Forschungszentrum Karlsruhe

Technik und Umwelt

Wissenschaftliche Berichte

FZKA 6473

Propagation Speed of Stretched Premixed Flames
with Multi-step Reaction Mechanisms

A. Y. Klimenko*, A. G. Class

Institut fur Kern- und Energietechnik
Projekt Schadstoff- und Abfallarme Verfahren

*Dept. of Mechanical Engineering, The University of Queensland,
Australia

Forschungszentrum Karlsruhe GmbH, Karlsruhe
2000



Ausbreitungsgeschwindigkeit gestreckter Vormischflammen
mit mehrstufigem Reaktionsmechanismus

Zusammenfassung

Es wird die Ausbreitungsgeschwindigkeit einer diinnen Vormischflamme betrachtet, die durch ein grof-
skaliges Stromungsfeld gestért wird. Im Gegensatz zu vorausgegangenen Veroffentlichungen wird die
hier dargestellte asymptotische Analyse fiir einen realistischeren mehrstufigen Reaktionsmechanismus
ausgefithrt. Eine Eigenschaft des vorgestellten Ansatzes ist die relativ einfache asymptotische Methode,
die auf einem verallgemeinerten krummlinigen Koordinatensystem, das fest mit der Flamme verkniipft
ist, beruht. Die erste Reaktion besitzt eine hohe Aktivierungsenergie und erzeugt Radikale, aber ihre
Wirmefreisetzung ist vernachléssigbar klein, wihrend die anderen Reaktionen den Verbrennungsprozef
beenden und dabei Wirme freisetzen. Die hier betrachtete Flamme besitzt zwei ausgezeichnete Zonen:
Die Aktivierungszone und die Warmefreisetzungszone. Es wird gezeigt, dass die Ausbreitungsgeschwin-
digkeit der Flamme von der in diesem Bericht eingefiihrten effektiven Zeldovich Zahl Z; und der Flamm-
streckung abhéngt. Im Gegensatz zur konventionellen Zeldovich-Zahl ist die effektive Zeldovich-Zahl
nicht unmittelbar mit den Aktivierungsenergien der einzelnen Reaktionen verkniipft. Die exponentielle
Abhiangigkeit der Flammengeschwindigkeit von der Flammstreckung, die bei Einschrittmechanismen auf-
tritt, wird durch eine lineare Abhéingigkeit abgelést. Im Falle einer zweistufigen Reaktion, der einfachste
Fall, der eine Unterscheidung einer Aktivierungs- und einer Wéarmefreisetzungszone erlaubt, kann die
effektive Zeldovich-Zahl analytisch ermittelt werden. Im Falle realistischer Reaktionen wird die effektive
Zeldovich-Zahl aus Experimenten ermittelt.

Abstract

The propagation speed of a thin premixed flame disturbed by a fluid flow of a larger scale is considered.
Unlike in preceding publications, the presented asymptotic analysis is performed for a more realistic multi-
step reaction mechanism. Another feature of the present approach is represented by the relatively simple
asymptotic technique based on the adaptive generalised curvilinear system of coordinates attached to the
flame. The first reaction with high activation energy generates radicals but its heat effect is negligible
while the other reactions complete the combustion process and release heat. The flame considered here
has two distinct reaction zones: the activation zone and the heat release zone. The flame propagation
speed is shown to depend on the effective Zeldovich number Z;, which is introduced in the paper, and the
flame stretch. Unlike the conventional Zeldovich number, the effective Zeldovich number is not directly
linked to the activation energies of the reactions. The exponential dependence of the flame speed on the
flame stretch, known for a single step reaction, appears to be replaced by a linear dependence. For a
two-step reaction, which is the most simple reaction mechanism allowing for the distinct activation and
heat release zones, the effective Zeldovich number can be determined analytically. For realistic reactions,
the effective Zeldovich number is determined from experiments.
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1 Introduction

In premixed combustion, a mixture of fuel and oxidizer reacts in a flame to form the burned products. The
self-propagation mechanism of premixed flames is determined by a sophisticated balance of the chemical
reaction, mass diffusion and convective transport of heat and species. In non-uniform time-dependent flows,
strong interactions of the flow with this balance result in a non-constant local flame-propagation speed.
Since the flame is, typically, thin in comparison with the characteristic scales of the fluid flow [1, 2], the
most simple approach to premixed combustion is based on viewing the flame as a surface of discontinuity
which separates the dense cold mixture from the light hot products. The flame behaves as a gas-dynamic
discontinuity. A first model of this kind was proposed by Darrieus [3] and independently by Landau [4]. In
the Darrieus-Landau model, the flame is described as two incompressible fluids of different densities which
are separated by the flame front. The model is completed by assuming that the flame propagates relative to
the fluid at a fixed speed - the adiabatic flame speed. A major problem with the Darrieus-Landau model is
its implication with respect to the stability of planar flames. It can easily be shown [5] that planar flames are
unstable with respect to perturbations of any wave length. This result is in contradiction with the properties
of planar flames which are known to exist in laboratory experiments. In order to overcome this deficiency
of the Darrieus-Landau model, Markstein [6] proposed a simple model, where the flame speed is assumed to
be proportional to the flame curvature. The constant of proportionality is called the Markstein number. It
should be noted that this model is empirical: the dependence of the flame speed on the flame curvature is
postulated but not derived from the first principles. In the Markstein model, the short-wave perturbations
are stabilized but the Markstein model fails to explain that the flame speed of flat flames in flows involving
velocity gradients is not identical to the adiabatic flame speed in a quiescent mixture.

Zeldovich [7] introduced the concept of a more realistic flame by considering the flame as a one-step
irreversible reaction between fuel and oxidizer. This reaction is deemed to have a high activation energy
and, therefore, the reaction rate strongly depends on the temperature so that the reaction zone is restricted to
a thin zone near the highest temperature. Mathematically, this common property of the flames is expressed
by a large value of the Zeldovich number Z. The thickness of the reaction zone can be assessed as ~ I;/Z
where [y is the flame thickness. Behind the reaction zone, there is no reaction since all the available fuel
is consumed in the reaction zone while, ahead of the reaction zone, the reaction rate is negligibly small
due to the low temperature. The preheat zone is located ahead of the reaction zone. Within the preheat
zone, the incoming mixture is preheated by heat conduction until reaction sets in at high temperatures.
Also, within the preheat zone fuel diffuses towards the reaction zone where it is consumed. Due to the low
heat conductivity and mass diffusivities of gas mixtures, the preheat zone is thin under typical conditions
encountered in combustion.

The interactions of the premixed flames formed by a one-step irreversible reaction with fluid flows are
considered in many publications [8-10] and reviewed by Clavin [11]. For these asymptotic models, Zeldovich’s
solution represents a zero-order approximation. At the next order of approximation, the corrections induced
by the flame stretch are accounted for. The flame stretch x [12] is defined as time derivative of logarithm
of the area of a flame segment and involves two terms: a term which is proportional to velocity gradients
and another term which is proportional to the flame curvature [13,14]. The major asymptotic analyses of
the influence of the flame stretch on the flame speed are performed by Sivashinsky [8] and Matalon and
Matkowsky [9]. They consider a thin flame formed by a one-step irreversible reaction with a high activation
energy disturbed by an arbitrary external flow and assume that the flame curvature is weak as compared to
the flame thickness. The flame characteristics depend on the Lewis number L which is defined as the ratio
of heat diffusivity. to mass diffusivity. Sivashinsky [8] assumed that the Lewis number significantly deviates
from unity AL = (L — 1) ~ 1 while Matalon and Matkowsky [9] considered the case when the Lewis number
is close to 1 so that AL ~ 1/Z. These formulations are different characteristic limits and result in different
equations for the flame propagation speed. The analysis of the flames for the case of a near-stoichiometric
mixture and a one-step reaction was performed only recently [10].

Realistic chemical mechanisms are, of course, much more complicated than a one-step irreversible reaction.
The combustion process is usually activated by a reaction generating free radicals. Typically, this reaction
has a very high activation energy and the corresponding Zeldovich number can be as high as 50. The heat
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Figure 1: Asymptotic zones in a premixed flame with the two-step reaction mechanism.

effect of the initializing reaction is minimal. Subsequently, the radicals are consumed in a series of reactions
which release heat and the products. While the thickness of the activation zone can be as small as ~ 1/50 of
the flame thickness, the other reactions take place within a wider zone. About 90% of the heat release occurs
in the reaction zone which can be characterized by a different characteristic scale: about 1/5 of the flame
thickness. The question of how the equations obtained for the flames with one-step reaction mechanism can
be applied to realistic flames is by no means simple. Abdel-Gayed et al. [15,16] suggested that the activation
energy of a realistic flame can be determined by plotting logarithm of the flame speed versus the inverse
adiabatic temperature of the products. The flame is formally treated as being generated by a one-step
reaction. The Zeldovich numbers determined by this method appear to be ~ 10 [15,16]. These values of the
Zeldovich number do not necessarily correspond to the activation energy of the initializing reaction. Thus,
analyses of the interactions of fluid flows and flames with more realistic chemical mechanisms seem to be
imperative.

While numerical calculations performed for undisturbed, planar premixed flames using realistic chemical
kinetics are quite common [1], evaluations of the realistic flames disturbed by the flow are more problematic.
This is mostly related to the conventional asymptotic technique [8-10] which makes the mathematics of the
asymptotic analysis quite tedious even for a one-step reaction. Recently, Klimenko and Class [?,17] suggested
an alternative technique based on the adaptive curvilinear system of coordinates and generalized the flame
speed equation [9] for arbitrary values of the diffusion coefficient. The advantage of this new technique is its
relative simplicity which should allow for more complicated physical formulations of the problem.

In the present work, we investigate how the propagation speed of realistic flames is affected by flame
wrinkling in an arbitrary fluid flow. We assume that the combustion process is initialized in a very thin
activation zone by a primary reaction which has a very high activation energy but its heat effect is minimal.
This reaction converts a reactant into radicals and is followed by a series of secondary reactions which generate
the final combustion products and release heat. If the secondary reactions are very fast then the combustion
process would be controlled by the activating reaction and heat would be released in the activation zone. As
it is discussed above, in a realistic flame, the heat release zone is normally wider than the activation zone.
Hence, at least some of the secondary reactions must be slower. The two-level (activation/heat release)
structure of the reaction zone can not be modelled by a one-step reaction mechanism since, in this case, the
activation and the heat release zones are the same. We begin our consideration from a two-step reaction
mechanism — the most simple mechanism which still can have the expected structure of the reaction zone.
This simplified mechanism allows to obtain a complete analytical solution of the problem. The results are
then generalized for reaction mechanisms involving a series of reactions releasing heat.



2 The Reaction Zone with the Two-Step Mechanism

We consider a flame whose characteristic width /; is much smaller than the characteristic scale of hydrodynamic
fluctuations l4. The chemical kinetic mechanism is represented by two reactions

deficient reactant — radical(s) (1)

radical(s)+excess reactant — product + heat release (2)

The reactions are controlled by equations

aC D
Pﬁl +pv-VC — V'(L—1VC1) =-W (3)
aC: D
P2 4 pv - VO, — V(-2 Cy) = Wy — W (4)
ot Lo
T
P + PV VT = V-(DVT) = Wy (5)

where (' is the mass concentration of the deficient reactant, C is mass concentration of the radicals and T’
is the temperature. The concentration ' is normalized so that C; = 1 in the fresh mixture and C; = 0 in
the burned gas. Normalizations of Co and T3 are consistent with normalization of C, as it is determined by
(4) and (5), so that 7'= 0 in the fresh mixture and 7" =1 is the adiabatic temperature (that of undisturbed
flame) in the products. The density p and the "dynamic” diffusion coefficient D = pD are, generally,
functions of the temperature: p = p(T) and D = D(T).

As shown in Fig.1, we distinguish the following zones: the preheat zone ~ I,; the activation zone whose
characteristic length scale is I, and the heat release zone whose characteristic length scale is I,.. Typically,
both of the two reaction zones are thinner than the preheat zone. The rate of the first reaction (1) is essential
only within the activation zone. If the reaction (2) is very fast, then the radicals are immediately converted
into products, Cy is small and W =~ W2 so that equation (4) may be discarded. This case is equivalent to
the conventional one-step mechanism [8,9]. In the present work we are interested in the case when the rate
of (2) is sufficiently slow to provide essential concentration of Cs and, at the same time, sufficiently fast to
ensure that [, < I,. This can be summarized by

e <L <l =1 <y (6)

The flame thickness Iy is determined by the thickness of its widest zone I,. The relation between the
characteristic scales in (6) and the other parameters involved is discussed later when the specific zones are
considered. The inequality [, < [, ensures that the case under consideration is essentially different from the
conventional one-step mechanism.

The first reaction specified by (1) has a high activation energy. This reactions is confined to a very
thin activation zone. The radicals produced in the first reaction diffuse upstream and downstream from
the activation zone into the heat release zone where the radicals are converted into products by the second
reaction (2). The second reaction is assumed to be moderately fast so that the heat release zone is relatively
thin. The temperature variation is relatively small within the reaction zone AT ~ [./l, and so is the
variation of the concentration of the excess reactant ACy ~ I,./l,,. Thus, within the reaction zone, we neglect
terms O(l,/l,) and represent the parameters involved in form of the expansions

D=Dp+ .., p=pp+..... (7)

W1 = AiCl exp <—Ta1/T) = AICI exp (ZIAT) + ... (8)



Wo = ASCs exp (—Tag/f) = AoCs exp (Z2AT) + ... (9)

where the subscript ”b” is used to denote values in the burned mixture, T = Tu —l—T(Tb* — Tu) is the absolute
temperature and AT is defined as AT = T'— 1. Particular forms of the expressions for A and A3 depend on
the specific features of the reactions. For the leading-order analysis, these values are treated as constants.
The Zeldovich numbers Z; and Zs are related to corresponding activation energies of the reactions Tm and
Tyo. The equations for W7 and Ws are obtained by expanding the conventional Arrhenius reaction rates
into a series in regions where the reaction rates are significant. The parameter Z; is assumed to be large -
the activation of the reactions always needs a sufliciently high temperature. The second reaction is expected
to be uniformly fast within the reaction zone (otherwise the radicals would diffuse upstream and initiate
reactions earlier, ahead of the reaction zone). The simplest way to satisfly this requirement is to assume
that Zs is either zero or sufficiently small and can be neglected within the reaction zone. Although the
dependence of W5 on the temperature is neglected within the reaction zone and the coeflicient As does not

depend on T, large variations of the adiabatic temperature may affect Ay since As ~ exp (Tag / Tb*).

2.1 The Activation Zone

Within the activation zone, the temperature can be represented by the expansion T'=14+by+ b2+ O(l, /1))
where x is local normal coordinate coeflicients by and b; are not known and to be determined by matching
with the heat release zone. The activating reaction is started when the temperature becomes sufliciently
high and terminated when Cy; — 0. The leading order terms of equation (3) are given by

Dy d*Cy
L1 d.’IJ2

= _AICI exp (ZlbO + Zlbl.’L') (10)

Here we neglect the convective terms (~ I,/l,) and the terms related to the flame stretch (~ i,/lg). The
solution of (10), which satisfies C'1 — 0 as z — 00, is given by

1/2
Ci(x) = MLBesselKo ( 2 <A1L1> exp <Zlb0 + 210, x)) (11)

Z1b1Dy Z1by Dy 2 2

The main characteristics of this solution are given by the integrals

—+ o0
D dc
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where v, = 27 and v =~ 0.577 is the Euler constant.

2.2 The Heat Release Zone

Within the heat release zone, the radicals which are produced in the activation zone diffuse upstream and
downstream while they are converted into products and heat. The source of radicals is located somewhere
near * = 0 and can be treated as the delta-function since I, < [.. A more precise location of the radicals
source, which increases accuracy of matching, is 2o determined by (13). The leading order equations order
are given by

Dy d?Cy
L2 dLU2

= M(S(LU — LU()) — AQCQ (14)



a*r

—D dxz?

= AyCy (15)

As in the previous section, we neglect the convective terms (~ [./l,) and the terms related to the flame
stretch (~ 1./14). The solutions of (14) and (15), which satisfy Co — 0 as x — oo and T'— T}, as £ — 00

are given by
M [ Ly \V? AgLy\ 2
Co=— — — 16
2T <A2Db> b Dy [ = ol (16)

M 1 1/2 A2L2 1/2 M
r=1-5 (555 eXp(‘<Db> o= aol )+, (= wo) M (zo—a) - (17)

where H denotes the Heaviside function. Note that in a disturbed flame the temperature excess AT, = T, —1
may be non-zero.

2.3 The Released Heat

The coeflicients by and by are determined by expanding 7" given by (17) near z =~ xg

M M 1 1/2
T—1+b b bo=AT,— T, —b bh=—, T =—|—— 18
— 14060+ 012, 0o b 1Zo, 01 B <A2DbL2> ( )

The matching conditions are given by

(19)

Z262D
Zl(bo+b1xo)=ZI(ATb—Tr)=1n< — b)— 0

AlLl

The middle term of this equality is found from (18) while the right-hand side is determined from (13). The
equation determining the heat release takes the form

1/2
_ N 2 o (41 ML
M = 22 (Do La) " exp ( 5 (ATb 5 ( DL, (20)

where v, = 2exp(v,/2) a2 3.56. This equation determines how M depends on AT,. When compared with
the conventional equation

1
M=—
1

- (2Dy A1 1) ? exp (% ATb> (21)

which is obtained for the one-step reaction mechanism, equation (20) looks quite similar with new additional
correcting term in the exponent and a new factor 7, instead of 2'/2. In fact, the relationship M (ATy)
generated by equation (20) is quite different from the conventional relationship M (AT}) generated by (21).
This point needs a more detailed analysis.

First we define exact values of the characteristic scales and note that the average rate of production and
recombination of the radicals are the same.

Za: =, r M: Wd == Wd 22
bIZI MZl A2L2 20T 14T ( )

— o0 — o0

1 2D _< Dy )1/2 oo oo

Using ¢ = I/l we can rewrite (20) in the form Z;AT, = ¢ + 2In(¢) + 2In(l1 /1) — 7y where I3 =
(Db/(AlLl))1/2. We use the subscript ”#” to denote values in the undisturbed flame. That is {, is determined



by

AL
0=¢,+2In(¢,)+2In(lL/l) —v9=¢, +2In(¢,) +In <A2L2> — Y% (23)
1l
For A¢ = ¢ — ¢, we have Z; AT, = A{ + 2In(1 + A¢/(,). Since the conditions in (6) require that ¢, > 1,
the order of the logarithmic term is smaller than the order of A for any order of A{. Thus, we have
Z1 AT, = A+ O(A(/C,) and the excess heat release AM = M— M, is determined by the equation

AM A{ AT,

2 7 4(A2DbL2)1/ 2
M* g* Tr*

=2— =
Tr* C* M*

= %ATb, Zf = (24)
where M, is the value of M in the undisturbed flame, T,., = 1 — T(z¢) is the temperature change in the
reaction zone of the undisturbed flame and Z; can be called as the ”effective Zeldovich number” of the flame.
Equation (24) determines the excess heat release as a function of excess temperature of the products. It
appears that equation (24) does not depend on Dy since both values ¢, and 7,. do not depend on D as
determined by equation (23).

3 Reaction zone in the case of multi-step reaction mechanisms

Here, we generalize the results obtained in previous section for the more realistic reaction mechanisms. The
combustion process is assumed to be initialized by the activating reaction

deficient reactant — intermediate products (25)

which consumes the deficient reactant C; as specified by equations (3) and (8). The activation energy of
this reaction, T,; must be very high since the reaction rate in the unburned mixture is extremely slow. The
activating reaction is followed by many secondary reactions

intermediate products — products + heat (26)

which generate final products and release heat. Of course, the analysis can not be performed with out
making assumptions constraining the reaction mechanism. First, we assume that the combustion process
is initialized by a single reaction while there could be several competing initializing reactions. Second, we
assume that the heat is released in a zone whose characteristic thickness is wider than the thickness of the
zone where the activating reaction takes place although the overall thickness of the reaction zone remains
small as determined by (6). Third, we assume that the activation energy of the activating reaction is so
high that its reaction rate depends on the temperature much stronger than the reaction rates of any of the
secondary reactions. Forth, we assume that the heat effect of the activating reaction is negligible. As it
is discussed in Introduction, these assumptions generally correspond to physics of the realistic flames. We
also assume that C is the deficient reactant. Hence the activating reaction, which is treated as irreversible,
is terminated when C7; — 0. If (' is the excess reactant, its consumption is terminated when remaining
concentration C is in equilibrium with the products. This terminating condition requires to treat the
activating reaction as reversible. In a simplified model, one can assume that only stoichiometric portion of
the excess reactant is subject to chemical reactions.

Since the heat release zone is much wider than the activation zone and the activating reaction does not
release heat by itself, we can still expand the temperature T'= 1 4+ by + b1z + O(l, /1) within the activation
zone. Hence, the previous analysis of the activation zone, which is based on this expansion, remains valid
for the multistep mechanism considered in this section. This analysis results in

Z262D,

1
b b =—1
0 1o Z n( ALy

) — 5o = ATy — T, (27)

where T, = T(x¢) — AT,. This equation is similar to equation (19) but, unlike in the two-step analysis, by
and 7T, are not determined by the corresponding formulae in (18). Let M, and T, be the values of M and



T, in the undisturbed flame where AT, = 0 by definition. When the flame is disturbed, the reaction zone
is affected by excess temperature AT, #£ 0. The excess temperature affects primarily the activating reaction
since this reaction is most sensitive to temperature changes. As the result the rate of radical generation
by the activating reaction (M defined by (12)) appears to be different from its undisturbed value M, and
AM = M — M, # 0. This affects the rates of the secondary reactions resulting in a different value of T;. and
AT, =T, — T, is a function of AM. If AM is relatively small, we can write

aT, AM  Z; 2 fon\ "
ATy = <6M>*AM or =58 Zr=g1 <6M> (28)

*

The dependence of T, on M is determined by specific properties of the secondary reactions. In the previous
section where the simplified two-step mechanism is considered, the concentration of the radicals Co increased
lineally with the increase of M — the radical supply rate by the activating reaction. The larger values of Co
correspond to larger variations of the temperature in the heat release zone T,.. This tendency is likely to
be also valid for more complicated multi-step mechanisms when M is not very large. However, a significant
further grows of M would increase the overall reactions rates but not the radical consentration due to various
radical destruction mechanisms. Thus, 7, would be a weak function of M. This corresponds to small values
of the derivative 0T, /OM and large values of the effective Zeldovich number Z;.

4 Estimation of the effective Zeldovich number

In this section we estimate the Zeldovich number using experimental data for propagation speed. Abdel-
Gayed et al. [15,16] suggested a method of determining the activation energy and the Zeldovich number
from experimental data for the flame propagation speed. They considered a model one-step reaction whose
propagation speed S can be estimated

In(S) ~ % (a - T“) (29)

Ty

where a is the logarithm of pre-exponential factor whose dependence on temperature is logarithmically weak
and can be neglected. The activation energy is found from experiments by plotting In(S) vs 1/73 and
determining the slope of the curve which corresponds to 7;,. The Zeldovich number (Z; in our notations) is
given by
Tt (2 T, . dIn(S dln(S
7y = 1<Tb—Tu)z%~2Tb n(s) _ , dln(5) (30)

T2 T, dty dn(T})

The estimation Z; == Aal /Tb is valid when Tb > Tu which is usually the case realistic flames.
In the present work the burning velocity which is determined by the rate of consumption of Cy: S, =
M,/ p.,, can be estimated as

In(S) N% (a Ta1_ ) (31)

where Tb — Tr is the absolute temperature in Athe agtivation zone at x = xgp
Let us assume that, initially, S = S, and Ty = T}.. Due to some changes in the flame the temperature of
the burned products is changed ATy, = Ty — T = (Tp — Tus)ATy. The propagation speed is also changes

AS = S — S,. Substitution of AT, = (Ty, — Ty.)AT, and AT, = (3T,/OM), AM = 27, PAM/M, =~
2Z]71AS/S* (as determined by (28)) yields

Qgs - LQ <ATb — (Tye — T“*)Zl gs> ~ 7y (% - Zl gs) (32)
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Figure 2: Dependence of the Zeldovich number defined as Z. = 2dIn(S)/d ln(Tb) on the absolute temperature
of the products T;. The data are taken from [15,16].

where Tb is assumed to be much larger than Tr and Z; is substituted for Tal/Tb. Equation (32) can be
rewritten as

Jo=— o oo AS _, dIn(S) (33)
7t Se ATy, dIn(Ty)

Hence, the method of Abdel-Gayed et al. [15,16] effectively gives the estimate of either Z; or Z; whichever
is smallest. This corresponds to the physics of the problem: if Z; is not sufficiently large then the activation
zone is no different from the heat release zone and the effective Zeldovich number becomes irrelevant.

The value Z, defined by equation (33) and determined from the curves presented in [15,16] is plotted
in Figure 2. The experimental points have quite a significant scattering so that Figure 2 gives only rough
indication how Z. depends on Ty However, the tendency of Z. to increase for larger T}, can not be ignored.
The value of Z; ~ Aal/Tb should decrease for increasing T}, while the value of Zy which is defined by (28) is
a complicated function of the reaction mechanism and may behave differently from Z;.

5 The Preheat Zone

The preheat zone is the widest zone of the flame front and, as such, this zone is primarily affected by the
fluid flow. Here, we follow our previous work [?,17] and select the moving generalized curvilinear system of
coordinates x', 22, x> so that ' = 0 specifies the location of the reaction zones. The coordinate ' can be
selected to be normal to the flame surface. The covariant and contravariant metric tensors for this system
of coordinates are given by g;; and ¢¥ where 7,7 = 1,2,3. We can assume that locally ¢'' = g11 = 1 and
the coordinate x' coincides with physical normal coordinate  used in previous sections: #' = z. The proof
that this can be done without loss of generality and other details of this approach were presented earlier [?].
We introduce also the flame surface segment area as the square root of Gy = det(gng) where G = ¢g/g11 = g,
g = det(g;;) and o, 8 = 2,3 while ¢,j = 1,2,3. The subscript ” f” indicates that the indexed value is taken



at the flame surface, related to whole flame structure or remain constant within the flame.
Considering that ¢g;; = 1 and that the reaction zone is relatively thin, we can write the system of
governing equations in the form

6G1/2p oG *mi
o L =0 (34)

o0, | 00, 1 9 [ . 1D dC )
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where m' = pU' and U' is the fluid velocity relative to the moving system of coordinates U® = v* + da'/dt.
Without loss of generality the system of coordinates can be selected to nullify U,, o = 2,3 [?,17]. The
chemical source terms are approximated by the delta functions. For simplicity, we shall also denote m = m!
and x = z'. Note that G 1 is determined by outer flow and depends on stretched coordinates X i =z'/e and
T = t/e where the small parameter ¢ represents the ratio € = 1,,/14.

The values involved are represented by the asymptotic expansions

m=mg+emi+.. c=1-Ci=co+ecc;1+..., T=Tp+eT1 +...,
p=po+., D=Do+eDy+.., M=My+ecM+ .. (37)

It is convenient to determine c¢ first and then find C4 (by calculating 1 — ¢) and T (by formally putting
Ly =1). For z <0, the leading order solution is, obviously, given by

“ dx
mo = ]\407 Co = exp(LlB), B(LU) = Mo/ H(—.’,U)FO (38)
0

We take into account here that ¢ = 1 in the burned mixture since the deficient reactant is fully consumed.
If we select D, as the characteristic value of the diffusion coefficient, the characteristic scale of the preheat
zone is given by

Dy 7 Ly

=24, =20 39
1 (39)

[ = =
P My 2

The next order terms are given by

My 1 [ e L/
_ Loy (M, b ¢ 4 — WUeod 41
(®) = exp(l1B) <M0 - Mo /;r exp(L1B) x) " Mo [W o ()

omyco
ox

Vo = (42)

0 o (D0
P 2 (P00

or dx Ly Ox

where my; is constant, Ky = aln(G}/Q)/aT is the rescaled flame stretch and I'y = (81n(G}/2)/8X) is the
!

rescaled flame curvature which are evaluated at X = 0. It should be noted that ¥ = 0 for z > 0. We find
the next order temperature term 73 by putting L; = 1 in equations (38), (41) and (42). Then we take into



account that ¢; = 0 in the burned mixture while 77, may be non-zero. Thus, in the burned mixture we have

Mo — My

M; = M, T, =1 _— 43
1 o, 1 +e Mo (43)
where M and Mr represent the integrals
do; Dy
M; = K — | =My = 44
I mf1+< f¢[+d7_> 0<D0>b (44)
0 0
P = / Pocodr, ¢p = / poTodx (45)

the index ”I” in equation (44) is either ”T™ or "C” and (Dy/Dy), denotes Dy/Dg at x = 0.

6 Propagation Speed

6.1 Non-Equidiffusion Flames

The case considered here has some similarities with the limit introduced by Sivashinsky [8] for the one-step
reaction mechanism. We assume that eZy = 2; ~ 1 that is ld/lp ~ Zp/lr. For this limit, the value of M is,
according to (24) and (43), given by

(46)

Mo = M, <1+%An> _ ML (1_ ¢M>

2 My

where ¢ = ¢ — . Using the burning velocity S = My/p,, the physical flame stretch ky = 61n(G}/2)/8t =
€Ky and replacing integration over x by integration over T in

0 1 0
6= / po (To — Co) dz = — / poDo (1 - TOALI) Ty (47)
— o 0

— o0

we obtain

Zr D, d1n(S) I AL,
S:S*<1—¢>7§<nf— m , q):/OpD(1—T )dr (48)

where D = D/p is the "kinematic” diffusion coeflicient and ALy = L; — 1 and the symbol ”"” denotes
the parameters normalized by their unburned values: D= D/D.,, p = p/p,- Note that the flame speed
determined by (48) may have significant speed variations (S — 5.)/5. ~ 1. However, the case of § — 0 may
not be consistent with the condition { > 1 and it is not covered by the present asymptotic theory.

6.2 Near-Equidiffusion Flames

Here we consider the case when A = ZyAL; ~ 1 which has some similarities with the limit introduced by
Matalon and Matkowsky [9] for one-step reactions. For this case the integral ¢ can be assessed as ¢ — AL;¢°
where

0
¢° = / poTordx (49)
Equation (24) determines the terms in the expansion M = My + My + ...
Zy A o o
Mo=M,, M = M*7T1b =-3 (Kf¢™ +do”/dr) (50)
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This gives the following estimation for the excess temperature ATy ~ €1y ~ ¢AL;. The constant myy,
which determines m; at © = 0, can be found from (44)

— d¢c o d¢o
mpy = My — <ngbc n F) —Q <Kf¢ + =) AL (51)
where Q = (dIn(D)/dT)_, is evaluated in the reaction zone of the undisturbed flame. Since T ~ ALy ~
I/AZf is small the last term in (51) can be neglected. The unburned mass flow rate m, = m,o +emy1 +...
is linked to myy by the following equation [?,17]

do 0
Myo = Mo, My = myp1 — <Kf¢p + d—Tp> ) ¢p = / (Pu — po) dz (52)
Since the flame speed changes are small S = S, + €57 + ..., the order of the time derivatives is small and
d/dT terms can be neglected. Finally, we introduce the physical flame stretch xy = aln(G}/Q)/ﬁt, note that

¢c — ¢p as ALy — 0, substitute the integration over d7j for the integration over dz and combine (50),
(51), (562) and S =m,/p,, into

Dy (A
5=5,— ks S04+ D+ B, (53)
S, \2
R L ’ AT
®° = — [ pDIn(T)dT, ®r = [pDdAT, ®,= [(1—p) D=
0 0 0

We note that, for practical purposes, equation (53) and the steady version of equation (48) can be combined
into one equation which is more likely to be valid for a wider range of Lewis numbers

D, (Z Lo
S=38, (1—@? <7f<1>+¢>c+¢>p>>, %z%‘pDT“ldT (54)

7 Conclusions

The flame speed of a thin premixed flame disturbed by an arbitrary fluid flow of a larger scale is considered.
The asymptotic theory is suggested for the reaction mechanism which is more realistic than the one-step
reactions considered previously in asymptotic theories. The mechanism is formed by two reactions: the
activating reaction and the heat release reaction. The first reaction has a very high activation energy and
triggers the combustion process by generating radicals. The second reaction converts the radicals into heat
and products.

If the reaction rate of the second reaction is extremely fast, this problem is essentially equivalent to the
conventional case of a one-step reaction with high activation energy. However, slower rates of the second
reaction correspond to a distinct problem with three asymptotic zones within the flame: the widest zone
is the preheat zone, the heat release zone is somewhat thinner and the activation zone is the thinnest.
The propagation speed of this flame is different from the conventional propagation speed calculated for the
one-step reaction mechanism.

The results obtained for two-step reactions are generalized for multi-step reaction mechanism represented
by a single activation reaction followed by several secondary reactions releasing heat. The most important
features of the flames with distinct activation and heat release zones are summarized now.

1) The variations of the speed of the disturbed flames is determined by the effective Zeldovich number
introduced in the paper rather than by the conventional Zeldovich number linked to the activation reaction
energy.

2) The effective Zeldovich number, Z¢, which a) is not directly linked to the activation energies of both
reactions, b) is generally smaller than the conventional Zeldovich number of the first, initializing reaction
and ¢) is proportional to the ratio the flame thickness to that of the heat release zone. It is shown that the
approximate method [15,16] gives an estimation of this effective Zeldovich number rather than the Zeldovich
number of the initializing reaction.

11



3) In the case of near-equidiffusion flames, the equation for the flame speed is similar to the conventional
equation [9]. There is, however, a significant difference: the effective Zeldovich number should be substituted
for the conventional Zeldovich number which is based on the activation energy of the initializing reaction.

4) In the case of ALy ~ 1, the resultant equation for the flame speed is, unlike the conventional exponential
equation [8], linear with respect to the flame stretch. It is likely that the near-equidiffusion equation (which
is also linear) has a wider range of applicability for realistic flames than for the flames with the one-step
reaction mechanism.

8 Acknowledgment

The authors thank Professor Bradley for drawing their attention to the topic of this manuscript. This work
is supported by the Australian Research Council.

12



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

D. Bradley, A. K. C. Lau, and M. Lawes. Flame stretch rate as a determinant of turbulent burning
velocity. Phil. Trans. R. Soc. Lond. A, 338:359-387, 1992.

. A. Y. Klimenko. Examining the cascade hypothesis for turbulent premixed combustion. Combust.Sci.

and Tech., 139:15-40, 1998.

G. Darrieus. Propagation d’un front de flamme. presented at Le Congrés de Mechanique Appliquée,
Paris, 1945 (unpublished).

L. D. Landau. On the theory of slow combustion. Acta Physiocochimic URSS, 19:77, 1944.
J. D. Buckmaster and G. S. S. Ludford. Lectures on mathematical combustion. SIAM CBMS, 43, 1983.

. G. H. Markstein. Experimental and theoretical studies of flame front stability. J. Aero. Sci., 18:199,

1953.

Ya. B. Zeldovich, G. 1. Barenblatt, V. B. Librovich, and G. M. Makhviladze. The mathematical theory
of combustion and explosions. Consultants Bureau, 1985.

G. 1. Sivashinsky. On a distorted flame front as a hydrodynamic discontinuity. Acta Astronautica,
3:889-918, 1976.

M. Matalon and B. J. Matkowsky. Flames as gasdynamic discontinuities. J. Fluid Mech., 124:239-259,
1982.

J. K. Bechtold and M. Matalon. Effects of stoichiometry on stretched premixed flames. Combust. and
Flame, 119:217-232, 1999.

P. Clavin. Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy
Combust. Sci., 11:1-59, 1985.

B. Karlovitz, D. W. Denniston, H. D. Knapschaefer, and F. E. Wells. Studies on turbulent flames. Fourth
Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, pages 613-620, 1953.

M. Matalon. On flame stretch. Combust. Sci. and Tech., 31:169-181, 1983.
F. A. Williams. Combustion Theory. Addison-Wesley, Reading, MA, 2nd edition, 1985.

R. G. Abdel-Gayed, D. Bradley, M. N. Hamid, and M. Lawes. Lewis number effects on turbulent burning
velocity. Twentieth Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, pages
505-512, 1984.

R. G. Abdel-Gayed, K. J. Al-Khishali, and D. Bradley. Proceedings of the Royal Society of London,
A391:393, 1984,

A. Y. Klimenko and A. G. Class. Propagation speed of premixed flames. In Australian Combustion
Symposium, pages 242—246. The University of Newcastle, 1999.

13



