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On the Gradient Plasticity Approach to Size Effects 
Part 1: Reviews 

Abstract 

The influence of specimen size on the plastic deformation and failure behaviour of some metals and 
steels is considered. This size dependence issue relates to the question of the transferability of 
mechanical test results of geometrically similar scaled-down structural models to the full scale 
structures using similitude laws; but it concems also the validity of small scale Iabaratory type test 
results and their use as a basis for the computational modeHing of large scale components. 

In Part I "Reviews" of this report a restricted review of scaled experiments at room temperature 
of geometrically similar specimens is given. This refers to the initiation of yielding under non-uniform 
states of deformation and also to the plastic deformation and fracture of smooth tensile specimens. 

Among others, non-classical continuum mechanics theories have become a means to interpret 
size effects. Especially gradient concepts are of interest which enrich the classical plasticity theories 
by higher order spatial strain gradients. These model extensions implicate additional material 
parameters which can be associated with intemallength scales characteristic for the material. 

In Part I a brief review of several gradient theories of plasticity is also given, including both 
deformation and flow theories and a comparison of the original "symmetric stress" theory with the 
more recent "asymmetric stress" theory is provided. 

The forthcoming Part II "Applications" exemplifies to what extend strain gradient models can 
describe the size influence on the deformation behaviour. 

Über den Ansatz der Gradientenplastizität zur 
Beschreibung von Größeneffekten 

Teil 1: Überblicke 
Zusammenfassung 

Der Einfluß der Probengröße auf das plastische Deformations- und Versagensverhalten emtger 
Metalle und Stähle wird betrachtet. Diese Größenabhängigkeitsproblematik steht im Zusammenhang 
mit der Frage der Übertragbarkeit von Versuchsergebnissen an geometrisch ähnlichen, verkleinerten 
Strukturmodellen auf die (1: 1 )-Struktur unter Verwendung von Ähnlichkeitsgesetzen; sie steht aber 
auch im Zusammenhang mit der Frage, inwieweit kleinformatige, labortypische Versuche als Basis für 
die rechnerische Modeliierung von Großkomponenten dienen können. 

In Teil I "Überblicke" dieses Berichtes wird ein begrenzter Überblick über skalierte Versuche 
bei Raumtemperatur an geometrisch ähnlichen Proben gegeben. Er betrifft den Fließbeginn bei 
ungleichförmigen Deformationszuständen und auch die plastische Deformation und den Bruch glatter 
Proben im Zugversuch. 

Um Größeneffekte zu interpretieren, offerieren unter anderem nicht-klassische kontinuums­
mechanische Theorien neue Möglichkeiten. Insbesondere sind Gradientenkonzepte von Interesse, die 
die klassischen Plastizitätstheorien um räumliche Verzerrungsgradienten höherer Ordnung erweitern. 
Die Modellerweiterungen beinhalten zusätzliche Materialparameter, die mit materialcharakteristischen 
inneren Längen in Verbindungen gebracht werden können. 

In Teil I wird ebenfalls ein kurzer Überblick über mehrere Theorien der Gradientenplastizität 
gegeben, der sowohl Deformations- wie auch Fließtheorien einschließt, wie auch einen Vergleich der 
ursprünglichen Theorie mit "symmetrischem Spannungstensor" mit einer neueren Theorie mit 
"unsymmetrischem Spannungstensor". 

Der demnächst erscheinende Teil II "Anwendungen" veranschaulicht, inwieweit Verzerrungs­
gradientenmodelle den Größeneinfluß auf das Deformationsverhalten beschreiben können. 
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1. Introduction 

The computational assessment of the functioning or integrity of a complex structure under 
accident conditions may be impossible or prohibitive because of an excessive computational 
effort or because of insufficient knowledge of the governing physical process. 

On the other hand, a full scale experiment, using the same materials as used for the 
prototype and accounting for the essential conditions, e.g. temperature, velocities etc., is often 
not realizable because of the cost or hazards. A geometrically scaled down model experiment 
may provide essential information if appropriate similitude laws are observed in the design 
and performance of this small scale experiment. Then the direct transfer of the experimental 
results to the full scale situation is possible using the appropiate similitude laws as transfer 
laws. 

The derivation of the similitude laws, however, requires the knowledge of the governing 
physical processes. Of course, even taken this for granted, the compliance with the similitude 
conditions frequently cannot or can only approximately be reached. 

A special situation exists for "replica models", i.e. small scale models from the same 
material and operated at the same temperature as the full scale structure, the prototype. If the 
mechanical response of the material is governed by the classical Jaws of elasticity and 
plasticity - a very often made assumption - the similitude with respect to the deformation 
behaviour can be assured, if - among others - the characteristic velocity (e.g. impact 
velocity) is the same and fracture processes can be excluded (Baker, Westine, Dodge (1991, 
[1.1]), Malmberg (1995, [1.2])). For many model tests (e.g. Baker et al. (1991, [1.1]), Young 
(1971, [ 1.3])) these assumptions are naturally taken for granted. This approach is based on the 
implicit property of the classical elasticity and plasticity laws being not dependent on an 
intrinsic material length. 

However, there exists some experimental evidence (Section 2) of a size influence on the 
deformation behaviour, Iet alone the fracture behaviour, if scaled structures or simple 
specimens made from the same material are tested. This non-similarity may endanger the 
validity of the transfer of experimental results from small scale tests to the full scale situation. 

The size effect is a subject of increasing interest due to the fact that current applications 
in modern technology involve a variety of length scales ranging from some tens of 
centimetres (nuclear reactor vessel walls) over a few millimetres (sheet metal forming) down 
to a few nanometers (thin film technology). Obviously, an appropriate theoretical modelling 
of the response is required which may depend on the specimen dimension. Several causes and 
competing theories are cited. 

First of all Q~e_u_d_Q. ~ffi!fl~ are mentioned for instance due to 
• heat to heat variation of the material where the specimens were made from 
• macroscopic material inhomogeneity of the raw block of material 
• surface cold work due to fabrication ( cutting, turning) 
• property variations due to heat treatment 
• influence of non-similar testing machines for the small and the !arge size structure 
• practical limitations on the construction of very small models and on the required decrease 

of the allowable tolerances. 
Taking proper care of these technological effects and limitations by preventing them or 
reducing their influence to an acceptable degree, some basic effects are left which may be 
responsible for a size influence. 



Yi~c_o_pJ~J.§.ti~liY which, for example, becomes apparent when the flow stress is strain rate 
dependent may be responsible for a size influence. Similitude would require the equality of a 
"viscoplastic Reynolds number" (Malmberg (1995, [1.2]), Stach (1997, [1.4])). However, the 
use of replica models is principally in conflict with this requirement if the same characteristic 
velocity is used for the small and the }arge scale experiment. Then, generally the smaller 
specimen suffers less strain. The amount of this effect may be tolerable or can be estimated 
theoretically. On the other hand, by proper scaling of the characteristic velocity such that the 
strain rate is the same in both the small and the large structure, similarity (i.e. equality) of the 
viscoplastic strains may be obtained. However, this implies that the purely elastic deformation 
processes will be non-similar, which may be tolerable . 

.tl~i!.Lf.9D.91lfti.9!1. may induce another size-effect. Especially under dynamic plastic 
deformation the dissipation of the plastic work yields an increase in the temperature and a 
subsequent decrease in the yield stress (thermal softening). For structural steels relevant in 
nuclear .reactor design this is especially pronounced beyond about 500 oc. It may be shown 
theoretically that similarity is not affected if the thermal processes are adiabatic in both the 
small and the large scale structure. lf, however, heat conduction comes into play (the "Peclet 
number" is a controlling characteristic parameter), it will be more effective in the small scale 
replica model than in the large scale model. Thus, the thermal softening is less pronounced in 
the small scale and yields smaller strains . 

. ßi!.D.9mnj!lb.9!11Qg~Qt~.i1i5!.§ and related statistical theories play a prominent role when size 
effects are interpreted, especially in brittle fracture and fatigue. The size on these failure 
modes is explained by the presence of random inhomogeneities in a solid, where the weakest 
of these inhomogeneities determines the strength; the probability of the presence of rather 
weak inhomogeneities is greater the larger the structures (e.g. Weibull (1939, [1.5]), Bolotin 
(1969, [1.6])) . 

. ~.9!l.:~La.§.äcJ:llS.9.illin_\.ll!.l!l_QlS!fDi!.Di.c_s_th.e_oJi~~ are a means to interpret size effects. To mention 
are: 
• non-local (integral) concepts which involve a finite neighborhood volume integral of a 

state variable; 
• gradient concepts which account for the influence of higher order spatial gradients in the 

constitutive equations; 
• polar media concepts which account for additional kinematic deformation measures, their 

conjugated generalized stressesandadditional balance equations. 

These theories implicate additional parameters which can be associated with intemal length 
scales characteristic for the material. They account for long range interactions in the material 
in different ways. In fact, all solid materials contain substructures ( e.g. crystal lattice, 
inclusions, grains, grain clusters) having some characteristic lengths (the size or distance of 
sub-bodies). The aforementioned theoretical concepts attempt to account for this micro- or 
mesoscopic heterogeneity on a phenomenological Ievel, still treating the material as a 
continuum. 

The interaction between the geometric length of the specimen and an intemal length 
associated with the underlying microstructure causes a size-dependent response. For example, 
if all geometrically similar specimens are made from the same material, then they have the 
same absolute grain size but larger specimens have the smaller relative grain size (Brown, 
Lu bahn, Ebert (194 7, [ 1. 7])). It then appears that the influence of the microstructure will be 
primarily effective when the specimens are subject to non-uniform stress and strain fields. 
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Because of their relative simplicity attention is put here to concepts based on the 
introduction of higher order strain gradients into the constitutive equations. 

Among the various higher-order gradient constitutive equations for elasticity and 
plasticity introduced earlier by various authors (for a brief historical account consult Aifantis 
( 1994, [ 1.8]) ), we refer in particular to a largely overlooked paper by Shioya and Shioiri 
(1976, [ 1.9]). These authors modified the usual expression of the yield condition of classical 
plasticity by including the first order spatial gradient of the equivalent plastic strain normal to 
the yield-zone boundary. Their intention was to model the pattern formation of yielded zones 
associated with the phenomenon of the upper and lower yield stress in mild steel and they 
pointed out the scale effect introduced by the gradient term. While this work was directly 
motivated by the pioneering experiments of Baderand Nadai (1927, [1.10]), Nakanishi (1931, 
[1.11]) and others (see also Nadai (1950, [1.12])) on the formation of deformation zones 
during torsion, no explicit analytical relations were provided for the local loss of stability 
(leading to the emergence of deformation patterns) and the associated strain softening with the 
stabilizing role of the higher order strain gradients in obtaining a single or multiple localized 
shear zones. Instead, an analogy to the problern of Lüders band formation in tension was 
employed and the continuous distribution of dislocation theory was used in order to provide 
eventually numerical solutions for the plastic strain field which resembled the well-known 
observations. Even though questions of mesh-size dependence, convergence of solutions and 
other related issues, which are crucial to the current development of gradient plasticity theory, 
were not addressed, this work as weil as the approaches of Dillon & Kratochvil ( 1970, [ 1.13]) 
and Dillon (1977, [1.14]) quoted in [1.8] seem to be the ones closest related to the modern 
treatment of the subject. 

The modern treatment of gradient dependent constitutive equations in relation to loss of 
local stability, material softening and deformation patterning is due to Aifantis (1984, [1.15]). 
He extended the usual yield condition of classical plasticity by including the Laplacian of the 
equivalent plastic strain to dispense with the usual difficulties exhibited by the standard 
plasticity models when the material enters the softening regime. These difficulties, including 
the indetermination of the shear band thickness and the mesh-size dependence in finite 
element calculations, are removed by the gradient terms. The corresponding gradient 
coefficient, i.e. the phenomenological coefficient measuring the effect of the gradient term, 
turned out to relate directly to the internal length characterizing the underlying dominant 
microstructure, e.g. the grain size in a metal polycrystal (Mühlhaus & Aifantis (1991, [1.16]), 
Aifantis (1995 [1.17])). 

Aifantis and co-workers [1.16 + 1.31] as weil as several other researchers afterwards 
[ 1.32 + 1.37] have successfully employed gradient plasticity theories to discuss localization of 
deformation problems and to develop associated finite element codes. More recently, a 
different strain gradient theory of plasticity was proposed by Fleck & Hutehinsou (1993, 
[1.38]) and Fleck, Muller, Ashbey & Hutehinsou (1994, [1.39]) based on the physical concept 
of geometricaily necessary dislocations and the structure of the Cosserat theory (polar 
medium concept) with "asymmetric stress". It was suggested that their theory may capture a 
variety of plastic deformation phenomena including size effects in micro-indentation and 
torsional deformation for which experimental data indicating the increase of strength with the 
reduction of diameter size were provided. However, no applications to localization of 
deformation and shear banding problems were given, and it remains to be demonstrated that 
their theory is weil suited for such highly heterogeneaus situations. On the other hand, it was 
shown by Aifantis (1996, [1.40]) that the original "symmetric stress" strain gradient theory 
can successfuily be used to interpret size effects exhibited by elastic bore holes and twisted 
wires. lt was also shown by Zhu, Zbib & Aifantis (1997, [1.41]) that the original "symmetric 
stress", second order gradient theory can model quite weil size effects exhibited by metal 
matrix composites. 
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The objective of this report is to provide a limited review of scaled experiments of 
geometrically similar specimens or structures of metallic materials, to examine briefly several 
gradient plasticity theories and to illustrate to what extend the "symmetric stress" second 
order strain gradient theory can model the size effect in deformation behavior. 

For this purpose the report is organized in two parts. In Part I "Reviews" the Section 2 
gives an account of available experimental data on size effects of metallic specimens; this 
refers to the initiation of yielding under non-uniform states of deformation and to the plastic 
deformation and fracture of smooth tensile specimens. In Section 3 a brief review of several 
gradient theories of plasticity is given including both deformation and flow ones and a 
comparison of the original "symmetric stress" theory of Aifantis with the more recent 
"asymmetric stress" theory ofFlecket al. is provided. 

Part II "Applications" (Malmberg et al. (2001, [1.42])) exemplifies to what extend 
strain gradient models can describe the size influence on the deformation behavior. This is 
done for simple loading configurations amenable to relatively easy theoretical treatment by 
fitting the models to some available experimental data and also by performing systematic 
parameter variations (size or internal length) to determine the relative influence of the non­
classical part of the constitutive equations. 

2. Review of Experiments on Size Effects 

As mentioned above, classical effects - like viscosity and heat conduction - may induce a size 
dependence provided the same material is used in the small and in the large scale test. 
However, there are many examples showing a size effect in metals and steels where these 
mechanisms cannot serve as an explanation and where possibly the inhomogeneity of the 
micro-structure may induce a size dependence of the material response. To mention are, for 
example, the increase of the 

yield strength under monotonous straining 
hardness in the indentation tests 
endurance limit in fatigue tests 
fracture strength in brittle materials 

when the size of the specimens, made from the same material, is decreased. This trend is also 
observed for 

particulate-reinforced metal matrix composites and 
coarse grained metals 

when the particle or grain size is decreased. 
By no means it is the purpose of this section to review all these various phenomena. 

Instead a limited discussion of size effects in plastic deformation at room temperature under 
monotonous quasi-static loading is aimed at: the size influence on the initiation of yielding in 
geometrically similar specimens under non-uniform stress distributions is considered but also 
attention is paid to similarity and size dependence of deformation and fracture of un-notched 
tensile specimens under nominally homogeneaus stress conditions. The important question of 
the size dependence of fracture in specimens with geometric stress concentrators (e.g. 
notches) is beyond the scope of this review. 

Before describing the results for some of the geometrically similar specimens made of 
the same structural material, we mention here early experiments of §iQg~-~iz;~_s_p_es:.i!Jl_e_n§ on 
the i.tli!lit!i.9Jl_ gf _yj~lc!i11g und er monotonous loading of specimens .~J.!.bj~9te_cl !Q JlQ.ll-JIJl.ifQ.flTI 
.~tr~s_s.:_QI:..§!rJl.ii.Lc!i.§tr.i12Yti9D§._ Such are, for example, bending of smooth beams, torsion of 
circular rods, tension of flat specimens with a circular bore-hole or with blunted edge notches. 
Frequently, steels with a pronounced upper- and lower yield stress (mild steel etc.) were used. 
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It was observed that the first flow lines or the first deviation from the linear force­
displacement curve appeared when the elastically calculated maximum equivalent stress in the 
non-uniformly stressed specimen was significantly larger than the yield stress determined in a 
tensile test under homogeneaus stress distribution. The somewhat inadequate wording 
"delayed yielding" was used sometimes. Early studies establishing these findings were 
performed by Kennedy ( 1923, [2.1 ]), Eiselin ( 1924, [2.2]), Scoble ( 1927, [2.3]), Enßlin ( 1928, 
[2.4]), Bierett (1931, [1.5]), Nakanishi (1931, [2.6]), Thum & Wunderlich (1932, [2.8]), 
Kuntze (1933, [2.9]), Möller & Barbers (1934, [2.10]) Siebel & Vieregge (1934, [2.11]), 
Föppl (1936, [2.12]), Klöppl (1936, [2.13]), Kuntze (1940 [2.15]), Föppl & Huber (1941, 
[2.16]), and Siebel ( 1948, [2.17]). 

Some authors, (e.g. Kennedy [2.1]) interpret these results by assuming that the classical 
local yield conditions (e.g. Tresca, v. Mises), which were developed on the basis of 
experiments under homogeneaus stress conditions, are not valid for strongly non-uniform 
stress distributions. They vaguely suggest1 a supporting effect of the neighbourhood of the 
stress peaks ("reinforcement by under-stressed material", "micro-supporting effect") or even 
of the whole cross-section (here called "macro-supporting effect", Kuntze [2.15]). 
The micro-supporting concept, in fact, requires the introduction of an additional material 
parameter with the dimension of length defining somehow the size of the supporting 
neighbourhood; the consequence was rarely explicitly expressed by the authors. The macro­
supporting concept suggested by Kuntze [2.15], however, does not introduce a new material 
parameter. 

The· interpretation of the rise of the stress for yield initiation by the micro-supporting 
effect implies a size influence on the initiation of yielding such that small specimens should 
have a larger resistance against yield initiation than larger ones. However, Kuntze's concept is 
basically not capable to do so, which was not realized by this author. In fact, various results of 
scaled tests of geometrically similar specimens of the same material and non-uniformly 
stressed may show a size effect on the yield initiation with the described trend. An account of 
several of these studies are given in the following. 

2.1 Size Influence on the Initiation of Yielding Under Non­
Uniform Straining 

Cook (1931, [2. 7]) investigated the relation between the stress at the yield point in simple 
tension and for non-uniform stress distributions produced by torsion of rods, four-point­
bending of bars and pressurization of thick-walled cylinders; also the stress distribution in 
each of the latter cases in the early stages of overstrain was considered. Systematic variation 
of size was done only for the cylinders. Three types of mild steel were used and the material 
was supplied in the form of rolled bars with a 13 /s in. diameter. To prevent cold work effects 
at the surface the specimens were heat treated - normalising or annealing in vacuum - after 
machining. 

It was shown that the maximum shear stress (Tresca yield condition) at the initial yield 
point (defined as first deviation from linearity in the force displacement graph) is consistently 
higher in the cases of non-uniform stress distributions than in uniform tension; for torsion this 
ratio is between 1.18 and 1.23, and for flexure between 1.12 and 1.17 depending on the type 
of mild steel. Further, in the cylinders a pronounced scale effect was observed: Fig. 2.1 
shows the ratio of the dimensionless pressure at yield versus the size (internal diameter) of the 
thick cylinder (ratio "external-to-internal diameter" is three). The normalizing of the yield 

An exception is the work ofFöppl (1936, [2.12]) who suggested the faulttobe related to the elasticity law. 
He tried to introduce a new "elastic constant" with the dimension of length; however, his concept remains 
confused. 
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pressure is done with the (upper) tensile yield stress in the transverse direction of the bar 
material. Evidently, the normalized yield pressure is largest for the smallest size cylinders 
(interna1 diameter 0.125 in. = 3.175 mm) and decreases exponential-like towards the 3.5-times 
!arger cylinder. According to Cook, all results are consistent with the supposition that the 
initial yielding (he uses the word "dislocation") results in elastic breakdown when the applied 
elastic stress state reaches a critical value of the (upper) shear stress fl.t.fl_~~r!(!ip_Q~Qth in the 
material. Here it is nottobe understood that the material in this surface layer is different from 
that in the interior. Using the elastic solution and the shear stress at yield in transverse tension, 
he estimated for steel A the depth of the surface layer tobe 0.478 mm in torsion, 0.366 mm in 
bending and between 0.343 and 0.478 mm for three differently sized cylinders. Noteworthy, 
the numbers are of the same order and differences are not great! This suggests, according to 
Cook's somewhat misleading formulation, that "a surface layer exists having an elastic Iimit 
greater than that in the body of the metal". N aturally, then this layer thickness is characterized 
by a characteristic length parameter typical for the material. This concept "will account fully 
for the apparently increased yield points in all the cases of non-uniform stress examined, and 
for the scale effect observed in the cylinder tests". Cook notes that then a scale effect should 
also be present in torsion and bending, a matter for further investigations. 

Morrison (1939. [2.14]) performed careful investigations on the criterion of yield in mild 
steel specimens under uniform and non-uniform stress distribution, i.e. tension, compression, 
pure bending, torsion, and combined tension and torsion. Testing with scaled specimens was 
done in tension, bending and torsion by changing the diameter of the specimens; however, 
there is no indication that the length was also scaled accordingly. 

The material came in the form of %-in. and 2-in. bars. By various checks the material was 
found to be extremely uniform, isotropic, and without difference in yield in tension and 
compression. Tests on material from various positions in the cross-section of the thick bar 
gave no appreciable variation in strength, and no differences between the two bars could be 
found after normalization. The preparation of the test material was done as follows. The bars 
were sawn into suitable lengths and normalized to remove any possible initial stresses. The 
machined specimens were finished by polishing and heated in a vacuum furnace (905 °C, 10 
min) with long heat-up and cooling phases. 

Among others, three tension tests were made on specimens ranging from 7.16 to 25.4 mm 
diameter (scale factor 3.55) and no dependence on the diameterwas observed. Two test series, 
covering a range of diameters from 2.45 mm to 12.71 mm (scale factor 5.19) were done in 
pure bending. In the first, intermittent straining was used and the periods of rest allowed were 
used such that the creep was apparentl(' almost exhausted. In the second a constant and very 
low rate of continuous strain (- w-7 s- in the outer fibres) was adapted in all these tests and 
reading were taken at frequent instants over a period of some hours. These results are 
collected in Fig. 2.2 showing the dimensionless bending moment versus the angle of rotation. 
The normalized bending moment is equal to the normalized bending stress, i.e. the ratio of the 
maximum elastic bending stress and the (upper) yield stress in tension. First, it is seen that 
curves of the intermittent and the continuous test series agree satisfactorily. Further, it is noted 
that there is no sudden change in the slope of these curves as the torque is increased but 
clearly the normalized bending stress is larger for the small specimens than for the large 
specimens. The shape of the curves is affected by the size of the specimens such that larger 
specimens have less resistance to plastic flow. 

Two series of torsion tests, covering a range of diameters from 0.1018 in.= 2.586 mm to 
1.012 in. = 25.4 mm (scale factor 9.83), were performed, accompanied by tension tests of 
check specimens with the same heat treatment. The curves showing the normalized torque 
versus twistangle are collected in Fig. 2.3. Note that the normalized torque is defined by the 

2 This implies a sudden drop of the stress from the upper to the lower yield stress, a similar view as taken by 
Nakanishi (1931, [2.6]). 
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ratio of the maximum elastic shear stress at yield in torsion to the (upper) tensile yield stress. 
In cantrast to the case of pure bending a distinct yield point is observed followed by a drop of 
the torque. This allows to plot the maximum normalized torque as a function of the diameter 
(Fig. 2.4) which illustrates the size effect in torsion: decreasing the diameter from 1 inch by 
almost a factor of 10 increases the apparent shear stress at yield by 16 %. It should be noted 
that the normalized torque as defined above would be a constant, i.e. 0.5774, if the v. Mises 
yield condition applies or 0.5 for the Tresca condition. 

Morrison finally proposed a simple theory of yield for the case of non-uniform stressing. 
He supposed for a bending test that "yield cannot occur in an individual crystal surrounded by 
unyielding material but only in a number of crystals which occupy a sufficient thickness to 
permit of the complicated readjustment (of the crystals) which must take place before 
movement can occur, it is unreasonable to expect to find yield before a stress equal to the 
yield stress in uniform tension is applied to a depth of this magnitude. lt seems reasonable to 
suppose that the depth might be of the order of a few crystal diameters." An elaboration of 
this suggestion yielded a theoretical result as shown in Fig. 2.2. 

Torecover the size effect approximately, the required layer thickness was estimated tobe 
0.005 in. = 0.127 mm, i.e. three or four crystal diameters. The approach of Morrison is very 
close to the explanation given by Cook (1931, [2.7]). In fact, it is also close to the concept of 
an "integral yield condition" studied recently by Malmberg (1995, [1.2]) for pure bending and 
torsion; there also it was shown that a yield condition involving a stress gradient may be 
viewed as an approximation for the integral condition. 

Föppl & Huber (1941, [2.16]) performed a series of (partially) scaled indentation tests for 
a norml.ized structural steel St37. The indenters (stamps) were a prismatic bodies made from a 
tool steel, their contact surfaces being cylindrical with a radius of curvature ranging from 2 to 
240 mm. The St37-test object was a rod with reetangular cross-section (width 15 mm, depth 
not given). An indenter of a given size was applied to the rod at various positions, each time 
with increased Ioad. After the loading sequence the rod was annealed up to 200 - 300 oc, cut 
in the middle vertical to the contact surface. The surface of the cut was polished and etched 
such that the flow lines became visible. From the data the minimum Ioad was determined 
under which flow lines began to appear first, defining the initiation of yielding. This 
procedure was repeated for the other size indenters. 

From the measured minimum Ioad for a given radius of the indenter and width of the rod­
like specimen a stress-like quantity may be determined. If similarity would apply this value 
should be independent of the indenters radius of curvature. However, using the data the ratio 
of this value for a small indenter (9 mm radius) to the 26.7-times larger one (240 mm) is 1.99 
and not 1. To demonstrate the non-similarity, Föppl & Huber used a different approach. 
Below the Iimit Ioad the response is assumed to be isotropic and linear elastic such that the 
Hertz formulas apply. Foreach Iimit state the maximum shear stress 'tmax within the material 
below the indentation as well as the width of the elastic indentation were calculated using the 
measured Ioad at yield. These results for flow line initiation are plotted in Fig. 2.5. For }arge 
radii of curvature the maximum shear stress is 'tmax = 16.4 kp/mm2

. According to Tresca's 
yield condition this corresponds to a tensile yield stress of 32.8 kp/mm2 and accordin~ to von 
Mises one gets 28.4 kp/mm2

. The actually measured tensile yield stress is 26.2 kp/mm . 
The general trend observed in these results is in accordance with the scaled experiments 

by Cook (1931, [2. 7]), Morrison ( 1939, [2.14]) and others. The interpretation by Föppl & 
Huber is, however, different. They suggest that below a certain characteristic length (here 
2.2 mm) the usual form of the elastic laws are not valid anymore, an idea promoted by Föppl 
before [2.12]; they do not make an inappropriateness of the yield condition itself responsible. 
1t is the present authors' opinion that this conclusion cannot be obtained from the above 
indentation experiments. An interpretation along the lines of Cook or Morrison is more 
reasonable. 
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Richards ( 1954, [2.19]) carefully carried out a I arge number of tensile tests on three sizes 
of specimens (1/8 in.= 3.175 mm, Y2 in.= 12.7 mm, P4 in.= 31.75 mm diameter, scale factor 
1 0) made from the same bar ( 1 Y2 in. diameter) of the mild steel C 1020. These tests are 
mentioned here because they are related to bending tests performed by Richards later (see 
below). The tensile specimens were made in accordance with ASTM specifications, and 
geometric similarity of their centre portions was preserved though-out. Examination of the 
micro-structure showed substantial uniformity across the diameter of the original bar. All 
specimens were annealed after machining and polishing. The annealing was done in a furnace 
having a controlled atmosphere (35 % H2 and 20 % CO) so that the surfaces of the specimens 
would be unaffected. Examination of the micro-structure after annealing showed that grain 
sizes were substantially the same in various sizes of specimens and that no significant 
carburization had taken place in the surfaces. 

All tensile tests were performed at the same constant loading rate in the elastic regime 
until the upper yield point (sudden Ioad reduction). Thus, the strain rate was constant for all 
sizes? The results, individual tests and average values, are represented in Fig. 2.6 versus the 

normalized volume V=(~ Y (D1 is the minimum diameter). They demoostrate a definite 

dependence of the upper yield point on specimen size, following the usual trend, and a 
considerable scatter, especially for the small specimens is observed. 

For the theoretical interpretation an analogy to Weibull's statistical theory of the weakest 
link in chain for brittle fracture is used. This then implies a power law dependence of the 
upper yield stress Su on the volume of the specimen. Aleast squarefit to the average data is 

S = 60.14 [psi] = const 
u yYsR D/{93 

which gives a good correlation with the mean values (Fig. 2.6). Further checks on the 
applicability of Weibull's theory concerning also the standard deviation was a matter of 
discussion of this publication [2.19]. 

Richards ( 1958, [2.20]) extended his work on the size dependence of the yield point in 
mild steel to the case of four-point-bending, all other influences being placed under careful 
experimental and statistical control. 

The material was a commercial quality killed structural mild steel expected to have a 
pronounced upper yield point. lt was obtained in the form of hot-rolled bars 1 'h in. diameter, 
all rolled from the same heat. Five different sizes of beams with reetangular cross-section (hlb 
= 2.5), the depth h ranging from 0.1585 in. to 1.000 in. (scale factor 6.3). Foreach size ten 
specimens were produced each specimen taken from the centre of the bars. The actual source 
of each specimen in the original stock was determined by statistical considerations to suppress 
influences due to macroscopic material property variation along each bar and from bar to bar. 

The raw slugs were given a preliminary homogenizing anneal at 900 oc. After machining, 
the specimens were stress relieved by annealing at 600 oc in a salt bath to remove cold 
working effects due to machining. 

Dimensional similarity was also realized for the loading apparatus to produce four-point­
bending (Fig. 2.7). The cross-head velocitywas scaled4 suchthat the maximum bending strain 
rate wa~ the same for all specimens. At the chosenrate of 15 · 10"6 s·' strain rate effects on the 
tensile yield stress do not exist. More important is, however, that the scaling of the cross-head 
velocity would assure the same size effect for all sizes if any visco-plasticity were present. A 
large number of auxiliary test were made to check basic premises. These included micro­
structure examinations, macro- and micro-hardness tests, additional bending tests, etc. Most 
of these tests did not reveal any significant non-uniformity of the material except the bending 
of a series of small beams of the same size taken from different radial positions of the cross-

3 In most of the experiments described previously this is not indicated at all or only vaguely. 
4 This is not explicitly noted in [2.20], but concluded from the choice of a constant strain rate. 
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section of the stock bar. The measured yield stress in bending indicate that the material at the 
centre of this particular bar was weaker by 7 % than that nearer the surface. Since the beams 
in the main tests were all taken from the centre, a decrease in yield strength towards the centre 
would therefore produce a corresponding increase in bending yield strength with size, if there 
were no true size influence. 

The principal method to detect the yield point in pure bending involved the plotting of the 
Ioad (or elastic bending stress) versus deflection or strain and observing the deviation from 
linearity. A nurober of strain gages were attached to the tension surface of each beam which 
covered as nearly as possible the entire length subjected to pure bending. A standardized 
testing procedure was set up and carefully followed in all tests. 

The test results are collected in Table 2.1 and the decrease of the yield stress in bending as 
a function of size (volume) is shown in Fig. 2.8. 

The ratio of the mean values of series B2 and B5 is 1.42, the associated depths being 
0.251 in. and 1.000 in. (scale factor 4). This is a significant influence. Here it should be noted 
that these data are somewhat masked by the observed non-uniformity of the yield stress along 
the radius of the stock bar. If this were not present, the above ratio and the size dependence 
seen in Fig. 2.8 were even larger. 

The· statistical theory, using the Weibull interpolation, yields for the mean value of the 
yield stress 

= Jm_ __ 
kl/m VI/rn in uniform tension 

(m + 1Y'm O'Y in pure bending .. 
~ 

Im f e_,m dz 
0 

where k and marematerial parameters and v is the volume under tension (or pure bending). 
Richards performed a least square fit of this power law relation which is shown in Fig. 2.8. 
Since the experimental data B 1 were subjected to doubts, they were excluded. 

It is noted that this theory implies close relations between these two loading cases, for 
example, the slope I/rn of their graphs in double-logarithmic presentation must be the same. 
Unfortunately tensile tests were not done for this material but were foreseen. For the bending 

case the slope is ~ =tf:r=8.55·10-2 with respect to the volume dependence (or 

~ = 1 t7 = 25.64 ·1 o-2 if a length dependence is used). The previous results (Richards 1954 

[2.19]) for tensile tests of an (oth,er) mild steel yields ~= 518 =1.72·10-
2 which is five times 

smaller. The trivial conclusion is that either the mild steels used by Richards are very different 
or this ~tatistical theory is insufficient to explain the results. Then it may be conjectured that 
in the case of non-uniform stressing an additional effect may become significant. 

It is further noted that this statistical theory would yield a standard deviation whose 
volume dependence would follow a similar power law with the exponent 1/m. This has not 
been checked by Richards. Finally, an important property of this theory should be mentioned. 
If the index "p" denotes a large specimen and "m" a small one, then 

~JP = (crb)p = (~)I/rn (~)3/m = (_!.)J/m 
(o'Jm ( O'b )m V P I! P A 

where Rm & /!p denote corresponding lengths and A is the scale factor. Thus, for a fixed scale 
factor A the above ratio is independent of the absolute sizes of the specimens. 

Finally, with respect to the size dependence of the initiation of yielding another series of 
experiments is briefly sketched; it concerns the initiation of yielding at stress concentrators; 
note that the discussion of fracture due to stress concentrations is out of the scope of this 
review. 
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Imamura & Sato ( 1986, [2.22]) described experimental results and a theoretical 
interpretation concerning the size effect on yielding in a perforated mild steel strip under 
tension. The flat strip specimens (Fig. 2.9) were fabricated from a 0.42 mm thickness sheet 
metal (mild steel, 0.10 % carbon content, average grain size 13 J.tm), coated with zinc. Their 
longitudinal direction was crosswise to the rolling direction. The width 2b of the strip in the 
gageregionwas 10, 20 and 30 mm and the diameter 2a of the central hole varied (afb = 0 + 
0.3). To prevent cold work at the edge of the hole it was successively enlarged by boring in 
5 to 6 steps. Finally, the zinc coating was removed by very fine emery paper. With the above 
data a specimen will have about 32 grains across the thickness and about 270 grains along the 
smallest Iigament (b- a = 3.5 mm, b = 5 mm, a = 0.3 · 5 = 1.5 mm). 

Strain gages (size5
) were attached at the edge of the hole and the average remote stress 

cr= 2 ~.t was recorded versus the strain E during the quasi-static tensile tests (Fig. 2.10). No 

indication is given whether the strain rate or loading rate is properly scaled. 
In Fig. 2.10 an elastic regime is clearly seen with a decreasing slope6 which is due to the 

choice of the stress variable. For the unperforated specimen and for the very small hole an 
upper and a lower yield point O'A are found whereas for larger holes no upper yield point is 
seen but a deviation from linearity at reduced values cr = O'A. 

The lower yield stress for the homogeneaus stress distribution (a = 0) defines the yield 
stress O'y, 

O'y = (cr A )a=O' 

Three repeat tensile tests for the three specimen sizes without holes were done and the 
average values are 

2b "" 10 

289.6 

20 

293.4 

30 mm 

304.5 MPa 

There is a rather slight increase (5 %) in yield stress when the size is increased from 10 to 30 
mm width. 

With the above values "normalized yield stresses" were determined and plotted versus the 
relative hole size alb with the width 2b as a parameter (Fig. 2.11 ). The main result is that for 
geometrically similar specimens in the plane (a!b = const., but thickness t was not scaled) the 
absolute size (e.g. 2b) determines the ratio crAIO'y : under non-uniform stress distribution 
smaller specimens are significantly stronger (provided the holes are not too small) against 
yield, and this size effect dies out with increasing size. 

Imamura & Sato interpreted their experimental results using a theory of Nakanishi & 
Hanada (1953, [2.18]) for the lower yield point which allows for the non-uniformity of the 
stress distribution. In addition, Nakanishi's concept of a material specific surface layer 
thickness ö, which is independent of the stress distribution, is used. This concept implies that 
in crystalline aggregates "the orientations are varied and plastic deformations are restrained 
(in a crystal) by the surrounding neighbours; as the restraint in the surface layer is weaker, the 

5 No indication of the size of the strain gage are given. However, the size of the gage should also be scaled 
such that the measured quantities remain comparable for the small and the large specimen. If the same gage 
size is used for all sizes, size effects may disappear in the very small specimens. The qualitatively different 
behavior for small strip width's and very small hole sizes found by Imamura & Sato may possibly be caused 
by this masking effect. 

6 Actually the stress 0' is not explicitly defined in ref. [2.22]. However, the interpretation is as follows. If 
0' N = P / (2b- 2a) · t is the average stress in the minimum cross-section, then in the elastic range O'N = EN e. 

Thus O'=O'N · (t-t)=(t-t)EN e. This implies in the a + E graph a decrease ofthe apparent Young's 

modulus (t-t )EN with an increase of the hole-diameter and this agrees with Fig. 2.10. 
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stress-strain relation at that part will be different from that at the inner part; thus a sort of 
boundary layer must be taken into account when the stress is sharply concentrated". lt appears 
that the combination of Nakanishi's yield point theory for non-uniform stresses and the 
surface layer concept is difficult to grasp since it leaves essential questions open. 

Imamura & Sato were able to fit this model to their experimental results by using a single 
surface layer parameter ö = 0.08 mm; this corresponds to about six crystal grains. Their fit is 
represented in Fig. 2.11 by the continuous curves. Also Nakanishi's model allows to derive an 
upper and lower limit for the size effect. 

In the following years Imamura & Sato (1987, [2.23]) and Tarnura & Sato (1992 [2.24]; 
1992, [2.25]) extended this work and performed experiments on the size effect on yielding of 
solid mild steel cylinders with a transverse hole under compression as weil as pure bending of 
mild steel beams of hollow circular cross-section with a transverse radial hole. Similar trends 
were observed and interpretations used. 

The · previous review makes evident that the experiments on the size dependence of the 
initiation of yielding in cases of non-uniform. stress fields are rarely accornpanied by 
systematic testing of smooth tensile specimens of the same material where a macroscopically 
uniform stress field is present. An exception are the tensile tests of Morrison (1939, [2.14]), 
which may be criticised because of the very few experiments and their restricted size 
variation, and the recent work of Imamura & Sato ( 1986, [2.22]). Their data for uniform stress 
fields show no size dependence of the yield stress, whereas Richard's data (1954, [2.19]) 
surely indicate this dependence accompanied with a Iot of scatter. Clearly, such observations 
depend on the material, the way "initial yield" is defined, and the rneasurernent technique and 
its accuracy. 

Beyond the lirnitations of the above experiments, the size dependence of fl!lly_cte_v_ejgp~g 
J2.l1l.§tif_f]Q~ in the hardening regime up to the rnaxirnum load and instability is of scientific 
and technological irnportance. However, experiments of the types described above and going 
clearly beyond the initiation of yielding (the bending experirnents of Morrison are an 
exception) are difficult to find. Noteworthy in this respect are the tension and torsion 
experiments of very thin annealed pure copper wires (maxirnum diameter 170 Jlm; grain size 
5-25 Jlrn), done by Fleck, Muller, Ashbey & Hutehinsan (1994, [2.26]) observing a constant 
strain rate in all tests (Fig. 2.12). Whereas their tension tests show only some restricted size 
dependence with the usual trend, i.e. srnaller specirnens show a higher resistance against 
plastic flow, the size (diarneter) influence is very pronounced in the non-uniform stress tests, 
that is the torsion test. 

Also scaled fluid-structure impact tests (Stach (1997, [1.4]) showed a significant size 
effect: The plastic deformation was concentrated in tapered bending joints (rninirnurn 
diameter 1, 4 and 10 mrn, austenitic steel X5CrNil89, average grain size 30 Jlm) and the 
largest specirnen showed a two- to three-times larger permanent rotation than the smallest 
specirnens. Analysis [1.4] showed that the strain rate sensitivity is insufficient to produce this 
size influence. Further interpretation of the results [ 1.4, 2.28] revealed that this size influence 
should be essentially related to the initiation of yielding in the bending joints. This was 
confirmed by scaled quasi-static bending of the joints, performed at the Forschungszentrum 
Karlsruhe (Stach (1997, [2.27], Jordan & Malmberg (1998, [2.28]): the size variation affects 
prirnarily the initiation and the small plastic strain regime (Fig. 2.13); the hardening rnodulus 
is alrnost not affected except for the later stages. Finally, the response of this material in 
scaled tests has also been investigated and a significant size effect with the same trend was 
observed even under these quasi-homogeneaus stress conditions (for further details see 
Section 2.2). 

In view of all these results and their limitations it appears necessary to extend the review 
to uniaxial tensile testing of smooth specimens of different sizes which have been done 
because of the basic irnportance of this technological test. Here tensile tests with 
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geometrically similar specimens are of primary interest. However, frequently the experiments 
refer to distorted specimens. Thus, the influence of the shape has found much more attention. 

2.2 Similarity and Size Effects in Uniaxial Tensile Tests of Smooth 
Specimens 

C. Bach ( 1920, [2.29]) reported about results of the experimental work by Barba ( 1880, 
[2.30]) and Sausehinger (1892, [2.31]) concerning the influence of the gage length and the 
diameter of circular tensile specimens: 
• a slight reduction of the ultimate stress with increasing diameter is observed which may be 

due to a diametrical non-uniformity of the rod material the specimens were fabricated 
from; 

• the area-reduction at fracture is independent of the diameter; 
• the 'fracture strain increases if the gage length is kept constant but the diameter is 

increased; 
• for geometrically similar specimens, i.e. l/d = const. (l: gage length, d: diameter), the 

fracture strain is the same; 
• the ultimate tensile stress appears to be independent of the form of the cross-section; 
• the area reduction at fracture is almost independent of the shape and size of the cross­

section; 
• the fracture strain <p for a given gage length l is independent of the shape of the cross-

section but increases with its size according to <p = a + b .J;. where "a" is the cross-section 
area; 

• the fracture strains are comparable if the ratios .Ya /l are the same; 
• there is no relation between area reduction and fracture strain; 
• the proportional Iimit and the yield stress may vary considerably within a slug of material 

even after careful annealing such that a possible influence of shape and size is masked. 

The check of the original work of Sausehinger (1892, [2.31]) reveals that the 
geometrically similar tensile specimens with circular or reetangular cross-section cover only a 
size scale of two: the circular specimens have a diameter of 10, 15 and 20 mm, whereas the 
width of the flat specimens is 20, 30 and 40 mm with a width-to-thickness ratio of 5/3. 
Barba's · ( 1880, [2.30]) results for geometrical similar specimens with circular cross-sections, 
however, covered a scale range of 4 (5 to 20 mm diameter with a gage length-to-diameter 
ratio of 10) and 4.5 (6.9 to 31.05 mm diameter with a gage length-to-diameter ratio of 7 .25). 

Moore (1918, [2.32]) reviewed available test data7 and performed tensile tests on 
specimens of four grades of steel: rivet steel, two steels with about 0.35 % and 0.56 % carbon 
contents, and heat-treated chrome-nicke! steel. Tests were made with specimens held by 
means of shouldered ends, with specimens held by means of threaded ends, with specimens 
with turned down center portians and ends held by means of wedge grips, and with specimens 
in the form of straight round rods. Tests were made in triplicate. The gage lengths l were 2, 4, 
6 or 8 inches and the diameter were 0.5 inch and also 0.75 inch for one specimen type (Tab. 
2.2). Thus, the diameters were fairly large and a size variation of geometrically similar 
specimens was not included in the test series although suggestively named in the title. 
Metallurgical data of the materials were not indicated as weil as some details of the testing, 
e.g. strain rate or cross head speed is missing. 

7 Among others, Moore refers to the results of Barba and Bauschinger. 
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From the data obtained the following results were determined for each test and averaged: 

• stress at proportional Iimit and some other elastic limit point definitions 
- yield point stretch of 0.5 % in the 2 inch gage length 
- ultimate Ioad 

• elongation at maximum load 
• elongation at fracture 
• reduction of area at fracture. 

Except for the area reduction, details of the necking zone were not recorded. Although no 
conclusion can be drawn with respect to the influence of size some Observations concerning 

the influence of shape and the ratioJi;./z (here called "stoutness", the inverse of Moore's 
"slenderness") are noteworthy and are illustrated in Fig. 2.14 to 2.19. Concerning the shape of 
the cross-section, Moore states, in view of previous results, that "it would seem a safe 
conclusion that there is no great difference in results between tests made on round specimens 
and tests made on flat specimens whose width is not more than four times the thickness". 
With respect to the effect of the head of the specimen and the method of gripping in general, 
according to Moore, the test results showed no very marked advantage of one type or method 
over another. 

The influence of the stoutness J;.jz on the various "elastic Iimits", the yield point and the 
ultimate tensile strength is seen (Fig. 2.14 - 2.16), in general, to be slight. An exception is the 
heat-treated chrome-nickel steel which shows an increased strength for the shorter specimens. 

lt has been and it is still proposed to use the elongation at maximum Ioad as a measure of 
ductility instead of the elongation at fracture which depends on the local elongation at the 
necking zone. The instant of maximum load, however, is not weil marked for ductile 
materials. The results in Fig. 2.17 clearly Iack in uniformity. 

All the test data for the elongation e at fracture show that the effect of variation of the 

stoutness Fa /z is very pronounced and a linear relation e = e0 + Q Fa /z for a specific 

material applies (Fig. 2.18). For geometrically similar specimens one has J;.jz = const. and if 
this relation applies to this case too, the elongation at fracture should be size independent. 
This is in accordance with Bauschinger's observations for geometrically similar specimens. 

Finally, all test data for the reduction of area at fracture are very slightly affected by the 

stoutness ..[;. /z (Fig. 2.19) and the variations present do not indicate a systematic trend. 
Baere & Gordon ( 1921, [2.33]) remarked that "the strength and the ductility of a metal as 

determined in a tensile tests, depend not only upon the physical properties of the metal, but 
also upon the form and dimension of the test bar. .... The extension of bars geometrically 
similar, but differing in dimensions, are comparable only by observing Barba's Law of 
Similarity - Geometrically similar bodies of the same material, under identical conditions and 
stress, undergo similar deformations." Since in practice it is inconvenient to prepare 
geometrically similar test bars, a compromise is to be established. The main object of their 
experiments was to determine the influence of the width of the specimen upon the strength 
and ductility of test bars with reetangular cross-section and constant thickness. Thus, 
geometrically similar specimens were not included in this test series. Specimens were 
fabricated from 0.25 inch (6.35 mm) and 0.125 inch (3.17 mm) mild steel plates (carbon 
content 0.12 + 0.15 and 0.13 %) and a 0.125 inch copper plate with a uniform length of 12 
inches and the ratio width/thickness ranging from 1.76 + 15.39, 1.87 + 29.89, and 1.90 + 

29.83, respectively. In all cases the same average strain rate of 1 % per minute (1.7 10-4 s-1
) 

was applied. Three or four nominally identical tests were performed in each case. The results 
show that the yield point remains practically unaffected by the width of the test bar for all 
three materials although the cross-section areas were increased by factors of about 8.7, 16.5 
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and 15.7. Also the ultimate tensile stress is little affected: in case of the two steels there is a 
rather slight tendency to rise as the width is increased (less than 3 %) and this effect is 
noticeably absent for the copper specimens. The determination of the elongation at fracture 
and the cross-section reduction is based on 1 inch or Y2 inch markers on the central Iine. 
Unfortunately, the description of the determining procedure remains obscure such that these 
results will not be commented here. 

An extensive study of the influence of shape and to a very limited extend also of size on 
the tensile properties of three alumini um sheet metals was performed by Templin ( 1926, 
[2.34]). Three different types of sheet metals have been tested: 

• hard aluminium sheet (2 SH) with high tensile strength and low elongation 
• soft aluminium sheet (2 SO) with low tensile strength and high elongation 
• heat-treated duralumin (17S-T) with comparatively high strengthandhigh elongation. 
Only the first and main part of the investigation is sketched here; it is concemed with the 

effects of variation in the thickness, width and length of the uniform section, keeping the ends 
of the specimens 1.5 times the width and the radii of fillets equal to width. Five thicknesses, 
ranging from 1/64 (0.4 mm) to lA inch (6.35 mm) for each metal, were used and the nominal 
widths were 0.250, 0.375, 0.500, 0.750 inch; the length of the uniform sections were 2.25, 3.0, 
4.5 inches. For all cases three nominal identical specimens were fabricated and tested giving 
180 tests for each sheet metal. In all specimens the gage lengths was fixed to be 2 inches; in 
addition marks with staggered distances varying from lA to Y2 inch were applied on the center 
line of the specimens, depending on its length. 

In Fig. 2.20 the yield stress, defined as the stress at 0.5 % strain under Ioad in the 2 inches 
gage, and the ultimate stress have been plotted against the cross-sectional areas. From these 
data it is concluded that for variations in the width to thickness ratio from 1 to 45, for cross 
sectional areas from 0.004 sq. in. to 0.188 sq. in. (2.58 to 121.3 mm2

) and for lengths of the 
uniform sections from 2.25 to 4.50 inches (57.15 to 114.3 mm) no effects on the yield and 
ultimate stress are observed. The effects of the dimensional variations in the uniform section 
on the elongation at fracture using a fixed gage length of 2 inches, however, are clearly 
evident; this is to be expected since the non-uniform localized deformation in the necking 
zone (no information is given in [2.34] on this aspect) is included in the average measure of 
elongation. Here, only the dependence of the elongation on the cross-sectional area variation 
is indicated (Fig. 2.21). 

Within the wide range of dimensional variations it is possible to identify several tests of 
different width-to-thickness ratios which relate to almost similar specimens differing by a 
scale factor of two only. This rather small size variation is due to the restricted length 
variation. The data are given in Tab. 2.3. 

The· test data in Table 2.3 for the yield and ultimate stress reflect more clearly than Fig. 
2.20 that no systematic size effect is found and also the variation of the cross-sectional shape 
(defined by w/t) has no effect. The elongation at fracture within a 2 inches gage length, 
however, is clearly affected: increasing the size by a scale factor of 2, yields an increase in 
elongation for all three sheet metals. However, from the aspect of similarity this findin~ is not 
conclusive, since the gage length was not scaled like the dimensions of the specimen. Thus, 
the average quantity "elongation in 2 inches" does not correspond to similar parts of the 
geometrically similar specimens. lt is noteworthy that simple considerations proof (see 
page 31) that the fracture elongation will increase with size when the deformations up to 
fracture are size independent but the gage length is held constant. 

The influence of the shape variation w/t is, however, evident within the given limits: if the 
shape parameter w/t approaches unity (i.e. square cross-section), the elongation increases. 

8 The ratio ,J;. I f g (a = w · t, eg = 2 inches) was not constant as required for geometrically similar specimens. 

14 



A somewhat similar study was performed by Lyse and Keyser (1934, [2.35]), however, 
without variation of the specimen length. The specimens were fabricated from three rolled 
steel plates which were produced from the same heat. The chemical composition is reported to 
be 0.15 % C, 0.48 %Mn, 0.014% P, and 0.028% S. The plate thicknesses were 1, 0.5, and 
0.25 inch. The specimens with reetangular cross-section varied in cross-section dimension 
from 0.25 by 0.25 inch to 1 by 4 inches. Specimens with circular cross-section with 0.25, 0.5 
and 1 inch diameter were also provided. The uniform center portion of all specimens had a 
length Öf 4 inches. All specimens cut from the 0.25 inch plate had the full thickness of the 
plate. For the 0.5 inch plate one group of specimens had the full thickness of the plate while 
another group was machined down to the 0.25 inch center portion of the plate. Finally for the 
1 inch plate, full thicknesses, 0.5 inch center portions and 0.25 inch center portions were used. 
Three specimens were produced for each kind making a total of 114 specimens. 

The elongation at fracture was measured on the 2 inch portion of the uniform section. A 
tensometer with a 1 inch gage length was used on all specimens to determine Johnson's 
elasticity Iimit. 9 All specimens were tested at a speed of about 0.05 inch per min. up to the 
total (maximum ?) Ioad. For a 4 inch specimen this corresponds to a average strain rate of 2.1 
10-4. 

It is to be expected that the elastic Iimit stress increases with the decrease of the plate 
thickness since the plates were obviously produced by successive rolling. The results for the 
same type of specimens but taken from the three different plates show that Johnson's Iimit is 
largest for the 0.25 inch plate and decreases significantly with the increase of thickness of the 
two other plates. The corresponding ultimate stresses arealmostnot affected. Because of this 
effect only a selected part of the results will be discussed here, namely the results of those 
specimens which stem all from the same plate, the 1 inch plate. It contains specimens with the 
largest variation in the cross-sectional dimensions. These selected results are collected in 
Table 2.4. 

Within each group of Table 2.4 the cross-sections are geometrically similar and the data 
are arranged according to the size of the cross-section. Besides the circular and square cross­
sections, reetangular cross-section with increasing width-to-thickness ratio are included. 

Conceming Johnson's elastic Iimit, a systematic size dependence (scale factor 4 for cross­
section dimensions) within each group cannot be detected. However, it appears that the non­
circular specimens give the largest limit stress when the specimen cross-section includes the 
whole 1 inch thickness of the plate. This is probably due to some material property variation 
across the thickness of the plate: the material close to the plate surface has a larger yield point 
due to the rolling process during plate production. 

Furthermore, it is seen that the shape of the cross-section has no systematic influence on 
the Johnson Iimit. To an even higher degree the ultimate stress is neither affected by the size 
nor by the shape. 

However, the data for the area reduction decrease slightly with the four-fold increase of 
the cross-section dimensions; this size effect becomes more pronounced ( -10 %) when the 
width-to-thickness ratio becomes large. On the other hand the area reduction definitely 
decreases with the width-to-thickness ratio. 

Finally, for all shapes of the cross-sections a pronounced increase of the elongation at 
fracture (within a 2 inches gage length) with the size of the cross-section is found. This size 
influence appears to be largest for the circular cross-section. As previously, the results for the 
elongation at fracture within a 2 inches gage length for all specimens is not conclusive with 
respect to questions of similarity. Alsodetails of the determination of this quantity as weil as 
the area reduction are not given in ref. [2.35]. Furthermore, information about the scatter of 
the nominally identical tests is missing also in this reference; thus, the significance of slight 
effects on average values is difficult to judge. 

9 The stress at which the rate of strain is 50 % greater than the initial rate. 
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Static and dynamic tensile tests were performed by Wood, Duwez and Clark (1943, 
[2.36]) on specimens which had different dimensions but which were geometrically similar. 
Similitude theory for a classical rate independent elastic-plastic material implies [1.2] that the 
stresses and strains at homologaus points are the same if the same impact velocity is used for 
differently sized specimens. Of course, then the average strain rates are not the same. If the 
average strain rate does exert an influence due to visco-plastic material behaviour, then 
geometrically similar specimens should exhibit different dynamic tensile properties. On the 
basis of this argument Wood, Duwez, and Clark investigated whether or not geometrically 
similar specimens tested at the same impact velocity exhibit identical dynamic tensile 
properties. From the today's knowledge of size effects and their possible causes the above 
research program requires a carefully choice of the test matrix and its parameters. Visco­
plasticity induces a size effect, but a size effect may also appear if the average strain rates are 
the same (scaled impact speed) or if visco-plasticity is not significant at all and the classical 
rate-independent elastic-plastic material models do not apply for some other reasons. Thus, 
the experimental program should allow to separate the visco-plastic size effect from possible 
other size effects. 

In the following only the quasi-static tensile tests, where rate effects are probably not 
signifiqmt for the materials considered, are commented. Annealed (480 °C, 1 h) copper and 
steel were the materials used. A series of copper specimens was fabricated from a Yz inch and 
another one from a 1 inch round bar. The steel specimens were taken from a 1 inch diameter 10 

bar of SAE 102011 in the cold-rolled and annealed (875 oc, 1 h) condition. The dimensions of 
the specimens are given in Tab. 2.5. Two specimens were machined and tested for each case. 

Each of the static stress-strain curves for the annealed copper specimens, machined from 
the Yz inch diameter bar, is given in Fig. 2.22 and further details are given in Tab. 2.6. Fig. 
2.22 demonstrates the very good reproducibility of each of the two nominal identical tests up 
to fracture. The smaller 0.1 inch diameter specimen shows uniformly somewhat larger flow 
stresses ( -800 lb./sq. in. ~ 20 % of the proportional Iimit) although the proportional Iimits and 
the ultimate stresses are the same. The reduction in area is also very reproducible (Tab. 2.6) 
and the smaller specimens show only slightly smaller values (- 3 % ). A significant difference 
is found in the uniform elongation and the elongation at fracture: the uniform and fracture 
elongation of the small specimens are about 25 % smaller compared to those of the 3.5-times 
larger specimens. This difference is evidently responsible for the reduced deformation energy 
consumption capability per unit volume of the smaller specimen (Tab. 2.6). This latter results 
clearly indicate that the non-similarity is restricted here to two essential aspects of the necking 
process, i.e. initiation and extend of the necking zone but not the final area reduction. 

Wood, Duwez, and Clark associate this reduced ductility with "the non-uniform structure 
in the cross-section of the Yz in eh bar from which the specimens were cut". In fact there is an 
appreciable variation in Rockweil Hardness (scale F: 1/16 inch ball indenter, maximum Ioad 
60 kp): the hardnesses in the two small specimens agree weil but are a factor of more than two 
smaller than in the two large specimens. This may indicate a variation of material properties 
along the length of the Yz inch bar. However, a record of the positions in the bar where the 
specimen were cut from is missing. 

The second series of specimens were taken from a 1 inch diameter bar. Three different 
sizes were used ranging from a somewhat larger minimum diameter of 0.15 inch to 0.6 inch. 
Fig. 2.23 shows only one of the two stress-strain curves obtained for each size since the 
duplicate tests did not differ by more than 500 lb./in.2

• The three curves almost collapse into 
one. However, a very slight size dependence is found in the characteristic data (Tab. 2.6): the 
proportional Iimit is not affected, however, the ultimate stress and the reduction in area 
increase somewhat (about 4 to 6 %) whereas the elongation decreases by about 10% (instead 

10 The 1 inch diameter is inferred from the dimensions in Fig. 2.26 (hardness versus radial distance) 
11 Rockweil B hardness 87- 91; chemical analysis 0.19% C, 1.03% Mn, 0.018% P, 0.029% S, 0.34 Si 

16 



of 25 %) when the size is reduced by a factor of four. Wood, Duwez and Clark pointed out 
that there is an appreciable variation in hardness, also for the second set of specimens (Tab. 
2.6), although the stress-strain diagrams are approximately the same over a large strain range. 
Also a micro-structural examination indicated the same grain size which was not reported. No 
explanationwas given for this anomaly. 

The stress-strain curves obtained for each specimen of cold rolled and annealed steel are 
given in Fig. 2.24 and 2.25. Evidently, each of the nominaily identical tests show good 
reproducibility. Most important a size dependence is clearly noted for all aspects of the stress­
strain curve with the same trend for both states of this material (Tab. 2.6). The percentage 
increase of the proportional limit and the ultimate stress are given in Table 2. 7, which 
includes also the percentage decrease of the elongation at fracture and the area reduction 
when the size is decreased from 0.13 inch (7.62 mm) diameter by a factor of two only. 

The most significant effect is observed for the elongation at fracture which includes the 
necking process, but the stress-strain graphs indicate also a comparable percental reduction of 
the uniform elongation. The increase in stress and the decrease in elongation, when the size is 
reduced, however, do not compensate in the specific deformation energy up to failure, but 
Iead to a reduced specific energy absorption capacity of the small specimens. 

The Rockweil hardness measurements for each of the specimens show very good 
consistency for both states of the steel (Tab. 2.6). 

Searching for an explanation of the pronounced size effect, the uniformity of the hardness 
distributions in the cross-section of the 1 inch bar materials was investigated. The result of the 
superficial Rockweil hardness using the 45 T scale (1116 inchball diameter, major load 45 kp) 
is given in Fig. 2.26. For both states the hardness shows a slight minimum at the center of the 
rods. Outside the center very little variation is found up to a radius of 0.25 inches. The small 
and the large diameter tensile specimens are weil within this region. The difference in the 
hardness for the small and the large specimen show even a slight inverse effect: the smaller 
specimen are somewhat "softer" than the larger specimen (Fig. 2.26), whereas the Rockweil 
hardness B measurements (Tab. 2.6) are almost the same. Thus, hardness differences between 
small and large specimens are absent or even inverse; therefore, they cannot account for the 
observed significant differences between the tensile properties of the various sizes of 
specimens. Wood, Duwez and Clark suggest "that the observed difference in tensile properties 
is a consequence of a non-uniform distribution of impurities in the bars .... On the other hand, 
the surface characteristics of the material may be more influential in the case of a small 
specimen than a large one. In such a case a greater strength at the surface could account for 
the observed results". Further investigations to verify one or the other hypotheses were not 
done. 

The object of the investigation by McAdam, Geil, Woodard, and Jenkins (1948, [2.37]) 
was to determine the influence of a wide range of sizes of both notched and un-notched 
cylindrical tensile specimens on the flow and fracture stress. The annealed ( -925 °C, 2 h, 
cooled in furnace) low carbon steel FA-17 (0.12% C, 0.44% Mn, 0.25 %Si, 0.020% P, 
0.021 % S) in the form of a 2 14 inches (57.15 mm) diameterbar was used. A few experiments 
were made also with large and small specimens of oxygen-free copper. 

This excerpt puts attention only to the results of the un-notched, geometrically similar 
steel specimens. The length-to-diameter ratio was not explicitly mentioned. In Tab. 2.8 the 
initial specimen diameters d0 are listed, ranging from 0.101 to 1.297 inch (2.57 to 32.94 mm), 
as well as the minimum diameter 2b' in the neck after fracture and the meridional radius of 
curvature r' of the neck profile at the minimum cross-section after fracture. Based on these 
data the area reduction 'V and the ratio 2r'/d0 are obtained (Tab. 2.8). If similarity of the 
deformations at fracture would prevail, these two dimensionless numbers would be 
independent of size. 
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However, for a 13-fold increase in size the area reduction 'I' at fracture reduces by about 
10 % but the relative meridional radius 2r'/d0 increases by 66 %. 

McAdam et al. performed numerous measurements of the minimum diameter during each 
tension test and measurements were continued to the beginning of fracture 12

• The strains were 
expressed in terms of Aol A, in which Ao and A represent the initial and current cross-section 
areas. The true stresses S were plotted versus Aol A, which is represented on a logarithmic 
scale. Fig. 2.27 gives the results for three differently sized specimens. The last point in the 
graphs marked by the Ietter "R" was determined by dividing the load at the "beginning of 
fracture" by the sectional area measured after fracture, and this stress is generally higher than 
the stress at the "beginning of fracture". It is seen that the true flow stress (beyond the 
maximum Ioad) is somewhat larger for the 0.1 inch diameter specimen than for the 1.296 inch 
diameter specimen. 

From Fig. 2.27 and other figures given in [2.37] the yield stress cannot be extracted; 
however, approximate data can be obtained .for the true ultimate stress (true stress at 
maximum Ioad marked in the figures) and the associated uniform engineering strain Eg = Aol A 
- 1. The results are collected in Tab. 2.9. 

From Tab. 2.9 it appears that the true ultimate stress and the uniform strain arealmostnot 
affected by the increase in size. However, some data in Tab. 2.9 show that the tensile 
properties within the original 214 inches diameter bar are somewhat non-uniform: the centre 
part has a somewhat higher strength. This can be seen in the stress-strain curves of the 0.501 
inch diameter specimens (Fig. I of ref. [2.37]). Since the large specimens (do;::: 1.00 inch) are 
positioned co-axially with the original bar, their flow stresses are somewhat too large 
compared to the smaller specimens positioned at half-radial distance. Thus, a correction of the 
flow stress of the 1.296 inch diameter specimen in Fig. 2.27 would shift the curve to lower 
values and the size influence would increase somewhat. 

On the other hand, two stress-strain curves (ref. [2.37], Fig. I, 0.501 inch diameter 
specim~n) indicate that the material inhomogeneity in the original bar may be responsible for 
area reductions after fracture (Tab. 2.8) of the large specimens which are somewhat too small. 
However, sufficient data are not available to substantiate this trend. 

Miklowitz (1948, [2.38]) performed a study of the effects of geometry and size on the 
mode of yielding close to and beyond the ultimate load and at fracture in flat tension bars of a 
medium carbon steel. Results on the initiation of yielding were not reported. 

The thicknesses h0 = 3/16, 3/8, 3/4 inch (4.76, 9.52, 19.05 mm), corresponding to the 
particular specimen series A, B and C, covered a size range of 4, whereas the width-to­
thickness ratios bolho and the gage length-to-thickness ratios lJho ranged between 1 and 10 
and 5 and 50, respectively. The gage length-to-width ratio lJbo was 5 in all specimens 
(Fig. 2.28). Thus, specimens lA, 3A, 5A, ... are geometrically similar to lB, 3B, SB, ... and 
1 C, 3C, SC, .... This similarity includes also the transition radius R between the gage length 
and the specimen heads. 

A reetangular grid was mechanically put on the specimens. The spacing of the grid lines 
differed with the size of the specimen but it is not clear whether the grid was also properly 
scaled. The deformation of the grid lines in the width direction after fracture allowed to 
calculate the engineering strain e2 in this direction. At the intersections of the lateral and 
longitudinal grid lines, the thicknesses h were measured with special micrometers; this 
measurement was used to calculate the average strain e3 in the thickness direction. A "local" 
strain E1 in the axial direction was calculated from E2 and e3 using the constancy of volume 
conditidn (1 + eJ) (1 + E2) ( 1 + E3) = 1. 

12 The "beginning of fracture" is associated with the fracture initiation at the center axes of the specimen. 
However, this is not immediately observable and a definition in operational terms is not given in ref. [2.37]. 
McAdam et al. refer to previous publications. 
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The. medium carbon steel was an open-hearth, silicon-aluminium-killed fine grained steel 
(C 0.19, Mn 0. 77, P 0.021, S 0.026, Si 0.17 % ). No heat treatment except a stress relief was 
given the supplied 1 x 11 inches plates. Whether the plates came from the same heat is not 
recorded. Also cutting plans showing the origin of the various specimens are not indicated 
and tests verifying the homogeneity of the plates arenot described in [2.38]. Most importantly 
for each type of specimen only one test was provided. 

In the presentation and discussion of the results, Miklowitz puts his primary attention to 
the influence of geometry (i.e. the variation of bofho) which determines the constraint effect of 
the specimen head and which becomes more intense as the width increases. In the present 
report interest is restricted to the influence of size of geometrically similar specimens and 
only those data are extracted from [2.38] which directly refer to this aspect. 

Tab. 2.10 contains the conventional ultimate stress and the engineering fracture stress and 
total fracture elongation in the scaled gage length 10 • For geometrically similar specimens, e.g. 
(1 A, IB, I C, bo/ho = 1 ), a slight decrease of the ultimate stress with increased size is found in 
Tab. 2.1 0. However, for the other width-to-thickness ratios the trend is not so uniform. Also 
for the engineering fracture stress and the total elongation at fracture a significant size 
influence cannot be seen. Thus, it appears that Barber's law is approximately satisfied. On the 
other hand the influence of the width-to-thickness ratio is very pronounced for the total 
elongation. 

Miklowitz' results allow to demoostrate the influence of specimen size by comparing the 
maximtim strain values at fracture in the center of the neck, i.e. within the cross-shaped 
depressed region which is generated in the localization process (Tab. 2.11). This influence is 
observed especiall y for the maximum strain component, the calculated axial strain EI· 

Although some variability is present, the general trend is evident: the "local" axial strain E1 at 
fracture reduces with the increase in size. The reduction may be as large as 25 %. A definite 
dependence on bo/ho cannot be seen. 

Miklowitz' work included also the determination of the axial, the lateral, and the thickness 
strain distribution in the axial and width direction after fracture. Unfortunately, the data for 
the differently sized specimens do not allow an easy comparison of these strain profiles with 
respect to their similarity. 

The previous work was extended by Miklowitz (1950, [2.39]) to include a group of tests 
on round tensile bars of the same steel where the dimensions of the tensile specimens were 
varied under geometric similarity covering a linear size range of 1 to 16. The diameter of the 
specimens were 3/16, 3/8, 3/4, 3/2, and 3 inches (4.76, 9.53, 19.05, 38.1 and 76.2 mm) and 
the gage length was 5 times and the fillet radius 4.25 times the diameter. Two specimens for 
each size were cut from the same heat as the flat specimen of ref. [2.38]. Billets 4 Y2 x 4 Y2 
inches (114.3 x 114.3 mm) in cross-section served the purpose. The gage sections of the 
specimens were marked by circumferential scratches to measure the changes in diameters; 
from this the cross-section average of the longitudinal engineering strain E was determined 
using the volume conservation assumption. 

The following discrete stress and strain values obtained in the tests are listed in Tab. 2.12: 

true ultimate stress at an axial strain of 0.22; since the stress-strain curves were very flat at 
the ultimate Ioad, a choice had to be made; 
average true stress cr at fracture at the minimum cross-section of the neck; 
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maxtmum true stress O'm at fracture according to Davidenko & Spiritonova ( 1946, 
[2.40])13

; 

axial conventional strain at the minimum cross-section of the neck at fractures calculated 
from E = Ao/A- 1. 

Three groups of tests were done 

Group I: The primary test series: Scaled specimens 1 to 6. 
The cutting plan of specimen 1 to 6 are indicated in Fig. 2.29a. 
Specimen 7 to 1 0 were co-axially positioned in the billet. 

Group II: Specimen 11 and 12, fabricated from the same heat as above and co-axially 
positioned; a repeat of 9 and 10 two years later. 

Group III: Specimen A and B of the same size. A positioned at the centre and B at the edge 
of the billet to obtain information on the homogeneity. 

Tab. 2.12 shows that over the 16-fold increase in size the variation of the average true 
ultimate stress is slight and no general trend is seen when the size is increased. On the other 
hand, all data related to fracture show a definite decrease when the size is increased, however, 
with some peculiarities. 

The tests A and B, both done with the same size of specimen (0.357 inch diameter), reveal 
a positional influence on the tensile properties: the average true stress and the maximum true 
stress at fracture and especially the axial strain at fracture are }arger at the rim of the billet 
than at the centre. On this basis Miklowitz assumes that the averages of tests A and B are the 
values of a specimen (of the same size) unaffected by position in the billet. Miklowitz uses 
this argument and some consistency checks to introduce a trend correction in Tab. 2.12 as 
shown by the arrows along with each value (t: shift to }arger values, J-: shift to lower 
values). This correction for positional influence yields a size effect on stress and strain data at 
fracture in a much more pronounced form. However, in the reviewers opinion this correction 
is somewhat hampered by the limited number of quality assurance tests like A and B. 
Additional tests could reveal further scatter of the test data not only related to the radial 
position of the specimen. 

The size effect may be illustrated also by combining results of Group I and III such that 
the influence of radial position is almost eliminated: specimens 3 and B have approximately 
the same diameter and are both positioned at the edge of the billet, the centre of specimen 3 
located Yz in. and I & 2 centred 1 in. off the edges. Of course, different circumferential and 
different axial positions may still have an influence. 

From Tab. 2.12 it is seen that the test data related to fracture of specimens 3 and B are 
almost the same (differences 2 % and Iess). The comparison of these data with those of 
specimen 1 & 2, which are twice as large, show a slight decrease of the stress values but a 
signific~nt decrease of the conventional strain at fracture in the neck: for specimen 3 & B the 
strains 1.83 & 1.80 were obtained whereas 1 & 2 yielded 1.58 & 1.46. 

The 3 inches specimens 11 & 12, nominally identical to 9 & 10, were tested two years 
later. It was feit that a premature failure of specimens 9 & 10 had occurred, recognizable by 

13 Here 

R+0.5a p 
O'm = 0' ' 

R+0.25a 
0' =-

A 
a 
R 
A = 1t a2 

Ao 

radius of minimum cross-section in the neck 
meridional radius of the curvature of the neck profile at and near the minimum cross-section 
minimum cross-section area in the neck 
original undeformed cross-section area 
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the low fracture stresses and strains and the peculiarities of the fracture surface which is of 
cleavage type whereas the tests 11 & 12 yielded a cup and cone type fracture and definitely 
larger fracture stresses and strains. This suggested the search for possible metallurgical causes 
for the .difference in fracture behaviour. Cross-sectional slides were taken within the gage 
length of the specimens 10 & 11 which had undergone an engineering strain of 0.20. Different 
methods of etching were applied which revealed a segregation zone in specimen 10. The 
fracture surface of specimen 10 was also coincident with a surface scratch applied for 
measuring purposes. This stress concentration due to the scratch might have triggered the 
premature fracture of specimen 10 but specimen 9, prepared with similar machined surface 
lines, broke in the same way, however, seemingly not influenced by a surface scratch. 
Therefore, Miklowitz considers the macroscopic metallurgical non-uniformity as found in 
specimen 10 the primary reason for the premature fracture of specimen 9 and 1 0 although 
metallurgical tests of specimen 9 were not made. 

The distribution of the axial engineering strain along the neck at fracture is shown in Fig. 
2.30 for the selected specimens 1, 8, 9, 11 and 12. Allstrainprofiles have been scaled along 
the axial direction (abscissa) to be comparable with the 3 inches specimens. For the central 
section of the neck the same trend is observed as for the maximum value: the smaller the 
specimen the higher the strains. 

For the results described so far a size effect becomes manifest only for the instant of 
fracture. Beyond that Miklowitz provided profiles of the axial engineering strain in the 
specimens 1, 8, 9, 11 and 12 at certain stress Ievels before fracture which show the successive 
development of strain distributions along the specimen starting somewhat before the ultimate 
Ioad is reached and proceeding up to fracture. It would have been interesting to compare the 
strain p'rofiles of the differently sized specimens at the same stress Ievels before complete 
fracture; this would allow further assessment of similarity or size effects. However, the 
available data are too scarce and the inherent scatter and response sensitivity beyond the 
ultimate Ioads prevents such a comparison. 

Miklowitz favoured an explanation of the size effect which he used already in his previous 
publication [2.38]. His argument refers to the lateral constraint of the stagnant material 
adjacent to the thin disk of flowing material at the heart of the neck: the constraining lateral 
stresses increase with the diameter of the bar. However, this argument is tautological: if 
similarity would apply, then the restraining stresses should be the same in the small and the 
large specimen. If they are not the same for properly scaled specimens and loading conditions, 
then non-similarity and thus a size influence is present. 

The objective of the experimental work of Piechanova and Ratner (1954, [2.41])14 was to 
study the size effect on the tensile characteristics for the two soft materials copper and 
aluminium and for four different steels, the specimens having been prepared by different 
procedures. Specimens with circular cross-sections were chosen with diameters 5, 10, 20, and 
40 mm. The gage length-to-diameter ratio is not explicitly mentioned but is believed to be 5. 
The characteristic tensile data chosen for comparison were the proportional Iimit O'pro, the 
yield stress cr0,2, the ultimate engineering stress O'u, the average true fracture stress SR and the 
area reduction 'V after fracture. The uniform elongation or uniform area reduction was not 
recorded and no indication is given about the stress-strain curve as a whole. 

The origin of the materials is not mentioned and a cutting plan is not indicated. The four 
alloyed (Cr, Ni)-structural steels were 30 X rCA-GOST, 30 X rCHA-GOST, 40 X HMA­
GOST, and 18 X HBA-GOST. To check the homogeneity of some of the steel slugs, which 
had been tempered at high temperature, 13 Rockweil hardness measurements were made 
along two diameters of a cross-section and five tensile specimens (5 mm diameter) were 
produced from material at five positions along a diameter. The hardness data for the steels 

14 For the reviewer only an abridged verbal translation of this article was available. Thus some rational 
reconstruction or interpretation of the results was necessary. 
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30 X rCHA, 30 X HMA, and 18 X HBA as weil as all characteristic tensile data for 
18 X HBA show a high degree of uniformity along the diameters; e.g., the tensile data varied 
by less than 3 % with respect to the maximum values. 

The meta! slugs were heat treated before the specimen fabrication as follows: 
(I) Copper: Annealing at 600 oc, 2 h, cooled in the furnace 
(2) Aluminium: Annealing at 360 °C, 2 h, cooled in the furnace 
(3) Steel 30 X rCA: Hardening & tempering at 600 oc, 2 h, cooled in air 
(4) Steel 30 X rCHA: Isothermal hardening in saltpeter at 320 oc 
(5) Steel 18 X HBA: Hardening & tempering at 550 oc, 2 h, cooled in air 
(6) Steel40 X HMA: Hardening & tempering at 550 °C, 2 h, cooled in oil 

All specimens were turned under the following conditions: cutting speed v = 15 m/min, 
cutting depth t = 0.2 mm, feed s = 0.14 mm/turn. The number of specimens produced and 
tested for each material and size is not given, thus it is believed that only single tests were 
performed. The cross-head speed or strain rate during the tensile tests is not reported in [2.41] 
but the strain rate is expected tobe 10-4

- 10-3 s· 1
• 

The results of the tensile tests are contained in Tab. 2.13. The influence of the change in 
specimen size is fairly obvious and is demonstrated also in Tab. 2.14, where relative values 
for two scale factors A = 4 and A = 8 are collected, e.g. ( O'pro)d = zol( O'pro)d =5 & ( O'o,z)d = 

zol( cr0,2)d =5 etc. Considering the two soft materials copper and alumini um, the increase in 
diameter from 5 to 40 mm produces an extremely large reduction for the proportional Iimit 
and the 0.2 %-proof stress whereas the ultimate stress and the two fracture data are almost 
not affected. 

The increase in size from 5 to 40 mm diameter for the steels (4), (5), and (6) has a less 
pronounced influence on the proportional Iimit ( 12 to 24 % ). The effect on the 0.2 %-proof 
stress is even less (7 to 15 %). Again, the influence on the ultimate stress is very small, only a 
3 %-reduction is found. Aside from the proportional limit, which is probably not a very weil 
defined quantity, the largest decrease due to an eight-fold increase in size is found for the 
average true fracture stress SR and the area reduction 'I' after fracture (decrease up to 24 %). 
Piechanova & Ratner argue that the homogeneity observed in the supplementary hardness and 
tensile tests exclude the technological inhomogeneity to be a possible cause of these size 
effects. The question remains whether a possible surface hardening due to the turning could 
be a possible explanation. To test this conjecture a series of experiments was performed for 
the steels 30 X rCA, 18 X HBA, and 40 X HMA: for each of the three steels two groups of 
specimens of the smallest size (5 mm diameter) were prepared according to two different 
production sequences: 

Group I: !.1 Hardening & tempering of the meta! slugs 
at 500 oc, 2 h (30 X rcA & 40 X HMA) or 
at 550 oc, 2 h (18 X HBA) 

!.2 Tempering of the heat treated meta! slugs 
at 500 oc, 2 h (30 X rcA & 40 X HMA) or 
at 550 oc, 2 h (18 X HBA) 

I.3 Turning of the specimens (v = 15 m/min, t = 0.2 mm, 
s = 0.14 mm/turn) 

Group II: II.1 same as 11 
II.2 same as I.3 
II.3 same as 12 
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The second heat treatment and its interchange in the group II is performed to reduce or 
annihilate the hardening due to the cold-work at the specimen surface induced by the turning. 
The tensile tests with these two groups of specimens gave almost no difference ( 1 - 2 %) in 
the proportional Iimit and the 0.2 %-proof stress. Also the relative differences in the other 
tensile data are far less than the observed size influence (Tab. 2.13) when the diameter is 
increased from 5 to 40 mm. From the above results for the 5 mm diameter steel specimens 
with a different sequences in the production processes Piechanova & Ratner concluded that 
the surface cold-work due to turning is not significant. Thus, Piechanova & Ratner conjecture 
that the reduction of O'pro & cr0.2 with increase of size is of physical origin linked to the 
behaviour of the bulk material and not a surface effect; they suppose that the size effect is 
related to the microscopic heterogeneity of the resistance against plastic deformation in small 
material volumes which is of a statistical nature. 

However, Piechanova & Ratner also showed for 5 mm diameter specimens made from the 
two (Cr, Ni)-steels 18XHBA and 40XHMA tempered at high temperatures that different 
treatments such as 

or 

(A) • Partial machining of specimens from tempered material 
• Finish machining by turning with slow cutting speed 

(v = 1.6 rnlsec, t = 0.2 mm, s = 0.2 mrnlturn) 

(B) • Machining of specimens and subsequent hardening and tempering 
• Finish by grinding 

yield an increased surface hardness ( < 26 %) when procedure (A) is applied; also somewhat 
increased proportional Iimits ( < 9 %) and 0.2 %-proof stresses ( < 3 %) are observed. These 
effects are Iarger than those found from the tests of Group I & II above. It is the reviewers 
opinion. that the significance of the above small variations of the two stress data would be on a 
better basis if more tests would have been done. 

The influence of the surface properties on the tensile characteristics was also studied for 
the soft material copper. Departing from the presentation of Piechanova & Ratner, these data 
and the previous test results in Tab. 2.13 are collected in Tab. 2.15. 

It is obvious from Tab. 2.15 that the various production processes (a) to (~) do not affect 
the ultimate stress O'u, the average true fracture stress SR and the area reduction 'V after 
fracture. However, the quantities characterizing initiation of non-proportionality and yielding 
are affected under certain conditions. The 5 mm diameter specimens subjected to the 
production process (a) and (ß) yield approximately the same values for O'pro and cr0.2 although 
the turning processes were different: the turning of the (ß)-process is much rougher in the 
speed and feed. Here a Iarger surface hardening would be expected but this is not reflected in 
the tensile properties; unfortunately comparable hardness values are not available. 

Increasing the diameter to 40 mm in the processes (E) to (~), again no difference is found 
in all the tensile characteristics although the turning data are different: in the process (~) the 
speed was reduced by almost a factor of two and the feed was ten-fold larger. Of course, 
because of the larger diameter any hardening at the surface is expected to be of less 
importance than in the small specimens. 

Significant surface effects for 5 mm diameter specimens are disclosed for specimens 
obtaine~ by the processes (y) and (Ö). In the (y) process the annealing is done after the turning 
which is followed by a grinding. Compared to processes (ß) or (a) a significant reduction of 
O'pro and cr0.2 is obtained. The annealing should reduce cold work effects due to manufacture of 
the original copper bar but also due the surface hardening induced by the turning and the 
grinding abrades a thin cold-worked surface layer; it appears that this is of minor importance 
for the tensile test. 
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A significant surface hardening is obtained if the annealing and specimen fabrication by 
turning (e.g. process (ß) or (o:)) is followed by shot peening (process (o)): compared to 
process (ß) O'pro and O'o.z increase by 30 and 37 % whereas the micro-hardness increases by 
25%. 

From the comparison of specimen types (y) and (s) the following conclusion may be 
drawn if the following assumptions are made: the comparison of the tensile data for the types 
(y) and (s) indicates that the significant size effect found for copper (Tab. 2.13) is primarily 
due to a surface effect for this soft material. This statement is based on the assumption that the 
subsequent annealing after fabrication (process (y)) annihilates the surface hardening in the 
5 mm diameter specimen; further, the surface hardening in the process (s) is not effective 
because of the much )arger diameter and the difference of O'pro and O'o.2 for these two 
differently sized specimens is much smaller than those given in Tab. 2.13. 

Piechanova & Ratner measured also the cup and cone fracture areas and found that the 
ratio of the central fracture area (bottom of the cup) to the total area in the broken neck 
increases considerably in the steel whereas it remains constant for copper when the size is 
increased from 5 to 40 mm diameter. 

Chechulin ( 1954. [2.421 performed an extensive experimental study on the size effect in 
tensile tests of pure iron (Armco type) and various steels varying the size up to a scale factor 
of 13.3. The diameters of the circular specimens were 1.5, 3, 6, 15, and 20 mm. The gage 
length-to-diameter ratio was 5 and the similarity included the radius in the transition region as 
weil as the specimen heads, except the very small specimens where the heads were somewhat 
!arger. All specimens were taken along the rolling direction of the raw material and small as 
weil as large specimens were cut from positions having the same distance from the surface of 
the metal blocks. Furtherdetails on the original material are not given. Also no indication is 
given o~ the homogeneity of the material. 

The materials chosen were 
(1) Technically pure iron (Armco type) 
(2) Low carbon steel St3-GOST 
(3) Cr Ni steel 30XH3-GOST 
(4) 
(5) 
(6) 
(7) 

Cr Ni steel 37XH3A-GOST, Brinell hardness Hs = 241 
Cr Ni steel 37XH3A-GOST, Brinell hardness Hs = 293 
Cr Ni steel 37XH3A-GOST, Brinell hardness Hs = 352 
Cr Ni steei40XH-GOST 

For each material and each size 6 to 10 specimens were fabricated. The cross-head speed 
of the tensile testing machines was 0.02 mm/sec and was the same for all specimen sizes 15

• 

The author states that increasing the strain rate by a factor of about 10 due to the decrease in 
size will have a minor effect on the ultimate stress and area reduction (<1 %) 

The results for the mean values of the conventional ultimate stress crs, the yield stress O'T 

and the uniform area reduction 'l'g for the various materials as functions of the specimen 
diameters are shown in Fig. 2.31. The full scale range of 1.5 to 20 mm diameter was covered 
only for the rather soft materials, i.e. pure iron and the low carbon steel St3. lt is seen that 
none of the above characteristic tensile data depend on the specimen size. 

The· size-independence of the yield stress is in contrast to the results of Piechanova & 
Ratner (1954, [2.41 ]); there a strong increase of the yield stress with a decrease in diameter 
was found especially for the soft materials. However, the size-independence of the 
conventional ultimate stress is observed again. The frequently found relation between 
hardness of a material and its yield and ultimate stress is realized again for the steel 37XH3A. 

15 This corresponds to an average strain rate of about 3 · 10"3 s· 1 for the smallest specimen. 
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An important result is the size-invariance of the uniform area reduction which corresponds to 
the area reduction at ultimate load; this implies also a size-invariance of the uniform 
elongation. Beyond the data in Fig. 2.31 Chechulin points to the fact that the engineering 
stress-strain curves for four different sizes from 1.5 to 10 mm diameter agree except in the 
softening region close to fracture. 

Here, however, the reader expects more differentiated Statements: it is almost unbelievable 
that no scatter is present in 6 to 10 nominally identical tensile tests of very different sizes. 
Unfortu'nately, the question of the variability of these tests is not even mentioned in [2.42]. 

The size influence becomes evident when those tensile data are investigated which 
characterise the instant of fracture, i.e. the area reduction \jl after fracture and average true 
fracture stress SR. For the materials (1), (2), (3) and (7) the decays of the area reductions with 
increasing size are shown in Fig. 2.32(a) and for the material 37XH3A with different 
hardnesses ((4), (5) and (6)) the area reductions are plotted in Fig. 2.32(b). The average true 
fracture stress is presented in Fig. 2.33. Except for an anomalaus maximum for the pure iron 
(1) and the low carbon steel St3 (2) at small specimen sizes, all data show a quasi-exponential 
or linear decay with increasing size. Chechulin relates this anomaly to the irregular shape of 
the fractured cross-section, which appears if the material is coarse grained, and to the usual 
procedure the area reduction is determined (measurement of two orthogonal diameters only). 
Cutting the specimens in the fractured neck and determination of the area of the irregular 
cross-section yields a more accurate value for the area reduction. With these data the dashed 
curves become valid and the anomaly disappears. 

Fig. 2.32(b) shows the influence of changes in the hardness on the size dependence of the 
area reduction at fracture for the steel 37XH3A. The increase in hardness does not only 
reduce the area reduction for a given size but also shifts the size influences to larger sizes. The 
size dependence of SR and \jl for the three hardnesses allows to plot the average true fracture 
stress SR as a function of the area reduction \jl with the diameter representing the curve 
parameter. Chechulin obtains, within the size range of 1.5 to 15 mm diameter, three linear 
relations with positive slope, the large specimens being at the lower and the small specimens 
at the upper end. 

Davidenko ( 1960, [2.43]) called attention to the question of the size influence on the 
mechanical properties of solids. Among the different publications which followed the 
editorial appeal, only the results of Chechulin (1961), [2.44]) are related to the topic discussed 
here. Chechulin clearly distinguishes between the three stages of the mechanical response 
where the size effect may become important: (a) Effects on the proportional limit, the 
hardness etc. i.e. before the first cracks appear, (b) the dependence of the limiting plasticity 
or the beginning of cracking on the specimen size, and (c) the differences between the rupture 
processes taking place in small and large specimens after the appearance of the first cracks. 
Chechulin further elaborates somewhat on plausible explanations of the size effects like 
statistical and energy theories. 

To clarify the dependence of the appearance of the first crack on the size of the samples, 
tensile tests on geometrically similar 3 mm and 15 mm diameter specimens of 37XH3A steel, 
heat treated to obtain three different hardnesses, were performed. Details of the origin, 
fabrication, other geometrical data and testing conditions are not given. The results are 
collected in Tab. 2. I 6. The I 5 mm specimens were all ruptured and here o and \jl denote the 
elongation and area reduction after rupture. On the contrary, the 3 mm specimens were tested 
only un~il the neck was fully developed but not ruptured; thus, o and \jl here relate to a state 
just before rupture. 

As seen from the average values in Tab. 2.16 the cr0.2-proof stress and the ultimate stress 
crs are not affected by the change in size, irrespective of the hardness level. Of course, the 
hardness has an influence on these data. Unfortunately, no data for the uniform elongation are 
available. Also a more complete picture could be obtained if all the individual test data were 
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given. It is noteworthy that the deformation measures ö and \jl of the unbroken 3 mm­
specimens are practically the same as those of the broken 15 mm-specimens. Chechulin notes: 
"If the first crack were to be produced during the same strain stage in large and in small test 
pieces, then the necked, but not ruptured 3 mm-specimens should have a weil developed 
crack". The x-ray investigations and the metallographic inspections of axially cut specimen 
showed, however, a complete absence of cracks. A microscopic crack was detected only in 
one 3 mm-specimen whose area reduction exceeded that of the ruptured 15 mm-specimens. 
These tests demonstrate that cracks appear in small specimens at a later stage than in 
geometrically similar !arge test specimens. 

The influence of size on the tensile properties of the carbon steel Ck 15 was tested by 
Schneeweiß (1966, [2.45]) using proportional specimens with diameters 3.5, 6, 10, 14, and 
30 mm (scale factor 8.6). The ratio gage length-to-diameter was 10 and all other dimensions 
were also properly scaled except some deviations in the threads. The specimens were taken 
from a 90 mm diameter bar with a length of three meters. It was divided in eight sections, 
each section for one specimen type, and their sequence is indicated in Tab. 2.17. Thus all 
small specimens are taken from two adjacent sections at one end. No heat treatrnent was given 
to the specimens. A relatively large number of nominally identical test were performed. The 
average test results are indicated in Tab. 2.17 and Fig. 2.34. Young's modulus E, as weil as 
the upper and the lower yield stress O'so and O'su do not show any systematic dependence on the 
size. The ultimate stress cr8 and the corresponding true ultimate stress S8 show a slight 
decrease of 3.8 % and 5.1 %, respectively, over the whole scale range when the size is 
increased. 

Schneeweiß believes that this size effect is caused by the different heat-up due non­
adiabatic heating by plastic deformation: the heat conduction plays a more important role for 
the smailer specimens and reduces the temperature increase, thus the thermal softening effect 
is less pronounced than in the !arge specimens. Certainly, this is a phenomenon to be 
considered but quantitative estimates of its influence are entirely missing in [2.45]. 

The' uniform elongation was obtained by two different methods: measurements of the 
strain distribution (outside the necked region) which yields Ög' and using the total elongations 
Öto and ö5 after fracture which gives approximately Ög" = 2 ö10 - ö5 • Their average value is 
denoted by Ögm· These various data are contained in Tab. 2.17 and Fig. 2.34. 

The elongations at fracture ö10 and ö5 as weil as the area reduction \jl at fracture and the 
true fracture stress SR show a definite decrease with increasing size (Fig. 2.34): over the 
whole range of sizes the relative decreases are 8.6 %, 7 % and 7.5 % for <510, Ö5 and \jl and 
28 % for SR. The uniform elongations Ög' and Ög" (Fig. 2.35) as weil as their average (Fig. 
2.34) appear to have a maximum at d0 = 6 mm diameter, however, the scatter for the 3.5 mm 
diameter specimens is !arge and the two methods give somewhat different results. Here it 
would be necessary to know the actual measurements and their scatter band to make a reliable 
judgement whether a size dependence of Ög' and Ög" is significant within the range of the 3.5 
to 14 mm diameter specimens. Schneeweiß states that the observed size dependence of the 
elongations at fracture is mainly due to the size dependence of the uniform strain. This is 
comprehensible for the regime d0 = 14 to 30 mm but not for the smailer specimens. Here it 
seems that the dependence is more related to the size dependence of the necking process. 

The dependence of the tensile characteristics of geometrically similar steel specimens of 
different purities was studied by Buch (1969, [2.46]): a conventional cast (K) and a electrode­
slag remelting (E) of the structural steel 36CrNiMo4, two melts I & II of different purities of 
the structural steel X20Crl3, and the ball bearing steel 100Cr6 in the form of two melts (K) 
and (E) were used. The specimen diameters were 3, 4, and 5 mm for the first two steels 
whereas for the ball bearing steel specimens 3, 5, and lO mm diameter were used. In all cases 
the gage length-to-diameter ratiowas 5. 
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The impurity content was determined as the relative area fraction of the non-metallic 
inclusions found in longitudinal or transverse cuts. The amount of impurities larger than 5 ~m 
of the (K)-cast of the CrNiMo-steel is about two times larger than for the (E)-cast (0.0708 % 
and 0.0330 %, longitudinal cuts). Impurities larger than 30 ~m were much less present 
(0.0172% and 0.0010 %). For the melt II of the X20Crl3 steel the impurity content was also 
about two times }arger than in melt I. 

Aside from the conventional tensile characteristics like ultimate stress cr8 , elongation at 
fracture ö5 and area reduction 'V at fracture also the true fracture stress O'R 

16 

<JR = <J0 (I+ 4~ J 
a: · radius of minimum cross-section in the neck 
R: meridional radius in the neck profile 

0'0 = cr1 - cr2 : difference in principle stresses (at the surface 0'0 = O't) 

was determined. They are collected in Tab. 2.18 for the first two steels. The "L" and "Q" 
letters refer to the orientation of the specimens in the raw block of material ("L": longitudinal, 
"Q": transverse). Since the number of tests and the amount of scatter for each parameter case 
arenot indicated in [2.46], it is likely that only single tests for each case were performed. Also 
the values of R at fracture are not given whereas the radius a can be calculated from 'JI. 
Unfortunately, the yield stress as weil as uniform elongation were not recorded. 

For the f.9.!l.Y~!l1i_pp_al_m~lt_(_~}.pf_tb~_1<2.Crl~UM.<24-:..s!~~l the ultimate stress clearly reduces 
by about 10 % for both the "L" and "Q" directions when the diameter is increased from 3 to 5 
mm. 

The elongation at fracture ö5 and the area reduction 'JI are also reduced especially for the 
"Q"-direction (decrease of 'JIQ""' 23 %). This trend is also found in the true fracture stress O'R 

("L" direction ""20 %, "Q"-direction 16 %). 
For the .~~~tr.9.9~.:~lgtg_t~lll~lt_(E}._pj_t_h_e_}fi~rNiM.9~.:~t~~l with two times less impurity 

content the ultimate stresses for both directions are almost the same when the diameter is 
increas~d. This is also true for the deformation measures ö5 and 'JI in the "Q"-direction 
whereas these measures are somewhat ]arger (around 5 %) for the smaller specimens of the 
"L"-direction. Again the true fracture stress O'R is found to decrease ("L"-direction ""' 24 %, 
"Q"-direction ""'9 %) when the diameter increases from 3 to 5 mm. 

The m~ltU._oj_t_h_e_.X:f.QCrU:.sJ~~l. with the higher impurity content gives even a slight 
increase (""' 7 %) of the ultimate stress for the "L" -directions whereas a very slight decrease is 
observed for the "Q"-direction when the diameter is increased from 3 to 5 mm. The 
elongation ö5 and the area reduction at fracture 'JI reduce with the increase in size especially 
for the "Q"-direction. For melt I with less impurity content the size influence on these data is 
generally reduced. 

Results for the ball bearing steel 1 00Cr6 show an increase in the fracture deformation 
measures ö5 and 'V as weil as the true fracture stress O'R when the diameter is decreased from 
10 to 3 mm. From Fig. 2.36 it is seen that the size influence is largest for small diameters. The 
influence of the different melts (impurity is not recorded) is very moderate. The significance 
of the observed trends is difficult to judge since it appears that only single tests for each case 
have been done. 

Sato and Terazawa (1971, [2.47]) investigated the effects of sizes and shapes of various 
round and sheet type tensile specimens (specified in the Japanese Industrial Standard (JIS) 
Z2001) on the tensile properties of several aluminium alloys. Whereas the 0.2 %-proof stress 
O'o.2 an<;I the ultimate stress cr8 were almost not affected, the elongation at fracture was 

16 This is an approximation ofDavidenko's formula, footnote 13. 
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depending on the slenderness ratio Lo/ JA (Lo: gage length, A: undeformed area of the cross­
section) and to some extend also on the constraining effects of the end-sections of the 
specimen outside the gage length Lo. These latter influences were the primary interest of the 
above authors. To be more specific we restriet attention to the results of the specimens with 
circular cross-sections. The geometry of the specimens, according to the Japanese Industrial 
Standard, is given in Tab. 2.19. All the specimens 14 AI to 14 A4 show geometrical 
similarity within the gage section Lo. The specimens 14 A2, 14 A3 and 14 A4, however, have 
a higher degree of similarity, since it extends over the whole length Le of the uniformly 
reduced cross-section. In any case the diameters range only from 14 to 22 mm which 
represents a very limited change of size (scale factor A, = 1.57). The chemical composition of 
the three aluminium alloys 1100, 2017 and 5056 is put tagether in Tab. 2.20. 

The specimens were manufactured from round bars of 35 mm diameter. All specimens 
were marked at distinct points along a meridional line at the surface within the gage length Lo 
and beyond, including the region of the reduced cross-section and the fillet radius. This allows 
to determine the axial strain distribution. The number of nominally identical tests is not 
explicitly stated in [2.47] but some of the results are said tobe the averages of three tests. 

Fig. 2.37 demonstrates the insensitivity of the 0.2 %-proof stress cr0.2 and of the ultimate 
stress cr8 . Unfortunately, the uniform elongation is not recorded in [2.47]. The elongation at 
fracture 8, referred to the various gage Iengths Lo of the different JIS-specimens, are shown in 
Fig. 2.38. For the probes No. 14A2, 14A3 and 14A4 which are geometrically similar within 
the reduced section length Le and where Le is considerably Ionger than the gage length Lo 
(Lo/D = 5, LeiD "" 7) the elongations at fracture show almost no difference for each one of the 

materials. The specimen JIS No. 4 which has the smallest slenderness ratio (Lo/ JA= 4.03) 
yields the largest fracture elongation for all three materials. 

The influence of the choice of the gage length is also shown in Fig. 2.39. The distinct 
marks along the various specimens allow to choose different reference lengths Lo* (0.8 D ~ 
Lo* ~ 7.3 D) such that the fracture is positioned at their centre, and the average axial strain 
(the fracture strain 8*) in these sections can be calculated. Fig. 2.39 shows the dependence of 
the fracture strain 8* on the choice of the reference length Lo* for the different specimen 
types, which may be smaller or !arger than the standard reference (gage) length Lo. The very 
strong dependence of the fracture strain 8* on the magnitude of the reference length Lo*, 
giving ~he largest values for small ratios Lo*/JA, is evident. Of course, the largest value 
corresponds to the average strain over the smallest gage length Lo* enclosing the minimum 
cross-section of the fractured neck. In fact, the curves in Fig. 2.39 represent integrals of the 
local strain distribution E(x) along the length of the specimen: 

1 Ln* 

8* = -. J e(x) dx. 
Lo o 

For the specimens JIS No. 14A2 to 14A4 the results collapse almost into one curve; here LeiD 
- 7. Holding the gage section the same but reducing the straight section length from LeiD - 7 
to LeiD - 5.5 (specimen JIS No. 14Al), this yields a reduction of the fracture strains 8*. 
Obviously, this influence is due to the increase of the constraining effect of the material 
outside the gage section, especially the region of the fillet radius. This effect is largest for the 
soft alumini um alloy 1100. Therefore, for probes of circular cross-section Sato & Terazawa 
consider the desirable relation between the reduced section length Le and the gage length Lo to 
be Le;;::: Lo + 2D. Accordingly the probes JIS No. 4 & 10 arenot appropriate and for the probe 
JIS No. 14A (Lo/D = 5) the use of a !arge reduced cross-section length LeID= 7 is proposed. 
For (Le - Lo) < 2D constraint effects of the specimen ends will affect the fracture elongations. 

Certainly, the end effects are influences which must be properly accounted for. However, 
even then the fracture strain is not an intrinsic material property as it appears to be at some 
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instances in the presentation of Sato & Terazawa; even without end effects it is depending on 

the geometry of the gage section, i.e. the slenderness ratio Lol.fA. The conclusion one may 
draw from the results for the geometrically similar specimens JIS No. 14A2 to 14A4, not 
affected by end effects and shown in Fig. 2.39, are that the dimensionless average strain 

functions 8* vs. Lo*/ .JA are size independent within the range of diameters from 14 to 
22 mm. Thus, then the definition of 8* implies also that the local axial strain distributions E 

are independent of the specimen size. 
The axial strain distribution curves for JIS No. 14A (Lc = 7D) specimens of the three 

aluminium alloys are illustrated in Fig. 2.40. It is noteworthy that the alloys 2017 and 5056 
show a pronounced necking zone of length ln which is weil within the gage section Lo = 5D; 
the uniform straining outside the neck is also weil established and it extends beyond the 
marks of the gage length. However, for the soft alloy 1100 the neck extends almost over the 
whole gage length and a zone of uniform straining is difficult to identify. This behaviour 
implies that the constraining end effects will affect the necking process; thus, a reduction of 
the straight section length Lc will decrease the straining in the neck. This explains the Lc/D­
sensitivity of the 8*-function for the alloy 1100 in Fig. 2.39. 

Matic, Kirby, and Jolles (1988, [2.48]) proposed and used a hybrid computational 
experimental approach for the identification of material constitutive parameters. The 
experimental basis was the Ioad-deformation response beyond the onset of necking of tensile 
specimens with different dimensions. By this procedure, the parameters for the NiCrMo-steel 
HY-100 were determined, in the context of a standard incremental rate-independent elastic­
plastic model as provided by the ABAQUS finite-element code. · Here the computational 
aspects, and basic premises are not commented; attention is put only to the experimental 
investigations. 

A family of unscaled tensile specimens was designed to obtain data on the effect of "size 
and geometry" for the HY-100 steel. Three different gage section diameters d0 = 7.6, 12.7 and 
17.8 mrn (0.30, 0.50 and 0.70 inch) and four different gage lengths Lo = 12.7, 25.4, 38.1, and 
50.8 mm (0.50, 1.00, 1.50, 2.00 inches) were used to generate 12 different specimen 
geometries. The corresponding gage length-to-diameter ratios are given in Tab. 2.21. 

In the following, the letters (a), (b), (c) and (d) will be used to identify a specimen type: 
for example, in the Ietter pair (a, b) the first Ietter refers to the diameter d0 and the second one 
to the gage length Lo. Obviously, specimens with strict geometrical similarity, which implies 
Lo/do = const. within the gage section, are not included in this family. In all specimens a 
transition section was existing between the gage section and the 25.4 mm diameter grip 
section; the transition section's cross-sectional area was double the gage sectional area such 
that elastic response was ensured for this material outside the gage section. The origin of the 
material and the assurance of its homogeneity are not reported in [2.48]. Also no indication of 
the cutting plan for the 36 specimens and the fabrication procedure of the specimens are 
given. 

All tests were performed under stroke control at a rate of 1.27 mm/min. A clip-on 
extensometer was used to measure the elongation of the specimen in the gage length. Without 
halt of the tests photographs of the specimen 's gage section were taken close to the occurrence 
of the ultimate Ioad and subsequently in intervals to obtain full-field information of the 
necking process. The corresponding Ioad displacement data were marked so that the 
photographs could be matched with the elongation. Typically, 12 photographs were taken for 
each specimen. Three tests were performed for each specimen type and all test run up to 
failure. Matic et al. state that the Ioad elongation curves of each of the three nominally 
identical tests are "essentially identical", but this is not demonstrated by presenting individual 
data of nominally identical tests. 
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The above results may be considered as a confirmation of the macroscopical homogeneity 
of the material the specimens were made from, if the various nominally identical specimens 
were randomly distributed in the raw material and not taken from a small section. 

The corresponding engineering stress-strain curves for each of the specimen types are 
plotted in Fig. 2.41. It is not clear whether each curve represents a typical test result for each 
of the 12 specimen types or whether each curve is an average of the three nominally identical 
tests. lt is also not assured whether the curves are very precise graphical reproductions of one 
or the other data set. Thus, the conclusions the reader can draw from Fig. 2.41 are subject to 
uncertainty. 

From Fig. 2.41 it is seen that the yield stress and the ultimate stress are independent of the 
diameter and independent of the gage length, except specimen type (c, a) (Fig. 2.41c, curve 
(a)). Here yield stress and ultimate stress are increased and this specimen is specified by a 
very small ratio Lo/do = 0.713. The uniform elongations (engineering strain at ultimate stress) 
appear to be roughly the same in Fig. 2.41b & c (specimens diameter 12.7 & 17.8 mm), 
except specimen (c, a). But in Fig. 2.41a, containing the specimens with the smallest diameter 
(7 .6 mm), the uniform elongation decreases with increasing gage length. Thus, even 
excluding specimen (c, a), similarity of stress-strain curves up to the ultimate stress is not 
found over the whole range of ratios Lofdo = 1 + 6.68 and diameters do = 7.6 + 17.8 mm. 

ldentifying the end points in the graphs as the instants of fracture, the engineering fracture 
stress is approximately the same for the specimens with smaller diameters (Fig. 2.41 a & b; 
except specimen (a, b) with a somewhat higher stress). However, in Fig. 2.41c, where the 
specimens with the largest diameter are collected, the fracture stress seems to decrease with 
increasing gage length. Clearly, for all diameters the elongation at fracture decreases with 
increasing length, a very weil known result related to the localized necking process (see e.g. 
Moore [2.32]). 

Within the family of specimens one may identify three pairs of specimen types which are 
roughly geometrically similar, i.e. which have approximately the same ratio Lo/d0. They are 
(c, b) & (a, a), (b, b) & (c, c), and (c, d) & (b, c). 

From Fig. 2.41 the corresponding elongation at fracture cf can be determined and they are 
listed in Tab. 2.22. The scale factor Ad of the diameter is also indicated. 

From Tab. 2.22 it is noted that the elongations at fracture cf of the roughly similar 
specimens are approximately the same and thus satisfy a similarity condition. This camplies 
with results of Barba and Bauschioger described earlier. However, the scale factors involved 
are rather small. From Tab. 2.22 it is also seen that a decrease in the ratio Lo/do yields an 
increase in the total elongation at fracture. This is also in agreement with observations made 
by Moore and others mentioned previously. Although full-field photos were taken geometric 
information on the successive neck formation, and the final neck geometry is not reported in 
[2.48], not even the area reduction after fracture. Some verbal statements are made by Matic 
et al. such as: "The geometric similitude of the neck geometry over all specimens, with the 
exception of the specimen with the smallest Lo/do ratio of 0. 71 is consistent with the increase 
in global specimen ductility as the specimen gage section is decreased for a constant specimen 
diameter." This is a meagre argument. 

Matic et al. remark also: "Geometrie similitude is in evidence for all but the specimens .... 
Further examination of this geometric similitude in the neck profile tends to support a view 
that the length of the neck remains a constant multiple of the original specimen diameter ... ". A 
measure characterising the neck profile is the distance between the inflection points adjacent 
to the minimum cross-section in the neck. With regard to an experimental assessment of the 
similitude of the neck deformation for sufficiently long specimens under the same stress the 
above statements are essentially insufficient because of their qualitative and vague 
description. 
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However, using the available data and an approximate and simple consideration, the 
following Statement with respect to the geometric similarity of the neck can be made. It is 
assumed that a finite necking region Ln < L0 exists characterized by an average axial 
engineering strain €0 • Before neck formation the uniform plastic strain at maximum load is Eg 
which does not change outside the necked section when the neck is formed. If E is the total 
strain in the gage length, then the total extension of the gage section is 

EL0 = Eg (L0 -Ln)+ En Ln 

or 

E=Eg+Ln (en-eg). 
Lo 

Among others, similarity implies that Eg is size invariant and En is independent of the size 
for the same stress Ievel. lf the specimen is sufficiently long, the end effects do not effect the 
neck length Ln and Ln scales with the diameter, i.e. Lnld0 = c = const. Thus the total strain 

do A ( ) E = Eg +-c €
0 

-Eg . 
Lo 

In terms of the initial circular cross-section S0 the diameter is d0 = ..J 4 I 1t .JS; = 1.13 .JS; 
and the 'total elongation reads 

b: = Eg 

c: c..J41n(en -eg). 

A linear relation between elongation E and the "stoutness" .JS; I Lo has been derived for the 

instant of fracture independently by Barba (1880, [2.30]), Bauschioger (1892, [2.31 ]), 
Martens (1989, [2.49]) and Unwin (1904, [2.50]), and it was considered to be valid also for 
non-circular cross-sections. But, according to Beare & Gordon (1921, [2.33]), experiments 
showed that it is satisfied only in the case of bars of compact section (circular, square, 
rectangular) with width-to-thickness ratios not greater than about 4 (see Moore (1918, [2.32]) 
mentioned above). 

The above relation implies that for specimens with the same diameter and a decreasing 
gage length the fracture strain increases. Fig. 2.41 confirms this qualitatively and Fig. 2.39, 
obtained by Sato and Terazawa (1971, [2.47]) for alumini um alloys, shows this trend very 
clearly. 

For .geometrically similar specimens the ratio .JS; I Lo is constant and the total strain E is 

the same for the small and the large specimen at the same engineering stress Ievel. In principle 
this can be checked by comparing the engineering stress-strain curves in Fig. 2.41 of the 
specimens which are roughly geometrically similar (Tab. 2.22): these curves should be 
roughly congruent, especially in the softening part. The reviewers, however, considered only 
the instant of fracture and the corresponding strains tf are collected in Tab. 2.22. As already 
mentioned the total fracture strains compare reasonably well. As seen from Fig. 2.41, also the 
fracture stresses are approximately the same for the roughly geometrically similar specimens 
except for the pair (c, b) & (a, a) which has the largest geometrical scale factor. This 
mismatch in the fracture stress signals non-similarity. The similarity obtained for the 
specimen pairs (b, b) & ( c, c) and ( c, d) & (b, c) appears to be not very convincing since the 
scale factor is rather small (A = 1.4). In any case similarity considerations require also a 
quantitative comparison of the neck profiles which is not given by Matic et al. in [2.48]. 
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In Section 2.1 the size dependence of quasi-static bending tests (austenitic steel 
X5CrNi189; Stach (1997, [2.27]), Jordan & Malmberg (1998, [2.28])) were mentioned. The 
response of this material in scaled tensile tests has also been investigated subsequently by 
Malmberg, Aktaa & Schlossmacher (1999, [2.62]) at the Forschungszentrum Karlsruhe. In 
conjunction with the above mentioned bending specimens, geometrically similar uniform 
tension specimens with 1.5 and 15 mm diameter (gage length-to-diameter ratio 5) were 
carefully machined by turning from a single stock bar of 30 mm diameter and 1800 mm 
length. Three large and 9 small tension specimens were obtained from the central section 
around the axis of the bar. Each of the three sets of three specimens (triple set) were arranged 
within the 15 mm diameter core. The three large specimens were taken from three positions, 
periodically distributed along the bar, 600 mm apart, and the three triple sets of small 
specimens were arranged similarly along the bar. After machining three specimen sets of both 
sizes were prepared: (i) as fabricated, (ii) stress annealed for 40 min. at 650°C in air to reduce 
surface cold working due to machining, and (iii) solution annealing for 4 h at 1050°C in 
vacuum. Each set contained, of course, one large specimen and three small specimens, each of 
them from three different positions along the bar 600 mm apart. All tensile tests were 
performed at a constant quasi-static strain rate of 10"3 s" 1

; thus, the cross head speed was 
scaled according to the size of the specimens to obtain approximately the same rate influence 
on the flow stress. Thus, three nominally identical 1.5 mm diameter specimen were tested for 
each state whereas only a single 15 mm diameter specimen was available. A very large size 
effect is observed for state (i) and also (ii) (see Fig. 2.42a & b ). The small specimens show a 
significantly increased initial and subsequent flow stress (at 2 % strain about 27 % increase in 
the "as fabricated" condition) but the hardening rate is almostnot affected. Also the scatter of 
the tests for the small specimen is rather small, thus material heterogeneity is negligible along 
the bar. Comparing the results of the 15 mm diameter specimen of state (i) and (ii), the stress 
annealing has almost no effect but the 1.5 mm diameter specimen show a slightly reduced 
flow str~ss due to stress annealing (e.g. at 5 % strain the flow stress is reduced by about 5 %). 
The small effect of this heat treatment may be an indication that a surface effect induced in 
the small specimens due to machining might possibly not have been fully annihilated by this 
heat treatment and therefore, this effect may still be one cause for the observed size effect. 
Micro-structural investigations and micro-hardness tests, however, did not provide direct hints 
for an explanation. In any case the large effect is likely related to the size of the 1.5 mm 
diameter which is considerably smaller than the minimum diameters of the tensile test series 
discussed so far. On the other hand, in the solution annealed state (iii) the flow stress is 
reduced considerably, but more important, the size effect is not observed, instead a slightly 
reduced initial yield strength of the small specimens is found. This treatment implies a 
transformation of the micro-structure, among others, the dissolution of carbon precipitates on 
the grain boundaries which are responsible for the strength. The absence of a size effect for 
this state appears to contain a clue for the presence of a size effect in the other states. 
However, whether this is related to a surface effect or to the bulk properties of the different 
micro-structures is unresolved. 
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2.3 Similarity and Dimensional Effects in Tensile Tests of Smooth 
Sub-Size Specimens 

The development of fission and fusion reactor materials requires the investigation of the 
effects of irradiation darnage on the material properties. The radiation facilities impose severe 
restrictions on the size and the thickness of the test specimens. Very small flat specimens have 
been designed and manufactured with varying thickness (typically -20 to 400 ~m and more), 
the thinnest specimen having only a few grains across the thickness. Tension tests have been 
performed under non-irradiation conditions to investigate the transition of the mechanical 
response from thin foil to polycrystalline bulk behaviour. 

lt cannot be the purpose of this review to elaborate on this topic in any detail because the 
minimum dimensions are outside the range of our present interest. Nevertheless, some of the 
important results are briefly sketched. 

Among others, Miyazaki, Shibata and Fuiita (1979, [2.51]) investigated the 0.2%-yield 
stress and the flow stress at 5, 10, and 20% strain of polycrystalline Al, Cu, Cu-13 at% Al 
and Fe as a function of the grain size and the specimen thickness. The materials were heavily 
cross-rolled at room temperature which was followed by annealing in order to avoid the 
rolling texture. Controlled grain sizes were in the range from 16 to 180 ~m in all the 
specimens. The thickness of the flat specimens (width 6 mm, gage length 12 mm) was 
changed by chemical- and electro-polishing and ranged from 0.045 to 1.840 mm for each 
grain size d. The tensile tests show for all materials that, for a given grain size, the yield and 
flow stresses Q.~c_r~g~~ with decreasing specimen thickness t if the specimen thickness is 
smaller than a critical value, independent of the amount of strain (Fig. 2.43); this suggests a 
critical ratio17 (tld)c. Beyond this critical thickness a saturation is obtained. However, if the 
grain sizes d are decreased, the critical thickness is decreased or remains approximately 
constant. 

Thus, the critical ratio (tld)c is not independent of the grain size but decreases if the grain 
size is decreased. 

Miyazaki et al. associate this with the fact that the slip mode in individual grains of 
polycrystals are strongly affected by the interaction with adjacent grains. This interaction is 
considered to reach widely beyond the first nearest-neighbour grains so that the flow stress 
decreases with decreasing specimen thickness when the number of grains contained along the 
thickness direction becomes smaller than a critical value (see [2.51] and the references cited 
therein). 

lgata, Miyahara, Uda, and Asada (1983, [2.53]) determined the mechanical properties of 
thin foil specimens (width: 4 mm, uniform length: 15 mm, thickness: 18 to 350 ~m) of types 
304 and 316 austenitic stainless steels at room temperatures at a constant strain rate of 4.5 
10"4 s-1

• Tension specimens were cut from as-received foils and were not deburred by 
chemical- or electro-polishing. Solution treatments were done at various temperatures from 
1050 to 1300 oc for 8 to 80 min in argon to change the average grain size. According to lgata 
et al., there were no other micro-structural differences, such as dislocation density or the 
precipitation of carbides, between the specimens besides the differences in grain size. The 
0.2% proof stresses of SS 304 and 316 were shown tobe grain size and specimen thickness 
dependent (Fig. 2.44). The 0.2 % proof stress of the SS 304 bulkmaterial (thickness: 3.2 mm) 
follows the Hall-Petch relation (linear (a112)-dependence on grain size). For specimens below 
a critical thickness the proof stresses are shifted to lower values. This is sketched in Fig. 2.44 
which shows the relation between the proof stresses and the number of grains across the 
thickness tld (for a given grain size). Above a critical value (tld)c (about 4 for SS 340 and 6 
for SS 316) the proof stress of the thin specimens becomes equal to that of the bulk material. 

17 The value t/d is the average number of grains across the thickness. 
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The total elongation at fracture of SS 304 is not grain size dependent but for SS 316 it 
increases definitely with a decrease in grain size for each specimen thickness (Fig. 2.46). For 
a given grain size the total elongation decreases strongly for both materials when the 
thickness is decreased ( other dimensions held constant). 

The work hardening exponent n of the true Stress - true strain relation (j = k e' increases 
slightly with grain size for SS 304 and a given specimen thickness; for SS 316 it is almost 
independent of the grain size over a wide range. For a given grain size the hardening exponent 
decreases when the specimen thickness is decreased for both SS 304 and especially SS 316. 
For very small thicknesses ( -0.02 mm) the exponent n comes down to 0.2 from 0.3 at the 
largest thickness. 

Related comparisons for SS 316 have been performed by Rickerby, Fenici. Jung, Piatti, 
and Schiller (1983, [2.54]). Among others, Rickerby et al. compared characteristic tension 
data of thin, flat specimen (width: 2 mm, uniform length: 11 mm, thickness: 0.2 mm, grain 
size: 35 Jlm) obtained by Kraaij (1980. [2.55]) with corresponding results by Matteazi et al. 
(1981, [2.56]) of standard ISO type specimens with circular cross-section (diameter: 4 mm, 
gage-to-diameter ratio 5, grain size - 45 Jlm); this comparison covered a large temperature 
range from room temperature to 800 °C. 

The thin flat specimens with longitudinal axes parallel to the rolling direction were cut 
from cold-rolled sheet, the material being in a solution annealed condition. The larger 
specimens with circular cross-section were machined directly from as-received, solution­
annealed material without any intermediate cold rolling. lt is not reported whether the two 
material sources came from the same heat. The tests at elevated temperature were performed 
in a pure argon atmosphere with an average plastic rate of about 10-3 s-1 which was 
maintained during uniform elongation in all cases. 

Experimental data for the 0.2 % proof stress ( a0.2), the ultimate tensile stress ( au1s). the 
uniforll1 elongation (Eu) and the elongation at fracture Ej were recorded (Fig. 2.47 & 2.48). A 
striking feature of the a02 and O"uts values of the two different specimens is their closeness 
over the entire temperature range (Fig. 2.47) 1t is noted that the values for the thin flat 
specimens are slightly below the data of the circular diameter specimens. 

This appears to be in accordance with the thickness effect found previously ([2.51], 
[2.53]): according to lgata et al., six or even more (compare Fig. 2.45b) grains across the 
thickness are necessary for SS 316 to obtain bulk material data; the flat specimens used here 
correspond to 5.7 grains across the thickness. 

For the thin flat specimens the uniform elongations Eu practically coincide with the 
elongations at fracture Ef (Fig. 2.48). This suggests that an extended necking process is not 
possible if only a few grains are located along the minimum dimension of the cross-section. 
Instead, the 4 mm diameter specimen necks down to fracture with a fracture strain much 
larger than the uniform elongation. The comparison of the uniform elongations of both 
specimen types shows again an approximate agreement, except at the highest temperature. 
The difference seen could be properly judged if the number of repeat tests and their scatter 
would have been indicated in [2.56]. 
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2.4 Discussion 

The objective of the previous sections was to provide a restricted review of mechanical tests 
with geometrically similar Iabaratory type specimens of different sizes but of a relatively 
simple shape and made of metallic materials, especially steel. Results of tests of complex 
scaled down component type models and their comparison with the corresponding full scale 
component were not considered here. Motivated by the results of scaled fluid-structure impact 
experiments performed at the Forschungszentrum Karlsruhe (Stach (1997, [ 1.4 ]), Jordan & 
Malmberg (1998, [2.28])) and by certain hints found in the published Iiterature (quoted by 
Malmberg (1995, [1.2])) the review concentrated on the initiation of yielding under non­
uniform states of deformation and subsequently on the plastic deformation and fracture of un­
notched tensile specimens. The latter review provides also the necessary basic information for 
the tensile test program of smooth geometrically similar specimens within the EU-Project 
REVISA [2.57, 2.58]. Experimental results demonstrating similarity or size dependence of 
plastic deformations going beyond yield initiation up to fracture under moderately non­
uniform deformation (e.g. bending or torsion) appear tobe very rare. On the other hand, the 
important question of the size dependence of deformation and fracture in specimens with 
strongly non-uniform stress or strain distributions, for example induced by stress 
concentrators (e.g. notches), has found more attention but is not included here. 

Furthermore, the review was restricted essentially to the experimental findings. Their 
theoretical interpretations were addressed only when appropriate; in fact, this is still a very 
intricate issue. 

The topic of size dependence of plastic deformation and ductile fracture is almost not 
existing in the standard text books on plasticity. Thus, most of the older Iiterature was found 
by groping the way from one publication to a previous one. Some of the more recent 
publicaiions were found by a computer supported search using relevant data banks ( e.g. 
MET ADEX) but the outcome was meagre. 

The phenomenon of the increased yield stress (sometimes called "delayed yielding") under 
non-uniform stress distribution compared with the yield under quasi-homogeneaus stress 
distributions (tensile tests) has found considerable attention in the past. It is observed 
especially for steels with a pronounced upper and lower yield stress (e.g. mild steel). Various 
authors have related this to the formation of flow layers of finite thickness or to the supporting 
effect of the neighbourhood of the stress peaks, their thickness or size characterized by an 
intrinsic material length. This interpretation of the rise of the yield stress implies a size 
influence on the initiation of yielding of geometrically similar specimens !l!1..9§r 
I]lJt_giQ~G..O...Q.i~~Uy __ QOJl-!IIJ.l(o.rliL~IJ~~~ such that small specimens should have a greater 
resistance against yield initiation than larger ones. However, a size dependence in tests of 
geometrically similar tensile specimens with nominally homogeneaus stress distribution 
should not occur if this interpretation is the sole explanation of the "delayed yield" 
phenomenon. 

The review evaluated a set of publications related to the size effect on the initiation of 
yielding in geometrically similar specimens of the same material under non-uniform stress. 
Experiments involved thick cylinders under internal pressure, beams with circular or 
reetangular cross-section under pure bending, torsion of circular rods and wires, flat strips 
with a .central circular bore-hole under tension and indentation tests. Typical dimensions 
(diameter or depth) ranged from a few mm (<5 mm) to dimension up to 10-times larger. An 
exception is the indentation test of Föppl & Huber ( 1941, [2.16]) and the torsion tests of very 
thin wires (Fleck et al. (1994, [2.26])), the latter being somewhat out of the range of 
conventional engineering interest. Qualitatively all tests showed a decrease of the yield stress 
when the specimen size is increased and the decrease is quasi-exponential. Because of the 
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limited range of size the experiments do not allow to ascertain that a finite stress Ievel is 
reached for the large dimensions. 

In several but not all size effect studies a careful assessment of technological influences 
has been done by special specimen preparations and accompanying testing, such that pseudo 
size effects have been reduced or eliminated. Otherwise differences in the material of the 
small and the large samples compared may induce or mask size effects and thus interfere with 
true size effects corresponding to deviations of the similitude of the physical processes 
(Fridman (1961, [2.59])). Although the definition and determination of yield initiation is non­
trivial and may be subject to ambiguities, it appears that the observed size effects are 
experimentally weil established in qualitative terms. The question whether the rise of the yield 
stress with reducing the size is solely related to the non-uniformity of the stress (or strain) 
distribution, can be tested by accompanying tensile tests with geometrically similar un­
notched tensile specimens of the same material. This has been done only by a few authors, 
Morrison (1939, [2.14]), Imamura & Sato (1986, [2.22]), Flecket al. (1994, [2.26]) who did 
not observe any significant dependencies. However, Richards (1954, [2.19]) did find a size 
dependence of the upper yield stress of a mild steel in uniform tension with the usual trend. 

On the other hand frequently the opinion is expressed that true size effects in ordinary 
tensile tests of ductile engineering materials are so small that they are difficult to detect (e.g. 
Shearin, Ruark & Trimble (1948, [2.60])). Therefore, an additional review was performed to 
assess the influence in the testing of smooth tensile specimens (quasi-homogeneous stress 
distribution). 

Sixteen references related to this topic were reviewed, about 2/3 of them were published 
before 1960. Various data were recorded and investigated such as the proportional Iimit, the 
stress at 0.2 % or 0.5 % strain, the ultimate stress and uniform strain, the elongation at fracture 
in a scaled or fixed gage length, as weil as the engineering or true fracture stress and also the 
local axial strains and area reduction at the minimum cross-section of the neck after fracture. 
Usually, only apart of this spectrum is reported in each of the publications and intermediate 
values or the whole stress-strain curve is rarely included. Quantities of interest are also the 
plastic working per unit volume up to maximum stress and up to fracture but only one of the 
reviewed publications puts attention to the size dependence of theseintegral measures (Wood 
et al. (1943, [2.36])). Also in one case only (McAdam et al. (1948, [2.37])) the meridional 
curvature of the neck profile after fracture and its dependence on the size of the specimen was 
documented. In addition the follow-up of the evolution of the profile of the neck in the 
softening regime is a very rare event and the available informations (Miklowitz ( 1950, 
[2.39]), Matic et al. (1988 [2.48])) do not allow quantitative statements with respect to the 
influence of size. 

In the early years of systematic tensile testing Barba's law: "Geometrically similar bodies 
of the same material, under identical conditions and stress, undergo similar deformations", is 
not only based on the results ofBarba (1880, [2.30]) but also Hausehinger (1892,[2.31]) and it 
reflects the state of knowledge at that time; in fact, later testing with smooth specimens made 
of various materials and with larger size ranges have confirmed this partially. Thus, the 
ultimate tensile strength is the quantity for which the least size influence is observed: usually 
no or only a slight decrease with increasing size (diameter) is found (e.g. 5 % for a diameter 
range of 3.5 to 30 mm; Schneeweiß, (1966, [2.45])). However, Buch (1969, [2.46]) recorded a 
significant increase of the size dependence in cases when the impurity content was doubled 
(1 0 % decrease of the ultimate stress if the diameter is increased from 3 to 5 mm). This result 
and even more the influence of the impurity content on quantities related to fracture makes 
evident that size dependence and microscopic heterogeneity are strongly interrelated, i.e. it 
increases with increase in heterogeneity. 

Also the yield stress, 0.2 %-proof stress or the stress at 0.5 % strain is frequently found to 
be not affected by the change in diameter but there are definite exceptions which show a 
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decrease when the diameter is increased (Richards (1954, [2.19]), Piechanova & Ratner 
(1954, [2.41 ])). For the four different steels studied by Piechanova & Ratner (1954, [2.41]) 
the decrease of the 0.2 %-proof stress may be as much as 15 % when the diameter is increased 
from 5 to 40 mm; a !arger influence is found for the proportional Iimit. Experimental evidence 
[2.41] supports the suggestion that this size dependence may not be generated due to a surface 
hardening induced by the machining of the specimens. The uniform elongation is rarely 
recorded and if results are notified no effect is found. However, the data of Schneeweiß 
( 1966, [2.45]) indicate a slight decrease for I arger diameters between 14 and 30 mm. 

Much attention has been put to the percentage elongation after fracture, an average strain 
within a finite gage length and depending on the choice of the gage length. For varying sizes 
( cross-sections) but fixed gage length a pronounced increase with increase in size has been 
found. On the other hand, changing the cross-section area So and the gage length Lo, the 
fracture elongation frequently is found to be an approximately linear function of the ratio 

.JS: I Lo. This may be proved theoretically if one assumes that the necking process follows 

Barba's similarity law. These simple theoretical considerations also show that for 
geometrically similar tensile specimens with properly scaled gage lengths the fracture 
elongation should be size independent. In fact, several authors have reported this (e.g. 
Bauschinger ( 1892, [2.31 ])). However, the results of Schneeweiß (1966, [2.45]) show an 
undoubted decrease of about 7 % (relative) for the elongation Os when the size of the 
specimen is increased by a factor of 8.6 (diameter increase from 3.5 to 30 mm). This clearly 
indicates that the neck geometry at fracture does not follow similarity laws. 

Generally, size influences emerge if 'local' quantities at the minimum cross-section of the 
neck are considered such as the percentage area reduction or the local axial strain, the 
meridional curvature of the neck as weil as the true average fracture stress (load at 
fracture/minimum cross-section) or the true fracture stress (corrected stress according to 
Davidenko & Spiritonova (1945, [2.40])). In Fig. 2.49 experimental results for the reduction 
of area of circular tension specimens extracted from the reviewed publications, are collected. 
It is noteworthy that in the semi-logarithmic presentation a roughly linear decrease of the area 
reduction with diameter is observed and that the mean slopes are roughly comparable. Even 
the somewhat irregular results of Miklowitz (1950, [2.39]), which covers the very large scale 
range of 16, fits into this qualitative picture if the inhomogeneity of the raw material is 
accounted for (see Tab. 2.12). Adefinite exception is the result ofWood et al. (1943, [2.36]) 
for steel which opposes this trend; also the other tensile characteristics obtained by Wood et 
al. do not follow the usual trend. The inhomogeneity of the raw material was made 
responsible but a proof was not given. Also the recent tension test results for a stainless steel 
at room temperature by Malmberg, Aktaa & Schlossmacher (1999, [2.62]) represent an 
exception. Significantly larger flow stresses of the very small specimens (1.5 mm diameter) 
are observed than the 10-times !arger specimen (at 2 % strain an increase of about 20 % is 
seen) although the specimens were stress annealed. This large effect is certainly related to the 
fact that the small specimens are much smaller (in diameter) than all the other tension 
specimens discussed so far. But whether the effect is related to surface or bulk properties is 
not clear; micro-structural investigations gave no indications. However, it is important to 
note, that a complete restructuring by solution annealing annihilated this trend largely. 

In summary most of the experimental evidence does support Barba's law of similarity if 
the ultimate stress is considered and to some extend also the yield or proof stress at small 
plastic strains; it applies also frequently to the elongation at fracture if the gage length is 
properly scaled. However, the local data at the minimum section of the neck after fracture are 
size dependent with the tendency that !arger specimens endure less local strain at fracture and 
the true fracture stress reduces with size. Thus, it appears that the size dependence at the 
centre of the neck does not sufficiently contribute to show up in the global measure of the 
fracture elongation. 
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An analogaus behaviour has been demonstrated theoretically for a tapered tension rod 
using a gradient plasticity model (Tsagrakis et al. (1998, [2.61 ]); see also Part li, Section 3): 
The size influence is more readily detectable when local strains, determined in regions of 
intensive strain non-uniformities, are used as deformation measures than approaches which 
use averages on extended spatial domains. 

The initiation of a crack in the tensile specimens cannot be detected usually. There 
remains the question whether the size dependence of the neck formation is only related to the 
final phase when cracks have formed and propagate or also to the precursor stage: initiation of 
necking localization by geometrical instability and darnage yet without the presence of cracks. 
The authors are aware of only the publication by Chechulin (1961, [2.44 ]): his tests 
demonstrate that cracks appear in small specimens at a later deformation stage than in 
geometrically similar large test specimens. This result indicates that already the precursor 
stage, the formation, growth and coalescence of voids which finally yields microscopic 
cracks, are subjected to size influences. 

Although it is beyond the present engineering scope, the Iiterature survey very briefly 
referred also to some similarity and dimensional effects in tensile tests of rather thin tensile 
specimens (thin foil specimens), the thinnest specimen having a few grains across the 
thickness. Qualitatively new effects occur, the most noteworthy being the decrease of the 
yield and flow stresses with decreasing specimen thickness t if the specimen thickness is 
smaller than a critical value which depends on the grain size d (critical number of grains 
across the thickness (tld)c. Above this critical value ( 4 to 6 for 304 and 316 stainless steel) 
constant bulk values are approached. It should be noted that this behaviour is in contrast to 
size dependencies of the yield and 0.2 % proof stress found in smooth specimens for different 
steels, their minimum cross-section dimension being in the mm-range 

3. Review of Gradient Plasticity Theories 

It is weil known that the classical mathematical theories of plasticity can be divided roughly 
into two types: deformation theories and flow theories. The deformation theories are 
characterized by constitutive equations that relate the instantaneous strain to the stress in a 
uniquely determined way or vice versa. Flow theories, however, are characterized by relations 
between increments or rates of stress and strain, which are homogeneaus of degree one in the 
rate terms and thus are independent of the time scale. In general, flow theories describe better 
plastic deformation phenomena involving loading and unloading, while deformation plasticity 
is mathematically more convenient and also sufficient for proportional loading configurations 
and they are suitable for providing insight. 

Accordingly, gradient plasticity theories can be formulated as "deformation" or "flow" 
type theories as discussed in detail below. 

3.1 Gradient Deformation Theories 

Modell [Aifantis (1984, [3.1]; 1987, [3.2])] 

The simplest form of the gradient modification of plasticity theory involves one extra term 

proportional to the Laplacian V 
2 

( ·) of the equivalent plastic strain e in the yield condition in 
the form 

2 
(J = K(e)- cV e , (3.1) 
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where the equivalent stress a and the equivalent plastic strain t: are defined by 

t:= (3.2) 

with K(t:) denoting the usual homogeneaus flow stress, c = c(t:) being the gradient coefficient, 
Su meaning the deviatoric stress tensor and t:ij denoting the deviatoric strain tensor which for 

incompressible plastic deformation (t:kk = 0) equals the strain tensor Eu· Thus, from (3.2) we 

can obtain the variation & of t: with respect to the variations of the strain tensor B;p i.e. 

(3.3) 

By assuming the equivalent work condition 

(3.4) 

which in view of (3.3) gives 

(3.5) 

for all Variations Ot:u, one can determine the deviatoric stress tensor sij =O"ij -ia mm oij in 

terms of strain as 

2 a 2 [ n2 ] S .. =-3-t: .. = - K'(t:)- C v t: B·· 
lj t: lj 3t: lj 

(3.6) 

From Eq.(3.6) 1 we can deduce that 

(3.7) 

which in view of (3.2)2, gives (3.2)1• This confirms the consistency of the definitions. 

The classical mechanical balance equations are assumed to be not affected by this 
modification, but additional boundary conditions are required. 

Model2 [Fleck and Hutehinsan (1993,[3.3])] 

In contrast to the previous "symmetric stress" gradient deformation theory of plasticity, Fleck 
et al [3.3] have proposed recently a Cosserat type "asymmetric stress" theory summarized 
below. With the definitions of a;1 denoting the symmetric part of the stress tensor, t;1 denoting 
the anti-symmetric part of the stress tensor, mu denoting the deviatoric part of the couple stress 
tensor, and the standard expressions t:u = (u;J + u1,; )/2 for the infinitesimal strain tensor and Xu 
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= e;kt Ejt,k for the infinitesimal curvature tensor, the appropriate balance equations expressing 
equilibrium of forces and momentum read CJ)iJ + 'Zj;J = 0 and 'Zjk =- e;jk mpi,p I 2, respectively. 

Next, the strain energy density w of a homogeneaus isotropic solid is assumed to depend only 
upon a gradient dependent equivalent strain measure l, which is defined as 

(3.8) 

where l is a material length scale. Then, an overall equivalent stress measure a is defined as 
the work conjugate of l, with 

_ dw(l) 
(j = -"'--'--

dl • 
(3.9) 

and thus, a is a unique function of l, i.e. a = K(l). The work done on the solid per unit 
volume equals the increment in strain energy, i.e. 

(3.10) 

which for independent variations of &u and öxu. gives 

S 
_ dw _ dw de __ de dE _ 2 a _ 2 K(l) 

.. -------a-----E·· ----E·· 
I)~ aea. a.a. 3-1) 3- I} dEij 'E 'Eij 'E 'Eij E E 

(3.lla) 

dw dw dl _ dl dX 2 a 2 K(e) 
t-Im .. =--=---=a--=--ZX·· =---lz .. 

11 zJxu ae tJxu zJx Jxu 3 e 11 
3 e u 

(3.11 b) 

On combining Eqs.(3.8) and (3.11) we obtain the following expression for the gradient 
counterpart of the equivalent stress measure a 

(3.12) 

where the quantities a and m are von Mises type stresses defined by a = ~3 SuSu I 2 and 

m = ~3mumu I 2, respectively. 

Appropriate boundary conditions are to be added to close the problem. 

3.2 Gradient Flow Theories 

Model3 [Aifantis (1984, [3.1]; 1987, [3.2])] 

The simplest form of flow theory of gradient plasticity is also based on the gradient 

modification of the expression for the flow stress '( = K(yP) to include the Laplacian V
2 

(·) 

of the equivalent plastic strain, i.e. V2yP. The corresponding form of the gradient dependent 
yield condition is 
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(3.13) 

where the equivalent shear Stress 'r and equivalent shear strain rate jt P are defined as usual by 

r = ~ 1 s .. s .. 2 lj I} 

• 2 •[I • p rp = C' C' cu cu 

The flow rule deriving from the yield condition (3.13) reads 

. P _ . ()F _ jtP S eu - yP-;-- 2 iJ 
uaiJ r 

(3.14) 

(3.15) 

gtvmg the expression for the plastic strain increment. The relevant elastic strain 

increment i[1 = tkt- t~ is determined by Hooke's law which is written in the form 

CJ' iJ = C;)kt ( tkt - t~), in which C;)kt denotes the fourth-order isotropic tensor of elastic 

constants given as C;)kt = Ji(Ö;k öj1 +Öu öjk) +A.Öu Ökt• where Jl, A. are Lame's constants. 

The plastic multiplier jtP in the flow rule (3.15) satisfies the following loading-unloading 
conditions 

{ 
y~' if F = 0 & au e C > 0 ( loading) or au e C = 0 (neutralloading) , 

jtP = (3.16) 

0 if F < 0 (elasticity) or F = 0 & aueC < 0 (unloading)' 

and is determined by the consistency condition 

F=O ' 
(3.17) 

which, in view of (3 .13 ), gi ves 

Si} . dK(yP) . nz. -o -a .. - yP +cv yP-
2'f I} dyP ' 

(3.18) 

where c' = constant is assumed. With the aid of Hooke' s law and (3.15) eq.(3.18) reads 

C 1 s .. 
' D2' - I} ce ' yp --V yp - --- "kiEkt 

H H 2r v 
(3.19) 

where H = h + Su C;)kt S kt I 4r2 = h + J1 and h = () K( y P) I ()y P. 

Eq.(3.19) is a differential equation for jtP in contrast to the classical plasticity case (c = 0) 
where 'f'P is determined from an algebraic equation. Below, we discuss briefly various 
procedures for evaluating (3.19) in relation to the solution of elasto-plastic boundary value 
problems. 
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(i) The method of Mühlhaus and Aifantis (1991, [3.4]) : Here jiP is treated as an additional 
independent variable and (3.19) as an additional field equation, whereas necessary extra 
boundary conditions are deduced from an appropriate variational principle. To this end, the 
following total potential 'I' ( u i, yP) is defined 

(3.20) 

with D[yP ]=t J { h(yP )2 +c(VyP )(VyP) }dV. The applied tractions t; act on the surface d,B 
B 

and geometrical boundary conditions are prescribed on duB = dB - d,B; body forces are 
ignored. By assuming that upon equilibrium Ö'P is stationary with respect to arbitrary 

infinitesimal Variations of [Ü, rp] and with ö U; =0 on duB and with rp ~ 0, the stationary 
condition 

Ö'P=O, 

yields the following relations 

IJ e . H'P n2 ·p s:·P f{ s.. } 
B 2 t' cijk/Ekt - r + c V r ur dV = 0' 

f {cVyP} n&yP dA= 0 ::::} 
aL'Pß 

djiP 
--=0 or Öj'P =0, on depB 
dn 

(3.21) 

(3.22a) 

(3.22b) 

(3.22c) 

where n is the unit outward normal vector on the elastic-plastic interface depB. lt is noted that 
(3.22a) Ieads back to the stress equilibrium relations and the standard traction type boundary 
condition. Equation (3.22b) Ieads back to the consistency condition, while (3.22c) derives 
non-standard boundary conditions along the elastic-plastic interface depB. The second of these 
conditions ( ö r p = 0) is automatically satisfied at the elastic-plastic boundary in the interior 
of the body. When the spread of the plastic zone extends to an extemal boundary of the body 
either of conditions (3.22c) may be imposed. The above equations provide the basic structure 
for implementing the present gradient flow theory of plasticity into finite element 
formulations. 

(ii) The method of Zbib and Aifantis (1989, [3.5]): By formally writing (3.19) as 

1 s.. c 
• - I} ce • t72 • YP- --- "kiEkt+- V YP 

H 2r '1 H 
(3.23) 

and observing (3.15), Hooke's law takes the form 
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. - cep . * ce s 
O"ij - ijklt: kl - c ijkl ij ' (3.24) 

where 

· * < 1 > c 0 2 · p l 
c = ~ 2r v r , I 

C
ep e p e < 1 > e S qp S mn e 
ijkl = Cijkl - Cijkl = Ci}kl -~ Cijqp 2 T 2 T Cmnkl ' 

(3.25) 

with the symbol <1 > defined as usual by 

if F = o & rp > o, 
(3.26) 

if F < 0 or { F = 0 & yP ~ o} . 

Then the problern can be solved numerically, e.g. using FEM equipped with a return mapping 
algorithm. In such a method, (3.24) replaces the equation äu = C;}r1ek1 of classical plasticity, 

while the plastic corrector at the current iteration k of a typical time step [t, t+L1t] takes the 
form 

(3.27) 

replacing the plastic corrector [L1yP]k = [F I H]k_ 1 of classical plasticity. Thus, at the beginning 

of each iterationiocrerneut we solve for the strain gradient g = cV2y at each integration point. 
In particular, the equation g = cV2y is solved implicitly using Galerkin's method (e.g., see 
[3.6]) by assuming g = [N]{g}, y= [N]{y}, where [N] is the shape function matrix. This Ieads 

to [L]{g} = -c[M]{y}, where [M]=fv[gradN T ][gradN]dV and [LJ=fv[N T ][N]dV and the 

integral boundary condition (3.22c) 1 has been used. 

(iii) The method of Vardoulakis et al. (1995, [3.7] and [3.8]) By making use of the 
approximation 

__ 1 __ z 1+~\72 + o (_:::__I = 1+...f...V2 
1-_c \72 H H2 J H ' 

(3.28) 

H 

and neglecting non-linear and gradient terms of [(1/H)(S;/21)], eq.(3.19) takes the form 

(3.29) 

Then, in view of Hooke's law and (3.15), we obtain 

. - cep . CP ( c t72 . \ 
a u - iJktEkt- iJkt H v Ekt ) · (3.30) 
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One may define a double stress tensor mijlc such that 

. - C" c . mijk - jkmn H cinm , (3.31) 

where . 

(3.32) 

On combining (3.32) and (3.31), we obtain 

(3.33) 

From the virtual work equation (neglecting inertia and body forces) we have 

f[ Ctßt Ekt oi:u +miJk &iJk ]dV = j[ i; oit; +m; Doit; ]dA , (3.34) 
B dB 

where D = nk dk denotes the derivative in a direction normal to the boundary with local unit 
outward normal n (the boundary is assumed tobe smooth) and Dk = (~1-nk n1) d1• By applying 
the divergence theorem to (3.34), after some algebraic manipulations we obtain 

J[ &iJ,joit; ]dV= f{[nk njmkji -m; ]Doit; }dA 
B dB 

+ J{[o-iJnj -nkDjmkji +(nknjD1n1 -Djnk)mkji -i;)oit; }dA. (3.35) 
JB 

In these equations t; and m; are rates of surface tractions and double forces, respectively 
and as we can deduce from (3.35), they are related to d"iJ and mijk.. by the following boundary 

conditions 

i. =& .. n · -nkD. mk .. +(nk n · D1n1-D .nk )mk .. 
I 1) J J Jl J j Jl ' 

(3.36) 
. . 

m; =nkn jmkJi , 

On the complementary part duB of the boundary the velocity it; as weil as its normal 
derivative should be given, i.e. 

Dit. = f.. 
I I 

(3.37) 

Equation (3.34) provides the basis for the finite element formulation of the problem. 

44 



Ci v) The method of de Borst et al. (1992, [3. 91; 1993, [3 .1 0]): Various attempts have been 
developed for incorporating the original symmetric stress theory of gradient plasticity into 
finite elements formulations. Thus, de Borstetal [3.9, 3.10] have treated yP as an additional 
independentvariable and (3.19) as additional field equation which is assumed to be satisfied 
in a weak sense, i.e. 

(3.38) 

It is further assumed that the fields jtP and V2yP are discretized as follows 

n2. p Tr' 
v r =p , (3.39) 

where f' denotes the nodal values of yP and 

(3.40) 

with qi denoting the shape functions (d- continuous) used for the interpolation of y P. This 
formulation is identical to the one arised upon application of the variational principle for 
gradient plasticity mentioned above (Mühlhaus et al. [3.4]). 

(v) The method of Li and Cescotto (1996, [3.11]): More recently, Li et al. [3.11] proposed a 
2D incremental solution within a finite element formulation as follows. For an arbitrary 
integration point k, (3.19) written in incremental form, gives 

(3.41) 

where \1 2 
(Liyp) k is calculated by adopting the following approximation 

(3.42) 

with Nk denoting the nurober of neighbouring integration points of k, including k. Next, for the 
determination of the coefficients gkm, a complete 2nd order polynomial in two coordinates is 

assumed to represent the function of L1yP around point k, i.e. 

(3.43) 

where a = [a1, a2, a_1, ~' as, Qö]T and v = [1, x, y, x2, xy, /JT. By minimizing the Error = 

~[L1yP- (L1yP)m]
2

, the vector a is obtained as 
m=l 

Nk 
-1~ p 

a =D '""(L1y )m V m ' (3.44) 
m=l 
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where Vm is the vector v at the mth neighbouring integration point and 

li I Ix
111 Iym Ix;, IXmYm Iy~ l I Ix;, IXmYm Ix 3 I x;,Ym IX 111 Y! 

I 
111 

Iy;, Ix;,Ym Ix y 2 Iy~, I D=l 111 111 

I (3.45) 
Ix:, IX~Ym I 2 2 

I XmYm 
I 2 2 Ix y3 I I Sym XmYm 111 111 

L Iy! j 

Nk 

is the sum L [ v m v ~]. Then, it follows that the coefficients gkm should be given by 
m=l 

T 
gkm = g V m' (3.46) 

where 

gT = 2(4th rOW of D-1 +6th row of 0-1
). (3.47) 

lt is remarked that the coefficients gkm only depend on the Coordinates of the neighbouring 
integration points. The choice of these points is based on the mesh topology. Generally the 
integration points of the neighbouring elements are used. 

lt is also assumed that the consistent tangent constitutive relation of the point k will be given 
in the form 

(
' ~ ep • 

a pq ) k = L c pqnt C t: "' ) m , (3.48) 
m=l 

replacing the equation ( d-pq) k = c;:;nt ( E111 ) k of classical plasticity. Then the problern can be 

solved as in classical plasticity (e.g. using FEM and areturn mapping algorithm). In this case, 
the plastic corrector of a given point k at the current iteration i of a typical time step [t, t+Lit] 
takes the form 

(3.49) 

replacing the plastic corrector [LiYkJ; = [(F I H)k];_ 1 of classical plasticity. Then (3.49) can be 

solved by a Newton iterative procedure. 
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Model4 [Fleck and Hutehinsan ( 1993,[3.3])] 

For completeness we conclude this section with a summary of the gradient flow theory with 
"asymmetric stress" as proposed recently by Fleck and Hutehinsan [3.3]. The appropriate 
differential equations expressing equilibrium of forces and momentum are identical to those 
of the gradient deformation model 2 mentioned above, i.e O)ij + TJij = 0 and 'C)k =- eiJk mpi,p I 2, 
respectivel y. 

The starting point of this theory is the definition of a 13-dimensional stress vector L=(Su, r 1 

mJi) comprising the five components of the deviatoric symmetric stress tensor Su and the eight 
components of the deviatoric couple. stress tensor r1mJi, and the definition of the 13-

dimensi.onal plasticstrainrate vector EP =(e[ ,lz{) comprising the five components of the 

plasticstrainrate tensore{ and the eight components of the plastic curvature tensor lzC. 

Then the yield condition is written as 

(3.50) 

where Y denotes the uniaxial flow stress and L'e is the overall effective stress: 

17 -~1 r r _ ls s +lz-2 -.J 2 +z-2 2 e - 2 ..::.- . ..::.- - 2 ij ij 2 mu mu - ()" e me ' (3.51) 

and the associate flow rule reads 

1 (}(/> . 

h(L' ) -L'e' 
e dL' 

(3.52) 

with the hardening rate h being chosen so that the uniaxial homogeneaus tensile response is 
reproduced. 

The plastic work rate per unit volume is 

(3.53) 

On substitution of the flow rule (3.52) into (3.53) we obtain wP = L'e t;, where the overall 

effective plastic strain rate is defined as t; = te I h. Using this definition, (3.52) gives, via 
(3.50) and (3.51), 

(3.54) 

Where f:P = lt;?. t;?. is the effective p}astic strain rate and .yeP = 2 .yP ,YP is the effective e 3 IJ I) Jl,, 3 kij kij 

plastic curvature rate. 

Using the definition of the plasticstrainrate vectorEP =(e[ ,lzij), the flow rule (3.52) can 

be decomposed in the following equations 
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'J s .. 
·p_-~ IJr c··---..:.-
IJ 2hJ: e 

e 

3 [-lm .. 
l ·p= ___ IJ .t 

Xu 2h I e 
e 

The rate of the overall effective stress Ie can be obtained as the rate form of (3.51 ), 

3 s.. 3[-lm .. .t =-_!j_s .. +---)_1 [-l'fh .. 
e 2 I u 2 I Jl 

e e 

(3.55) 

(3.56) 

Then the elastic strain rate state is assumed to be related to the stress rate state. For obtaining 
such a relation one can introduce a strain gradient theory of elasticity starting with the 
definition of an elastic strain energy density we of the form 

(3.57) 

The elastic work per unit volume equals the increment in elastic strain energy, 

ßwe = o-.. ocr. + m .. ovr. 
I} IJ Jl 'Al) • 

(3.58) 

Using (3.57), (3.58) enables one to determine the stress state in terms of the elastic strain state 
as 

Jwe 
~ - - ce c-e vu - J cf!. - Ukl c.kl 

IJ 

or in a rate form 

. ce ·e 
(Yij = ijkl c kl 

Jwe 
l-l m - - Je lXe .. ---- "kl kl 

)I l ") e I) 
o Xu 

where the elastic moduli Cijkl and JiJkl are given as 

and 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

with Jl, A. denoting Lame's constants. The intemal length lel is assumed to have no physical 
significance and is introduced in order to partition the curvature tensor X ij into its elastic part 

X;~ = eimk c~,/11 and plastic part xC = eimk E~,m· Therefore, one has to takele{<< l so that the 

dominant size effect is associated with the plastic rather than elastic strain gradients. 
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Remarks to the Flow Gradient Plasticity Model4 

a) One could alternatively write a general flow rule 

:.. .()l/J 
EP=A--;::;­

ax' 
(3.63) 

where Ä :2:: 0 is the cornmonly known plastic rnultiplier. Then defining an overall effective 

plastic strain rate E11 such that 

(3.64) 

we can deduce that Ä = E 11 

b) Frorn eq. (3.57) we can deduce that Fleck et al. [3.3] have added the term 
lJt 11 X;} X;} = 1}1 11 ( E;j ,k Efj ,k - E;j ,k Et}; ,J) to the expression for the elastic strain energy density of 

classical elasticity. For exarnple, the contribution of this terrn in the case of an elastic torsion 
problern is 

(3.65) 

and in the case of an elastic pure bending problern is 

(3.66) 

In a different way, Altan & Aifantis [3.12] added the terrn c[/1B;},kef),k +~AB;1,k e)J,k J to the 

expression for the elastic strain energy density of classical elasticity. In the case of an elastic 
torsion problern and an elastic pure bending problern, this terrn gives 

c[usf.kef.k +_!_ABf.kB~-k]=cum2, /'"" lj, 1}, 2 u, Jj, r''f' 
(3.67) 

and 

(3.68) 

respecti vel y. 
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Tables 

Table 2.1: Measured upper yield stresses in mild steel beams under pure bending; specimen 
dimensions in Fig. 2.7; based on Richards (1950, [2.20]) 

Series B 1 B2 B3 B4 B5 
Specimen ( O'u)ij. ( O'u)ij, ( O'u)ij, ( O'u)ij, ( O'u)ij• 
number (psi) (psi) (psi) (psi) (psi) 

in each series 
r 51450 48530 45010 35890 36980 
2 44520 51760 45140 41300 37720 
3 52470 53120 39570 46220 36980 
4 49360 47500 42590 34460 36510 
5 46940 46910 35030 30450 32815 
6 49270 51260 44700 42930 33460 
7 49190 49910 45800 39400 36540 
8 52020 48430 43590 31540 35180 
9 41600 53500 46670 37930 35200 
10 50000 51930 43570 36790 33360 

Mean (psi) 48680 50280 43170 37690 35470 
value (MPa) 335.75 346.78 297.74 295.95 244.64 
Standard (psi) 3262.9 2236.4 3296.5 4700.6 1659.9 
deviation(MPa 22.5 15.42 22.74 32.42 11.45 

Note: ( O'u)ij = Maximum stress at yield 

Table 2,2: Dimensions and proportions of tension test specimens in common use (1918); 
from Moore (1918, [2.32]) 

Specimens Gage length 1 Cross-section 1/J;. J;.ji 
A.S.T.M. Standard Round 2 in. 0.500 in. diameter 4.52 0.222 
British, Short, Round 2 in. 0.564 in. diameter 4.00 0.250 
French, Round 100mm 13.8 mm diameter 8.17 0.122 
German, Round 200mm 20 mm diameter 11.3 0.089 
Flat 8 in. 1.5 by 0.25 in. 13.05 0.077 
Flat 8 in. 1.5 by 0.75 in. 7.54 0.132 
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Tab. 2.3: Dimensions and test data of almost geometrically similar flat tension specimens of 
three aluminium sheet metals (selected data from Templin (1926, [2.34])). 

Soft aluminium sheet - 2SO 
Uniform Nominal Actual Yield Ultimate Elongation 
length width w thickness t w Area stress stress in 2 inch 
(in.) (in.) (in.) - (sq.in.) (lb./sq.in.) (lb./sq.in.) (%) 

t 
2.25 0.375 0.1260 2.98 0.0472 4000 12870 35.0 
2.25 0.375 0.0630 5.95 0.0236 4800 12960 33.0 
2.25 0.375 0.0305 12.30 0.0114 4900 12870 33.3 
2.25 0.375 0.0155 24.19 0.00581 4600 12460 30.5 
4.5 0.750 0.2473 3.03 0.1852 4400 12950 44.3 
4.5 0.750 0.1248 6.01 0.0937 4000 12970 41.5 
4.5 0.750 0.0640 11.72 0.0481 4600 12770 40.5 
4.5 0.750 0.0300 25.00 0.0225 4500 12850 39.7 

Hard aluminium - 2SH 
2.25 0.375 0.1255 2.99 0.0472 20800 23160 7.67 
2.25 0.375 0.0645 5.81 0.0242 19500 21890 7.33 
2.25 0.375 0.0307 12.22 0.0115 19500 21250 5.00 
2.25 0.375 0.0155 24.19 0.0058 20900 22530 3.00 
4.5 0.750 0.2475 3.03 0.1859 19900 22410 12.0 
4.5 0.750 0.1250 6.00 0.0938 20100 23000 10.3 
4.5 0.750 0.0655 11.45 0.0491 19100 21710 8.50 
4.5 0.750 0.0300 25.00 0.0225 19000 21700 5.33 

Heat-treated duralumin- 17S-T 
2.25 0.375 0.1245 3.01 0.0467 42800 62560 20.7 
2.25 0.375 0.0640 5.86 0.0240 41800 61400 19.0 
2.25 0.375 0.0315 11.91 0.0118 41500 58680 18.5 
2.25 0.375 0.0170 22.06 0.00637 39000 57150 17.5 
4.5 0.750 0.2560 2.99 0.1882 36300 59770 22.3 
4.5 0.750 0.1238 6.06 0.0929 41200 61690 23.8 
4.5 0.750 0.0638 11.76 0.0480 42000 60990 22.2 
4.5 0.750 0.0310 24.20 0.0233 44000 59540 19.2 
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Table 2.4: Influence of cross-sectional shape and size on the tensile properties of a carbon 
steel; all specimens produced from a 1 inch plate. Each value is the average of three 
tests; selected data from Lyse et al. (1934, [2.35]) 

Dimension of Johnson's limit Ultimate stress Elongation in Area reduction 
cross-section (lb./sq.in.) (lb./sq.in.) 2 inches (%) 

(%) 
circles 
14 in. 31280 59760 30 65 
'hin. diameter 29900 58290 43 67 
1 in. 30570 58440 51 62 
squares 
1,4 x 1.;4 in. 25250 58850 36 63 
Yz x 'hin. 27650 58050 41 61 
1 x 1 in. 31500 58100 55 62 
rectangles 
1.;4 x Yz in. 26020 58250 39 62 
Yz x 1 in. 26750 58570 46 57 
1 x 2 in. 31430 58910 62 58 
14 x% in. 26000 58160 41 57 
'h x 3/2 in. 25500 58510 49 55 
1 x 3 in. 32300 58580 67 54 
14 x 1 in. 27280 58380 47 55 
Yz x 2 in. 32200 58840 55 54 
1 x 4 in. 31800 56770 71 50 

Table 2.5: Materials and dirnensions of geometrically similar specimens (static testing); 
extracted from Wood et al. (1943, [2.36]) 

Metal Gage Length L DiameterD LID Scale Factor /.., 
(in./mm) (in./mm) 

Copper 
Yz-in. bar 7/177.8 0.35/8.89 20 3.5 
annealed 2/50.8 0.10/2.54 20 1 

(480 °C, 1 h) 
Copper 
1-in. bar 16/406.4 0.60/15.24 26.6 4 
annealed 8/203.2 0.3017.62 26.6 2 

(480 °C, 1 h) 4/101.6 0.15/3.81 26.6 1 
SAE 1020 7/203.2 0.3017.62 26.6 2 
cold rolled 4/101.6 0.15/3.81 26.6 1 
SAE 1020 
annealed 8/203.2 0.3017.62 26.6 2 

(875 °C, 1 h) 4/101.6 0.15/3.86 26.6 1 
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Table 2.6: Results of static tests of geometrically similar tensile specimens, from Wood et al. 
(1943, [2.36]) 

Specimen 
Specimen 

Ultimate Prop. Energy per Elongation Reduction 
Metal Size Strength Limit Unit Volume in Gage Area Hardness 

Length x No. 
(lb./in.2

) (lb./in. 2) (ft. lb./in.3
) Length (percent) RockweH 

Diameter (percent) 
(inch) 

Annealed 7 X 0.35 2 29000 4000 820 41.4 71 74.8 F 
copper, 7 X 0.35 3 29500 4000 845 42.4 70 73.0F 
Y2 in. bar 2 X 0.10 11 29000 4000 670 32.8 68 31.5 F 

2x0.10 12 29200 4000 600 31.5 69 31.3F 
16 X 0.6 1 28400 4000 756 38.0 69 38.0F 

Annealed 16 X 0.6 2 28200 4000 768 39.6 70 40.0F 
copper, 8 X 0.3 1 29400 4000 756 37.6 75 65.6F 
1 in. bar 8 X 0.3 2 29300 4000 670 34.0 70 64.3 F 

4 X 0.15 1 29700 4000 715 34.6 72 39.5 F 
4 X 0.15 2 29500 4000 706 34.8 75 38.0F 

SAE 1020 8 X 0.3 LI 85500 65000 361 5.4 66 94.4 B 
cold-rolled 8 X 0.3 L2 82500 64000 442 6.6 66 92.8 B 
steel 4 X 0.15 S1 95500 70000 256 3.5 63 95.0B 

4 X 0.15 S2 94500 71500 253 3.4 64 91.1B 
SAE 1020 8 X 0.3 L9 66800 40800 1070 21.6 68 73.3 B 
annealed 8 X 0.3 LlO 67000 40400 1050 21.4 67 74.2B 
steel 4x0.15 S10 73000 43000 747 14.1 58 72.3B 

4 x0.15 S11 74000 44000 773 14.2 55 73.0B 

Table 2.7: Percentage change of characteristic tensile data when the specimen size is reduced 
from 8.0 in. length x 0.3 in. diameter to 4.0 in. length x 0.15 in. diameter; 
based on Tab. 2.6 

Material· Proportional Ultimate stress Elongation at Area reduction 
SAE 1020 Limit fracture 

cold rolled +9.7% + 13.1% -43% -3.8% 

annealed + 7.1% +9.7% -34.2% - 16.3% 

Table 2.8: Diameter of specimens of low carbon steel FA-17 and neck dimensions after 
fracture (extracted from McAdam et al. (1948, [2.37, Tab. 2])) 

Meridional Radius 
Gage Minimum Neck Meridional Area Reduction Gage Radius 

Diameter do Diameter d = 2b' Neck Radius r' 

"' 
r'/(do/2) 

(in./mm) (in./mm) (in./mm) (%) (-) 
0.10112.57 \I) 0.052211.33 0.02110.53 73.3 0.416 
0.133 I 3.38 0.068811.75 0.02710.69 73.2 0.406 
0.167 I 4.24 O> 0.0908/2.31 0.04911.24 70.4 0.587 
0.250 I 6.35 o> 0.135613.44 0.073/1.85 70.6 0.584 
0.501 I 12.73<1) 0.27817.06 0.15213.86 69 0.607 
1.000 I 25.40 0.576114.63 0.29017.37 67 0.58 
1.297 I 32.94 0.758/19.25 0.447/11.35 66 0.69 

(I) The recorded data are the averages of two or more tests 
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Table 2:9: Uniform engineering strain Eg and true stress Su at maximum Ioad; annealed low 
carbon steel FA-17 (extracted from McAdam et al. (1948, [2.37])) 

Gage Diameter ( ~0). Eg Su 
do 

(in.) ( - ) (lb./sq. in.) 
(- ) 

0.101 (l) -1.24 0.24 -71 
0.133 (I) - (3) - (3) - (3) 

0.167 (I). (2) -1.22, 1.29 -0.22, 0.29 71,75 
0.250 (I) -1.21 -0.21 67.5 
0.501 (I). (2) -1.24,- (3) -0.24,- (3) 71,- (3) 

1.000 (2) -1.24 -0.24 71 ( J_ )(4) 

1.297 (2) - (3) - (3) (3) -
(1) Axis of specimen at half-radial distance from axis of original 214 in. diameterbar 
(2) Co-axial with original bar 
(3) Data not marked in stress-strain curves 
(4) The arrow indicates how the value should be corrected ( decreased: J-) 

Table 2: 10: Ultimate stress, engineering fracture stress and fracture elongation of a medium 
carbon steel and as influenced by geometry; from Miklowitz (1948, [2.38, Fig. 4 
and Tab. 1]) 

Fracture 
Specimen No. ho bo/ho Ultimate-load Fracture-load elongation c.1 

stress stress (in scaled gage 
(inch) (Psi) (Psi) length lo) 

(-) 
10A 10 62500 53300 0.25 
7A 7 62500 53300 0.27 
6A 3/4 6 62000 53300 0.30 
5A 5 65000 53300 0.30 
3A 3 66500 52500 0.31 
1A 1 68000 50000 0.41 
lOB 10 65400 56600 0.25 
7B 7 65900 56000 ... 
6B 3/8 6 66900 ... ... 
5B 5 64700 52000 ... 
3B 3 63700 49200 0.33 
1B 1 70300 51800 0.36 
lOC 10 63600 54000 ... 
7C 7 64300 53000 ... 
6C 3/16 6 66000 54700 0.32 
5C 5 69500 56900 0.31 
3C 3 65200 50500 0.35 
1C 1 71400 50600 0.42 
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Table 2.11: Influence of geometry and size of medium carbon steel specimens on maximum 
strain values in the neck of flat tension bars at fracture; from Miklowitz (1948, 
[2.38]) 

Specimen No. ho bo/ho Maximum Maximum Maximum 
in eh cJ E2 E3 

10A 10 1.84 -0.299 -0.497 
7A 7 1.61 -0.300 -0.4S3 
6A 3/4 6 1.60 -0.297 -0.4S4 
6A s l.S8 -0.300 -0.4SO 
3A 3 1.72 -0.312 -0.467 
1A 1 2.43 -0.447 -0.473 

lOB 10 l.S4 -0.27S -0.4S7 
7B 7 1.70 -0.283 -0.483 
6B 3/8 6 1.78 -0.30S -0.482 
SB s 1.92 -0.33S -0.487 
3B 3 2.0S -0.360 -0.487 
1B 1 2.46 -0.4S3 -0.471 

10C 10 2.09 -0.332 -O.S16 
7C 7 2.14 -0.322 -0.528 
6C 3/16 6 1.81 -0.310 -0.483 
SC s 2.03 -0.340 -O.SOO 
3C 3 2.16 -0.343 -O.S17 
1C 1 2.92 -O.Sl3 -0.477 
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"' N 

Table 2.12: Size influence on the true ultimate stress and Stresses and strains in the minimum section of the neck after fracture of tension 
specimens of a medium carbon steel; compiled from Miklowitz (1950, [2.39]) 

Average True Stress Average True Stress Maximum True"Stress Axial Strain in the l Specimen Diameter at Ultimate Load at Fracture at Fracture Minimum Neck 
No. (in./mm) (psi) (psi) (psi) Section after Fracture 

measured averaged measured averaged measured averaged (-) 
5 3/16 I 4.76 81600 82100 14400oi<4

) 147000 17300oi<4) 175500 1.70i 1.75i 6 82600 150000i 178000 1.80i 
ATn 

0.357 I 9.07 - 137000 155500 1.58 
BO) - - - -- 140000 162000 1.80 
3 318 I 9.52 78700 78700 137000-l-(4) 135800 162500-l- 160000-1- 1.83-l- 1.80-l-4 78700 134500 157500 1.76 
1 314 I 19.05 83700 84500 136000-l- 134500-l- 159500-l- 158300-1- 1.58-1- 1.52-l-2 85200 133000-l- 157000-l- 1.46-1-
7 80200 - (J) - (3) 

127000i 
(3) 

l.05i 3/2138.1 80500 113000 
8 80700 113000i 127000i l.05i 
9 3 I 76.2 79800 80100 90500i 90500i 93200i 93200i 0.47i 0.46i 10 80300 90500i 93200i 0.45i 
11 (Z) 

3 I 76.2 84500 84500 133800 133800 155500 155500 1.28 1.27 12(2) 84500 (97800) (144200) 1.26 
(1) Groupill 
(2) Groupll 
(3) Specimen 7 was not broken 
(4) The arrows indicate necessary corrections (increase i and decrease J-) if the inhomogeneity in the cross-section is accounted for (see 

specimen A & B) 



Table 2.13: lnfluence of the specimen diameter on the tensile characteristics (turning data 
v = 15 m/min, t = 0.2 mm, s = 0.14 min/turn), from Piechanova et al. (1954, 
[2.41]) 

Material and Heat d O'pro cro,2 O'u SR "' Treatment (mm) (kp/mm2
) (kp/mm2

) (kp/mm2
) (kp/mm2

) (%) 

5 3.63 8.16 21.9 74.2 82.2 
(1) Copper 10 2.20 6.53 22.3 78.7 83.6 

20 1.33 4.46 22.6 81.5 83.7 
40 1.18 3.21 21.9 76.5 82.9 

5 2.70 3.20 8.0 27.6 79.0 
(2) Aluminium 10 2.50 3.05 8.5 26.0 79.0 

20 2.00 3.03 8.1 28.0 80.0 
40 1.60 2.70 8.2 25.5 80.7 

5 78.7 81.2 93.3 164 62 
(3) Steel 30 X rCA 10 69.3 74.8 87.7 156 63 

20 65.8 75.4 91.5 151 58 
5 42.3 84.0 122 252 52.3 

( 4) Steel 30 X rCHA 10 35.9 78.0 121 207 49.7 
20 34.0 73.6 119 195 45.8 
40 32.8 71.8 119 186 40.4 

5 69.6 103 114 195 64.6 
(5) Steel 18 X HBA 10 68.5 104 115 200 61.7 

20 62.4 97.5 113 182 59.5 
40 53.1 95.0 111 177 49.1 

5 78.2 88.1 103 171 55.7 
(6) Steel40 X HMA 10 71.3 85.2 103 171 52.6 

40 68.7 82.0 100 152 49.2 
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Table 2.14: Relative change of tensile characteristics with increase in s1ze; e.g. 
( O'pro)d = 20/( O'pro)d =5 & ( cro,2)d = 2ol( cro,2)d =5; calculated from Tab. 2.13 

Material and Heat Ratios of 
Treatment croro cro2 cru SR "' (1) Copper 

A. = 2015 = 4 0.37 0.55 1.03 1.1 1.02 
A. = 40/5 = 8 0.32 0.39 1.00 1.0 1.01 

(2) Aluminium 
A-=4 0.74 0.94 1.01 1.01 1.01 

A-=8 0.59 0.84 1.02 0.93 1.02 

(3) Steel 30 X rcA 
A-=4 0.83 0.93 0.98 0.92 0.93 

A-=8 - - - - -
( 4) Steel 30 X rCHA 

A-=4 0.81 0.88 0.97 0.78 0.88 

A-=8 0.78 0.85 0.97 0.74 0.78 

(5) Steel 18 X HBA 
A-=4 0.89 0.94 0.99 0.93 0.92 

A-=8 0.76 0.93 0.97 0.91 0.76 

( 6) Steel 40 X HMA 
A-=4 - - - - -

A-=8 0.88 0.93 0.97 0.88 0.88 
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Table 2.15: Tensile characteristics of Cu-specimens with different surface properties; 
extracted from Piechanova (1954, [2.41]) 

Production Process crpro cro.2 cru SR 

"' 
Micro-

(kp/mm2
) (kp/mm2

) (kp/mm2
) (kp/mm2

) (%) hardness 
20p 

( a) Annealing, 600 oc, 2 h 
Specimen fabrication: 

5mm0 3.63 8.16 21.9 74.2 82.2 -
Tuming v = 15 m/min 

t = 0.2 mm, s = 0.14 mm/tum 
ref. [2.41] Tab. 3 

(ß) Annealing, 600 oc, 2 h 
Specimen fabrication: 

5mm0 3.6 8.2 22 74.2 82 115 
Tuming v = 84 m/min 

t = 0.2 mm, s = 1.4 mm/tum 
ref. [2.41] Tab. 5 

(y) Specimen fabrication: 
5mm0 

Annealing, 600 oc 1.4 2.8 22 73.9 82 70 
grinding with grinding cloth 

ref. [2.41], Tab. 5 
(Ö) Annealing, 600 °C, 2 h 

Specimen fabrication: 
5mm0 4.7 11.2 22 74.6 82 144 

shot peening: 
v = 43.5 mm/s 

duration 3 min, 
ball diam. 0.6-0.7 mm 
ref. [2.41], Tab. 5 

(E) Annealing, 600 °C, 2 h 
Specimen fabrication: 

40mm0 1.18 3.21 21.9 76.5 82.9 -
Tumjng v = 15 m/min 

t = 0.2 mm, s = 0.14 mm/tum 
ref. [2.41] Tab. 3 

(s) Annealing, 600 oc, 2 h 
Specimen fabrication: 

40mm0 1.2 3.2 22 76.5 82.9 -
Tuming v = 8,4 m/min 

t = 0.2 mm, s = 1.4 mm/tum 
ref. [2.41] Tab. 5 
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Table 2.16: Cornparison of tension tests on 3-rnrn diarneter (not ruptured) and 15-rnrn 
diarneter (mptured) tensile specirnens; 37XH3A-steel with three different heat 
treatrnents; frorn Chechulin (1961, [2.44]) 

Hardness Diameter Mechanical characteristics I) 
No. of 

Hv rnm tests 
cr8 (kg/mm2

) O"o.2 (kg/mm2
) 0 (%) <I>(%) 

380-386 
15.0 

122.5-124.8 108.5-111.0 11.7-13.1 53.4-56.4 
5 

383 123.6 109.0 13.2 54.4 
373-380 

3.0 
120.2-127.2 109.0-114.5 10.0-12.5 53.4-56.0 

5 
378 123.9 111.1 11.9 54.7 

300-310 
15.0 

95.6-100.0 79.2-80.6 15.2-18.4 63.0-64.4 
5 

304 97.9 80.0 17.2 64.0 
298-306 

3.0 
96.3-98.2 65.9-81.0 15.6-15.8 62.0-65.7 2) 3 

302 97.1 79.0 15.7 64.1 
258-279 

15.0 
82.5-85.5 68.4-73.5 18.6-22.5 69.0-69.5 

4 
268 83.5 70.5 20.4 69.1 

260-272 
3.0 

79.2-86.3 63.7-69.3 17.8-20.5 66.3-69.4 
4 

265 84.0 68.7 19.1 68.1 
I) The range of variation of the results is shown above the line and the average value is below 

the line 
2

> The specimen bad a microscopic crack in the neck. 

Table 2.17: Test results obtained from tension tests on specirnens of carbon steel Ck15 of 
different diarneters d0; from Schneeweiß (1966, [2.45]) 

Characteristic Data Units do (rnrn) 
3.5 3.5 6 10 14 14 30 

Test series 1 2 3 4 5 6 7; 8 
Young's rnodulus kp/rnrn2 - - 21535 20840 21240 21290 -
Upper yield stress kp/rnrn2 28.06 27.30 28.02 27.16 26.21 28.88 28.58 
Lower yield stress kp/rnrn2 - - 23.76 24.81 23.08 24.76 28.33 
Ultirnate tensile stress kp/rnrn2 42.72 41.96 42.42 41.73 41.62 41.71 41.10 
True stress at maxirnurn Ioad kp/rnm2 53.78 53.21 53.83 52.56 52.53 52.47 51.05 
Uniform strain, type I 8' g % 25.32 26.05 26.81 26.25 26.34 26.02 24.45 
Uniform strain, type II 8 II g % 25.46 27.56 26.97 25.65 26.08 25.55 23.97 
Average axial neck strain % 8.68 9.72 7.80 8.07 8.34 7.64 8.11 

""810- 8gm 
12 11 21 9 9 9 4 Number of tests 

Position in the bar 7 8 3 6 4 1 2;5 

66 



Table 2.18: Effect of the diameter on the mechanical properties of the longitudinal (L) and the 
traverse specimens (Q) of two melts of different impurity contents of the 
36CrNiMo4-steel (K; E) and of the X20Cr13-steel (I; II); from Buch (1969, 
[2.46]) 

Specimen d crs Os \jf O'R 'l'o crRo 
Type (rum) (kp/mm2

) (%) (%) (kp/mm2
) 

'lfL (jRL 
KL 5 92 18.0 59.9 170 

3 102 19.5 61.5 212 
KQ 5 91 14.9 36.5 138 0.61 0.81 

3 102 17.3 47.4 165 0.77 0.78 
EL 5 104 17.9 63.3 180.0 

3 103 19.0 66.2 236.5 
EQ 5 105 17.9 59.8 181.0 0.94 1.0 

3 102 17.8 59.4 199.5 0.90 0.84 
KL 4 234 12.2 43.1 328 
KQ 4 224 7.0 242 0.16 0.74 
EL 4 218 9.9 40.5 301 
EQ 4 219 7.3 20.8 275 0.52 0.92 
IL 5 78.3 21.0 69.9 157.0 

4 78.3 21.3 70.3 158.5 
3 79.0 20.1 70.3 191.0 

IQ 5 80.3 20.0 62.5 147 0.89 0.94 
4 79.3 19.5 62.5 154 0.94 0.97 
3 79.8 19.9 67.5 181 0.96 0.95 

IIL 5 80.8 18.9 65.4 149 
4 77.5 19.0 65.9 144 
3 75.8 19.0 67.3 175 

IIQ 5 75.8 14.9 36.3 104.0 0.53 0.70 
4 76.8 14.9 42.6 114.0 0.65 0.79 
3 76.8 16.0 46.6 122.5 0.69 0.70 

K: conventional costs, E: electrode-slug remelting 
impurity content (K) > impurity content (E) 
im_purity content (II) > impurity content (I) 

Tab. 2.i9: Round specimens (Japanese lndustrial Standard); from Sato et al. (1971, [2.47]) 
Specimen D Lo Lc LJJA LcfJA LeiD R RID Remarks 

No. (mm) (mm) (mm) 
lO 12.5 50 60 4.51 5.42 4.8 20 1.6 
4 14 50 60 4.03 4.83 4.3 20 1.43 

14A1 14 70 77 5.65 6.20 5.5 20 1.43 Lo = 5D, Lc = 5.5 D 
14A2 14 70 98 5.65 7.90 7.0 20 1.43 Lo = 5D, Lc = 7 D 
14A3 18 90 128 5.65 8.03 7.1 20 1.11 Lo = 5D, Lc = 7 D 
14A4 22 110 155 5.65 7.95 7.0 30 1.36 Lo = 5D, Lc = 7 D 

Diameter of grip section = 1.5 D 
D-diameter of cross-section 
L0 - gage length, Lc - Iength of reduced section, A - sectional area, R - fillet radius 
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Table 2.20: Chemical composition (%) of three alumini um alloys; from Sato et al. (1971, 
[2.47]) 

Material Si Fe Cu Mg Mn Zn Ti 

1100 0.10 0.16 <0.01 <0.01 <0.01 <0.01 0.005 

2017 0.11 0.34 5.1 0.03 0.62 0.02 0.011 

5056 0.06 0.17 0.02 4.5 0.68 0.01 0.008 

Table 2.21: Ratio Lo/do of a family of tensile specimens; extracted from Matic et al. (1988, 
[2.48]) 

do Lo (mm) 

(mm) (a) (b) (c) (d) 
12.7 25.4 38.1 50.8 

(a) 12.7 = 1.67 25
.4 = 3.342 

38.1 = 5.01 50.8 = 6.68 
7.6 7.6 7.6 7.6 7.6 
(b) 12.7 = 1 25.4 = 2 38.1 = 3 50.8 = 4 
12.7" 12.7 12.7 12.7 12.7 
(c) 12

•
7 

= 0.713 25.4 = 1.427 38.1 = 2.14 50
•
8 

= 2.854 17.8 17.8 17.8 17.8 17.8 

Table 2.22: Comparison of the elongation at fracture Er of HY -100 steel for almost 
geometrically similar specimens; extracted from Matic et al. (1988, [2.48]) 

Specimen type (c, b) & (a, a) (b, b) & (c, c) (e, d) & (b, c) 
(do, Lo) 
Lo/do 1.427 & 1.67 2 & 2.14 2.854 & 3 

Act 2.34 1.4 1.4 

tf 0.4 & 0.4 0.342 & 0.31 0.25 & 0.265 
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Fig. 2.1 Size effect observed at initial yield point in steel cylinders. Ratio extemal-to-intemal 
diameter: 3; from Cook (1931, [2.7]). 
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ANGLE Of CURVAT1JRE 

Fig. 2.2 Size effect in flexure: moment-angle curves 
o--o Intermittent strain: experimental curves. e----e Continuous strain: experimental 
curves. ----- Curves calculated; from Morrison ( 1939, [2.14 ]). 
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Fig. 2.3 Size effect in torsion: torque-angle curves; from Morrison (1939, [2.14]). 
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Fig. 2.4 Size effect in torsion. x First series. o Second series; from Morrison (1939, [2.14]) . 
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Fig. 2.5 Size effect in indentation: maximum shear stress and width of the contact area versus 
roll-radius at initiation of flow lines in steel St37; from Föppl and Huber (1941, 
[2.16]). 
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Fig. 2.6 Size effect in tension of a mild steel: Variation of upper yield point stress with 
volume; from Richards (1954, [2.19]). 

BEAM DIMENSIONS 
Series Width, Depth, Span, Mo-
(Bj) b, h, g, ment 

(in.) (in.) (in.) Arm, 
e, (in.) 

B1 ... 0.0635 0.1585 1.840 0.460 
B2 ... 0.1005 0.251 2.912 0.728 
B3 ... 0.1590 0.398 4.615 1.154 
B4 ... 0.2525 0.631 7.32 1.83 
B5 ... 0.4000 1.000 11.6 2.90 

Note. b = 0.4h 
g = 11.6h 

e = 0.25g = 2.9h 
d=.h 

Roller 
Diam., 

d, 
(in.) 

0.161 
0.250 
0.391 
0.625 
1.000 

log10 

lOh 

0.2 
0.4 
0.6 
0.8 
1.0 

--+-+---- f ----+-~ e ~ 
I 

d 

---··· -· -----·- Sporo g ----------i 

Fig. 2.7 Pure bending loading arrangement and beam dimensions; from Richards (1958, 
[2.20]). 
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Fig. 2.8 Size effect of yield initiation in pure bending of mild steel beams: variation of upper 
yield point stress with volume; from Richards (1958, [2.20]). 
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Fig. 2.9 Geometry of specimen; from Imamura and Sato (1986, [2.22]). 

Fig. 2.10 Stress-strain diagram for the perforated tensile strip with varying hole diameters; 
from Imamura and Sato (1986, [2.22]). 
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Fig. 2.11 Normalized yield stress versus relative hole diameter; parameter: specimen width 
(size); from Imamura and Sato (1986, [2.22]). 
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(b) Torsional response of copper wires of diameter 2a in the range 12-170 J.Lm; shear strain 
rate y-10-3 /s. 

Fig. 2.12 Size effect in tension and torsion of thin copper wires of diameter 2a in the range 
12-170 J.Lm; from Fleck et al. (1994, [2.26]). 
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Fig. 2.13 Size effect in cantilever bending of tapered stainless steel beams: normalized 
bending moment versus angle of rotation; three nominally identical tests for each 
size; the line thickness refers to the minimum diameter D of the bending joints: 
Thin -7 D = 1 mm, Medium -7 D = 4 mm, Thick -7 D = 10 mm; from Stach ( 1997, 
[2.27]) and Jordan and Malmberg (1998, [2.28]). 
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Fig. 2.14 Dependence of the proportionallimit of four grades of steel on the stoutness Ja I l 
using different specimen types; from Moore (1918, [2.32]). 
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Fig. 2.17 Relation between elongation at maximum load and .Ja I l; from Moore (1918, 
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Fig. 2.21 Dependence of fracture elongation in a 2 inches gage length on the cross-section 
area of three aluminium alloys; from Templin (1926, [2.34]). 

80 



10 

10 

..Sper::/rntN?.:s z 4ndJ: 7/n. 
long1 o.JS ir,. in Q'/QI7?e-fer 

.Jp(?c/~nens 11 "nd tz .· z ir?. 
/4179, o.1 in. /11 d/cune l<!'r 

10 .Jo 40 

JfrQin ( percenl) 
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Fig 2.23 Static stress-strain curves for annealed copper specimens machined from 1-in. 
round bar; from Wood et al. (1943, [2.36]). 
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RADIUS • -f b_o •R 
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l 
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3.750 18.75 25.00 
2.250 11.25 15.00 
0.750 3.75 5.00 

0.375 3.750 18.75 25.00 

l 
2.625 13.13 17.50 
2.250 11.25 15.00 
1.875 9.38 12.50 
1.125 5.63 7.50 
0.375 1.88 2.50 

0.188 1.875 9.38 12.50 
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1.313 6.56 8.75 
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Fig 2.28 Dimensions of flat bars used in size effect tensile tests; from Miklowitz (1948, 
[2.38]). 
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Fig. 2.29 Cutting plans for small specimens; from Miklowitz (1950, [2.39]). 
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Fig. 2.34 Effect of specimen diameter d0 on the tensile characteristics of the carbon steel Ck15; from 
Sehneeweiss (1966, [2.45]). 
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Fig. 2.44 Dependence of the 0.2% proof stress of 304 and 316 stainless steel on grain size d 
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Fig. 2.49: Size dependence of the reduction of area for circular tension specimens 
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