
Forschungszentrum Karlsruhe

Technik und Umwelt

Wissenschaftliche Berichte

FZKA 6469

On lateral deflection of the SOL plasma in tokamaks during giant ELMs

I.S. Landman*, H. Würz

Institut für Hochleistungsimpuls- und Mikrowellentechnik

Projekt Kernfusion

* permanent address: Troitsk Institute for Innovation and Fusion Research, 142092 Troitsk, Russia

This work was supported in the frame of the Russian German WTZ
cooperation agreement RUS-524-96

Forschungszentrum Karlsruhe GmbH, Karlsruhe
2000



Abstract

In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot
tokamak plasma leaving the scrape-off layer and striking the divertor plate has been
observed. This deflection can effect the divertor erosion caused by the hot plasma
irradiation, because of enlarging the irradiated area. A simplified MHD model of the
vapor shield plasma and of the hot plasma initially formed at time t → −∞ is analyzed.
At t = −∞ both plasmas are assumed to stay on rest and to be separated by a boundary,
which is parallel to the plate surface. The interaction between plasmas is assumed to
develop gradually (‘adiabatically’) as exp(t/t0) with t0 ~ 102 µs the ELM duration
time. Electrical insulation of the core tokamak plasma is assumed everywhere except
for the contact with the divertor. Electric currents are flowing only in the toroidal
direction. These currents developing in the interaction zone of the hot plasma and the
rather cold target plasma are calculated for inclined impact of the magnetized hot
plasma. At such conditions the J×B force in the lateral direction accelerates the
interacting plasmas. The motion of the cold plasma and the gradual increase of the
plasma interaction intensity are shown to be important for the appropriate deflection
magnitude. Adiabatically responding against the increase of the interaction intensity
the cold plasma motion compensates significantly the currents thus decreasing the
deflection compared to motionless approach. The calculated magnitude of the hot
plasma deflection is comparable to the observed one. The results of the modeling are
discussed in relation to the experiments. It is shown that sudden switching on of the
interaction produces Alfven oscillations of large amplitudes causing much larger
amplitudes of the magnetic field induced by the currents than in the adiabatic case.



Zur seitlichen Ablenkung des SOL Plasmas in Tokamaks
während großer ELMs

Zusammenfassung

In jüngsten JET H-Mode Experimenten mit ELMs wurde eine seitliche Ablenkung
des inneren und äußeren Separatrixauftreffpunktes am Divertor beobachtet. Solche
Ablenkungen können die Divertorerosion wegen der Vergrößerung der belasteten
Fläche beeinflussen. Es wurde ein analytisches MHD Modell von Dampfschicht und
SOL Plasma zur Beschreibung der Plasmaablenkung entwickelt. Dabei wird
angenommen, dass beide Plasmen anfangs in Ruhe sind und durch eine ebene
Grenzfläche parallel zur Targetoberfläche getrennt sind. Die sich zeitlich
entwickelnde Plasmawechselwirkung wird gemaß exp(t/t0) mit t0 = 100 µs (Zeitdauer
eines ELMs) beschrieben.

Die in der Wechselwirkungszone des heißen einfallenden SOL Plasmas und des
kalten Targetplasmas fließenden toroidalen Ströme bewirken zusammen mit dem
externen Magnetfeld eine Ablenkung beider Plasmen. Die berechnete Größenordnung
der Ablenkung des heißen Plasmas ist in Übereinstimmung mit der gemessenen. Im
Gegensatz zum experimentellen Befund geht die berechnete Ablenkung von äußerem
und innerem Auftreffpunkt in die gleicher Richtung. Beim plötzlichen Einschalten der
Wechselwirkung zwischen den Plasmen treten Alfven Schwingungen großer
Amplitude auf. Diese erzeugen Magnetfelder, welche größer sind als im adiabatischen
Fall.
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1. INTRODUCTION

To achieve good plasma confinement the H-mode of operation is used in a
tokamak. However in H-mode operation, edge localized modes (ELMs) develop. During
one single ELM up to 10% of the thermal energy content of the confined plasma is
expelled from the central region inside the separatrix [1]. After crossing the separatrix the
expelled hot plasma is lost to the scrape-off layer (SOL) enveloping the confining
volume. In the SOL the hot plasma following the inclined magnetic field lines is guided
to the divertor. The tokamak geometry including the divertor and the SOL plasma is
shown schematically in Fig. 1. The rather high thermal loading of the divertor during the
ELMs can result in rather serious divertor damage and in production of considerable
amounts of impurities.

A comprehensive numerical simulation of the plasma-wall interaction is done for
evaluation of different damages caused by intense pulsed heat loads. Up to now no
suggestion has been announced how to absorb the large power density without significant
heating of the solid surface, which results in erosion. Thus the goal of the modeling is
minimization of erosion. For the ELM of duration of 102 µs the eroded material (usually
carbon or beryllium) forms a vapor layer in front of the divertor plate. For power
densities in the range of  MW/cm2 characterizing large ELMs a 2D code was developed
which allows to investigate the hot plasma target interaction [2].

The modeling shows that the interaction of the hot plasma with the vapor
decreases the heat load at the wall surface because the hot plasma deposits its power in
the vapor and thus increases the vapor temperature till production of multiply ionized
ions. Stopping of the hot electrons and the deuteron or triton ions in the vapor plasma
significantly decreases the direct irradiation of the wall. Then electron heat conduction
and radiation transport in the vapor plasma is the target heat load, which continue to
produce erosion. The temperature of the vapor plasma always remains much less than the
hot plasma temperature.

In experiments at tokamaks it was observed [3] that during an ELM the position
of the confined plasma moves only 1 to 2 cm. But during the initial stage of an ELM the
separation of the strike points (see Fig. 1) increases between 20 to 36 cm.  More details
on the available experimental results on the lateral deflection are given in chapter 2. The
observed significant shift of the strike points is important for the investigations of
divertor erosion. The heat load area at the divertor plates becomes larger. This favorably
reduces the average power density but the accompanying deflection of the cold plasma
may reduce the effectiveness of the vapor shield and thus could cause enhanced erosion.
According to the modeling results, the plasma-wall interaction is a complicated process
showing a non-monotonic dependence of erosion mass from the power density.
Moreover, if the deflection of the SOL plasma exceeds the size of the divertor plate then
the structure can be overloaded.

Hence the numerical modeling of the plasma-wall interaction has to include the
physical phenomenon of the lateral deflection. From the experiments and their
interpretation it is unclear which physical mechanism produces the lateral deflection.
Nevertheless available theoretical hypotheses should be utilized in order to extract finally
an appropriate theory, despite the fact that initially the modeling may be rather
speculative.
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Up to now two models handling the deflection mechanisms are available [4,5,6].
Both models include the vapor shield and are based on the thermoelectric effect. Despite
the vapor shield may not be important for explanation of the lateral deflection, these
models are useful in order to estimate the role of shielding in the tokamak reactors and
investigate the case of modest shielding. The thermoelectric effect is known as an effect
of electric field generated at the boundary of two conductors with different temperatures.
In case of a closed electric circuit an electric current develops. The thermoelectric effect
depends on the physical nature of the conductors and on the external conditions (e.g.
presence of magnetic field B). A critical analysis of the theoretical models is given in
chapter 3.

In order to elaborate the model described in [5,6] a new and consistent non-
stationary model for the lateral deflection is analyzed. Nevertheless the presented
approach remains still rather artificial aiming only for a principal explanation. Actually
the hot plasma initially heats the unshielded wall. After some time vaporization starts and
the vapor layer develops transforming gradually into the cold plasma shield. The
thermoelectric effect and thus the lateral deflection accompany this process from the
beginning of the vaporization or may be even earlier if to account for the previous
sputtering erosion. Such analysis is not the matter of this work being the subject of future
numerical simulations. For the sake of simplicity the physical mechanism of the lateral
effect is explained starting from an intermediate state with already given plasmas.

In chapter 4 a detailed explanation and a mathematical formulation of the problem
are given. In chapter 5 the analysis and the solving of the model equations are completed.
In chapter 6 the obtained results and the practical relevance of the model are discussed.

2. EXPERIMENTS ON LATERAL DEFLECTION

According to [1], during giant ELMs the measured impurity radiation flux is too
large to prescribe the influx of impurities due to sputtering only thus evaporation has to
be accounted for. The toroidal symmetry during ELMs usually is not destroyed [7]. Up to
now the SOL plasma temperature Th and the density nh have not been measured in ELMs.
It is assumed that nh is of the order of 1014 cm−3, the electron temperature The of several
hundreds electronvolts and the ion temperature Thi of several keV. Perhaps at the initial
phase of an ELM the electron temperature is of the order of Thi.

Information on properties of the vapor is obtained only from calculation. The
code of Ref. 2 recently was used for modeling of the graphite erosion caused by ELMs
developing with lower power densities in the existing tokamak installations [8]. A cold
plasma temperature of Tc below 10 eV and an electron density of nce ≈ 1015 cm−3 was
obtained in the calculations with a power density of 1 MW/cm2 at the distance of 10 cm
from the plate after 100 µs from the beginning of the ELM.

In one of the giant ELMs of Ref. 3 with target heat loads between 0.1 and
0.3 MW/cm2 the inner strike point moved inwards for 18 cm and the outer strike point
outwards for 2 cm. It was speculated that such a lateral movement occurs due to changes
in the magnetic field topology (movement of the separatrix) caused by currents flowing
from the SOL plasma onto the plates. However in this case because of the same direction
of both currents both strike points should move inwards.
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Lateral deflections at much larger target heat loads of 20 MW/cm2 were measured
in another experiment [9] aiming to demonstrate the deflection effect and investigating it
in more detail. The aim of this investigation was to check the theoretical prediction of
Ref. 5 for the hot plasma deflection at inclined impact onto the vapor shield. In Ref. 9 a
cylindrical beam of hot magnetized hydrogen plasma of radius 6 cm with nh of
3⋅1015 cm−3, The of 100 − 200 eV and Thi of 1 keV impacted on an inclined graphite plate
installed in the magnetic field of B ≈ 2 T.  During the irradiation time of 40 µs a vapor
shield of carbon plasma with temperatures up to 50 eV and electron densities up to
5⋅1017 cm−3 is produced. The influence of the magnetic field inclination angle to the plate
surface was checked. At perpendicular impact no lateral deflection was observed. At an
inclination angle of 20o deflection of the hot plasma beam of 1 to 2 cm was measured. It
was assumed that the deflection occurs mainly at an initial stage of the pulse due to the
influence of currents crossing the plate surface.

The mentioned experimental facts can be summarized as follows:
1. The deflection occurs only due to the inclination of B (Ref. 9).
2. The strike points move mainly before the power flux pulse arrived (Ref. 3). In Ref. 9

a similar guess was mentioned. This finding supports the assumption for a deflection
of the hot plasma even without vapor shield. Because the initial stage is most
important, models with common Th for the SOL plasma particles seem reasonable for
first steps of the modeling. Then dynamics of The has to be taken into account at the
next steps as it is the most critical parameter of the hot plasma.

3. It seems that the deflection increases with increasing power density because of larger
deflection at the inner strike point (Ref. 3). Clearly, the case of Ref. 9 where despite
larger target power density of the plasma beam a lower deflection was obtained
compared to the tokamak experiment is in collision with this assumption. But these
cases may not be comparable quantitatively because of very different geometry and
the hot plasma parameters.

4. The strike points move in the opposite directions buzzing off each other (Ref. 3).
5. During ELMs the toroidal symmetry is valid (Ref. 7). Note that in Ref. 1 the

asymmetry was also mentioned concerning the interaction with the structure. It seems
that in modeling the symmetry assumption is reasonable.

6. The confined tokamak plasma itself doesn’t influence the lateral deflection because
its position changes negligibly (Ref. 3).

7. The currents of 0.1 kA/cm2 through the divertor plate surface measured in Ref. 3 are
not principally important for the lateral effect.

3. EXISTING DEFLECTION MODELS

For the hot plasma and the cold plasma conductors initially the perpendicular
impact of the hot plasma onto the cold plasma was considered [10], aiming for
elaboration of electrostatic stopping for the hot electrons. The impacting hot plasma ions
have a rather short range in the cold plasma. The hot electrons propagate much deeper
into the cold plasma region undergoing weak collisions on their stopping length λe.
Electric currents in the plasma are assumed to be absent. Thus in the cold plasma an
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electron flux appears compensating the flux of the hot electrons. As a consequence an
electric field E develops in the cold plasma because in accordance with Ohms law the
cold electron flux is possible only due to an electric field E.  The potential barrier of E
effectively slows down the hot electrons but their penetration distance remains larger than
that of the ions.

In Refs. 4, 5 and 6 the idea is exploited that in case of the inclined B the field E
becomes non-parallel to B resulting in the lateral motion due to the E×B drift. In Ref. 4
only the drift deflection of the cold plasma was analyzed and in Refs. 5 and 6 only the
drift deflection of the hot plasma.

Before start of an ELM the SOL volume up to the plate surface is assumed to be
empty, filled with a homogeneous, stationary inclined magnetic field B0 without electric
field. Generally electric currents of current densities J flowing in the plasma produce an
electric field E and perturbations δB of the magnetic field given via the whole field B as
B = B0 + δB. The induced fields E and δB obey the Maxwell equations as

tc ∂
∂−= BE δ1rot (1)

JB
c
πδ 4rot = (2)

with c the speed of light in vacuum. In Eqs. (1) and (2) the current density is seen as the
source for the field production. The electric field is split into the potential field Eφ and the
vortex field Eυ as E = Eυ + Eφ. The vortex field is obtained from Eq. (1) with the time
derivative of δB being the source for Eυ. The potential field is given as Eφ = −gradφ with
φ the electric potential. In the thin boundary sheath the potential is obtained from the
Poisson equation ∆φ = 4πe(ne − Zni) with e the elementary charge and Z the mean charge
state. In the main plasma volume the quasineutrality equation is valid as ne = ni = nh for
the hot plasma and ne ≡ nce = Znci ≡ Zni for the cold plasma. The quasineutrality equation
is used to obtain φ in the main volume.

In Ref. 4 the electric field is assumed to be given as E = Eφ = −∇ φ thus Eυ ≡ 0. It
is valid rotEφ ≡ 0 resulting in δB = 0 according to Eq. (1). Because J obeys Eq. (2), the
current J is zero. Thus currents flowing in the cold plasma are neglected and any
influence of them on the behavior of the hot plasma is not considered.

In Refs. 5 and 6 an attempt is made to explain the motion of the hot plasma for the
first time considering the plasma interaction as a non-stationary process with ∂δB/∂t ≠ 0.
This model, based on a kinetic description of the hot plasma, includes the electrostatic
sheath and the magnetic pre-sheath at the boundary of the plasmas. The sheath problem is
separated from the problem of the lateral motion. In order to simplify the analysis the
density of the cold plasma ρc is assumed to be much larger than the density of the hot
plasma ρh as ρc/ρh → ∞. Thus the motion of the cold plasma is prohibited because of its
infinite inertia. By this way the reason for the lateral motion of the hot plasma has been
discovered. It is the penetration of the electromagnetic field through the boundary
between the plasmas.



5

As is shown in Ref. 5, a toroidal current of the density J ≠ 0 flowing in the cold
plasma accompanies the thermoelectric effect at the inclined plasma interaction. In
accordance with Eq. (2) the perturbation δB develops during the interaction of the
plasmas. Assuming the penetration of δB through the boundary a vortex contribution Eυ
to E with a non-zero projection onto B is obtained from Eq. (1) in the hot plasma. It is
assumed Th >> Tc. Electric conductivity of the hot plasma is much larger than that of the
cold plasma. For this reason the hot plasma conductivity is assumed to be infinitely large.
As it is known, the projection of E onto B is equal to zero in the conductors of infinite
conductivity being on rest. In such conductors E is perpendicular to B thus it is valid
EB = 0. Because it is valid E = Eυ + Eφ with EυB ≠ 0, for the hot plasma on rest it
follows EφB ≠ 0. Thus due to the primordial toroidal current in the cold plasma a vortex
and a potential field develops in the hot plasma. At small inclination angle α given as
α << 1 it was obtained that Eφ becomes much larger than Eυ and is directed almost
perpendicularly to B0. It is concluded that a lateral motion of the hot plasma occurs due to
an E×B drift with the lateral velocity given as V ≈ cEφ×B0/B2. Hence despite the
mentioned precondition for the hot plasma to be on rest it was obtained afterwards that
the hot plasma moves. In this aspect the model of Ref. 5 is not consistent.

In the model of Ref. 4 according to Fig. 1 the potential electric field behaves
similarly near both strike points. Because it slows down the hot electrons coming to the
divertor plate, in Fig. 1 the vectors of Eφ would be directed down (not shown). The
toroidal component Bz of the magnetic field dominates thus the drift velocity is given
approximately as Vd ≈ cEφ×ez/B with ez the constant unit vector towards Bz.  Due to the
same direction of Eφ for both strike points this expression gives the same direction for the
lateral velocity, which results in shifts of the same direction for both strike points.

In the model of Ref. 5 the direction of the toroidal current in the cold plasma
depends on the direction of the poloidal component of B. The poloidal field direction is
shown in Fig. 1 as the direction of x-axis being reverse for the inner and outer strike
points. Thus the vectors J near the different strike points are of opposite signs. If
changing the sign of J in Eqs. (1) and (2), the sign of δB and Eυ also changes. Because in
the hot plasma from the above mentioned equality EB = 0 with E = Eυ + Eφ follows the
equality EφB0    ≈≈≈≈    −−−−EυB0, the sign of Eφ changes, too. Thus Vd there has opposite signs near
the different strike points resulting in reversed shifts of the strike points as it is in the
experiment. This favorable feature of the model triggered further investigations of the
deflection effect being described below.

4. MATHEMATICAL PROBLEM

In the presented analysis the motion of both plasmas is taken into account. The
condition that the hot plasma is at rest, which was mentioned in chapter 3, is used only as
the initial condition for solving the differential equations but not more as the pre-
assumption for the permanent state of the plasmas. The previously obtained results for the
sheaths are used. Due to this the kinetic description is not necessary. The lateral effect is
analyzed with the MHD approach for both plasmas. The drift approach becomes not
necessary because the lateral velocity is one of the variables in the MHD equations.
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The model considers interaction of two toroidal plasmas initially being on rest and
immersed into a magnetic field inclined to the boundary between the plasmas. At the
boundary an electromagnetic layer of increasing thickness forms in order to prevent free
mutual penetration of the plasmas. The plasmas are assumed to be limited in all
directions and thus to have the sizes ax, ay and az with different ax for the hot and the cold
plasmas. The initial positions of the plasmas are shown schematically in Fig. 2. The
initial separating boundary is given as a surface at x = 0 with x the coordinate of variation
of plasma parameters. At x < 0 the cold plasma of the temperature Tc and the ion density
nc and at x > 0 the hot plasma of Th and nh are given. For other two coordinates (y and z)
the translation symmetry in y-direction and the toroidal symmetry in z-direction is
assumed (∂/∂y = 0, ∂/∂z = 0). Due to the lateral motion the plasma edge in y-direction
shifts thus ay gets to be a function of x.  The initial magnetic field is given as
B0 = (Bx,0,Bz) with Bx = B0sinα, Bz = B0cosα and α the inclination angle.

For practical estimations a deuterium hot plasma and a graphite plate in the
inclined magnetic field of B0 = 5 T and α = 0.1 rad are used. Thus the magnetic field is
rather parallel to the z-direction. The cold plasma is the ionized vapor layer of the wall
material adjacent to the wall surface. Typical values of Tc, Th and nh are chosen as
Tc = 30 eV, Th = 3 keV and nh = 3⋅1013 cm-3.

After exclusion of the electrostatic sheath from the analysis the plasmas get
quasineutral thus the electric charge of the plasmas is negligibly small. Assuming that the
hot plasma is insulated at x = ax e.g. by vacuum or due to additional symmetry
requirements it is concluded that the current cannot penetrate in the x-direction. Therefore
for the current density J = (Jx,Jy,Jz) it is valid Jx = 0. With the vacuum edge in y-direction
the y-component Jy is also forbidden. According to Fig. 1 this condition seems quite
natural for the regions located under the X-point. Above the X-point the vacuum is
assumed only for the outer shell of SOL, which remains to be sufficient for the condition
of Jy = 0.

In the toroidal geometry the current still has the possibility to flow thus Jz will be
not equal to zero if there is a generator of the toroidal current in the plasmas. The
thermoelectric current generation results from the interaction of the toroidal plasmas in
the inclined magnetic field. The electrons of the hot plasma before stopping in the cold
plasma penetrate rather deeply into it along the magnetic field lines. In the inclined
magnetic field the compensation of x-component of the hot electron current by the
reversed current of the cold plasma electrons, which obey the Ohms law, results in an
electric field with a non-zero z-component. In the toroidal geometry the z-component of
the electric field forms a vortex field Ez with closed field lines. Hence according to
Eq. (1) for producing of Ez the additional y-directed magnetic field By and the toroidal
current of the density Jz are required. As a result δB and J are represented as
δB = (0,By,0) and J = (0,0,Jz). The radiuses of the current loops are assumed to be large
enough for neglecting complications caused by the toroidal metric. Thus the analysis is
completed in the Cartesian geometry with the homogeneous and stationary B0.

Because the process is principally non-stationary, the final magnitude of the
deflection depends significantly on the kind of development of the plasma interaction.
The magnitude Jhe of the hot electron current in the cold plasma characterizes the
intensity of the interaction. Two different ways of changing Jhe in time are considered and
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compared. Those are an immediate plasma contact after initial time moment of t = 0 and
a gradual (‘adiabatic’) contact beginning at infinitely early moment of t = −∞.

The start of the interaction at time t = 0 with Jhe suddenly changing from zero up
to its maximum value allows to consider unlimited in the x-direction plasmas for a short
interaction time at which the thickness of plasma interface remains much smaller than ax.
In order to avoid non-principal complexity only the solution at rather small distances
from the boundary |x| << λesin|α| is analyzed. The analysis of the sudden switching on
case is used for physical interpretation of the deflection effect.

Adiabatic switching on an exponential factor exp(t/t0) is used in Jhe with t0 the
characteristic interaction time and final moment of the interaction assumed at t = 0. In the
estimations the value of t0 = 100 µs is applied. This case presents the solution adequately
fitting to the experimental conditions in the frame of the assumptions of the analyzed
model.

In the one-dimensional problem with the adiabatic increase of Jhe the plasma edge
in x-direction is important. The edge is modeled by the planes of x = −Lc and x = Lh i.e.
with ax = Lc for the cold plasma and ax = Lh for the hot plasma. The hot electrons are
allowed to penetrate into the plane at x = −Lc because it is assumed that afterwards they
get absorbed by the wall. In order to simulate the plasma interaction with the edge, the
boundary conditions are defined as follows: because at x = −Lc the wall stops the plasma
motion, the lateral velocity Vy is assumed to vanish there. The plane of x = Lh is assumed
to simulate the middle plane of SOL in relation to which the lateral deflection is
symmetrical. Thus Vy is assumed to be symmetrical. This requirement results in the zero
condition for the spatial derivative ∂Vy/∂x. Hence the boundary conditions for the plasmas
are given as

0=
−= cLxyV , 0=

∂
∂

= hLx

y

x
V

(3)

Note that the choice of the boundary conditions of Eq. (3) at x = Lh depends on the
analysis of a more general problem including two strike points. If implying to apply the
considered one-dimensional model for interpretation of the experimentally obtained
results, the alternative choice may be with Vy|x=Lh = 0. The influence of such change of
the boundary condition is discussed in chapter 6.

All other main assumptions, which were mentioned in Ref. 5, are assumed to be
valid. They are a large difference of the hot and cold plasma temperatures (Th >> Tc),
infinite electric conductivity of the hot plasma and isotropy approximation for the cold
plasma conductivity. At Th >> Tc the following consequences are valid. Stopping length
λe of the hot electrons in the cold plasma is much larger compared to that of the hot ions.
Potential drop φ0 over the sheath located at the boundary is estimated as φ0 = Th/e. nh is
small compared to nc and the cold plasma electron density nce as nh << nc, nce. Thus the
pressure balance condition after neglecting a small contribution of the hot electrons in the
cold plasma is given as  (nc + nce)Tc ≈ 2nhTh. Due to the plasma quasineutrality it is valid
nce ≈ Znc. The estimation Z = 5 for the charge state is applied, which is typical in case of
graphite target.
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4.1 Toroidal current

The hot particles propagate towards the plasma boundary until crossing the sheath
at x = 0. Then the hot ions are stopped near the boundary. Their accumulation is
compensated by diffusion back to the hot plasma. But the hot electrons penetrate into the
cold plasma along the magnetic field lines rather deeply. Finally the hot electrons also
loss their energy and join the cold electrons. In order to avoid accumulation of positive
electric charges in the hot plasma an electric field develops in the cold plasma slowing
down the hot electrons there and forcing the cold electrons to compensate the positive
charge. Together with the sheath potential drop this constitutes the mechanism of the
thermoelectric effect for the considered two plasmas.

The current densities of the hot and cold electrons are related with the ion fluid
velocity V as Jhe = enhe(V − Vhe) and Jce = ence(V − Vce) where Vhe and Vce are the
electron fluids velocities. The vector Vhe is represented as Vhe = Vhe|| + Vhe⊥  by its parallel
and perpendicular projections onto B. It is assumed that Vhe|| is given as Jhe/enhe. The E×B
drift determines Vhe⊥  as Vhe⊥  = c(E×B)/B2.

Initially V is equal to zero. If neglecting Vhe⊥ , the hot electron current directs
along B. At the inclination angle α ≠ π/2 the compensating current of the collisional cold
electrons may cross the magnetic field lines significantly. E.g. in case of very fast
collisions the cold electrons would be not magnetized. The non-magnetized cold
electrons compensate the charge of the stopped ions moving rather perpendicularly to the
plasma boundary but not along B. An intermediate case is shown in Fig. 3 demonstrating
that the current density Jce of the cold electrons is always less inclined to the boundary
than Jhe. Rigorous analysis including V ≠ 0 and Vhe⊥  ≠ 0 is carried out in chapter 5. The
x-and y-components of Jce compensate those of Jhe as

0=+ cexhex JJ , 0=+ ceyhey JJ (4)

Hence only a toroidal current with current density Jz = Jhez + Jcez develops at x < 0.
The sign of Jz depends on the sign of Bx. According to Figs. 3a and 3b if changing

the sign of Bx the direction of propagation of the hot electrons along B and thus that of Jhe
also changes resulting in the change of the sign of Jz, which was already mentioned
explaining the model of Ref. 5.

4.2 Propagation of hot electrons in the cold plasma

A beam penetrating into the cold plasma after crossing the boundary sheath
models the impinging hot electrons at x < 0. Inside the cold plasma the hot electron beam
gradually gets to stop. The density nhe and the current magnitude Jhe at x < 0 are modeled
using the Boltzmann distribution for the hot electrons as

( )
��
�

�
��
�

�
−−=

he

h
he T

xUln
n

λ
exp

2
,

π
υ heThe

he
ne

J = (5)
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with l > 0 the distance along a magnetic field line in the cold plasma from the boundary,
υThe = (2Th/me)1/2 the thermal velocity of the hot electrons and me the electron mass. The
switching on factor is omitted in Eq. (5). The stopping effect is modeled by the
exponential factor exp(−l/λe). The electron potential energy U(x) consists of the sheath
potential barrier φ0 and the slowing down 'effective potential' ϕ as

( ) ( )xeexU ϕφ −= 0 with ( ) ( )
( )

� ′′=
xl

ldlEx
0

||ϕ (6)

where E||  is the projection of the electric field strength E onto B. The effective potential
includes contributions of both vortex and potential electric fields Eυ and Eφ.

The coordinate l is conveniently expressed as a function of x via α and the angle γ
between the vectors B and B0 given as γ = arctan(By/B0). The value of B is expressed as
B = B0/cosγ. Always it is assumed that Bz > 0. If it is valid Bx > 0 and thus α > 0, l−axis is
directed reversely to B. Otherwise the l−axis is directed as B (see Fig. 3). Therefore for
differentials of the variables r = (x,y,z) and l along the l−axis it is valid dr = −sα(B/B)dl
with sα = 1 at α > 0 and sα = −1 at α < 0. In terms of dl and dr the differential of the
effective potential is given as dϕ = E||(l)dl = −Edr with E = (Ex,Ey,Ez) a vector-function
of x. Thus it is valid dϕ = sα(EB/B)dl. Final expressions for dl and ϕ are obtained as

αγ sincos
dxdl −= , ( ) �=

bx

x

dx
B

x
α

ϕ
sin0

EB (7)

The function xb(t) is the x-coordinate of the boundary.
Below it is shown that By is small compared to B0. From this follows that γ is also

small and the plasma density keeps constant resulting in plasma immobility in x-
direction. Therefore the simplifications xb = 0, cosγ = 1 and sin2γ = 0 are used but the
small terms with sinγ are not neglected. Due to this it is obtained the relation between the
coordinates l and x as l = −x/sin|α|.

4.3 Motion of the plasmas

The lateral plasma motion is described by the Euler equation as

c
JB

t
V zxy =
∂

∂
ρ , 0

init
=yV (8)

with Vy the ion lateral velocity and index 'init' denoting initial values. Below for the
different plasmas the designations are supplied by additional indexes as ρ = ρc or ρ = ρh.
For each plasma the initial density is assumed to be homogeneus. Because practically
only the lateral motion occurs, from the continuity equation ∂ρ/∂t + ∇ ρV = 0 with
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V = (0,Vy,0) the plasma velocity vector, and from the assumption ∂/∂y = 0 for the lateral
direction follows that the plasma density doesn't change during the process thus
remaining homogeneous. The magnitude of the lateral deflection ∆y is given by the time
integration of Vy as

( ) ( )� ′′=∆
t

t
yy tdxtVxt

init

,, (9)

From Eq. (8) follows that the direction of the deflection of the cold plasma
remains the same independently on the sign of Bx. Because in accordance with Fig. 3 the
current in the cold plasma changes its sign simultaneously with that of Bx. Hence near
both the strike points of Fig. 1 the cold plasma deflects in the same direction along the
divertor plate.

4.4 Currents and electromagnetic field

According to Eq. (2) the induced magnetic field By is related with the current
density Jz as

z
y J

cx
B π4=
∂

∂
(10)

From Eq. (1) follows that the evolution of By is determined by the vortex electric field Ez
as

x
Ec

t
B zy

∂
∂=

∂
∂

, 0
init

=yB (11)

In order to fit the fields at the boundary between the hot and cold plasmas the continuity
of By and Ez across the boundary is required. The solution of Eqs. (10) and (11) is
determined by the boundary conditions at the plasma edge at x = −Lc and x = Lh. At
x = −Lc the boundary condition for By follows from Eqs. (3) and (8) with non-zero Bx. It is
obtained ∂By/∂x|x=−Lc = 0. The expression for the boundary condition at x = Lh in terms of
the magnetic field is derived below.

The relation between the current density J and the fields E and B is described by
Ohm's law as

�
�

�
�
�

� ×+= BVEJ ec
1σ (12)

with σ the electric conductivity and Ve the electron fluid velocity. For the hot and cold
plasmas Ohm's law gets different forms. In the collisionless hot plasma region (σ  =  ∞) it
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follows from Eq. (12): E +Vhe×B/c = 0 with Vhe = V − J/enh the fluid velocity of the hot
electrons. Excluding Vhe the components of E for the region of x > 0 are obtained as

h

yzzy
x cen

BJ
c
BV

E −−= ,
h

xz
y cen

BJE = ,
c
BV

E xy
z = (13)

From Eq. (13) follows E|| = 0. From Eq. (6) applied there with l(x) < 0 follows ϕ = 0 in
the hot plasma.

In the cold plasma the current density consists of contributions of the hot and cold
electrons as J = Jhe + Jce (see Fig. 3). The hot electron current is given as
Jhe = sαJheB/B −enhec(E×B)/B2.  The cold electron current is given by Eq. (12) as
Jce = σc(E + Vce×B/c) with Vce = V − Jce/ence the fluid velocity of the cold electrons and
σc the cold plasma conductivity. Multiplying the expression for Jce by B and then
excluding Jce, as it is equal to J − Jhe, the scalar product EB is obtained as

B
Js

c

he

c σσ
α−= BJEB (x < 0) (14)

Substituting EB of Eq. (14) into Eq. (8) and using Eq. (10) the effective potential is
obtained as

( )yxxy
c

BBc
b

−+Φ=
=πσ

αϕ
4
cot (15)

with the function Φ(x) given as

( )�
′′=Φ

x

x
he

c b

xdxJ
γασ cossin

1 (16)

The hot electron current is conveniently expressed via Φ as

x
J che ∂

Φ∂= γασ cossin (17)

According to Eq. (14) the electric field is represented as E = E⊥  + E|| with
E|| = (B/B)(BJ − sαJheB)/(σcB). Excluding consequently Vce, Jce and Jhe from Ohm's law
at x < 0, the equation for E⊥  in the cold plasma is obtained as

BEEBWE ×+−×= ⊥⊥⊥ 2B
cen

n
n

c

he

ce

he

σ
(18)
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with W = J/(cence) − V/c + B×J/(σcB2). Using the smallness of nhe compared to nce,
Eq. (18) is solved approximately by the perturbation method. Replacing E⊥  in rhs of
Eq. (18) by the first term of the rhs, the solution is obtained as

BWBWBWE ×��
�

�
��
�

�
−×+×≈⊥ 2B

cen
n
n

c

ce

ce

he

σ
  (19)

As a result the x-, y- and z-components of E are obtained as

ce

yz

c

xhezy
x cen

BJ
B
BJs

c
BV

E −−−≈
σ

α ,
ce

xz

c

yhe
y cen

BJ
B
BJs

E +−≈
σ

α (20)

z
c

z

c

zhexy
z EJ

B
BJs

c
BV

E ∆++−=
σσ

α (21)

�
�

�

�

�
�

�

�
+��

�

�
��
�

�
−+−=∆

c
VB

B
BJ

c
BV

B
B

B
cen

n
n

E yxz

c

zzyy

c

ce

ce

he
z 2

2

12
σσ

(22)

In Eq. (20) bulky terms ∆Ey and ∆Ez, which are proportional to nhe, are omitted. In
Eq. (21) the small term ∆Ez is kept in order to check its significance for the results.
Below it is shown that ∆Ez is negligibly small. Note that the neglecting of ∆E is
equivalent to the neglecting of the E×B drift term in Jhe.

5. ANALYSIS OF THE EQUATIONS

Using Eqs. (8) and (10) the current Jz is excluded thus relating By and Vy as

x
BB

t
V yxy

∂
∂

=
∂

∂
π

ρ
4

, 0
init

=yV (23)

Using Eq. (17) the function Jhe is excluded from the system being replaced by Φ.
Instead of Φ the dimensionless function w = eΦ/Th is conveniently used. Substituting Jhe
of Eq. (5) into Eq. (17) with ϕ given by Eq. (15) the equation for w in approximation of
xb = 0 and cosγ ≈ 1 is obtained as

( ) ( )
�
�

�

�

�
�

�

�
−++

−
=

∂
∂

= yxy
hcehc

hhThe BB
T

ecwx
T

Tene
x
w

0
0

2

4
cot

sin
exp

sin2
exp

πσ
α

αλασπ
φυ

  (24)
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According to Eq. (16) the boundary condition w|x=0 = 0 is valid. Neglecting the last term
in the exponent of Eq. (24), which contains the contribution of By, this equation is solved
analytically. The solution w is obtained as

( ) ( )( )( )hLsxKxw exp11ln −+−= (25)

The dimensionless constants K and s are given as

( )
hc

hhThee

T
TeneK

σπ
φυλ

2
exp 0

2 −
= ,

αλ sine

hL
s = (26)

Using Eq. (11) with Ez of Eqs. (13) and (21), neglecting ∆Ez, after substituting Jhe
of Eq. (17) and Jz of Eq. (10) with cosγ ≈ 1, the equation for By is obtained as

( )
�
�
�

�

�

�
�
�

�

�

>

<��
�

	



�

�

∂
∂−

∂
∂

∂
∂

=
∂

∂
−

∂
∂

0,0

0,2sin
24

2

x

xtg
x
w

e
cT

x
Bc

xx
V

B
t

B hy

c

y
x

y α
πσ (27)

with By|init = 0 and the switching on factor g(t) added for the first time. In case of the
sudden switching on it is valid g(t) = θ(t) with the step-function θ(t) = 0 at t < 0 and
θ(t) = 1 at t ≥ 0. In the adiabatic case it is valid g(t) = exp(t/t0).

As was discussed in chapter 4.4, the boundary condition ∂By/∂x|x=−Lc = 0 is valid.
As follows from Eqs. (11) and (13), the condition ∂Vy/∂x|x=Lh = 0 of Eq. (3) is equivalent
to the equality ∂By/∂t|x=Lh = 0 and thus the boundary condition By|x=Lh = 0 is valid. Eq. (27)
requires also the fitting at x = 0. Integrating Eqs. (23) and (27) over a small interval
across the boundary the fitting conditions are obtained as

( ) ( )00 +=− yy BB (28)

0
0

2

2sin
24 +

−

=��
�

�
��
�

�

∂
∂−

∂
∂

+ yx
hy

c
yx VBg

x
w

e
cT

x
BcVB α

πσ
(29)

Eqs. (28) and (29) express the continuity of By and Ez at x = 0.
Hence the system of equations to be solved is reduced to Eqs. (23), (24) and (27)

for Vy, w and By. Assuming a small By, Eq. (25) for w is used. In this case the system is
linear, and due to this analytical solutions of the problem are obtained.

The functions By(t,x) and Vy(t,x) are conveniently replaced by the dimensionless
functions b(τ,ξ) and υ(τ,ξ) as By = µB0b and Vy = µVAυ with τ  and ξ dimensionless time
and coordinate, VA the Alfven velocity of the hot plasma and µ the dimensionless
constant given as
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0t
t=τ ,

hL
x=ξ , 2

0

0 cot

e

h

eB
tcT

λ
α

µ = ,
h

A
B

V
πρ4

0= (30)

Transforming Eqs. (23), (27), (3), (28) and (29) to the dimensionless variables it is
obtained

ξτ
υη α ∂

∂=
∂
∂ bsa2   (ξ < 0),

ξτ
υ

α ∂
∂=

∂
∂ bsa   (ξ > 0), 0

init
=υ   (31)

( ) ( )
�
�
�

�

�

�
�
�

�

�

>

<
∂

∂
−

∂
∂−

=
∂
∂−

∂
∂

0,0

0,1
022

2

2

2

22

ξ

ξτ
ξ

ξ
ξηξ

υ
τ

αα tg
s

Lw
sb

a
q

a
sb h

, 0
init

=b   (32)

( ) 0, =− clτυ , ( ) 01, =
∂
∂ τ
ξ
υ , ( ) ( )0,0, +=− ττ bb (33)

( ) ( ) ( )0,1

0

0
2

2 +=��
�

�
��
�

�

∂
∂

−
∂
∂−+

−=

− τυτ
ξ

ξ
ξη

υ
ξ

α tg
Lw

asb
a
qs h (34)

The dimensionless constants η, a, lc and q are given as

h

c

ρ
ρη = ,   

αsin0 A

h

Vt
L

a = ,   
h

c
c L

Ll = ,   
( )

2

2
0

4
1

hc L
catq

πσ
η

+= (35)

For the typical physical parameters mentioned in chapter 4 with Lh = 1 m,
ρc = 12mpnci and ρh = 2mpnh, and using the pressure balance equation given there the
constants K, s, µ, η, A and q are obtained as

K = 1.2,  s = 1.4,  µ = 1.1⋅10-2,  η = 14,  a = 1/140,  q = 1+2.5⋅10-5 (36)

In these estimations the conductivity is expressed as σc = e2nceτce/me ≈ 3⋅1014 s−1. The
electron-ion collision time in the cold plasma is given as τce = 3.5⋅104(Tc)3/2/(Znce)
≈ 2⋅10−10 s with Tc in electronvolts. The stopping length is given as λe = υTheτs ≈ 6 m with
υThe ≈ 3⋅109 cm/s and τs = τce(Th/Tc)3/2  ≈ 2⋅10−7 s.

5.1 Solution of the equations

For the function w given by Eq. (25), the system of Eqs. (31), (32), (33) and (34)
is solved by separation of variables. The function g is given as g = gpexp(pτ) with the
coefficient gp depending on the separation parameter p. The variables υ and b are



15

represented similarly as υ = υpexp(pτ) and b = bpexp(pτ) with υp and bp functions on p
and ξ. Substituting these expressions into the equations and then omitting the factor
exp(pτ) it is obtained

pp bsap ′= αυη 2   (ξ < 0), pp bspa ′= αυ   (ξ > 0) (37)

22 ps
gsw

k
b

b p

c

p
p

α′′
−=

′′
−   (ξ < 0), 022 =

′′
−

ap
b

b p
p   (ξ > 0) (38)

0=′
−= cl

pb
ξ

, 0
1

=
=ξpb , ( )0

00 ppp bbb ≡=
+=−= ξξ

(39)

( ) ( )
22
0

22

00
ap

b

ps
gsw

k
b pp

c

p +=
′

=
′

−
−′ ξα (40)

with the coefficient kc = paη/[1+p(q−1)]1/2 and the derivative bp′(−0) = bp′ |ξ=−0 (the stroke
designates d/dξ). The function w of Eq. (25) is used. The function υp is excluded from
Eqs. (38), (39) and (40).

Assuming |p|(q−1) << 1 and considering Eq. (38) with zero right hand side (rhs)
and p = −iω with a real ω, at ξ < 0 the solutions with b(τ,ξ) ∝ exp(±iaηωξ − iωτ) and at
ξ > 0 with b(τ,ξ) ∝ exp(±iaωξ − iωτ) are obtained. These solutions describe the
sinusoidal Alfven modes of the plasmas. In the physical units the phase velocity of the
modes is obtained as υc = B0/(4πρc)1/2sin|α| at x < 0 and υh = VAsin|α| at x > 0. Thus the
modes propagate in the plasmas with the Alfven velocity along the magnetic field lines.

At ξ > 0 the problem is solved as bp = bp(0)sh[pa(1−ξ)]/sh(pa). Thus the rhs of
Eq. (40) is equal to −bp(0)/A with A = path(pa).

If the boundary condition Vy|x=Lh = 0 would be used then the condition
(dbp/dξ)|x=Lh = 0 is valid. For such case it is obtained bp = bp(0)ch[pa(1−ξ)]/ch(pa) thus
the rhs of Eq. (40) is equal to −bp(0)/A1 with A1 = pacth(pa).

At ξ < 0 general solution of Eq. (38) is given as

( ) ( ) ( ) ( ) ( ) ( )( )� −′′+−′+=
ξ

α ξξξξξξ
0

1112 sh
sh

0ch0 dkw
ps

kgs
k
k

bkbb c
cp

c

c
pcpp   (41)

Substituting bp of Eq. (41) into the boundary conditions Eqs. (39) and (40), linear
equations for bp(0) and bp′(−0) are obtained. Solving these equations results in the final
expression for bp as bp = sαgpGp with the Green function Gp(ξ) being the solution for
gp ≡ 1 and given as
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( )

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )( )
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�
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+′
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+′′
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−

=
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−
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ξξξξξ

ξξξξξ

ξ

0
111

0
111

2

sh
chsh

ch0

ch
chsh
shch
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lkklkA

lkwA

dlkw
lkklkA

kkkA

ps
kG

c
ccccc

cc

l

cc
ccccc

ccc

c
p

c

  (42)

Hence at ξ > 0 the solution is given as bp(ξ) = sαgpGp(0)sh[pa(1−ξ)]/sh(pa).
According to Eq. (37) the function υp at ξ < 0 is obtained as υp = gpGp′/(pη2a) and at
ξ > 0 as υp = −gpGp(0)ch[pa(1−ξ)]/sh(pa). In case of the boundary condition Vy|x=Lh = 0 in
Eq. (42) the parameter A should be replaced by the parameter A1.

5.2 Sudden start of the plasma interaction

In case of g(t) = θ(t) the function g is represented by the Laplace integral as

( )
�
∞+

∞−

=
i

i

exp
i2

1 dp
p
pg τ

π
(43)

thus gp = 1/p. As a result the solutions for b and υ are given as

( )
( )

( ) ( )( )
( )

( )
�
∞+

∞−
�
�

�

�

�
�

�

�

>−
<

=
i

i

exp
0,

sh
1sh0

0,

i2
, dp

p
p
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paG

Gs
b

p

p τ
ξξ

ξξ

π
ξτ α (44)

( )
( ) ( )
( ) ( )( )

( )
( )

�
∞+

∞− �
�
�

�

�

�
�
�

�

�

>−−

<′
=

i

i

2

exp
0,

sh
1ch0

0,

i2
1, dp

p
p

pa
paG

apG

p

p τ
ξξ

ξηξ

π
ξτυ (45)

As was mentioned in chapter 4, t is assumed to be small enough for neglecting of
the influence of the boundaries at ξ = −lc and ξ = 1. Thus it is assumed that the solutions
are analyzed at |ξ| << min(lc,1). This case is met at |p|a >> 1 and kclc >> 1, which is
assumed below. In the time scale the inequality |p|a >> 1 corresponds to τ << a thus
t << at0 ≈ 0.7 µs.  Due to the small value of the parameter q − 1 (see Eq. (36)) below for
the sake of simplicity it is assumed that additional restriction q − 1 << 1/|p| is valid,
which allows to neglect the term |p|(q − 1). Thus the switching on process occurs during a
negligibly short time ∆t for which it is valid ∆t >> (q − 1)t0 ≈ 2 ns. The neglecting of the
term |p|(q − 1) means neglecting of diffusion of the cold plasma across the magnetic field
lines compared to its lateral motion. The expression for kc is simplified as kc =  paη thus
lc is large as lc >> 1/(paη).

At a|p| >> 1 and kclc >> 1 it is valid A ≈ ap and sh(kclc) ≈ ch(kclc) ≈ exp(kclc)/2. At
the additional condition |ξ| << lc Eq. (42) is simplified as
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( ) ( ) ( ) ( ) ( ) ( )( ) �
�
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�
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�
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ξηξξ
0

111
0

112 ch
1

shch
dkwkdew
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k

G cc
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c
c

p
c

Because s ~ 1, it is valid s|ξ| << 1. In this region the function w′ is approximated
as w′ ≈ w′(0). Final simplified expression for Gp(ξ) with the available condition η >> 1 is
obtained as Gp(ξ) ≈ a(K/s)exp(aηξp). Using this expression in Eq. (44), which is
additionally simplified at ξ > 0 as sh(pa(1−ξ))/sh(pa) ≈ exp(-aξp), and making the
inverse Laplace transformation the magnetic field is obtained as

( ) ( ) ( )ξτθηξτθξτ α aa
s
aKsb −+≈, (46)

Such solution represents the dynamics of the perturbation of the magnetic field as caused
by the sudden switching on of the current generation. The perturbation propagates away
from the boundary as the pulse function. Replacing the dimensionless variables τ and ξ
by t and x according to Eq. (30) it is obtained that the perturbation front propagates in the
hot plasma with the velocity VAsinα thus with the Alfven velocity along the lines of the
magnetic field B0. In the cold plasma the perturbation front propagates along B0 with
their Alfven velocity as well.

Similar behavior gets the lateral velocity. From Eq. (45) υ is obtained as

( ) ( )
( ) �

�

�
�
�

�

>+−
<+

=
−

0,
0,

,
1

ξηξτθ
ξηξτθηξτυ

a
a

s
aK (47)

Thus the lateral deflection has opposite direction for the hot and the cold plasmas. The
magnitude of the lateral velocity of the hot plasma is much larger (by the parameter
η >> 1) than that of the cold plasma.

Hence after the sudden start the induced self-consistent electromagnetic field
propagates as the pulse having the sharp front with the Alfven velocity along the
magnetic field lines into the hot plasma. A similar wave propagates in the cold plasma
backward of the x-axis. In reality the wave front achieves the hot plasma edge in a time
Lh/(VAsin|α|) much smaller than t0. Due to reflection from the edge plasma modes of
rather high frequencies and amplitudes would occur. The excitation of these modes
results from the initial conditions at t = 0 only. For the above mentioned typical
parameters the Alfven velocity is obtained as VA ≈ 109 cm/s. Using the value Lh = 1 m the
relation of t0 to the time of the mode propagation through the plasmas is estimated as
a−1 ~ 102. Thus the mode frequencies are of the order of 1/(t0a), which doesn’t relate with
the characteristic time t0 of the problem under consideration. Similar remarks concern the
cold plasma.

Therefore more reasonable is a model with the adiabatic increase of the
interaction intensity in which the characteristic time of the switching on of the plasmas
interaction is of the order of t0.  In this case the amplitudes of the high frequency parasitic
modes become negligibly small if t0 is much larger than their oscillation period. In this
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case the deflection velocity at each moment depends only on the intensity of the current
generator. An adiabatic solution slowly changing in space and time is obtained in the next
chapter thus demonstrating the way of avoiding of the non-physical solutions.

5.3 Adiabatic increase of the interaction intensity

The case of g(t) = exp(τ) directly corresponds to the obtained in chapter 5.1
solution with p = 1 and gp = 1. In accordance with Eq. (36), because q ≈ 1, it is valid
kc = aη << 1 thus at ξ > 0 in the stopping region of the hot electrons (s|ξ| ~ 1) it is valid
kc|ξ| << 1. At ξ > 0 it is valid aξ << 1. The parameter A is equal to a2. It is assumed that it
is valid kclc << 1 because at larger thickness of the cold plasma the Alfven waves
generated at the separation boundary don’t reach the wall in time t of the order of t0. Due
to this limitation the simplifications shx ≈ x and chx ≈ 1+x2/2 are used. Initially Eq. (42)
is conveniently transformed without using the mentioned simplifications and resulting in
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  (48)

Then the integral terms are neglected because of the small factor (kc)2. After using the
simplifications it is obtained
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exp,   (ξ < 0)  (49)

The function b of Eq. (49) meets the boundary condition b′(−lc) = 0 exactly. Thus it
represents adequately the adiabatic solution at ξ < 0.

According to Eq. (49) the magnitude of the magnetic field at the separation
boundary is given as b(τ,0) ≈ (a/s)2exp(τ)w′(−lc). Thus its behavior at ξ > 0 is obtained as

( ) ( ) ( )( )ξτξτ α −−′≈ 1exp, 2

2

clw
s
asb (ξ > 0) (50)

According to Eq. (37) the lateral velocity is given as
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Comparing Eqs. (46) and (49) it is concluded that the magnitude of the magnetic
field in the adiabatic case at the final moment t = 0 is much less (by the parameter a << 1)
compared to the case with the sudden start. Comparing Eqs. (47) and (51) it is concluded
that the lateral velocity of the hot plasma in both situations is of the same magnitude at
slc << 1 and is smaller in the adiabatic case by the factor w′(−lc) << 1 at slc > 1.

In physical units and with w given by Eq. (25) the lateral velocity is given as
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In accordance with Eq. (9) the lateral deflection is given as ∆y = t0Vy. At the final
time moment t = 0 the deflection magnitude of the plasmas at x = ±0 is different and
given as
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A typical behavior of the induced magnetic field and of the deflection velocity is
demonstrated in Fig. 4 and Fig. 5. The dependence of the deflection on the thickness of
the cold plasma is shown in Fig. 6.

From Eq. (53) follows that at slc >> 1 the deflection of the hot plasma being
determined by the factor exp(-slc) becomes negligibly small. In this case, which is not
analyzed here, the integral terms neglected in Eq. (48) are significant for the deflection
effect. Maximal magnitudes of the hot plasma deflection are produced at slc <<1. In this
case the magnitude ∆h of the hot plasma deflection is larger than the magnitude ∆c of the
cold plasma. According to Eq. (53) at slc <<1 the relation of the magnitudes is given as
∆c/∆h ≈ (K+1)slc. At slc <<1 for the mentioned above typical values of the plasma
parameters and in accordance with Eqs. (36) and (53) the deflection magnitude of the hot
plasma is obtained as ∆h ≈ 7 cm. The behavior of ∆h at slc <<1 as function of the plasma
parameters is given as
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In case of the boundary condition with υ(τ,1) = 0 it is obtained similarly:
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Comparing Eq. (55) with Eqs. (49) and (50) it is concluded that in case of the fixed
boundary of hot plasma the magnitude of By in the hot plasma is by a factor 1/a2 larger
than that one in case with the free boundary. Thus in the case of the fixed hot plasma
boundary the induced magnetic field in the hot plasma remains rather small being of
0.2 T for the above mentioned values of the plasma parameters. Comparing Eq. (56) with
Eq. (51) it is concluded that the lateral velocities, thus the lateral shifts of the plasmas,
don’t differ significantly for the both cases.

6. DISCUSSION

In chapter 5 the assumption that By is small is used in order to provide the linear
character of the analyzed problem. Estimating By in case of the adiabatic increase of the
interaction intensity according to Eq. (50), it is obtained that at the final moment t = 0 and
at the small thickness of the cold plasma (Lc << λesinα) it is valid By = B0µb(0) ~ 
B0µa2K/s ≈ 0.02 G for B0 = 5 T and the values of the dimensionless parameters
mentioned in Eq. (36). But as it is shown, despite such small values of the induced
magnetic field, the lateral deflection of the hot plasma, which occurs only due to non-zero
By, is of the order of the experimentally measured values.

The last term in the exponent of Eq. (24) can be neglected if it is much less than
one. Using Eq. (50) this vortex field term conveniently estimated as (q−1)sKcos2α is
approximately equal to 10−4. Thus the solution w(x) given by Eq. (20) is justified. The
small contribution of the vortex electric field to ϕ makes the effective potential equal to
the usual electric potential with a good accuracy. Hence the electric stopping of the hot
electrons in the inclined magnetic field is practically the same as that of the perpendicular
impact.

The contribution of the E×B drift term in Jhe, which is expressed by the function
∆Ez of Eq. (22), in comparison with the lateral velocity is defined as |c∆Ez/(BxVy)|. For
estimation of the contribution the value |b| ≈ a2K/s  given by Eqs. (50) at lc << 1, τ = 0
and ξ = 0 is used. From Eq. (37) at p = 1 it is obtained |(∂b/∂ξ)/υ| = η2a. According to
Eq. (5) at x = 0 it is valid nhe = nh/2. The dimensionless parameters are conveniently used.
As a result it is obtained
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with ωe = eB0/mec the electron gyro-frequency and τce the electron-ion collision time,
which is calculated in chapter 5 as τce ≈ 2⋅10−10 s. At B0 = 5 T it is valid ωe ≈ 1012 s−1.
Thus the neglect of the drift term is correct because it is valid |c∆Ez/(BxVy)| << 1.

The parameter K is reversely proportional to the conductivity σc of the cold
plasma. Thus according to Eq. (53) if the cold plasma would be a perfect conductor, the
deflection would not occur because ∆y → 0 at σc → ∞. This confirms the discussion of
chapter 4.1 on the physical nature of the lateral effect.

Below the first four of the experimental facts mentioned in chapter 3 are
discussed in their relation to the considered model.

The observation that the deflection occurs only due to the inclination of the
magnetic field is met in the presented model. According to Eq. (54) the magnitude of the
deflection contains the inclination angle α in the factor 1/tan|α|. Thus the larger the
inclination (the smaller α) the larger the deflection. Without inclination (at perpendicular
impact with α = 90o) the factor 1/tan|α| gets equal to zero, which results in vanishing of
the lateral deflection.

The observation that the strike points move mainly before the power flux pulse
arrives correlates well with the model because it is obtained that the deflection of the hot
plasma develops most effectively at thin vapor shield and at small temperature Tc of the
cold plasma. According to Eq. (51) the lateral velocity of the hot plasma is proportional
to the factor w′(−lc) ~ exp[−Lc/(λesin|α|)]. Thus when increasing the thickness Lc of the
vapor shield the lateral velocity decreases. According to Eq. (54) the deflection is
proportional to (Tc)−3/2. In the adiabatic switching on regime the same is valid for the
lateral velocity. In the vapor shield simulations Tc is smaller in the initial phase of the
plasma-target interaction than at the main phase. Thus the model reasonably describes the
faster deflection at the initial stage because of the lower vapor shield temperature.
Eq. (54) describes also the dependence of the deflection on the temperature Th and the
density nh of the hot plasma. The value of Th due to cooling of the cold plasma may get to
decrease in time. Such possible dynamics of Th doesn’t collide with the result of Eq. (54)
that the smaller Th the smaller the lateral velocity.

The observation that the higher the power density the larger the deflection is also
in agreement with the model. According to Eq. (54) the deflection is proportional to nh,
which stagnates rather soon after hot ions arrive to the wall.

The magnitude of deflection obtained in the model is in reasonable agreement
with the experimental results.

In the frame of the considered model it is impossible to explain the observation
that the strike points move in the opposite directions. Formally the situation near the
inner and the outer strike points differs by the sign of α. But according to Eq. (54) the
deflection is expressed by the even function of α. Therefore the change of the sign is not
followed by the change of the direction of the deflection, which doesn’t agree with the
experiment.

The choice of the boundary condition at the hot plasma edge in the considered
problem seems reasonable, which follows from experiments. If would favor the opposite
direction of the shifts of the strike points, the symmetrical boundary condition with
(∂Vy/∂x)|x=Lh = 0 seems in advance more reasonable. However such a choice contradicts
the obtained asymmetry of the solutions as function of the direction of the poloidal



22

magnetic field, which is expressed by the even dependence on the angle α in Eq. (54). If
believing for the asymmetry, the condition Vy|x=Lh = 0 seems more preferable. But
definitely this question is not answered by the carried out one-dimensional analysis.

7. CONCLUSION

SOL plasma deflection may play a significant role in the problem of hot plasma-
solid wall interaction because the exposition area of the hot plasma is increased and
because an additional mechanism of the cold plasma removal from the exposed area is
developed. Due to the removal of the cold plasma the effectiveness of the vapor shield
may get less effective, which can cause enhanced wall erosion despite the decrease of the
average power density of the hot plasma target irradiation.

Despite rather significant mathematical simplifications of the considered process
of the plasma-target interaction, which was necessary for the development of the
analytical model for the deflection effect, the approach seems fruitful. The quantitative
agreement and the qualitative similarity of the theoretical and the experimental results
bring the hope that the suggested physical picture is relevant to the real deflection
phenomenon. Nevertheless additional theoretical ideas are necessary for explanation of
the directions of the deflection. The still rather artificial one-dimensional model
considered in this work may be useful for the development of a more adequate one- and
two-dimensional numerical simulation of the target-plasma interaction with accounting
for the lateral deflection of both the hot SOL plasma and the vapor shield layer.
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Fig. 1. The divertor and the geometry of the SOL schematically. The strike points of the
SOL plasma are located at the divertor plates. The curvilinear magnetic flux coordinates x
and y are assumed to be orthogonal. The toroidal coordinate z (not shown) is orthogonal
to x and y. The separatrix separates the confined plasma from the SOL region. In the X-
point the magnetic field has only a toroidal component but no poloidal one. The poloidal
magnetic field lines indicate the separatrix and the x-axis.
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Fig. 2. Positions of the plasmas schematically. ax, ay and az are the plasma sizes with ax
shown in the figure to be equal for both plasmas. Compensating toroidal currents I and −I
are developing in the hot cold plasma interface. The lateral deflection develops in y-
direction.

Fig. 3 The non-compensated hot and cold electron current density Jhe and Jce in the cold
plasma schematically. J is the resulting toroidal current density. a) Bx > 0, b) Bx < 0. Note
that the electron current density vector is opposite to the vector of electron number flux.
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Fig. 4 Distribution of the induced magnetic field after 100 µs.

Fig. 5 Deflection velocity after 100 µs.
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Fig. 6 Deflection of the plasmas after 100 µs as function of the cold plasma thickness.
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