 1:0� 0:25 [15]. At the threshold 100GeV the value � = 0:8 was obtained from the very

�rst measurements in KASCADE [16] for the showers initiated by primary nuclei with energy about

E0 = 1014 eV. It is characteristical for hadrons that for energies above 100GeV they concentrate

near the shower axis and their density at the distance of about 10m decreases almost three orders of

magnitudes with respect to the densities measured in the shower core area. The observed densities

of charged particles in this region of showers may be overestimated considering local interactions of

hadrons in (or over) the detector which may lead to a production of secondary particles.

3 LDF at KASCADE

The experimental setup of KASCADE [17, 18] was chosen to optimize the estimation of the electron

and muon number simultaneously for each single triggered shower. Detailed Monte Carlo simulations

(including detector simulations) were used to search the best functions for the determination of the

shower size Ne and the muon number N� at the EAS. Nevertheless averaged lateral distributions of

the di�erent particle components (electrons and hadrons and muons with di�erent energy detection

thresholds) are used for veri�cations and for comparisons with other experimental results.
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3.1 Single Showers

Figure 3: Example of the measured par-

ticle densities of a single extended air

shower as measured by the KASCADE de-

tector array. The lines indicate the result

of the �t of the NKG function to the mea-

sured densities.

Figure 3 shows an example of a single shower as mea-

sured by the KASCADE array detectors. Each point

shows the reconstructed density of electrons or muons

in the detector stations. The estimation of this densi-

ties are the result of an iterative process: as the muon

detectors are placed directly below the electron detec-

tors, a �rst rough estimation of the muon density is used

for the reduction of the charged particle density leading

to an electron density. Additionally by help of lateral

correction functions won by Monte Carlo simulations a

correction of punch-through e�ects of the EAS gamma

component is performed.

The function used for the lateral �t is for both parti-

cle components the NKG function. The total number

of electrons, the shower age and the core position are

the resulting parameters of the procedure for the elec-

trons. Fitting the distribution of the muon component

the age of the NKG function is �xed to roughly 0.75

with a small dependence from Ne. The Moliere unit is

chosen 79 m for the electron LDF and 420 m for the

muon LDF, respectively. The lateral distribution of the

electron component is �tted for the core distance range

between 10 m and 200 m and integrated from zero to

in�nity. For the muon component it was found by simu-

lations, that the largest di�erences of the lateral distri-

bution between di�erent masses are at far core distances,

where is anyway no experimental excess. On the other

hand the muon content (N tr
� ) between 40 m (above the

uncorrectable punch-through of electrons and hadrons

in the muon detectors) and 200 m is independent from

the primary mass, but roughly linear with the primaries

energy [19]. Both numbers, Ne and N tr
� , can be esti-

mated with an uncertainty of less than 8% in the PeV

region.

3.2 Average LDF

To reveal general shower properties lateral density distributions in average for a large sample of

showers are estimated for all di�erent particle components [20].

In the case of the KASCADE experiment (electron identi�cation, observation at sea-level, primary

PeV region, measurement of electron densities up to 250 m core distance) the NKG function represents

the electron lateral density distribution very well in all angular ranges (Fig.4). At PeV showers below

10 m core distance the mean lateral distributions are a�ected by saturation e�ects in spite of the

large dynamical range of the detectors. At 10 PeV the saturation a�ects the distribution up to 40m

core distance.

With help of the large hadron calorimeter of the KASCADE experiment it is possible to measure
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lateral distributions of hadrons for core distances up to 100 m (Fig.5). Due to the strong correlation

of the hadronic to the electromagnetic component in the shower development the NKG function is

well �tting the LDFs, too. But the Moliere unit has to be decreased to Rm = 10m to �t the steep

10
tr
µlog    (N    ):
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Figure 6: Mean lateral distributions of muons for three di�erent energy thresholds for showers grouped

in di�erent ranges of N tr
� . The lines represent Greisen functions; it results from �ts to the distribu-

tions from the array muons and expected distributions by the di�erent energy thresholds using Monte

Carlo simulations.

decrease of the lateral distribution.

In case of muons the KASCADE experiment with its multi detector setup has the possibility to

measure muons with di�erent energy thresholds:

1. For vertical showers the array muon scintillators register muons above E� = 250MeV at a total

sensitive area of 622 m2.

2. The scintillator layer of the central detector (trigger layer, 208 m2) allows muon measurements for

E� > 400MeV.

3. A setup of two layers of multiwire proportional chambers (MWPC) at the basement of the central

detector allows with a spatial resolution of� 1.5 cm the reconstruction of muons withE� > 2000MeV.

The total sensitive area of the chambers are 122 m2.

A further component (a muon tunnel setup with towers of limited streamer tubes which is being

built) will be able to track muons with a threshold of ca. 1000 MeV.

Fig.6 shows examples of the reconstructed mean lateral distributions for all three thresholds obtained

with the di�erent detector components. The di�erent starting points of the distributions reects

the core distance where the punch-through corrections of the electromagnetic and hadronic EAS

components have too large uncertainties. All muon density distributions in the range up to 100 m are

describable by the functions mentioned above. The density distributions of the lowest muon threshold

(array) are �tted by the socalled Greisen muon function (Fig.6). Using the muon content obtained by

CORSIKA Monte Carlo simulations (QGSJet) expected lateral distributions for the other thresholds

are calculated and included in the plot. It is seen, that the small di�erences between the threshold of
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trigger plane and array are reected by the simulations. This is not valid for the muons measured by

the MWPC system. Either the measurements have systematic uncertainties or the energy distribution

of muons in the simulations do not reect the reality. Di�erent other observations prefer the latter

argument of a unrealistic simulation of the EAS development [21], especially at higher primary
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Figure 8: Correlation of the muon to electron number for

high-energy muons of the KASCADE experiment compared

with the result of detailed EAS simulations for di�erent pri-

mary masses.

energies, as seen in Fig.6.

For the following analysis the lateral

muon density functions are �tted by

the so called Hillas function:

��(r) / ( r
r0
)��e

�
r
r0 dr .

The chosen value r0 is optimized by

minimizing the chi-square for all dis-

tributions (all zenith angle and shower

size ranges) [22]. It results for the dif-

ferent thresholds to r0 = 600m (250

MeV), r0 = 200m (400 MeV), and

r0 = 100m (2 GeV). As free param-

eters of the �t the muon content at

50 m core distance (A(50)) as nor-

malization parameter and the slope

parameter � is chosen. Fig.7 shows

the dependencies of these parameters

from shower size and angle in case

of the lowest threshold energy. As

expected the muon content (A(50))

increase with larger shower size and

zenith angle: Larger shower size im-
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plies a higher primary energy, more inclined showers with same shower size have larger primary

energy due to the higher absorption of the electromagnetic component in the atmosphere. The

lateral distributions are steeper (increasing �) for smaller angles and larger sizes. As deeper the

maximum of the shower development in the atmosphere (higher primary energy or more vertical) as

deeper the muons are produced and as closer to the shower axes they reach the surface detectors.

These are general features of the muon component of EAS and are found and con�rmed by a lot of

experiments [22].

The correlations between the electron number and muon number of EAS is known as a powerful mass

estimator [23]. We investigate the correlation with help of the mean muon lateral density distribu-

tions by an integration of the Hillas function in a limited range of core distance (20m-100m). The

resulting N lim
� is shown in Figure 8 (2 GeV threshold) versus the mean shower size Ne in comparisons

with correlations obtained by detailed simulations for proton and iron induced primaries. The lines

represent �ts of power law functions. The data show a kink in the power law at the position of the

knee at the KASCADE Ne size spectra, providing a change of the composition at the knee region.

Investigating the mass composition at KASCADE uses more detailed multiparameter analyses, but

as a con�rmation or check of other results such a average view to the general features of the cosmic

rays in the "knee" region is still useful.

4 Conclusions

The search for a global function describing the lateral distribution of particles in extensive air show-

ers is motivated by the strong correlation of the total particle number to the primary energy of the

incoming particle.

As the lateral density distributions at each experiment depend on the identi�cation and energy

threshold of the detected particles, on the range of the accessible core distance, on the shielding of

the detectors, and on the energy, mass and angle of incidence of the primaries, a global function

seems not possible and even not useful. Therefore comparisons of lateral distributions at di�erent

experiments seems to be very complicated.

In case of the KASCADE experiment all lateral distributions, measured for �rst time for electrons,

muons at di�erent thresholds and for hadrons, are describable by the NKG-function. But other func-

tions historically used are in principle (for the muon lateral distributions) usable.

An estimation of particle numbers per single shower (i.e. �t of the lateral distribution and integration)

is highly preferable to analyse the data on event-by-event methods [18]. Mean lateral distributions

are used for consistency checks, mainly.
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Lateral Distributions of EAS Muons at Di�erent
Thresholds Energies, Bundles and Horizontal Muon

Events

A.A. Chilingarian1, A.V. Darian1, V.S. Eganov1, V.A. Ivanov1�, N.M. Nikolskaya2,

V.A. Romakhin2, V.V. Subbotin2

1Yerevan Physics Institute, Alikhanian Brothers St., 375036 Erevan, Armenia
2P.N. Lebedev Institute, Leninsky pr., Moscow, Russia

The aim of the present analysis is the experimental determination of the ratio of

average muon densities with threshold energies of 2.5 GeV and 5 GeV, respectively

at di�erent distances from the core of extensive air showers (EAS). It is shown that

the measured values are consistent with expectations of Greisen's approximation.

The muon lateral distribution for E� > 1GeV evaluated from the measurements

by Greisen's approximation agree well with data of the EAS-TOP experiment for

corresponding shower parameters. Additionally the possibility of the detection of

muon bursts with the muon detectors of the GAMMA array is discussed.

1 Introduction

The lateral distribution of EAS muons depends from the energy thresholds with which the muons are

registered by the particular detector facilities. For a determination of the N�=Ne ratio, to be com-

parable with the results of other experimental installations, the distributions should be related to a

uniform threshold energy. The present experimental studies are prompted by the speci�c situation of

the GAMMA installation [1] of the ANI Cosmic Ray Observatory on Mt. Aragats, Armenia, where

the underground installation of muon detectors appears with di�erent thresholds varying between

2.5-6.0 GeV. Actually a reliable muon detection and an accurate determination of the muon lateral

distribution function (MLDF) for EAS is a delicate experimental task, involving a careful considera-

tion of the experimental inuences on the detection e�ciency and mis-identi�cation of muon events.

Thus with too small and too widely spaced detector arrays the inherent EAS uctuations do domi-

nate the results by e�ects which are not taken into account by the parameterisations of the average

behaviour. In addition high energy gamma rays or hadrons ("punch -through") penetrating near

the shower axis and secondary particle production by electromagnetic and nuclear cascades in the

absorber and detector material, faking or obscuring bundles, lead to di�culties in identifying muon

events. Accompanied by detailed detector response studies the underground scintillation detector

array would allow to study these inuences [2].

For preparing the experimental basis of the MLDF studies the accumulated EAS data have been

grouped along various ranges of the shower size Ne and the zenith angles of EAS incidence, and the

muon densities ��(r) have been averaged over de�ned intervals of the distance r from the shower

centre.

There are various forms of the MLDF en vogue for �tting the lateral distribution by adjusting the

parameter values by the least-square method e.g. to �t the data.

The Greisen parameterisation [3]

��(r) = C � r�n � (1 + r=r0)
�b
; (1)

�
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Figure 1: Lateral density distributions of EAS muons for two di�erent thresholds. The lines are

drawn to guide the eyes. At small radii the experimental problems of muon detection near the shower

axis are indicated. The dashed curves are �ts for r > 10m by the Greisen form.

with the parameter values: n = 0:5 � 0:75, r0 = 280 � 460m and b = 2:5 is preferentially used.

Alternatively the Hillas function [4] (with parameter values: n = 0:45 � 0:86, r0 = 80� 600m)

��(r) = C � r�n � exp(�r=r0); (2)

has been used. Figure 1 displays an example.

The aim of the present studies is to determine the experimental ratio of the average muon densities

with two energy thresholds and to relate the observations to results obtained with other thresholds.

2 The muon density ratio for di�erent detection thresholds

In literature there are various experimental studies reported [5, 6, 7, 8] which result in parameterisa-

tions of the dependence of the total muon number N�(E�;Ne) from the energy threshold E� and the

EAS size Ne. The empirical form for the MLDF extracted from those studies are given by following

expressions

��(r;E�; Ne) = 14:4 � r�0:75 � (1 + r=320)�2:5 � (51=(50 +E�)) � (3=(E� +2))0:14�r
0:37 � (Ne=10

6)0:75 (3)

for 1 < E� < 20GeV and 20 < r < 100m, (see ref. [5, 6]), and

��(r;E�; Ne) = 1:4 � 104 � r�0:55�"0:1 � (E� + 250)�1:4 � exp(�r � "0:62=80) � (Ne=10
6)0:78 (4)

for 5 < E� < 500GeV ; 2:5 < r < 100m and " = (E� + 2)=12, (see ref. [8]).

Due to the constructive peculiarities of the underground arrangement of muon detection installation
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Figure 3: Comparison of the muon lateral dis-

tribution observed by the GAMMA and EAS-

TOP [10] experiments and with simulations for

Ne = 105 � 105:3.

of the hall and tunnel of the GAMMA array [1] the actual muon energy threshold varies between

various groups of the detectors (in the hall from 4.7 to 6.0 GeV).In order to minimise systematic e�ects

in the comparisons of the data with calculations according eq.3 two particular groups of detectors

(located at the boundaries of the two underground units: hall and tunnel) are selected whose data

are grouped in two samples of di�erent well de�ned threshold energies (and the same detector area

S). The two data samples are characterised by:

1. hE�i � 2:5GeV; 5o < � < 30o; 180o < ' < 360o; S = 15m2;

2. hE�i � 5:0GeV ; 5o < � < 30o; 0o < ' < 180o; S = 15m2.

Figure 2 shows the comparisons. The data at distances r < 15m from the shower centre are

certainly a�ected by above indicated detector e�ects not accounted for. For R > 15m the Greisen

parameterisation [9] �ts fairly well. The data can be described by

K = 1:05 � (1:55)0:14�r0:37 : (5)

and it proves to be superior to the alternative of Ref. [8]. There appears no signi�cant dependence

from Ne in the considered range.

In Figure 3 our results are scaled by the Greisen parameterisation to the energy threshold E� =

1:0GeV and compared with results of the EAS-TOP experiment [10] and to EAS simulations (in

equivalent ranges of the zenith angles and Ne). Unfortunately the overlap and the lateral ranges of

both experiments is small, but nevertheless indicative for the consistency.

The deviations of both GAMMA results at small radii may be explained by "punch -through" e�ects.
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Figure 4: Four examples of measured events. Each number represents a muon detector with its ADC

value of the GAMMA muon array. The horizontal line indicates the change of the muon energy

threshold from 2.5 GeV to 5 GeV. Left there is an GAMMA triggered event, the small dot indicates

the shower core. In the middle there are two examples of muon jets; on the right side an example for

horizontal muons is given.
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3 Muon bundles and horizontal muon events

During the investigation of the EAS muon density distributions, also the bundles and jets (or local

showers) of penetrating particles, with several hundreds up to several thousands per m2 have been

detected. Examples of such events are displayed in Figure 4. The number of such events is less

than 0.1 per cent of the total number of the registered EAS and their spatial distributions can be

associated to muon jets, with a small number accompanying electromagnetic particles. For more

detailed study of such anomalous muon jets a special "muon" trigger has been developed and imple-

mented, permitting a more e�cient multi-muon event selection. The observation of events of a similar

C=10xln
(n µ

)+5.7 

Code ADC

2 4 6 8 12141618 22242628 32343638 42444648 52545658 626466680 10 20 30 40 50 60 70

N
um

be
r 

of
 p

ar
tic

le
s 

[n
µ]

100

101

102

103

N
um

be
r 

of
 e

ve
nt

s

0

50

100

150

200

250Code ADC vs nµ

Codes distribution  

Figure 5: "Code ADC - Number of particles"

transition function, and the distribution of the

codes for horizontal muons.

character have been recently reported by the

ALEPH group in CERN [11].

With the same trigger, apart from the muon bun-

dles and jets, "aligned events" of intriguing charac-

ter have been registrated (Figure 4). These events

can be explained by the horizontal muon ux, se-

lected by the speci�c trigger conditions. The ex-

pected intensity of such events can be estimated

from the data measured by horizontal muon spec-

trometers [12, 13] for zenith angles of � 89�. The

estimated result con�rms this assumption with a

good accuracy. On the other hand such events

can be used to check the linearity of ADC codes,

the average magnitude of which should correspond

to energy deposit corresponding to ca. 20 parti-

cles traversing the scintillator in vertical direction

(100 � sec(�)=5 = 20 sec(�)).

Only "pure" events going without any accompa-

niment have been included in the data analysis,

and the number of working detectors lying in the

straight line should not be less than three. The relation between measured code (C) and correspond-

ing number of particles (n�), is �tted by the expression:

C = 10 � ln(n�) + 5:7: (6)

Obtained distributions and the transition function "code - number of particles" are shown in Figure

5. It is obvious that "aligned events" really correspond to muons passing with large zenith angles,

and that the ADC used in the experiment, gives a globally correct, unbiased estimation of number

of particles (in particular in the interval of codes from 5 up to 64).

4 Summary and concluding remarks

The measured lateral distribution of K(E� = 2:5GeV=E� = 5GeV) can be empirically described

by K = 1:05 � (1:55)0:14�r0:37 . The relation is recommended for further applications. For the more

detailed and exact determination of the ratio ��(r; E�1)=��(r;E�2) with various threshold energies, it

would be favourable to locate a part of muon detectors to the center of the hall in order to minimize

the systematic errors arising from the details of the underground building structure. Particularly

interesting would be an arrangement of a part of detectors at a di�erent place, inside and under the
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magnet yoke of the uncompleted ANI muon spectrometer [14], in order to study both the MLDF and

the energetic characteristics of the individual muon jets in the range of the threshold energies of 4.7,

7.0 and 10 GeV.

Moreover it would be of importance to set up the muon hodoscope by the trigger of the "MAKET"

facility. The development of such a trigger would facilitate to determine the total number of the

shower muons with improved accuracy, due to an extended range of the studied MLDF (from 15 up

to 300 m). In addition, such a trigger would help to investigate methodical problems of studies of

muon groups and their spatial distributions.
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Simulation Study of the Lateral Distributions of the
Muon and Electromagnetic EAS Components on Mt.

Aragats Altitude

J.-N. Capdevielle1, Kh.N. Sanosyan2�

1LPCC, College de France, Paris, France
2Cosmic Ray Department, Yerevan Physics Institute, Yerevan, Armenia

Various features of the lateral distributions of the muon and electromagnetic EAS

components have been studied on basis of simulated EAS for di�erent detection

thresholds for the observation level of the Cosmic Ray Laboratory on Mt. Aragats.

The Monte Carlo simulations use the CORSIKA program (version 5.62) with the

QGSJET model as generator for the hadronic interactions.

1 Introduction

A thorough understanding, analyses in terms of EAS observables and even some calibration proce-

dures of the data accumulated with the detector facilities [1, 2] operated in the ANI Cosmic Ray

Laboratory on Mt. Aragats, Armenia, require the comparison with realistic Monte-Carlo simula-

tions of the EAS development. These necessities are the motivation for a series of extensive Monte

Carlo calculations for the case of the ANI observation level (3200m a.s.l., latitude: N40.47�, longi-

tude: E44.18�) allowing a detailed study of various shower variables and of their correlations. In

the present contribution results of the analysis of the simulated lateral distributions of various EAS

components are communicated.

2 Simulation procedures

The EAS simulations used the Monte Carlo code CORSIKA (version 5.62) [3, 4] for calculating proton

and iron induced showers for four di�erent energy intervals: (1.5 - 5.0)�105GeV, 5.0�105 - 1.5�106GeV,
(1.5 - 5.0)�106GeV, and 5.0�106 - 1.5�107GeV.
As generator of the high energy hadronic interactions the option of the QGSJET model [5] has

been chosen, while for the low energies the GEISHA model has been invoked. The electromagnetic

component is treated with the NKG approximation as well as optionally with the EGS4 procedure.

In the latter case a thinning procedure [6] has been applied with a thinning factor of 10�4. E�ects

due to thinning have been controlled by comparative calculations without thinning. Particles have

been stored with energy thresholds above 0.3 GeV for hadrons, 0.1 GeV for muons and 3 MeV for

electrons and gamma rays.

For the determination of the lateral distributions of the muons we consider two di�erent muon energy

thresholds of 2.5 GeV and 5 GeV. Within one bin of the primary energy the energy has been randomly

chosen along the power law dependence of the spectrum with the spectral index of  = �2:7. Similarly
the angle of incidence is selected from the interval 0� � 30� in a way so that isotropic incidence is

guaranteed.

It appears very crucial to take into account the e�ects of the magnetic �eld of the Earth. Introducing

the coordinates of the Mt. Aragats station, the magnetic �eld components have been calculated

�
corresponding author: khnko@crdlx5.yerphi.am
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by the Geomagnetic Field Synthesis Program (Version 3.0) [7] with the results (1999): magnetic

declination: 4d 41.1m, horizotal component: 25157 nT, vertical component : 41215 nT.

3 Lateral distributions

Lateral distributions of the simulated EAS have been calculated for circular radius bins of �r = 2m

for distances of up to r = 200m from the shower centre.

Figure 1 shows results for the muon lateral distributions of two di�erent energy thresholds of muon

detection. The values of the thresholds are suggested by the experimental situation of the under-

ground muon detector installation on Mt. Aragats. Hardly surprisingly the intensity decreases with

the energy threshold and increases with the primary energy and with the complexity of the primary

particle. The energy dependence is separately displayed by normalised lateral distributions in Figure
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Figure 1: Lateral muon distributions for proton and Fe primaries of various energies and with di�erent

detection thresholds.
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Figure 2: Muon lateral density distributions of proton and iron induced showers for various primary

energies and two energy thresholds. Shown is the number n� of muons in a radial bin between ri�1

and ri (i stands for the actual radius bin).

2. Some change in the slope of the distributions with energy is obvious, but also with the type of

the primary. There appear "crossings" of the lateral density distributions at small radii for Fe and

proton induced showers.

There is some interest in the ratio of the lateral muon density for di�erent detection thresholds [8]. In

Figure 3 the ratio is shown with 2.5 GeV and 5.0 GeV thresholds for p and Fe primaries of di�erent

energies.

The ratio increases with the distance from the shower centre faster for proton induced showers than

for iron induced showers. The feature could already inferred from Figure 1, showing the slower

increase and the steeper decline of the higher energy EAS muons. The di�erent rise for proton and

Fe EAS may be explained by the fact that the average EAS development is determined by the energy

per nucleon rather than by the total energy of the primary [9].
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Figure 3: The radial dependence of the ratio of the muon densities with two di�erent detection

thresholds (2.5 and 5.0 GeV) for proton and iron primaries.

Figure 4 shows the lateral distributions of the ratio of the number of electrons to number of muons

for di�erent energies of the primaries and with di�erent muon detection thresholds.

Again less surprisingly the ratio decreases due to a stronger concentration of the electromagnetic

component at smaller radii.

Finally the distribution of the electromagnetic component is considered, in particular the ratio of

photon and electrons (how it is predicted to appear at the particular observation level). This is

shown for the above speci�ed cases of di�erent primary energies of iron and proton induced EAS.

The ratio is steeply decreasing with the radius, for protons steeper than for iron induced showers.

An energy dependence is not very pronounced. The well known fact of the dominance of the gamma

quanta has experimentally prompted attempts to convert e�ciently the gamma quanta in detectable

electrons. Actually a quantitative knowledge of this ratio from simulations is of academic interest.

For any comparison of experimental data the di�erent detector responses of di�erent set-ups would
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Figure 4: Lateral distributions of the ratio of the number of electrons to number of muons for di�erent

enrgies of the primaries and with di�erent muon detection thresholds.

enter and inuence the ratio.

4 Concluding remarks

With respect to the experimental possibilities for studies of the EAS muon component by the facilities

installed underground in the ANI Cosmic Ray Laboratory on Mt. Aragats on high altitude, some

features of the charge particle lateral distributions have been studied on basis of EAS simulations, in

particular the distribution of the ratio of the number of muons at various thresholds. Actually this

ratio may turn out as a further mass indicative observable in addition to the N�=Ne ratio. However, a

conditio sine qua non of experimental studies of this kind is a detailed understanding of the detector

e�ciency and response to the detected particles. This quest implies the necessity of the development

of a consistent detector simulation program, for which �rst steps for the ANI installations have been
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Figure 5: The lateral distribution of the gamma/electron ratio.

started by the ARES code [10]. Only by treating the CORSIKA simulations in this way a realistic

comparison of the data and with results from other installations are useful and conclusive.
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The EAS Electron Lateral Distribution as Observed
with the MAKET-ANI Setup

A.A. Chilingarian, G.V. Gharagyozyan, S.S. Ghazaryan, G.G. Hovsepyan,

E.A. Mamidjanyan, L.G. Melkumyan�, S.H. Sokhoyan

Yerevan Physics Institute, Cosmic Ray Division, Armenia.

The di�erential spectra of the electron density of Extensive Air Showers observed by

the MAKET-ANI installation of the ANI Cosmic Ray Observatory are studied. The

data stems from the registration period from August 1997 to March 1999 with 2:6�106
events and the shower size range Ne � 105. The investigations are focussed to a

test of the Nishimura-Kamata-Greisen (NKG) lateral distribution function (LDF) at

various radial distances from the shower axis. The LDF are �tted by NKG function

in Greisen approximation.

1 Introduction

It is common praxis to describe the lateral distribution of the the electron density �e(R) of Extensive

Air Showers (EAS) of the size Ne by modi�cations of the Nishimura-Kamata-Greisen form [1]. For

studies of data of the MAKET ANI installation the following form has been adopted [2]:

�(R;Ne; s) = �e(R;Ne; s)

�
R

rm

��0:18

= FNKG(R;Ne; s)

�
R

rm

��0:18

(1)

where R is the distance from the shower core; rm is the Moliere unit (118 m at Mount Aragats), s -

age of shower, Ne - EAS size, FNKG is the Nishimura-Kamata-Greisen function [1], (R=rm)
�0:18 is a

factor taking into account the contribution of photons. For transformation of the response of the 5

cm thick scintillators into particle densities the procedure of ref.[3] is applied.

The present contribution reports on studies testing some details of the applicability of the NKG form

for the experimentally observed shape of the lateral distribution function (LDF).

Using the data of the MAKET-ANI experiment the densities at the di�erent distances from showers

axis have been determined. The showers with lateral extensions up to the distances of 110-130m

in direction to the peripheral point have been selected. Analysing about 5 � 105 events with EAS

sizes Ne � 1 � 105, the average lateral density h�(R)i of the charged particles for the di�erent radial

distances from the shower axes and for di�erent EAS sizes Ne have been determined. In averaging of

�(r) also zero values of detector measurements in contrast to previous procedures [4], are taken into

account. Therefore the results of ref.[4] get modi�ed and corrected.

2 Data selection

The MAKET-ANI installation consists of 92 plastic scintillation detectors. 68 detectors with a

thickness of 5 cm have an area of 1 m2 each , the rest of 24 detectors are of 0.1 m2 area. Two peripheral

detector stations of 15 m2 and 4 m2 area, respectively, are located at 100 m and 70 m distance from the

geometrical center of the installation (x0, y0) and are foreseen for precise measurements of electron-

photon densities. The total area of the detectors is 70.4 m2. The present analysis is based on data

�
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collected from August 1997 to March 1999 with an e�ective running time of nearly 8000 hours. The

analysis is carried out for EAS selected with the conditions: j x� x0 j� 20m, j y � y0 j� 10m, for

azimuth angles � � 45�, 1 � 105� Ne � 5 � 107 and 0:3 � s � 1:7. The basic EAS parameters (Ne, s,

�, ', x, y) have been determined by the procedures described in ref.[5], using the CERN MINUIT

computer package [6], for �tting to a Nishimura-Kamata-Greisen lateral distribution function [2]

with an adjustable age parameter s. The angular coordinates � and ' are derived from fast timing

information.

3 Results

The correlations between �(R) and Ne for the observed densities �(R) at 50 m and 120 m distances

from the showers axes are presented in Figure 1. Approximately a linear correlation of �(R) on EAS

size is observed (with a broad range of uctuations) for the both distances.

The NKG function suggests that the
�e(R)
Ne

ratio is independent on Ne. In order to examine this

feature at large distances of 50 m and 120 m radii, the h�e(R)i=Ne ratio dependence on the showers
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Figure 1: Dependence of electron densities on

shower size.
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Figure 2: The h�(R)i=Ne ratio vs the EAS

size Ne (upper part) and the uctuations (lower

part).

size and the uncertainties are shown in Figure 2. The predictions by the Nishimura-Kamata-Greisen

function with Poissonian uctuations are indicated by the dotted and dashed lines. The empty and

�lled circles correspond to 50 m and 120 m, respectively. A good agreement between experimental

and theoretical curves is observed, proving that the NKG approximation is correct for 120 m and 50

m distances in the wide range of Ne.

The density spectrum can be expressed by the form [7]:

F (�e) � �
�(+1)
e (2)

in a large range of densities of (1-1000) m�2, where  is the power index of the integral spectra. It

has been shown that the size spectra have the same shape and slope as the density [7]. The den-

sities of charged particles were derived by corrections of the actual detector measurements for the



L.G. Melkumyan 85

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10 10
2

10
3

10
4

105≤ Ne≤107

ρr (m
-2)

dF
/d

ρ 
(s

-1
m

-2
)
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contribution of photons according to [3]. We have composed the di�erential spectra densities for each

detector by using the obtained densities for the arbitrary chosen detectors located at the distances

10 m, 15 m, 25 m, 35 m from the center of the installation. The spectra from these detectors are

shown in Figure 3. The spectral indices equal to 2:51� 0:1 and agree with slope values of refs.[8; 9].

For displaying the dependence on Ne the EAS collected in the data bank are divided into 4 equal log-

arithmic bins of electron sizes Ne and into radial �(R) bins of 4 m. For each (Ne,R) the mean particle

density is obtained for each core distance bin, and the expected LDF by the modi�ed Nishimura-

Kamata-Greisen formula [1] have been calculated. In Figures 4-6 the LDF for the di�erent EAS sizes

are displayed. Dashed lines present the calculated NKG functions. In addition the dependence of ex-



86 L.G. Melkumyan

perimental LDF on the shower age has been investigated for three age intervals of age: 0:3 � s � 0:8,

0:8 � s � 1:2 and 1:2 � s � 1:7. The LDF of \old" showers appears to be atter than the LDF of

\young" EAS [10].

The relative errors of the (modi�ed) NKG approximation appears to be ca. 3-4% at small distances

and ca. 5-6% for large distances (> 80 m) from the EAS axis. This agreement is much better than

claimed for the EAS-TOP detector setup [11].

4 Summary

The MAKET-ANI EAS data bank has been used to illustrate experimentally various features of the

NKG form for the LDF of the electron component. The studies reveal a good general agreement and

the good accuracy of the data, which are slightly modi�ed as compared to previous communications

[4] due to a re�ned calibration procedure of the detector signals in terms of particle densities.
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The main characteristic features of the EAS soft component are experimentally

studied for Ne � 5 � 105 by the GAMMA array on Mt.Aragats, Armenia. The

dependence of the EAS observables on the experimental analysis procedures are

discussed, and the results are compared with predictions of EAS Monte Carlo sim-

ulations of the programm CORSIKA. As energy identi�er the selection parameter

�e with a modi�ed and experimentally more practical de�nition is used. The use

and the uncertainties of the application of this particular EAS parameter are com-

mented. A good agreement between experimental observations and simulation is

noted.

1 Introduction

The GAMMA array [1] is one of the major detector components of the ANI experiment on Mt.

Aragats, Armenia. In the past years several modi�cations of the data processing and acquisition

system have been made which led to a more reliable operation and more accurate measurements in

studying the soft EAS component with determining the lateral density distributions and size spectra.

In the present contribution some results are reported from the data collected during 2300 h operation

time, observing 4 � 104 EAS with Ne � 5 � 105 with the zenith angles of incidence � � 30�. For

the studies of the EAS features we use the selection parameter �e [2], which is assumed to be an

energy identi�er independent from the mass of the EAS primary. In order to facilitate a convenient

experimental determination of this parameter, the de�nition of the selection parameter has been

modi�ed. Its application is illustrated and some open questions of ist applicability are commented.

The detector e�ciency studies and some comparisons of the data with Monte Carlo simulations are

based on the results calculated with the CORSIKA code (vers.5.20) [3] using the VENUS model as

generator of the hadronic interactions.

2 Experiments

For a reliable determination of the charge particle densities the dynamical range of the ADCs of the

data acquisition system has been extended to the range of 7 �103�104. In addition e�ciency factor K,
relating the observed density (�seen) to the true particle density �exact, has been determined, taking

into account the absorption, conversion and scattering e�ects of the detector housings (plastic roofs

of the the detector boxes). Figure 1 displays the dependence of the K-factor from the distance r from

the shower center and justi�es the use of an average value of 1.25 . Figure 2 displays the lateral

distributions and shows the agreement with the simulations.

�
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Figure 1: The variation of the K =

�seen(r)=�exact(r) with the distance r from the

EAS core for di�erent primary energies.

The integral spectrum (Figure 3) does not ex-

hibit a sudden change in the slope so that the lo-

cation of a knee is not directly obvious. In or-

der to assign the comparable position, we look for

the spectral intensity equal to the intensities ob-

served for the knee in other experiments (EAS-

TOP [4], KASCADE [5], see Table 1). It is for ca.

Ne = 1:6 �106 in the spectrum observed in the ANI

experiment.

Table 1: Integral intensity at the knee position.

Experiment I(� Nknee
e )=10�8

EAS-TOP 9.9 � 2.1

KASCADE 9.9 � 2.0

GAMMA 11.0 � 3.0
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Figure 2: Comparison of measured lateral dis-

tributions of di�erent shower sizes with Monte

Carlo simulations.
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Figure 3: Integral size spectrum measured with

the GAMMA array.

3 Energy selection

Since the �rst introduction of the selection parameter �e which had been justi�ed [2] on basis of spe-

ci�c Monte Carlo simulations to be a mass-independent EAS energy identi�er, the de�nition of this

quantity has been changed several times [6,7]. The ingredients of the de�nition are the lateral density

�e(r�) of the electromagnetic component at a particular distance r�, the value fNKG(r� ; Srx�ry) of

the Nishimura-Kamata-Greisen function at r�, with an age value Srx�ry determined from the data by

�tting the lateral range between rx and ry. With each de�nition specifying particular values of r�, r�,
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rx and ry, Monte Carlo simulations prove that the combination �e(r�) = r2��e(r�)=fNKG(r�; Srx�ry)

is only dependent from the energy of the primary, but practically independent from the mass. So far

this result get not inuenced by the particular hadronic interaction model used for the simulations

and by the simpli�cations of the real EAS appearance by the NKG form, though still not clearly

explored, there must exist for any �xed energy an implicit mutual dependence of the parameters

entering in �e(r�). That means that for any choice of r� the parameters of fNKG(r� ; Srx�ry) can be

found in a way to conserve the energy selection quality. A previous de�nition with r� = 135m proves

to be experimentally inconvenient, since it requires measurements far from the shower axis, with

statistical problems due to low densities and necessary corrections for the increasing contributions of

muons. Figure 4 shows the dependence of the charged particle densities at particular distances r from

the shower size. There are systematic deviations obvious between measurements and simulations for

r = 135m, while the agreement for r = 40m is very good. For the simulations a mixed composition

has been assumed (protons: 40%, He: 21%, light nuclei < A >= 14 : 14%, medium heavy nuclei

< A >= 26 : 13%, and heavy nuclei < A >= 56 : 12%).

Thus we de�ned �e(40) = 402 �e(40)=fNKG(1; S15�70). The energy identi�er quality is demonstrated

with Figure 5. It results from simulation studies using the CORSIKA code (vers. 4.068) taking into

account the conditions of the GAMMA array. The EAS have been simulated for energies between

105� 107GeV along the primary spectrum. The error bars in Figure 5 represent the estimates of the

uncertainties arising from the detector performance.

In order to illustrate the selection quality of the used �e parameter, Figure 6 shows the size depen-

dence from �e(40) and from the primary energy, respectively, of the simulated showers suggesting

that the mass compositions are mapped by the uctuations of Ne for �xed �e(40), unless other type

of uctuations of the shower development or of experimental nature do obscure the e�ect.

Figure 7 compares �e(40) with data determined with the GAMMA detector installation. Unfortu-

nately due to the limitation of the used (old) version 4.068 and the unreliability of the used interaction

model at high energies the simulations are limited to �e(40) = 1000. But a general good agreement

between data and simulations can be tentatively noticed.
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4 Conclusion

The studies of the characteristic features of the soft EAS component have been continued and the

results of Ref.[8] are updated. Special attention has been focused to the application of the so-called

�e - parameter as energy indicator of the EAS. The concept and the de�nition has been justi�ed on

basis of Monte-Carlo simulations with the CORSIKA code, but restricted to the NKG description

of the EAS and inferring the necessary local age parameter within this approximation. Actually

there remain uncertainties on the properties of the �e - parameter when more realistic considerations

using EGS Monte Carlo simulations for the soft component are invoked. Additionally the dependence

from the particular hadronic interaction model model, especially of the energy calibration of the �e
- parameter (by using more up-to-date versions of the CORSIKA code) is unclari�ed. Nevertheless

phenomenological comparisons with data, so far possible, show a promising tendency.
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EAS muons lateral distributions in various size intervals around the knee region,

muon size spectra, and their dependences on electron sizes are presented as measured

by the GAMMA array of the ANI Cosmic Rays Observatory on Mt.Aragats (3200m.

a.s.l.) in Armenia. The data are compared with expectations of EAS simulations

using the CORSIKA code and with data of other experiments.

1 Introduction

The determination of the energy spectrum and the mass composition of primary cosmic rays gener-

ating EAS is the main goal of the GAMMA experiment as well as of a number of other experiments

located on di�erent observation levels. The knee, which was found by measurements of the EAS elec-

tron size spectra [1], is of particular interest in view of its origin. The most natural hypothesis is a

steepening of the primary cosmic ray spectrum as predicted by the di�usion model [2]. An alternative

point of view is a change of properties of the hadronic interaction [3] to more rapid energy dissipation.

There are also open questions about the position of the knee in the primary energy spectrum and

the shape of the spectrum. Understanding the nature of the knee requires accurate measurements

of the di�erent EAS components. The muon component of EAS observed simultaneously with the

electromagnetic component is sensitive to the mass composition, and it is expected to give informa-

tion about the variation of the mass composition in dependence of the primary energy. As a �rst

step on this way a detailed study of the mean characteristics of the muon component is necessary. In

this paper we present experimental results obtained with the muon detectors of the GAMMA array,

and we discuss some features of the knee as observed in the EAS muon component. We compare the

measurements with model calculations and other experiments.

2 The Muon Detector and Data Treatment

The GAMMA array consists of two main parts: an array of surface detectors for the registration

of the charged component of EAS and muon detectors. The surface part of the GAMMA array is

described with results on the electromagnetic component in [4]. The spatial and angular coordinates

of the shower axis are determined by the surface array. The muon detector setup of the GAMMA

array [5, 6] consists of two parts with di�erent thicknesses of the absorbers. The corresponding energy

thresholds of the muons are 2.5 GeV and 5.0 GeV, respectively. Reconstructed showers with their

cores inside of a circle of the radius of 40m, detected with an e�ciency above 90%, are included in

the following analysis. For these set of events we determine the muon density lateral distribution in

�
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the range of core distances r up to 52 m for E� >5.0 GeV and up to 90 m for E� >2.5 GeV. In

individual events the range of the accessible muon density measurements is smaller and depend on

the position of the shower core. The lower limits on r are due to the punch-through particles of other

types and estimated to 8 m and 15 m respectively. Additionally the determination of muon lateral

distributions for larger intervals of r with events in the circle with radius of 70 m are possible. The

corresponding upper limits of r are 70 and 110 m. The muon size spectrum as well as the muon size

dependence on Ne will be reconstructed for events in circles with radii 40 m. Some essential changes

were made in the method of the data evaluation. The correction of the transfer from the scintillation

detector response to the incident charged particles number are treated in a way based on the shower

simulations.

3 The experimental data

The average muon lateral distribution is shown in Figure 1 for the shower size interval 3:2�105�5:6�105
and � < 20� for both muon energy thresholds. For E� >5.0 GeV it can be described by Hillas function

with parameters which allow to approximate the Tien-Shan data [7]

��(r;Ne) = 0:95(Ne=10
5)0:8r0:75 exp(� r

80
): (1)

For E� > 2:5 GeV in the range of distances 20-70 m the relation ��(2:5GeV) � 1:3��(5:0GeV) is

ful�lled. The Hillas function with adjusting above parameters describes the muon lateral distributions

in ranges small shower sizes (Ne < 2�106) good. For larger Ne the shape of the lateral distributions
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A.P. Garyaka 93

does not change, but the Ne dependence become stronger. For smaller muon threshold energies e�ects

of penetrating particles are seen up to 15 m core distance. The total number of muonsN� is an integral

of the lateral distribution over the whole range of r. The total number of muons in individual events

is determined on the basis of experimental muon densities using the formula of the lateral probability

distribution w�(r) = ��(r;Ne)=N� where the dependence on Ne is negligible - N exp
� =1/K

P
�exp

(ri)=w�(ri) where we sum up over all K muon detectors. As the measurements are only covering a

limited range of r, the contribution of muon densities at large r for the total muon number has a

not negligible uncertainty. We introduce therefore the so called truncated muon number following

KASCADE [8] but with a slightly di�erent de�nition: N tr
� is the number of muons in the core distance

< Ne >

105 106 107

< 
 N

µ 
  >

103

104

105

 GAMMA  <Nµ> total
GAMMA <Nµ >*<Ne>

-0.79

CORSIKA <Nµ > truncated

CORSIKA <Nµ > total

GAMMA <Nµ > truncated

Figure 3: N� dependence on electron size.

between 8 m and 52 m for Eth
� =5 GeV. Here

holds N tr
� = 0:31N� for our simulation [9].

In Figure 2 the di�erential size spectra of N�,

i.e. the total number of muons, is presented for

E�tr > 5 GeV. A knee is seen at N� � 104.

The region of small N� up to 5 � 103 is strongly
a�ected by threshold e�ects. It is not possi-

ble to determine accurately the power index of

the spectra before the knee. After the knee it is

equal to 2.20�0.15. In the region of N� � 6�104
there is a structure in the spectra. But because

of small statistical accuracy we refrain from any

speculation.

In Figure 3 the dependences of the mean num-

ber of muons and of the truncated number of

muons with the mean electron size hNei are pre-
sented. At hNe i up to the knee range these

dependences can be described with the rela-

tion hN tr
� i � hNe i0:79, followed by a slightly

steeper increase. For illustration that better

the dependence of N� �N�0:79
e with hNei is also

shown in Fig. 3. Such behavior may indicate

a primary spectrum with heavier composition

after the knee. Also the CORSIKA results for

the primary spectrum with power index equal

to �2:70 and a constant mixed primary com-

position: proton - 40%, ��nuclei - 21%, light
nuclei (< A >= 14) - 14%, medium nuclei (< A >= 26) - 13% and heavy nuclei (< A >= 56) -

12% are shown. There is a good agreement for N tr
� in the region before the knee. The disagreement

with the total muon number N� may indicate the problematic of extrapolations of the muon LDF by

functional forms.

In conclusion the lateral distributions of the EAS muon component measured by the GAMMA array

are in good agreement with the Tien-Shan results and can be reproduced by simulations using the
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CORSIKA code with a reasonable mixed mass composition.
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The Aragats Event Simulation Tool ARES
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ARES (ARagats Event Simulation) is a program for the simulation of the detector

response of the scintillation detectors of the ANI experiment based on the detector

simulation tool package GEANT. The �rst version for free and common use of the

code (ARES version 1.01) is presented and a short introduction for beginners is

given.

1 Introduction

For the understanding of the registered data in particle detectors used in modern accelerator and

astroparticle experiments a detailed detector simulation is indispensable. Especially earth bounded

extensive air shower experiments made a progress in accuracy over the last decade due to the usage of

better particle detectors and electronics. Without a detailed detector simulation large uncertainties

would still arise.

ARES is the simulation program for the detector response of the scintillation detectors of the ANI

experiment at Mt. Aragats, Armenia [1]. It is based on GEANT 3.21 [2] with the description of

the detectors used at ANI with unshielded electron detectors and muon detectors below a concrete

and ground shielding. In the present version ARES describes the array of 150 muon detectors with

their correct geometry including the housings and the shielding. ARES starts from single particles

or particles obtained by the air shower simulation program CORSIKA [3] and calculates the energy

deposit and arrival time of particles in each detector. Additionally the ADC value of the detectors are

calculated including a simulation of the PMTs [4]. First physical results of using the ARES program

are published at [5, 6, 7].

2 Download

The o�cial homepage of ARES is

http://www-ik3.fzk.de/�haungs/ares/ares.html

For a �rst use of ARES, please visit this page and follow the instructions.

3 Rules for using ARES

A download of the ARES source is allowed, if attention is paid to the following rules:

� The use of ARES has to be referred (by this article) with the names of the ARES authors and

the number of the used version.

� Any intrinsic changes of the program have to be proceeded to the authors to be con�rmed and

included in the o�cial ARES.

�
corresponding author: haungs@ik3.fzk.de
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        Simplified Program Flow Chart of ARES        
                A.Haungs (14.07.1999)
        --------------------------------------        
                                                          
 (excluding the modules for the interactive version)

                                                                    
  SMMAIN             main steering routine
  |
  |-UGINIT           initializations
  | |
  | |-SMFKEY         reading data input cards
  | |
  | |-SMINIT         user initialisations
  | |
  | |-SMHINI         booking of histogramms
  | |
  | |-SMGEOM         steering routine for detector definitions
  | | |-SMMATS       definition of materials
  | | |-SMTRME       definition of tracking media
  | | |-SMGEOC       definition of geometry
  | | |-SMDINI       definition of detector response
  |
  |-GRUN             event processing
  | |
  | |-GTRIG          trigger generation
  | | |
  | | |-GUKINE       generation of event kinematics
  | | | |-SMKINI     single particle events
  | | | | |-SMKISM   definition of kinematics
  | |
  | |-ACSDAT         reading event from CORSIKA output file
  | | |
  | | |-BLWORK       steering of the CORSIKA read part
  | | | |-UEVBEG     reading event header
  | | | |-USEPAR     reading single particles (with cuts!)
  | | | |-USHOW      reading general CORSIKA event properties
  | | | |-UEVEND     reading event end of CORSIKA
  | |
  | |-GUTREV         starting event in GEANT
  | | |
  | | |-GUTRAK       loop over particle tracks
  | | | |-GUSTEP     processing particle in the materials
  | | | | |-SMSTEP   user routine for each step in tracking media
  | |
  | |-SMZEFI         output of event processing
  | | |-SMADC        ADC values are calculated
  |
  |-UGLAST           GEANT termination
  | |
  | |-SMLAST         user termination routine
  |
  STOP

Figure 1: The simpli�ed owchart of the ARES program.
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Figure 2: Example of using the interactive version of ARES.

4 Instructions for using ARES

Following �les are achieved by a download of the ARES package:

README.html a README �le

Rules.html rules for using ARES

owchart.html a simpli�ed owchart of ARES (Fig.1)

ares.cmz the source of ARES

compares compile and link script for LINUX version (batch).

comparesgra compile and link script for LINUX version (graphic).

ares.input commented steer cards for ARES

ares.car the car �le of ARES

ares.car.ps a postscript �le with the fortran source of ARES

areslogo.gif the logo of ARES
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ARES is written in FORTRAN77 and needs for a successful installation and execution the CERN

program libraries including GEANT 3.21 [2].

From the same source (ares.cmz) a generation of a batch version and a interactive graphics version

of ARES is possible.

The batch version produces as output a ntuple with di�erent observables as well as a sample of his-

tograms.

For the interactive version the user should have some knowledge in GEANT and its interactive part.

An example of a possible output is given in Figure 2.

ARES is developed on a unix alpha workstation and on a LINUX PC (S.U.S.E. 5.2) parallel; for both

machines there are macros available in ares.cmz (patch kumacs) to produce the executables. For the

LINUX version additional compile and link scripts are available, which are called by the macros.

The present version is optimized for the batch version using the output (particles) from CORSIKA

[3] extended air shower calculations looking for energy deposit and arrival time of particles at the

muon detectors in the underground below the GAMMA installation of ANI.

For a �rst usage a simpli�ed instruction is given at the README �le on the Internet page (http://www-

ik3.fzk.de/�haungs/ares/ares.html).
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The simulation code ARES (ARagats Event Simulation) is presented. ARES is

developed for the simulation of the detector response of scintillation detectors of the

extensive air shower experiment ANI. EAS Monte Carlo simulations for the partic-

ular case of shower cores positioned in an area centered at the MAKET-ANI surface

array are performed using CORSIKA. The response of the muon underground de-

tectors of the GAMMA array is simulated by ARES. Correlations between di�erent

shower observables are explored.

1 Introduction

The ANI experiment (3250m a.s.l) consists of two detector arrays, the MAKET installation [1]

and the GAMMA installation [2], with geometrical centres shifted by appr. 200m. The muon

detector system is installed underground below the GAMMA surface array, partially covered by a

calorimeter building positioned in the middle of the array; the underground system consists of 150

plastic scintillator counters of 1m2 area and 5 cm thickness. Because of the su�cient large area of

the muon detector system, a partitioning of the whole system (D30) in 3 subsystems D33 (40 plates),

D32 (50 plates) and D31 (60 plates) could be introduced. This partitioning enables to study di�erent

correlations. It is also recommended for correlations (used for primary mass discrimination) when

the shower core is positioned in certain zones of the GAMMA installation [3]; in such case these

three partitions cover di�erent radial intervals, each of them accessing particular intervals of the

shower lateral distributions. Shower cores positioned inside the MAKET installation allows a good

discrimination between di�erent primaries (especially concerning muon arrival times) due to the large

radial distance of the muon detectors from the shower core.

2 ARES Program

ARES (vers. 1.01/00 from 14.07.1999) [4] is the simulation program for the detector response of the

GAMMAmuon underground detector of the ANI experiment at Mt. Aragats (3250m a.s.l.), Armenia.

It is based on GEANT 3.21 [5] with the description of the detectors including the housings used at

ANI as unshielded electron detectors and as muon detectors below a concrete and ground shielding.

In the present version ARES describes the array of 150 muon detectors with their correct geometry

and the shielding. ARES starts from single particles or particles obtained by the air shower simulation

program CORSIKA [6] (version 4.6 in the present work, containing the high-energy interaction model

VENUS [7], and using the NKG-approximation for the electromagnetic part of [8] the showers), and

calculates the energy deposit and arrival time of particles (also secondary particles generated in the

�
corresponding author: badea@muon2.nipne.ro
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Figure 1: View of a iron shower in the muon detector. Centre of the shower is positioned in the

MAKET installation.

absorber) in each detector. For inclined showers (zenith angle � 6= 0o) corrections concerning arrival

times of muons have been done; these arrival times are calculated in a plane through the position of

the shower core and perpendicular to the shower axis. The correction is, in fact, only geometrical,

the underground muons have practically the speed of light. The actual version of ARES does not

take into account the response of electronics and the propagation of light inside the pyramidal houses

of the scintillators. Figure 1 is an example of using ARES in a special graphic mode.
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3 Monte-Carlo Simulations

In the present study EAS Monte-Carlo simulations using CORSIKA are performed. The shower core

has been randomly positioned in a rectangle 16�32m2 corresponding to the centre of MAKET-ANI.

ARES detector simulations are performed for CORSIKA showers of primary protons and iron nuclei

with �xed primary energy (1:78 � 1016 eV), but for two values of the zenith angle: � = 0o and � = 20o.

Approximately 500 showers have been simulated for each case.

It is important to specify the inuence of �-electrons at the detector signal produced by high energy

muons before escaping from the concrete roof of the tunnel or from the concrete arch below the

calorimeter; due to the distance between their production points and scintillator plates they can

be enough deviated from the trajectory of the corresponding muons to hit a neighbouring detector

faking a muon. A scintillator is considered as "�red" by the �rst particle (electron or muon) with

Figure 2: Number of detectors registering electrons (N30
e ) as a function of number of all hitted detec-

tors N30. Each circle or star represents a single EAS.

energy deposit above 5MeV. N30 represents the number of �red scintillators by one shower in all

muon detectors of D30; N31, N32, N33 are the numbers of �red scintillators in the subdetectors D31,

D32, and D33, respectively (N30 = N31 + N32 + N33). Fig. 2 shows the level of contamination of

signals by �-electrons; the iron (1:5mm thick) and aluminum (2:0mm thick) pyramids housing the

scintillator plates are not su�cient enough to absorbe high-energy �-electrons coming from above.

The �nite resolution for the zenith angle � of the shower and the time resolutions of the arrival time

of the shower core and of the arrival times of single muons (�-electrons) are ignored. ARES is able to

reconstruct the (muon) arrival time distributions for each single shower relative to the arrival time of

the shower core (so-called \global times": ��1-arrival time of the �rst muon, ��mean-mean arrival

time, ��0:50-median time, ��0:25-�rst quartile, ��0:75-third quartile) or relative to the arrival time of

the �rst muon in the detector system (\local times"). Both, global and local times are calculated for

the entire detector D30 and for the subdetectors D31, D32, D33. ��1, ��mean, ��0:50 is estimated
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Figure 3: Twodimensional distribution of shower age vs. ��D30
1 for proton and iron induced EAS

and for two values of the zenith angle (� = 0o; 20o). Primary energy: E0 = 1:78 � 1016eV .

with a multiplicity condition:

N
31�2 and N

32�2 and N
33�2 =) N

30�6 (1)

i.e. at least 2 �red scintillator plates in each subdetector. The Multiplicity condition for estimating

��0:25 and ��0:75 is:

N
31�4 and N

32�4 and N
33�4 =) N

30�12 (2)

Fig. 3 shows the good discrimination feature for showers induced by proton and iron primaries in the

twodimensional display: shower age - arrival time of �rst muon in detector D30. The correlation of

the shower size with the number of �red plates in detector D30 displays an excellent discrimination

power between proton and iron induced showers (see Fig.4). Age and shower size are general shower

parameters, which are reconstructible by a detector surface array like MAKET or GAMMA. For an

analysis of the data in terms of the elemental composition of cosmic rays in a continuous work we have

to specify, if the discussed variables (Ne, age, N
30 and the �� 's) are realistic from the experimental

point of view.

4 Conclusions

High-energy �-electrons produced by high energy muons and escaping from the concrete modi�es the

appearance of muons. Nevertheless an excellent discrimination between proton and iron primaries

is observed, even when number of "�red" detectors instead of number of muons calculated from the

signals in the scintillator plates are considered (Fig.4).

Concerning arrival times of muons (sometimes faked by �-electrons): a discrimination between proton

and iron primaries is favoured by large distances (� 200m) between muon detectors and the shower

core positioned in the MAKET installation (Fig.3). Correlations of the arrival time in one subde-

tector with the arrival time in another subdetector (and also between number of muons in di�erent

subdetectors) [3] are not favourised because, for shower cores in the MAKET-ANI array all muon
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Figure 4: Number of �red plates in detector D30 (N30) vs. the shower size (Ne) for two values of the

zenith angle (� = 0o; 20o). Primary energy: E0 = 1:78 � 1016eV .

scintillators have rather the same distance to the shower axis. In addition, an aspect reducing the

primary mass discrimination e�ect of arrival time distributions is the high energy threshold for muons

penetrating into the scintillator plates of the underground muon detector [9].
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The response of the EAS muon component is studied by the detector simulation

program ARES, developed for the GAMMA installation on Mt.Aragats (ANI Cos-

mic ray Observatory). The studies are directed to investigations of the features

of the lateral distributions and the muon arrival time response. Comparisons with

experimental data are presented.

1 Introduction

In order to interpret the results of EAS experiments the detailed modeling of the development of the

EAS in the atmosphere and of response of the detector are required.

The response of the EAS muon component in the GAMMA installation [1, 2] is simulated by the

detector simulation program ARES [3] based on the GEANT package [4] and speci�ed to the actual

layout of the installation, which consists of the surface part for the registration of the EAS soft

component, a calorimeter building and the large muon underground detector to register the muon

component.

The muon underground detector consist of two parts (see also [5]): 60 plastic scintillators (100*100*5

cm3) are placed in the underground hall below the ANI calorimeter building, and another 90 detectors

are installed in the so-called tunnel. The detectors are built into aluminum or iron pyramid-shaped

housings [6]. The thresholds for muon detection are � 5GeV in the hall and � 2GeV in the tunnel.

The EAS simulations are performed using the CORSIKA version 5.62 [7] with NKG option and use

of the high energy interaction model QGSJET and the GHEISHA for interactions at lower energies.

Using CORSIKA data together with ARES program the response of the EAS secondary particles

in the detectors is simulated to get the energy deposits and arrival times of each particle in the

individual detector.

2 Muon Lateral Distribution

In the present analysis the air shower initiated by primary protons and irons with E0 = 1015 eV,

� = 0� are considered. The shower core positions are varying randomly within the square of 60m*60m

with the center in the middle of the calorimeter. This represents roughly the experimental shower

selection.

The methodical procedure of the muon number estimation is described in [8]: to deduce the number

of muons registered by each detector ("estimated" muon number) the sum of deposited energy in the

detector has to be divided by factor of 9.5 MeV as a �rst approximation. This is compared with the

�
corresponding author: mary@jerewan1.yerphi.am
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Figure 1: "True" and "estimated" muon numbers in all scintillators for proton and iron induced

showers (simulated EAS with its core distributed in a square of 60m*60m around the center of the

ANI calorimeter [5].
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Figure 2: The lateral distributions of "true" and "estimated" muons in proton and iron induced

showers for the hall detectors.

"true" muon number which is known due to the simulation procedure (see Fig.1). One can see some

overestimation of muon number due to hadronic punch-trough or due to high-energetic secondaries

("�"- or "knock on"-electrons) produced in the shielding.

Using these muon numbers we can construct pseudo-experimental data (including primary energy of

shower, angle of incidence, core coordinates and the energy deposits at each of the 150 detectors)

from which we can calculate the muon lateral distribution function.



M.Z. Zazyan 107

The lateral distributions of "true" and "estimated" muons in showers initiated by primary protons

and iron nuclei with primary energy E0 = 1015 eV are presented in the Fig.2 and Fig.3 for the hall

and tunnel detectors.

10
-2

10
-1

1

0 5 10 15 20 25 30 35 40 45 50
r[m]

ρ(
r)

TUNNEL

●   est. µ  ARES

▲  real µ  ARES

P

θ=0o

Eo=1015eV

10
-2

10
-1

1

0 5 10 15 20 25 30 35 40 45 50
r[m]

ρ(
r)

TUNNEL

●   est. µ  ARES

▲  real µ  ARES

Fe

θ=0o

Eo=1015eV

Figure 3: The lateral distributions of "true" and "estimated" muons in proton and iron induced

showers for the tunnel detectors.
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Figure 4: Simulated and experimental muon lateral distributions in the hall and tunnel detectors.

In Fig.4 the muon lateral distributions for proton and iron induced EAS are compared with the

experimental data for two di�erent shower size ranges. In each experimental sample classi�ed along

the shower size showers initiated by protons are prevailing. That is why there is a good agreement
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between muon lateral distributions for proton induced EAS and data for < Ne >= 3:5 � 105, which
is the mean shower size for simulated proton showers. It has to be noted that this comparison is not

correct for showers initiated by irons as far as in an EAS sample classi�ed along the shower size the

heavy primary induced EAS have a higher energies.

Some di�erences in the distributions could be due to the various factors, such as angles of incidence

(in experimental sample it is 0 - 30� ), �xed primary energy of simulated EAS, inaccurate description

of uneven ground layer due to hilly place, the shower selection procedure (in the experiment we select

the showers with axis inside the circle with the radius of 30m from the calorimeter center) et al. For

the tunnel case the di�erences in simulated and experimental data below 10m are due to the punch-

through of the electromagnetic EAS component which is not included in the simulation (CORSIKA

with NKG-option). The shielding in case of the hall is thick enough to absorbe this component in

total.

3 Arrival Time Distributions of EAS Muon Component

For the investigation of the possibility to separate proton induced showers from iron induced showers

in GAMMA experiment using the time distributions we considered the muon arrival time distributions

[9] for two cases of shower positions - randomly within the calorimeter area (Xcore = �9m � 30m,

Ycore = 20m � 30m) and within the remote from the muon detector quarter of the calorimeter

(Xcore = �24m� 15m, Ycore = 35m� 15m).
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Figure 5: The arrival time of the �rst muon in the muon detector for the showers randomly positioned

within the calorimeter area (left) and within the area of remote quarter of the calorimeter (right).

Fig.5 and Fig.6 show the distributions of the foremost muon and of the median values of the muon

arrival times relative to the arrival of the core [10] for E0 = 1015 eV and � = 0�. Of course, arrival

time distributions depend on the primary energy E0, the inclination of the shower axis � and the

distance R� from the shower core. But one can see that it will be di�cult to separate proton and

iron induced showers with the distances from the muon detector to the shower axis available in the

GAMMA installation.
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Figure 6: The median muon arrival time in the muon detector for the showers randomly positioned

within the calorimeter area (left) and within the area of remote quarter of the calorimeter (right).

4 Conclusion

The detector simulation program ARES for GAMMA installation has been developed. The present

studies examined that ARES works well.

In the future, the correct comparison of simulation results with experimental data will allow us to

infer information on the mass of the primary particle.
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Calibration of Scintillation Detectors
for the Aragats EAS Installation

S.V. Blokhin1, V.A. Romakhin1�,

G.G. Hovsepyan2

1Lebedev Physics Institut of Russian Academy, Russia
2Yerevan Physics Institute, Cosmic Ray Division, Armenia

The lateral distribution functions (LDF) of observed densities of particles measured

by scintillation detectors with di�erent thicknesses (5 cm, 1.5 cm and 1.0 cm) are

investigated. Comparisons of the corresponding LDFs provide the possibility to

reconstruct the "true" EAS particles density from the data measured with 5 cm

thick scintillation detectors as used at the MAKET-ANI installation.

1 Introduction

In the investigations of the MAKET-ANI detector installations the lateral density distribution of the

EAS particles is usually determined in the distance from 3 m to 100 m from the shower axis. The mea-

sured lateral distribution is �tted to Nishimura-Kamata-Greisen (NKG) form for the electromagnetic

component of air showers:

�(r) =
Ne

rm
C(s)F (r=rm; s) (1)

where �(r) is the expected density at distance r from the EAS core position, Ne is the EAS

size, rm = 118m (for the ANI altitude) is the Moli�ere radius, s is the so called EAS age, and

C(s) = 0:366s2(2:07 � s)1:25 [1].

If scintillation detectors are used for EAS particle density measurements, the experimentally reg-

istrated densities have to be corrected to get the real particle density. Since the thickness of the

plastic scintillation detector is �nite, the particle density measured by 5cm thick plastic scintillators

is a�ected by various e�ects, such as gamma ray conversions, nuclear interactions in the scintillator,

absorption of low energy electrons etc. The di�erence between the experimentally observed density

�exp(r) and the expected density �true(r) can be accounted by a function Rsc=ch(r) which is estimated

by an experimental calibration procedure [2-7] or by Monte-Carlo simulations [8].

2 Experimental determination of Rsc=ch(r)

The MAKET-ANI and GAMMA standard detectors are 5 cm thick plastic scintillators, which display

a su�ciently large amplitude and timing resolution [9]. For the investigation of Rsc=ch(r) at the

MAKET-ANI installation two additional scintillation detectors with sizes of 30� 30 cm2 � 1 cm and

50 � 50 cm2 � 1:5 cm have been used. For all scintillators the PM high voltage setting and tuning

is performed in similiar way, as described in ref [10]. The thin scintillation detector is assumed

to registrate an approximately correct particle density. Hence a comparison between the particle

density measured with the thin detector and the density estimated with the standard detector (100�
100 cm2 � 5 cm) located at the same place in the EAS array is performed. The investigation uses

samples of showers characterised by:

�
corresponding author: romakhin@x4u.lpi.ruhep.ru
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Figure 2: Experimental data obtained by calibra-

tion function for di�erent installations. K5=1:5

is de�ned by (2) from ratio of average LDFs for

5cm and 1.5cm thick detectors and < lgNe >=

5:547.

1) EAS size: 1:5 � 105 � Ne � 1: � 106;
2) age parameter s � 0:3� 1:7 and zenith angle � < 30�;

3) EAS core position: j x j� 24m and j y j� 12m with x0; y0 as the coordinates of the

geometrical center of the MAKET-ANI facility.

The LDF for the 5.0 cm, 1.5 cm and 1.0 cm detectors and for three EAS size intervals (< lgNe >=

5:324; < lgNe >= 5:547 and < lgNe >= 5:77) are reconstructed (one of them is presented in Figure

1). The ratio of the NKG approximation for two detectors with di�erent thicknesses (t1 and t2 in

cm) leads to the calibration function:

Kt1=t2(r) =
�t1exp(r)

�t2exp(r)
(2)

The calibration function measured for di�erent EAS sizes and detector con�gurations (3.5 cm thick

scintillator for [2], 5 cm for [3-5,7], 30 cm for [6]) are presented at Figure 2. The results of the

present investigation are showen by the line on the same �gure. In all quoted experiments for the

calibration of scintillation detectors, the LDFs deduced by densities measured with standard detectors

are compared with LDFs measured with detectors which have a low energy registration threshold and

a low e�ciency for  conversion (gas counters at ref. [2-5], and a 0.3 cm thick scintillation detector

at [7]). However, as shown in [11] the gas counters had a real threshold of 1-1.7 MeV (by housing,

glass tubes etc.).

For our investigations we use thin plastic scintillators located in the same place as MAKET-ANI

scintillators. The scintillators with thicknesses 5 cm, 1.5 cm and 1.0 cm are equivalent to 0.125,

0.038 and 0.025 radiation units, respectively. Assuming that, due to the relatively small thickness
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Table 1: The parameters of NKG form (1) for three EAS size intervals for detectors of di�erent

thicknesses.

Ne age Ne age Ne age

2:11 � 105 0:750 1:99 � 105 0:901 1:91 � 105 0:929

5:0cm 3:53 � 105 0:707 1:5cm 3:19 � 105 0:886 1:0cm 3:09 � 105 0:899

5:89 � 105 0:871 5:02 � 105 0:871 4:84 � 105 0:890

Table 2: Average of the experimentally shower parameters after correction with (5) and � = 0:18.

Ne age

1:87 � 105 0:927

Maket�ANI 3:00 � 105 0:903

4:81 � 105 0:894

of the scintillation detectors, processes of  conversion and e�ciency losses due a nonzero detector

threshold linearly depend on the thickness of the detector, we obtain after simple transformations

following expression (using 1.5 cm and 5 cm scintillators):

�true(r) �
1:5

5� 1:5
��exp(r)

�
5

1:5K5=1:5(r)
� 1

�
: (3)

We check this relation with help of the data obtained by the 1 cm and 5 cm thick detector:

�true(r) �
1

5� 1
��exp(r)

�
5

K5=1(r)
� 1

�
: (4)

where �true(r) is the density of all charged particles and �exp(r) is the experimentally observed density

at the 5 cm thick detector, K5=1:5(r) and K5=1(r) are de�ned by (2).

3 Results and Discussion

The EAS sizes and age parameters of the LDF give by eq.(1) are presented in Table 1 for the 5 cm,

an 1.5 cm and 1 cm thick detector and for three intervals of Ne. We assume that the dependence of

Rsc=ch from the EAS core position follow the functional form [12, 13]:

Rsc=ch(r) =
�exp(r)

�true(r)
=

�
r

rm

���
: (5)

The values of the parameter � obtained from the �t to expression (5) are 0.15, 0.19 and 0.22 for the

three Ne intervals.

To con�rm this result we analyzed additionally the data of the 5 cm and 1.0 cm thick detectors. For

this pair we obtain � values of 0.16, 0.18 and 0.21 respectively. This results agree with estimates of

� = 0:18 obtained by earlier investigations [12].

The experimental showers from the MAKET-ANI installation data bank have been recalculated using

corrections (5) for � = 0:18. The resulting average values of EAS size and age are presented at Table



114 G.G. Hovsepyan

2. The correction form (5) with � = 0:18 satisfactorily approximates the observed mean values of the

age parameter. The discrepancy of the observed age parameter does not exceed �0:03 depending on
the EAS size.
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Some Comments on the Signi�cance of Arrival Time
and Angle-of-Incidence Distributions of EAS Muons
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Institut f�ur Kernphysik, Forschungszentrum Karlsruhe, Germany

In view of various approaches of installing e�cient timing facilities in EAS detector

arrays and current measurements of arrival time and angle-of-incidence distributions

of EAS muons the information potential of such type of studies is discussed.

1 Introduction

Information about the longitudinal development of EAS (expressed by adequate parameters like the

atmospheric depth Xm of the EAS maximum or the elongation rate) is of extreme interest and highly

relevant for the task to disentangle the twin problem, which we are faced to in EAS physics: Determi-

nation of the nature of primary particles arriving from the cosmos and simultaneously of the nature of

the hadronic interactions of these particles with the atmospheric nuclei at ultra high energies. Figure 1

Figure 1: The average longitudinal development of

the various EAS components as predicted by Monte

Carlo simulations using the CORSIKA code [1].

displays the development of the total intensi-

ties (sizes) of the main EAS components as

predicted by realistic Monte Carlo simulations.

While the size of electromagnetic cascade de-

velops to a well pronounced maximum (at the

atmospheric depth Xm) with a subsequent de-

cline when penetrating deeper in the atmo-

sphere and the absorption processes are going

to overcompensate the production of neutral pi-

ons, the muon cascade appears with a di�erent

shape, with a less pronounced decrease after

reaching a maximum. Obviously the cascade

curves for primary particles of di�erent types

have di�erent shapes, in particular they di�er

in the position of the EAS maximum. However,

we should be aware that the longitudinal devel-

opment of single showers is subject of consider-

able uctuations which obscure the di�erences

when showers of di�erent kinds are compared.

In order to give an immediate impression about

the strong uctuations of the EAS development

Figs. 2 and 3 display the size distributions

of 1015 eV proton and iron induced EAS (from

1000 events of vertical incidence, simulated by

CORSIKA with EGS), respectively for various

observation levels. The uctuations get obvi-

ously minimised for the atmospheric depth of

�
email: rebel@ik3.fzk.de
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Figure 2: Simulated Ne distribution for proton

induced EAS with the primary energy of 1015 eV

[2].

Figure 3: Simulated Ne distribution for iron in-

duced EAS with the primary energy of 1015 eV

[2].

500-600 gcm�2.

The standard observables measured with ground based detector arrays inform merely about the actual

state of the development of extensive air shower, just how it appears on the observation level. The

sizes (Ne, N�) of the various components are deduced by integrating the more or less widely spread

out lateral particle densities. The EAS muons e.g. which themselves or whose parents (charged

pions and kaons) have acquired larger transverse momenta, are deected to larger radial distances

from the shower axis. The shape of the lateral distribution carries information about the status of

the EAS development, expressed in parameterisations of the lateral charged particle distributions by

the so-called age parameter. It quanti�es the e�ect that the lateral charge particle distribution of

a proton induced shower appears to be steeper than the distribution of an iron induced EAS of the

same primary energy, just due a di�erent longitudinal development.

There are historically well worked out attempts to infer some information about the average lon-

gitudinal development of the EAS variables near the observation level of the ground based detector
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of protons at di�erent observation levels and ob-
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Figure 5: Ne cascades curves reconstructed

along constant intensities of the Ne spectra ob-

served under di�erent zenith angles (see Fig.4).

array by observations under di�erent zenith angles of EAS incidence, i.e. by observing the same class

of showers after traversing di�erent atmospheric depths X.

Figure 4 shows Ne spectra generated by EAS simulations (CORSIKA Monte Carlo simulations [1]

with the NKG approximation) calculated from a primary energy spectrum I / E�2:7 at di�erent

observation levels and observed under di�erent zenith angles of EAS incidence [3]. From such spectra

observed in various experiments (see Ref. [4]), relating equal intensities (more strictly equal primary

energies identi�ed by an adequate energy indicative EAS parameter) the cascade curves can be re-

constructed (Fig.5). These cascade curves may be further analysed in terms of the attenuation of the

shower development [4]. In a similar way the average age parameter observed under di�erent zenith

angles i.e. in di�erent stages of the EAS development can be studied [5].

High-energy charged particles generate Cerenkov radiation which is strongly forward peaked and can

be detected on ground. It is emitted by the shower cascade throughout the atmosphere and o�ers the

possibility of measuring the total energy of the shower and of tracing the rate of build up the shower.

Due to the changing refractive index and the characteristic Cerenkov angle the lateral distribution

has a particular structure, and the shape of the distribution around 100 m gets sensitive to the height

of emission. The light from the early part, where the energy of the particles are still very high and

the scattering angles small is concentrated in a characteristic ring near 100 m. The resulting lateral

distribution is the superposition from all heights and its shape depends on the shower development.

If the shower maximum gets nearer to the ground, more light is produced near the shower core. That

means the lateral distribution drops steeper, the closer the shower maximum approaches the detector.

There is a correlation between the distance to the shower maximum and a slope parameter of the
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Cerenkov light distribution �c = �0 exp(R � slope). The correlation proves to be independent from

the type of the particle and the angle - of - shower incidence.

The information about the depth Xm of the shower maximum is related to information about the mass

of the primary particle. The change of the position of the depth of the EAS maximum with the energy

per decade, the so-called elongation rate is fairly constant. As consequence of the superposition model

approximation i.e assuming that for the heavy primary (A) the Xmax dependence scales with E/A,

the mean atmospheric depth of the maximum depends only from the energy per nucleon of the pri-

mary. This is con�rmed by simulations, but showing also considerable uctuations, decreasing with

the nucleon number A. With the average E/A deduced from Xm of maximum we gain information

about the average mass, if independently the energy E of the primary can be determined [6].

Another e�cient technique enabling the investigation of the longitudinal EAS development, in par-

ticular the distribution of Xmax, relies on the excitation of nitrogen uorescence in air by the passage

of charged particles. By observation of the uorescence light using large facilities like Fly's Eye [7]

it is possible to reconstruct the size of EAS as function of the atmospheric depth, especially for high

energy showers (for details see Ref.[7]).

Muons, associated with extensive air showers (EAS), carry valuable information on parent particles

and reveal signi�cant details of the production processes. Though the muon component is less copious

and laterally more spread than the dominant electron gamma component, it reects the properties of

the parent particles and the development of the air shower cascade in a less distorted way. This is due

the relatively direct coupling to the hadronic backbone of the EAS and due to the weak absorption

and reduced Coulomb scattering of the muons, travelling through the atmosphere. From studies of

the multiplicities at ground level or bundles of high energy muons observed deep underground, we

may infer information about the �rst generations of interactions and of the leading shower particles.

The following remarks will focus the attention to the particular information carried by the distribu-

tions of the arrival times of muons arriving at the detectors of ground-based arrays. They map the

longitudinal development of the muon component, due to the fact that higher energy muons travel

relatively undisturbed, like a light ray, through the atmosphere, so that their times of ight or angles

of incidence do point to the loci of production [8, 8, 10]. Based on this feature the central detector of

the KASCADE experiment [11] is equipped with a timing facility, a muon eye of 456 fast scintillation

detectors to measure the muon arrival times relative to the arrival time of the shower core (global

times) or relative to the arrival of the �rst muon in the detector (local times) [12]. Realising the great

importance of the time dimension of shower variables for constraining the experimental information

on the longitudinal EAS development and for controlling Monte Carlo simulations, the installation

of a timing facility for the GAMMA array of the ANI Cosmic Ray Observatory on Mt. Aragats in

Armenia has been proposed and advocated [13]. In following we consider some features of arrival

time distributions, in particular with a closer look, of the EAS muon component.

2 Arrival time distributions of EAS particles

The particles of extensive air showers move nearly in the direction of the primary particle with

velocities close the velocity of light. Transverse momenta and multiple scattering produce a lateral

dispersion. Di�erences in the velocities and, in particular, in the path-length, when travelling through

the atmosphere, are origin of a longitudinal dispersion of the air shower disc. This dispersion is re-

ected by the variation of the arrival times, for particles observed at a particular �xed arrival locus

- this is the temporal structure i.e. the thickness of the shower disc -, as well as for particles of the

extreme front (approximately, but with non-negligible uctuations, represented by the arrival time

of the �rst particle), observed at di�erent distances from the shower centre. In the latter case the
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relative arrival times reect the shape (curvature) of the front and the direction of incidence of the

shower.

We may quote Bassi, Clark and Rossi 1953 [14], who presented the �rst systematic experimental

information about the time-structure of EAS and established the procedure to determine the arrival

direction of EAS with the arguments:

"Particles in an extensive air shower, generated by a single high-energy particle incident on the top

of the atmosphere, may be delayed with respect to one another at plane of observation because

� path lengths may di�er as a result of scattering

� velocities may di�er

� the axis of the shower may not be perpendicular to the plane of observation.\

Bassi et al. [14] determined the mean shower thickness (mean time delay) equivalent to 4-8 ns

and the curvature of the front with a radius of more than 1300 m. For the penetrating compo-

nent the curvature proves to be smaller, with a shower disc thickness equivalent to ca 8 ns, but

with a mean value timely delayed by more than 10 ns compared to the electromagnetic component.

The latter feature has been disproved: the muon disc walks ahead of the electromagnetic front.

Figure 6: Relation of arrival-time and angle-of-incidence to

muon production height.

Linsley and Scarsi [15] and Thielert

and Wiedecke [16] systematically ex-

plored the lateral dependence of the

shower thickness, expressed by the

median delay time relative to the ar-

rival time of the shower core. The

increase of the time dispersion with

the distance from the shower cen-

tre has been revealed. Since these

early studies the time structure of

the EAS charged particle component

has been experimentally studied under

various aspects. Walker and Watson

[17, 18, 19] exploring the time struc-

ture of the charge particle component,

and directed the interest to uctu-

ations, whose origin could be inter-

preted as uctuations of the height of

maximum of the shower development

due to di�erent masses of the pri-

maries, as consequence of di�erent in-

teraction lengths of the primaries and

the multiplicities, energy and momen-

tum distributions of the secondaries

[20]. More recently Agnetta et al. [21]

and Ambrosio et al. [22, 23] presented

detailed results about various depen-

dences of the temporal structure of

EAS charged particles, based on measurements with the GREX/COVER-PLASTEX set-up [21].

The aspect that arrival time distributions of muons of higher energies do map the longitudinal shower

development [24] has been pursued by detailed investigations of the temporal structure of the muon

component with the underground water-Cerenkov-detector set-up of the Haverah Park experiment

by Blake et al. [25]. They explored the dependence of the time-delay on the inclination � of the
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Single Shower: ��1 relative to the arrival of the core

= shower front

�1 uctuations of the shower front

f�� loc

0:50
; �� loc

0:25
; �� loc

0:75
g : intrinsic structure

= time spread = shower thickness

Average Shower: fh�� loc

0:50
i; h�� loc

0:25
i; h�� loc

0:75
ig

= average intrinsic time spread

= average thickness

f�0:50; �0:25; �0:75g = dispersion of distributions

of the quartiles of the single shower around

the average

Figure 7: Air shower front and time pro�le.
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shower axis, on the primary energy E0 (or shower sizes Ne and N�, respectively), and on the distance

R� from the shower core.

The experimental interest of this speci�c kind of EAS investigations is directed to measurements of

EAS observables which represent the arrival time distributions, i.e. the distributions of various char-

acteristic quantities T like the mean values, median values of the uctuating individual distributions

etc. and their dispersions. The variation of the mean of these quantities with the distance from the

shower core R� represents the EAS time pro�le [11]. It depends on the energy E0, the mass M of

the primary particle (reected by adequate shower variables like Ne; N�), on the angle � of shower

incidence and additionally on biasing trigger and observation conditions: energy threshold Ethres and

multiplicity n of the muon detection. The general interest is focussed to the arrival time distribution

or to various characteristic parameters Q (mean value and dispersion e.g.)

Qt = F (E0=Ne; R�;Ethresh;m; ::::::::;M) (1)

with a careful consideration of the biasing trigger, threshold conditions, the detection multiplicity m,

and of the correlations with other shower variables.
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Figure 8: The inuence of laterally varying sample multiplicities

of the single arrival time distributions on the global and local time

pro�le of the EAS muon component without and with the detector

resolution taken into account.

The measurements determine

the time of arrival �� of the

muons relative to the arrival

time �c of the EAS shower cen-

tre. This di�erence is tradi-

tionally called the muon delay

time. We designate the distribu-

tion of these muon time delays

as global arrival time distribu-

tion, which reect the curvature

of the shower disc. In a simpli-

�ed geometrical consideration,

neglecting the velocity disper-

sion, multiple scattering (geo-

magnetic e�ects) and the fact

that the muon production loci

can be displaced from the axis,

it may be related to the produc-

tion height. Strictly the arrival

time of the muon is T� = �0+��

where �0 includes the time of

ight of the parent. The simpli-

�cation assumes �0 = 0, �� = 1

and that the muon is produced

on the shower axis.

This situation is sketched in Fig-

ure 6 for the simpli�ed case of

vertical showers (the case, we consider for sake of simplicity). The relation shows that �� decreases

with increasing height; it increases with the radial distance of the timing detector. There are some

experimental philosophies to reconstruct, in a �rst step at least, the distribution of the production

heights, which inform about the longitudinal shower development. In practical analyses, we consider

the distributions of the mean, the median values (��0:5) and other quartiles (��0:25,��0:75) of the
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single event distribution or of the �rst arriving muon (��1). With respect to mass discrimination

e�ects, it is preferable to analyse the measured distributions directly (without the detour of mapping

the production height with limited accuracy).

Compared to the EAS muons, there are the much more abundant photons of the air-Cerenkov light.

However, muons, though being less copious, exhibit some advantages, particularly since muons are

directly coupled to the EAS development and can be observed day and night. In addition the time

pro�le of the Cerenkov pulse maps the longitudinal development of Ne(X) in a quite non-linear re-

lationship between the height of emission and arrival times of Cerenkov photons. That is due the

propagation of the optical photons under the inuence of a changing refractive index.

Di�erently from global arrival time distributions ��glob (see Fig.7), whose variation with the distance

from the shower core characterises the curvature of the lateral particle distributions, the local time

structure, determined relatively to the arrival of the foremost locally detected muon, reects the

intrinsic time structure and the spread relative to the front, the latter being de�ned by the arrival

of the �rst muon. However, because of the relatively small number (sample multiplicity) of muons

de�ning the observed single distributions, the local quantities are subject of various uctuations, in

particular of the uctuation of the arrival of the �rst muon used as zero calibration point. As com-

pared with the time delay distributions determined relatively to the (in principle) well de�ned arrival

of the light front in the shower core, this uctuation leads to a noticeable dependence of the local

characteristic quantities from the muon multiplicity of the sample, as discussed in ref. [24]. Since

the average multiplicity varies with the lateral distance from the EAS core, the observed local time

distributions are superpositions of di�erent multiplicities. Intriguing features arising from the e�ect

that the time zero reference does not always reect the extreme shower front, have already pointed

out with KASCADE data in ref. [12] and get more pronounced, when combined with e�ect of the

�nite measuring resolution of the timing detectors (Fig.8).

Hence for a reasonable analysis of the arrival time distributions a correction procedure has been ap-

plied, removing the experimentally induced distortions by the uctuations around the true reference

point, in the observed data as well as in the detector simulations.

3 Shape of the arrival time distribution and the EAS time pro�le

In the following we illustrate some aspects with results of Monte Carlo simulations performed with

the CORSIKA progam [1] using the QGSJET model [26] for the case of the KASCADE experiment.

The response of the KASCADE detector system and the timing qualities have been simulated using

the CRES program, dedicatedly developed by the KASCADE group on the basis of the GEANT

code [27]. The muons of the simulated EAS are tracked through the detector set up, and the timing

response of the detectors are recorded for various core distances from the central detector facilities.

Particularly, it should be noted that the timing depends on the energy deposit in the scintillation

detectors. This e�ect slightly distorts the measured time distributions in the centre and could be

corrected by introducing a corresponding correction procedure. For the presented examples we did

not apply such a procedure to the experimental distributions and preferred to include this e�ect in

the simulated distributions.

Figs. 9 and 10 display simulated median distributions of the arrival times for EAS corresponding to

a log10N
tr
� range of 3.7- 4.0. For the studies with the KASCADE experiment the so-called truncated

muon number N tr
� , the muon intensity integrated between 40 and 200 m from the shower core, proves

to be a good energy estimator. According to the suggestions of ref. [28] a mass composition H : O :

Fe = 4 : 1 : 2 has been adopted. The simulated distributions do well follow the parameterisation by
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Figure 9: Simulated distribution of medians of ��0:5 the muon arrival time distributions observed

for di�erent distances from the EAS centre for a zenith angle range from 0� < � � 15� and 3:7 <

log10N
tr
� � 4:0.

the � - p.d.f. [29] (shown as lines in the �gures).

�(T ) = aT
b
exp(�c T ) (2)

with a mean value hT i = (1 + b)=c and the standard deviation �� = (1 + b)1=2=c.

The simulations indicate a meager mass discrimination power, at least in a range of relatively low

primary energies and when realistic conditions of the timing detectors are seriously taken into account.

In Fig.11 simulated results for proton and iron induced EAS are shown. It shows that for the

considered N tr
� range (corresponding to about E0 � 3 � 1015 eV) and for radial ranges up to 80 m the

median muon arrival times are close together for all primaries.

It is interesting to note that the simulated distributions reproduce the shift to increasing values

at small R�, which is a consequence of the multiplicity e�ect, not corrected in the results shown

for demonstration in Figs.9-11. Actually since the e�ect depends from the resolution of the timing

detectors, for further discussions the inuence of the lateral varying multiplicities, distorting the real

pro�le should be removed. After a corresponding correction the pro�le exhibit fairly well a parabolic

shape, for which an adequate parameterisation can be given (see ref.[12]).
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Figure 10: Simulated distribution of medians

��0:5 of the muon arrival time distributions ob-

served for a distance from the EAS centre 80 <

R� � 105m, assuming a ratio of H : O : Fe = 4

: 1 : 2.

Figure 11: Simulated median value time pro�les

h��0:5i, for proton and iron induced EAS (tak-

ing into account the detector response).

4 Remarks on muon angle of incidence distributions

Analogously to the arrival time muon angle-of-incidence distributions can be studied. Due to ex-

perimental restrictions and necessary angular and location accuracies, experimental investigations

are relatively scarce.In context with the so-called Time-Track Complimentary principle [9] there is a

discussion about the merits of such measurements. The basic assumption of tracking is the assump-

tion that the production locus of the muon is the minimal distance of the reconstructed skew muon

trajectory from the shower axis. This de�nition is somehow arbitrary so that the reconstruction

result from the angular distribution - even if multiple scattering e�ects would be negligible - may

di�er from the time reconstruction. Obviously there is a strong correlation between the two kinds of

distributions. The idea has been propagated to improve the accuracy by simultaneous measurements

and to correlate the information. This has been put forward �rst by McComb and Turver in 1982

[30] and it has been later on ascribed to suggestions of Linsley [31]. Due to the strong correlation,

however, the information about the longitudinal shower development extracted from both types of

observations, is not complementary, it is substitutional. Using advanced statistical non-parametric

methods for analysing multivariate distributions and invoking the Bayes theorem, it could be demon-

strated [10] that the information content of arrival time and angle-of-incidence measurements are

practically identical with respect to a mass discrimination of the primary cosmic ray particle. But it

could be also shown that correlated observations of such distributions at di�erent distances from the

shower axis have more promising perspectives.
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5 What do we learn from observations of EAS particle arrival time

distributions?

The investigations of the shape of the particle arrival time distributions, especially when performed

correlated with other shower observables (Ne, N�, ......) on event-by-event basis, have di�erent as-

pects, which be formulated by following items:

1. Understanding the EAS structure: the curvature and the thickness of the shower discs of the

charge particle and muon components. The shape of the distributions of various adequate charac-

teristic time quantities, the dependencies of their averages and dispersions from the distance R from

the EAS centre (pro�les) are represented by various phenomenological forms. Linsley, realising the

increase of the EAS time spread with increasing R, suggested to use this e�ect on basis of a precisely

determined parameterisation of the local shower pro�le of the charge particle component for an esti-

mate of R of large EAS observed by small detector array, far from the shower core [32].

2. Signatures of the longitudinal EAS development mapped by the arrival time distributions, in

particular for the muon component. Following an approach of John Linsley [33, 34] the dependence

of the arrival time quantities from the zenith angle of shower incidence and from the primary energy

may be related to the elongation rate and uctuations of the atmospheric depth of the

shower maximum. Studies which invoke comparisons with predictions of Monte Carlo simulations

imply not only tests of the propagation procedures, but also of the high- energy interaction models

used as generators of the Monte Carlo simulations. An exploration of the sensitivities to features

of the interaction models and a comparison with data is of outmost current interest.

3. In addition to e�ects arising of the hadronic interaction features, revealing sensitivities to the pri-

mary mass composition is of similar interest [8]. Though di�erences in arrival time distributions

due to di�erences of the primary mass of the cosmic particle inducing the EAS do prove to be small,

arrival time distributions may play a guiding role in multivariate analyses of the EAS appearance in

view of the mass composition of cosmic rays. The possibility of muon arrival time studies correlated

event-by-event at di�erent distances from the shower core is expected to enhance the information

content [10].
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The Central Detector of the KASCADE experiment is equipped with two layers of

scintillation detectors with di�erent area coverage. The scintillators of both detector

systems have a good timing resolution of about 1.6 ns.

With these two arrangements we performed extensive measurements of the arrival

time di�erences at di�erent energy thresholds of the electron and the muon compo-

nent of EAS. The observed time structure of the shower pro�le is classi�ed according

to di�erent EAS parameters. We furthermore present an analysis and comparism

based on detailed MC simulations of the shower development. This comparism

shows good agreement between experimental data and the expected behaviour of

the di�erent time distributions.

1 Introduction
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Figure 1: Mean arrival times of the electro-

magnetic and muon component for simulated EAS.

Arrival time distributions of EAS parti-

cles reect the longitudinal EAS development

and provide information about the interactions

driving the shower cascade. This is due to

the fact that di�erent primaries are character-

ized by di�erences in interaction lengths, trans-

verse momentum, multiplicity and energy dis-

tributions of their secondaries. Especially, the

muon component was studied under these as-

pects. Monte-Carlo simulations for EAS using

the CORSIKA program [1] predict di�erences

of the arrival time distributions of the electro-

magnetic and muon components (Fig.1), specif-

ically showing, that the muon component ar-

rives earlier with respect to the shower core and

to the arrival time of the electro-magnetic com-

ponent usually making up the so called shower

front. In practice there are di�culties in exact

determination of the cores arrival time, but the di�erence ��e�� = h�ei � h��i is an experimen-

tally accessible quantity. In the present contribution we report about measurements of the relative

�
corresponding author: mathes@ik3.fzk.de
y
full collaboration list see at the end of these proceedings



128 H.-J. Mathes

time pro�le ��e��(Rcor) for two di�erent energy thresholds of the detected muons. The results are

compared with predictions of Monte-Carlo simulations.

2 The Experimental Setup

For the measurements the timing and particle detection facilities of the KASCADE central detector

[2] are used together with the KASCADE detector array which provides in the present analysis of

the electro-magnetic EAS parameters. The speci�c features of the components of the KASCADE

central detector are:

- The Topcluster, a detector array consisting of 50 scintillation detectors on top of the central

detector, thus covering 7.5 % of the central detectors total area of about 320 m2. It allows to

measure arrival time and energy deposit of the �rst particle hitting a particular detector.

- The Triggerplane, making up the third active layer of the central calorimeter, measuring the

energy and arrival times of particles passing this layer of scintillation detectors. They cover an

area of about 64 %.

- The position sensitive multiwire proportional chambers (MWPC) underneath the basement of

the central detector having a total area of 120 m2 and therefore covering 41 %.
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Figure 2: Distributions of relative arrival times of the electro-magnetic and muon components (of two

di�erent muon detection thresholds) as compared with EAS simulation predictions.

In particular the detection threshold for muons are about 0.4 GeV for the Triggerplane and 2.4 GeV

for the MWPCs. This is due to the di�erent amount of absorbing material between these detection
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layers which is used to make up the hadron calorimeter of the experiment.

The measured arrival times in Topcluster and Triggerplane have to be corrected for two e�ects:

(i) the timing signals are a�ected by the actual energy deposit due to the light production and the

discriminator threshold (energy deposit e�ect),

(ii) the timing signal depends from the number of particles simultaneously hitting the scintillator

detectors (multiplicity e�ect).

Therefore these e�ects have to be corrected by procedures based on realistic detector simulations.

This is particularly necessary for the Topcluster detectors as they encounter higher particle densities.

3 The Analysis of the Data

The analysis of the experimental data covers data taken in the period from October 1997 until August

1998 which sums up to about 20 million events. The cuts applied for these data are:

- core distances between 40 m and 100 m

- log10(N
tr
� ) between 3.7 and 4.5

The energy estimator log10(N
tr
� ) follows the relation: log10(N

tr
� ) / 0:9 � log10(E)

- shower age between 0.8 and 1.8

- special selection:

log10(N�) > 4:745 � 0:212 � log10(Ne)

It has to be noticed that for the KASCADE case the number of muons N tr
� summed up between 40

and 200 m from the shower center is an energy identi�er, nearly independent from the mass of the

primary particle.

As the area coverage of each detector component is not full, particles of di�erent type might be seen

in one detection layer but not in another one. In addition particles of insu�cient energy might be

stopped in the absorbing material between each detecting layer.

Thus, the separation between signals originating from electrons from those induced by muons could

not be done with 100 % e�ciency and has to be estimated by Monte-Carlo simulations. The restric-

tions used for the electron-muon separation come mainly from additional conditions applied on the

deposited energy and from the back tracing of the muons into Triggerplane or Topcluster using the

MWPCs directional information or the shower direction. Finally about 65 % of the muons could be

separated from electrons whereas the electrons are still contaminated by muons.

After all these conditions the remaining signals of the Topcluster are assigned to the electrons and

the signals of the Triggerplane to muons above 0.4 GeV threshold. Furthermore, events are taken for

the analysis only if they have at least 3 detector hits in the Topcluster and at least 3 detector hits

in the Triggerplane or at least 3 hits in the Topcluster and at least 3 hits in the MWPCs. From the

arrival times gained for one particle species the averaged quantities < �e >,< ��(E��0:4GeV ) > and

< ��(E��2GeV ) > as well as the combined quantities

��0:4 = < �e > � < ��(E��0:4GeV ) > (1)

and

��2:0 = < �e > � < ��(E��2GeV ) > (2)

are calculated and used in the further analysis and comparisons.
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4 A Comparison with Monte-Carlo EAS Simulations

The experimental data after the applied cuts and analysis procedure comprise approx. 200.000 EAS

events. Results of the measurements are shown in Figs. 2 and 3 and compared to simulation results in

di�erent ranges of the energy indicated by the muon number N tr
� . The actual simulation calculations

(based on the QGSJET model [3]) cover an energy range of 5 � 1014 � 1 � 1016 eV (divided in 5

overlapping energy bins for the three mass groups: H = protons, O = CNO group, Fe = heavy

group) for an energy distribution with a spectral index of -2.7. They comprise a set of 2000 showers

for each case. The response of the KASCADE detector system and the timing qualities have been

simulated using the CRES program, which was a dedicated development of the KASCADE group

mainly on basis of the GEANT code.
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Figure 3: Comparison of the pro�les of relative arrival times of the electro-magnetic and muon

component with the predictions for simulated showers.

Fig. 2 displays such distributions of ��0:4 and of ��2:0, for log10N
tr
� > 3:7 (corresponding to a

primary energy of about Eprim > 2 � 1015 eV) and for di�erent distances from the EAS core. We

notice the good agreement of the experimental data with the simulations, but signi�cant di�erences

between the di�erent primaries in the relative arrival time distributions are not observed.

Fig. 3 presents the relative time pro�les of ��0:4 and of ��2:0 for di�erent log10N
tr
� ranges. The

data are compared with simulation results (which cover the range of proton and iron induced showers).

For the low energy muon case there appears some slight disagreement. This might be an indication

that at small distances, where the particle density is large, some problems with the corrections are

still remaining.
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5 Conclusion

The present experimental studies of the relative arrival times of the EAS muon and electro-magnetic

component, give evidence for the di�erent time pro�les of the two EAS components and con�rm

former theoretical expectations. The comparisons of the data with Monte-Carlo simulations show a

remarkably good agreement, but with missing any discrimination power for the mass of the cosmic

ray primary.
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An indirect approach to deduce the elongation rate De and the uctuations of the

atmospheric depth Xm of the EAS maximum from muon arrival time distributions

has been scrutinized on basis of Monte Carlo simulations of the EAS development

and of the longitudinal pro�le of various EAS parameters. Special attention is made

to the behaviour of a scaling parameter relating the variations at the height of the

shower maximum to the arrival time of muons at observation level.

6 Introduction

The early development of extensive air showers induced by high-energy cosmic particles, is critically

inuenced by the basic parameters of the particle-air interaction, i.e. by the mean free path, the

interaction inelasticity and the multiplicity of secondary-particle production. A shorter initial free

path, high inelasticity or high multiplicity can be also associated to a primary particle with high

atomic number. The early stages, di�cult to be directly observed, inuence the position of the

atmospheric depth of the maximum EAS development. Thus experimental studies which are able to

observe the EAS maximum, like the observation of the uorescence light of the atmospheric nitrogen

do provide important information on the nature of the primary and of its interaction properties.

The average depth of the maximum Xm of the EAS development depends on the energy E0 and the

mass of the primary particle, and its dependence from the energy is traditionally expressed by the

so-called elongation rate De de�ned as change in the average depth of the maximum per decade of

E0:

De = dXm=dlog10E0

Invoking the superposition model approximation i.e. assuming that a heavy primary (A) has the

same shower elongation rate like a proton, but scaled with energies E0=A

Xm = Xinit +Delog10(E0=A)

or for a mixed composition, characterized by < log10A >

< Xm >= Xinit +De(log10E0� < log10A >)

As long as De is only weekly dependent from the energy, Xm shows practically a linear dependence

from log10E0, and any change in this dependence is indicative for a change either of De or of the

composition (< log10A >).

In 1977 [1, 2] an indirect approach studying De has been suggested. This approach can be applied

to shower parameters which do not depend explicitely on the energy of the primary particle, but do

y
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depend on the depth of observation X and on the depth Xm of shower maximum. EAS quantities

like arrival times and their dispersions characterizing the time structure of the muon shower disc and

mapping the longitudinal EAS development, are of this type. Actually the basic idea arises from

the simple fact that the muon arrival time distributions reect largely the time-ight of the muon

travelling through the atmosphere i.e. being dependent on distance (path length) of the observation

level X from Xm. Hence adequately de�ned arrival time parameters T do implicitely depend on the

primary energy E0 and the angle-of-EAS incidence �.

Prompted by recent experimental investigations of these dependences by the KASCADE collaboration

[3, 4] we did scrutinize Linsley's approach on basis of Monte Carlo simulations of the EAS longitudinal

development of the muon component. The interest in such studies arises from the question, how

various inuences of the muon propagation (Coulomb scattering e.g.) may obscure the information

expected from the observation of muon arrival time distributions and if the basic assumptions involved

are correct. From the calculated longitudinal pro�les of the shower size Ne and the muon number N�

the corresponding maxima X
(e;�)
m and their uctuations �(X

(e;�)
m ) are determined. These results are

subsequently compared with the application of a procedure, essentially based on the relation between

the variation of EAS time dispersion (characterised by various adequate moments T of the muon

arrival time distributions like the mean or the median values e.g.) with the primary energy and the

variation with the zenith angle of incidence.

7 Basic relations

The distribution of the EAS muon arrival times, measured at a certain observation level relatively to

the arrival time of the shower core reect the pathlength distribution of the muon travel from locus

of production (near the axis) to the observation locus. The basic a-priori assumption is that we can

associate the mean value or median T of the time distribution to the height of the EAS maximum

Xm, and that we can express T = f(X;Xm). Here X is slant depth at the observation level Xv (the

vertical atmospheric thickness Xv)

@T=@log10E0jX = De@T=@XmjX

The change of T with the energy E0 at a given X = Xv=cos� is proportional to the variation of T

with Xm for a given energy. However, at observation level we do not observe @T=@Xm, which could

be related, if specifying the function f(X;Xm) and

F = �(@T=@Xm)X=(@T=@X)Xm

respectively. Thus

@T=@log10E0jX = �F �De�1=Xv �@T=@sec�jE0

In order to derive from the energy variation of the arrival time quantities information about elongation

rate, some knowledge is required about F, in addition to the variations with the depth of observation

and the zenith-angle dependence, respectively.

In a similar way the uctuations �(Xm) of Xm, may be related to the uctuations �(T ) of T

�(T ) = ��(Xm)�F��1=Xv �@T=@sec�jE0

with F� being the corresponding scaling factor for the uctuation of F. In previous applications [5, 6]

of this concept on basis of data measured with the Haverah Park water Cerenkov detectors simple

assumptions have been made for two extreme forms of f(X;Xm) = f(X � Xm) or f(X;Xm) =
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f(X=Xm) leading to F = 1 or F = X=Xm, respectively. At a closer look these assumptions appear

to be not very convincing, since the arrival times are related directly only to the travel distances of

the muons rather than to the di�erences in the traversed grammage of the atmosphere. That fact

will complicate the dependence from X and Xm. We try to scrutinize this aspect on basis of detailed

EAS Monte Carlo simulations.

8 Monte Carlo simulations

The simulations of the air shower development have been performed by use of the Monte Carlo air

shower simulation program CORSIKA [7] (vers.5.621). The actual set of simulations calculations

(based on the QGSJET model) comprise the EAS development of proton and iron induced EAS

for three di�erent primary energies (1015 eV, 3:16 � 1015 eV, 1016 eV) and three di�erent angles-of-

incidence (� = 15�; 25�; 35�) with a set of 1000 simulated EAS for each case. The EAS quantities of

interest are evaluated at six di�erent observation levels, in the case of the EAS muons generally with

two di�erent energy thresholds of 0.25 and 2.0 GeV. The longitudinal pro�les of the electromagnetic

and the muon component develop di�erently. While the electromagnetic component exhibits a rela-

Figure 1: De;�
e [g=cm2=dec] for electromagnetic and muon components.
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tively well pronounced maximum of the shower size Ne, characterized in the Greisen parametrisation

by the shower age s = 1, the maximum of the penetrating muon component (N�) appears to be

shifted deeper and rather shallow, since the muon losses, after reaching a kind of plateau of N�, are

relatively small, especially for higher energy muons. As the maximum depths are not necessarily

identical, we discriminate between Xe
m and X�

m, De and D�, respectively. The uctuations �(Xm)

(standard deviation of the Xm distributions) prove to be practically energy independent, but they

are di�erent for di�erent cases: �(Xe
m)(p)�80g=cm2, �(Xe

m)(Fe)�17g=cm2, �(X�
m)(p)�100g=cm2,

�(X�
m)(Fe)�30g=cm2. There is a trend of slightly increasing values De

e (60-70 g/cm/dec for protons)

with the zenith angle, which can be understood as e�ect of the di�erent path lengths of the particles

traversing the same grammage layers at di�erent zenith angles. Fig.1 illustrates the features of De.

Though there are di�erencies for di�erent primaries, globally the superposition model appears to be

a good approximation.

In deriving the muon arrival time distributions from the EAS simulations we restrict our considera-

tions to the cases of distributions of the mean (T = ��mean) and median (T = ��0:5) arrival time

of EAS registrated relatively to the foremost muon in an interval of a distance from the shower core

of R� = 90 � 110m with a detection multiplicity n�4, for di�erent energies E0 and zenith angles

� of incidence, and for di�erent observation levels, especially for the level of the KASCADE experi-

ment, Germany [3] on sea level and for the ANI installation on Mt.Aragats, Armenia (3250 m a.s.l.).

The variations display a linear dependence, and �E = @T=@sec�jE0
and �� = @T=@log10E0jsec� can be

determined.

9 The scaling factor F deduced from arrival time parameters

Using the coe�cients �E and �� characterising the variation of the mean or median distributions

with the energy and the angle of EAS incidence and adopting the value of the elongation rate, as

predidicted by the simulations, we infer for di�erent observation levels and di�erent primaries the

values of the scaling parameter F, whose knowledge would be in turn a prerequisite to evaluate

experimental data in terms of the elongation rate and uctutions of the height of EAS maximum.

The results display a rather complex dependence of F from X, Xm, from the type of the primary (p or

Fe: Ffe > Fp) and from the energy threshold of the detected muons, varying between (� 0:9 � 2:0).

Within all uncertainties and uctuations of the results, eventually arising from the fact that the

longitudinal development T = f(X;Xm) can be never fairly expressed by a single form f for each

observation level Xv, there may be a tendency with

F (X1
v )=F (X

2
v ) / X

1
v=X

2
v � sec� and F (Fe)=F (p) / Xm(p)=Xm(Fe):

10 Summary

The relation between the arrival time observables and the changes of the longitudinal EAS pro�les

implies a scaling factor F, which depends from the height of the shower maximum, the observation

level and zenith angle of EAS incidence. On basis of Monte Carlo simulations of the EAS development

the ingredients for a determination of F have been deduced, and the variation of F has been studied

for a number of cases. In the present status of our understanding we have to conclude that the scaling

factor has a rather complex behaviour.It is a�ected by the EAS uctuations and, though there are

some trends, the dependences of average values are not yet established. In conclusion, unfortunately

the Linsley approach does not provide a way to relate muon arrival time observations directly to the
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elongation rate and uctuations of Xm without invoking detailed Monte Carlo simulations.
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