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Stress intensity factors and T-stress for cracked circular disks

Abstract:

The failure of cracked components is governed by the stresses in the vicinity of the
crack tip. The singular stress contribution is characterised by the stress intensity factor
K, the first regular stress term is represented by the so-called 7-stress.

Stress intensity factors and T-stress solutions for components containing an internal
crack were computed predominantly by application of the Boundary Collocation
Method (BCM). The results are compiled in the form of tables or approximative
relations. In some cases also the fracture mechanics weight function for K and a
Green's function for 7-stresses are given, and higher order stress function coefficients
are compiled.

Different mechanical boundary conditions are considered: pure traction conditions,
mixed boundary conditions and pure displacement conditions.

Spannungsintensitatsfaktoren und T-Spannungsterme fiir
Kreisscheiben mit Rissen

Kurzfassung:

Das Versagen von Bauteilen mit Rissen wird durch die unmittelbar an der RiBspitze
auftretenden Spannungen verursacht. Der singulidre Anteil dieser Spannungen wird
durch den Spannungsintensititsfaktor K charakterisiert. Der erste reguldre Term wird
durch die sogenannte 7-Spannung beschrieben.

Im vorliegenden Bericht werden Ergebnisse von K und 7 fiir den Fall von
Kreisscheiben mit Rissen mitgeteilt, die iiberwiegend mit der "Boundary Collocation
Methode" (BCM) bestimmt wurden. Die Resultate werden in Form von Tabellen und
Naherungsformeln wiedergegeben. Zusitzlich wird in einigen Fillen die bruch-
mechanische Gewichtsfunktion fiir K sowie eine Greensfunktion fiir 7 angegeben.
Auch Koeffizienten fiir hohere Terme der Spannungsfunktionen werden tabellarisch
angegeben.

Als mechanische Randbedingungen werden gewaihlt: Spannungsrandbedingungen,
gemischte Randbedingungen sowie reine Verschiebungsrandbedingungen.
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1 Introduction

While stress intensity factor solutions are reported in handbooks [1-6] for many crack geome-
tries and traction loading cases, weight functions and T-stress solutions are seldom available
[5,6]. In most references only solutions for pure traction boundary conditions are reported. In
this report also mixed and pure displacement boundary conditions are included. In special
cases it may be of advantage to know higher coefficients of the stress series expansion as well.
This is desirable e.g. for the computation of stresses over a somewhat wider distance from a
crack tip. Therefore, additional coefficients are compiled in some cases.

1.1 Stresses in a cracked body

The complete stress state in a cracked body is known, if a related stress function is known. In
most cases, the Airy stress function @ is an appropriate tool, which results as the solution of

MO=0, P= +O (1.1)

For a cracked body a series representation for @ was given by Williams [7]. Its symmetric part
@ can be written in polar coordinates with the crack tip as the origin
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where 0* is a characteristic stress and W is a characteristic dimension. The geometric data are
explained by Fig. 1.1. In all mode-I considerations the symmetric part has to be used exclu-
sively. For pure mode-II loadings the antisymmetric part must be applied.

In the symmetric case, the stress components are given by
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The displacements ux = u and uy = v read
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(v=Poisson's ratio), from which the Cartesian components result as

u, =ucos¢ —vsing (1.7a)

u, =Using +vcos g (1.7b)
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Fig. 1.1 Geometrical data of a crack in a component.

1.2 Stress intensity factor

For the determination of stress intensity factors the Boundary Collocation Method (BCM) and
the weight function procedure were applied.

The stress intensity factor K is a measure of the singular stress term occurring near the tip of a
crack and defined by

g, == S (@) (1.8)
2

where 7 and ¢ are polar coordinates with the origin at the crack tip.

K is the stress intensity factor. For the loading modes considered in this report the stress inten-
sity factors Ky and Kj are expressed as

K,=c*Jm F(alW) (1.9a)

K, =1*\m F,(a/W) (1.9b)

where a is the crack length, W is the width of the component, and 0*, T* are characteristic
stresses in the component, e.g. the outer fibre stress in a bending bar. F; and Fy are functions
of the ratio of the crack length to the specimen's width as well as of the type of load applied.

The coefficient 4y in eq.(1.2) is related to the stress intensity factor K by
K, =0*34,N2mv (1.10)

or to the geometric function F; by



F, =418/ a (1.11)
with the relative crack depth a=a/W.

1.3 T-stress term

Taking into consideration the singular stress term and the first regular term, the near-tip stress
field can be described by

K
0, = \/ﬁfy(mw,—j-p (1.12)
JxxO ava T O
o = ’ = (1.13)
’ 0,0 O, 0 0

The term with the coefficient 4*; in eq.(1.2) represents the total constant Oy-stress contri-
bution appearing at the crack tip (x = @) of a cracked structure, which is called the T-stress

=0,

= —40* 4%, . (1.14)

X=a

This total x-stress includes stress contributions which are already present at the location x = a
in the uncracked body, ¢, and an additional stress term which is generated by the crack

exclusively. This stress separation leads to th definition of two T-stress contributions. The
contribution determined by the x-stress in the uncracked structure may be denoted here by 70

T = Jff; (1.15)
and the contribution caused by the crack by 7.. Therefore, we can write
T=T"+T . (1.16)

Leevers and Radon [8] proposed a dimensionless representation of 7 by the stress biaxiality
ratio [3, which reads
_TNm _ T

1.17
= (1.17)
or, expressed in terms of stress function coefficients
8a A*,
== — 1.18
B 5 4 (1.18)

Sufficient information about the stress state is available, if the stress intensity factor and the
constant stress term, the T-stress, are known. While stress intensity factor solutions are repor-
ted in handbooks for many crack geometries and loading cases, T-stress solutions are avai-
lable only for a small number of test specimens and simple loading cases as for instance pure
tension and bending.



Different methods were applied in the past to compute the T-stress term for fracture mecha-
nics standard test specimens. Regarding one-dimensional cracks, Leevers and Radon [8] made
a numerical analysis based on a variational method. Kfouri [9] applied the Eshelby technique.
Sham [10,11] developed a second-order weight function based on a work-conjugate integral
and evaluated it for the SEN specimen using the FE method. In [12,13] a Green's function for
T-stresses was determined on the basis of Boundary Collocation results. Wang and Parks [14]
extended the T-stress evaluation to two-dimensional surface cracks using the line-spring me-
thod. A compilation of results from literature has been given by Sherry et al. [15].

1.4 Weight function

Most of the numerical methods require a separate calculation of the stress intensity factor for
each given stress distribution and each crack length. The weight function procedure developed
by Biickner [16] simplifies the determination of stress intensity factors. If the weight function
is known for a crack in a component, the stress intensity factor can be obtained by multiplying
this function by the stress distribution and integrating it along the crack length. The weight
function does not depend on the special stress distribution, but only on the geometry of the
component.

The method is considered in the following sections for the case of an edge crack. If 0(x) is the
normal stress distribution and T(x) are the shear stresses in the uncracked component along the
prospective crack line of an edge crack (Fig. 1.2), the stress intensity factors are given by [16]

K, =}h,(x,a)0n(x)dx (1.19a)

K, = (].h,,(x,a) T(x)dx (1.19b)

The general procedures for the determination of weight functions are described below for the
weight function component 4;. The relation of Rice [17] allows to determine the weight func-
tion from the crack opening displacement vi(x,a) of any arbitrarily chosen loading and the cor-
responding stress intensity factor Kj(a) according to

E' ov.(x,a)
K,(a) Oa

h,(x,a) = (1.20)
(E' = E for plane stress and E' = E/(1-v?) for plane strain conditions) where the subscript
stands for the reference loading case. It is convenient to use O,(x) = 0y = constant for the refe-
rence stress distribution.

One possibility to derive the weight function with eq.(1.20) is the evaluation of numerically
determined crack opening profiles, which may be obtained by BCM computations. By appli-
cation of the BCM procedure to a couple of cracks with slightly different lengths a and a+da,
a large number of coefficients 4, and A,* is obtained. Then eq.(1.6a) provides the related



couple of crack opening displacements v(a) and v(a+da). Use of eq.(1.20) yields the weight
function. In order to minimise the numerical effort, approximate methods are often used in
literature.

1.5 Representation of T-stresses by a Green's function

As a consequence of the principle of superposition, stress fields for different loadings can be
added in the case of single loadings acting simultaneously. This leads to an integration repre-
sentation of the loading parameters and was applied very early to the singular stress field and
the computation of the related stress intensity factor by Biickner [16]. Similarly, the T-stress
contribution 7, caused by the crack exclusively can be expressed by an integral [10-13]. The
integral representation reads

T = ]-t(x,a) o, (x)dx (1.21)

where the integration has to be performed with the stress field 0y in the uncracked body (Fig.
1.2). The stress contributions are weighted by a weight function (4, f) which depends on the
location x where the stress Oy acts.

Fig. 1.2 Crack loaded by continuously distributed normal tractions 0y, (present in the uncracked body).

The weight functions / and ¢ can be interpreted as the stress intensity factor and as the T-term
for a pair of single forces P acting on the crack face at the location xy (Fig. 1.2), i.e. the weight
functions (4, f) are Green's functions for Kj and 7. This can be shown easily. The single forces
are represented by a stress distribution

o(x) =§5(x = X,) (1.22)



where 0 is the Dirac Delta-function and B is the thickness of the plate (often chosen to be B=
1). By introducing this stress distribution into (1.21), we obtain

T, =§ ;[5(x = Xx,)H(x,a)dx =§t(x0,a) (1.23)

1.e. the weight function term #(xo,a) is the Green's function for the T-stress term.

In order to describe the Green's function, it is distinguished between a term #, representing the
asymptotic limit case of near-tip behaviour and a correction term #., wWhich includes infor-
mation about the special shape of the component and the finite dimensions,

r= tO + tcorr (124)
with [13,18]
f =~ lim— Y4 (1.25)
TTx-a(x'=x)Wa —x
= T, = [t,(ax)o(x)dx==p|_ =-0| (1.26)
Then the complete Green's function can be written as [13,18]
t=t,+> C,(1-x/a)" (1.27)
v=1
If we restrict the expansion to the leading term, we obtain as an approximation
X
t Ot+ C(l— —j (1.28)
a

A simple procedure to determine approximative Green's functions is to determine the un-
known coefficients in the series representation (1.27) of known T-solutions for reference
loading cases [6].

For internal cracks it holds

t=ty+> C,(1-x*/a*) (1.29)
v=l



with the first approximation

t Ot,+ C(1- x*/a?) (1.30)

In this case, the coefficient C results from the pure tension case as

C=i(1+£j (1.31)
2a g,

In order to improve the Green's function, the next regular term is added. Consequently, the
Green's function expansion reads for edge cracks

t(x)=t, +C(1-x/a) +C,(1 -x/a)* (1.32)
or
T.=-0,| +C[o,@)(1~x/a)dx +C, [0,(x)(1 ~x/a) dx (1.33)
0 0
For internal cracks it holds
t=t,+C(1-x"/a*)+C,(1 -x* / a*)’ (1.34)

The determination of the two coefficients C; and C; is possible, if T-stress solutions for two
different reference loading cases are available.



2 Circular disk with internal crack

2.1 Constant load

The circular disk with a symmetrical internal crack is shown in Fig 2.1.1.

Fig. 2.1.1 Circular disk with internal crack under constant normal tractions at the circumference.

The crack under constant circumferential tractions (Fig. 2.1.1) has been analysed with the
Boundary Collocation method.

The stress intensity factor solution is [6]

K _1-05a+16873a’ -2.671a’ +32027a * -18935x °

F = = 2.1.1
o, Vl-a ( )
The T-stress terms can be approximated by
-1+ — 2 + 3 _ 4 + 5
T /o= l+a -234a” +427a° -3326a " +09824x (2.12)
l-a
-234a’° +427a° -33260" +09824a°
T/ o= 34a Ta” —3326a" +09824a (2.13)

1-a

The T-values in Table 2.1.1 were extrapolated to a = 1. Within the numerical accuracy of the
extrapolation, the limit values are



1

lim7/0*(1-a)=lim7. /o*(1-a) F0413= - —— (2.1.4)
a-1 a1 ,772 -4
and for the biaxiality ratio
lin}ﬁvl -a D% (2.1.5)
a-
o
T(1-a)/o|
-0.2f T
-0.4 -
o BCM
-0.6 -
T
-0.8 ©

"0 02 04 06 08 1
a

Fig. 2.1.2 T-stress for an internal crack in a circular disk.

a=a/R | T./o-(1-0) | T/o-(1-a) | F-(1-a)"* | B-(1-a)"?
0 -1.00 0.000 1.000 0.00
0.1 -0.919 -0.019 0.965 -0.020
0.2 -0.864 -0.064 0.951 -0.067
0.3 -0.820 -0.120 0.951 -0.126
0.4 -0.776 -0.176 0.962 -0.183
0.5 -0.728 -0.228 0.979 -0.233
0.6 -0.675 -0.275 0.998 -0.275
0.7 -0.615 -0.315 1.011 -0.311
0.8 -0.552 -0.352 1.004 -0.351
0.9 -0.485 -0.385 0.953 -0.404
1.0 -0.413 -0.413 0.8255 -0.50

Table 2.1.1 T-stress, stress intensity factor, and biaxiality ratio for an internally cracked circular disk with con-
stant tensile tractions at the circumference (value 7 for o =1 extrapolated); for 7 and T, see eqs.(1.15) and (1.16).

Figure 2.1.3 represents the displacement at x =0 under constant normal tractions 0, in the form

10



20 1 1
= ~ —In
E' a

o) a/\(a) , a=al/R (2.1.6)

The open circles result from Boundary Collocation computations and the solid curve is the
result obtained by application of the procedure proposed by Paris (see e.g. Appendix B in Ta-
das handbook [1]). The solid circles are analytical values resulting from limit case considera-
tions [1]. The dashed curve in Fig. 2.1.3 is the solution for the endless parallel strip with an
internal crack as reported by Tada [1].

1.4

e analytical values
A a

2R — / s

0.8

0 02 04 06 08 1
o=a/R

Fig. 2.1.3 Crack opening displacements for the internally cracked disk according to eq.(2.1.6) (circles: BCM-
results, solid curve: procedure of Paris). Dashed line: data for an internally cracked endless strip [1].
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2.2 Disk partially loaded by normal tractions at the circumference

A partially loaded disk is shown in Fig. 2.2.1a. Constant normal tractions 0, are applied at the
circumference within an angle of 2y.

F)
a) b)

Fig. 2.2.1 a) partially loaded disk, b) diametral loading by a couple of forces (disk thickness: ¢).

The total force in y-direction results from

Y

P, =2t0, [Rcosy'dy =2t g,Rsin y 2.2.1)
0

The geometric function F defined by
K,=0*Jm F(a/R) (2.2.2)

is plotted in Fig. 2.2.2, with 0* defined as

P,
or=—1 (2.2.3)
TRt

From the limit case y -0, the solutions for concentrated forces (see Fig. 2.2.1b) are obtained
as represented in Fig. 2.2.3. A comparison with the results from literature [19-21] yields a
good agreement of the stress intensity factors. The solution given by Tada et al. [1] (dashed
curve in Fig. 2.2.3) deviates by about 20% near a/R=0.8. The results obtained here can be ex-
pressed by

_3-1254a -1.7013a* +4.0597a° -2.8059a *

Vl-a

K, =o*JmF, , F, 224
1 P P

with 0* given in (2.2.3).

12
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Fig. 2.2.2 Stress intensity factors for a circular disk, partially loaded over an angle of 2y (see Fig.2.2.1a).

3 L
Fp(1-a)"?|
2.5]

0O 02 04 06 08 1
a=a/R
Fig. 2.2.3 Stress intensity factor and T-stress for a circular disk loaded diametrically by concentrated forces (Fig.
2.2.1b). Comparison of stress intensity factors; solid squares: partially distributed stresses with an angle of

y=T716, circles: results by Atkinson et al. [19] and Awaji and Sato [20], open squares: results obtained with the
weight function technique [21], dashed line: solution proposed by Tada et al.[1].
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The x-stress term 7, normalised to 0%, is shown in Fig. 2.2.4. From the limit case y -0, the
solutions for concentrated forces (see Fig. 2.2.1b) are obtained as represented in Fig. 2.2.5.

The T-stress can be fitted by

T _—41-a)+76777a° -160169a° +8.7994a * -110849a ° (2.2.9)
o* 1-a o
Oe
T(1-0)/c*
-1}
2|
_3 : //
_4:"”
0O 02 04 06 08 1
a
Fig. 2.2.4 T-stress for a circular disk, partially loaded over an angle of 2y (see Fig. 2.2.1a).
T, can be computed from 7
I _31-a) +7.6777a* —-16.0169a° +8.799%4a * -110849a ° : 4a’ (2.2.6)
o* l-a (1+a*?
or expressed by a fit relation
— _ + 2 _ 3 + 4 + 5
T 0 31-a)+28996a” —-61759a” +2.5438a ™ +0.0841a 2.2.7)
o* l-a
In this case, the limit values are (at least in very good approximation)
7l
lim7/o*(1-a)=lim7T, /o*(1-a) 0648 F ——— (2.2.8)
o o -4

14
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3
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Fig. 2.2.5 T-stress for a circular disk loaded diametrically by concentrated forces (Fig. 2.2.1b). T-stress results
including partially distributed stresses with an angle of y=1716 (squares) and exact limit cases for a=0.

2.3 Central point force on the crack face

A centrally cracked circular disk, loaded by a couple of forces at the crack centre, is shown in
Fig. 2.3.1. For this, the stress intensity factor and the T-stress were calculated by Boundary
Collocation computations.

Fig. 2.3.1 Circular disk with a couple of forces acting on the crack faces.

15



The stress intensity factor for central point forces is

K, :%FP (2.3.1)

_ 1-1.07884a +824956a* —179026a° +20333% * -930% °
Vi-a

Figure 2.3.2 shows a comparison of the BCM results with results obtained by Tada et al. [1]

using an asymptotic extrapolation technique. Maximum differences are in the order of about
10%.

Fy

Fp(1-a)

1.6+

1.4+

1.2¢

0 02 04 06 08 1
a=a/R

Fig. 2.3.2 Stress intensity factor for a couple of forces P at the crack centre, represented by the geometric functi-
on Fp. Solid curve: derived in [22], dashed curve: Tada et al. [1].

The T-stress data obtained with the BCM method are plotted by the squares in Fig. 2.3.3. To-

gether with the limit value, eq.(2.2.8), the numerically found T-values were fitted by the poly-
nomial

T _ -4197la +54661a* -11497a° -0.7677a*

- 2.3.2
g* 1-a ( )

This relation is introduced into Fig. 2.3.3 as the solid line.
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0O 02 04 06 08 1

a

Fig. 2.3.3 T-stress for an internally cracked circular disk with a couple of forces acting in the crack centre on the
crack faces [23]. Symbols: numerical results, solid line: fitting curve.

Mode-I weight function [6]

2 1

hy = ——| =+ Cyy1 - p* +C,(1 —p*)"

Jm J1-p°

_8—4a +38612a° —159344a° +24.60760r * —13234x° 3

G

Ji-a

_8-4a +0.6488a* —1412320° +2426960 * —12.5961 ° |

C =

Ji-a

A two-terms Green's function for the T-stress term reads [23]

t=t, +C(1-x*/a*)+C,(1 -x*/a’)’

-6.8622a +181057a* -22.0173a* +93229a *

=1
R 1-a
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. — 14, 2421, > -9, !
c, :%419020’ 14626 1 2;28540' 98117 (23.8)

With the Green's function the diametral tension specimen was computed using the stress dist-
ribution (Fig. 2.2.1b)

o, 4

;—(14_7)2_1 , E=X/R (239)
9. _ 44 4522 : (2.3.10)
g* (1+<7)

The result is plotted in Fig. 2.3.4. It becomes obvious that in this approximation small deviati-
ons are only visible for large a.

T(1-a)/o*
0

y /@’W

\O

-4 f— ‘ \ ‘ ‘
0 0.2 04 06 0.8 1
a

Fig. 2.3.4 T-stresses for an internally cracked circular disk, loaded by a couple of diametral forces at the free
boundary (see Fig. 2.2.1b) estimated with the 2-terms Green's function (symbols) compared with results of BCM
computations (curves).
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2.4 Mode-II loading

Figure 2.4.1 shows the crack-face loading by a constant shear stress T and a pair of concentra-
ted tangential forces Q.

a) b)

—
Q

Fig. 2.4.1 Internal radial crack loaded by shear tractions, a) constant shear stress T, b) pair of concentrated shear
forces Q.

Stress intensity factor under constant shear tractions T [21]

1-05a +09274a* —088414a° +0.282260 *
K,=tyNm, F,= (2.4.1)

Vl-a

with a=a/R.

Stress intensity factor for a point load Q (line load over plate thickness ¢) in the crack centre
[21]

_1-05a +1977a’ -15655a° +03851a*

20
K =—“2fp  F 242
1,0 t\/E 1,0 n J1-a ( )
A mode-II weight function is [21]
poo 21 .p 1-p* +D,(1-p*)" (2.4.3)
o T /1—,02 0 !
- + 2 _ 3 + 4
D, = 5-25a +14882a - —23766a° +11028x s (2.4.4)
Ji-a
-4 +20 + 2+ - )
D, = 4+2a +04888a~ +081112a° —-0.7177a +4 (2.4.5)
Ji-a
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2.5 Brazilian Disk

The mixed-mode loading under diametrically applied concentrated forces is shown in Fig.
2.5.1.

Fig. 2.5.1 Diametral compression test with internal crack (disk thickness: ¢).

The stress intensity factors Kj, Ky and related geometric functions Fj, Fyy are

K,=0,F\m = aja(x)h,(x,a)dx (2.5.1)

K,=0,F,\m = j 1(x)h, (x,a)dx (2.5.2)

The characteristic stress is chosen as

o, = (2.5.3)

(identical with the maximum tensile stress in the centre of the disk).

The circumferential stress component in an uncracked Brazilian disk has been given by Erdlac
(quoted in [19]) as
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2P|1 (1-p0cos@)sin’@® (14 pcos@)sin’ ©
o,=0, =221 _(=peosO)sin O _ (I+peosO)sin’ O (2.5.4)
7IR|2 (1+p" —2pcos@)” (1+p° +2pcosO)
_2P |1 _(1-pcosO)(cosO—p)* _(1+pcosO)(cos O+ p)’ (2.5.5)
" mR|2 (1+ p* =2pcos @)’ (1+ p* +2pcos O) o
with p=r/R.
Fu
i 0
W
s\:;
ﬂ
i 90° e

0 0.2 04 0.6 0.8
a/R

Fig. 2.5.2 Geometric functions for mode-II and mode-I stress intensity factors. Curves: obtained with weight
functions [21]; solid squares: Atkinson et al. [19]; open squares: Sato and Kawamata [24].

it a/lR=0.5 Fi
2 -

0

_1 -
1 -

_2 -

3+

1 1 1 1 1 0 1 1 1 1 1
0 30 60 0 0 30 60 90

9
O ©
Fig. 2.5.3 Geometric functions for a/R=0.5 as a function of the angle ©. Curves: obtained with the weight functi-
on procedure; squares: results from Atkinson et al. [19] and Awaji and Sato [20].
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45°

-2

30°
15°

-4/00/

0 02 04 06 08 1

a/R

Fig. 2.5.4 T-stress for the Brazilian disk as a function of the angle ©.
a/R |©=0° |15° 30° 45° 60° 75° 90°
0 -4.000 (-3.464 [-2.000 [0.000 |2.000 |3.464 |4.000
0.1 [-3.656 |-3.136 |-1.745 [0.091 |1.855 |3.104 |[3.552
0.2 |-3.398 |-2.829 |-1.396 |0.312 |1.773 |2.711 |3.029
0.3 |(-3.197 |-2.515|-0.969 [0.581 |[1.684 |2.294 |2.485
0.4 |-3.033|-2.163 |-0.492 |0.812 |1.543 |1.883 |1.980
0.5 [-2.895|-1.733 |-0.015 [0.935 |[1.344 |1.509 |1.555
0.6 |-2.7751-1.183 10369 0919 |1.116 |1.201 |1.227
0.7 [-2.668 |-0.510|0.553 [0.795 [0.906 |0.971 ]0.993
0.8 |-2.57410.106 |0.513 |0.643 |0.746 |0.815 |0.839

Table 2.5.1 T-stress 7(1-a/R) for the Brazilian disk test.

a/R |©=0° [15° |[30° [45° [60° [75° |[90°

0 0. 1.000 | 1.732{2.000 | 1.732{1.000 | O.

0.1 ]0. 1.023|1.758 2.010|1.724 | 0.988 | 0.

0.2 |0. 1.0921.835(2.036 | 1.698(0.955|0.

0.3 |0. 1.214|1.957(2.069|1.656 0.907 | 0.

04 (0. 1.400(2.116 (2.097 [ 1.603 {0.856 | 0.

0.5 |0. 1.670(2.299(2.119|1.554|0.813 | 0.

0.6 (0. 2.053(2.491(2.146|1.530{0.792 0.

0.7 0. 2.57812.697(2.220|1.564 0.808 | 0.

0.8 |0. 3.2603.009 (2.441|1.720{0.889 | 0.

Table 2.5.2 Geometric function Fy; for the Brazilian disk tests.
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alR |©=0° |15° 30° 45° 60° 75° 90°

0 1.000 (0.732 |0 -1.000 |-2.000 |-2.732 |-3.000
0.1 (1.017 |0.737 |-0.020 [-1.037 [-2.033 |-2.750 |-3.016
0.2 |1.063 |0.746 |-0.084 |-1.141 |-2.120 |-2.793 |-3.031
0.3 [1.137 |0.752 [-0.200 |[-1.308 |[-2.248 |-2.854 |-3.062
0.4 |1.241 |0.742 |-0.379 |-1.527 |-2.406 |-2.940 |-3.118
0.5 [1.384 [0.693 |-0.635 |[-1.789 [-2.594 |-3.065 |-3.220
0.6 |1.578 |0.562 |-0.973 |-2.083 |-2.819 |-3.250 [-3.393
0.7 [1.846 |0.263 |-1.381 |[-2.413 [-3.108 |-3.525 |-3.665
0.8 [2.244 |-0.302 |-1.843 |-2.824 |-3.530 [-3.965 |-4.112

Table 2.5.3 Geometric function F; for the Brazilian disk tests.
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2.6 Mixed boundary conditions

Constant radial displacement and disappearing shear tractions

The internally cracked circular disk under constant radial displacement and disappearing shear
tractions along the circumference is illustrated in Fig. 2.6.1.

1 ' 1 ' 1 ' 1

0 02 04 06 08 , ,
a/R \Y)

Fig. 2.6.2 Geometric function F according to eq.(6.6.1)

The stress intensity factor for the loading case of ug = constant, Tr=0 is defined by

_uykE

K=o*JmF@a/R vy 6 o= . (2.6.1)
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The geometric function F is plotted in Fig. 2.6.2 as a function of @/R and v.

For the special case of v=0.25 and a =a/R<0.7 a fit relation reads

F=%4-2154a" +3200a* -1987a°

(2.6.2)

The T-stress, nomalised to the stress 0%, is represented in Fig. 2.6.3. The higher order coeffi-

cients 4, and A*,, see eq.(1.2), are compiled in Tables 2.6.1 and 2.6.2

061
T/o0*!

0.4

0.2

Fig. 2.6.3 T-stress as a function of crack size and Poisson's ratio.

Forv=0.25and a=a/R<0.7 we find

T/0*=2597a* -2.685a° +0.6495a°

v=0 0.1 0.2 0.3 0.4
a/R=0.15 |[-0.1255 |-0.1393 |-0.1565 |[-0.1784 |-0.2073
0.2 -0.1060 [-0.1175 |[-0.1317 |-0.1497 |-0.1734
0.3 -0.0826 [-0.0911 ([-0.1016 |-0.1147 |-0.1316
0.4 -0.0692 [-0.0757 [-0.0836 |-0.0933 |-0.1056
0.5 -0.0624 |-0.0674 |[-0.0734 |-0.0807 |-0.0897
0.6 -0.0617 |[-0.0656 |[-0.0702 |-0.0758 |-0.0825
0.7 -0.0689 [-0.0722 [-0.0760 |-0.0805 |-0.0858

Table 2.6.1 Coefficient A; according to eq.(1.2).
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1 b)-
A1-v) N\ |
0.8
0.6
................... 0.4 | ] v=0
0'2 N T N S T O N 1.0.2 ]
i 104
0.5 v=0 0.4

0 02 04 06 08 1 0 02 04 06 08 1
a=a/R oa=a/R

Fig. 2.6.4 Crack opening displacement & at x =0 (for 6 and x see Fig. 2.1.3) as a function of Poisson's ratio.

The crack opening displacements at x =0, represented as

_2a0*

'

o

Al@) , a=al/R (2.6.4)

with 0* defined in (2.6.1), are shown in Fig. 2.6.4.

v=0 0.1 0.2 0.3 0.4

a/R=0.15 [0.0018 0.0019  {0.0020 0.0020 [0.022

0.2 0.0036  {0.0035 0.0034 {0.0033 0.0031
0.3 0.0105 0.0101 0.0097 0.0093 0.0089
0.4 0.0211 0.0202 [0.0193 0.0184 [0.0174
0.5 0.0346  {0.0330 |0.0313 0.0296  [0.0277
0.6 0.0506  {0.0480 |0.0453 0.0424 [0.0392
0.7 0.0704 [0.0665 0.0624 [0.0579 |0.0531

Table 2.6.2 Coefficient A*; according to eq.(1.2)
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Constant radial tractions and disappearing tangential displacements

The internally cracked circular disk under constant radial tractions and disappearing tangential
displacements along the circumference is illustrated in Fig. 2.6.4.

O,=const.

v =0

Fig. 2.6.5 Boundary conditions 0, = constant, v,=0.

The stress intensity factor for the loading case of 0, = constant, v, = 0 is represented by
eq.(2.6.1) with now 0, instead of 0*. The related geometric function is shown in Fig. 2.6.6a.
For v=0.25 and a/R<0.7 an approximation is given by

F=1+08162a* +38905a° —-6316la* +2.0754a0°, a =a/R (2.6.5)

The T-stress is represented in Fig. 2.6.6b. A fit relation is

T/o,=-07379a* —=7.7055a° +16.00a* -79212a° (2.6.6)

In Fig. 2.6.6 only a minor influence of vV on F and 7/0, is visible. From the additionally intro-
duced results for the boundary conditions of Tr,, = 0 instead of v, = 0 (see dashed curves), we
find an influence of the different tangential boundary conditions only, if a> 0.4.

The higher order coefficients 4| and A*; are compiled in Table 2.6.3 for v=0.25.

Ay A%
a/R=0.2 -0.1166 [-0.0100
0.3 -0.0974 [-0.0403
0.4 -0.0800 [-0.0959
0.5 -0.0548 [-0.1917
0.6 -0.0103 [-0.3472
0.7 0.0706  [-0.5967

Table 2.6.3 Coefficients 4; and A*; for v=0.25 according to eq.(1.2).
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Fig. 2.6.6 Geometric function and T-stress for boundary conditions 0, = constant, v, =0 (dashed curves: stress
boundary conditions 0, = constant, Tre,=0).

2.7 Displacement boundary conditions

The internally cracked circular disk under constant radial displacement u, and disappearing
tangential displacement v, is shown in Fig. 2.7.1. The stress intensity factor solution, expres-
sed by the geometric function F (see eq.(2.6.1)), is represented in Fig. 2.7.2a. The T-stress
term is shown in Fig. 2.7.2b.

For v=0.25 the results are approximated by

F=4-25727a° +2.0487a° +09988* -1400%°, a =a/R (2.7.1)
T/o*=3271a> -5.628a° +3826a* (2.7.2)

The higher order coefficients A; and A*, are compiled in Tables 2.7.1 and 2.7.2.

Fig. 2.7.1 Boundary conditions u, =uy = constant, V,=0.
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15 0.6 -
T/0™
0.4
1 0.4+
0.4 0.3
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0.2
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V=0
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a/R a/R

Fig. 2.7.2 Geometric function and T-stress for boundary conditions u, = constant, v,,=0.

v=0 0.2 0.3 0.4
a/R=0.2 -0.106 -0.132 -0.150 -0.174
0.3 -0.082 -0.102 -0.116 -0.133
0.4 -0.067 -0.084 -0.096 -0.110
0.5 -0.057 -0.073 -0.083 -0.095
0.6 -0.049 -0.064 -0.074 -0.085
0.7 -0.041 -0.057 -0.067 -0.079

Table 2.7.1 Coefficient A; according to eq.(1.2).

v=0 0.2 0.3 0.4
a/R=0.2 0.003 0.006 0.007 0.010
0.3 0.008 0.014 0.018 0.023
0.4 0.013 0.023 0.030 0.040
0.5 0.012 0.028 0.039 0.052
0.6 0.000 0.021 0.036 0.053
0.7 -0.040 -0.009 0.010 0.033

Table 2.7.2 Coefficient A*; according to eq.(1.2).
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2.8 Partially loaded disks

2.8.1 Stress boundary conditions

The case of different stress boundary conditions over parts of the circumference is dealt within
Section 2.2. Results for the stress intensity factor K are expressed by the geometric function ¥
according to

K=o NmF(y,alR) (2.8.1)
and represented in Fig. 2.8.1.

The T-stresses are illustrated in Fig. 2.8.2 as a function of the loading angle y and the crack
size a/R.

In Tables 2.8.1 and 2.8.2 the next higher order coefficients of the stress function, eq.(1.2), are
given.

14r1 b)
F
127
1F
— a/R=0.2
— 08T
I o6 o—o—o ©15°
05T
: a) 06T b)
O s 1 s 1 s 1 s 1 s 1 s 1 s
0 02 04 06 08 0 30 60 90
a/R \
Fig. 2.8.1 Geometric function F according to eq.(6.6.1)
Or 0T
L 90° L
T/o*| T/0™ |
-0.51 15° 05+
L 75%
r 30° -r
-1.5 - 45° 156
; 60 a/R=0.2
Fa) ,
2k , b)
L n 1 n 1 n 1 n 1 -2 i n 1 n 1 n
0 02 04 06 038 0 30 60 90
a/lR Y

Fig. 2.8.2 T-stress as a function of crack size and loading angle V.
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Ay A*
a/R=0.2 -0.115 -0.1659
0.3 -0.0766 |[-0.2554
0.4 -0.0393  [-0.3977
0.5 0.0056  [-0.5672
0.6 0.0598 [-0.7338
0.7 0.1344  [-0.9290

Table 2.8.1 Coefficients 4; and A*, according to eq.(1.2) for y=45°.

Ay A*
a/R=0.2 [-0.117 -0.0116
0.3 -0.0979 [-0.0359
0.4 -0.0828 [-0.0796
0.5 -0.0640 [-0.1465
0.6 -0.0346 [-0.2473
0.7 0.0179 [-0.4107

Table 2.8.2 Coefficients 4; and A*, according to eq.(1.2) for y=90°.

2.8.2 Mixed boundary conditions in the loading region

An internally cracked circular disk with constant radial displacements ug over the angle 2y and
disappearing normal tractions 0, on the remaining part of the surface is shown in Fig. 2.8.3. In
this loading case the shear tractions along the circumference were chosen to be Tr,=0.

2y TRw=0

Ur=constant

Z

0,=0

Fig. 2.8.3 Partially loaded, internally cracked disk under mixed boundary conditions: constant radial displace-
ment over angle 2y, disappearing normal tractions elsewhere, disappearing shear tractions along the whole cir-
cumference.
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The stress intensity factor for the loading case of ug = constant, Tr,= 0 is defined by

ugkl
R

(E=Young's modulus, F'=geometric function). Results of the Boundary Collocation computa-

tions are represented in Fig. 2.8.4 for a Poisson's ratio of v =0.25 and several loading angles Y.

The influence of the Poisson's ratio is shown in Fig. 2.8.5. The T-stress is represented in Fig.
2.8.6.

K:a*\/EF(a/R,V,y), o=

(2.8.1)

1.4C
F
121
1L
08k
0 02 04 06 08 0 30 .. 60 90
a/R Y

Fig. 2.8.4 Geometric function F, defined by eq.(2.8.1), as a function of crack size and loading angle.

1.6
=
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0.6
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Fig. 2.8.6 T-stress as a function of crack size, Poisson's ratio, and loading angle y.

2.8.3 Displacement boundary conditions in the loading region

The internally cracked circular disk with constant radial displacements ur and disappearing
tangential displacements v, over the angle 2y and traction free surfaces elsewhere is shown in
Fig. 2.8.7.
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Fig. 2.8.7 Partially loaded, internally cracked disk under mixed boundary conditions: constant radial and disap-
pearing tangential displacements over angle 2y, disappearing tractions elsewhere.

The geometric function according to eq.(2.8.1) is plotted in Fig. 2.8.8 as a function of Y, a/R,
and V. The T-stress is shown in Fig. 2.8.9.

In Fig. 2.8.10 the geometric function and the T-stresses are plotted for the two boundary con-
ditions in the loading region: ugr = constant, v, =0 (solid curves) and ur = constant, Tre, = 0
(dashed curves). Only very small differences can be detected.

y=45°
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Fig. 2.8.8 Influence of the Poisson's ratio v on the geometric function F.
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Fig. 2.8.9 T-stress as a function of crack size, Poisson's ratio, and loading angle y.

1.4r I
0 A
F
T/o*
12r
-0.5r
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Fig. 2.8.10 Influence of the tangential boundary condition in the loading range on F and T-stress. Solid curve
ug=const., V,=0; dashed curve: ug=const., T,,=0.
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3 Edge-cracked circular disk

Edge-cracked circular disks are often used as fracture mechanics test specimens. Figure 3.1
shows the geometric data.

Fig. 3.1 Geometric data of an edge-cracked circular disk.

3.1 Circumferentially loaded disk (traction boundary conditions)

A circular disk is loaded by constant normal tractions 0, along the circumference (for loading
see Fig. 3.1.1)

(3.1.1)
Fig. 3.1.1 Edge-cracked circular disk under pure stress boundary conditions.
The stress intensity factor solution is for this loading case
11215
K[:Uanm , sz, a=alD (312)
-a
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For a single-edge-cracked disk a weight function is given in [6]

2 P 32 5/2
hx,a)= ,/—{ +D,J1-p+D,(1-p)" +D,(1 —p) (3.1.3)
| \J1-p

with the coefficients

D, =(15721+24109a -08968a° —-14311a°)/ (1 —a )*?
D, =(04612 +05972a +0.7466a° +22131a’) /(1 —a )**
D, =(-02537 +04353a -0.2851a’ —0.5853a°)/ (1 o )*?

In this case it holds [6]
A*, (1-a)’ =-011851 =C*, (3.1.4)

and, from eqs.(1.14) and (1.26)

T gy, 2 0474
o (1-a)
(3.1.5)
T. _ 0474 _
o, (I-a)

The value C*( occurring in eq.(3.1.4) is identical with the coefficient of Wigglesworth's [25]
expansion for the edge-cracked semi-infinite body.
The biaxiality ratio results as

04227
1-a

B

(3.1.6)

Using eq.(3.1.5) as the reference T-stress solution, the coefficient C for the Green's function,
represented by eq.(1.28), follows as

0.9481

=, =al/D 3.1.7
a(l-a)’ ( )
Consequently, the T-stress can be computed from
09481 |
= - [a-po(pydp-0o,| . p=x/a (3.1.8)
(-a) ; x=a

Further coefficients of the Williams stress function are [7]

_-0.02279 +0.1322a
! (1-a)*Ja

(3.1.9)
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_ 0.04812-0.1185a
(1-a)a

*
1

(3.1.10)

—0.00680 - 0.03416a +0.0991a>
4, = —aa” (3.1.11)

~0.01787 +0.09627 a -011851a’
A*, = I—ara’ (3.1.12)

For special applications also crack opening displacements O at the crack mouth x =0 are of
interest. Figure 3.1.2 represents the displacements under constant normal tractions O, in the
form

5=%(1—a/D)2/\(a/D) (3.1.13)

The results of boundary collocation computations are represented by the circles. From a least-
squares fit we obtain the representation

A =1454+0526a/ D (3.1.14)

The dashed curve in Fig. 3.1.2 is the solution for the single edge-cracked endless parallel strip
as reported by Tada [1].

0 02 04 06 08 1
o=a/D

Fig. 3.1.2 Crack-mouth displacements (x=0) according to eq.(3.1.13); circles: edge-cracked disk, dashed curve:
results for the single edge-cracked endless parallel strip, reported by Tada [1].

The stress intensity factor for mode-II loading by constant shear tractions Ty is
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K, =1,F,m (3.1.15)

The related geometric function Fy is plotted in Fig. 3.1.3. A fit relation for a =a/2R < 0.8 is
given by eq.(3.1.16).

1 1

0O 02 04 06 08 1

a/l2R

Fig. 3.1.3 Geometric function for loading by constant shear tractions on the crack faces.

_ 11216 -0.5608 a +13433a° -19734a° +0.8954a *

Vl-a

F, (3.1.16)

A mode-II weight function is

[ 2 1
hy(x,a) = EI:H + Dyl -p +D(1 -p)"” +D,(1 -p)"° (3.1.17)

with coefficients compiled in Table 3.1.1, which can be interpolated by cubic splines.

For a/2R <0.55 the coefficients are approximated by

_ 0407 +02393a +4.6661a’ -0547a’

D, o (3.1.18)
D, 0070 (3.1.19)
D, - 03092+ 0.0202 a+ 01913a> (3.1.20)

Higher order coefficients for the antisymmetric stress function, eq.(1.2'), are compiled in
Table 3.1.2.
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a/2R | D, D, D,

0.1 [0.4981 |0.6931 |[-0.305
0.2 0.6228 |0.6853 |[-0.296
0.25 [0.7069 |0.6856 |[-0.290
0.3 |0.8032 |0.6896 |[-0.284
0.35 [0.9118 |0.6965 |[-0.278
04 |1.034 |0.7044 |-0.272
045 |1.172 ]0.7096 |-0.264
0.5 |[1.332 ]0.7064 |[-0.253
0.55 |1.523 |0.6861 |[-0.236
0.6 |1.759 ]0.6352 [-0.210
0.65 [2.062 ]0.5321 [-0.169
0.7 (2470 ]0.3394 [-0.103
0.75 |3.052 |-0.013 [0.006
0.8 |[3.944 |-0.674 [0.198

Table 3.1.1 Coefficients for the mode-II weight function eq.(3.1.17).

a/2R B*, B, B*,
0.2 0.175 0.217 -0.832
0.3 0.164 0.144 -0.441
0.4 0.178 0.089 -0.276
0.5 0.215 0.039 -0.159
0.6 0.294 -0.018 0.000
0.7 0.471 -0.094 0.412
0.8 0.981 -0.229 2.231

Table 3.1.2 Higher order coefficients according to eq.(1.2") for mode-II loading.
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3.2 Diametrically loaded disk

3.2.1 Load perpendicular to the crack

A disk of unit thickness is considered, which is diametrically loaded by a pair of forces P (Fig.
3.2.1). The forces may act perpendicularly to the crack plane. In this case the stresses are
given by

P B E=x/R,R=D/2 (3.2.1)
o* [1+(1-&°T ’ o

(P Uk M P (32.2)
o* [1+1-4)]

P

Fig. 3.2.1 Diametrically loaded circular disk.

The stress intensity factor results from eq.(1.19a) with the weight function of eq.(3.1.3) and
the T-term from eq.(3.1.8)

% 2
r g W8I0 4(1—3j arctan(l —ﬁj P L —/1(1 —ﬁj - o] _(3.23)
2(1-a)(a/R) R R)"°R R R)| b=

Considering the total x-stress (crack contribution and x-stress component in the uncracked
body), the biaxiality ratio can be computed according to eq.(1.17). The T-stress and the stress
intensity factor result in the biaxiality ratio 3 which is shown as a curve in Fig. 3.2.2.
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In addition to the Green's function computations, the biaxiality ratios were directly determined
with the Boundary Collocation method (BCM) which provides the coefficients 4, 4*y and by
eq.(1.18) the quantity 3 for diametrical loading. The results are entered as circles. An
excellent agreement is obvious between the BCM results and those obtained from the Green's
function representation. This is an indication of an adequate description of the Green's
function by the set-up eq.(1.28) using one regular term only.

0.5

B(1-0)"] i
0

-1.5

0 02 04 06 08 1
a/D

Fig. 3.2.2 Biaxiality ratio for an edge-cracked circular disk diametrically loaded by a pair of forces; line:
€q.(3.2.6), circles: BCM results.

a/D | T(1-a/D)* | B(1-a/D)"?
0 0 -1.236
0.1 | -0.364 -1.216
02 | -0.732 -1.134
03 | -0.970 -0.960
04 | -0915 -0.682
05| -0.526 -0.333
0.6 | 0.007 0.004
0.7 | 0430 0.245
0.8 | 0.652 0.370

Table 3.2.1 T-stress and biaxiality ratio for diametral point forces.
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3.3 Circumferentially loaded disk under mixed boundary conditions

Edge-cracked circular disks under mixed boundary conditions are shown in Fig. 3.3.1.

a)

Fig. 3.3.1 Edge-cracked disk under mixed boundary conditions; a) constant normal tractions, disappearing
circumferential displacements, b) constant radial displacement, disappearing shear tractions at the surface.

Case: ug=constant, Tr=0

With the scaling stress

uyE
o*= L= 3.3.1
R (3.3.1)
the stress intensity factor is
K,=0*Jm F(a/2R, V) (3.3.2)

with the geometric function F plotted in Fig. 3.3.2a for several Poisson's ratios. For the special
value of v =0.25 the results are fitted as

F=44+0953a +20157a* -10735a°> +156.09a * -72.69a ° (3.3.3)

Using a modified geometric function
F*=(1-v)F (3.3.4)

a coincidence of the curves is visible for a/2R - 0 (see Fig. 3.3.2b).
The T-stresses are shown in Fig. 3.3.3. An approximation for v=0.25 and a=a/2R<0.75 is

T/o*=-3137a° +40.744a° -76904a"* +41.623a° (3.3.9)

The higher order coefficients of eq.(1.2) are compiled in Tables 3.3.1 and 3.3.2.
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0 . 1 . 1 . 1 . 1 . . 1 . 1 . 1 . 1 .
0O 02 04 06 08 1 0O 02 04 06 08 1
a/l2R a/l2R

Fig. 3.3.2 Stress intensity factor for the boundary conditions of ur = constant, Tz, =0. For F see eq.(3.3.2) and
for F* eq.(3.3.4).

12F
T/o* |
1+

08~
06r
04+

0.2

T

0 02 04 06 08 1
a/l2R

Fig. 3.3.3 T-stress for the boundary conditions of ur = constant, Tz, =0.

a/2R v=0 0.2 0.4

0.1 -0.0983 [-0.1209 |-0.158

0.2 -0.0389 [-0.0450 |-0.0546
0.3 0.0189 [0.0239 0.0305

0.4 0.0721 0.0802 0.0901

0.5 0.1035 0.110 0.1166

0.6 0.1113 0.1153 0.1196

0.7 0.1036  [0.1072 0.1108

0.8 0.0879  {0.0920 |0.0960

Table 3.3.1 Coefficient A according to eq.(1.2).
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a/2R v=0 0.2 0.4
0.1 0

0.2 0 0

0.3 0 0

0.4 0.001 0 0

0.5 0.007 0.006 0.005
0.6 0.017 0.013 0.010
0.7 0.030 0.024 0.017
0.8 0.047 0.037 0.027

Table 3.3.2 Coefficient A*| according to eq.(1.2).

Figure 3.3.4 represents the crack opening displacements 0 (for & see Fig. 3.1.2) under constant
radial displacements and disappearing shear tractions at the circumference in the form

2a0*

'

o=

A(a/ D) (3.3.6)

with 0* given by eq.(3.3.1).

25/ |
2 : l
f Wi
1.5 71 i l
1O 02 04 06 08 1 "0 02 04 06 08 1

o=a/D o=a/D

Fig. 3.3.4 Crack-mouth displacement represented by eq.(3.3.6). Boundary conditions: ug = constant, Tge,=0.

Case: Or=constant, vg =0

In this case the stress intensity factor is
K, =0,Vm F(a/2R,V) (3.3.7)

The geometric function is plotted in Fig. 3.3.5a for several values of v. Figure 3.3.5b
represents the T-stress. For the special value of v=0.25 the geometric function is fitted as
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F =0.6163+02603a +0.6739a* -04497a’ (3.3.7)
The higher order coefficients 4, and 4*; of eq.(1.2) are compiled in Tables 3.3.3 and 3.3.4.

14 F 0
F 1 a)
1.2+ T/o*
04
0.2 -0.1
1r v=0
0.8r
-0.2
06~
04 -0.3

0 02 04 06 08 1 0 02 04 06 08 1
a/l2R a/2R

Fig. 3.3.5 Geometric function and T-stress for the boundary conditions of @, = constant, vz =0.

a/2R v=0 0.2 0.4

0.1 -0.176 -0.176 -0.176
0.2 -0.124 -0.123 -0.122
0.3 -0.100 -0.099 -0.098
0.4 -0.080 -0.080 -0.080
0.5 -0.058 -0.059 -0.061
0.6 -0.029 -0.031 -0.034
0.7 0.018 0.013 0.009

0.8 0.100 0.096 0.088

Table 3.3.3 Coefficient A according to eq.(1.2).

a/2R v=0 0.2 0.4

0.1 0.047 10.040 ]0.024
0.2 -0.059 |-0.067 |-0.078
0.3 -0.087 |-0.092 |-0.095
0.4 -0.130 |-0.130 |-0.129
0.5 -0.191 |-0.186 |-0.181
0.6 -0.281 |-0.270 |-0.260
0.7 -0.420 |-0.405 |-0.392
0.8 -0.664 |-0.657 |-0.626

Table 3.3.4 Coefficient A*, according to eq.(1.2).
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3.4 Disk under displacement boundary conditions

An edge-cracked circular disk under pure displacement boundary conditions is shown in Fig.
3.4.1.

Fig. 3.4.1 Edge-cracked disk under pure displacement boundary conditions: constant radial displacement,
disappearing tangential displacements.

Case: ugr=constant, Tr,,=0
With the scaling stress given by eq.(3.3.1), the stress intensity factor is
K,=0*Jm F(a/2R, V) (34.1)

with the geometric function F plotted in Fig. 3.4.2 for several Poisson's ratios. The T-stresses
are shown in Fig. 3.4.3.

1F
0.7r
F | a) F* b)
0.8r
0.6+
06+ 04
L %%\O\O\OM\ 0.2 05¢L
04 r v=0
v=0
0.4+
02k 0.2
0.4
0 0.3

0 02 04 06 08 1 0 02 04 06 08 1
a/l2R a/l2R

Fig. 3.4.2 Geometric functions for the boundary conditions of ur = constant, vg =0. For F see eq.(3.4.1), for F*
eq.(3.3.4).

47



0.6

T/o*

04r

v=0

0.2
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0 02 04 06 08 1
a/l2R

Fig. 3.4.3 T-stress for the boundary conditions of ug = constant, vz =0.

For the special value v=0.25 the results are fitted as

F=0814-0175a -02192a’

and the related T-stress (for 0.1 <a/2R<0.8) by

T/0o*=00388 +05568a —1.1934a° +1448a

The higher order coefficients of eq.(1.2) are compiled in Tables 3.4.1 and 3.4.2.

a/2R v=0 0.2 0.4

0.1 -0.171 -0.213 -0.283
0.2 -0.120 -0.149 -0.197
0.3 -0.097 -0.120 -0.157
0.4 -0.083 -0.102 -0.133
0.5 -0.073 -0.090 -0.115
0.6 -0.064 -0.080 -0.102
0.7 -0.057 -0.071 -0.091
0.8 -0.047 -0.062 -0.082

Table 3.4.1 Coefficient 4, according to eq.(1.2).
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a/2R v=0 0.2 0.4

0.1 0.257 [0.248 |0.260
0.2 0.136 [0.142 |0.159
0.3 0.099 10.107 ]0.125
0.4 0.082 [0.090 |0.108
0.5 0.071 |0.080 |0.098
0.6 0.061 [0.073 |0.092
0.7 0.048 |0.063 |0.085
0.8 0.014 [0.037 |0.067

Table 3.4.2 Coefficient 4*; according to eq.(1.2).
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3.5 Brazilian disk (edge-cracked)

The diametral compression test (Brazilian disk test) is illustrated in Fig. 3.5.1.

thickness t

P

Fig. 3.5.1 Brazilian disk test with edge-cracked disk.

The circumferential and radial stress components in an uncracked Brazilian disk have been
given by Erdlac (quoted in [19]) as

— 12 in’
_2P [l_ (1-pcos®)sin” @  (1+ pcosO)sin @}’ o=r/R (3.5.1)

J¢ =0, 2 _ 2 2 2
7IR|2 (1+p° —2pcos@)” (1+p° +2pcosO)
_2P|1 (1-pc0sO)(cos®@—p) (1+ pcosO)(cosO + p)’
g, = — - > T > > (3.5.2)
TIR| 2 (1+p0° —2pcosO) (1+,0° +2pcos@)

B(1_a)1/2 - @
il T8~
; T4
0

3118

0 02 04 06 08 1
a/D

Fig. 3.5.2 Brazilian disk test with an edge-cracked disk and biaxiality ratio B(1-a)"?, a=a/D.
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Using eq.(3.1.8) the T-stress can be determined. The T-stress term, evaluated for several
relative crack depths /W and several angles O, is compiled in Tables 3.5.1 and 3.5.2 and the
biaxiality ratio in Table 3.5.3.

o=a/2R | ©=T116 | TU8 4 3rv8 | 71vl6 w2

0 0 0 0 0 0 0
0.05 2.671 1.086 | 0.359 [ 0.215 | 0.191 | 0.184
0.1 0.933 1.466 | 0.715 | 0.460 | 0.415 | 0.401
0.2 -1.687 0.194 | 1.068 | 0.979 | 0.937 | 0.922
0.3 -2.319 | -1.099 | 0.691 | 1.328 | 1.428 | 1.456
0.4 -2.546 | -1.824 | -0.078 | 1.235 | 1.577 | 1.691
0.5 -2.744 | -2.310 | -0.896 | 0.518 | 0.952 | 1.104
0.6 -3.050 | -2.814 | -1.906 | -1.153 | -0.959 | -0.894
0.65 -3.290 | -3.163 | -2.727 | -2.637 | -2.662 | -2.675
0.7 -3.637 | -3.683 | -4.085 | -4.911 | -5.196 | -5.297

Table 3.5.1 T-stress 7,/0* for the Brazilian disk test (0*=P/(TRRf)).

a=a/2R|©=116| TU8 4 3rv8 | 7116 | T2
0 0.000 0.000 {0.000 {0.000 |0.000 {0.000
0.05 |[1.858 1.067 10376 [0.227 |0.203 |0.195
0.1 -1.979 1.097 10.760 |0.511 [0.464 |0.449
0.15 |-4.587 -0.044 | 1.015 [0.837 |0.784 [0.766
0.2 [-5.482 -1.470 {1.020 [1.172 |1.152 |1.143
0.25 |[-5.669 -2.610 {0.743 | 1.467 |1.543 |1.561
0.3 |[-5.633 -3.383 10.252 [1.670 |1.910 |1.981
0.35 [-5.556 -3.888 |-0.337 | 1.737 |2.192 |2.337
04 [-5.508 -4.231 |-0.922 [1.643 |2.317 |2.543
045 |[-5.515 -4.493 |-1.445 | 1.380 |2.210 |2.497
0.5 [-5.592 -4.725 |-1.896 [0.932 |1.799 |[2.104
0.55 |[-5.752 -4.959 |-2.305 [0.257 |1.017 |1.282
0.6 [-6.012 -5.221 |-2.750 {-0.746 |-0.219 |-0.042
0.65 [-6.399 -5.539 |-3.389 [-2.251 |-2.041 |-1.979
0.7 [-6.950 -5.968 |-4.524 |-4.569 |-4.714 |-4.773
0.75 |-7.735 -6.663 |-6.746 |[-8.316 |-8.844 |-9.029

Table 3.5.2 T-stress 7/0* for the Brazilian disk test (0*=P/(TtR)).
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a=a/2R|©=1716| TU8 4 3rv8 | 7vl6 | T2
0 -1.228 -1.228 |-1.228 |-1.228 |-1.228 |-1.228
0.05 |[-0.608 -1.062 |-1.196 |-1.220 |-1.224 |-1.225
0.1 ]0.549 -0.594 |-1.087 |-1.188 |-1.204 |-1.209
0.15 |1.446 0.019 [-0.900 [-1.127 |-1.166 |-1.178
0.2 1.995 0.600 [-0.651 [-1.036 |-1.106 |-1.128
0.25 [2.301 1.053 |[-0.372 [-0.914 |-1.021 |-1.054
0.3 |2.455 1.358 |[-0.104 [-0.769 |-0.910 |-0.955
035 [2.510 1.529 |0.118 [-0.610 [-0.776 |-0.830
04 |2.500 1.591 [0.276 |[-0.449 |-0.622 |-0.679
0.45 (2.440 1.570 [0.367 |[-0.297 |-0.457 |-0.510
0.5 |2.342 1.486 (0.400 |(-0.158 |-0.289 |-0.332
0.55 ]2.209 1.354 (0.394 |(-0.034 |-0.127 |-0.156
0.6 2.043 1.190 [0.369 |0.076 |0.021 |0.004
0.65 |1.843 1.005 [0.345 |0.173 |0.147 |0.139
0.7 1.608 0.814 [0.334 [0.255 |0.247 |0.245
0.75 |1.337 0.636 [0.343 (0.320 |0.320 |0.321
1 0.423 0.423 (0.423 (0.423 |0.423 |0.423

Table 3.5.3 Biaxiality ratio B(1-a/D)"? for the Brazilian disk test.

3.6 Round-CT specimen

The RCT-specimen is identical with the single-edge-cracked circular disk, if the load appli-
cation holes are neglected. Figure 3.6.1 represents this fracture mechanics test specimen.

Fig. 3.6.1 Geometric data of the RCT specimen.

The stress intensity factor solution was derived by Newman [26] as
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K,:LY*(a), a=alW

BIW

oo 2+ @)076 +48a ~1158a” +1143a° ~408a *
(1 _ 0)3/2

For 0.2 < a <0.8 the weight function can be expressed by the polynomial [27]

[(1-a)?+> D, (0-x/a)"a"]

[2 1
h=,—
mA1-x/a(l-a)”?

with the coefficients listed in Table 3.6.1

m=0 1 2 3 4

2.826 -5.865 0.8007 -0.2584 | 0.6856

-10.948 |48.095 -3.839 1.280 -6.734

35.278 -143.789 [ 6.684 -5.248 25.188

-41.438 [196.012 -4.836 11.435 -40.140

15.191 -92.787 -0.7274 |-7.328 22.047
Table 3.6.1 Coefficients D, for eq.(3.6.2)

A WO = OB

The T-stress term can be approximated by

700948t @

B(a+A)
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4 Double-edge-cracked circular disk

The double-edge-cracked circular disk is shown in Fig. 4.1. Different traction and displace-
ment boundary conditions are possible. They will be considered in the following sections.

Fig. 4.1 Double-edge-notched disk.

4.1 Traction boundary conditions

Pure traction loading of 0,, = Or =constant and Tr,= 0 is illustrated in Fig. 4.1.1.

Or

Fig. 4.1.1 Double-edge-cracked disk under traction boundary conditions of 0,=0r=constant, Tz=0.

The geometric function F for the stress intensity factor is
K=o Fym , F'=FJl-a,a=al/R (4.1.1)

as shown in Fig. 4.1.2 and approximated by
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P 11215+ 02746 a —0.7959a?* -11411a? +11776a *
- J1-a

(4.1.2)

F'

1.2
4

1.1

1

0.9

0.8

0.7
o6r ° BCM

0'50 02 04 06 08 1

a

Fig. 4.1.2 Geometric function F' for the double-edge-cracked disk.

The weight function for the double-edge-cracked disk under traction boundary conditions is

7= i{L +CT=p +G (1 -p)2 +Cy(1 -p)™ (4.13)

Ta| \J1-p

with p=x/a and the coefficients

_ 04594 +23454a -1.0205a° -7.7547a° +9.1403a *

Ji-a

_0.6833-01484a —18811a* +7.0112a° —89802a *

Ji-a

_ —03059 +0.2829a +03552a* —19646a° +2.4682a*

Ji-a

C, (4.1.4)

Cl

(4.1.5)

C, (4.1.6)

The T-stress under loading by constant circumferential normal tractions 0, is shown in Fig.
4.1.3 together with the biaxiality ratio (3. In contrast to the single-edge-cracked disk, the
relative crack length is defined here by o =a/R (R = D/2).

The T-stress can be expressed by
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L 0474 +04002a +09104a° +14406a° 168740 * 4.1.7)

0-71
1.5 1
T/o, B |
1.25 0.9
0.8T
1 I
07T
0.75 i
0.6T
05 ’
05r
0.25 L 1 L 1 L 1 L 1 L 0.4 L 1 L 1 L 1 L 1 L
0 02 04 06 08 1 0 02 04 06 08 1
a a

Fig. 4.1.3 T-stress and biaxiality ratio for the double-edge-cracked circular disk under circumferential normal
tractions.

For the Green's function under symmetrical loading the same set-up is chosen as used for
single-edge-cracked components. It can be expressed in the integrated form as

r=cfi-x/a)o,(x)dx~0,| _ (4.1.8)
bt X=a
with the parameter C entered into Table 4.1.1 and fitted for a <0.8 by the polynomial
C= l(0.9481 +0.8043a +18207a° +2.8813a° —-33747a ") (4.1.9)
a

a/R | T/o, B aC

0 0.474 [0.423 0.9481
0.2 (0599 [0.472 1.199
0.3 |0.702 ]0.528 1.405
04 (0.829 ]0.604 1.658
0.5 10977 ]0.698 1.954
0.6 |[1.136 [0.795 |2.273
0.7 |1.290 [0.865 |2.580
0.8 |1.425 [0.873 |2.850

Table 4.1.1 T-stress, biaxiality ratio, and coefficient for the Green's function.
Loading: constant circumferential normal tractions, disappearing shear tractions.

The higher order coefficients 4; and A*; according to eq.(1.2) are compiled in Table 4.1.2.
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a/R A A¥

0.2 -0.039 0.472
0.3 -0.012 0.285
0.4 0.008 0.170
0.5 0.021 0.085
0.6 0.023 0.022
0.7 0.007 -0.016
0.8 -0.051 -0.025

Table 4.1.2 Coefficients 4; and 4*, according to eq.(1.2).

The double-edge-cracked disk under constant shear tractions Ty on the crack faces is illustrated
in Fig. 4.1.4 together with the stress intensity factor solution represented by

K,=t1,F,Nm, F,=F,1-a/R (4.1.10)

The data of Fig. 4.1.4 can be expressed by

_11215-05608a +0.2185a° —=0.5007a° +03584a*

K Ji-a |

In addition, Fig. 4.1.4 contains the mode-II stress intensity factor solution for the double-edge-
cracked endless strip [1] as the dashed curve. Only small deviations from this solution are
visible in the region of 0.3 <a/R <(0.7. An approximate weight function can be derived from
eq.(4.1.11) by applying the extended Petroski-Achenbach procedure ([28], see also [6]).

a=al/R (4.1.11)

The coefficients for a representation

h[l = i|: 1 +C1 l—p +C1(1 _p)3/2 +C2(1 _10)5/2 (4'1'12)
\/ TTa| J1-p

are compiled in Table 4.1.3

a |G C G,

0.2 [0.496 [0.693 |[-0.306
0.3 [0.553 [0.680 [-0.299
0.4 [0.646 [0.647 |-0.286
0.5 [0.807 [0.560 |[-0.258
0.6 [1.103 [0.344 |[-0.195
0.7 [1.700 [-0.190 [-0.049
Table 4.1.3 Coefficients for the weight function eq.(4.1.12).
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a/R
Fig. 4.1.4 Double-edge-cracked disk under constant shear tractions on the crack faces; dashed curve: solution for
the double-edge-cracked endless strip (see e.g. [1]).

Figure 4.1.5 represents the displacements under constant normal tractions g, in the form

2a0, 1\ 1a Aa), a=alR (4.1.13)

0= —
E a 1-

The results of boundary collocation computations are represented by the circles. From a least-
squares fit we obtain the representation

A =1454 +03893a +5.0022a* -19.5054a® +236198a * 103233 °  (4.1.14)

The dashed curve in Fig. 4.1.5 is the solution for the double-edge-cracked endless parallel
strip as reported by Tada [1].

1.5

05|
0 02 04 06 08 1
Oo=a/R

Fig. 4.1.5 Crack-mouth displacements (x = 0) according to eq.(4.1.13); circles: double-edge-cracked disk, dashed
curve: results for the double-edge-cracked endless parallel strip, reported by Tada [1].
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4.2 Mixed boundary conditions

Figure 4.2.1 shows the case of constant normal tractions Or and disappearing tangential
displacements vy along the circumference.

Fig. 4.2.1 Mixed boundary conditions G,=constant, v,,=0.
The stress intensity factor described by
K=0 F(V,al R)Nm 4.2.1)

and the T-stress are plotted in Fig. 4.2.2. In this loading case the T-stresses are very small. The
higher order terms 4, and 4*; of eq.(1.2) are compiled in Tables 4.2.1 and 4.2.2.

1 0.2
F i _
09 B T/Gn = V—O
0.4 F o 0.2
0.2 e 04
0.8 v=0
01r
0.7r
06
0-5 " 1 " 1 " 1 " 1 " OO " 1 " 1 " 1 " 1 "
0 02 04 06 0.8 1 0O 02 04 06 0.8 1
a/R a/lR

Fig. 4.2.2 Geometric function F and T-stress as functions of v and a/R.

Forv=0.25 and a=a/R<0.75 the geometric function can be approximated by

F=059+0462a -1171a” +1197a’ (4.2.2)

59



and the related T-stress for a <0.75 by

T/o*=0127a> +5.024a° —18468a* +26.0173a > —13.7978a ° (4.2.3)

a/R v=0 0.2 0.4

0.2 -0.172 -0.172 -0.171
0.3 -0.137 -0.137 -0.137
0.4 -0.119 -0.118 -0.118
0.5 -0.108 -0.107 -0.107
0.6 -0.104 -0.103 -0.102
0.7 -0.108 -0.107 -0.107
0.8 -0.127 -1.27 -0.126

Table 4.2.1 Coefficient A; according to eq.(1.2).

a/R v=0 0.2 0.25 0.4

0.2 0.011 ]0.009 |-0.008 |-0.014
0.3 -0.035 |-0.041 |-0.043 |-0.048
0.4 -0.038 |-0.045 |-0.046 |-0.051
0.5 -0.039 |-0.047 |-0.049 |-0.053
0.6 -0.038 |-0.045 |-0.047 |-0.051
0.7 -0.029 |-0.034 |-0.035 |-0.039
0.8 -0.017 |-0.022 |-0.023 |-0.026

Table 4.2.2 Coefficient A*; according to eq.(1.2).

Figure 4.2.3 shows the case of constant radial displacements u, = ur and disappearing shear
tractions Tre. The stress intensity factor is given by

E
K=0*F(v,a/ R)\Jm , a*:”I;z (4.2.4)
The geometric function F is plotted in Fig. 4.2.4a. In the form of
F*=F(1-v) (4.2.5)

the results (which now coincide for a/R=0) are shown in Fig. 4.2.4b.
For v=0.25 the geometric function F in the region a/R <0.8 can be approximated by

F=%4+08251a +0.65527a” —-12.6637a” +17.6804a * =7.1736a ° (4.2.6)

and the T-term by

T/o*=-09611a” +11812a° —238847a* +20.5897a° -6.7657a ° (4.2.7)
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Fig. 4.2.3 Mixed boundary conditions ur =constant, Tr,=0.
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Fig. 4.2.4 Geometric function according to eq.(4.2.4).
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Fig. 4.2.5 T-stress term for the conditions of ur =constant, Tr,,=0.
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Values of the higher order coefficients 4; and 4*, of eq.(1.2) are compiled in Tables 4.2.3 and
4.2.4.

a/R v=0 0.2 0.25 0.4

0.2 -0.094 |-0.116 |-0.122 |-0.149
0.3 -0.064 |-0.075 |-0.079 |-0.094
0.4 -0.041 |-0.047 |-0.049 |-0.055
0.5 -0.025 |-0.027 |-0.028 |-0.030
0.6 -0.016 |-0.016 |-0.016 |-0.017
0.7 -0.015 |-0.015 |-0.015 |-0.016
0.8 -0.027 |-0.030 |-0.030 |-0.033

Table 4.2.3 Coefficient 4; according to eq.(1.2).

a/R v=0 0.2 0.4

0.2 0.003 0.002 0.001
0.3 0.007 0.006 0.004
0.4 0.010 0.008 0.007
0.5 0.011 0.009 0.008
0.6 0.010 0.008 0.007
0.7 0.007 0.006 0.004
0.8 0.003 0.003 0.002

Table 4.2.4 Coefficient 4*; according to eq.(1.2).

Figure 4.2.6 represents the crack opening displacements 0 (for 0 see Fig. 4.1.5) under constant
radial displacements and disappearing shear tractions at the circumference in the form

2a0 *

'

5= Ala/ R) (4.2.8)

with 0* given by eq.(4.2.4).
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Fig. 4.2.6 Crack-mouth displacement represented by eq.(4.2.8). Boundary conditions: ug = constant, Tge,=0.

4.3 Displacement boundary conditions

The case of pure displacement boundary conditions is illustrated in Fig. 4.3.1. Under these
boundary conditions, the geometric functions F' for the stress intensity factor, defined by
eq.(4.2.3), result as shown in Fig. 4.3.2a. The T-stress term is given in Fig. 4.3.2b.

Fig. 4.3.1 Displacement boundary conditions ur =constant, v,,=0.

For v=0.25 the geometric function F in the range a/R < 0.8 can be approximated by

F =0824-01267a +0.02799a* 4.3.1)

and the T-stress in the range of 0.2<a/R<0.8 by

T/0o*=00496+0175a -01016a* -02251a° +0.5331a* (4.3.2)
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Fig. 4.3.2 Geometric function F and T-stress as functions of v and a/R.

a/R v=0 0.2 0.25 0.4

0.2 -0.170 |-0.212 |-0.226 |-0.282
0.3 -0.138 |-0.172 |-0.183 |-0.228
0.4 -0.119 |-0.148 |-0.158 |-0.195
0.5 -0.106 |-0.132 |-0.140 |-0.172
0.6 -0.096 |-0.119 |-0.126 |-0.154
0.7 -0.090 |-0.111 |-0.117 |-0.142
0.8 -0.090 |-0.110 |-0.117 |-0.140

Table 4.3.1 Coefficient A, according to eq.(1.2).

a/R v=0 0.2 025 (04

0.2 0.239 [0.237 0.232 |0.23

0.3 0.167 [0.171 |0.174 |0.188
0.4 0.130 {0.138 |0.141 |0.156
0.5 0.106 [0.114 |0.117 |0.133
0.6 0.085 {0.093 |0.096 |0.110
0.7 0.065 [0.072 ]0.074 |0.085
0.8 0.043 {0.048 |0.050 |0.056

Table 4.3.2 Coefficient A*; according to eq.(1.2).
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4.4 Double-edge-cracked Brazilian disk
The Brazilian disk test with a double-edge-cracked circular disk is illustrated by Fig. 4.4.1.

thickness t

P

Fig. 4.4.1 Brazilian disk test with double-edge-cracked specimen.

Mode-I stress intensity factors computed with the weight function, eqgs.(4.1.3)-(4.1.6), and
expressed by the geometric function F are entered into Table 4.4.1. The geometric function F'
is defined by

K=o*FJm , o*=P/(mRt) (4.4.1)
a=a/R |©@=m32| wWi6 | ™8 | w4 | 3m8 | Tmi6 | m2
0 0 0 0 0 0 0 0
0.1 | -6.189 |[-2.953|-0.970 | -0.304 | -0.180 | -0.160 | -0.154
02 | -4.105 |-3312-1.709 | -0.648 | -0.399 | -0.357 | -0.344
03 | -2728 |-2.680 | -1.989 | -0.987 | -0.652 | -0.590 | -0.571
04 | -1.901 |-2.044 | -1.927 | -1.274 | -0.927 | -0.854 | -0.832
0.5 -1.343 -1.541 | -1.713 | -1.479 | -1.212 | -1.145 | -1.127
0.6 | -0934 |-1.153 | -1.469 | -1.607 | -1.500 | -1.459 | -1.445
0.7 | -0.615 |-0.855|-1.263 | -1.705 | -1.809 | -1.817 | -1.817

Table 4.4.1 Stress intensity factor represented by the geometric function F for the Brazilian disk test.

Using the Green's function and the stress distribution given by eqs.(3.5.1) and (3.5.2), the T-
stress was computed. Table 4.4.2 contains the data for several angles © (see Fig. 4.4.1).
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a=a/R | ©=1132 16 T8 4 3’8 | 71vl6 w2
0 0 0 0 0 0 0 0
0.1 -3.075 1.859 1.076 | 0376 | 0.227 | 0.203 | 0.195
0.2 -8.879 -2.012 1.084 | 0.756 | 0.509 | 0.462 | 0.447
0.3 -8.773 -4.696 | -0.096 | 0.995 | 0.825 | 0.773 | 0.756
0.4 -8.009 -5.678 | -1.584 | 0.969 | 1.139 | 1.123 | 1.114
0.5 -7.348 -5.934 | -2.788 | 0.649 | 1.403 | 1.484 | 1.504
0.6 -6.833 -5.924 | -3.601 | 0.118 | 1.571 | 1.818 | 1.891
0.7 -6.42 -5.81 -4.10 | -0.484 | 1.62 2.08 2.23
0.8 -6.07 -5.65 -4.36 | -1.02 1.56 2.23 2.46

Table 4.4.2 T-stress 7/0* for the Brazilian disk test (0*=P/(TRt)).
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