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Magnetohydrodynamic flow in the liquid phase
for the
EVOLVE boiling scenario

Abstract

In the EVOLVE concept for a fusion blanket a boiling scenario is proposed where a
number of permanent vertical vapor channels are formed in a horizontal layer of liquid
lithium. The present analysis focuses on the flow of the electrically conducting liquid
phase in the presence of a strong uniform horizontal magnetic field. The cross section
of vapor channels is circular if surface tension dominates magnetic forces. In the other
case a stretching of the liquid-vapor interface along magnetic field lines is observed and
contours become possible where a major part of the interface is straight and aligned with
the field. For strong magnetic fields the liquid flow exhibits several distinct subregions.
Most of the liquid domain is occupied by inviscid cores. These are separated from
each other by parallel layers that spread along the field lines which are tangential to the
vapor channel. In the core between two parallel layers the flow direction is preferentially
oriented along magnetic field lines, while outside these layers the flow is perpendicular
to the field. The magnetohydrodynamic pressure drop in the liquid phase is relatively
small.



Magnetohydrodynamische Stromungen in der fliissigen Phase

fiir das
EVOLVE Siedeszenario

Zusammenfassung

Im EVOLVE Konzept eines Fusionsblankets wird ein Siedeszenario vorgeschlagen, bei
dem sich permanente vertikale Dampfkanile in einer horizontalen Fliissigkeitsschicht
bilden. Gegenstand der Untersuchung ist die Stromung in der elektrisch leitenden fliis-
sigen Phase unter der Einwirkung eines homogenen horizontalen Magnetfeldes. Wenn
die Oberflichenkrifte stirker sind als die magnetischen Kréfte, besitzen die Dampf-
kanéle einen nahezu kreisformigen Querschnitt. Im anderen Fall beobachtet man eine
Streckung der Querschnitte entlang magnetischer Feldlinien. Diese Streckung kann da-
zu fiithren, dass grofie Teile der Kontur gerade werden und sich entlang der Feldlinien
ausrichten. Fiir starke Magnetfelder entstehen mehrere charakteristische Stromungs-
bereiche. Dabei spielen die reibungsfreien Kernstromungsgebiete eine entscheidende
Rolle. Entlang den zur Kontur tangentialen Feldlinien entstehen viskose parallel Scher-
schichten, die jeweils zwei Kernstromungsgebiete voneinander trennen. Zwischen zwei
parallelen Schichten stromt das Fluid vorwiegend entlag magnetischer Feldlinien, wih-
rend auflerhalb der Schichten die Stromung senkrecht zum Magnetfeld verlduft. Der
magnetohydrodynamische Druckverlust in der fliissigen Phase ist relativ klein.
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1 Introduction

Efficient heat removal at high temperatures is a key issue for blankets in nuclear fusion
applications. The EVOLVE (Evaporation of Lithium and Vapor Extraction) concept
is a recently proposed candidate for such a blanket ( Anderson, Murphy, Sawan, Svi-
atoslavsky, Corradini and Malang (2000)) due to the large heat of evaporation of lithium.
The latter reference supports a potential boiling scenario where permanent vertical va-
por channels in horizontal layers of liquid lithium are held open by a balance between
vapor momentum, friction and magnetic field effects. The layers of liquid are located
on horizontal trays. One vapor channel is schematically shown in Fig. 1.

Figure 1: Geometry of a vapor channel located in a periodic arrangement.

In the following we will not analyze the heat transfer details. We assume that such a
boiling scenario exists and we analyze the two-dimensional magnetohydrodynamic flow
in the liquid phase in a plane perpendicular to these vapor channels. We give estimates
for the pressure drop required to drive the liquid to the interface. We show further that
the shape of vapor channels’ cross section may deviate from a circular cross section that
would be expected in the absence of a magnetic field. In case of a horizontal magnetic
field the channels are elongated along field lines.

It is not clear that a boiling scenario as proposed for EVOLVE exists really. This
scenario is based on the two assumptions, that strong magnetic fields suppress turbulent
movements of the liquid metal, and that it is possible to trigger the nucleation sites
required for the formation of vapor channels at the strongly heated bottom plate. Stable
vapor jets or columns seem possible in non-magnetic boiling if the vapor velocity is below
a certain threshold (see e.g. Whalley (1987) p.137-139). The start-up of such a flow
pattern and the stability of vapor channels in strong magnetic fields remain to be seen.



2 Formulation

In the following analysis we assume a steady state flow of a fluid with density p, kine-
matic viscosity v and electric conductivity o for which inertia forces are negligible in
comparison with electromagnetic forces. The governing equations then reduce to

1 o .
Vp=g5Viv+ixy, (1)

j=—-Vo+vx3. 2)

We have a balance between pressure forces, viscous forces and Lorentz forces. The
currents of density j, given by Ohm’s law, are driven by the gradient of a scalar electric
potential and by the induced electric field due to the fluid motion. Conservation of mass
and charge requires that

V.-v=0, V-j=0. (3)

Here, the variables p, ¢, v, and j denote the pressure, the electric potential, the velocity
vector and the electric current density scaled by the reference quantities ovyB2L, voBL,
vo and ovy B, respectively. The characteristic velocity vy is given by the rate of evapo-
ration at the interface between vapor and liquid and L is a typical length scale of the
problem in the plane of the vapor channel’s cross section. For circular vapor channels
L would be the radius. For periodically occurring vapor channels L is the half spac-
ing between neighboring channels, measured along magnetic field lines. The horizontal
magnetic field B = By has a magnitude B and an orientation along the y-coordinate
perpendicular to the vapor channel. For details of the geometry and coordinate systems
see Fig. 2.
The square of the Hartmann number

Ha = LB\/pZV (4)

measures the ratio of electromagnetic forces to viscous forces. For applications in nuclear
fusion Ha is typically on the order of 103 to 10*. In the present case the size of the vapor
channels L is not as large as the dimensions encountered in usual duct flows, but large
enough that the Hartmann number is still very high, Ha > 1. The assumption that
inertia is negligible compared to electromagnetic forces is justified for slow motions with
typical velocity vy for which the interaction parameter

oL B?

PYo

N =

(5)

is large, N > 1.

We assume here for simplicity that variations of the vapor channel geometry along
the channels’ axes, along x in the present notation, are small. We consider a typical
plane perpendicular to the channel’s axis in which the derivatives of flow variables along
x are small compared with the variations in this plane, i.e. 9, < 8,,0,. The velocity
has components in this plane only as v = vy+wz while the current density has a single
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Figure 2: Sketch of geometry and coordinate system

component along the axis, j =jX. We restrict the present analysis to cases which are
symmetric with respect to the y-axis for which w (z = 0) = 0. The velocity component
w is directly related by Ohm’s law with the current density and by the momentum
equation with the pressure gradient as j = —9¢/dx — w = dp/dz. Since both, w and
Op/0z vanish due to symmetry along the y-axis the potential gradient along the axis
of the vapor channel vanishes as well, 0¢/0x = 0. We assume that this holds also in
some distance from the vapor channel, i.e. we do not consider here the regions near the
bottom or the top of the liquid layer in which the currents close. This point is discussed
again later in the report.

We satisfy the mass conservation equation identically by choosing a streamfunction
formulation for the velocity field as

v =V x (U%) = 0.5 — 0,05 (6)

Elimination of the pressure from (1) by taking the curl yields an equation for the z-
component of vorticity w =V xv = wX as

V2w + Had,j = 0. (7)
We eliminate the current by Ohm’s law (2)

Jj=-—w=20 (8)
and find finally
V2w + Ha*d,,1p = 0. (9)

The definition of vorticity expressed in terms of the streamfunction leads to an equation
that determines v as
Vi 4w =0. (10)

The interface I' between the vapor and the liquid is assumed to be free of tangential
shear stress in the plane of the liquid motion.

w=0 atl. (11)



We assume further that the mass flux transferred from the liquid to the vapor phase is
uniform along the liquid-vapor interface This requires a uniform normal component of
velocity

v.n=-1 atl, (12)

with the unit normal n pointing from the vapor to the liquid. Expressed in terms of the
streamfunction the above relation is equivalent to

oy =—1 atT, (13)

where t is a coordinate along the interface. Thus, the streamfunction 1 becomes pro-
portional to the arc length measured along I'.



3 Numerical solution

In order to get a first impression how the flow will arrange we assume that the geom-
etry of the vapor channel remains circular and that the surrounding liquid domain is
unbounded. Later we will relax the condition on the interface and allow for non-circular
interface geometries which are determined by the solution of the problem. We intro-
duce a polar coordinate system located in the center of the vapor channel. In these
coordinates the Laplacean becomes

1 1
2
V* = (8”« + ;8,« + ﬁ@w) (14)
and the second derivative along y reads as
o, (1 1 ) , 1 1
Oyy = sin” ¢ ﬁaw + ;& + cos” ¢ Oy + 2sin p cos ¢ ﬁap — ;3w , (15)

so that we can express the equations (9) and (10).

It is difficult to formulate a proper condition for the streamfunction as r — oco. A
possible condition could be to assume a radial inflow especially for the case of weak
magnetic fields,

Op =0 asr — oo. (16)

However, as we will see below, for high Hartmann numbers the flow will be rather
parallel to magnetic field lines than oriented along the radial direction. For strong
magnetic fields, Ha > 1, a more appropriate condition could be to assume an inflow
aligned with the magnetic field

1
Oyt = —singp ;(?Wzﬁ +cospdp =0 asr — oo. (17)

Both conditions (16) and (17) are equivalent as r — oo. At large distances from the
interface the fluid velocity and its gradients become small so that

w—0 asr— oo. (18)
At the liquid vapor interface we have according to (13) and (11)
Y=—prp, w=0 atrp=1. (19)

For minimization of the computational effort we take profit of symmetries in the
problem. There is no flow across the lines ¢ = 0 and ¢ = 7/2 so that it is sufficient to
concern only the sector between these lines with symmetry conditions

Y =0, w=0 at ¢=0,

¢:—%7T7”F, w=0 at gpz%w.

(20)

For a numerical solution of (9) and (10) both would be desirable, to resolve the
Hartmann layer at the liquid-vapor interface and to extend the computational domain
to large values of r.x. For that reason we apply a transformation to the radius such as

r=exp (£). (21)
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This transformation gives a good resolution near » = 1 (£ = 0) and, even if r., > 1,
€ ax has values of order unity. We multiply the equations by r? and find as an expression
for the Laplacean

r?v? = 855 + 35050 (22)

and for
720y, = sin® p 0,, + cos® ¢ Oge + 2sin @ cos p (0, — Ogy) + (sin2 ¢ — cos® ©) Oe.  (23)

The boundary condition (17) becomes independent of the position &, where it is

applied and reads now

rOyY = —sinp ) +cosp 0 =0 at & =&, (24)

Computations using this condition at large radii (£,,,,) show that the boundary
condition is not perfect in order to describe the continuous spreading of the solution
along z with increasing y. On the other hand, order of magnitude estimations reduce
the governing equation —V* + Ha?d,,¢) = 0 to

—3211/) + Oy =0, (25)

max

where ( = v Ha z is a stretched transverse coordinate. Such an equation allows for
self-similar solutions as v (n) , where 7 = (/,/y. Now we may evaluate 0, = 9,1 Oyn
and 0,9 = 0,9 0,n and eliminate from both equations J,1. This leads to a condition

20,0 + 20,9 = 0, (26)
or when expressed in terms of the polar coordinates introduced above we find
—singpcosp P+ (cos® o+ 1) Oep =0 at § = &, (27)

For the solution we apply a heat transfer code described by Biihler (1993) to solve
the problem iteratively using finite difference techniques. A more efficient way, however,
would be to use a fast Poisson solver to invert the Laplaceans. Numerical calculations
are performed on a finite domain which ends at 7 = rpax = 100 (.. = 4.6). A grid
with ng X n, = 100 x 500 grid points was used for the calculations for a Hartmann
number Ha = 20 based on the radius of the vapor channel. Calculations with other
maximum radii did not show significant differences. The Hartmann layer which appears
near r = 1 is resolved with a few grid points. For MHD duct flow such a low resolution
would not be not sufficient since in that case the currents close through the layers so
that the layers determine the whole solution. Here, the currents close though the core in
a direction perpendicular to the computational domain. The physics is mainly governed
by the flow outside the Hartmann layers. The role of the layer is to match the core
vorticity w = V2 with the condition at the interface where we have w = 0. The
boundary layer for w is therefore more expressed than the layer for 1 because the wall
normal component of velocity does not change at the leading order across the layer as
Ha > 1.

We show in Fig. 3 results for a Hartmann number Ha = 20 based on the radius of
the vapor channel. We do not show results for smaller values but describe the phenom-
ena briefly. In the hydrodynamic case when Ha = 0, the flow is purely radial. With
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increasing Hartmann number the streamlines are shifted to a narrow region close to the
y-axis where they are mainly parallel and aligned with the magnetic field. Details of the
flow near the interface can be seen from Fig. 4. We see that the vorticity w develops
pronounced Hartmann layers in contrast to the streamfunction . Both figures Figs.
4 and 3 show a minor fraction of the whole computational domain which extends to
a radius of 7,.x = 100. An overview of the flow in the whole domain is shown in the
logarithmic plot in Fig. 5. The streamlines become straight with a slope of 2 in the far
field and confirm so far the self-similar character of the solution in some distance from
the vapor channel.

The interaction with the magnetic field favors the flow to use a direction parallel to
the field in order to minimize Lorentz forces. Lorentz forces vanish if the flow is exactly
aligned with the field. The above reasoning shows that there are no Lorentz forces along
the y axis and along the z axis in some distance from the interface. Therefore there
is no MHD pressure drop along y and along z because the fluid has the possibility to
flow towards the interface aligned with the field. This result is a direct consequence of
the assumption that the liquid domain has a large extension. In the next section we
consider a case where the liquid domain has a finite extension along y. Such a restriction

will force the flow to have a component of velocity perpendicular to the magnetic field,
associated with an MHD pressure drop.

20 e

—

Figure 3: Streamlines (black) and isolines of vorticity (red) for a flow towards a circular
vapor channel. Ha = 20, 7., = 400
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Figure 4: Streamlines (black) and isolines of vorticity (red) for a flow towards a circular
vapor channel. Zoom of Fig. 3
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Figure 5: Streamlines (black) and isolines of vorticity (red) for a flow towards a circular
vapor channel. Ha = 20, 7., = 400 plotted for logarithmic axes.



4 Asymptotic analysis

In this section we consider the case when the vapor channels have a periodic appearance
along y with nondimensional distance 2 measured along filed lines and spacing a in
the transverse direction. In the following we use the half spacing along field lines as a
characteristic length scale of the problem and assume that the magnetic field is large
enough that the Hartmann layers are thin compared with the radius of the vapor channel.
For details of the geometry see Figs. 1 and 6. The fluid is supplied to the volume
considered at the nondimensional positions z = +a. We are mainly interested in the
flow near the vapor-liquid interface and do not concern the question how the flow is
carried towards the lateral borders. One could imagine that the fluid is supplied e.g.
along magnetic field lines for |z| > a with low MHD pressure drop.

For large Hartmann numbers the flow region splits into distinct subregions. These
are for the present case the cores I and II and the viscous Hartmann and parallel layers
with typical thickness of &, ~ Ha™' and 6, ~ Ha /2  respectively. We construct a
composite solution for the unknowns such as

W = We+ wh+ wp, (28)
1/) = ¢c+¢h+wp7 (29)

where the subscripts denote the contributions due to the solution in the inviscid cores
and in the viscous Hartmann and parallel layers. The scales of the viscous layers become
obvious if we eliminate the vorticity in (9) by the streamfunction according to (10) which
yields

—V* + Ha?0,,1p = 0. (30)

In order to describe the flow in the Hartmann layer we zoom into the layer by using the
stretched coordinate n = y/6, with 6, < 1. This results in

1 1
—6—4831/) + Ha26—28m71/) = 0, (31)
h h
and an adequate balance of forces in the Hartmann layer determines the typical thickness
of the layer as 6, = Ha™'.
If we stretch the parallel layer by using the coordinate ¢ = z/6, the equation (30)
becomes at leading order
1
_Eagiﬁ + HCLQayy¢ =0 (32)
p

so that a balance of forces requires 6, = Ha~/2.

4.1 The Hartmann layers

We have already qualitatively seen that the role of the Hartmann layers is almost pas-
sive since the wall normal component of velocity does not change at leading order of
approximation and we will support this observation now by arguments. We introduce
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Figure 6: Two-dimensional model geometry with subregions

a stretched Hartmann layer coordinate n = Ha (y — Y') , where Y (z) describes the con-
tour of the vapor channel. It is assumed that the viscous contributions of the variables
in the Hartmann layer depend mainly on this coordinate. Then (10) simplifies to

Ha?0,pby, + wi = 0, (33)
and when substituted in the vorticity equation (9) we find in the limit as Ha — oo
am,wh — Wh = 0. (34)

Here, 1, and w;, denote the viscous corrections in the Hartmann layers to the inviscid
core solution. The solution for vorticity inside the layer is purely exponential,

wp = —weexp (—n) . (35)

It matches the core solution w;, — 0 as n — oo with the interface condition w;, = —w,
at n = 0. The streamfunction ¢, does not change across the Hartmann layer at leading
order of approximation. This can be shown by integration of (33) between n and oo.
With the requirement that the viscous corrections vanish as n — oo we find

= Ha 2weexp (—n). (36)

We have therefore no viscous correction of the streamfunction across the Hartmann layer
at leading order so that we can apply the condition (13) at the interface directly to the
core solution

oY.=—-1 aty=Y. (37)
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4.2 The core
In the core the equations (9) and (10) reduce for Ha — oo to

ayy¢c = 0, (38)
We = —V2¢c. (39)

It is possible to determine 1, by integration of (38) with the result
-y
g 4

where the value of the streamfunction on the interface i) and the contour function Y
depend on the transverse coordinate z. The pressure gradient in the core is obtained
with Ohm’s law (8) as 0.p = j = 0,1, which gives

1

For small vapor channels, say ¥ < 1, we can estimate the pressure drop required
to drive the flow from z = a towards the interface. Then 0.p =~ — and the pressure
drop becomes

Ap = _a¢max7 (42)

where 1. stands for the total flow rate that enters the vapor channel from the quarter
0<y<1,0< z<a. For details of the geometry see Fig. 6.

If we return to dimensional quantities we have
Ap* = —ayp* 0B (43)

The superscript "* has been introduced to denote dimensional values of pressure and
flow rate. The dimensional flow rate ¢ _ is determined by the volumetric heating ¢

max

such that the latent heat during evaporation equals the heat input in the volume element
pH¢Tnax = _qaLQ' (44)

The variable H stands for the heat of evaporation. This leads to a pressure drop

L)’ B?
Ap* = % = voocal B?, (45)
with a typical velocity
qalL
= . 46
Yo oH (46)

In two-phase flow literature a characteristic velocity is the superficial vapor velocity v,
(Whalley (1987)), which differs from our vy by the density ratio between the liquid and
the vapor phase.
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Finally we can compare the pressure drop with the hydrostatic pressure head which
is required to drive the flow pg Az* = Ap* and find

Az*  wvyoB?

al Py

= FrN, (47)

where N is the interaction parameter based on vy and
2
v
Fr=—" 48
Lo (48)

is a Froude number. Now we introduce the physical data of the EVOLVE concept.

— 414 kg
gz 18.10 A g= 20-10° ¥
H— 20.107 2" )
T— o023 X B= 10 T

A tray evaporation scenario makes sense only if the liquid surface is sufficiently flat.
This requires that the surface slope is small,

Ax* B?
I LL a3t (50)
aL Pg
a condition that determines the characteristic velocity as
w< L —923.107°2, (51)

o B2 S

It should be mentioned here that vy is the uniform velocity in the core II. The normal
component of velocity at the interface differs from this by a factor given by the ratio
of the regular spacing along y and the arc length of the interface in the considered
sector. The reason is that the flow rate carried by the uniform core velocity must
cross the much shorter interface. The characteristic velocity is related by (46) with the
geometrical scales. This condition determines the maximum spacing of vapor channels
in a direction perpendicular to the field as

_ pHu
q

alL < 0.95cm. (52)

Finally we determine the pressure drop required to drive the flow towards the vapor
channels and find
Ap* < 39 Pa, (53)

a value that seems to be really small.

4.3 The interface

It has been shown in a number of references that the pressure is uniform along mag-
netic field lines and does not vary across the Hartmann layer at the leading order of
approximation (see e.g. Moreau (1990)). This means that the pressure calculated form
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(41) can be taken as the liquid pressure at the interface. We assumed above that the
vapor conditions are uniform in the cross section of the vapor channel so that the vapor
pressure p, at the interface is constant in the cross section considered. This leads to
a pressure difference between the vapor and the liquid that varies along the interface.
This difference in pressure can be balanced only by a varying curvature in the condition
for the pressure jump across an interface (Milne-Thomson (1974))

pp—p=TK, (54)

where, in the present notation, T stands for the surface tension scaled by ovyB2?L? and
K is the nondimensional curvature. It can be expressed in terms of the contour function
Y or its derivatives 0,Y =Y’ as

Yl/

K= iy (55)

We take the derivative of (54) with respect to z and find a relation that can be combined
with (41) to give
vp=T(1-Y) 0,K. (56)

For efficient calculations one can describe the contour in cylindrical coordinates by its
distance from the origin R () and express the curvature as

. FP+2R? - RR'
o (R2 + R/2)3/2

(57)

The contour function becomes Y = R cos ¢ and the transverse derivative at the interface

can be expressed as
1

0 = Rcosy

B, (58)

We know further that 1. is proportional to the arc length measured along the contour
Wp = — / VIE T RPde. (59)

Substituted into (56) yields after differentiation with respect to ¢

Rcosy

1—Rc
—VR* ¥ RZ =T, (ﬂaﬂ) . (60)
This equation is solved with boundary conditions
R(0)= Ry, R'(0)=0, R"(0)=0, R (x/2)=0. (61)

The value of Ry determines the size of the vapor channel measured along magnetic field
lines. The conditions that R’ (0) = R’ (7/2) = 0 result from symmetry with respect to
the y and z axis. The symmetry of the pressure field with respect to the y axis requires
R" (0) = 0. For strong magnetic fields the channels will become highly elongated. Then,

13



R’ (7/2) = 0 looses its physical relevance. The solution of (60) is meaningful only up to
the position ¢, where the contour has a vertical tangent given by

R'sin ¢y + Rcos p; = 0. (62)

The solution for the contour has then to be completed by a vertical straight line. Since
the curvature of this line is zero, there is no jump in pressure across the interface along
the line. Therefore, at the point where the straight line meets the solution of (60) a
jump in pressure has to be excluded. This requires that the curvature calculated from
R () vanishes also at ¢ = ¢,

R*4+2R* —RR"=0 atp=,. (63)

The solution of (60) is obtained numerically by using MAPLE routines with initial
conditions

R(0)=Ry, R (0)=0, R"(0)=a, R"(0)=0. (64)

The shooting parameter « is chosen such that either all conditions in (61) are satisfied
or if a vertical tangent appears at ¢, < 7/2 we chose « such that (63) is satisfied, i.e.
that the curvature vanishes at ¢;.

The resulting contours of the vapor channels are displayed in Fig. 7. If the surface
tension dominates magnetic forces, when 7/Y (O)3 > 1 the shape of vapor channels is
circular. The vapor cross sections start to become elongated along field lines if both
forces become comparable. For T/Y (0)* < 1 the elongation is dominant and contours
become possible where a major part of the interface is straight and aligned with the
field. The maximum width of such channels seems to be proportional to 7%/ for small
T.

If we use the physical data of EVOLVE and the velocity vy as estimated above the
surface tension parameter becomes 7' = 1 and T' = 0.01 for a spacing of the vapor chan-
nels in the direction of the magnetic field L = 0.01 m and L = 0.1 m, respectively. This
means that the elongation of the cross sections along magnetic field lines is moderate or
small.

4.4 Flow pattern

During the previous subsection we determined the shape of the interface, R (). These
results determine the streamfunction along the vapor-liquid interface according to (59)
and yield with (40) the flow field outside the viscous layers. Results are displayed in
Figs. 8, 9 and 10 which show streamlines towards vapor channels. The extension of
the channels along field lines is Y (z = 0) = 0.3 and the surface tension parameters
are T'= 0.1, 0.01 and 0.001, respectively. Cases with larger values of T" do not differ
qualitatively from results shown here for 7' = 0.1. In all cases internal parallel layers
develop along the magnetic field line which is tangential to the contour of the vapor
channel at z = z,. To the right of the parallel layer for z > z, the flow is parallel and
oriented perpendicular to the magnetic field. The velocity is uniform along field lines
since the isolines of the streamfunction are equidistant. To the left of the internal layer
for 0 < z < #z, the streamlines have a shape similar to hyperbolas centered at y = 1,
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Figure 7: Shapes of vapor channels for different values of surface tension and channel
size.

z =10. For T'= 0.1 and 0.01 the solutions to the right and to the left are continuous
across the internal layer but exhibit discontinuous slopes at z = z,. Here the role of the

internal layer is more or less passive since it smooths only the discontinuous y component
of velocity. For T" = 0.001 the situation is different. Here we have a contour which is
aligned with the field not only in one point but along a large portion of the contour
surface. All liquid which crosses the parallel portion of the interface is carried by the
parallel layer along field lines. An O (1) flow rate carried within a layer of thickness
6p ~ Ha /% requires a high-velocity jet with velocities on the order v ~ Ha'/2. This
leads to the fact observed in Fig. 10 that now the streamfunction becomes discontinuous
across the parallel layer. Parallel layers similar to the present one occur in buoyant
magneto-convection in horizontal Bridgman crystal growth as reported by Garandet,
Albousiere and Moreau (1992). These authors find, as we do in the present case, a flow
with parallel streamlines oriented perpendicular to the magnetic field in some distance
from the parallel layer. Within a layer of thickness 6, ~ Ha~'/2 the flow is redistributed
in a high-velocity jet near a wall aligned with the magnetic field. If details about the
flow in the internal parallel layer are required it should be possible to reconstruct such
a flow from the solutions in both cores.

In order to confirm the results obtained by the asymptotic analysis we compare
streamlines with those obtained by a numerical solution at a large Hartmann number.
The most simple comparison is possible for a case where the shape of the interface is
nearly circular. This allows us to use the same numerical procedure as outlined above
for which we used the polar coordinate system. The only difference is that the inflow
conditions are different. Instead of (27) we have now a uniform inflow perpendicular to
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Figure 8: Streamlines for 7'= 0.1 and Y (0) = 0.3
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Figure 9: Streamlines for 7= 0.01 and Y (0) = 0.3
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Figure 10: Streamlines for 7= 0.001 and Y (0) = 0.3

the applied magnetic field. In terms of the streamfunction the inflow condition becomes
Y=cosp—1, w=0 atr=1, (65)
while the condition at the interface

2
Yp=——p, w=0 atr, (66)
T

is posed now at a radius rr < 1 due to a different scaling of the problem. In the
present problem the Hartmann number is Ha = 500. A comparison shows a good
agreement of both solutions in some distance from the internal parallel layer of thickness
6p ~ O (Ha '/?). The comparison of streamlines is shown in Fig. 11.

4.5 Three-dimensional considerations

We assumed above that the 2D flow in horizontal planes is driven by the hydrostatic
pressure head of the liquid pool. This required considerable surface slopes to overcome
the MHD pressure drop when driving the flow towards the vapor channels. The present
analysis is based on the assumption that the flow is two-dimensional in horizontal planes
perpendicular to the vapor channels. This assumption seems to be justified in most of
the liquid domain, i.e. in the cores. We have seen that the currents are perpendicular to
this plane, parallel to the vapor channels. At the bottom of the tray the currents may
enter or leave the electrically conducting solid wall and close their path within the wall.
If the wall is highly conducting the influence from the bottom on the 2D flow will be
small. The situation is schematically shown in Fig. 12 which displays a vertical plane
through a vapor channel. On the free surface of the liquid pool, however, the situation
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Figure 11: Streamlines calculated from a numerical solution (red) compared with those
obtained by the asymptotic analysis (black) for Ha = 500, Y (0) = 0.1 and 7' = 0.01.

is different. A closure of currents must establish within the fluid with the consequence
that the flow looses its 2D nature. While in the core the Lorentz forces f oppose the
fluid motion, the Lorentz forces near the top have a direction perpendicular to the free
surface. The Lorentz forces near the free surface decrease the pressure from the surface
where we have p = p,, to approach the core value p.. We will show below that the
pressure difference Ap; = poo — pe, Which gives an additional forcing to drive the flow
towards the vapor channel, balances at least partly the MHD pressure drop. We regain
by this mechanism the energy which has been lost by MHD braking in the core. The
core extracts mechanical energy from the system and transfers it into electrical energy.
This is carried by the currents to the top surface where it is released in order to keep
the surface elevation rather constant instead of highly inclined towards the channels.
We have seen above that variations of variables along field lines do not occur and that
currents j, are absent in the core. A balance of charge in a volume element reads

Orjz = —0s]s. (67)
This relation may be integrated along x from the core to the surface where 3, = 0.
Je = / 0.j.dx. (68)
If we recall that according to (1) j, = —0,p for small viscous forces we find
o= 0. [ Oupds = ~0.2 (69)
and when j. is substituted by the gradient of core pressure we arrive at

0. (pe + Apy) =0 (70)
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or at
Pe + Ap; = constant = pao. (71)

This result confirms that a surface slope is not required to overcome the MHD pressure
drop at first approximation. Therefore we could relax the condition for a maximum
allowable core velocity and permit even larger spacings between the vapor channels as
were estimated in Sect. 4.2. Nevertheless, we must keep in mind that the outlined
situation is idealized and that some currents may escape from the charge balance in the
top layer also along the y-direction. These currents do not contribute to Ap; so that we
can not recover the whole MHD pressure drop.
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Figure 12: Sketch of current paths, Lorentz forces and pressure distribution.
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There is another point that should be stressed in the present discussion. The currents
which flow in the horizontal direction require a driving potential gradient, both near the
top and at the bottom as indicated by the symbols @ and © in Fig. 12. This leads to
a formation of a vertical potential gradient J,¢ as well, which, at large distance from
the vapor channel, balances the induced electric field. As a consequence the currents,
the Lorentz forces, and the MHD pressure drop vanish when 0,¢ — —w as |z| — oc.
Nevertheless, everything shown above should be correct in some vicinity of the vapor
channel as long as the transverse distance |z| is small compared with the height of the
liquid layer. For larger transverse distances from the vapor channel the flow approaches
solutions known for MHD free-surface flows as described e.g. by Molokov and Reed
(1999). More accurate results for the resent problem require a detailed 3D analysis
which is out of the scope of the present work.
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5 Conclusions

The magnetohydrodynamic flow in the liquid lithium phase during a specific boiling
scenario proposed for the EVOLVE concept of a fusion blanket has been investigated.
In the EVOLVE concept one possible boiling scenario is based on the formation of per-
manent vapor channels at the surface of which the heat is removed by evaporation.
The prove that such a boiling scenario is possible was not the subject of the present
work. Numerical and asymptotic analyses showed that near the vapor channels the flow
is mainly parallel to the applied magnetic field. Depending on the inflow conditions
the parallel layers that spread along the field lines which are tangential to the vapor
channel become more or less important. Especially for the case when the channels have
a periodic occurrence along field lines the liquid has to be supplied from a direction
perpendicular to the magnetic field. Then, at large distance from the vapor channel the
flow has a uniform velocity with equidistant streamlines. When the liquid approaches
the parallel layer the flow turns and follows streamlines with hyperbola like shape before
it reaches the liquid-vapor interface. Depending on the surface tension parameter and
the size of the vapor channel the interface may be elongated along field lines or remain
circular. For EVOLVE we expect only moderate or small elongations. The evaluation of
the pressure drop for typical data of the EVOLVE concept gives acceptably small values.
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