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3-D Monte Carlo Calculations on Energy Deposition of Electrons 
into Bulk Graphite and into an Inhomogeneaus Carbon Plasma 
Shield 

Abstract 

A 3-0 Monte Carlo model of the transport of magnetized electrons through a plasma 
of arbitrary density and temperature gradients is presented. The physical model is 
based on the division of all the electron collisions into two groups: close and distant. 
The close collisions with the plasma nuclei and electrons are treated as individual 
ones. The distant collisions are statistically grouped on some "free path" steps and 
are described on the base of multiple-scattering theories. The developed models 
were applied to the calculation of the energy deposition of magnetized mono­
energetic and Maxwellian distributed plasma electrons into the inhomogeneaus 
carbon plasma and into bulk graphite shielded by this plasma. The numerical 
simulation is performed using the 3-0 Monte Carlo simulation code MONPLAS. 

3-D Monte Carlo Berechnung der Energiedeposition von Elektronen 
in Graphit und im inhomogenen Kohlenstoffplasma. 

Zusammenfassung 

Ein 3-0 Monte Carlo Modell zur Berechnung des Transports magnetisierter Elek­
tronen durch ein inhomogenes Plasma mit Dichte und Temperaturgradient wird vor­
gestellt. Elektronenstöße werden als lokal und entfernt behandelt. Lokale Stöße sind 
individuelle Stöße mit den Plasmaionen und den Elektronen, die entfernten Stöße 
werden nach der Theorie der Vielfachstreuung behandelt. Die Modelle werden zur 
Berechnung der Energiedeposition magnetisierter Elektronen in Graphit verwendet. 
Zur numerischen Simulation wird das 3-D Monte Carlo Programm MONPLAS ver­
wendet. Berechnet werden die Energiedeposition magnetisierter Elektronen im in­
homogenen Plasma und in Graphit mit einem inhomogenen Plasmaschild. 
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1. I ntrod uction 

The problems associated with the penetration of electrons into plasma have attracted 

much attention in recent years. lt is known that such elements of a tokamak as the 

divertor is hit by charged particles driven along the magnetic field lines and is 

exposed to the bombardment by plasma electrons and ions. The power density of the 

hot plasma incident on the divertor und er off-normal conditions can reach 5-10 

MW/cm2 and its energy is about 10 keV [1]. The action of the magnetized plasma flux 

on the divertor surface results in heating, melting, evaporation, transition into the 

plasma state and expansion. Theoretical models describing the behavior of this 

inhomogeneaus medium are based on the magnetohydrodynamic equations with 

account of radiative transfer [2]. The contribution of the electron fraction of the 

incident plasma flux to divertor erosion is significantly greater than that of the plasma 

ions. This is due to the penetration depth of electrons, which is some orders greater 

than the depth of the plasma ions. Thus, the electrons heat the divertor volumetrically 

whereas the ions are absorbed in a thin surface layer. The fraction of the electron 

energy deposited into the divertor depends strongly on the properties of the 

screening plasma before the divertor. To simulate the erosion rate of the divertor, it is 

necessary to know the distribution of the energy deposition versus the depth of an 

inhomogeneaus plasma layer and the fraction of energy deposited into the bulk 

divertor. Thus, ist necessary to have an energy deposition model being capable of 

predicting the electron range and energy deposition profile as a function of material 

composition, density, temperature, magnetic field intensity, and the degree of plasma 

ionization for a variety of incident flux energies. 

This report describes a 3-D Monte Carlo approach for investigating the transport of 

magnetized hot plasma electrons through a plasma layer with density, temperature 

and magnetic field gradients, and presents some simulation results. This approach 

involves calculation of scattering data from theoretical scattering cross sections using 

multiple scattering theories. The calculations of the transport of magnetized electrons 

in the plasma are performedas a set of computer-generated trajectories. By tracing a 

large number of such trajectories, it becomes possible to make statistical predictions 

on the energy deposition. 



2 

The plasma electrons have initial energies in the range from 1 keV to 100 keV. 

Atomic density varies from 1015 cm·3 up to 1019 cm-3
. The range of plasma 

temperature is varied from 0.5 eV up to 250 eV. The energy of the incident electrons 

is Maxwellian distributed. Density, temperature and magnetic field profiles are given 

in an arbitrary form. The rotating electrons have different longitudinal and transverse 

energy components at motion in the plasma. Magnetic field direction with the plasma 

surface is changed from 0 up to 90 degrees. 

ln Sec. 2, the physical model and the electron interaction processes are 

discussed. ln Sec. 3, the Monte Carlo technique is presented. Sec. 4 presents the 

results of Monte Carlo calculations on the energy deposition of the magnetized 

electrons into solid graphite and into homogeneaus and inhomogeneaus carbon 

plasma. 

2. PHYSICAL MODELAND INTERACTION PROCESSES 

ln the following, the basic assumptions made in the physical model and the 

processes of multiple scattering and energy loss for the interaction of magnetized 

electrons with targets are described. Several approximations are made in the 

physical model of electron transport in the plasma: 

• The electrons are moving in the target and interact with scattering centers 

(plasma electrons and nuclei) which are placed randomly. 

• The traversing electrons interact simultaneously with one scattering center. 

• The incident electrons do not interact among each other. 

Using these assumptions and introducing the notation of the electron trajectory the 

spatial localization of the interaction can be considered. The electron trajectory is 

represented as spiral line. When an interaction takes place in inflection points. ln the 

state (direction and energy) of the incident electron and of the plasma particle 

changes. 
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Difficulties with electron transport arise from the fact that the cross sections for all the 

processes (scattering and energy lass) become infinite as the transferred energy 

approaches zero. ln reality, these cross sections, when various corrections are taken 

into account (i.e., screening for nuclear scattering, electron binding for electron 

scattering), are not infinite, but they are very large and the exact values for the total 

cross sections are not weil known. The transport of electrons is dominated by the 

Iang-range Coulomb force, resulting in large numbers of small interactions. For 

example, an electron in aluminum slowing down from 500 keV to 62.5 keV will 

undergo ab out 105 individual interactions. Therefore, a single-collision Monte Carlo 

approach to electron transport is infeasible for many situations of practical interest. 

On the other hand, the low momentum transfer events which give rise to the large 

cross section values do not result in large fluctuations in the behavior of energy 

deposition. For this reason, they are lumped tagether and treated in a continuous 

manner. Cutoff angles and energies are used to distinguish between continuous and 

discrete interactions. Any electron interaction that produces a delta-electron is 

considered to be a discrete event. All other interactions are considered continuous 

and give rise to continuous energy Iosses and direction changes to the electron 

between discrete interactions. The energy Iosses are due to soft interactions with the 

atomic electrons (excitation and ionization lass). The changes in direction are mostly 

due to multiple Coulomb scartering from the nucleus, with some contribution coming 

from soft electron scattering. 

Analytic and semi-analytic multiple-scartering theories [3-11] are used to 

describe these continuous interactions by accounting for them in a cumulative sense 

including the affect of many such interactions at the same time. These theories 

artempt to use the fundamental cross sections and the statistical nature of the 

transport process to predict probability distributions for significant quantities, such as 

energy lass and angular deflection. Unfortunately, multiple-scartering theories rely on 

a variety of approximations that restriet their applicability, so that they cannot solve 

the entire transport problem. ln order to follow an electron through a significant 

energy lass, it is necessary to break the electron's path into many steps. The length 

of these "free path" steps between discrete interactions is sampled randomly using 

the total macroscopic cross section, which determines the probability of discrete 

interactions. The energy lass and angular deflection of the electron du ring each of the 
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"free path" steps are sampled from probability distributions based on the appropriate 

multiple-scattering theories. Along each of these steps, the electron is assumed to 

follow a spiral line, and the multiple scattering is accounted for by changing the 

electron's direction at the end of the step. The azimuthat angle is selected randomly. 

These "free path" steps are sampled to be long enough to encompass many 

collisions (so that angular multiple-scattering theories are valid) but short enough that 

the mean energy loss in any one step is small (so that continuous energy loss 

approximations are satisfied). These steps must also be kept small enough so that 

neglecting the lateral deflection of the electron along a step does not introduce 

significant errors, i.e. the true electron path length is not much larger than the spiral 

line path length. Otherwise, a systematic error in the distance to the next discrete 

interaction will result. 

2.1 Electron nuclear scattering 

When an electron passes through a target, it undergoes a large number of elastic 

collisions with the atomic nuclei. These have the effect of changing the electron's 

direction, but do not significantly change its energy. A simple Rutherford cross 

section of the differential form [12] 

(1) 

is used to represent the elastic scattering. Here dae"/dO. is the differential cross 

section per unit solid angle, Z the atomic number of the absorbing plasma, e the 

electronic charge, m" and v the mass and velocity of the incident electron, e the 

angle of deflection. The cross section for elastic scattering from the nucleus is 

proportional to Z2
. 

The long-range Coulomb interaction of the electrons with the target nuclei 

causes a high scattering probability at small angles. ln our model, the first 

approximation of the Moliere distribution [6,7] is used, i.e. the Gauss function which 
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takes the scattering at small angles into account. Other terms of the Moliere 

distribution taking into account the scattering at large angles and the deflection from 

the Born approximation are neglected. lt deals with restrictions on calculation time 

and intrinsic numerical difficulties to implement the Moliere or most accurate 

Goudsmit-Saunderson probability distributions [4,5]. The effect of distant scattering 

accumulated on some length L can be considered in the following approach. The 

electron undergoes a large number of statistically independent elastic collisions 

whose bulk effect can be determined in terms of the square of the mean deflection 

(2) 

with the electron Coulomb logarithm 

(3) 

and i the number of various ion species in the plasma, N; the number density of ions 

with charge state i, N" the number density of the plasma nuclei, Ii is the Planck 

constant, ad the Debeye radius, and a; the effective ion radius evaluated through the 

ion form-factor F(q) 

(4) 

with liq = 2m"vsin(B/2) the momentum transferred to the nucleus. The cutoft angle 

Bcw which divides the distant and close scatterings is introduced. The value of this 

angle is taken in the range v0 jv << Bc"1 << 1 , with v0 the characteristic velocity of 

bound electrons. All the sub-eutoff interactions with small angular deflections (distant 

scatterings) are grouped statistically on some step L of the electron trajectory. The 

length of this step is chosen so that the Gauss approximation is valid (many collisions 

are occurring and the approximations of small angle theory are satisfied). The 
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probability that the electron accumulates the deflection angle e on the length L due 

to distant scatterings is determined by the restricted Gauss multiple-scattering 

distribution [13] 

(5) 

At the end of each length L the deflection angle e is sampled from this distribution 

function. 

To represent the deflections of the electron by the nuclei at large angles (close 

scatterings) the super-eutoff part of the Rutherford cross section (eq. (1 )) is used. 

These scatterings are treated as discrete events. The probability of these events is 

described by the macroscopic cross section of the elastic scattering 2: 11 which is 

calculated by integration of the differential Rutherford cross section (eq. (1 )) in the 

Iimits from Be"' up to 11: and multiplying by the number density of the nuclei N 11 

=N "J da.11 dB= .1\r ( Ze
2 J

2

1+cosBc"' 
2:11 II 1CJV II 2 • 

8 dQ m V 1 - cos e CU/ 
~ . (6) 

The angle of close scattering e is sampled from the super-eutoff part of distribution 

function using pseudorandom numbers 

(7) 

where ~ is a random number between 0 and 1. 

2.2 Electron-electron collisions 

The differential cross section for the energy transfer of an electron to an 

electron is [12] 
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(8) 

with E = m" v2 /2 the kinetic energy of the incident electron, and E the kinetic energy 

of the recoil electron. There is the distinction between discrete and continuous energy 

Iosses to electrons. 

The continuous energy lass of electrons in cold matter is primarily due to 

ionization and excitation of the electron clouds surrounding the nuclei. The formalism 

used to describe the statistically grouped interactions with bound electrons is the 

Sethe-Bloch theory of charged particle energy lass [14-16]. lt assumes that each 

electron can be treated as if it would be bound by an average binding potential. 

Bounded electrons are detached by the Coulomb force impact produced by the 

incident electron. The sub-eutoff part of the energy lass by detachment of bounded 

electrons can be expressed as 

(9) 

with I the average ionization potential of the medium atoms, and N" the number 

density of bounded electrons. For values of E on the order of the atomic excitation 

Ieveis, the frequencies and strengths of the atomic oscillators must be taken into 

account and the integration is quite complicated. On the other hand, for values of E 

large enough so that the atomic electrons may be considered as free, the differential 

cross section of eq. (8) can be used. The cutoft energy Ecut is sufficiently above the 

atomic excitation Ievels, but is still small compared to E, i.e. I<< Ecut << E. 

The continuous energy Iosses of electrons in the plasma are divided into two 

groups: those bound to the plasma ions and those which constitute the free 

electrons. The Bethe model accounts for both ionization and excitation of the plasma 

ions. The collision process with the ions is one whereby either the ion is left in an 

excited state or it is ionized. Most of the time the ejected electron, in the case of 

ionization, has a small amount of energy that is deposited locally. On occasion, 
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however, an orbital electron is given a significant amount of kinetic energy such that it 

is regarded as a secondary particle called a delta-electron. The restricted electron 

collisional stopping power, i.e. the collisional energy lass per unit path length 

resulting in fractional energy transfers & less than the cutoff energy &c"'' may be 

expressed as the integral of the differential cross section of eq. (8) for transferring a 

specified amount of energy, & , to an atomic electron. That is 

(1 0) 

with Ii the average ionization potential of i -th ion species, and N: the number 

density of the bound electrons in i -th ion. The summation is performed over all the 

ion species existing in the plasma. The average ionization potential is a function of 

the atomic structure of the stopping medium and is defined by the relation 

1 
lnli =--. .Li,,lnE", z -[ II 

(11) 

with E" the energy difference and /,, the oscillator strength of transition n. This 

parameter is the most important characteristic in the Bethe equation that needs tobe 

scaled with the plasma ionization. The allowed transitions change as the atoms are 

ionized. This implies that Ii is a function of the plasma temperature. A direct 

calculation of Ii from first principles is difficult, and experimental data which would 

allow its determination for highly ionized atoms do not exist. Therefore, these 

characteristics were obtained from quantum-mechanical calculations in accordance 

with the Hartree-Fock-Siater model [17,18]. 

As the plasma is heated up the contribution of free electrons to the stopping 

power becomes important. Free electrons are released through ionization of the ions 

of the plasma. This ionization increases the number of free plasma electrons which 

can then participate in the slowing down process and reduces the number of bound 

electrons. The energy lass of the incident electrons as a result of interaction with the 

free electrons of the plasma is calculated from 
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(12) 

with N f the number density of the free electrons in the plasma, and 

mp = ~4;rNf e2 Im" the electron plasma frequency. The number density of free 

electrons and the charge state of the plasma were determined in a wide range of 

plasma temperatures and densities by solving the Saha equations. The total energy 

loss can be written as the sum of the Sethe-Bloch contribution and the electronic 

stopping power due to free electrons 

(13) 

Eventually, the energy of the primary electron is dissipated in excitation and 

ionization of the plasma ions and as a result of interaction with the free electrons of 

the plasma. 

Super-eutoff interactions are close collisions of incident electrons with the 

plasma electrons. lf this is the case, the bound electrons are assumed tobe free, i.e. 

their atomic binding energy is ignored. Energy transfers greater than sc"' can be 

described using the super-eutoff part of the cross section (eq. (8)). These super­

eutoff interactions are treated discretely. Because of the identity of the final electrons, 

the cross section is symmetric with respect to the two outgoing electrons. The 

electron with the larger energy is, by definition, the primary. Therefore, only the range 

0 $; s $;EI 2 is of interest. The total macroscopic cross section I:" of the close 

electron collisions is obtained by integration of the differential cross section (eq. (8)) 

in the range from sc"' to E/2 and multiplication with the number density of plasma 

electrons 

tre
4 
ZN" (E- 2scut E- 2scut 1 l ( Bcut J) :L:e = + +- n . 
E Escut E(E- Bcut) E E- Bcut 

(14) 
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The energy of the delta-electrons is sampled from the super-eutoff differential cross 

section (eq. (8)) in the same way as for close electron nuclear collisions. The angle 

between the primary direction and the direction of the newly generated secondary 

electrons is determined by momentum conservation. The delta-electrons are followed 

separately in the same manner as primaries. 

3. MONTE CARLO TECHNIQUE 

For simulation of the actual physical processes a 3-D Monte Carlo approach 

[19-21] is used. The Monte Carlo method allows to simulate the random trajectories 

of electrons in the target. The Monte Carlo technique obviously provides a much 

better way for solving the electron transport problem, not only because all of the 

fundamental processes can be included, but because arbitrary geometries can be 

treated. ln addition, other minor processes, such as photon production, can be added 

as a further generalization. This method is efficient for inhomogeneaus plasma and in 

case of presence of external fields. lt allows to take into account the secondary 

particles. Random numbers are used in the Monte Carlo method for sampling the 

trajectory elements (length, scattering angle) from appropriate probability 

distributions. lnherent variance reduction techniques have not been used, therefore 

fluctuations in the Monte Carlo results should represent real-life fluctuations. lt is 

important, that the Monte Carlo method doesn't require the formulation of a discrete 

model of the transfer equations as is the case with analytical treatments. These 

generally start with a set of coupled integre-differential equations which can be 

solved only when using rather simplifying approximations. 

3.1 Target 

The plasma target is represented in the form of a cube or a parallelepiped. 

The coordinate frame is chosen in the following manner. lt is supposed that the 

electron flux is incident on the plane (y, z) and propagates along the axis x into the 



11 

plasma depth. The lengths along the axes x,y,z are descretized and represented by 

the I+ 1, J + 1, K + 1 grid points x; I yJ I zk. lt is considered the spatial mesh the 

points x; I Y; I zk of which form the cell boundaries. Thusl the cell is described by the 

numbers (i,J,k). The target properties such as densityl temperature and magnetic 

field intensity are assumed to be constant within cell (i,j,k). The properties of 

adjacent cells may be different. ln the present calculations the lengths along the y 

and z axes are settobe infinite. Thusl the plasma layer is only considered. 

The magnetic field B lies in the plane (z, x). An arbitrary angle a may be 

given between the direction of the vector B and the x axis. The Lorenz force acts 

the electron motion in the magnetic field B . This force is perpendicular to B and to 

the velocity v of the electron. Due to this force the electron rotates around the 

magnetic field line with the Larmor frequency m = ecB/(m"c 2 + E )~ with c the light 

velocityl and E the electron kinetic energy. ln the plane which is perpendicular to the 

magnetic field direction the electron moves along a circle with the Larmor radius 

R = v j_ / m I where v j_ is the transverse velocity component. The Larmor radius is very 

small and its value is varied from 2·10-3 up to 2·10-2 cm with the incident energy 

ranging from 1 up to 100 keV at B = 5 T. The guiding center moves along the 

magnetic line. The resulting trajectory isaspiral with the step H = 2nv
11
jm I where v

11 

is the longitudinal velocity component. This spiral is twisted around the magnetic line. 

When entering the plasma, the electron undergoes collisions with the plasma 

particles and its direction changes. Thusl the values and the directions of the 

magnitudes v I v j_ I and v
11 

are changing due to collisions. After a collision the 

electron moves along a new magnetic field line with new values of velocity, Larmor 

radius and spiral step before the next collision is occurring. An example of the 

trajectory of the magnetized electron in the plasma is presented in Fig. 1. After the 

first collision the electron moves in the back direction along the new magnetic field 

line. Generation of the secondary electron is also illustrated. 
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3.2 Sampling parameters of incident electrons 

The initial energy of the incident electron can be monoenergetic or Maxwellian 

distributed. The two-dimensional Maxwellian function in terms of the velocity 

components can be written in the form 

J(v.)dvz =~ me exp(- mev;Jdvzl 
. 2~T 2T 

(15) 

with T the electron temperaturel and v, and vz the velocity components along the 

axes x I and z . Using the substitutions 

and multiplying eq. (15) the following expression is obtained 

J(x, z )dxdz = _!_exp(- x2 
- z2 }ixdz. 

~ 

This expression may be written in the polar coordinate system in the form 

with the Substitutions 

x = r cos tjJ and z = r sin tjJ . 

(16) 

(17) 

(18) 

(19) 

The coordinates r and tjJ are independent. Thereforel the values r and tjJ may be 

sampled according to 

r J(t/J )dtjJ rr J(tfJ)dt/J =~~I 
r J(r)dr 

__;;___ __ = ~ 2 I r J(r)dr 
(20) 
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where ~~ and ~2 are random numbers distributed uniformly in the interval [0, 1]. 

Solving eq. (20) with respect to r and tjJ results in 

(21) 

This method of sampling the values r and tjJ from eq. (20) is the reverse function 

method. Substitution of eq. (21) into eq. (19) gives 

(22) 

The energy components of the electrons are calculated from eq. (19) as E, = Tx 2 and 

E = = Tz 2 
• The incident electron energy is E = Ex + E z . 

Electrons with high energy (tail of the Maxwellian distribution) are occurring 

with low probability. However, these electrons influence essentially the tail of the 

distribution of absorbed energy in the target. To increase the fraction of high energy 

electrons the scheme with "weight" is used. The electron energy components Ex and 

Ez are sampled uniformly in the interval [E~' E2 ] in accordance with the expressions 

E, = E1 + ~1 (E2 - E1) and Ez = E1 + ~2 (E2 - E1 ). The incident energy is E =Ex+ Ez. 

The "weight" of the electron is determined by the following expression 

P(E E )= 4(E2 -EI) (-Ex_!:..:._) 
x' • JE:E: exp . 

. trT E E T T 
X Z 

(23) 

As a result of collisions and stopping, the electron looses the energy M. This 

energy is placed into a cell in which the collisions and stopping were taken place with 

calculated "weight" P, i.e. the absorbed energy in a cell is P · M. The sum of the 

values P,,E" over all the histories gives the average energy of the incident electron 

flux L" P,,E" = (E), where E" and P,, are the sampled electron energy and the 

electron "weight" for the n -th history. 
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The initial angle of the incident electron with the 

plasma surface may be fixed or sampled from an 

arbitrary distribution function. ln case of magnetized 

electrons, the trajectory is a spiral with the Larmor 

radius R . The start of the trajectory is sampled 

randomly on the circle with radius R . The initial 

electron energy can be presented as the sum of the 

longitudinal and the transverse energy components 

E = E
11 

+ E .l. The impact angle (Iet us denote it by 

means rp) is a function of the angle between the magnetic field direction and the 

plasma surface, a', and the pitch angle between the magnetic field direction and the 

electron velocity direction, ß. The longitudinal kinetic energy E
11 

is a function of the 

pitch angle E
11 
= Ecos 2 ß. There are two possible cases for the impactangle of the 

electron: 1) E
11 
= E; 2) 0 ~ E

11 
< E. lt is evident that in the first case the pitch angle 

ß =0. lf this is the case, the impactangle rp with the plasma shield is always equal to 

a', i.e. the electron moves along the magnetic field line. ln the second case, it is 

supposed that the pitch angle ß is isotropic in the interval 0 < ß ~ ;r I 2 relating the 

direction B. The pitch angle is sampled randomly in the interval [O,tr/2] using the 

expression ß =; ·tr/2 with the random number ; uniformly distributed in the interval 

[0, 1]. When ß approaches ;r I 2 the electron trajectory is a circle araund the 

magnetic line. ln the second case, the impact angle rp with the plasma shield is 

found in the range from 0 up to 180- (a' + ß), when a' + ß > 90 or 90- (a' + ß), 

when a' + ß < 90 . When rp approaches zero the electron trajectory touches the 

plasma surface. Let us imagine that we rotate the vector v araund B and move it 

along B . The end point of v will move along a helix. This helix will cross several 

times the plasma shield surface before full immersion occurs. Thus, the electron 

enters and exits the target many times. ln the Monte Carlo model the angle rp is not 

specified beforehand accept the case when rp = a'. The simulation procedure of the 

entrance of the electron into the target is the following: Outside of the target, the 

circle with the Larmor radius is taken, which is in the plane perpendicular to the 

direction B. The start of the electron trajectory is sampled randomly on this circle. 
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The electron moves along a helix. The radius and the step of the helix depends 

strongly on the longitudinal kinetic energy E
11 

which is a function of the pitch angle 

ß . The pitch angle is specified beforehand or is sampled isotropically in the interval 

[o, 1r /2]. When E
11 

is close to zero the electron is strongly rotating areund the 

magnetic line. At the impact with the plasma shield the angle of entrance will be 

found in the range pointed above. Before the full entrance, the electron crosses the 

target surface many times, especially, with small E
11 

• This simulation procedure 

describes the actual situation that exists near the target. ln case of a plasma shield 

as target the edge of the plasma shield is the low-density plasma (about 1016 cm-3
). 

ln such plasma the distance between two consequent close collisions (collisions in 

which the electron direction is changed) is much greater than the step of the helix. 

Thus, the electron penetrates into the plasma shield on a significant depth without 

close collisions (on this path the continues energy loss due to distance collisions is 

taken into account). The fraction of energy deposited into graphite will depend on the 

degree of electron rotating before the high-density plasma near the graphite surface. 

When the electron is not rotating (E
11 
= E) the penetration depth will be maximum. 

Thus, the impact angle on the plasma shield has minor influence on the energy 

deposition profile. The energy deposition depends significantly on the ratio of the 

longitudinal energy to the total kinetic energy (the degree of rotating) before the 

fraction of the dense plasma shield. 

3.3 Macroscopic cross sections 

The total macroscopic cross section .l:, is determined as the sum of the 

electron nucleus .l:" (eq. (6)), the electron electron .l:e (eq. (14)), and a fictitious 

cross section .l: 1 . The cross section .l:t determines the mean "free path" length L 

between two close collisions. ln case of an inhomogeneaus plasma, the mean "free 

path" changes as the electron moves from one cell to another with different 

properties. Due to continuous energy loss, the cross section varies along the path of 

the electron. ln addition, the electron is no Ionger gyrating. The "free path" length 
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between two close collisions is sampled randomly. To take into account large lengths 

the Monte Carlo technique of the fictitious process [22] is applied. An additional 

fictitious interaction is introduced which, if it occurs, results in straight-ahead 

scattering (i.e., no interaction at all). The macroscopic cross section of this process is 

calculated as L.1 =(dE/dxt", /(O.OlE), where (dE/dx)c"' is the sub-eutoff part of 

restricted electron collision stopping power, E is the energy of the electron at the 

start of given "free path" step. Thus, the probability of the fictitious process is 

determined so that the energy loss per "free path" step is 1% of the kinetic energy at 

the start point of this step. ln case, the fictitious process occurs the energy and 

direction of the electron is not changed. This algorithm allows to use large "free path" 

steps and to save computing time. 

3.4 Electron transport algorithm 

ln case of an inhomogeneaus plasma shield there are gradients of density, 

temperature and magnetic field. To simulate the electron path length in such a 

medium the approximation of the plasma with segment-constant characteristics is 

used. The space in which the simulation takes place is divided into a finite number of 

regions (i layers) in each of which the plasma is homogeneaus and of constant 

density, temperature and magnetic field intensity. The algorithm for simulation of the 

path length in an inhomogeneaus plasma with segment-constant characteristics 

assuming the magnetized electron propagates from the point r 0 in the direction n is 

the following 

1. The random value of the optical path length is sampled according to s = -ln; . 

2. The total macroscopic cross section L.;·J,k is calculated as described above for the 

(i,J,k)-th cell in which the point r 0 is located. 

3. The spiral length d to the nearest cell boundary is determined in the direction n. 

4. The optical thickness dopt is evaluated from the expression dopt = L.;·J,k d . 

5. lf s ~dopt , then the coordinates of the collision point are calculated as 
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x1 = c, + HL cosaj L, - Rlcos(2nL/ L, )cos llJz - sin(27ZL/ L, )sin <p,, jsina, 

z1 =cz +HLsinajL, +R[cos(2nL/L,)cos<pz -sin(2JTL/L,)sin<p:]cosa, (24) 

y 1 =cy +R[sin(2JTL/L,)costp, +cos(2JZ"L/L,)sin<pJ 

with cx,cy,cz the center coordinates of the Larmor circle, L=sjr.;·J,k the spiral "free 

path" length up to the collision point, L, = 2:r:v/ {J) the spiral period length, a the angle 

between the magnetic field and axis x directions, llJz the initial phase of the electron 

with the axis z, and llJy the initial phase of the electron with the axis y. Eq. (24) is 

written for the case when the vector B of magnetic field is in the plane (z, x) and has 

the angle a with direction of the axis x. On the "free path" length L, the energy loss 

is taken into account in the (i, }, k) -th cell in accordance with !:illi,J,k = L(dE/ dx t,,, 

where (dE/dxL, is described by eq. (13). ln the end ofthe length L the new direction 

cosines a 1, ß1, y1 are calculated with account of the small deflection angle B 

sampled from eq. (5) by as follows 

a 1 = a 0 cosB + (a,- a 0 cosBJ~(l-cos 2 B )/(1- cos 2 ej 
ß1 = ßo cosB +(ß,- ßo cosB,)~(1-cos2 B )/(1-cos2 ej 
Y1 = Yo cosB + (r,- Yo cosB,)~(l- cos2 B )/(1- cos 2 B, ), 

(25) 

with a 0 ,ß0 ,y0 the initial direction cosines with coordinate axes in the collision point, 

a,,ß,,y, the direction cosines of the random vector in space which has the uniform 

probability distribution, and cosB, the angle cosine between the initial direction and 

the random vector in the collision point. The simulation of the spiral path length is 

finished. 

6. lf s > d 11
P' and the electron is within the boundaries of the target, then the new 

values of s and r., are calculated s = s- dopl , r., = r.;',J',k' where r.;'J,k' is the 

macroscopic cross section for a new cell which the electron is crossing. The new 

coordinates of the point on the cell boundary are evaluated by means of eqs. (24) 

where instead "free path" length L the value d is used. The energy loss and 
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correction of the direction cosines are performed on the length d as described 

above. After thatl the simulation is continued from the item 3. 

7. lf s > d""' and the electron crosses any target boundaryl then the energy lass is 

taken into account on the length d and the electron trajectory is stopped. 

The length d to the nearest cell boundaries in the target is calculated from a 

joint solution of eqs. (24) foraspiral and those for boundary planes. 

Because a "free path" step represents the cumulative effect of many individual 

random collisionsl fluctuations in the energy lass rate will occur. The technique 

presented above takes into account these fluctuations in any particular segment of 

the path. The restricted-collision stopping power technique allows to avoid the 

implementation of the Landau energy-straggling distribution [1 01 11 ]~ and to predict 

successfully the energy transfers. 

3.5 Sampling electron interactions 

When a point of close interaction has been reached I it must be decided which 

of the competing processes has occurred. The probability that a given type of 

interaction occurred is proportional to its cross section. The type of interaction in the 

collision point can be the following 1) e/astic e/ectron nuc/eus co/lision; 2) e/astic 

electron e/ectron col/ision; 3) fictitious process. Suppose the types of interactions 

possible are numbered 1 to 3. Selection of the i -th type of interaction is made 

randomly according to the probability f(i) = tL; jL, . The number of the interaction 

to occurl i I is selected by picking a random number ~ and finding the i which 

satisfies f(i -1) < ~ < f(i). 

1) Glose e/ectron nuc/eus colfisions 

This process gives the main contribution into the scattering of electrons in the 

plasma. The differential cross section of this process is described by eq. (1 ). The 

scattering angle B in the Iabaratory frame is sampled from this expression by means 

of the reverse function method. The energy transferred to the nucleus is determined 

from the expression 
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(26) 

with E the kinetic electron energy before the collision, and M
11 

the nucleus mass. 

The electron energy will be less by this value after scattering. The criterion of the 

trajectory end in the energy is checked. lf the electron energy is less than the 

threshold energy E,11 =1 keV, then the trajectory is stopped and a new trajectory is 

started. Otherwise, the electron trajectory is traced with the new electron energy and 

new direction cosines. 

2) Glose e/ectron electron col/isions 

The energy & transferred to the recoil electron in close collisions is sampled 

from eq. (8) by means of the method of inverse functions. The cosine of the 

scattering angle B in the Iabaratory frame is evaluated from the expression 

cosB = ~1- s/ E . The recoil electrons can obtain energies higher the threshold energy 

E," =1 keV. lf this is the case, their trajectories are followed in the similar way. When 

the electron energy is smaller than E,11 , the trajectory is stopped. ln opposite way, the 

simulation procedure is repeated with new values of the electron energy and 

direction. 

3) The fictitious process 

The fictitious collision is occurred with the probability :l: 1 j:L, . lf one takes 

place, then the electron eriergy and direction arenot changed. 

Thus, Monte Carlo simulation is performed by carrying out the above 

calculation on many test electrons. 

3.6 Evaluation of the distribution of energy deposition 

As a result of N histories, there are some values of absorbed energy l.lE;,;,k 

[keV] in each cell (i, j, k). ln order to determine the energy ~&;,;,k [keV] per electron, it 

is necessary to divide the values l.lE;,;,k by the number of histories N . Considering 
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slab geometry the lengths along the axes y and z are assumed to be infinite. The 

energy t1si [keV] per electron in the i -th layer is evaluated by taking the sum with 

respect to all the values l!.si,J,k [keV] for the given i -th index, i.e. the summation is 

performed over all the J -th and k -th indexes. Dividing each value t1si [keV] by the 

grid step hi [cm] one can obtain the deposited energy (dE/ dx) [keV/cm] per electron 

along the axis x. This value was averaged over different collisional histories. Thus, it 

can be treated as the power density (dQ/ dx) [keV/(cm3·s)] for the incident flux F = 1 

[electrons/(cm2 ·s)] before the target. ln case of monoenergetic flux, the energy 

density P [keV/(cm2·s)] of the incident flux and the electron energy E [keV] are the 

initial parameters. The incident electron flux before the target is determined as 

F=P/E [electrons/(cm2·s)]. For hydrodynamic problems, the power density (dQ/dx) 

[keV/(cm3·s)] is required. To calculate this characteristic, it is necessary to multiply 

the value (dE/dx) [keV/cm] by the flux F [electrons/(cm2·s)] before the target. 

ln case of a Maxwellian flux, the initial electron energy E is sampled from the 

Maxwellian function /,11 (v). The average flux is given by F = f nv/,
11 
(v )dv, where 

n = PjvE is the number density of the electrons in the incident flux. Todetermine the 

power density (dQ/dx) [keV/(cm3·s)] for the Maxwellian distributed electrons, it is 

necessary to multiply (dE/dx) [keV/cm] by the calculated flux F. 

3.7 Accuracy of the Monte Carlo calculations 

There are two main sources of error in calculations of this type. The first is 

statistical depending on the finite number of samples. The second is systematic 

arising from inaccuracies in the scattering data used. 

Due to the statistical nature of the Monte Carlo method, the accuracy of the 

results will depend on the number of samples. Generally, the statistical uncertainties 

will be proportional to the inverse square root of the number of histories. Thus, to cut 

uncertainties in half it is necessary to run four times as many histories. For some 

quantities x the average is evaluated as 
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1 N 
X 111 =-I;x;l 

N i=l 

where N is the number of followed historiesl x; is the quantity x on i -th history. The 

probability of deviation from the quantity X
111 

can be written as 

P~X111 - xal < Zp~D(x)jN )~ ß 1 (27) 

with x" the accurate value of x I D(x) the dispersionl ß the coefficientl and z ß the 

root of the eq uation F(z) = ß. Here F(z) is the error integral. The probable error 

corresponds to the coefficient ß =0.5. ln this casel the value z ß is equal to 0.67 45. 

Thereforel the value xa is found in the range 

X
111 

- 0.6745~ D(x )/ N S. X 11 < X
111 

+ 0.6745~ D(x )/ N I (28) 

with 

D(x) =_!!__[(_!_I (x; Y J- (xm Y]. 
N -1 N i=l 

(29) 

This simple approach was used in the Monte Carlo calculations to evaluate the 

statistical error in the distribution of energy deposition. The error was investigated by 

repeating the calculations using a different set of trajectories and its number. The 

accuracy increases only as the square root of the number of trajectories considered. 

ln the present calculation 10000 trajectories were used. The ultimate accuracy can 

be set by the available computer time. lt was found that this number of histories is 

sufficient because the statistical error then is less than the error arising from other 

sources. 

The accuracy of the Monte Carlo calculations depends on the accuracy of the 

interaction cross sections. The differential cross section of elastic electron nucleus 

scattering ( eq. ( 1)) was derived in the first order Born approximation. The spin and 

screening effects are not taken into account by this formula. The error introduced by 

this cross section is of the order of 20% in the energy range of interest here. For a 

significant increase in accuracyl it would be necessary to use the exact Matt cross 
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section [23] which takes into account the above effects. However, this would involve 

a considerable increase in the complexity of the computer programs and in their 

running time. The error introduced by the cross section for energy transfers (eq. (8)) 

makes a few percent. 

Also, for given cutoff angles and energies, the computertime for an electron 

history is slightly more than linear in the energy of the incident electron. The point to 

be made hereisthat Monte Carlo calculations can be very time consuming. 

4. NUMERICAl RESULTS 

The three-dimensional Monte Carlo code MONPLAS has been developed to 

describe the transport of magnetized electrons in solid targets and in a carbon 

plasma. 

4.1 Energy deposition into solid targets 

ln solid targets, the magnetic field has no influence on the electron trajectory 

as the free path length between two collisions is much less than the Larmor radius. 

Therefore, the electron undergoes a set of collisions during one Larmor period. Due 

to the collisions, the electron direction is deflected and it moves areund another 

magnetic line. The trajectory length between two collisions is approximately a direct 

line. However, the energy deposition profile depends strongly on the value of the 

longitudinal kinetic energy E
11 

of the electrons at the entrance into the target. ln Fig. 2 

distributions of the energy deposition into a graphite target are presented for different 

longitudinal energies E
11

• The electrons in the incident flux are Maxwellian distributed 

with a temperature of 10 keV. The two-dimensional Maxwellian function is shown in 

Fig. 2. The energy of the incident electrons is sampled from this function. The 

scheme with weight is applied for accurate account of the energy deposition by the 

high energy electrons from the tail of the Maxwellian distribution. Fig. 3 shows results 

for magnetic field lines perpendicular to the target surface (entrance angle 90°). The 

magnetic field intensity is equal to 5 T. The energy deposition decreases 

monotonically with the target depth. The range of the high energetic tail of the 
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Maxwellian distributed electrons is up to 80 Jlm. Low-energy electrons deposit its 

energy near the target surface. Energy and angular spectra of Maxwellian electrons 

reflected from graphite are shown in Figs. 4 and 5, respectively. With decreasing 

longitudinal energy the fraction of reflected electrons increases and the maximum in 

the angular distribution is shifted close to the target surface. The angle is accounted 

from the direction of the x axis. Fora case when the rotational motion is absent (the 

longitudinal energy is equal to the incident one) the most probable angle of the 

backscattered electrons is about 135° that is a well-known result. Fig. 6 shows 

distributions of the energy deposition for a case when the magnetic field lines form an 

angle of 5° with the target surface. Decrease in the entrance angle results in shift of 

the energy deposition towards the target surface. The range of energy deposition into 

graphite decreases up to 60 Jlm. The differences in the energy deposition curves for 

different longitudinal energies are less pronounced in comparison with the previous 

case. Figs. 7 and 8 show energy and angular spectra of the reflected electrons for a 

case when the magnetic lines form an angle of 5° with the target surface. ln this case 

the fraction of backscattered electrons with E
11 
= E is dominant. The most probable 

angle with the target surface ranges from 5° to 10° for all the longitudinal energies. 

4.2 Energy deposition into a homogeneaus carbon plasma 

Calculated distributions of the energy deposition versus the longitudinal kinetic 

energy of the monoenergetic incident electrons are shown in Fig. 9. A layer of 

homogeneaus carbon plasma with density 1019 cm·3 and temperature 20 eV was 

considered. The monoenergetic energy E of incident electron flux was assumed to 

be 50 keV. The magnetic field is equal to 5 T. Magnetic field lines are perpendicular 

to the plasma layer. Monte Carlo calculations were performed for five values of the 

longitudinal kinetic energy E
11

, which was taken 50, 30, 20, 10 and Ecos 2 e keV with 

e the isotropic pitch angle. The peak of the energy deposition is shifted to the plasma 

surface for the incident electron flux with lower longitudinal energy. For the case of 

isotropic pitch angle and monoenergetic energy a maximum in the energy deposition 

is achieved on the plasma surface. 
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The magnetic field has no influence on the distribution of the energy 

deposition for the same ratios of longitudinal to transverse energies at constant total 

energy as is seen from Fig. 10 showing the distributions of the energy deposition for 

given values of the longitudinal kinetic energy and different values of the magnetic 

field. The total monoenergetic energy of the incident electrons E is equal to 40 keV. 

The calculations were performed for longitudinal kinetic energies E
11 
= E , E

11 
= O.SE , 

E
11 
= O.IE, E

11 
= E cos 2 e with e the isotropic pitch angle and for magnetic field with 

0.1, 1, 10, and 100 T, respectively. The energy distributions depends only on the 

value of the longitudinal energy. This result can be explained as follows: the magnetic 

field has an effect only on the electron trajectory (motion along a spiral), but has no 

influence on the collision probability, value of transferred energy, path length between 

two consequent collisions, and energy loss on this length. Therefore, for given ratios 

of longitudinal to transverse energy the distribution of energy deposition should not 

depend on the magnetic field. 

Fig. 11 shows the energy deposition as a function of the entrance angle of the 

electrons into the carbon plasma. The angle is formed by the magnetic field lines with 

the x axis, which is perpendicular to the plasma surfaces. Magnetic field is 5 T. The 

plasma density is 1019 cm-3
. Plasma temperature is 20 eV. Monoenergetic energy of 

the incident electrons is 50 keV. The longitudinal kinetic energy of the electrons is 

equal to the total energy, i.e. the electrons arenot rotating, and they move along the 

magnetic field lines. The calculations were performed for four values of the angle 

between the magnetic field lines and the x axis. From Fig. 11 it is seen that with 

increasing angle, the penetration depth of the electrons into the plasma is strongly 

decreased and the energy deposition close to the plasma surface is higher. 

Distributions of the energy deposition as a function of the carbon plasma 

temperature are shown in Fig. 12. The plasma density is equal to 1018 cm·3
. The total 

monoenergetic energy of the incident electrons is 50 keV. The longitudinal kinetic 

energy is equal to the total one. The magnetic field is 5 T. Magnetic field lines are 

perpendicular to the plasma surface. The calculations were performed for four values 

of the plasma temperature. As can be seen from Fig. 12 the penetration depth of the 

electrons into the plasma decreases with temperature increase and the displacement 

of energy deposition peak to the plasma surface occurs. This can be explained by the 
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following: with increasing temperature the ionization of the plasma increasesl 

accordinglyl the energy Iosses on the free plasma electrons are increased. 

Fig. 13 shows energy deposition profiles for monoenergetic and Maxwellian 

distributed electrons. The carbon plasma density is 1019 cm-3 and its temperature is 

20 eVI the magnetic field is 5 T with the magnetic lines perpendicular to the plasma 

surface. The monoenergetic electrons have the energy E =50 keV and its longitudinal 

energy E
11 
= 0.5E. The initial energy of the Maxwellian distributed electrons E

111 
is 

sampled from a two-dimensional function. The temperature of the Maxwellian 

distributed electrons was also taken as 50 keV. Two cases are considered. lt is 

supposed that the longitudinal kinetic energy equals half of the total energy 

E
11 
= 0.5E

111 
and E

11 
= E

111 
cos 2 

() with () the isotropic pitch angle. From a comparison of 

the distributions of energy deposition it is evident that the penetration depth of the 

Maxwellian electrons exceeds significantly that of the monoenergetic ones. The 

distribution of energy deposition of the Maxwellian electrons has a long tail 

contributed from high-energy Maxwellian electrons. Energy deposition profile with 

E
11 
= E111 cos 2 

() is close to that with E
11 
= 0.5E

111
• 

Distributions of the energy deposition as a function of the incident energy of 

the electrons are shown in Fig. 14. Parameters of the plasma are the following: 

density 1019 cm-3 and temperature 20 eV. The magnetic field is 5 T and the field lines 

are perpendicular to the plasma surface. The longitudinal energy is equal to the total 

one. The calculation was performed for the following values of the total 

monoenergetic energy of the incident electrons: 101 20 1 40 and 80 keV. The energy 

deposition decreases with increasing impact energy. A variation of the incident 

energy from 10 up to 80 keV changes the penetration depth into a plasma by a factor 

of 50. 

Distributions of the energy deposition for different densities of a plasma are 

presented in Fig. 15. The plasma temperature is 20 eV. lntensity and direction of the 

magnetic field are the same as in the previous case. The total monoenergetic energy 

of the incident electrons is 50 keV. The longitudinal kinetic energy is equal to the total 

one. The calculations were performed for five values of the plasma density: 1016
1 

1017
1 1018

1 1019 and 1020 cm-3
. With decreasing the plasma density by an order of 



26 

magnitude the penetration depth increases by about a factor of 10. The energy 

deposition decreases by several orders with decreasing the plasma density. 

4.3 Energy deposition into graphite shielded by a carbon plasma 
layer 

Calculations on the energy deposition of the magnetized electrons into a two­

phase target consisting of a homogeneaus plasma layer of thickness of 20 cm and a 

graphite material shielded by this layer were also carried out. lt is supposed that the 

incident electrons in the flux are Maxwellian distributed in energy with the 

temperature of the electron flux as 1 0 keV. Results of the energy deposition into a 

homogeneaus plasma and graphite shielded by this plasma are shown in Figs. 16 

and 171 respectively. A homogeneaus plasma of density of 1018 cm-3 and of 

temperature of 5 eV is considered. The magnetic field is 5 T and the field lines are 

perpendicular to the plasma surface. The curves in Figs. 16 and 17 correspond to 

different values of the longitudinal kinetic energy of the incident Maxwellian electrons. 

Figs. 18 and 19 show results for magnetic field lines forming an angle of 5° with the 

plasma surface. The calculations are also carried out for four values of the 

longitudinal kinetic energy of the Maxwellian electrons. As it is seen from Figs. 16 

and 18 the energy deposition profiles have a peak close to the plasma surface. The 

mostprobable energy of the Maxwellian electrons is approximately equal to 10 keV. 

Thereforel the main fraction of the electrons has this energy. Electrons with energy 

close to the most probable one are absorbed near the plasma surface. Thusl the 

peak in the distribution of the energy deposition into carbon plasma is due to the 

electrons of this energy. For the case of an angle of 5° the energy deposited close to 

the plasma surface is higher by about a factor of 4. Some part of the energy of the 

high energetic tail of the Maxwellian distributed electrons is deposited into the 

graphite target. The fraction of high-energy Maxwellian electrons is small. Howeverl 

the action of these electrons is significant because they deposit energy into a thin 

layer of graphite. For the case of perpendicular incidence (Fig. 17) the percentage of 

the energy deposited into graphite is 25.8% 1 20.1% 1 20.8% 1 and 13.8% for four 

values of the longitudinal energy E
11 
=EI E

11 
= 0.5E I E

11 
= Ecos 2 BI and E

11 
= O.IE I 

respectively. The penetration depth into graphite is about 60 Jlm. lf the magnetic field 
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lines form an angle about 5° with the plasma surface a larger fraction of the energy of 

the electron flux is deposited into the plasma. ln this case, the percentage of the 

energy deposited into graphite (Fig. 19) is 0.5%, 0.26%, 0.3%, and 0.1% for four 

longitudinal energies. The penetration depth of the high energetic Maxwellian 

electrons into graphite decreases up to 40 1-Lm. 

The following examples demonstrate more realistic cases of the distributions 

of energy deposition of the rotating electrons into the carbon plasma with density and 

temperature profiles and into graphite divertor shielded by this plasma. Density and 

temperature proflies in the plasma for three times are shown in Figs. 20 and 21. The 

shielding plasma is a two-layer plasma with high density (up to 1019 cm-3
) and low 

temperature close to the target and low density (around 1015 cm-3
) and high 

temperature (up to a few hundred eV) further away [2]. Results on distribution of the 

energy deposition are shown in Figs. 22-29 for the plasma shield and graphite. Figs. 

22-29 show the energy deposition profiles for specifled longitudinal energies at 5.73, 

22.66, and 101.0 1-LS. Figs. 24-29 show theseproflies for specifled timesanddifferent 

longitudinal energies. lt is assumed that the magnetic fleld is constant and its 

components are Bx (x) = 0.5 T and Bz (x) = 5 T. Thus, the direction of magnetic fleld is 

also constant and makes an angle of 5° with the plasma surface. The average 

percentage of energy absorbed in the plasma shield graphite target system is 81%, 

83%, and 85% for three times, respectively. Thus at later times the fraction of 

reflected energy from the plasma shield decreases. Fig. 24, 26 and 28 shows that 

there is a peak in the energy deposition into the plasma. This peak results from the 

deposition of the magnetized electrons into the transition region of the evolving 

plasma shield. The energy fractions absorbed in the plasma shield are 91%, 98%, 

and 99,8% for three times, respectively (Fig. 22). Thus the plasma shield screens 

effectively the graphite divertor from the direct action of the incident electron flux, 

especially, at later times. The most probable energy of the Maxwellian distributed 

electrons is approximately from 1 to 10 keV. These electrons are absorbed close to 

the surface of the expanding plasma shield. A maximum in the distribution of the 

energy deposition on the plasma edge is due to the contribution of electrons of those 

energies. 

For graphite, it is assumed a constant density (~1 023 cm-3
) and room 

temperature. A maximum in the energy deposition (Figs. 25, 27, and 29) is achieved 
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on the graphite surface and the penetration depth decreases up to 40 ~-tm at later 

times. Small fractions of the energy (9%, 2%, and 0.2% for isotropic pitch angle and 

three times, respectively (Fig. 23)) are deposited into a thin surface layer of graphite. 

From Fig. 25 it is seen that the depth of the energy deposition is up to 60 ~-tm. At 101 

1-LS the fraction of energy deposited into solid graphite is about a factor of 50 less than 

at 5.73 ~-ts. The distributions of the deposited energy integrated along the distance 

from graphite for the plasma shield and along the depth into graphite are shown in 

Figs. 30-37. Figs. 30 and 31 show the integrated proflies for specified longitudinal 

energies as in the case of energy deposition profiles. These integrated proflies for 

specified times are show in Figs. 32-37. lt is evident that discrepancy in the curves 

for the plasma shield (Figs. 32, 34 and 36) is not so large as for graphite (Figs. 33, 35 

and 37). lt is seen that for graphite target after 20 ~-tm the curves become 

approximately constant, i.e. the energy deposited at the distance larger 20 ~-tm is 

negligible. For the case of the longitudinal energy with isotropic pitch angle the 

angular and energy spectra of the Maxwellian distributed electrons transmitted 

through the plasma shield before their impact onto graphite are shown in Figs. 38 

and 39, respectively. For other longitudinal energies these spectra are similar to 

those. The most probable angle of the electron impact is about 90° with the graphite 

surface. The number of electrons with the energy from 1 keV up to 10 keV which 

reach the graphite surface is rather small compared to that with higher energy. 

Therefore, only electrons of the Maxwellian tail can penetrate through the plasma 

shield and impact onto the graphite plate. With ongoing time, the peak of the energy 

spectra decreases and shifts to higher energies as the size of the plasma shield 

increases. lt is also assumed that impacting electrons are reflected from the plasma 

shield. The pitch angle can take a value greater 90° due to collisions with the plasma 

nuclei. lf this is the case, the electrons move along the helix in backward direction 

and can leave the plasma shield. Such electrons are considered as reflected. 

Further, the reflected electrons are bended back to the plasma shield because of 

guiding magnetic field. Angular and energy spectra of the electrons reflected from the 

plasma shield are shown in Figs. 40 and 41 for a case of the longitudinal energy with 

the isotropic pitch angle. The probable angle of the reflected electrons is close to 90° 

with the plasma surface. The main fraction of the backscattered electrons is low­

energy electrons in the range from 1 up to 30 keV. 
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5. CONCLUSIONS 

The Monte Carlo method was applied to the calculation of the energy 

deposition of magnetized electrons in inhomogeneaus plasmas and in solids to study 

the energy deposition of the magnetized electrons into the carbon plasma with 

density and temperature gradients. The study of the energy deposition may be 

summarized in the following set of conclusions. 

• ln graphite, the magnetic field has no influence on the electron 'trajectory because 

the free path is significantly less than the Larmor period length. The distribution of 

the energy deposition depends strongly on the longitudinal kinetic energy of the 

electrons before the entrance into graphite. 

+ The peak of energy deposition profile is close to the plasma surface and range 

shortening occurs with decreasing the longitudinal kinetic energy. 

+ The magnetic field intensity has no influence on the distribution of the energy 

deposition into the homogeneaus plasma for the same ratios of longitudinal to 

transverse flux energies at constant total energy. 

+ lncreasing the entrance angle of the electrons into the homogeneaus plasma, the 

penetration depth is strongly decreased. 

+ The penetration depth of Maxwellian electrons into the plasma exceeds 

significantly that of the monoenergetic flux (temperature of Maxwellian electrons is 

equal to monoenergetic energy). 

+ The results of calculations indicate that electron range shortening occurs in a hot 

plasma layer due to the temperature, density, and incident energy dependence of 

the energy loss processes. 

+ The penetration depth and the fraction of the absorbed energy deposited into 

graphite shielded by a layer of homogeneaus plasma increases with increasing 

longitudinal electron energy and entrance angle. 

• The fraction of energy deposited into the evolving plasma shield increases more 

than 99% at later times and only the electrons from Maxwellian tail can reach the 

bulk target. The depth of significant energy deposition into graphite shielded by a 
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layer of inhomogeneaus carbon plasma is approximately 20 ~-tm for the case when 

the magnetic field lines make an angle of 5° with the plasma surface. 

ln conclusion, it should be noted that the Monte Carlo calculations on the 

energy deposition were performed for separate temporal states of the expanding 

carbon plasma. ln reality, the self-consistent calculations of the rapidly expanding, 

high-energy-density plasmas and energy deposition into these plasmas by incident 

radiation are of special interest. lt requires the coupling of energy deposition model 

into a time-dependent magnetohydrodynamic code. For this purpose, the developed 

Monte Carlo energy deposition model must retain enough generality and flexibility to 

remain sufficiently efficient to be used as a subprogram in the large hydrodynamic 

code such as FOREV-2 [2] used for studying target physics and particle transport. 

Thus, further development may be directed to the simplification and optimization of 

the energy deposition model used to save computational time and to implement it into 

a hydrodynamics computer code. 
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Fig. 11. Distribution of the energy deposition into the carbon plasma as a 
function of the plasma temperature. Plasma density 1018 cm-3

, monoenergetic 
energy E=50 ke V, longitudinal energy E 11 = E, magnetic field B=5 T, angle of 

magnetic field lines with the plasma surface a =90°. 
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Fig. 13. Distribution of the energy deposition into the carbon plasma as a 
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plasma temperature 20 e V, longitudinal energy E 11 = E, magnetic field B=5 T, 
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Fig. 21. Temperature distribution in a carbon plasma shield at 5.73, 22.66, and 
101.0 ~s. 
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Fig. 22. Distribution of the energy deposition by the magnetized electrons with 
longitudinal energy Eu=Em into theinhomogeneaus carbon plasma shield at 5.73, 
22.66, and 101.0 ~s. The magnetic lines form an angle of 5° with the plasma 
shield. Ern - Maxwellian distributed energy of the incident electrons with 
temperature 10 keV, magnetic field B=5 T. 
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Fig. 23. Distribution of the energy deposition by the magnetized electrons with 
longitudinal energy E11=Ern into graphite shielded by a layer of inhomogeneaus 
carbon plasma at 5.73, 22.66, and 101.0 J!S. Ern- Maxwellian distributed energy 
ofthe incident electrons with temperature 10 keV, magnetic field B=5 T. 
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Fig. 24. Distribution of the energy deposition by the magnetized electrons with 
longitudinal energy En=0.5Ern into the inhomogeneaus carbon plasma shield at 
5.73, 22.66, and 101.0 J.LS. The magnetic lines form an angle of 5° with the 
plasma shield. Ern- Maxwellian distributed energy of the incident electrons with 
temperature 10 ke V, magnetic field B=5 T. 
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Fig. 27. Distribution of the ener~y deposition by the magnetized electrons with 
longitudinal energy E11=Erncos B into graphite shielded by a layer of 
inhomogeneous carbon plasma at 5.73, 22.66, and 101.0 JlS. Ern- Maxwellian 
distributed energy of the incident electrons with temperature 10 ke V, magnetic 
field B=5 T, B - isotropic pitch angle. 
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Fig. 28. Distribution of the energy deposition by the magnetized electrons with 
longitudinal energy E11=0.1Ern into the inhomogeneous carbon plasma shield at 
5.73, 22.66, and 101.0 JlS. The magnetic lines form an angle of 5° with the 
plasma shield. Ern- Maxwellian distributed energy of the incident electrons with 
temperature 10 ke V, magnetic field B=5 T. 
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Fig. 29. Distribution of the energy deposition by the magnetized electrons with 
longitudinal energy E11=0.1Ern into graphite shielded by a layer of 
inhomogeneaus carbon plasma at 5.73, 22.66, and 101.0 J!S. Ern- Maxwellian 
distributed energy of the incident electrons with temperature 10 ke V, magnetic 
field B=5 T. 
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Fig. 30. Distribution of the energy deposition by the magnetized electrons with 
different longitudinal energies into the inhomogeneous carbon plasma shield at 
5.73 J!S. The magnetic lines form an angle of 5° with the plasma shield. Ern­
Maxwellian distributed energy of the incident electrons with temperature 10 
ke V, magnetic field B=5 T, e - isotropic pitch angle. 
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Fig. 31. Distribution of the energy deposition by the magnetized electrons with 
different longitudinal energies into graphite shielded by a layer of 
inhomogeneous carbon plasma at 5.73 ~s. Ern- Maxwellian distributed energy of 
the incident electrons with temperature 10 ke V, magnetic field B=5 T, B -
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Fig. 32. Distribution of the energy deposition by the magnetized electrons with 
different longitudinal energies into the inhomogeneous carbon plasma shield at 
22.66 ~s. The magnetic lines form an angle of 5° with the plasma shield. Ern­
Maxwellian distributed energy of the incident electrons with temperature 10 
ke V, magnetic field B=5 T, B - isotropic pitch angle. 
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Fig. 35. Distribution of the energy deposition by the magnetized electrons with 
different longitudinal energies into graphite shielded by a layer of 
inhomogeneous carbon plasma at 101.0 J.lS. Em - Maxwellian distributed energy 
of the incident electrons with temperature 10 ke V, magnetic field B=5 T, e -
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Fig. 37. Distribution of the integrated energy deposited by the magnetized 
electrons with the longitudinal energy Eu=Ern into graphite shielded by a layer of 
inhomogeneous carbon plasma at 5.73, 22.66, and 101.0 j.!S. Ern- Maxwellian 
distributed energy of the incident electrons with temperature 10 ke V, magnetic 
field B=5 T. 
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Fig. 38. Distribution of the integrated energy deposited by the magnetized 
electrons with the longitudinal energy E11=0.5Ern into the carbon plasma shield at 
5.73, 22.66, and 101.0 j.!S. Ern- Maxwellian distributed energy of the incident 
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Fig. 39. Distribution of the integrated energy deposited by the magnetized 
electrons with the longitudinal energy E11=0.5Ern into graphite shielded by a layer 
of inhomogeneous carbon plasma at 5.73, 22.66, and 101.0 ~s. Ern- Maxwellian 
distributed energy of the incident electrons with temperature 10 ke V, magnetic 
field B=5 T. 

11111 5.73 ~s 

• 22.66 ~s 

"' 101.0 ~s 

10-3 10-2 10-1 10° 10
1 

10
2 

Distance from solid target, ( cm) 
Fig. 40. Distribution of the integrated energy deposited by the magnetized 
electrons with the longitudinal energy E11=Erncos2 B into the carbon plasma shield 
at 5.73, 22.66, and 101.0 ~s. Ern- Maxwellian distributed energy of the incident 
electrons with temperature 10 ke V, magnetic field B=S T, B - isotropic pitch 
angle. 
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Fig. 41. Distribution of the integrated energy deposited by the magnetized 
electrons with the longitudinal energy E11=Erncos2 e into graphite shielded by a 
layer of inhomogeneous carbon plasma at 5.73, 22.66, and 101.0 JlS. Ern -
Maxwellian distributed energy of the incident electrons with temperature 10 
ke V, magnetic field B=5 T, e - isotropic pitch angle. 
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Fig. 42. Distribution of the integrated energy deposited by the magnetized 
electrons with the longitudinal energy E11=0.1Ern into the carbon plasma shield at 
5.73, 22.66, and 101.0 JlS. Ern- Maxwellian distributed energy of the incident 
electrons with temperature 10 ke V, magnetic field B=5 T. 
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Fig. 43. Distribution of the integrated energy deposited by the magnetized 
electrons with the longitudinal energy E11=0.1Ern into graphite shielded by a layer 
of inhomogeneous carbon plasma at 5.73, 22.66, and 101.0 JlS. Ern- Maxwellian 
distributed energy of the incident electrons with temperature 10 ke V, magnetic 
field B=5 T. 
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Fig. 44. Distribution of the integrated energy deposited by the magnetized 
electrons with different longitudinal energies into the carbon plasma shield at 
5. 73 JlS. Ern - Maxwellian distributed energy of the incident electrons with 
ternperature 10 keV, magnetic field B=5 T, 8 - isotropic pitch angle. 
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Fig. 45. Distribution of the integrated energy deposited by the magnetized 
electrons with different longitudinal energies into graphite shielded by a layer of 
inhomogeneous carbon plasma at 5.73 JlS. Ern- Maxwellian distributed energy of 
the incident electrons with temperature 10 ke V, magnetic field B=5 T, e -
isotropic pitch angle. 
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Fig. 46. Distribution of the integrated energy deposited by the magnetized 
electrons with different longitudinal energies into the carbon plasma shield at 
22.66 JlS. Ern - Maxwellian distributed energy of the incident electrons with 
temperature 10 ke V, magnetic field B==5 T, e - isotropic pitch angle. 
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Fig. 47. Distribution of the integrated energy deposited by the rnagnetized 
electrons with different longitudinal energies into graphite shielded by a layer of 
inhomogeneous carbon plasma at 22.66 JlS. Ern- Maxwellian distributed energy 
of the incident electrons with temperature 10 ke V, magnetic field B=5 T, e -
isotropic pitch angle. 
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Fig. 48. Distribution of the integrated energy deposited by the rnagnetized 
electrons with different longitudinal energies into the carbon plasrna shield at 
101.0 Jls. Ern - Maxwellian distributed energy of the incident electrons with 
temperature 10 ke V, magnetic field B=5 T, e - isotropic pitch angle. 
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Fig. 49. Distribution of the integrated energy deposited by the magnetized 
electrons with different longitudinal energies into graphite shielded by a layer of 
inhomogeneous carbon plasma at 101.0 f.!S. Ern- Maxwellian distributed energy 
of the incident electrons with temperature 10 keV, magnetic field B=5 T, B -

isotropic pitch angle. 
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Fig. 50. Angular spectra of the Maxwellian distributed electrons with the 
longitudinal energy E11=Erncos2 

B transmitted through the inhomogeneous plasma 
shield and impacting onto the graphite surface. Ern - Maxwellian distributed 
energy of the incident electrons with temperature 10 ke V, magnetic field B=5 T, 
B - isotropic pitch angle. 
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Fig. 51. Energy spectra of the Maxwellian distributed electrons with the 
longitudinal energy E11=Erncos2 e transmitted through the inhomogeneous plasma 
shield and impacting onto the graphite surface. Ern - Maxwellian distributed 
energy of the incident electrons with temperature 10 ke V, magnetic field B=5 T, 
e - isotropic pitch angle. 
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Fig. 52. Angular spectra of the Maxwellian distributed electrons with the 
longitudinal energy E11=Erncos2 e reflected from the inhomogeneous plasma 
shield. Ern - Maxwellian distributed energy of the incident electrons with 
temperature 10 ke V, magnetic field B=5 T, e - isotropic pitch angle. 
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Fig. 53. Energy spectra of the Maxwellian distributed electrons with the 
longitudinal energy E11=Emcos2 e reflected from the inhomogeneous plasma 
shield. Ern - Maxwellian distributed energy of the incident electrons with 
temperature 10 ke V, magnetic field B=5 T, e - isotropic pitch angle. 




