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Stress intensity factors and T-stress for cracked circular disks

Abstract:

The failure of cracked components is governed by the stresses in the vicinity of the
crack tip. The singular stress contribution is characterised by the stress intensity factor
K, the first regular stress term is represented by the so-called T-stress.
Stress intensity factors and T-stress solutions for components containing an internal
crack were computed predominantly by application of the Boundary Collocation
Method (BCM). The results are compiled in the form of tables or approximative
relations. In some cases also the fracture mechanics weight function for K and a
Green's function for T-stresses are given, and higher order stress function coefficients
are compiled.
Different mechanical boundary conditions are considered: pure traction conditions,
mixed boundary conditions and pure displacement conditions.

Spannungsintensitätsfaktoren und T-Spannungsterme für
Kreisscheiben mit Rissen

Kurzfassung:

Das Versagen von Bauteilen mit Rissen wird durch die unmittelbar an der Rißspitze
auftretenden Spannungen verursacht. Der singuläre Anteil dieser Spannungen wird
durch den Spannungsintensitätsfaktor K charakterisiert. Der erste reguläre Term wird
durch die sogenannte T-Spannung beschrieben.
Im vorliegenden Bericht werden Ergebnisse von K und T für den Fall von
Kreisscheiben mit Rissen mitgeteilt, die überwiegend mit der "Boundary Collocation
Methode" (BCM) bestimmt wurden. Die Resultate werden in Form von Tabellen und
Näherungsformeln wiedergegeben. Zusätzlich wird in einigen Fällen die bruch-
mechanische Gewichtsfunktion für K sowie eine Greensfunktion für T angegeben.
Auch Koeffizienten für höhere Terme der Spannungsfunktionen werden tabellarisch
angegeben.
Als mechanische Randbedingungen werden gewählt: Spannungsrandbedingungen,
gemischte Randbedingungen sowie reine Verschiebungsrandbedingungen.



III

Contents

1  Introduction 1

1.1 Stresses in a cracked body 1

1.2 Stress intensity factor 3

1.3 T-stress term 4

1.4 Weight function 5

1.5 Representation of T-stresses by a Green's function 6

2 Circular disk with internal crack 9

2.1 Constant load 9

2.2 Disk partially loaded by normal tractions at the circumference 12

2.3 Central point force on the crack face 15

2.4 Mode-II loading 19

2.5 Brazilian disk 20

2.6 Mixed boundary conditions 24

2.7 Displacement boundary conditions 28

2.8 Partially loaded disks 30

3 Edge-cracked circular disk  36

3.1 Circumferentially loaded disk (traction boundary conditions) 36

3.2 Diametrically loaded disk  41

3.3 Circumferentially loaded disk under mixed boundary conditions 43

3.4 Disk under displacement boundary conditions 47

3.5 Brazilian disk (edge-cracked) 50

3.6 Round-CT specimen 52

4 Double-edge-cracked circular disk 54



IV

4.1 Traction boundary conditions 54

4.2 Mixed boundary conditions 59

4.3 Displacement boundary conditions 63

4.4 Double-edge-cracked Brazilian disk 65

References 67



1

1 Introduction
While stress intensity factor solutions are reported in handbooks [1-6] for many crack geome-
tries and traction loading cases, weight functions and T-stress solutions are seldom available
[5,6]. In most references only solutions for pure traction boundary conditions are reported. In
this report also mixed and pure displacement boundary conditions are included. In special
cases it may be of advantage to know higher coefficients of the stress series expansion as well.
This is desirable e.g. for the computation of stresses over a somewhat wider distance from a
crack tip. Therefore, additional coefficients are compiled in some cases.

1.1 Stresses in a cracked body

The complete stress state in a cracked body is known, if a related stress function is known. In
most cases, the Airy stress function Φ is an appropriate tool, which results as the solution of

∆∆Φ = 0   ,     Φ Φ Φ= +s a (1.1)

For a cracked body a series representation for Φ was given by Williams [7]. Its symmetric part
Φs can be written in polar coordinates with the crack tip as the origin
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where σ* is a characteristic stress and W is a characteristic dimension. The geometric data are
explained by Fig. 1.1. In all mode-I considerations the symmetric part has to be used exclu-
sively. For pure mode-II loadings the antisymmetric part must be applied.
In the symmetric case, the stress components are given by
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The displacements ux = u and uy = v read
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 (ν = Poisson's ratio), from which the Cartesian components result as

ux = −u vcos sinϕ ϕ (1.7a)

uy = +u vsin cosϕ ϕ (1.7b)
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Fig. 1.1 Geometrical data of a crack in a component.

1.2 Stress intensity factor
For the determination of stress intensity factors the Boundary Collocation Method (BCM) and
the weight function procedure were applied.
The stress intensity factor K is a measure of the singular stress term occurring near the tip of a
crack and defined by

σ
π

ϕij ij
K
a
f=

2
( ) (1.8)

where r and ϕ are polar coordinates with the origin at the crack tip.

K is the stress intensity factor. For the loading modes considered in this report the stress inten-
sity factors KI and KII are expressed as

K a F a WI I= σ π* ( / ) (1.9a)

K a F a WII II= τ π* ( / ) (1.9b)

where a is the crack length, W is the width of the component, and σ*, τ* are characteristic
stresses in the component, e.g. the outer fibre stress in a bending bar. FI and FII are functions
of the ratio of the crack length to the specimen's width as well as of the type of load applied.

The coefficient A0 in eq.(1.2) is related to the stress intensity factor KI by

K A WI = σ π*3 20 (1.10)

or to the geometric function FI by



4

F AI = 0 18 / α (1.11)

with the relative crack depth α = a/W.

1.3 T-stress term
Taking into consideration the singular stress term and the first regular term, the near-tip stress
field can be described by
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The term with the coefficient A*0 in eq.(1.2) represents the total constant σx-stress contri-
bution appearing at the crack tip (x = a) of a cracked structure, which is called the T-stress

  T Ax x a= = −
=

σ σ4 0* *  . (1.14)

This total x-stress includes stress contributions which are already present at the location x = a
in the uncracked body, σ x a,

( )0 , and an additional stress term which is generated by the crack
exclusively. This stress separation leads to th definition of two T-stress contributions. The
contribution determined by the x-stress in the uncracked structure may be denoted here by T(0)

T x a
( )

,
( )0 0= σ (1.15)

and the contribution caused by the crack by Tc. Therefore, we can write

T T Tc= +( )0  . (1.16)

Leevers and Radon [8] proposed a dimensionless representation of T by the stress biaxiality
ratio β, which reads

β π
σ

= =T a
K

T
FI *

(1.17)

or, expressed in terms of stress function coefficients

β α= − 8
9

0

0

A
A
* (1.18)

Sufficient information about the stress state is available, if the stress intensity factor and the
constant stress term, the T-stress, are known. While stress intensity factor solutions are repor-
ted in handbooks for many crack geometries and loading cases, T-stress solutions are avai-
lable only for a small number of test specimens and simple loading cases as for instance pure
tension and bending.
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Different methods were applied in the past to compute the T-stress term for fracture mecha-
nics standard test specimens. Regarding one-dimensional cracks, Leevers and Radon [8] made
a numerical analysis based on a variational method. Kfouri [9] applied the Eshelby technique.
Sham [10,11] developed a second-order weight function based on a work-conjugate integral
and evaluated it for the SEN specimen using the FE method. In [12,13] a Green's function for
T-stresses was determined on the basis of Boundary Collocation results. Wang and Parks [14]
extended the T-stress evaluation to two-dimensional surface cracks using the line-spring me-
thod. A compilation of results from literature has been given by Sherry et al. [15].

1.4 Weight function
Most of the numerical methods require a separate calculation of the stress intensity factor for
each given stress distribution and each crack length. The weight function procedure developed
by Bückner [16] simplifies the determination of stress intensity factors. If the weight function
is known for a crack in a component, the stress intensity factor can be obtained by multiplying
this function by the stress distribution and integrating it along the crack length. The weight
function does not depend on the special stress distribution, but only on the geometry of the
component.

The method is considered in the following sections for the case of an edge crack. If σ(x) is the
normal stress distribution and τ(x) are the shear stresses in the uncracked component along the
prospective crack line of an edge crack (Fig. 1.2), the stress intensity factors are given by [16]

K h x a x dxI I n

a

= � ( , ) ( )σ
0

(1.19a)

K h x a x dxII II

a

= � ( , ) ( )τ
0

(1.19b)

The general procedures for the determination of weight functions are described below for the
weight function component hI. The relation of Rice [17] allows to determine the weight func-
tion from the crack opening displacement vr(x,a) of any arbitrarily chosen loading and the cor-
responding stress intensity factor KIr(a) according to

h x a E
K a

x a
aI

Ir

r( , ) '
( )

( , )= ∂
∂
v (1.20)

(E' = E for plane stress and E' = E/(1-ν2) for plane strain conditions) where the subscript r
stands for the reference loading case. It is convenient to use σr(x) = σ0 = constant for the refe-
rence stress distribution.

One possibility to derive the weight function with eq.(1.20) is the evaluation of numerically
determined crack opening profiles, which may be obtained by BCM computations. By appli-
cation of the BCM procedure to a couple of cracks with slightly different lengths a and a+da,
a large number of coefficients An and An* is obtained. Then eq.(1.6a) provides the related
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couple of crack opening displacements v(a) and v(a+da). Use of eq.(1.20) yields the weight
function. In order to minimise the numerical effort, approximate methods are often used in
literature.

1.5 Representation of T-stresses by a Green's function
As a consequence of the principle of superposition, stress fields for different loadings can be
added in the case of single loadings acting simultaneously. This leads to an integration repre-
sentation of the loading parameters and was applied very early to the singular stress field and
the computation of the related stress intensity factor by Bückner [16]. Similarly, the T-stress
contribution Tc caused by the crack exclusively can be expressed by an integral [10-13]. The
integral representation reads

T t x a x dxc y

a

= � ( , ) ( )σ
0

(1.21)

where the integration has to be performed with the stress field σy in the uncracked body (Fig.
1.2). The stress contributions are weighted by a weight function (h, t) which depends on the
location x where the stress σy acts.

a

σy

x

Fig. 1.2 Crack loaded by continuously distributed normal tractions σy (present in the uncracked body).

The weight functions h and t can be interpreted as the stress intensity factor and as the T-term
for a pair of single forces P acting on the crack face at the location x0 (Fig. 1.2), i.e. the weight
functions (h, t) are Green's functions for KI and Tc. This can be shown easily. The single forces
are represented by a stress distribution

σ δ( ) ( )x P
B

x x= − 0 (1.22)
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where δ is the Dirac Delta-function and B is the thickness of the plate (often chosen to be B =
1). By introducing this stress distribution into (1.21), we obtain

T P
B

x x t x a dx P
B
t x aP

a

= − =�δ( ) ( , ) ( , )0
0

0 (1.23)

i.e. the weight function term t(x0,a) is the Green's function for the T-stress term.

In order to describe the Green's function, it is distinguished between a term t0 representing the
asymptotic limit case of near-tip behaviour and a correction term tcorr which includes infor-
mation about the special shape of the component and the finite dimensions,

t t tcorr= +0 (1.24)

with [13,18]

t x a
x x a xx a0

1= − −
− −→π

lim '
( ' )'

 . (1.25)

� = =− = −� = =
T t x a x x dx pc x a y x a, ( ' , , ) ( )0 0 σ σ (1.26)

Then the complete Green's function can be written as [13,18]

t t C x a= + −
=

∞

�0
1

1ν
ν

ν( / ) (1.27)

If we restrict the expansion to the leading term, we obtain as an approximation

t t C x
a

≅ + −�
�
�

�
�
�0 1 (1.28)

A simple procedure to determine approximative Green's functions is to determine the un-
known coefficients in the series representation (1.27) of known T-solutions for reference
loading cases [6].

For internal cracks it holds

t t C x a= + −
=

∞

�0
1

2 21ν
ν

ν( / ) (1.29)



8

with the first approximation

t t C x a≅ + −0
2 21( / ) (1.30)

In this case, the coefficient C results from the pure tension case as

C
a

Tt= +
�

�
�

�

�
�

3
2

1
0σ

(1.31)

In order to improve the Green's function, the next regular term is added. Consequently, the
Green's function expansion reads for edge cracks

t x t C x a C x a( ) ( / ) ( / )= + − + −0 1 2
21 1 (1.32)

or

T C x x a dx C x x a dxc y x a y

a

y

a

= − + − + −
= � �σ σ σ1

0
2

0

21 1( ) ( / ) ( )( / ) (1.33)

For internal cracks it holds

t t C x a C x a= + − + −0 1
2 2

2
2 2 21 1( / ) ( / ) (1.34)

The determination of the two coefficients C1 and C2 is possible, if T-stress solutions for two
different reference loading cases are available.
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2 Circular disk with internal crack

2.1 Constant load

The circular disk with a symmetrical internal crack is shown in Fig 2.1.1.

σn

2R
2a

Fig. 2.1.1   Circular disk with internal crack under constant normal tractions at the circumference.

The crack under constant circumferential tractions (Fig. 2.1.1) has been analysed with the
Boundary Collocation method.

The stress intensity factor solution is [6]

F K
an

= = − + − + −
−σ π

α α α α α
α

1 0 5 16873 2 671 32027 18935
1

2 3 4 5. . . . .
. (2.1.1)

The T-stress terms can be approximated by

Tc / . . . .σ α α α α α
α

= − + − + − +
−

1 2 34 4 27 3326 0 9824
1

2 3 4 5

(2.1.2)

T / . . . .σ α α α α
α

= − + − +
−

2 34 4 27 3326 0 9824
1

2 3 4 5

(2.1.3)

The T-values in Table 2.1.1 were extrapolated to α = 1. Within the numerical accuracy of the
extrapolation, the limit values are
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lim / *( ) lim / *( ) .
α α

σ α σ α
π→ →

− = − ≅ − = −
−1 1 2

1 1 0 413 1
4

T Tc (2.1.4)

and for the biaxiality ratio

lim
α

β α
→

− ≅
1

1 1
2

(2.1.5)

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0

0

0

0

1F

BCM

α

T

Tc

T(1-α)/σ

Fig. 2.1.2  T-stress for an internal crack in a circular disk.

α  = a/R Tc /σ·(1-α) T/σ·(1-α) F·(1-α)1/2 β·(1-α)1/2

0 -1.00 0.000 1.000 0.00
0.1 -0.919 -0.019 0.965 -0.020
0.2 -0.864 -0.064 0.951 -0.067
0.3 -0.820 -0.120 0.951 -0.126
0.4 -0.776 -0.176 0.962 -0.183
0.5 -0.728 -0.228 0.979 -0.233
0.6 -0.675 -0.275 0.998 -0.275
0.7 -0.615 -0.315 1.011 -0.311
0.8 -0.552 -0.352 1.004 -0.351
0.9 -0.485 -0.385 0.953 -0.404
1.0 -0.413 -0.413 0.8255 -0.50

Table 2.1.1  T-stress, stress intensity factor, and biaxiality ratio for an internally cracked circular disk with con-
stant tensile tractions at the circumference (value T for α = 1 extrapolated); for T and Tc see eqs.(1.15) and (1.16).

Figure 2.1.3 represents the displacement at x =0 under constant normal tractions σn in the form
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δ σ
α α

λ α α=
−

=2 1 1
1

a
E

a Rn

'
ln ( ) , / (2.1.6)

The open circles result from Boundary Collocation computations and the solid curve is the
result obtained by application of the procedure proposed by Paris (see e.g. Appendix B in Ta-
das handbook [1]). The solid circles are analytical values resulting from limit case considera-
tions [1]. The dashed curve in Fig. 2.1.3 is the solution for the endless parallel strip with an
internal crack as reported by Tada [1].

σn

2R

x

2δ

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

α=a/R

λ
analytical values

Fig. 2.1.3 Crack opening displacements for the internally cracked disk according to eq.(2.1.6) (circles: BCM-
results, solid curve: procedure of Paris). Dashed line: data for an internally cracked endless strip [1].
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2.2 Disk partially loaded by normal tractions at the circumference
A partially loaded disk is shown in Fig. 2.2.1a. Constant normal tractions σn are applied at the
circumference within an angle of 2γ.

2R

2a

σn

2γ

P

P
a) b)

Fig. 2.2.1  a) partially loaded disk, b) diametral loading by a couple of forces (disk thickness: t).

The total force in y-direction results from

P t R d t Ry n n= =�2 2
0

σ γ γ σ γ
γ

cos ' ' sin (2.2.1)

The geometric function F defined by

K a F a RI = σ π* ( / ) (2.2.2)

is plotted in Fig. 2.2.2, with σ* defined as

  σ
π

* =
P
Rt

y  , (2.2.3)

From the limit case γ→0, the solutions for concentrated forces (see Fig. 2.2.1b) are obtained
as represented in Fig. 2.2.3. A comparison with the results from literature [19-21] yields a
good agreement of the stress intensity factors. The solution given by Tada et al. [1] (dashed
curve in Fig. 2.2.3) deviates by about 20% near a/R=0.8. The results obtained here can be ex-
pressed by

K aF FI P P= = − − + −
−

σ π α α α α
α

* , . . . .3 1254 17013 4 0597 2 8059
1

2 3 4

(2.2.4)

with σ* given in (2.2.3).
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0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

FP(1-α)1/2

α=a/R

γ π/16
π/8

π/4

π/2

3π/8

Fig. 2.2.2 Stress intensity factors for a circular disk, partially loaded over an angle of 2γ (see Fig.2.2.1a).

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

-4

-3

-2

-1

0

FP(1-α)1/2

α=a/R
Fig. 2.2.3 Stress intensity factor and T-stress for a circular disk loaded diametrically by concentrated forces (Fig.
2.2.1b). Comparison of stress intensity factors; solid squares: partially distributed stresses with an angle of
γ=π/16, circles: results by Atkinson et al. [19] and Awaji and Sato [20], open squares: results obtained with the
weight function technique [21], dashed line: solution proposed by Tada et al.[1].
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The x-stress term T, normalised to σ*, is shown in Fig. 2.2.4. From the limit case γ→0, the
solutions for concentrated forces (see Fig. 2.2.1b) are obtained as represented in Fig. 2.2.5.

The T-stress can be fitted by

T
σ

α α α α α
α*

( ) . . . .= − − + − + −
−

4 1 7 6777 16 0169 8 7994 110849
1

2 3 4 5

(2.2.5)

0.8 1 0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

α

π/8π/4

3π/8

γ
T(1-α)/σ* π/2

π/16

Fig. 2.2.4 T-stress for a circular disk, partially loaded over an angle of 2γ (see Fig. 2.2.1a).

Tc can be computed from T

Tc

σ
α α α α α

α
α
α*

( ) . . . .
( )

= − − + − + −
−

−
+

3 1 7 6777 16 0169 8 7994 110849
1

4
1

2 3 4 5 2

2 2 (2.2.6)

or expressed by a fit relation

Tc

σ
α α α α α

α*
( ) . . . .≅ − − + − + +

−
3 1 2 8996 61759 2 5438 0 0841

1

2 3 4 5

(2.2.7)

In this case, the limit values are (at least in very good approximation)

lim / *( ) lim / *( ) .
α α

σ α σ α π
π→ →

− = − ≅ − ≅ −
−1 1 2

1 1 0 648
2 4

T Tc (2.2.8)
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0.8 1 0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

α

Tc

T

T(1-α)/σ*

Fig. 2.2.5 T-stress for a circular disk loaded diametrically by concentrated forces (Fig. 2.2.1b). T-stress results
including partially distributed stresses with an angle of γ = π/16 (squares) and exact limit cases for α = 0.

2.3 Central point force on the crack face
A centrally cracked circular disk, loaded by a couple of forces at the crack centre, is shown in
Fig. 2.3.1. For this, the stress intensity factor and the T-stress were calculated by Boundary
Collocation computations.

2R

2a

 

P

P

Fig. 2.3.1 Circular disk with a couple of forces acting on the crack faces.
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The stress intensity factor for central point forces is

K P
a

FI P=
π

(2.3.1)

FP = − + − + −
−

1 107884 8 24956 17 9026 20 3339 9 305
1

2 3 4 5. . . . .α α α α α
α

Figure 2.3.2 shows a comparison of the BCM results with results obtained by Tada et al. [1]
using an asymptotic extrapolation technique. Maximum differences are in the order of about
10%.

0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

FP(1-α)1/2

α=a/R
Fig. 2.3.2  Stress intensity factor for a couple of forces P at the crack centre, represented by the geometric functi-
on FP. Solid curve: derived in [22], dashed curve: Tada et al. [1].

The T-stress data obtained with the BCM method are plotted by the squares in Fig. 2.3.3. To-
gether with the limit value, eq.(2.2.8), the numerically found T-values were fitted by the poly-
nomial

T
σ

α α α α
α*

. . . .= − + − −
−

41971 5 4661 11497 0 7677
1

2 3 4

(2.3.2)

This relation is introduced into Fig. 2.3.3 as the solid line.
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0 0.2 0.4 0.6 0.8 1

-1

-0.5

0
T(1-α)/σ*

α
Fig. 2.3.3 T-stress for an internally cracked circular disk with a couple of forces acting in the crack centre on the
crack faces [23]. Symbols: numerical results, solid line: fitting curve.

Mode-I weight function [6]

h
a

C C x aI =
−

+ − + −
�

�

�
�

�

�

�
�

=2 1
1

1 1
2 0

2
1

2 3 2

π ρ
ρ ρ ρ( ) , // (2.3.3)

C0

2 3 4 58 4 38612 159344 24 6076 13234
1

8= − + − + −
−

−α α α α α
α

. . . . (2.3.4)

C1

2 3 4 58 4 0 6488 141232 24 2696 12 596
1

8= − − + − + −
−

+α α α α α
α

. . . . (2.3.5)

A two-terms Green's function for the T-stress term reads [23]

t t C x a C x a= + − + −0 1
2 2

2
2 2 21 1( / ) ( / ) (2.3.6)

C
R1

2 3 41 6 8622 181057 22 0173 9 3229
1

= − + − +
−

. . . .α α α α
α

(2.3.7)
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C
R2

2 3 41 41902 14 626 212854 9 8117
1

= − + −
−

. . . .α α α α
α

(2.3.8)

With the Green's function the diametral tension specimen was computed using the stress dist-
ribution (Fig. 2.2.1b)

σ
σ ξ

ξy x R
* ( )

, /=
+

− =4
1

12 2 (2.3.9)

σ
σ

ξ
ξ

x

* ( )
= − +

+
1 4

1

2

2 2 (2.3.10)

The result is plotted in Fig. 2.3.4. It becomes obvious that in this approximation small deviati-
ons are only visible for large α.

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

α

Tc

T

T(1-α)/σ*

Fig. 2.3.4  T-stresses for an internally cracked circular disk, loaded by a couple of diametral forces at the free
boundary (see Fig. 2.2.1b) estimated with the 2-terms Green's function (symbols) compared with results of BCM
computations (curves).
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2.4 Mode-II loading

Figure 2.4.1 shows the crack-face loading by a constant shear stress τ and a pair of concentra-
ted tangential forces Q.

Q

Q

τ

τ

ux

a) b)

Fig. 2.4.1  Internal radial crack loaded by shear tractions, a) constant shear stress τ, b) pair of concentrated shear
forces Q.

Stress intensity factor under constant shear tractions τ [21]

K F a FII II II= = − + − +
−

τ π α α α α
α

, . . . .1 0 5 0 9274 0 88414 0 28226
1

2 3 4

(2.4.1)

with α = a/R.

Stress intensity factor for a point load Q (line load over plate thickness t) in the crack centre
[21]

K Q
t a

F FII Q II Q II, , , . . . .= = − + − +
−

2 1 0 5 1977 15655 0 3851
1

2 3 4

π
α α α α

α
. (2.4.2)

A mode-II weight function is [21]

h
a

D DII =
−

+ − + −
�

�

�
�

�

�

�
�

2 1
1

1 1
2 0

2
1

2 3 2

π ρ
ρ ρ( ) / (2.4.3)

D0

2 3 45 2 5 14882 2 3766 11028
1

5= − + − +
−

−. . . .α α α α
α

(2.4.4)

D1

2 3 44 2 0 4888 0 81112 0 7177
1

4= − + + + −
−

+α α α α
α

. . . (2.4.5)
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2.5 Brazilian Disk

The mixed-mode loading under diametrically applied concentrated forces is shown in Fig.
2.5.1.

F

F

Θ

2a
R

r

Fig. 2.5.1 Diametral compression test with internal crack (disk thickness: t).

The stress intensity factors KI, KII and related geometric functions FI, FII are

K F a x h x a dxI I I

a

= = �σ π σ0
0

( ) ( , ) (2.5.1)

K F a x h x a dxII II II

a

= = �σ π τ0
0

( ) ( , ) (2.5.2)

The characteristic stress is chosen as

σ
π0 = F

at
  , (2.5.3)

(identical with the maximum tensile stress in the centre of the disk).

The circumferential stress component in an uncracked Brazilian disk has been given by Erdlac
(quoted in [19]) as
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σ σ
π

ρ
ρ ρ

ρ
ρ ρϕ = = − −

+ −
− +

+ +
�

�
�

�

�
�n

P
tR

2 1
2

1
1 2

1
1 2

2

2 2

2

2 2

( cos )sin
( cos )

( cos )sin
( cos )

Θ Θ
Θ

Θ Θ
Θ

(2.5.4)

σ
π

ρ ρ
ρ ρ

ρ ρ
ρ ρr

P
tR

= − − −
+ −

− + +
+ +

�

�
�

�

�
�

2 1
2

1
1 2

1
1 2

2

2 2

2

2 2

( cos )(cos )
( cos )

( cos )(cos )
( cos )

Θ Θ
Θ

Θ Θ
Θ

(2.5.5)

with ρ = r R/ .
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0 0.2 0.4 0.6 0.8-5

-4
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0

1
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3FI

a/R

15°

75°

30°

60°

45°

0°

15°

30°

45°
60°

60°

75°90°

Fig. 2.5.2 Geometric functions for mode-II and mode-I stress intensity factors. Curves: obtained with weight
functions [21]; solid squares: Atkinson et al. [19]; open squares: Sato and Kawamata [24].
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-1

0

1

0 30 60 90
0

1

2

FI FII

Θ        (°)

a/R=0.5

Θ        (°)
Fig. 2.5.3 Geometric functions for a/R=0.5 as a function of the angle Θ. Curves: obtained with the weight functi-

on procedure; squares: results from Atkinson et al. [19] and Awaji and Sato [20].
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0 0.2 0.4 0.6 0.8 1
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-2

0

2

4 Θ=90°
75°

60°

45°

30°

15°

0°

T
σ*

a/R
Fig. 2.5.4 T-stress for the Brazilian disk as a function of the angle Θ.

a/R Θ=0° 15° 30° 45° 60° 75° 90°
0 -4.000 -3.464 -2.000 0.000 2.000 3.464 4.000
0.1 -3.656 -3.136 -1.745 0.091 1.855 3.104 3.552
0.2 -3.398 -2.829 -1.396 0.312 1.773 2.711 3.029
0.3 -3.197 -2.515 -0.969 0.581 1.684 2.294 2.485
0.4 -3.033 -2.163 -0.492 0.812 1.543 1.883 1.980
0.5 -2.895 -1.733 -0.015 0.935 1.344 1.509 1.555
0.6 -2.775 -1.183 0.369 0.919 1.116 1.201 1.227
0.7 -2.668 -0.510 0.553 0.795 0.906 0.971 0.993
0.8 -2.574 0.106 0.513 0.643 0.746 0.815 0.839

Table 2.5.1 T-stress T(1-a/R) for the Brazilian disk test.

a/R Θ=0° 15° 30° 45° 60° 75° 90°
0 0. 1.000 1.732 2.000 1.732 1.000 0.
0.1 0. 1.023 1.758 2.010 1.724 0.988 0.
0.2 0. 1.092 1.835 2.036 1.698 0.955 0.
0.3 0. 1.214 1.957 2.069 1.656 0.907 0.
0.4 0. 1.400 2.116 2.097 1.603 0.856 0.
0.5 0. 1.670 2.299 2.119 1.554 0.813 0.
0.6 0. 2.053 2.491 2.146 1.530 0.792 0.
0.7 0. 2.578 2.697 2.220 1.564 0.808 0.
0.8 0. 3.260 3.009 2.441 1.720 0.889 0.

Table 2.5.2 Geometric function FII for the Brazilian disk tests.
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a/R Θ=0° 15° 30° 45° 60° 75° 90°
0 1.000 0.732 0 -1.000 -2.000 -2.732 -3.000
0.1 1.017 0.737 -0.020 -1.037 -2.033 -2.750 -3.016
0.2 1.063 0.746 -0.084 -1.141 -2.120 -2.793 -3.031
0.3 1.137 0.752 -0.200 -1.308 -2.248 -2.854 -3.062
0.4 1.241 0.742 -0.379 -1.527 -2.406 -2.940 -3.118
0.5 1.384 0.693 -0.635 -1.789 -2.594 -3.065 -3.220
0.6 1.578 0.562 -0.973 -2.083 -2.819 -3.250 -3.393
0.7 1.846 0.263 -1.381 -2.413 -3.108 -3.525 -3.665
0.8 2.244 -0.302 -1.843 -2.824 -3.530 -3.965 -4.112

Table 2.5.3 Geometric function FI for the Brazilian disk tests.
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2.6 Mixed boundary conditions

Constant radial displacement and disappearing shear tractions
The internally cracked circular disk under constant radial displacement and disappearing shear
tractions along the circumference is illustrated in Fig. 2.6.1.

2a

un=const.

τRω=0

R
ω

Fig. 2.6.1 Boundary conditions un = uR = constant, τRω = 0.
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Fig. 2.6.2 Geometric function F according to eq.(6.6.1)

The stress intensity factor for the loading case of uR = constant, τRω=0 is defined by

K a F a R u E
R
R= =σ π ν γ σ* ( / , , ) , * (2.6.1)
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The geometric function F is plotted in Fig. 2.6.2 as a function of a/R and ν.
For the special case of ν = 0.25 and α = a/R ≤ 0.7 a fit relation reads

F = − + −4
3

2 4 62154 3200 1987. . .α α α (2.6.2)

The T-stress, nomalised to the stress σ*, is represented in Fig. 2.6.3. The higher order coeffi-
cients A1 and A*1, see eq.(1.2), are compiled in Tables 2.6.1 and 2.6.2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

a/R

T/σ*

ν=0

0.4 0.3
0.2
0.1

Fig. 2.6.3 T-stress as a function of crack size and Poisson's ratio.

For ν = 0.25 and α = a/R ≤ 0.7 we find

T / * . . .σ α α α= − +2 597 2 685 0 64952 3 5 (2.6.3)

ν=0 0.1 0.2 0.3 0.4

a/R=0.15 -0.1255 -0.1393 -0.1565 -0.1784 -0.2073
0.2 -0.1060 -0.1175 -0.1317 -0.1497 -0.1734
0.3 -0.0826 -0.0911 -0.1016 -0.1147 -0.1316
0.4 -0.0692 -0.0757 -0.0836 -0.0933 -0.1056
0.5 -0.0624 -0.0674 -0.0734 -0.0807 -0.0897
0.6 -0.0617 -0.0656 -0.0702 -0.0758 -0.0825
0.7 -0.0689 -0.0722 -0.0760 -0.0805 -0.0858

Table 2.6.1 Coefficient A1 according to eq.(1.2).
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0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

α=a/R

λ(1-ν)
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ν=0
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Fig. 2.6.4 Crack opening displacement δ at x = 0 (for δ and x see Fig. 2.1.3) as a function of Poisson's ratio.

The crack opening displacements at x = 0, represented as

δ σ λ α α= =2a
E

a R*
'

( ) , / (2.6.4)

with σ* defined in (2.6.1), are shown in Fig. 2.6.4.

ν=0 0.1 0.2 0.3 0.4

a/R=0.15 0.0018 0.0019 0.0020 0.0020 0.022
0.2 0.0036 0.0035 0.0034 0.0033 0.0031
0.3 0.0105 0.0101 0.0097 0.0093 0.0089
0.4 0.0211 0.0202 0.0193 0.0184 0.0174
0.5 0.0346 0.0330 0.0313 0.0296 0.0277
0.6 0.0506 0.0480 0.0453 0.0424 0.0392
0.7 0.0704 0.0665 0.0624 0.0579 0.0531

Table 2.6.2 Coefficient A*1 according to eq.(1.2)
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Constant radial tractions and disappearing tangential displacements
The internally cracked circular disk under constant radial tractions and disappearing tangential
displacements along the circumference is illustrated in Fig. 2.6.4.

σn=const.

vω=0
R

ω

Fig. 2.6.5 Boundary conditions σn = constant, vω = 0.

The stress intensity factor for the loading case of σn = constant, vω = 0 is represented by
eq.(2.6.1) with now σn instead of σ*. The related geometric function is shown in Fig. 2.6.6a.
For ν = 0.25 and a/R ≤ 0.7 an approximation is given by

F a R= + + − + =1 0 8162 38905 6 3161 2 07542 3 4 5. . . . , /α α α α α (2.6.5)

The T-stress is represented in Fig. 2.6.6b. A fit relation is

T n/ . . . .σ α α α α= − − + −0 7379 7 7055 16 00 7 92122 3 4 5 (2.6.6)

In Fig. 2.6.6 only a minor influence of ν on F and T/σn is visible. From the additionally intro-
duced results for the boundary conditions of τRω = 0 instead of vω = 0 (see dashed curves), we
find an influence of the different tangential boundary conditions only, if α > 0.4.
The higher order coefficients A1 and A*1 are compiled in Table 2.6.3 for ν = 0.25.

A1 A*1

a/R=0.2 -0.1166 -0.0100
0.3 -0.0974 -0.0403
0.4 -0.0800 -0.0959
0.5 -0.0548 -0.1917
0.6 -0.0103 -0.3472
0.7 0.0706 -0.5967

Table 2.6.3 Coefficients A1 and A*1 for ν = 0.25 according to eq.(1.2).
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Fig. 2.6.6 Geometric function and T-stress for boundary conditions σn = constant, vω = 0 (dashed curves: stress
boundary conditions σn = constant, τRω = 0).

2.7 Displacement boundary conditions
The internally cracked circular disk under constant radial displacement un and disappearing
tangential displacement vω is shown in Fig. 2.7.1. The stress intensity factor solution, expres-
sed by the geometric function F (see eq.(2.6.1)), is represented in Fig. 2.7.2a. The T-stress
term is shown in Fig. 2.7.2b.

For ν = 0.25 the results are approximated by

F a R= − + + − =4
3

2 3 4 52 5727 2 0487 0 9988 14003. . . . , /α α α α α (2.7.1)

T / * . . .σ α α α= − +3271 5 628 38262 3 4 (2.7.2)

The higher order coefficients A1 and A*1 are compiled in Tables 2.7.1 and 2.7.2.

2a

un=const.

vω=0

R
ω

Fig. 2.7.1 Boundary conditions un = uR = constant, vω = 0.
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Fig. 2.7.2 Geometric function and T-stress for boundary conditions un = constant, vω = 0.

ν=0 0.2 0.3 0.4

a/R=0.2 -0.106 -0.132 -0.150 -0.174
0.3 -0.082 -0.102 -0.116 -0.133
0.4 -0.067 -0.084 -0.096 -0.110
0.5 -0.057 -0.073 -0.083 -0.095
0.6 -0.049 -0.064 -0.074 -0.085
0.7 -0.041 -0.057 -0.067 -0.079

Table 2.7.1 Coefficient A1 according to eq.(1.2).

ν=0 0.2 0.3 0.4

a/R=0.2 0.003 0.006 0.007 0.010
0.3 0.008 0.014 0.018 0.023
0.4 0.013 0.023 0.030 0.040
0.5 0.012 0.028 0.039 0.052
0.6 0.000 0.021 0.036 0.053
0.7 -0.040 -0.009 0.010 0.033

Table 2.7.2 Coefficient A*1 according to eq.(1.2).
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2.8 Partially loaded disks

2.8.1 Stress boundary conditions

The case of different stress boundary conditions over parts of the circumference is dealt within
Section 2.2. Results for the stress intensity factor K are expressed by the geometric function F
according to

K aF a Rn= σ π γ( , / )  (2.8.1)

and represented in Fig. 2.8.1.

The T-stresses are illustrated in Fig. 2.8.2 as a function of the loading angle γ and the crack
size a/R.

In Tables 2.8.1 and 2.8.2 the next higher order coefficients of the stress function, eq.(1.2), are
given.
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Fig. 2.8.1 Geometric function F according to eq.(6.6.1)
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Fig. 2.8.2 T-stress as a function of crack size and loading angle γ.
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A1 A*1

a/R=0.2 -0.115 -0.1659
0.3 -0.0766 -0.2554
0.4 -0.0393 -0.3977
0.5 0.0056 -0.5672
0.6 0.0598 -0.7338
0.7 0.1344 -0.9290

Table 2.8.1 Coefficients A1 and A*1 according to eq.(1.2) for γ = 45°.

A1 A*1

a/R = 0.2 -0.117 -0.0116
0.3 -0.0979 -0.0359
0.4 -0.0828 -0.0796
0.5 -0.0640 -0.1465
0.6 -0.0346 -0.2473
0.7 0.0179 -0.4107

Table 2.8.2 Coefficients A1 and A*1 according to eq.(1.2) for γ = 90°.

2.8.2 Mixed boundary conditions in the loading region

An internally cracked circular disk with constant radial displacements uR over the angle 2γ and
disappearing normal tractions σn on the remaining part of the surface is shown in Fig. 2.8.3. In
this loading case the shear tractions along the circumference were chosen to be τRω = 0.

2a

2γ

uR=constant

σn=0

τRω=0

R
ω

Fig. 2.8.3 Partially loaded, internally cracked disk under mixed boundary conditions: constant radial displace-
ment over angle 2γ, disappearing normal tractions elsewhere, disappearing shear tractions along the whole cir-

cumference.
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The stress intensity factor for the loading case of uR = constant, τRω = 0 is defined by

K a F a R u E
R
R= =σ π ν γ σ* ( / , , ) , * (2.8.1)

(E= Young's modulus, F = geometric function). Results of the Boundary Collocation computa-
tions are represented in Fig. 2.8.4 for a Poisson's ratio of ν = 0.25 and several loading angles γ.
The influence of the Poisson's ratio is shown in Fig. 2.8.5. The T-stress is represented in Fig.
2.8.6.
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Fig. 2.8.4 Geometric function F, defined by eq.(2.8.1), as a function of crack size and loading angle.
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Fig. 2.8.5 Influence of the Poisson's ratio ν on the geometric function F.
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Fig. 2.8.6 T-stress as a function of crack size, Poisson's ratio, and loading angle γ.

2.8.3 Displacement boundary conditions in the loading region

The internally cracked circular disk with constant radial displacements uR and disappearing
tangential displacements vω over the angle 2γ and traction free surfaces elsewhere is shown in
Fig. 2.8.7.
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Fig. 2.8.7 Partially loaded, internally cracked disk under mixed boundary conditions: constant radial and disap-
pearing tangential displacements over angle 2γ, disappearing tractions elsewhere.

The geometric function according to eq.(2.8.1) is plotted in Fig. 2.8.8 as a function of γ, a/R,
and ν. The T-stress is shown in Fig. 2.8.9.

In Fig. 2.8.10 the geometric function and the T-stresses are plotted for the two boundary con-
ditions in the loading region: uR = constant, vω =0 (solid curves) and uR = constant, τRω = 0
(dashed curves). Only very small differences can be detected.
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Fig. 2.8.8 Influence of the Poisson's ratio ν on the geometric function F.
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Fig. 2.8.9 T-stress as a function of crack size, Poisson's ratio, and loading angle γ.
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Fig. 2.8.10 Influence of the tangential boundary condition in the loading range on F and T-stress. Solid curve

uR=const., vω=0; dashed curve: uR=const., τRω=0.



36

3 Edge-cracked circular disk
Edge-cracked circular disks are often used as fracture mechanics test specimens. Figure 3.1
shows the geometric data.

D
a

x

Fig. 3.1 Geometric data of an edge-cracked circular disk.

3.1 Circumferentially loaded disk (traction boundary conditions)
A circular disk is loaded by constant normal tractions σn along the circumference (for loading
see Fig. 3.1.1)

σ σ τ ωn R R= == const , 0 (3.1.1)

x

a

R

ω

σR

τRω

Fig. 3.1.1 Edge-cracked circular disk under pure stress boundary conditions.

The stress intensity factor solution is for this loading case

K F a F a DI n= =
−

=σ π
α

α, .
( )

, //

11215
1 3 2 (3.1.2)
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For a single-edge-cracked disk a weight function is given in [6]

h x a
a

D D D( , ) ( ) ( )/ /=
−

+ − + − + −
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�
�
�

�

�
�
�

2
1

1 1 10 1
3 2

2
5 2

π
ρ

ρ
ρ ρ ρ (3.1.3)

with the coefficients

D
D

D

0
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In this case it holds [6]

A C* ( ) . *0
2

01 011851− = − =α (3.1.4)

and, from eqs.(1.14) and (1.26)

T A
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σ α

σ α

= − =
−
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−

4 0 474
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0 474
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1
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2

* .
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.
( )

(3.1.5)

The value C*0 occurring in eq.(3.1.4) is identical with the coefficient of Wigglesworth's [25]
expansion for the edge-cracked semi-infinite body.
The biaxiality ratio results as

β
α

=
−

0 4227
1
. (3.1.6)

Using eq.(3.1.5) as the reference T-stress solution, the coefficient C for the Green's function,
represented by eq.(1.28), follows as

C
a

a D=
−

=0 9481
1 2

.
( )

, /
α

α (3.1.7)

Consequently, the T-stress can be computed from

T d x ay y x a
=

−
− − =

=�
0 9481
1

12
0

1.
( )

( ) ( ) , /
α

ρ σ ρ ρ σ ρ (3.1.8)

Further coefficients of the Williams stress function are [7]

A1 5 2

0 02279 01322
1

= − +
−

. .
( ) /

α
α α

(3.1.9)
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A * . .
( )1 3

0 04812 01185
1
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α
α α

(3.1.10)

A2

2

7 2 3 2

0 00680 0 03416 0 0991
1

= − − +
−

. . .
( ) / /

α α
α α

(3.1.11)

 A * . . .
( )2

2

4 2

0 01787 0 09627 011851
1

= − + −
−

α α
α α

(3.1.12)

For special applications also crack opening displacements δ at the crack mouth x = 0 are of
interest. Figure 3.1.2 represents the displacements under constant normal tractions σn in the
form

δ σ λ= −2 1 2a
E

a D a Dn

'
( / ) ( / ) (3.1.13)

The results of boundary collocation computations are represented by the circles. From a least-
squares fit we obtain the representation

λ = +1 0 526.454 . /a D (3.1.14)

The dashed curve in Fig. 3.1.2 is the solution for the single edge-cracked endless parallel strip
as reported by Tada [1].

x
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σR

2δ

0 0.2 0.4 0.6 0.8 1

1

1.5

2

α=a/D

λ

Fig. 3.1.2 Crack-mouth displacements (x = 0) according to eq.(3.1.13); circles: edge-cracked disk, dashed curve:
results for the single edge-cracked endless parallel strip, reported by Tada [1].

The stress intensity factor for mode-II loading by constant shear tractions τ0 is
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K F aII II= τ π0 (3.1.15)

The related geometric function FII is plotted in Fig. 3.1.3. A fit relation for α = a/2R ≤ 0.8 is
given by eq.(3.1.16).
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Fig. 3.1.3 Geometric function for loading by constant shear tractions on the crack faces.

FII = − + − +
−
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2 3 4. . . . .α α α α
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(3.1.16)

A mode-II weight function is

h x a
a
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with coefficients compiled in Table 3.1.1, which can be interpolated by cubic splines.

For a/2R ≤ 0.55 the coefficients are approximated by

D0

2 3

3 2

0 407 0 2393 4 6661 0 547
1

= + + −
−

. . . .
( ) /

α α α
α

(3.1.18)

 D1 0 70≅ . (3.1.19)

D2
20 3092 0 0202 01913≅ − + +. . .α α (3.1.20)

Higher order coefficients for the antisymmetric stress function, eq.(1.2'), are compiled in
Table 3.1.2.
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a/2R D0 D1 D2

0.1 0.4981 0.6931 -0.305
0.2 0.6228 0.6853 -0.296
0.25 0.7069 0.6856 -0.290
0.3 0.8032 0.6896 -0.284
0.35 0.9118 0.6965 -0.278
0.4 1.034 0.7044 -0.272
0.45 1.172 0.7096 -0.264
0.5 1.332 0.7064 -0.253
0.55 1.523 0.6861 -0.236
0.6 1.759 0.6352 -0.210
0.65 2.062 0.5321 -0.169
0.7 2.470 0.3394 -0.103
0.75 3.052 -0.013 0.006
0.8 3.944 -0.674 0.198

Table 3.1.1 Coefficients for the mode-II weight function eq.(3.1.17).

a/2R B*0 B1 B*1

0.2 0.175 0.217 -0.832
0.3 0.164 0.144 -0.441
0.4 0.178 0.089 -0.276
0.5 0.215 0.039 -0.159
0.6 0.294 -0.018 0.000
0.7 0.471 -0.094 0.412
0.8 0.981 -0.229 2.231

Table 3.1.2 Higher order coefficients according to eq.(1.2') for mode-II loading.
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3.2 Diametrically loaded disk

3.2.1 Load perpendicular to the crack

A disk of unit thickness is considered, which is diametrically loaded by a pair of forces P (Fig.
3.2.1). The forces may act perpendicularly to the crack plane. In this case the stresses are
given by

σ
σ ξ

ξy x R R D
* [ ( ) ]

, / , /=
+ −

− = =4
1 1

1 22 2 (3.2.1)

σ
σ
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σ
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x P
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[ ( ) ]

, *= −
+ −

− =4 1
1 1

1
2

2 2 (3.2.2)
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Fig. 3.2.1 Diametrically loaded circular disk.

The stress intensity factor results from eq.(1.19a) with the weight function of eq.(3.1.3) and
the T-term from eq.(3.1.8)
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π σ (3.2.3)

Considering the total x-stress (crack contribution and x-stress component in the uncracked
body), the biaxiality ratio can be computed according to eq.(1.17). The T-stress and the stress
intensity factor result in the biaxiality ratio β which is shown as a curve in Fig. 3.2.2.
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In addition to the Green's function computations, the biaxiality ratios were directly determined
with the Boundary Collocation method (BCM) which provides the coefficients A0, A*0 and by
eq.(1.18) the quantity β for diametrical loading. The results are entered as circles. An
excellent agreement is obvious between the BCM results and those obtained from the Green's
function representation. This is an indication of an adequate description of the Green's
function by the set-up eq.(1.28) using one regular term only.
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β(1-α)1/2

Da
x

P

P

Fig. 3.2.2 Biaxiality ratio for an edge-cracked circular disk diametrically loaded by a pair of forces; line:
eq.(3.2.6), circles: BCM results.

a/D T(1-a/D)2 β(1-a/D)1/2

0 0 -1.236
0.1 -0.364 -1.216
0.2 -0.732 -1.134
0.3 -0.970 -0.960
0.4 -0.915 -0.682
0.5 -0.526 -0.333
0.6 0.007 0.004
0.7 0.430 0.245
0.8 0.652 0.370

Table 3.2.1  T-stress and biaxiality ratio for diametral point forces.



43

3.3 Circumferentially loaded disk under mixed boundary conditions
Edge-cracked circular disks under mixed boundary conditions are shown in Fig. 3.3.1.

x

a

R

ω

σR

vω=0

a) b)

a

uR

τRω=0

R

ω

Fig. 3.3.1 Edge-cracked disk under mixed boundary conditions; a) constant normal tractions, disappearing
circumferential displacements, b) constant radial displacement, disappearing shear tractions at the surface.

Case:   uR = constant, τRω=0

With the scaling stress

σ* = u E
R
R (3.3.1)

the stress intensity factor is

K a F a RI = σ π ν* ( / , )2 (3.3.2)

with the geometric function F plotted in Fig. 3.3.2a for several Poisson's ratios. For the special
value of ν = 0.25 the results are fitted as

F = + + − + −4
3

2 3 4 50 953 20157 107 35 156 09 72 69. . . . .α α α α α (3.3.3)

Using a modified geometric function

F F* ( )= −1 ν (3.3.4)

a coincidence of the curves is visible for a/2R→0 (see Fig. 3.3.2b).
The T-stresses are shown in Fig. 3.3.3. An approximation for ν = 0.25 and α = a/2R ≤ 0.75 is

T / * . . . .σ α α α α= − + − +3137 40 744 76 904 416232 3 4 5 (3.3.5)

The higher order coefficients of eq.(1.2) are compiled in Tables 3.3.1 and 3.3.2.
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Fig. 3.3.2  Stress intensity factor for the boundary conditions of uR = constant, τRω = 0. For F see eq.(3.3.2) and
for F* eq.(3.3.4).
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Fig. 3.3.3 T-stress for the boundary conditions of uR = constant, τRω = 0.

a/2R ν=0 0.2 0.4

0.1 -0.0983 -0.1209 -0.158
0.2 -0.0389 -0.0450 -0.0546
0.3 0.0189 0.0239 0.0305
0.4 0.0721 0.0802 0.0901
0.5 0.1035 0.110 0.1166
0.6 0.1113 0.1153 0.1196
0.7 0.1036 0.1072 0.1108
0.8 0.0879 0.0920 0.0960

Table 3.3.1 Coefficient A1 according to eq.(1.2).
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a/2R ν=0 0.2 0.4

0.1 0
0.2 0 0
0.3 0 0
0.4 0.001 0 0
0.5 0.007 0.006 0.005
0.6 0.017 0.013 0.010
0.7 0.030 0.024 0.017
0.8 0.047 0.037 0.027

Table 3.3.2 Coefficient A*1 according to eq.(1.2).

Figure 3.3.4 represents the crack opening displacements δ (for δ see Fig. 3.1.2) under constant
radial displacements and disappearing shear tractions at the circumference in the form

δ σ λ= 2a
E

a D*
'

( / ) (3.3.6)

with σ* given by eq.(3.3.1).
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Fig. 3.3.4 Crack-mouth displacement represented by eq.(3.3.6). Boundary conditions: uR = constant, τRω = 0.

Case:   σR = constant, vR = 0

In this case the stress intensity factor is

K a F a RI R= σ π ν( / , )2 (3.3.7)

The geometric function is plotted in Fig. 3.3.5a for several values of ν. Figure 3.3.5b
represents the T-stress. For the special value of ν = 0.25 the geometric function is fitted as
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F = + + −0 6163 0 2603 0 6739 0 44972 3. . . .α α α (3.3.7)

The higher order coefficients A1 and A*1 of eq.(1.2) are compiled in Tables 3.3.3 and 3.3.4.
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Fig. 3.3.5 Geometric function and T-stress for the boundary conditions of σn = constant, vR = 0.

a/2R ν=0 0.2 0.4
0.1 -0.176 -0.176 -0.176
0.2 -0.124 -0.123 -0.122
0.3 -0.100 -0.099 -0.098
0.4 -0.080 -0.080 -0.080
0.5 -0.058 -0.059 -0.061
0.6 -0.029 -0.031 -0.034
0.7 0.018 0.013 0.009
0.8 0.100 0.096 0.088

Table 3.3.3 Coefficient A1 according to eq.(1.2).

a/2R ν=0 0.2 0.4

0.1 0.047 0.040 0.024
0.2 -0.059 -0.067 -0.078
0.3 -0.087 -0.092 -0.095
0.4 -0.130 -0.130 -0.129
0.5 -0.191 -0.186 -0.181
0.6 -0.281 -0.270 -0.260
0.7 -0.420 -0.405 -0.392
0.8 -0.664 -0.657 -0.626

Table 3.3.4 Coefficient A*1 according to eq.(1.2).
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3.4 Disk under displacement boundary conditions
An edge-cracked circular disk under pure displacement boundary conditions is shown in Fig.
3.4.1.

x

a

uR

R

ω

vω

Fig. 3.4.1 Edge-cracked disk under pure displacement boundary conditions: constant radial displacement,
disappearing tangential displacements.

Case:   uR = constant, τRω=0

With the scaling stress given by eq.(3.3.1), the stress intensity factor is

K a F a RI = σ π ν* ( / , )2 (3.4.1)

with the geometric function F plotted in Fig. 3.4.2 for several Poisson's ratios. The T-stresses
are shown in Fig. 3.4.3.
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Fig. 3.4.2 Geometric functions for the boundary conditions of uR = constant, vR = 0. For F see eq.(3.4.1), for F*
eq.(3.3.4).
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Fig. 3.4.3 T-stress for the boundary conditions of uR = constant, vR = 0.

For the special value ν = 0.25 the results are fitted as

F = − −0 814 0175 0 2192 2. . .α α (3.4.2)

and the related T-stress (for 0.1 ≤ a/2R ≤ 0.8) by

T / * . . . .σ α α α= + − +0 0388 0 5568 11934 14482 (3.4.3)

The higher order coefficients of eq.(1.2) are compiled in Tables 3.4.1 and 3.4.2.

a/2R ν=0 0.2 0.4

0.1 -0.171 -0.213 -0.283
0.2 -0.120 -0.149 -0.197
0.3 -0.097 -0.120 -0.157
0.4 -0.083 -0.102 -0.133
0.5 -0.073 -0.090 -0.115
0.6 -0.064 -0.080 -0.102
0.7 -0.057 -0.071 -0.091
0.8 -0.047 -0.062 -0.082

Table 3.4.1 Coefficient A1 according to eq.(1.2).



49

a/2R ν=0 0.2 0.4

0.1 0.257 0.248 0.260
0.2 0.136 0.142 0.159
0.3 0.099 0.107 0.125
0.4 0.082 0.090 0.108
0.5 0.071 0.080 0.098
0.6 0.061 0.073 0.092
0.7 0.048 0.063 0.085
0.8 0.014 0.037 0.067

Table 3.4.2 Coefficient A*1 according to eq.(1.2).



50

3.5 Brazilian disk (edge-cracked)
The diametral compression test (Brazilian disk test) is illustrated in Fig. 3.5.1.
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Fig. 3.5.1 Brazilian disk test with edge-cracked disk.

The circumferential and radial stress components in an uncracked Brazilian disk have been
given by Erdlac (quoted in [19]) as
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Fig. 3.5.2  Brazilian disk test with an edge-cracked disk and biaxiality ratio β(1-α)1/2, α = a/D.
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Using eq.(3.1.8) the T-stress can be determined. The T-stress term, evaluated for several
relative crack depths a/W and several angles Θ, is compiled in Tables 3.5.1 and 3.5.2 and the
biaxiality ratio in Table 3.5.3.

α  = a/2R Θ = π/16 π/8 π/4 3π/8 7π/16 π/2

0 0 0 0 0 0 0
0.05 2.671 1.086 0.359 0.215 0.191 0.184
0.1 0.933 1.466 0.715 0.460 0.415 0.401
0.2 -1.687 0.194 1.068 0.979 0.937 0.922
0.3 -2.319 -1.099 0.691 1.328 1.428 1.456
0.4 -2.546 -1.824 -0.078 1.235 1.577 1.691
0.5 -2.744 -2.310 -0.896 0.518 0.952 1.104
0.6 -3.050 -2.814 -1.906 -1.153 -0.959 -0.894

0.65 -3.290 -3.163 -2.727 -2.637 -2.662 -2.675
0.7 -3.637 -3.683 -4.085 -4.911 -5.196 -5.297

Table  3.5.1  T-stress Tc/σ* for the Brazilian disk test (σ*=P/(πRt)).

α = a/2R Θ = π/16 π/8 π/4 3π/8 7π/16 π/2
0 0.000 0.000 0.000 0.000 0.000 0.000

0.05 1.858 1.067 0.376 0.227 0.203 0.195
0.1 -1.979 1.097 0.760 0.511 0.464 0.449
0.15 -4.587 -0.044 1.015 0.837 0.784 0.766
0.2 -5.482 -1.470 1.020 1.172 1.152 1.143
0.25 -5.669 -2.610 0.743 1.467 1.543 1.561
0.3 -5.633 -3.383 0.252 1.670 1.910 1.981
0.35 -5.556 -3.888 -0.337 1.737 2.192 2.337
0.4 -5.508 -4.231 -0.922 1.643 2.317 2.543
0.45 -5.515 -4.493 -1.445 1.380 2.210 2.497
0.5 -5.592 -4.725 -1.896 0.932 1.799 2.104
0.55 -5.752 -4.959 -2.305 0.257 1.017 1.282
0.6 -6.012 -5.221 -2.750 -0.746 -0.219 -0.042
0.65 -6.399 -5.539 -3.389 -2.251 -2.041 -1.979
0.7 -6.950 -5.968 -4.524 -4.569 -4.714 -4.773
0.75 -7.735 -6.663 -6.746 -8.316 -8.844 -9.029
Table 3.5.2  T-stress T/σ* for the Brazilian disk test (σ*=P/(πtR)).
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α = a/2R Θ = π/16 π/8 π/4 3π/8 7π/16 π/2
0 -1.228 -1.228 -1.228 -1.228 -1.228 -1.228

0.05 -0.608 -1.062 -1.196 -1.220 -1.224 -1.225
0.1 0.549 -0.594 -1.087 -1.188 -1.204 -1.209
0.15 1.446 0.019 -0.900 -1.127 -1.166 -1.178
0.2 1.995 0.600 -0.651 -1.036 -1.106 -1.128
0.25 2.301 1.053 -0.372 -0.914 -1.021 -1.054
0.3 2.455 1.358 -0.104 -0.769 -0.910 -0.955
0.35 2.510 1.529 0.118 -0.610 -0.776 -0.830
0.4 2.500 1.591 0.276 -0.449 -0.622 -0.679
0.45 2.440 1.570 0.367 -0.297 -0.457 -0.510
0.5 2.342 1.486 0.400 -0.158 -0.289 -0.332
0.55 2.209 1.354 0.394 -0.034 -0.127 -0.156
0.6 2.043 1.190 0.369 0.076 0.021 0.004
0.65 1.843 1.005 0.345 0.173 0.147 0.139
0.7 1.608 0.814 0.334 0.255 0.247 0.245
0.75 1.337 0.636 0.343 0.320 0.320 0.321

1 0.423 0.423 0.423 0.423 0.423 0.423
Table  3.5.3  Biaxiality ratio β(1-a/D)1/2 for the Brazilian disk test.

3.6 Round-CT specimen
The RCT-specimen is identical with the single-edge-cracked circular disk, if the load appli-
cation holes are neglected. Figure 3.6.1 represents this fracture mechanics test specimen.

2R

λ

x

W

a

   

  
Fig. 3.6.1 Geometric data of the RCT specimen.

The stress intensity factor solution was derived by Newman [26] as
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K P
B W

Y a WI = =*( ) , /α α (3.6.1a)

Y* ( )( . . . . .
( ) /= + + − + −

−
2 0 76 4 8 1158 1143 4 08

1

2 3 4

3 2

α α α α α
α

(3.6.1b)

For 0.2 ≤ α ≤ 0.8 the weight function can be expressed by the polynomial [27]

h
a x a

D x anm
m n=

− −
− + − +

�
2 1

1 1
1 1

3 2
3 2 1

π α
α α

/ ( )
[( ) ( / ) ]

/
/ (3.6.2)

with the coefficients listed in Table 3.6.1

n m=0 1 2 3 4
0 2.826 -5.865 0.8007 -0.2584 0.6856
1 -10.948 48.095 -3.839 1.280 -6.734
2 35.278 -143.789 6.684 -5.248 25.188
3 -41.438 196.012 -4.836 11.435 -40.140
4 15.191 -92.787 -0.7274 -7.328 22.047

Table 3.6.1  Coefficients Dnm for eq.(3.6.2)

The T-stress term can be approximated by

T P
B

a
a

≅
+

0 948 2.
( )λ

(3.6.3)
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4 Double-edge-cracked circular disk
The double-edge-cracked circular disk is shown in Fig. 4.1. Different traction and displace-
ment boundary conditions are possible. They will be considered in the following sections.

x

D
a a

Fig. 4.1 Double-edge-notched disk.

4.1 Traction boundary conditions
Pure traction loading of σn = σR =constant and τRω = 0 is illustrated in Fig. 4.1.1.

x

a a

R

ω

σR

τRω=0

Fig. 4.1.1 Double-edge-cracked disk under traction boundary conditions of σn=σR=constant, τRω=0.

The geometric function F for the stress intensity factor is

K F a F F a Rn= = − =σ π α α, ' , /1 (4.1.1)

as shown in Fig. 4.1.2 and approximated by
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F = + − − +
−

11215 0 2746 0 7959 11411 11776
1

2 3 4. . . . .α α α α
α

(4.1.2)

0 0.2 0.4 0.6 0.8 10.5

0.6
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0.9

1

1.1

1.2F'
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α
Fig. 4.1.2 Geometric function F ' for the double-edge-cracked disk.

The weight function for the double-edge-cracked disk under traction boundary conditions is

h
a

C C C=
−

+ − + − + −
�

�
�
�

�

�
�
�

2 1
1

1 1 10 1
3 2

2
5 2

π ρ
ρ ρ ρ( ) ( )/ / (4.1.3)

with ρ = x/a and the coefficients

C0

2 3 40 4594 2 3454 10205 7 7547 91403
1

= + − − +
−

. . . . .α α α α
α

(4.1.4)

C1

2 3 40 6833 01484 18811 7 0112 8 9802
1

= − − + −
−

. . . . .α α α α
α

(4.1.5)

C2

2 3 40 3059 0 2829 0 3552 19646 2 4682
1

= − + + − +
−

. . . . .α α α α
α

(4.1.6)

The T-stress under loading by constant circumferential normal tractions σn is shown in Fig.
4.1.3 together with the biaxiality ratio β. In contrast to the single-edge-cracked disk, the
relative crack length is defined here by α = a/R (R = D/2).
The T-stress can be expressed by



56

T
nσ

α α α α= + + + −0 474 0 4022 0 9104 14406 168742 3 4. . . . . (4.1.7)

0 0.2 0.4 0.6 0.8 1
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0.5
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1.25
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α
0 0.2 0.4 0.6 0.8 10.4

0.5

0.6

0.7

0.8

0.9

1

α

β

Fig. 4.1.3 T-stress and biaxiality ratio for the double-edge-cracked circular disk under circumferential normal
tractions.

For the Green's function under symmetrical loading the same set-up is chosen as used for
single-edge-cracked components. It can be expressed in the integrated form as

T C x a x dxy y x a

a

= − −
=� ( / ) ( )1

0

σ σ (4.1.8)

with the parameter C entered into Table 4.1.1 and fitted for α ≤ 0.8 by the polynomial

C
a

= + + + −1 0 9481 0 8043 18207 2 8813 337472 3 4( . . . . . )α α α α (4.1.9)

a/R T/σn β a·C
0 0.474 0.423 0.9481
0.2 0.599 0.472 1.199
0.3 0.702 0.528 1.405
0.4 0.829 0.604 1.658
0.5 0.977 0.698 1.954
0.6 1.136 0.795 2.273
0.7 1.290 0.865 2.580
0.8 1.425 0.873 2.850

Table 4.1.1 T-stress, biaxiality ratio, and coefficient for the Green's function.
Loading: constant circumferential normal tractions, disappearing shear tractions.

The higher order coefficients A1 and A*1 according to eq.(1.2) are compiled in Table 4.1.2.
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a/R A1 A*1

0.2 -0.039 0.472
0.3 -0.012 0.285
0.4 0.008 0.170
0.5 0.021 0.085
0.6 0.023 0.022
0.7 0.007 -0.016
0.8 -0.051 -0.025

Table 4.1.2 Coefficients A1 and A*1 according to eq.(1.2).

The double-edge-cracked disk under constant shear tractions τ0 on the crack faces is illustrated
in Fig. 4.1.4 together with the stress intensity factor solution represented by

K F a F F a RII II II II= = −τ π0 1, ' / (4.1.10)

The data of Fig. 4.1.4 can be expressed by

F a RII = − + − +
−

=11215 0 5608 0 2185 0 5007 0 3584
1

2 3 4. . . . . , /α α α α
α

α (4.1.11)

In addition, Fig. 4.1.4 contains the mode-II stress intensity factor solution for the double-edge-
cracked endless strip [1] as the dashed curve. Only small deviations from this solution are
visible in the region of 0.3 < a/R < 0.7. An approximate weight function can be derived from
eq.(4.1.11) by applying the extended Petroski-Achenbach procedure ([28], see also [6]).

The coefficients for a representation

h
a

C C CII =
−

+ − + − + −
�

�
�
�

�

�
�
�

2 1
1

1 1 11 1
3 2

2
5 2

π ρ
ρ ρ ρ( ) ( )/ / (4.1.12)

are compiled in Table 4.1.3

α C0 C1 C2

0.2 0.496 0.693 -0.306
0.3 0.553 0.680 -0.299
0.4 0.646 0.647 -0.286
0.5 0.807 0.560 -0.258
0.6 1.103 0.344 -0.195
0.7 1.700 -0.190 -0.049

Table 4.1.3 Coefficients for the weight function eq.(4.1.12).
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R

τ0 τ0

0 0.2 0.4 0.6 0.8 10.6

0.7

0.8

0.9

1

1.1

F'

a/R
Fig. 4.1.4 Double-edge-cracked disk under constant shear tractions on the crack faces; dashed curve: solution for

the double-edge-cracked endless strip (see e.g. [1]).

Figure 4.1.5 represents the displacements under constant normal tractions σn in the form

δ σ
α α

λ α α=
−

=2 1 1
1

a
E

a Rn

'
ln ( ) , / (4.1.13)

The results of boundary collocation computations are represented by the circles. From a least-
squares fit we obtain the representation

λ α α α α α= + + − + −1454 0 3893 5 0022 19 5054 236198 10 32332 3 4 5. . . . . . (4.1.14)

The dashed curve in Fig. 4.1.5 is the solution for the double-edge-cracked endless parallel
strip as reported by Tada [1].

x

a a

σR

2δ 2δ

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

λ

α=a/R

Fig. 4.1.5 Crack-mouth displacements (x = 0) according to eq.(4.1.13); circles: double-edge-cracked disk, dashed
curve: results for the double-edge-cracked endless parallel strip, reported by Tada [1].
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4.2 Mixed boundary conditions
Figure 4.2.1 shows the case of constant normal tractions σR and disappearing tangential
displacements vR along the circumference.

x

a a

R

ω

σR

vω=0

Fig. 4.2.1  Mixed boundary conditions σn=constant, vω=0.

The stress intensity factor described by

K F a R an= σ ν π( , / ) (4.2.1)

and the T-stress are plotted in Fig. 4.2.2. In this loading case the T-stresses are very small. The
higher order terms A1 and A*1 of eq.(1.2) are compiled in Tables 4.2.1 and 4.2.2.
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0 0.2 0.4 0.6 0.8 1
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0.2

ν=0
0.2
0.4

0.4
0.2
ν=0

a/R a/R

F T/σn

Fig. 4.2.2 Geometric function F and T-stress as functions of ν and a/R.

For ν = 0.25 and α = a/R ≤ 0.75 the geometric function can be approximated by

F = + − +0 59 0 462 1171 11972 3. . . .α α α (4.2.2)
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and the related T-stress for α ≤ 0.75 by

T / * . . . . .σ α α α α α= + − + −0127 5 024 18 468 26 0173 1379782 3 4 5 6 (4.2.3)

a/R ν=0 0.2 0.4

0.2 -0.172 -0.172 -0.171
0.3 -0.137 -0.137 -0.137
0.4 -0.119 -0.118 -0.118
0.5 -0.108 -0.107 -0.107
0.6 -0.104 -0.103 -0.102
0.7 -0.108 -0.107 -0.107
0.8 -0.127 -1.27 -0.126

Table 4.2.1 Coefficient A1 according to eq.(1.2).

a/R ν=0 0.2 0.25 0.4

0.2 0.011 0.009 -0.008 -0.014
0.3 -0.035 -0.041 -0.043 -0.048
0.4 -0.038 -0.045 -0.046 -0.051
0.5 -0.039 -0.047 -0.049 -0.053
0.6 -0.038 -0.045 -0.047 -0.051
0.7 -0.029 -0.034 -0.035 -0.039
0.8 -0.017 -0.022 -0.023 -0.026

Table 4.2.2 Coefficient A*1 according to eq.(1.2).

Figure 4.2.3 shows the case of constant radial displacements un = uR and disappearing shear
tractions τRω. The stress intensity factor is given by

K F a R a u E
R
R= =σ ν π σ* ( , / ) , * (4.2.4)

The geometric function F is plotted in Fig. 4.2.4a. In the form of

F F* ( )= −1 ν (4.2.5)

the results (which now coincide for a/R = 0) are shown in Fig. 4.2.4b.
For ν = 0.25 the geometric function F in the region a/R ≤ 0.8 can be approximated by

F = + + − + −4
3

2 3 4 50 8251 0 65527 12 6637 17 6804 71736. . . . .α α α α α (4.2.6)

and the T-term by

T / * . . . . .σ α α α α α= − + − + −0 9611 11812 238847 20 5897 6 76572 3 4 5 6 (4.2.7)
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Fig. 4.2.3  Mixed boundary conditions uR =constant, τRω=0.
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Fig. 4.2.4 Geometric function according to eq.(4.2.4).
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Fig. 4.2.5 T-stress term for the conditions of uR =constant, τRω=0.
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Values of the higher order coefficients A1 and A*1 of eq.(1.2) are compiled in Tables 4.2.3 and
4.2.4.

a/R ν=0 0.2 0.25 0.4

0.2 -0.094 -0.116 -0.122 -0.149
0.3 -0.064 -0.075 -0.079 -0.094
0.4 -0.041 -0.047 -0.049 -0.055
0.5 -0.025 -0.027 -0.028 -0.030
0.6 -0.016 -0.016 -0.016 -0.017
0.7 -0.015 -0.015 -0.015 -0.016
0.8 -0.027 -0.030 -0.030 -0.033
Table 4.2.3 Coefficient A1 according to eq.(1.2).

a/R ν=0 0.2 0.4

0.2 0.003 0.002 0.001
0.3 0.007 0.006 0.004
0.4 0.010 0.008 0.007
0.5 0.011 0.009 0.008
0.6 0.010 0.008 0.007
0.7 0.007 0.006 0.004
0.8 0.003 0.003 0.002
Table 4.2.4 Coefficient A*1 according to eq.(1.2).

Figure 4.2.6 represents the crack opening displacements δ (for δ see Fig. 4.1.5) under constant
radial displacements and disappearing shear tractions at the circumference in the form

δ σ λ= 2a
E

a R*
'

( / ) (4.2.8)

with σ* given by eq.(4.2.4).
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Fig. 4.2.6 Crack-mouth displacement represented by eq.(4.2.8). Boundary conditions: uR = constant, τRω = 0.

4.3 Displacement boundary conditions
The case of pure displacement boundary conditions is illustrated in Fig. 4.3.1. Under these
boundary conditions, the geometric functions F for the stress intensity factor, defined by
eq.(4.2.3), result as shown in Fig. 4.3.2a. The T-stress term is given in Fig. 4.3.2b.

x

a a

uR

R

ω

vω=0

Fig. 4.3.1 Displacement boundary conditions uR =constant, vω=0.

For ν = 0.25 the geometric function F in the range a/R ≤ 0.8 can be approximated by

F = − +0 824 01267 0 02799 2. . .α α (4.3.1)

and the T-stress in the range of 0.2 ≤ a/R ≤ 0.8 by

T / * . . . . .σ α α α α= + − − +0 0496 0175 01016 0 2251 0 53312 3 4 (4.3.2)
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Fig. 4.3.2 Geometric function F and T-stress as functions of ν and a/R.

a/R ν=0 0.2 0.25 0.4

0.2 -0.170 -0.212 -0.226 -0.282
0.3 -0.138 -0.172 -0.183 -0.228
0.4 -0.119 -0.148 -0.158 -0.195
0.5 -0.106 -0.132 -0.140 -0.172
0.6 -0.096 -0.119 -0.126 -0.154
0.7 -0.090 -0.111 -0.117 -0.142
0.8 -0.090 -0.110 -0.117 -0.140

Table 4.3.1 Coefficient A1 according to eq.(1.2).

a/R ν=0 0.2 0.25 0.4

0.2 0.239 0.237 0.232 0.23
0.3 0.167 0.171 0.174 0.188
0.4 0.130 0.138 0.141 0.156
0.5 0.106 0.114 0.117 0.133
0.6 0.085 0.093 0.096 0.110
0.7 0.065 0.072 0.074 0.085
0.8 0.043 0.048 0.050 0.056

Table 4.3.2 Coefficient A*1 according to eq.(1.2).
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4.4 Double-edge-cracked Brazilian disk
The Brazilian disk test with a double-edge-cracked circular disk is illustrated by Fig. 4.4.1.

Ra

P

P

Θ

r
thickness  t

Fig. 4.4.1 Brazilian disk test with double-edge-cracked specimen.

Mode-I stress intensity factors computed with the weight function, eqs.(4.1.3)-(4.1.6), and
expressed by the geometric function F are entered into Table 4.4.1. The geometric function F
is defined by

K F a P Rt= =σ π σ π* , * / ( ) (4.4.1)

α  = a/R Θ = π/32 π/16 π/8 π/4 3π/8 7π/16 π/2

0 0 0 0 0 0 0 0

0.1 -6.189 -2.953 -0.970 -0.304 -0.180 -0.160 -0.154

0.2 -4.105 -3.312 -1.709 -0.648 -0.399 -0.357 -0.344

0.3 -2.728 -2.680 -1.989 -0.987 -0.652 -0.590 -0.571

0.4 -1.901 -2.044 -1.927 -1.274 -0.927 -0.854 -0.832

0.5 -1.343 -1.541 -1.713 -1.479 -1.212 -1.145 -1.127

0.6 -0.934 -1.153 -1.469 -1.607 -1.500 -1.459 -1.445

0.7 -0.615 -0.855 -1.263 -1.705 -1.809 -1.817 -1.817

Table  4.4.1  Stress intensity factor represented by the geometric function F for the Brazilian disk test.

Using the Green's function and the stress distribution given by eqs.(3.5.1) and (3.5.2), the T-
stress was computed. Table 4.4.2 contains the data for several angles Θ (see Fig. 4.4.1).
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α  = a/R Θ = π/32 π/16 π/8 π/4 3π/8 7π/16 π/2

0 0 0 0 0 0 0 0
0.1 -3.075 1.859 1.076 0.376 0.227 0.203 0.195
0.2 -8.879 -2.012 1.084 0.756 0.509 0.462 0.447
0.3 -8.773 -4.696 -0.096 0.995 0.825 0.773 0.756
0.4 -8.009 -5.678 -1.584 0.969 1.139 1.123 1.114
0.5 -7.348 -5.934 -2.788 0.649 1.403 1.484 1.504
0.6 -6.833 -5.924 -3.601 0.118 1.571 1.818 1.891
0.7 -6.42 -5.81 -4.10 -0.484 1.62 2.08 2.23
0.8 -6.07 -5.65 -4.36 -1.02 1.56 2.23 2.46

Table  4.4.2  T-stress T/σ* for the Brazilian disk test (σ*=P/(πRt)).
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