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Preface 

The report contains the work of the Testing and Analysis Group of the European 
Horne Team within the internationaiiTER collaboration for testing the ITER TF model 
coil. The work was elaborated in meetings taking place at CEA Cadarache and 
Forschungszentrum Karlsruhe over about 5 years. The report consists of 5 chapters. 
Each chapter is printed as separate booklet. 

J. L. Duchateau (Deputy Test Group Leader) 
A. Ulbricht (Test Group Leader) 



ITER Toroidalfeld-Modellspule 
Zusammenfassender Bericht zum Test und zu den Berechnungen 
(Handbuch zum Test) Kapitel 3 TOSKA-Anlage 

Zusammenfassung. 

Im Rahmen eines Vertrages zwischen dem ITER (International Thermonuclear 
Experimental Reactor) Direktor und dem europäischen Horne Team Direktor wurde 
die Erweiterung der TOSKA Testeinrichtung des Forschungszentrums Karlsruhe als 
Testbett für die ITER Toroidalfeld Modellspule (TFMC), eines der 7 großen For
schungs- und Entwicklungsprojekte der ITER EDA (Engineering Design Activity), 
beschlossen. Der Bericht beschreibt die Arbeiten und Entwicklungen, die gemeinsam 
mit der Industrie durchgeführt wurden, um die vorhandenen Anlagenkomponenten zu 
erweitern und durch neue Komponenten zu ergänzen. ln diesem Rahmen erhielt die 
TOSKA-Anlage eine neue 2 kW Kälteanlage einschließlich der kalten Zuleitungen für 
die Heliumkryostate der TOSKA-Anlage. Die Meß- und Regeltechnik einschließlich 
der Datenerfassung wurde entsprechend dem Stand der Technik erneuert. Zwei vor
handene Netzgeräte (30 kA, 50 kA) sind durch Parallelschaltung über ein AI-Strom
schienensystem als Stromquelle für 80 kA ertüchtigt worden und wurden durch einen 
Entladekreis für 80 kA ergänzt. Für den Test der TFMC im Hintergrundfeld der 
EURATOM LCT-Spule wurde ein neues 20 kA Netzgerät in Verbindung mit der vor
handenen 20 kA Schaltanlage in Betrieb genommen. Zwei forciert gekühlte Strom
zuführungen für 80 kA für die TFMC wurden entwickelt. Die Gesamthubkapazität für 
Lasten in der TOSKA-Halle wurde durch die Beschaffung eines neuen 80 t Kranes 
mit passender Traverse (125 t Traglast + 5 t Eigengewicht) auf 130 t erhöht zur 
Montage und Installation der Testanordnung. Eine große Zahl von Vortests und Ent
wicklungs- und Anpaßarbeit waren erforderlich, um die Komponenten entsprechend 
den Anforderungen einsatzfähig zu machen, wozu als integrale Vortests auch der 
1.8 K Test der EURATOM LCT-Spule und der Test der W 7-X Prototypspule zählen. 

Abstract 

ln the frame of a contract between the ITER (International Thermonuclear Experi
mental Reactor) Director and the European Horne Team Director was concluded the 
extension of the TOSKA facility of the Forschungszentrum Karlsruhe astest bed for 
the ITER toroidal field model coil (TFMC), one of the 7 large research and develop
ment projects of the ITER EDA (Engineering Design Activity). The report describes 
the werk and development, which were performed tagether with industry to extend 
the existing components and add new components. ln this frame a new 2 kW refrig
erator were added to the TOSKA facility including the cold lines to the Helium dewar 
in the TOSKA experimental area. The measuring and control system as weil as data 
acquisition was renewed according to the state-of-the-art. Two power supplies (30 
kA, 50 kA) were switch in parallel across a Al bus bar system and combined with a 80 
kA dump circuit. For the test of the TFMC in the background field of the EURATOM 
LCT coil a new 20 kA power supply were taken into operation with the existing 20 kA 
discharge circuit. Two forced flow cooled 80 kA current Ieads for the TFMC were de
veloped. The total Iifting capacity for Ioads in the TOSKA building was increased by a 
erdered new 80 t crane with a suitable cross head (125 t Iifting capacity + 5 t net 
mass) to 130 t for assembling and installation of the test arrangement. Numerous 
pre-tests and development and adaptation werk was required to make the compo
nents suitable for application. The 1.8 K test of the EURATOM LCT coil and the test 
of the W 7 -X prototype coil count to these tests as overall pre-tests. 
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3.1 lntroduction 

The reliable operation of the ITER superconducting magnet system is an 

indispensable necessity for a successful execution of the project. 

As an intermediate development step in the construction of the ITER coils, 

model coils representative for the CS and TF coils will be manufactured and 

tested. This testing will be carried out in two facilities, at FZK in the EU and at 

JAERI in Japan. The test conditions must be representative of those in ITER, 

but at the same time the necessary modifications to the facilities must be kept 

to a minimum for the cost of the programme in order to be acceptable. 

On the basis of existing equipment, the TOSKA facility of FZK Karlsruhe was 

selected for testing the toroidal field model coil (TFMC) [3.1-1]. ln TOSKA, the 

typical weight of the model coil can be handled and cooled down in an existing 

sufficiently sized vacuum vessel. A completed cryogenic system supplies the 

magnet and its auxiliariss up to 2 kW refrigeration power at 4.2 K. The achieve

ment of Lorentz force densities required for testing the electromechanical 

behaviour is assured by DC currents up to 80 kA as weil as a suitable 

background field generated by the EU LCT coil. lt was found during the model 

coil test definition work that the TF model coil test with overcurrent and in the 

background field of the existing LCT coil is the desirable scheme with 

reasonable costs for such a test. 

After the change of the design of the ITER TF coils a rationale and a 

conceptual design was elaborated by the European Horne Team (EUHT) and 

accepted by the Joint Central Team in February 1995. The race track shape TF 

model coil is tested in the background field of the LCT coil. A frame called 

intercoil structure supports the TF model coil and transmits the force to the LCT 

coil (Fig. 3.1-1 ). A summary of geometrical dimensions, field and forces is given 

in Table 3.1-1. The Ioad lines under different operation conditions is given in 

Fig. 3.1-2 [3.1-2]. Minimum test requirements have been specified by the JCT 

in the request for task proposals, dated February 1st, 1993. The requirements 

as specified in chapter 3.1.1 and 3.2.2 of Annex A of this document can all be 

met by the TOSKA facility. 
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Table 3.1-1: Parameter of the TF model coil (RT: race track shape; Comment: ln this table 

the filed calculations were performed by using an averaged current density. Therefore the field 

Ieveis are lower than those given in Fig. 3.1-2) 

ITER RT -Shaped Model Coil Test {lnclination of 4.5° to LCT) 

Parameter Vertical RT -98 turns x 70 kA 
(April1995) LCT -588 turns x 16 kA 

Overall length of MC m 3.792 

Overall width of MC m 2.706 

Overall thickness of MC m 0.773 

Minimal bending radius m 0.609 + 0.1 = 0.71 

Radial winding thickness m 0.537 

Axial winding thickness m 0.573 

Length of straight section m 1.1 

Average turn length m 8.35 

Gonductor length (without spare m 818 
conductor} 
Winding volume m3 2.57 

Estimated weight kg 18000 

Operation temperature K 3.5 

Overall-current density in RT kA/cm2 2.2295 (active) 

Current in RT coil MA 6.86 

Current in LCT conductor kA 16 

Current in LCT coil MA 6. 72 + 2.688 = 9.408 

Attainable magnetic fields Region of bending (midplane) 

Bmax at MC ( self) T 6.54 (5.7) 

Bmax at MC with LCT T 8.75 (8.06) 

Bmax at LCT coil T 9.04 (8.74) 

Attainable resulting forces 

Fx at LCT MN 12.77 

Fv at LCT MN 70.4 

lnductance of MC H 0.0273 

Stored self-energy of MC MJ 67 

Stored self-energy of LCT MJ 200 

Total stored energy (MC + LCT) MJ 337 
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Table 3.1-2 Minimum requested and available capabilities 

Comparison of minimum requested and available capabilities 

minimum available 

Duty factor 0.33 0.42 

Operating temperature 4.5 K 3.5-4.8 K 

Total He flow rate for coil 250 g/s ::; 500 g/s 

Average AC loss in coil 50W 50W 

Maximum pressure 7 bar ::; 10 bar 

Maximum pressure drop 4 bar ::; 6 bar 

Max. helium volume in coil 500 I 

Use of or addition to existing equipment extends the test conditions for the TF 

model coil. The following options can be provided. They have been 

recommended by the model coil working group and were approved by the JCT. 

Option 1 

Option 2 

Option 3 

Overcurrent up to 80 kA. 

The facility offers the possibility for testing the model coil 

adjacent to the EU LCT coil for generating out-of-plane 

forces. 

High valtage by fast discharge. 

These options were approved by the ITER authorities in 

spring 1994 and included in the task agreement. 

The TOSKA facility was extended in steps accompanied by overall tests 

proving the reliability and availability of the new installed components. The first 

work package was the extension of the basic components of the TOSKA facility 

including: 
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• The cryogenic and electrical supply system, 

• The process control by instrumentation and data acquisition, 

• The preparation of the LCT coil for a new Ioad case, 

• Load handling equipment. 

This stagewas successfully completed with tests of the LCT coil at 1.8 K. 

ln a second work package the facility has been prepared for the extension of 

the components which have been very specific related to specific design of the 

TF model coil and its test programme. Simultaneously, TOSKA must be 

prepared for a national obligation in the frame of the W 7 -X Stellarator project, 

namely the testing of the W 7-X prototype coil as a prerequisite for ordering the 

serial fabrication of the W 7-X torus coils. Unfortunately, the fabrication of the 

W 7-X prototype coil was running with substantial delay. Now the test of the W 

7-X prototypewas successfully completed in August 1999, and it was removed 

from the TOSKA vacuum vessel end of September 1999. The collision of both 

programs appearing some times in the past were compensated by some delays 

in the TFMC program caused by technical difficulties. ln addition the 

configuration (test coil in the background field of the LCT coil) is used as weil 

for the W 7-X prototype as for the TFMC. The structure fabrication and the 

assembly is performed by the same industrial partner performing this work for 

the TF model coil. Thus the experience gained with the W 7 -X prototype coil 

should speed up the TF model coil assembly. 

There have been achieved also results du ring testing of the W 7 -X prototype 

coil which have to be assessed and taken into account for the TFMC test [3.1-

3]. 

3.1.1 References 

[3.1-1] P. Komarek, E. Salpietro, The test facility fortheITER TF model coil, 4th lnt. 
Symp. on Fus. Nucl. Techn., April 6-11, 1997, Tokyo, Japan 

[3.1-2] EU Horne Team, ITER TF model coil, rationale and conceptual design, 
Naka, April 1995 



[3.1-3] 
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R. Heller, W. Maurer, A. Ulbricht, I. Schoenewolf, F. Wüchner, G. Zahn, 
Abschlußbericht zum Test der Wendelstein 7-X (W 7-X) 
Demonstrationsspule in TOSKA, Forschungszentrum Karlsruhe, 
Wissenschaftliche Berichte FZKA 6486, Juli 2000 
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Fig. 3.1-1: Schematic view of the TOSKA vacuum vessel with the TFMC test 
configuration inside 
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3.2 General Facility Description 

3.2.1 Basic Facility Components 

The TOSKA facility was constructed in the years 1980 - 1984 as a test facility 

for large superconducting magnets at the Research Center Karlsruhe (FZK). 

The first magnet tested in this facility was the Euratom LCT coil in spring 1984 

starting the development of toroidal field coils for tokamaks [3.2.1-1]. The 

second test object was the POLO model coil. The typical features and suitable 

experimental testing methods were developed for tokamak poloidal field coils 

within this project [3.2.1-2]. ln the frame of the EU technology programme, the 

facility was continuously upgraded in order to meet the specifications for testing 

model coils fabricated from the prototype conductor length of the 

superconducting magnets of the next !arge scale fusion machine. On the basis 

of this development, the facility is capable by some modifications and additions 

as a test facility for ITER model coils to reasonable costs. 

The facility is operated by FZK, in the Institute for Technical Physics (FZKIITP). 

The TOSKA facility and its auxiliaries are installed mainly in two neighbouring 

buildings. One is the refrigerator building, the other one contains the test bed 

for the magnets (Fig. 3.2.1-1 ). 

The TOSKA facility consists of: 

Building (test bed): 45 m length, 18.50 m width, 13 m height: floor-lower edge 

crane hook. Access to the experimental area by a door 10.80 m width, 12.55 m 

height 

Vacuum vessel with nitrogen shield: 

5 m outer diameter; height 8.70 m; usable test space 4.45 m ; height 6.6 m 

within LN2 shield. The test configuration has tobe within an envelope of 4.3 m 

diameter in order to have sufficient clearance to the LN2 shield and its piping. 

The vacuum vessel is sunk below ground Ievei to reduce impact from magnetic 

fringing fields as much as possible (Fig. 3.2.1-2). 
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Cryogenic system 

The TOSKA facility is supplied by two helium refrigerators (500 W and 2 kW) 

which are equipped with extended liquid storage dewars and warm gaseaus 

storage capacities at low, medium and high pressure. The refrigerators are 

linked by a cold pipe system to the TOSKA facility where the cryostats are 

located for the pumps and heat exchangers driving the forced flow loops (Table 

3.2-1 ). Fig. 3.2.1-3 gives the refrigeration versus liquefaction capacity and Fig. 

3.2.1-4 presents the available cooling power for the cooldown of a magnet 

system. The valve and cold box in the refrigerator building is shown in Fig. 

3.2.1-5. 

Table 3.2-1: TOSKA cryogenic system 

Specific 2 kW refrigerator 

Operating temperature range 3.5-4.5 K 

Continuous cooling power at 4.4 K 2kW 

Cold pump circulating flow 500 g/s 

(excluding current Ieads) 

General laboratory refrigerator 

Operating temperature range 1.8-4.4 K 

Continuous cooling power 380 W at 1.8 K 

500 W at 4.4 K 

Electric power supplies 

Two power supplies, one ±30 kA (bipolar) and the other +50 kA (unipolar), can 

be operated independently or in parallel up to 80 kA at a valtage of 30 V. An 

additional power supply (20 kA, 30 V) was installed for the LCT coil. 

Crane 

The existing cranes in the experimental area have a Iifting capacity of 50 t and 

80 t. They have a synchronaus control system and control panel. 
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Process control measuring and data acquisition 

After the completion of the POLO project, the complete measuring and 

control system of the TOSKA facility was modernized. The digital output of 

all electrical units (programmable logic controllers, PC's, workstations, 

sensor, scanners, CAMAC crates, controller, etc.) communicate with the 

process control system. lt controls and monitors the complete system on the 

basis of the measured data. All data are stored in a data base. Operators 

can monitor the status of the system on the display and can adjust operation 

parameters by mause click. 

3.2.2 Specific components for the Model Coil Test 

3.2.2.1 Gravitational support structure 

Model coil adjacent to the LCT coil (Option 2): 

The model coil, the LCT coil and the intercoil structure rest on three feet. 

One is integrated in the intercoil structure. Two feet support the LCT coil and 

have a gravitational support beam going to the intercoil structure (Fig. 3.1-1 ). 

The whole test rig is carried by three fibre glass cylinders resting on crossed 

roller bearings which allow shrinking of the test rig against the warm vacuum 

vessel bottom. The test configuration is elastically fixed by two times 4 

horizontal rods against the wall of the vacuum vessel. 

3.2.2.2 Vessel modifications 

Model coil adjacent to the LCT coil (Option 2): 

One additional port for current Ieads for the TF model coil was installed in 

the vacuum vessel wall. Also, one nitrogen shield panel had an additional 

penetration for one current Iead of the TF model coil. 
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3.2.2.3 Superconducting busbars 

Three kinds of busbars are needed for the execution of the task: 

Busbar type 1: Carrying the current between the winding terminals and 

busbar type II 

Busbar type II: Carrying the current between the busbar type I and the cold 

end of the current Iead. 

Busbar type 111: lt will make a short circuit connection between the ends of 

the busbars type II for testing the current Ieads in a separate test 

Model coil adjacent to LCT coil (Option 2) 

Two lang superconducting busbars type I and type II are needed to connect 

the winding terminals with the cold end of the current Ieads. For assembly 

reasons, an intermediate joint between busbar type I and II in the TOSKA 

vacuum vessel is indispensable. The joint at the coil side and the 

intermediate joint are performed in the pancake joint technique while the joint 

to the current Ieads needs a special terminal. The surprisingly high 

measured Iosses at the LCT current Ieads for horizontal installation position 

forced the change to a vertical installation position with this superconducting 

busbar system An extension of the TOSKA vacuum vessel is needed 

too(see section 3.3.4 ). 

3.2.2.4 Diagnostic and control items 

Model coil adjacent to the LCT coil (Option 2): 

The existing diagnostic and control system was upgraded for fulfilling the 

requirements of a modern control and data acquisition system. To reduce 

the sensor number and the update time of calculated values, all 

programmable logic controllers were integrated in the computer system by a 

digital bus. The system contains a transient and continuous data recording. 

About 300 channels are required for the model coil. 
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About 200 channels for the LCT coil and 1 00 channels for the intercoil 

structure are needed additionally. 

3.2.2.5 Resistars 

Model coil adjacent to the LCT coil (Option 2): 

The discharge resistors for the TF model coil are air cooled, insulated for 6 

kV and have an adequate mass for dumping a stored energy of 0,1 GJ. 

Resistcrs for the LCT coil exist. 

3.2.2.6 Switch gear and busbars 

Model coil adjacent to the LCT coil (Option 2): 

The stored energy and discharge time constant permit the use of arc chute 

breakers. For redundancy reasons, three breakers are needed. The switches 

will be controlled by suitable programmable controllers with adequate 

redundancy and instrumentation. 

The LCT switching circuit exists. Modifications for the synchronization of 

both circuits are not necessary according to the experience gained by the W 

7 -X prototype coil test. 

3.2.2.7 Current Ieads 

Model coil adjacent to the LCT coil (Option 2): 

Two forced flow cooled current Ieads according to the design of the Polo 

current Ieads will be applied. They will be optimized for a current of 60 kA but 

also capable to be operated at a higher current of 80 kA with a still 

acceptable Ioad for the refrigeration system. 

Current Ieads for the LCT coil are available from the test of the W 7 -X 

prototype coil. They are an improved version of the POLO current Ieads 

special for horizontal installation tested successfully in the W 7 -X test. 
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3.2.2.8 Helium collection after quench 

Model coil adjacent to the LCT coil (Option 2): 

A 1.85 m3 medium pressure (26 bar) cold storage vessel was sufficient for 

collecting the helium from the dumped LCT coil. The TF model coil helium 

volume will be comparable with that of the LCT coil (750 1). However, this 

item depends in detail on the test programme and quench analysis of the TF 

model coil and must therefore be re-evaluated in time. According to the 

existing experience (also confirmed in the test of the W 7-X prototype coil), 

the cold storage should be adequate for collection of quench gas without 

lasses. 

3.2.2.9 Crane and Iifting gear 

Model coil adjacent to the LCT coil {Option 2): 

The limited space requires the installation of the model coil configuration into 

the vacuum vessel as one large unit. Therefore, a secend crane bridge was 

installed. The maximum Iifting capability with a suitable Iifting gear is 130 t. 

The Iifting capability is estimated as sufficient to install the total test 

configuration with the model coil, the LCT coil, the gravitational support and 

intercoil structure. 

3.2.2.10 Option 1: Overcurrent 

For generating higher fields and forces, the capability of operating both 

power supplies (30 kA- and 50 kA-power supply) in parallel can be used to 

obtain 80 kA. Current Ieads are designed suchthat they are just causing for 

higher currents a larger Ioad to the refrigerator. There are practical no extra 

costs as demonstrated by the POLO current Iead experiment at FZK. 

lf the model coil should be operated at 80 kA and under out-of-plane forces, 

apower supply is needed for the LCT coil. 

The main busbars have tobe designed for 80 kA current carrying capacity. 
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3.2.2.11 Option 3: High voltage 

The winding system consisting of conductors embedded in radial plates has 

to be investigated under transient voltages. The equivalent circuit which 

determines the behaviour of transient voltages is not evaluated and verified 

by experiments. Fast discharge of the inductive stored energy offers the 

possibility to investigate this item which belongs to the dielectric strength of a 

system as weil as the dielectric strength of the insulation material. 

Using a current of 25 kA which is adequate to create 10 kV by fast discharge 

the modified POLO counter acting current switch can be used [3.2.2.1-2]. 

Some busbars and the discharge resistor have to be modified for the higher 

stored energy. 

The existing POLO switching circuit is also able to apply a repetitive 

discharge of a capacitor bank of 150 IJF into an inductance up to 23 kV. This 

could provide an additional pulsed high valtage test. 

Currents above 25 kA would need an expensive new switching system and 

are therefore no Ionger considered. 

3.2.3 Status 

The completion and commissioning date of the basic components of the 

TOSKA facility are summarized in Table 3.2.3-1. 
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Table 3.2.3-1 Commissioning and completion date of the basic facility 

Component Completed 

- 2 kW refrigerator June 1994 

- Cold supply lines between 2 kW refrigerator and 

TOSKA with valve box June 1995 

- 80 t crane May 1994 

- 80 kA power supply April1995 

- Measuring and control May 1996 

- Cryogenic supply system May 1996 

- Dump circuit for the LCT coil May 1996 

- Test of the LCT coil at 1.8 K up to 11 T and 19.6 kA August 1996 

- Overalltest of the basic facility with the LCT coil August 1996 

- Test of W 7-X prototype coil as an intermediate testing August 1999 

step of the upgraded TOSKA facility 

The continuous testing while setting the facility components into operation 

delivered valuable information and necessary improvements for the test of 

the TF model coil. This will be described in the following sections. 

Outstanding results were achieved with the LCT coil during the test at 1.8 K 

operation (Fig. 3.2.3-1 ). 

The critical line followed exactly those derived from measured and 

extrapolated values from short sample strand measurements (Fig. 3.2.3-2) 

[3.2.3-1]. The detailed finite element analysis of the LCT coil and its 

reinforcement structure showed excellent agreement [3.2.3-2]. The stress 

Ieveis are compatible to those which will be achieved in the test configuration 

of the TF model coil (Table 3.2.3-2). 
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Table 3.2.3-2 : Stress Ieveis achieved in the test of the LCT coil at 1.8 K compared with 
the stress Ieveis during testing in the TFMC configuration (TF model coil, + 
intercoil structure + LCT coil). 

w· d. rn rng 
Testparameter Testparameter Maximum 
TFMC 80 kA LCT LCT 1.8 K allowable stresses 
16 kA 19.6 kA 
Partly reinforced ICS Reinforced [3.2.3-4] 
Design [3.2.3-3] 

a(r) - 43 MPa -40 MPa -300 MPa 

a(<p) 187 MPa 257 MPa 300 MPa 

a(z) -280 MPa - 48 MPa -300 MPa 

ltshearl 45 MPa 38 MPa 50 MPa 

Coil case 
Testparameter Testparameter LCT Maximum allowable 
TFMC 80 kA LCT 1.8 K stresses 
16 kA 19.6 kA Reinforced 
Partly reinforced 
ICS Design [3.2.3-3] 

<J von Mises 567 MPa 521 MPa [3.2.3-5] 700 MPa [3.2.3-5] 

The status at facility components specific for the TF model coil are 

summarized in Table 3.2.3-3. 
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Table 3.2.3-3: Status of the facility components specific to the TF model coil 

Component Status 

- Gravitational support Completed 

- Instrumentation, measuring and control Commissioning com-

(process scheme) pleted as far as pos-

sible 

without TFMC 

- 80 kA TF model coil dump circuit including dump resistor Commissioning com-

pleted up to 10 kA 

dumps 

- 80 kA currents Ieads Assembling com-

pleted 

- Cryogenic supply of the TFMC and cold helium recovery Commissioning com-

(process scheme) pleted as far as pos-

sible without TFMC 

- Cryostat extension Commissioning com-

pleted as far as pos-

sible without mounted 

current Iead 

- Lifting gear 125 t Commissioning com-

pleted 

- 20 kA power supply for LCT coil Commissioning com-

pleted 

- POLO switching circuit modification No modification 

necessary 

The 80 kA dump circuit, 80 kA current Iead and 20 kA power supply are 

special components. The 80 kA current Ieads have been developed. Several 

problems occurred and were successfully mastered (section 3.3.4 ). The 80 

kA dump circuit was a new current range Ievel never built before but it could 

be composed from industrially available components. The actual test during 

commissioning showed the necessity of some improvements (section 3.4.3). 

The 20 kA power supply and 80 kA dump circuit were considerably more 



- 18-

expensive than expected and needed special efforts for making resources 

available and getting approval. 

For getting test results of the TFMC before the end of the ITER EDA it was 

decided by the Association Steering Committee to split up the test in two 

phases: 

Phase 1: Test of the TFMC as single coil 

Phase II: Test of the TFMC with the LCT coil 

This splitting reduces the installation time and the risk of faults which can 

Iead to further delays. 
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<ld' I 

Fig. 3.2.1-1: Buildings of the TOSKA facility. ln front the refrigerator building for the 2 kW refrigerator and a medium pressure 
helium gas storage is seen. ln background, the building is shown where the test bed is located. 
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Fig. 3.2.1-2: A glance of the experimental area of the TOSKA facility with the 
vacuum vessel, the cold helium line system and the LCT coil in 
background (1988) 



•
SULZER 
CHEMTECH 

1500 

1400 

1300 

--~ ~ ~ 

~ 
1200 

1100 

~ 1000 

~ 

~ 900 
'<I" 
(ij 
>. 800 •5 
a 
CO 
(.) 

c: 700 
0 

~ 
600 Q) 

Cl ·c: 
Qj 
a: 

500 

400 

300 

200 

100 

0 
0 2 4 

-22-

\ I T I 
'1... extended margin by _ 
~ 

~ \ second refrigerator 

' ~- " ~ \ 
\ ' 1\ ~ 

' \ \ 
available margin ~ ' ~ •• 
ITE~ mod~l clu test \ \ 
nominal oper~ion ' \ - i\ 

' \ 
\ \ 
' ~ 

\ 
' ~ \ \ 

\ \ 
6 8 10 12 14 16 18 20 

Liquefaction capacity at 4.4 K [g/s] 

- without liq. Nitrogen , -o- with liq. Nitrogen 

Fig. 3.2.1-3: Refrigeration versus liquefaction capacity of the 2 kW helium 
refrigerator 



-23-

~ SULZER 
*cHEMTECH 

34 

32 
/V 

....... v 
/ 

30 ILV _;.> 

28 
...,...v __;.Y 

/ V 

26 V ...... v 
V v ~ 

24 
/ / / V 

/ ./ " / V 

22 

~ 
6 20 

.?:-
"ü 
~ 18 
ro 

...,...v / 
/ ;/ J' 

...,...",.,. / 
i/ 

....... ...... 
/' ./ 

i/ ,......_ / 

V / 
V [-""' !-"'" 

v ,., v V 

./ 
,.. 

./ 
/ 

l..--" V 
(.) 

c:: 16 ;:: 
0 
"0 

Ci 14 
0 
0 

12 

,...v ",.. 
V v !-"'" 

k-"' ...... ...... 
./ .... ...... 

...... ...... -
...... ~ 

.... ~ 
10 

~ 
I 

8 

6 I 
,../ 

4 
:./ 

L" 

2 
V He-Cool down flow: 1 00 g/s 

I ·1 I I I I I I I I I I 

0 . 
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 

Cold end temperature [K) {out of cold box) 

- 70 [g/s)liq. N2 • --a- 50 [g/s)liq. N2 • -- 30 (g/s)liq. N2 

-o- 60 [g/s)liq. N2 , -- 40 [g/s]liq. N2 

Fig. 3.2.1-4: The available cooling power for cooldown the magnet system using 
nitrogen for pre-cooling 



-24-

Fig. 3.2.1-5: The valve box in front and the cold box in background during 
commissioning testing 
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Fig. 3.2.3-1: The reinforced LCT coil prepared for the test at 1.8 K as single coil 
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3.3 Cryogenic supply system 

3.3.1 General description, overview 

The TOSKA facility and the test coils are cooled by two refrigerators with 

nominal cryogenic power earlier presented in Table 3.2-1. Liquid nitrogen 

(LN2) is supplied by a 100.000 I dewar and cools the radiation shields of the 

liquid helium dewars and the cold helium lines. Pre-cooling of the helium in 

the 2 kW refrigerator increases the cooling power (Table 3.2-1 ). The cold 

helium gas at 5 K to 6 K runs through cold lines to the TOSKA facility (Fig. 

3.3.1-1, Fig. 3.3.1-2, Fig. 3.3.1-3.). The cold pressurized helium is expanded 

by a Joule Thomson valve and liquefied in the dewar 8250. ln a similar way, 

the dewar 81000 is supplied by a 0.5 kW Iabaratory refrigerator. Helium 

pumps and heat exchangers are emerged in the liquid helium bath of the 

dewars and circulate the helium mass flow through the superconducting 

magnet (Fig. 3.3.1-4 ). The helium in the forced flow circuit is kept at a 

supercritical pressure Ievei (critical pressure 0.22 MPa) while the liquid 

helium in the dewar is kept slightly above or below the atmospheric pressure 

to achieve the desired operation temperature range for forced flow cooled 

magnets. For the 0.5 kW refrigerator, the pressure Ievei can be lowered 

down to 1.6 kPa which correspondents to a helium temperature of 1.8 K. 

8eneath 2.2 K, helium is in its superfluid state with a different physical 

behaviour. The so called "Fountain effect" can be used to construct a so

called "Thermomechanical pump" which circulates helium without moving 

parts (Fig. 3.3.1-4 ). 

8esides the main forced flow circuit described, a rather complex cooling 

system is needed for the operation of large superconducting magnets. This 

has to master all operation modes, e.g., controlled cooldown and warm up, 

test and standby operation as weil as all fault conditions without any darnage 

to the system. For example, pressure pulses like they occur during dumping 

of the magnetic energy are mastered by two pressure Ieveis (pressure 

release by a pressure controller to a cold gas storage for intermediate 

storage in a pressure vessel). Under normal test operation, the system is 

designed torelease no helium into the atmosphere. Unexpected heavy fault 

conditions force the release of helium gas through safety valves and burst 
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disks to the atmosphere. For all fault conditions, e.g., electrical power 

outage, the system passes over into a safe mode where the system can 

remain unattended without damage. 

The cooling system is controlled by numerous sensors, controllers, 

programmable logic controllers (PLC) and a process guiding system "VXL" 

and monitared on displays. All data are stored in the data base "ORACLE" 

and are available with a suitable software (ORIGIN 5.0) for numerical and 

graphic displays and evaluation. 

3.3.2 Supply system for the LCT coil and the ITER TF model coil 

The TOSKA facility is connected to the 2 kW-refrigerator by two separate 

cold transfer lines. One line is used for the cooldown of the test configuration 

(TFMC single coil test Fig. 3.3.2.-1, TFMC coil with LCT coil test Fig. 3.3.2.-

2) and the other for filling and supply of the control dewar. The advantage of 

these different lines is that the control dewar (8250) can be filled during the 

cooldown of the test rig and the forced flow operation of the coil can be 

started immediately by the pump circuit to reach the operation temperature 

of 4.5 K. A third line connects the Iabaratory refrigerator with a second 

control dewar (81 000) which was used for the 1.8 K test of the LCT coil. This 

system is still connected for allowing the cooling of the LCT winding at 3.5 K 

and the TFMC at 4.5 K. The possible cooling operation seenarios are 

presented in Tab. 3.3.2-1. 

Table 3.3.2-1: Operation seenarios for the TFMC configuration 

Notes 
TFMC LCT 

I [kA] T [K] I [kA] T [K] Refrigerators used 

70 4.5 12 4.5 2 kWonly 

70 4.5 16 3.5 2 kW and 0.5 kW 

70 3.5 16 3.5 2 kW only (time Iimit) 

80 4.5 - - 2 kW only, without LCT 



-29-

3.3.2.1 Controlled cooldown of the test configuration 

A cold He mass flow rate of 100 g/s is available for the cooldown of the test 

configuration with a controlled temperature between 300 K and 10 K by the 2 

kW refrigerator. For the controlled cooldown, all the readings of 

temperatures are checked for the warmest value by the control and 

visualization system; from this value the maximal allowed temperature 

difference across the coil is subtracted and used as set point for the 

controller. During the cooldown all components are cooled in parallel (Fig. 

3.3.2.1-1) in order to reduce the temperature differences between the 

components. A selection of a relevant sensor and a temperature difference 

input is possible in the panel Fig. 3.3.2.1-2. 

Du ring the 1.8 K test of the LCT coil (Fig. 3.3.2.1-3) and the W 7 -X coil , a 

smooth cooldown was achieved. The same system was used also for a 

controlled warm up. 

The same procedure will be applied for the TFMC test. 

3.3.2.2 Forced flow cooling of the test configuration with the pump circuit 

After the cooldown, the test rig is cooled with supercritical He at a pressure 

of 3.5 bar, and the He is circulated by two piston pumps in the control dewar. 

This cooling mode has the advantage that the mass flow rate is independent 

from the mass flow rate of the refrigerator and disturbances from the coils 

during quenching and dumping have no influence on the refrigerator. 

The He mass flow rate in this circuit is controlled by the revolution number of 

the pumps and distributed to the different cooling channels by valves. During 

the test of the LCT coil, winding, case and reinforcement structure were 

cooled in parallel with a stable mass flow. The mass flow rates are shown 

during energizing and dumping of the coil in Fig. 3.3.2.2-1. 

For testing of the TFMC with LCT coil, the winding (TFMC + LCT), coil case 

and ICS will be cooled in series in order to reduce the overall mass flow rate 

and make best use of the He enthalpy (Fig. 3.3.2.2-2). During a 
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simultaneaus test of both pumps, the required flow rate was reached Fig. 

3.3.2.2-3. 

ln Table 3.3.2.2-1 and Table 3.3.2.2-2 the heat Ioad to the cryogenic system 

during testing of the TFMC without and with LCT coil is summarized. 
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Table 3.3.2.2-1: Heat Ioad for the cryogenic system during the TFMC test without LCT coil 

-

required for the available at the specific required for the available at the general 
TFMC configuration 2 kW refrigerator LCT coil at 16 kA Iabaratory refrigerator 

Winding at 3.5 K at 3.5 K I 4.5 K 
Mass flow rate 
(ITER TFMC1 0 x 18 g/s 180,00 g/s 500 g/s 50 g/s 
TFMC bus-bars 36,00 g/s 
LCT coil 0,00 g/s 50 g/s 
Operating pressure 3,50 bar <10 bar 3.5 bar <20 bar 
Pressuredrop (m=18g/s, Di=10mm, L=100m) 0,30 bar 6 bar 0.3 bar 6 bar 
Pumping power (11= 0.6 ) 90,00 w 20W 

Heat Ioad sc-joints at TFMC coil ( 9 x2 x 1 o-9 Q) 116,00 w 
Heat Ioad sc-joints of bus bars ( 4 X 4.5 X 10-9 Q) 116,00 w 
Radiation and conduction to coil 80,00 w 
AC-lasses 50,00 w 
Case and support structure 
Heat input 100,00 w 
Mass flow rate (in series with winding) 270,00 g/s 
Current Ieads 
Nominal current TFMC 80,00 kA 
Warmgas flow rate TFMC( 2 x 80 kA) 9,00 g/s 

Heat Ioad joints TFMC ( 2 x 3.6 x 10-9 Q) 46,00 w 
Nominal current LCT 0,00 kA 
Warmgas flow rate LCT ( 2 x 16 kA ) 0,00 g/s 
Heat Ioad joints of the LCT ( 4 x 2 x 1 o-9 Q, ) 0,00 w 
Facility 
Heat Ioad in dewar, transfer lines, valves etc. 200,00 w 160 w 

Total refrigeration capacity at 4.4 K and 3.5 K 798,00 w 1000W 180W 300 w /500 w 
Total liquefaction capacity at 4.4 K 9,00 g/s 12 g/s 
Available margin 202,00 w ____ g_ovv 
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Table 3.3.2.2-2: Heat Ioad for the cryogenic system during the TFMC test with LCT coil 

required for the available at the specific required for the available at the general 
TFMC configuration 2 kW refrigerator LCT coil at 16 kA Iabaratory refrlgerator 

Winding at 3.5 K at 3.5 K I 4.5 K 
Mass flow rate 
(ITER TFMC1 0 x 18 g/s 180,00 g/s 500 g/s 50 g/s 
TFMC bus-bars 36,00 g/s 
LCT coil 50,00 g/s 50 g/s 
Operating pressure 3,50 bar <10 bar 3.5 bar <20 bar 
Pressuredrop (m=18g/s, Di=10mm, L=100m) 0,30 bar 6 bar 0.3 bar 6 bar 
Pumping power (Tl= 0.6 ) 100,00 w 20W 

Heat Ioad sc-joints at TFMC coil ( 9 x2 x 1 o-9 Q) 116,00 w 
Heat Ioad sc-joints of bus bars ( 4 X 4.5 X 10-9 Q ) 116,00W 
Radiation and conduction to bove coils 100,00 w 
AC-lasses 50,00 w 
Case and support structure 
Heat input 100,00 w 
Mass flow rate (in series with winding) 270,00 g/s 
Current Ieads 
Nominal current TFMC 80,00 kA 
Warmgas flow rate TFMC( 2 x 80 kA ) 9,00 g/s 
Heat Ioad joints TFMC ( 2 x 3.6 x 10-9 Q) 46,00 w 
Nominal current LCT 16,00 kA 
Warmgas flow rate LCT ( 2 x 16 kA ) 3,00 g/s 
Heat Ioad joints of the LCT ( 4 x 2 x 1 o-9 Q, ) 5,00 w 
Facility 
Heat Ioad in dewar, transfer lines, valves etc. 200,00 w 160W 

Total refrigeration capacity at 4.4 K and 3.5 K 833,00 w 1000W 180W 300 W /500 W, 
Total liquefaction capacity at 4.4 K 12,00 g/s 12 g/s 

I 
Available margin 167,00 w 120W 
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3.3.3 Helium recovery system 

ln case of a quench or a dump above a certain stored energy Ievel (during 

the LCT test 14.5 kA), the valves from the coils to the cantrot dewar (8250, 

81 000) are closed, and the pumps are switched off in order to separate 

cantrot dewar and refrigerator system from the coils and to avoid a pressure 

or heat pulse to the supply system. The helium coming from the winding, 

case and ICS can be stored in a cold (77 K) vessel (Fig. 3.3.3-1) up to a 

pressure Ievel of 18 bar, later on slowly warmed up to room temperature in a 

helium/water heat exchanger and fed into the gasometer. Up to now, all 

quenches and dumps were handled without Iosses of He. Only in case of an 

unexpected disturbance, helium will be relieved by valves or burst disks to 

the atmosphere. 8oth tests of the LCT coil and the test of the W 7 -X 

prototype coil served as an excellent commissioning of all installed 

components of the TOSKA facility. 

3.3.4 Current Ieads for TFMC 

Two forced flow cooled current Ieads according to the design of the 30 kA 

POLO current Ieads are being assembled. The design principles as weil as 

the performance of the POLO Ieads were presented in [3.3.4-1]. They will be 

capable to carry 80 kA with a still acceptable helium mass flow rate and heat 

Ioad for the refrigeration system [3.3.4-2]. 

A schematic view is presented in Figure 3.3.4-1. One current Iead consists 

of: 

• a cold end made of electrolytic copper to reduce the Joule heating in the 

contact area which serves as the clamp connection part for the joint; 

• a heat exchanger made of a centrat phosphoraus deoxidized copper 

conductor surrounded by perforated copper plates brazed to the centrat 

conductor acting as heat exchanging part; 

• to reduce the Joule heating of the joint and to be able to operate the 

current Iead with minimum helium mass flow, Nb3Sn inserts are 

introduced into the current carrying copper conductor. 
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• a flexible busbar cooled by high pressurized water to form the 

connection to the Al busbars of the power supply system; 

The final detailed design of the 80 kA current Iead is presented in Fig. 

3.3.4.2-2 

For the 1.8 K test of the LCT coil, two of the 30 kA current Ieads used for the 

POLO model coil test were installed horizontally because the use of forced 

flow supercritical helium for cooling the current Ieads allows an operation 

being independent on the orientation of the Ieads with respect to gravity. But 

during the test of the LCT coil, it was found that it was very difficult to 

operate the current Ieads in a stable way and, moreover, the helium mass 

flow rate needed to cool the Ieads were up to a factor of two higher than 

needed for the same Ieads installed in vertical position. ln Figure 3.3.4-3, the 

helium mass flow rate needed to operate the current Ieads in a stable way is 

plotted as a function of the current both for vertical and horizontal 

installation. The consequence was that the orientation of the 80 kA current 

Ieads for the operation of the TFMC was changed from horizontal to vertical 

position. This requires a second busbar and an extension of two flanges of 

the TOSKA vacuum vessel but simplifies the construction with respect to 

mounting the Ieads in the vessel. Figure 3.3.4-4 shows the vertical 

installation of the 80 kA current Ieads in the TOSKA vacuum vessel with the 

supporting system of the busbar type II in the cryostat extension and the 

warm water cooled flexible busbars. 

3.3.4.1 Current Iead cold end 

To reduce the resistance of the clamp contact, electrolytic copper is used in 

this region instead of phosphoraus deoxidized copper because of the much 

lower electrical resistivity at low temperatures. 8oth copper parts will be 

brazed at the lower end of the heat exchanger. There are two types of 

busbars: busbar type I denotes the connection between the coil terminal to 

the intermediate joint in the vacuum vessel, and busbar type II identifies the 

connection between the intermediate joint and the current Iead terminal. 

Figure 3.3.4.1-1 shows a cross sectional view of the contact area as realized 
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in the LCT 1.8 K test whereas in Figure 3.3.4.1-2, the terminal of the type II 

busbar of the TFMC is given including the radial insulation break and the 

piping of the helium supply. According to an investigation the clamping 

system had to be reinforced to achieve a contact pressure of 20 MPa 

[3.3.4.1-1]. This was indispensable for getting a contact resistance in the nO 

range for making the heat Ioad to the refrigerator acceptable. The clamping 

system was assured by a FEM calculation [3.3.4.1-2]. The routing of the type 

I and type II busbars according to the design of the European lndustry 

Consortium AGAN represents Fig. 3.3.4.1-3. 

3.3.4.2 Heat exchanger 

The heat exchanger of the 80 kA current Ieads is designed with some 

modifications (hole diameter in the cooling fines reduced from 1.5 mm to 1 

mm, meandering gas flow through the heat exchanger) as done for the 30 

kA Ieads of the POLOmodel coil. To enlarge the thermal capacity of the Iead 

a central conductor made of phosphoraus deoxidized copper is surrounded 

by perforated copper plates made of electrolytic copper which are brazed to 

the central conductor. The perforations are modified according to the 

performance of the 30 kA current Ieads during the 1.8 K test of the LCT coil 

to get higher pressure drop respectively higher Reynolds number. 

During brazing procedure a leak appeared in the weid seam between 

electrolytic copper cold end and the phosphoraus deoxidized copper. The 

brazing material of the Nb3Sn inserts run out till to the weid seam. This was 

confirmed by an ultrasonic inspection later on. The brazing material blocked 

at several sections near the intermediate flanges with the compensation 

bellows partly the cooling fins. This Ieads to an unacceptable high pressure 

drop. The blockage was localized by a pressure drop measurement at each 

section across the heat exchanger. The outer shell of the heat exchanger 

was opened near the flanges and the blocked cooling fins were partly 

removed by milling. The pressure drop measurements were repeated as 

long as all blockages were removed. Finally for both heat exchangers 0.2 

MPa pressure drop was achieved at a mass flow rate of 5 g/s which is 

needed for operation. 



- 36-

3.3.4.3 Superconductor inserts at the current Iead cold end 

One design feature of the FZK forced-flow cooled current Ieads is the use of 

so called superconductor inserts in the joint region and to a large extend in 

the heat exchanger region. The reason to use Nb3Sn as superconductor 

material was the high critical temperature of 10 - 12 K (at local magnetic 

fields) which allows to adjust the normal conducting length of the current 

Iead according to operation current and helium mass flow rate which results 

in an optimized operation in a wide current range [3.3.4.3-1]. 

Du ring the design phase of the 80 kA current Ieads, it was found that, due to 

space restrictions, it was not possible to extrapolate the margin of the 

superconductor inserts from 30 kA (POLO Ieads) to 80 kA. Therefore a 

series of measurements were done to characterize the performance of the 

superconductor strands which were industrially available. lnternally copper 

stabilized Nb3Sn strands were used because of the absence of a barrier 

between the copper of the current Iead conductor and the superconductor 

filaments. A high current density strand made by VAC was found to be the 

most suitable one with respect to critical current. But afterwards, it was found 

that the interior construction of the strand led to bonding problems between 

the current Iead copper and the strand itself. Measurements performed by 

embedding a strand which was also made by VAC and was used in the 30 

kA POLO current Ieads in a copper profile showed that these strands can be 

used for the 80 kA current Ieads, too. ln Figure 3.3.4.3-1, the quench current 

of the two selected strands embedded in copper profiles is plotted as a 

function of applied magnetic field. ln Table 3.3.4.3-1, the measured quench 

currents of the different samples as weil as the extrapolated numbers for the 

Operation of the current Ieads are summarized. 

The leak in the weid seam with the loss of the brazing material for the Nb3Sn 

inserts required a repair. The copper material of the contact surface was 

removed by a special milling procedure and peeling. New copper profiles 

were soft soldered on the Nb3Sn inserts by a Sn(50)1n(50) melting at low 

temperature (-120 °C). The method was qualified by a series of trial 
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soldering for achieving a good quality of solder filling in the gap between 

copper profile and Nb3Sn inserts. 

Finally the copper contact surface was gold coated for avoiding an oxide 

layer. 

Table 3.3.4.3-1: Results of the extrapolation of the critical currents for the four test samples 

No. Sampie Ia at 1.31 T, 4.2 K llimit at 1.31 T, 10 K 

1 NS-13000(HP) in E-copper 3180 A 159 kA 

2 NS-13000(HP) in SF-copper 2902A 145 kA 

3 NS-1 0000 in E-copper 2014 A 100 kA 

4 NS-10000 in SF-copper 2031 A 102 kA 

A detailed description of the measurement programme is given in [3.3.4.3-2]. 

3.3.4.4 Water cooled flexible busbar 

During the design of the 80 kA current Iead, it was found that one critical 

issue has been the warm end of the current Iead even at high currents. 

Because of the much higher thermal capacity of pressurized water at room 

temperature instead of helium gas, the use of a water heat exchanger was 

envisaged. A second problern was the connection between the current Iead 

and the water cooled Al busbars because the conventional available flexible 

water cooled cables required too much space for the connection to the 

current Iead. So, a special high current density water cooled flexible copper 

piecewas designed which could be integrated to the helium heat exchanger 

of the current Iead. Test measurements done on a prototype model of this 

flexible busbar showed that an Operation current of 80 kA could be carried 

stable without any overheating. Figure 3.3.4.4-1 shows a view of the 

components of the flexible busbar whereas in Figure 3.3.4.4-2 the prolotype 

test configuration connected to the Al busbars is presented. ln Figure 

3.3.4.4-3, the Operation current and inlet and outlet temperatures as 

measured during the test of the prolotype is plotted as a function of time. A 

current density of 45 Almm2 was achieved. 
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3.3.5 System commissioning 

Besides the acceptance tests of components of the system like measuring 

and control as weil as data acquisition, two test series with the LCT coil and 

the test of the W 7 -X prototype coil had to be considered as the overall 

commissioning test of the basic facility as specified in section 3.2.3. 

The 2 kW refrigerator worked reliable tagether with the TOSKA 

cryogenic supply system under real test conditions. 

The measured cryogenic power were in agreement with the refrigerator 

characteristic (Fig. 3.3.5-1 ). 

The necessity for changing the installation position is impressively 

demonstrated Fig. 3.3.5-1 ). 

A first attempt of using nitrogen pre-cooling showed not sufficient 

stability. With a new operation parameter set a stable operation was 

possible with TOSKA. 

ln general, the whole cryogenic system worked weil. The operation of the 

TFMC configuration required some specific additions which will have no 

impact on the function of the basic system. 

The cooling conditions and thermohydraulic properties after quench or dump 

are summarized in Table 3.3.5-1 and Table 3.3.5-2. 

Testing Operation mode and unattended standby operation at nights 

and weekends were successfully demonstrated. 

Fault conditions during operation were successfully mastered without 

helium release to the atmosphere. 

A helium mass flow of 275 g/s was circulated over hours (Fig. 3.3.2.2-

3). 

The operator crew were trained to handle the system. 
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Table 3.3.5-1 : Cooling conditions for the operation of the LCT coil during testing 

Operation mode 3.5 K 1.8 K Standby 
at 1.8 K 

Winding 

Mass flow rate [g/s] 50 80 20 

Pressure [bar] 3.5 2.4 3.5 

Pressure drop [bar] <0.1 0.6 0.07 

Total heat Ioad [W] 10 27 25 

Case & structure 

Mass flow rate [g/s] 50 70 40 

Pressure [bar] 3.5 3.4 3.5 

Pressure drop [bar] <0.1 <0.1 <0.1 

Heat Ioad [W] 100 90 90 

Current Ieads 

Mass flow rate [g/s] 2 X 1.6 2 X 2.0 2 X 0.3 

Heat Ioad to winding [W] 2x5 2 X 8.5 2 X 12.5 

Current per Iead [kA] 16 19 0 
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Table 3.3.5-2: Thermohydraulic properties after dump and quench (peak values) of 
the LCT coil testing 

Operation mode 3.5 K 1.8 K 1.8 K 
16 kA 19 kA 19.6 kA 
Dump Dump Quench 

Winding 

lnlet temperature [K] 14.6 11.7 26.5 

Outlet temperature [K] 8.8 11.0 17.4 

Pressure [bar] 5.3 8.8 26.6 

Heat Ioad [MJ] 0.38 1.60 2.00 

Case 

lnlet temperature [K] 12.5 17.5 24.3 

Outlet temperature [K] 18.4 21.0 21.7 

Pressure [bar] 5.6 18.1 13.4 

Heat Ioad [MJ] 1.10 1.30 1.65 

The horizontal current Iead installation of the LCT coil indicated Iosses which 

were twice as high as expected. This fact forced a design change for the 

installation of the 80 kA current Ieads which would exceed in horizontal 

installation position the capability of the cryogenic system (Fig. 3.3.5-1) (see 

section 3.3.4). 

For the test of the W 7 -X prototype coil, two new current Ieads were built with 

the improved design (hole diameter in the cooling fines reduced from 1.5 mm 

to 1 mm, meandering gas flow through the heat exchanger). 'The 

improvements were effective during testing. The Iosses werein the expected 

range. The operation showed no instabilities. Therefore this current Ieads will 

be installed for the LCT coil. 
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Fig. 3.3.1-1: The routing of the cold helium lines between the TOSKA facility and the 2 kW refrigerator 
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Fig. 3.3.1-2: The cold supply lines coming from the 2 kW refrigerator are in the upper right 
corner. One line terminates in the control cryostat 8250 (containing the heat 
exchanger and pumps). The other line terminates in the valve box. The line is 
branched off in the valve box in two lines. One line runs to the B 300 (TOSKA 
vacuum vessel and is used for cooldown. The other line runs to the STAR 
facility. The reinforced LCT coil is seen in the left corner. 
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Fig. 3.3.1-3: Section blow up of Fig. 3.3.1-1 showing the core of the cryogenic supply 
system: The valve box, the control cryostat 8250 ( >3.5 K operation) and, on 
the right hand side, the control cryostat 81000 (>1.8 K operation). 

I 



-45-

Fig. 3.3.1-4: A glance into the B 1000 in direction from bottom to top: On the left hand side the thermomechanical pump, on the right 
hand side the 3 piston pumps and the centrifugal pump beneath surrounded by the heat exchanger 
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Fig. 3.3.2.1-2: The control panel for the cooldown and the setting of the parameters as used for the TFMC test. 
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Fig. 3.3.3-1: The reinforced LCT coil installed in the TOSKA vacuum vessel in the same 
position like for the TFMC test. The space for the TFMC + ICS is on the right 
hand side. ln the left hand corner, the cold quench storage pressure vessel is 
visible. The two ports for the TFMC current Ieads are on the right hand side. 
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Fig. 3.3.5-1: Measured refrigeration and liquefaction capacity at the control cryostat 8250 and the rated operation point for testing 
TFMC without and with LCT coil. The operation points for horizontal installed current Ieads are outside the capability 
of the cryogenic system (lower value 70 kA, higher value 80 kA). 



-67-

3.4 Current supplies and dump circuits 

3.4.1 General description, overview 

The TOSKA facility has for the 80 kA operation two 12 pulse thyristorized 

DC power supplies with an output valtage of ± 30 V. One of them has a 

maximum current of ± 30 kA, the other one of + 50 kA. These power supplies 

are equipped with a busbar system and a control unit so that the power 

supplies can be operated as single power supplies or both switched in 

parallel so that a total current of 80 kA can be achieved (Fig. 3.4.1-1 to 3). 

A new 12 pulse thyristorized DC power supply with an output valtage of ± 30 

V and a maximum rated current of 20 kA is installed and taken into operation 

for the LCT coil for the test configuration LCT + TFMC. 

An important circuit in the high current network of a superconducting magnet 

is the dump circuit for the removal of the stored energy in case of a quench. 

General in case of the discharge of an inductance L in a resistor R the 

relation between discharge valtage U, current I, time constant 't ('t = LIR)and 

stored energy E, is defined by the relation 

E = U · I · ('t/2) 

ln Table 3.4.1-1 typical discharge parameters are summarized for magnets 

tested or magnets that will be tested in TOSKA in near future. 
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Table 3.4.1-1: Discharge parameters of tested magnets as single coil (upper part of the 
table) and magnets that will be tested in next future in the TOSKA facility 
(middle part of the table). The lower part of the table gives the discharge 
parameter for discharge segments of the ITER (20) and W 7-X (7) torus 
(Number of discharge segments in brackets). 

Coil Discharge type E lo Uo Po 't 

[MJ] [kA] [kV] [MW] [s] 

POLO Safety 4.81 24 0.72 17.2 0.56 
II High valtage 1.87 15 22.0 330.0 0.011 

LCT Safety 302.0 19.6 2.45 48.0 12.5 

W 7 -X pratatype Safety 8.0 16 0.53 8.5 1.9 

cail 

ITER TF madel Safety 86.2 80 0.539 43.0 4.0 

cail High valtage 8.0 24.3 10.0 24.3 0.066 

ITER TF cails Safety -500.0 60 10.0 600.0 15.0 

tarus Segment 

W 7-X cail 

tarus segment Safety -86.0 20.0 8.0 160.0 3.0 

The table shows that voltage, current and also energy (W 7-X) of torus 

segments will be already achieved in TOSKA as single parameters 

Besides the pure protection function of the discharge circuit, the circuit is 

also an experimental tool for generating defined test conditions. This was the 

case for the POLO dump circuit. Transient loading regarding high valtage 

and magnetic field were generated by special switching sequences. 

The basic switching circuit used for the ITER TF model coil is presented in 

Fig. 3.4.1-4. The power supplies are connected across separation switches 

{ST) with the positive and negative bus bar running to the current Iead 

terminals of the coil. The discharge resistor (R) is connected to the bus bars 

parallel to the coil (L). A short circuit branch parallel to coil and discharge 

resistor consists of two parallel working arc chute switches (S1, S2), in 
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series with a third one (83). This arrangement assures that a fault operation 

of one switch during closing or opening procedure Ieads to no failure of the 

safety discharge. So far, the dump circuit has a simple redundancy. 

A programmable logic controller (PLC) controls the switching circuit. The 

switching sequence of the safety discharge is redundantly assured by a 

parallel running relay circuit. ln case of triggering a dump, the arc chute 

switches are closed. The power supply is switched in inverter mode 

(negative output voltage). The power supply feeds back the stored energy of 

the circuit to the grid and commutates the current on the branch (81, 82, 

83). The coil is now shorted across this branch. The separation switches 

(ST) open and isolate the power supply from the dump circuit. Then, the arc 

chute switches (81, 82, 83) open simultaneously. The increasing arc 

resistance commutate the current into the discharge resistor. The coil current 

decreases exponentially with the time constant t. 

The power supply is protected by an overvoltage protection (OV). ln case of 

an unexpected power outage from the grid side, the last two fired thyristors 

carry the portion of the DC current in each power supply in the freewheeling 

mode. A safety discharge is immediately initiated. The full coil current is then 

branched according to the short circuit resistance in the branch (81, 82, 83) 

and the differential thyristor resistance of the two power supplies in parallel. 

The branch current of the two power supplies is finally commutated by the 

separation switches ST in the short circuit branch (81, 82, 83). At maximum 

current the commutation of the freewheeling current of the 30 kA power 

supply in the short circuit path (81, 82, 83) is performed by the melting of 

the thyristor fuses. For the thyristor fuses of the 50 kA power supply, the Ioad 

Iimit integral is always adequate large so that the switches ST commutate 

the current in the short circuit path (81, 82, 83) [3.4.1-1]. 

ln the case of an internal power supply fault the usual safety discharge is 

triggered and the AC high valtage power breakers open first when the 

inverter mode operation is concluded and the current is commutated on the 

short circuit path (81, 82, 83). 
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ln case of a quench (coils, sc bus bars) or faults the PLC of the dump circuit 

corresponds with the PLC of the cryogenic system and vice versa. ln the first 

case for the beginning of the safety discharge, certain valves have to be set 

in order to avoid not acceptable pressure increases and helium lasses. ln the 

second case, fault conditions in the cryogenic supply system or somewhere 

else have to initiate a safety discharge. 

3.4.2 20 kA dump circuit for the LCT coil 

The basic circuit is given already in Fig. 3.4.1-1. The short circuit path needs 

a modification. The arc chute switches (Type AEG, GERAPID 6003) (3.1, 

3.2) were capable to interrupt currents up to 80 kA. A special automatic 

trigger circuit is installed to open the switch if a certain short circuit current is 

achieved (about 12 and 16 kA) (Fig. 3.4.2-1). This can Iead to problems at 

the separation switches (2.1, 2.2) when the current is not fully commutated 

to the short circuit path and the opening of 3.1 and 3.2 starts already the 

current commutation in the resistor 6.2. For avoiding the uncontrolled 

opening, two switches work in parallel so that the branch current is always < 

12 kA. The closing function of the short circuit path is performed by two 

usual AC breakers (13.1, 13.2) in parallel Operation so that the current can 

distribute itself equally on breakers 3.1 and 3.2. A malfunction of the 

breakers 3.1 and 3.2 can be compensated by an explosive driven separator 

switch (4.1) which commutates the current in two fuses (4.2). The fuses 

commutate the current then in the resistor (6.2). The separator switch and 

the fuses have to be replaced after such a current commutation. All 

branches are equipped with current transformers (Type LEM). Valtage 

transformers measure the valtage across the high current busbars, 

respectively the coil. This instrumentation is needed for the diagnostics of 

the safety discharge and the proper running down of the switching 

sequence. 

The circuit is soft grounded. About 6 % of the current runs across the 

grounding resistor if a ground fault occurs at the not grounded coil side. The 

grounding can be disconnected in the operation mode "high valtage test" 
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which will be performed each time before starting the daily experimental 

work. 

For the test of the TFMC + LCT coil, the dump parameters are summarized 

in Table 3.4.3-1. 

The task of the switches 10.1 and 10.2 are needed for disconnecting the 

dump resistor for tests and trouble shooting. They are controlled in such a 

way that they close before the current commutation in the dump resistor 

starts. During operation of the LCT coil, these switches were short circuited 

by a busbar. But for fast pulsing, they can remain open to reduce the Iosses 

in the dump resistor. lt was an experience of the LCT coil test that for large 

inductances like for the LCT (1.58 mH) the switches (1 0.1, 1 0.2) have to be 

closed otherwise the controller is not able to ramp up the current. 

The 20 kA dump circuit can be operated with 50 kApower supply (ABB) or 

with the 20 kA power supply (Bruker). There is a switch panel in the 20 kA 

dump circuit to switch in the two operation modes. Besides this operation the 

some bus bar connections have to be changed. The 1.8 K test of the LCT 

coil and the W 7 -X prototype coil were performed by the 50 kA power supply 

and the 20 kA dump circuit [3.4.2-1]. Fig. 3.4.2-2 presents the current and 

traces of a safety discharge du ring the test of the W 7 -X coil. For the test of 

the TFMC with the LCT coil, the LCT coil is operated by the 20 kA power 

supply (Bruker) and the 20 kA dump circuit. 

3.4.3 80 kA dump circuit for the TFMC 

The modification in the dump circuit of the TFMC consists of two fast closing 

switches (33.1, 33.2) in parallel in the first short circuit path with the two arc 

chute breakers 32.1 and 32.2 in series (Fig. 3.4.3-1 ). The reason is that, for 

the parallel Operation, the short circuit path has to be closed as fast as 

possible which will be discussed in section 3.4.6. The second arc chute 

breaker is needed for redundancy reason because a pyro-breaker was not 

available for 80 kA currents. 

During the testing of the 80 kA dump circuit it was found that valtage drop 

across the short circuit path was to high. The valtage drop of about 27 V 



-72-

across it at 80 kA was in the range of the inverter mode valtage of the power 

supplies of about 30 V. Therefore a second short circuit path was introduced 

to reduce the total resistance of the short circuit path and the valtage drop 

across it. The installed switches 42 and 42.2 in the second short circuit path 

are of the same type as 32.1 and 32.2. The valtage drop is reduced now to 

about 17. Simultaneously with this action the breaking capability of the 

switch SO was improved by an arc chute switch S0.2 in parallel. The current 

is first commutated from SO to S0.2 which finally interrupt. 

The separation switches 41.1 and 41.2 disconnect the 80 kA dump circuit 

from the power supplies for insulation resistance testing and other operation 

modes of the power supply. 

Analogaus to the circuit in 3.4.2, the soft grounding will be disconnected in 

the Operationmode "high valtage testing". 

The dump circuit parameters for the LCT and TFMC dump circuit are 

summarized in Table 3.4.3-1. 
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Table 3.4.3-1 Dump circuit parameters for LCT and TFMC 

U: Discharge voltage; 1: Coil current; R: Discharge resistor; L: Coil inductance; 't: 

Time constant if the coil is discharged alone; 'teff: Effective time constant {That 
means the time needed till the current I is {10/e) when both coils are discharged 
jointly with the time constants given in the table. The influence of the steel case and 
the radial plates is taken into account. 

LCT TFMC 

U [kV] 2.0 0.536 

I [kA] 16.0 80.0 

R [Q] 0.125 0.0067 

L[H] 1.57 0.027 

't [s] 12.56 4.0 

'teff [s] 15.4 3.2 

3.4.4 Testing of the TFMC by transient voltages 

3.4.4.1 The POLO switching circuit for testing transient voltages 

The POLO switching circuit was developed in the frame of the POLO project 

in order to test the poloidal field model coil POLO under operation conditions 

of poloidal field coils (fast current rise, transient field changes, high valtage 

loading etc) [3.4.4.1-1, 3.4.4.1-2]. This circuit can be used with slight 

modification of the dump resistor for the TFMC too. The TFMC can be fast 

discharged and the rated high valtage loading of the winding is 

demonstrated. This is a challenging experiment because the radial shear 

plate type winding has to be considered under aspects different to the usual 

pancake or layer winding. The fixing of the radial shear plate potential 

determines the transient valtage properties, e.g., during current commutation 

procedure in the dump circuit [3.4.4.1-3, 3.4.4.1-4]. 

The POLO switching circuit contains a counteracting current switch which is 

similar to that foreseen for the ITER coil dump circuit. 
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The POLO switching circuit is presented in Fig. 3.4.4.1-1. The POLO 

switching circuit is connected to the 30 kA power supply. The following 

operation modes are used for testing the ITER TFMC: 

• Safety discharge in case of a quench or emergency 

• High voltage discharge for high voltage loading of the TFMC 

• High voltage pulse tests for transient voltage loading of the TFMC 

The core of the switching circuit is the counteracting current switch which 

is a commercial vacuum breaker S2 with reinforced tubes, a 150 JlF 

capacitor bank C and an ignitron valve IGN (Fig. 3.4.4.1-1 ). The vacuum 

breaker is in series with an arc chute and a pyro-breaker. The resistor 

R2 is the high voltage discharge resistor and the resistor R 1 is the safety 

discharge resistor. 8oth resistors are connected on the one side bet

ween S2 and E1 in the branch S2, E1, S1, and on the other side across 

a pyro breaker EM in series with a vacuum breaker SM to the center 

terminal of the coil. This path is not used for the TFMC testing so that the 

vacuum breaker SM is opened, respectively the center high current feed 

in does not exist. The switches ST isolate the circuit from the power 

supply during all modes of high voltage operation. The switch SN and a 

peak voltage suppressor EN protect the power supply against over

voltages. The task of SO is to interrupt the current path to the power sup

ply and commutate the current to the short circuit path. The different 

switching operations run down as follows: 

• Safety discharge: The power supply is switched in inverter mode, S2 

closes and SO disconnects the power supply by commutating the 

remaining current into branch S2, S1, E1. The commutation of the 

current into R1 is performed by opening of S1. ln case of malfunction of 

S1, the pyro-breaker E1 is automatically triggered and performs then the 

commutation into R1. 

• High voltage (HV) discharge: The capacitor bank C is charged to a 

voltage Ievei controlled by the actual coil current in order to generate the 

zero transition in the vacuum breaker. After that, the same switching 

sequence runs down until SO and ST open. S2 opens and draws an arc. 
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The counteracting current is initiated by firing of the ignitron IGN. The 

forced zero transition of the current extinguishes the arc and 

commutates the current into the resistor R2. Failures (e.g., a not 

matched capacitor voltage) Iead to closing of 82 with the following 

opening of 81 (safety discharge). 

• For the HV discharge also, the time constant for the discharge process 

of the capacitor bank has to be added. The capacitor discharge acts not 

only on the short circuit but also on the TFMC. A rise time of about 35 !lS 

was observed during the POLO coil discharge [3.4.4.1-5]. ln this case 

the behaviour is mainly determined by the distribution of the 

capacitances across the coil. This transient behaviour can be 

investigated by HV pulsing. 

• HV pulsing: A change of busbar connections and the selection of a 

suitable adapted damping resistor allow a direct discharge of the 

capacitor bank C into the coil for transient high voltage tests. 

The test parameters of the TFMC are summarized in Table 3.4.4.1-1. 

Table 3.4.4.1-1: Parameters for high voltage and safety discharge of the TFMC with 
the POLO switching circuit 

TFMC current 21.7 kA 

TFMC stored energy at 21 . 7 kA 6.4MJ 

Fastdischarge voltage 10 kV 

Time constant 0.058 s 

Discharge resistor 0.46 n 

8afety discharge voltage 136 V 

Time constant 4.3 

Discharge resistor 6.25 mn 

The POLO switching circuit has equivalent diagnostics like the circuits 

described above so that the current in the different branches is 

measured by current transformers and the voltage across the coil as weil 

as across the power supply. 
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The capacitor bank and the dump resistor need a center grounding in 

order to have +/- 5 kV across the TFMC which is the equivalent valtage 

loading like for the ITER TF coils (Fig. 3.4.4.1-2 for HV discharge, Fig. 

3.4.4.1-3 for HV pulsing). 

Fig. 3.4.4.1-4 shows the ideal potential distribution (no transient 

voltages) for the high valtage discharge. ln this operation mode, the 

radial plates of the TFMC are connected with the high field joint potential 

across a resistor. ln this ideal case, the valtage drop across each radial 

is 2 kV and +/- 5 kV across the terminals by center grounding of the 

discharge resistor. 

The analysis of the network model of the TFMC showed that the 

resonance frequency is in the range of 200 kHz. Therefore internal 

oscillations are exited for rise times < 1 IJS. The TFMC will be not 

sensitive for the usual switching transients in the 30 IJS range. For the 

validation of the network model, it is of interest to have experimental 

results. This is the basis for predicting the transient behaviour of the full 

size TF coils. Some preparing experiments were performed for achieving 

experimental results [3.4.4.1-6] 

Circuit for transient valtage tests 

The transient valtage tests may be performed at room temperature 

because the behaviour is purely depending on the temperature. 

Therefore these tests may be done afterwarm up (especially the test in 

the time range which is very time consuming). The basics for the 

transient valtage tests are given in section 1.4.1 in chapter 1. Presently 

two circuits are planed and tested with a dummy Ioad. 

ln addition the normal high valtage dump can also be considered as a 

transient test but with increased rise time - compared to the following 

described tests. Therefore a detailed examination of the dump especially 

during the period between the firing of the ignitrons and the reaching of 

the maximum valtage is necessary. 
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3.4.4.2.1 Transient voltage behaviour in the frequency range 

Similar to the test with a capacitive dummy Ioad (Fig. 3.4.4.2.1-1) a high 

frequency generator is applied to the terminals of the ITER TFMC coil. 

The valtage Ievei at the terminals is about some 1 00 mV controlled by an 

oscilloscope. Additionally the second channel of the oscilloscope will be 

connected with an inner pancake joint potential. The relationship of the 

maximum amplitudes between the two signals will be measured in the 

frequency range of about 20 kHz till 500 kHz. Because of the 5 different 

pancake joints 5 measurement cycles are necessary for each of the 3 

cases of connection of the radial plates (connection with the inner 

pancake joint directly (Fig. 3.4.4.2.1-2) or over a 1.2 Mn (Fig. 3.4.4.2.1-

3) resistor or directly grounded (Fig. 3.4.4.2.1-4 )). 

3.4.4.2.2 Transient voltage behaviour in the time range 

According to Fig. 1.4.1.4-1 in chapter 1 the modified Marx-generator is 

connected to the terminals of the coil and delivers a bipolar impulse 

(corresponding to the ±5 kV operation). The damping resistors Rd are 

stepwise decreased to be sure that the over all valtage of the coil is not 

oscillating. The modified Marx-generator should generate minimum 

possible valtage impulses (voltage between terminals about 2.5 kV). The 

overall valtage between the terminals will be observed by an 

oscilloscope. The other channel of the oscilloscope is connected with an 

inner pancake joint potential. The oscilloscope will operate in single 

sequence mode. 

After the bipolar tests unipolar tests should be performed (corresponding 

to a fictitious +1 0 kV operation). Forthis test one stage of the modified 

Marx-generator will be removed so the resulting valtage will be only 

about half of the value of the bipolar impulse (about 1.3 kV). After the 

inception of oscillations along the conductor the test for directly 

grounding will be stopped to prevent from exceeding the 2 kV value 

between the grounded radial plate and the conductor at the outermost 

positive layer. 

Because for each of the two valtage forms (unipolar, bipolar) for the 

three different connections of the radial plates (Fig. 3.4.4.2.1-2, Fig. 
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3.4.4.2.1-3, Fig. 3.4.4.2.1-4) a sufficient set of data on several points is 

needed to verify the model in detail at least two weeks will be needed for 

this test. 

3.4.5 Commissioning 

The electrical supply systemwas taken into operation and commissioned 

as soon as in the experimental programme the opportunity was given to 

integrate the component to be commissioned in the experimental 

programme. lt has also to be taken into account that realistic operation 

conditions need always a superconducting inductive Ioad. Same 

functional checks of the power supplies as weil as the dump circuits can 

be performed with resistive inductive Ioad which is available (Table 

3.4.5-1, see also Fig. 3.2.1-2 where the coil can be seen in the front of 

the TOSKA pit, now positioned in the gap between the TOSKA vacuum 

vessel wall and the pit wall). 
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Table 3.4.5-1: Operation parameters of the water cooled resistive inductive Ioad 

(W 7 OH coil, on loan from IPP Garching. lt was constructed as ohmic heating 

coil in one of the Wendelstein 7) 

Valtage 30 kV 

Continuous current 20 kA 

Resistance 2.75 mn 

lnductance 7mH 

Magnetic field (center) 47 mT/kA 

Weight total 32 t 

Innerdiameter 1.20 

Outer diameter 1.60 

Length 4.74m 

The power supply valtage of 30 V Iimits the current to about 10 kA. The 

current is additionally reduced by the exponential current decay in tests of 

the switching circuits or with the switching circuits. The real test current is 

then in the range of about 6 - 8 kA. A superconducting coil for tests at higher 

currents is indispensable. Last but not least, the final commissioning tests 

can only be performed with the original superconducting coil determined for 

the power supply or switching circuit. A corresponding time has to be 

provided in the TFMC test programme. 

The commissioning was as follows: 

• Power supplies : The 30 kA power supply was used for several current 

Iead tests and the POLO coil project. As weak component were identified 

the primary high valtage transformer coils which had to be exchanged 

several times caused by insulation damage. lt was assured that the 

engineering design is healthy by pulse valtage tests and partial 

discharge measurement. External overvoltages of the primary high 

valtage transformer coils were excluded by overvoltage protection 

devices. Since all measures did not help to solve the problem, it was 

concluded to change the transformer system. Today, it is state-of-the-art 

to use a step down transformer between the 20 kV grid and the rectifier 
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(20 kV ~ 400 V ~ 30 V). ln this case a valtage stepping of 20 kV ~ 1.5 

kV ~ 30 V has to be selected for the existing transformer. The system 

was installed in spring 1998 and commissioned in September 1998. The 

30 kA power supply worked weil with this changes during the testing of 

the W 7 -X prototype coil and the commissioning of the 80 kA dump 

circuit without any disturbances in this field. 

The 50 kA power supply was the current source for the test of the LCT 

coil at 1.8 K , the testing of the W 7-X prototype coil (July 1999) and the 

commissioning of the 80 kA dump circuit (December 2000). lt worked 

weil; no deficiencies were recognized. 

The 80 kApower supply (30 kA and 50 kA switched parallel; the control 

system works in master - slave mode; the control system of the 30 kA 

power supply works as master) was commissioned by short circuit 

operation up to 80 kA and also used for the test of the water cooled 

flexible bus bars of the current Ieads (section 3.3.4.4 ). The control circuit 

operation was tested with the resistive coil described above. Finally it 

was tested with the inductive superconducting Ioad (POLO coil) up to 

22.5 kA [3.4.5-1]. 

The inverter mode operation needed for current commutation to the 

dump circuit was tested with the POLO coil and the POLO switching 

circuit (Fig. 3.4.5-1 ). The simultaneaus ramping up of both power 

supplies is demonstrated in Fig 3.4.5-2. lt was found that the 50 kA 

power supply shifts its current fraction of the total current to the 30 kA 

power supply which had to carry now the total current till the short circuit 

branch 82, 81, E is closed (Fig. 3.4.5-3). Then the current commutates 

to the short circuit branch. The reason forthat is that the valtage of the 

50 kA power supply is slightly higher than that for the 30 kA power 

supply. This will be without consequences as far as the total current is 

below 30 kA. 

An investigation by the supplier was performed (usual operation mode 

and fault conditions included) whether the components of the 30 kA 

power supply have the capability to carry also 80 kA for a short time (< 
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50 ms) [3.4.5-2]. Some changes in the control units and a faster closing 

switch for the short circuit path were recommended to reduce the 

unbalanced current distribution during starting of the inverter mode 

operation. The fast closing switches (6 ms) were already installed in the 

80 kA TFMC dump circuit (see Fig. 3.4.3-1 ). The effectiveness of both 

measures was demonstrated up to 10 kA operation current du ring the 

acceptance test of the 80 kA dump circuit (see below 80 kA dump 

circuit). 

For higher currents, it has to be observed with the TFMC during the 

testing. Some analysis work is presented in section 3.4.1. 

The actual current measurement is performed in the 30 kA and 50 kA 

power supply by zero flux transformers. Du ring the test of the W 7 -X 

prototype coil it was found that the screening of the zero flux transformer 

was no Ionger sufficient [3.1-3], (see also section 3.5.9). The zero flux 

transformer of the 30 kA power supply showed at about 3.4 mT that the 

current source for the compensation current was at its outermost Iimit. 

This led to an unexpected switch oft of the 30 kA power supply by a 

power supply fault. Since a reliable design of a iron screen was not 

possible it was decided to add an actual current measurement by shunt 

resistors for both power supplies. This kind of current measurement is 

independent of magnetic fields. 

The 20 kA power supply needed for the operation of the LCT coil was 

ordered at the end of 1997. The commissioning has been interrupted by 

the test of the W 7 -X prototype coil. lt was success fully completed in 

December 2000. The change over of the 20 kA dump circuit to the 20 kA 

power supply was tested and completed in December 2000. 

• POLO switching circuit: The circuit was extensively operated during 

the POLO project. The adaptation for operation with the TFMC is a 

change of the grounding conditions. 

• The 80 kA dump circuit for the TFMC: The circuit was ordered end 

1997. Commissioning has been interrupted by the test of the W 7 -X 

prototype coil. lt was found during commissioning that improvements 
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considering the resistance of the short circuit and the switching 

capability are necessary as already mentioned in section 3.4.3. 

Current and valtage traces for a manual triggered safety discharge 

are given in Fig. 3.4.5-4. The current shifting from the higher 

resistance fast closing short circuit path to secend slower closing 

lower resistance short circuit path can be clearly seen by current 

traces. Practically no current shifting between the two power 

supplies took place. ln case of a power supply fault in one of the 

both power supplies a shifting of the current over a time < 50 ms 

could not be avoided till the short circuit path has been closed (Fig 

3.4.5-5, Fig. 3.4.5-6). According to the estimates for fault conditions 

it is acceptable [3.4.1-1]. 

3.4.6 lnsulation diagnostic by partial discharge measurement 

Partial discharge measurement is a destruction free insulation diagnostic tool 

[3.4.6-1), [3.4.6-2]. According to chapter 1.4.2 on ITER TFMC the ground 

insulation and the conductor (winding) insulation will be examined. ln 

addition it may be possible to measure the partial discharge activity between 

radial plates. Because it was found that for different valtage forms the 

measured apparent charge is in relationship with the peak-peak value the 

suitable values for the different tests are given according tab. 3.4.6-1. 

Tab. 3.4.6-1: Valtages for the different partial discharge tests. 

Upeak·peak I kV Urms I kV 

Ground insulation 5.00 1.77 

Gonductor I winding insulation 1.00 0.354 

lnsulation between radial plates 1.00 0.354 

After the assembling of the TFMC with the inter-coil structure (ICS) the 

measurement of the partial discharge activity during the final AC test on 

ground insulation at 3.54 kV can be performed. lt is recommendable to 

perform also a final conductor test which gives the opportunity to measure 

the partial discharge on one radial plate for one minute at higher AC voltage. 
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The suitable high valtage AC equipment of the Cryogenic High Valtage Lab 

of the ITP is given in Table 3.4.6-2. 

3.4.6.1 Partial discharge circuit for ground insulation tests 

Fig. 3.4.6.1-1 shows the ITER TFMC arrangement for the measurement on 

ground insulation. The radial plates are connected with the inner pancake 

joints over 5 HV connectors. Each connector consists with a Gare high 

valtage instrumentation cable with 2 plugs suitable for the sockets of the 

warm vacuum vessel feedthroughs. Because all the radial plates and the 

conductor are on same potential fuses or resistors are unnecessary. The 

detection impedance lies in series with the coupling capacity (Fig. 1.4.2.2-1 b, 

Chapter 1) because it is not reasonable to ground the entire case over the 

detection impedance Z. The impedance Z not only Iimits the short circuit 

current but also reduces external disturbance and prevents that the apparent 

charge bypasses the coupling impedance. Therefore it is very important to 

use it during partial discharge measurements and have the highest possible 

value. The four parallel resistors of 50 kO Iimit the short circuit current to 

about 142 mA. 

3.4.6.2 Partial discharge circuit for conductor insulation tests 

Fig. 3.4.6.2-1 shows the ITER TFMC arrangement for the measurement on 

winding I conductor insulation. The examined radial plate is connected with 

ground potential over the detection impedance, the other radial plates are 

directly grounded. The grounding connectors of the radial plates have no 

high valtage insulation and it is not necessary to have high valtage plugs on 

this connectors. The feedthroughs which are connected with the conductor 

(high valtage) potential must be closed with blind plugs. The screws of the 

plugs must be tightened with 30 Nm. 

The coupling capacity is directly grounded (Fig. 1.4.2.2-1 a, Chapter 1 ). So it 

is possible to reduce the value of Z because the apparent charge is not able 

to bypass the detection impedance. Because of the low capacitive 

impedance of the coil (C is about 1.8 J,JF) the resistor is decreased to about 
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386.50 . ln this case the safety elements of the control desk switch oft the 

valtage in the case of a short circuit. 
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Tab. 3.4.6-2: AC high valtage equipment for ITER TFMC 

Part Type Specification 

HV-transformer REO WTE 50S S = 50 kVA, U = 5 kV 

Transformer REO RTMOK S = 16 kV A, U = 0 ... 230 V 

Power Supply (alternatively Spitzenberger & Spieß EP S = 2,25 kVA, U = 0 ... 270 

to transformer) 2250/C V 

Control desk IEH 

Capacitive compensated Hilo-Test HVT- 40 RCR U = 30 kV 

valtage divider 

Capacitive compensated Hilo-Test HVT- 120 RCR U = 90 kV 

valtage divider 

Multimeter DP 100 

Capacitive valtage divider MWB CP100 U = 1 00 kV, 37 pF 

Coupling capacity Haefely KK 1 00 - 1 100 kV, 1 nF 

Resistor MWB R = 50 kO P = 125 W 

Resistor Schniewindt R = 50 kO P = 250 W 

Resistor MWB R = 245 kO P = 60 W 

Resistor MWB R = 132 0 P = 60 W 

Detection impedance ITP TE 1 

PD measurement system PDICM 

Oscilloscope T ektronix 2430 A 

Calibrator 5 pC, 100 pC Haefely 451 

Calibrator 1 nC, 10 nC PD CAL1B 

5 HV connectors RLV 001-006 Utest = 9.9 kV 

4 grounding connectors 

1 connector for detection 

impedance 

5 blind plugs WHB Utest = 9.9 kV 

3.4.6.3 Partial discharge circuit for insulation tests between radial plates 

ln Fig. 3.4.6.3-1 a circuit for partial discharge measurements between radial 

plates is shown. The examined plate is grounded over the detection 
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impedance (fig. 1.4.2.2-1 a). Because it is very likely that the partial 

discharge activity from radial plates to ground insulation is lower than to the 

conductor the other plates are connected with the high valtage conductor 

potential. So 4 high valtage connectors for the warm feedthroughs are 

needed. The feedthrough of the inner pancake joint of the examined radial 

plate is covered by the blind plug. To examine all radial plates in this way 

five measurements are necessary. 

3.4.7 TFMC power system model validation and prediction at 80 kA 

3.4. 7.1 lntroduction 

A computer model of the TOSKA power system for the testing of TFMC, 

whose basic circuit diagram is shown in Figure 0-1, has been developed with 

SJMULIK1
, using the Power System Blockset (PSB) toolbox [3.4.7-1]. The 

PSB library includes: 

o Electrical Source blocks that generate electric signals 

o Linear and non-linear network elements 

o Power electronic devices 

o Electric machinery models (e.g., three phase transformers) 

o Connector blocks 

o Measurement blocks for the current and valtage measurements. 

The model, called tfmcps, includes a DC equivalent model for the 30 and 50 

kA power supplies, the current controller and a switching network 

representing the new 80 kA dump circuit (see Figures 0- 2, 3 and 4 ). More 

details on the tfmcps model can be found in [3.4.7-2]. The current version, 

tfmcps6, uses six state variable for the electric network and an additional 

state variable for every switching element. The busbar resistances used in 

the model have been derived from measurements. For the busbar 

inductances only computes values are available. With the assumptions 

1 Simulink is a software package, distributed by Math W orks Inc, for modeling, simulating, and analyzing 
dynamical systems using MATLAB as computational engine. lt supportslinear and nonlinear systems, modeled 
in continuous time, sampled time, or a hybrid ofthe two. 
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made, the eigenvalues of the network state matrix are: 1.0e6 * [-6.2756, -

1.3451, -0.8375, -0.3343, -0.0257, -0.0004]. The make switches are 

modeled with as an inductor (Lon) and a resistor (Ron) connected in series 

with an Ideal Switch. The circuit breakers, instead, have been modeledas an 

inductor (Lon) and a resistor (Ron) connected in series with a Gate Turn-Off 

(GTO) thyristor [3.4.7-1]. The ratio Lon/Ron for the various switching elements 

has been assumed between 5 and 1 Oms. 

Aftervalidation the model will be used for: 

o Circuit analysis in normal and fault condition. 

o Prediction at 80 kA. 

3.4.7.2 Modelvalidation 

The model has been validated experimentally using the transient data of 

TOSKA recorded during the acceptance tests with a dummy Cu Coil (W7-

0H) performed on the 21 51 December 2000. The shot that will be presented 

here (# 97110) is referred to a Safety Discharge (SD) at 10 kA triggered 

manually from the Dump Circuit (DPC) local control panel (see Figure 0-5). 

The simulation has been performed, as it occurs in the real system, with a 

controlled ramping up of the current up to 10 kA (0 - 12s) followed by the 

trigger of the SD after that the steady state condition is reached. The safety 

discharge timing sequence is given in Table 0-1. 

The comparison between the power supply currents (CIL30 and CIL50) and 

the equivalent outputs of the model are shown in Figure 0-6. Figure 0-7 

shows instead the current flowing in the fast crowbars (CIS1-80), in the slow 

crowbar (CIS2-80) and in the dump resistor (CIR80) versus model outputs. 

The differences, mainly during transients, are thought to be due to the 

network inductances that need to be checked experimentally or by 

calculation using the actual geometry of the busbars. 
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Table 0-1: Safety Discharge timing sequence. The times are referred to the 

triggertime of the data acquisition, which is assumed as t=O. 

Time(ms) 80 kA dump circuit switching sequence 

33 Simultaneaus "inverter mode" command to the 30 and 50 
kA power supplies 

48 Fast make switch S1.1 closed 
93 Slow make switch S 1 .2 closed 
190 Power supply bypass switches Sn1 and Sn2 closed 
274 Dump resistor make switch S3 closed2 

330 30 kA power supply isolation switch S0.1 open 
350 50 kA_power supply isolation switches S0.2 open 
590 Circuit breakers S2.1 open 
680 Circuit breakers S2.2 open 

3.4.7.3 Prediction at 80 kA 

After the validation, the model has been used to simulate a current ramp up 

followed by a safety discharge at 80 kA of TFMC. The current reference 

used for the ramp up is shown in Table 0-2. Same results of the first 2.5s of 

simulation are shown in Figure 0-8. An oscillation with a period of about O.?s 

and damping of 0.3 is present on the power supply output voltages. The 

oscillation is present also on the currents but with much lower amplitude. 

The same signals for the full current ramp (0- 120s) is shown in Figure 0-9. 

ln order to reach smoothly the steady state conditions the di/dt has been 

gradually reduced before reaching the flattop. Figure 0-10 shows the safety 

discharge, performed with the sametime sequence of Table 0-1. 

Table 0-2: Current reference used during current ramp up to 80 kA 

I Time (s) I 0.05 12 1108. 1112 1116 1118 1120 

2 This is an assumption for the simulation since, at present, is not possible from the available measurements to 
identify the exact closing time. 
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lref (kA) 0 1.6 76 78.4 79.6 80 80 

dl/dt (Als) 821 702 600 300 200 0 0 

Figure 0-11 shows the current flowing in the isolation switches 801 and 802 

(see Fig. 0-3) and the valtage across the switches during opening3 Both 

breakers are designed to interrupt the nominal current (i.e., 30 and 50 kA 

respectively) and there should be no problems. Figure 0-12 shows the same 

quantities in the case of only the fast crowbar is activated. The currents to 

interrupt are accordingly bigger but also in this case there should be no 

problem. Figure 0-13 show that also in this case the safety discharge can be 

performed within the same time scale. The time required to transfer the 

current into the crowbar in this case is about 50 ms Ionger due to the higher 

resistance of the circuit. 

3.4.3.4 Further developments 

The activities foreseen in the near future and during the power supply 

commissioning with TFMC coil are the following: 

o Calculate circuit inductance and check with the switch manufacturer 

the values of the ON resistor and inductor. lmprovement of the model 

during the early phase of the safety discharge. 

o Campare current ramp transient and optimize control parameters. 

o Check calibration of valtage and current measurements. Consistency 

checks. 

o 8imulate different fault conditions on the DC side. 

o lmplementation and test of the AC components (e.g, three phase 

transformers and full thyristor bridges) for the simulation of faults in the 

AC side. 

3 This is only the beginning ofthe "manoeuvre" of opening (contact separation). It takes between 150 to 200 ms 
for the switches to open completely. Only after they are fully open the commutation of the current into the dump 
resistor can be initiated. 
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o lmplementation and test of the AC components (e.g, three phase 

transformers and full thyristor bridges) for the simulation of faults in the 

AC side. 
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Fig. 3.4.1-1: The busbar connections of the 50 kA and 30 kA power supply of the T08KA facility. The power supplies can be 
isolated from the busbar by separation switches 81 (50 kA) and another one integrated in the POLO switching circuit 
(30 kA). 
The switch 82 separates the power supplies for single mode operation. 
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Fig. 3.4.1-2: The 50 kA bus bars with the separation switches (81, Fig. 3.4.1-1 ~ and 
the power supply in background 
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Fig. 3.4.1-3: The Al busbars at the bound of the TOSKA pit connecting the 30 kA (right) with the 50 kA power supply (left). ln front, 
the vacuum vessel with the water cooled cables and current Iead warm ends during the POLO coil testing. 
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Fig. 3.4.1-4: Basic scheme of the dump circuits used in the TOSKA facility discussed for the TFMC circuit with the 80 kA power 
supply (EV1 I EV2 high current power supplies; RN current limiting resistor; OV overvoltage protection; SN closing 
switch; S1 I 821 S3 arc chute breakers; R dump resistor; L superconducting coil) 
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kA 
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I 
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3.1/3.2 
4.1 
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5.3 
6.2 
7 
8 
9 

10.1/10.2 
11.1/11.2 
12 
13.1/13.2 
14.1 
14.2 
15/16 
17 
18 

Power supply 20 kA, +/- 30 V DC 
(Isolation) switch 25 kA, 50 V 
Breaker 15/12 kA, 3 kV 
Pyristor switch 4.5 kA, 2 kV 
Fuse 200 A, 3 kV AC 
Currcnttransformcr +/- 30 kA (+/- 60 kA) 
Cunent transformer +/- 25 kA (+/- 60 kA) 
Charge/discharge resistor 125 mOhrn, 320 MJ 
Voltage transformer 3 kV (3.2 kV) 
Busbars 20 kA, 6 kV 
High cunent cables (each polarity: 2 x 13.5 kA), 
coo1ed by desalinized water 
Switch 1 kA, 690 V 
Switch 1 kA, 1 kV 
Overvo1tage protection 900 V, 1 kA for 1 sec 
Switch 1 kA, 1 kV 
Earlhing relay 
Earthing connector 1 kA, 6 sec 
Earthing resistor 2 Olun, 20 MJ 
Limitation resistor 1 - 9 mOlun, 15 MJ 
Earlhing connector 1 kA, 6 sec 

Fig. 3.4.2-1: Dump circuit of the LCT coil test designed for dumping 300 MJ with a peak power of about 50 MW 
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Poworsupply (+/· 30 kA, +/· 30 V DC) 
Power supply (+50 kA, +I· 30 V DC) 
5wi1Ch (10 kA for 2 sec) 
Breakcr (octive as I. 5hort..:ircuit path: 10 kA for 2 sec, I kV) 
Fast dosing switch (10 kA for 2 ICC) 
Voltoaelrwllfonncr (+/· I kV DC) 
Currentlransfonnen (eod! for +/· 80 kA DC) 
Dump raillor (6.7 mO, 100 MJ) 
Groondins raistor (500 mO, 5 MJ) 
GToundios switcb (1.2 kA, 600 V) 
Gnxmdina relay (100 A, 15 kV, I kA minimum for I RC) 
Isolation swilch (80 kA for 2 sec, 10 kV) 
Brcskcr likc 32.1/32.2 (ac:tive as 2. 5hort-circuil path) 
(orisinally forcsccn as: I. Dooble redurxlancy for commulalion 

2. src proiOclion ofisolation swilehes 511/512, 52.1/522) 

5NI/ 5N2, 51.1/51.2 Short-circui~ns switches I kA, I kV 
RN, 57 Limilalion raislon (RN: 22.95 mO, 57: 13.1 mO) 
SREO, SI Grounding coanectors 
SO Hish cumnt sepantion switch (35 kA, 3 kV) 
50.2 Breaker (10 kA for 2 sec, I kV) 
STI/ 5TI Isolation switch (30 kA, 24 kV) 
52.1/52.2 Scpantionllsolatioo swilch (50 kA, 1.5 kV) 
21.1/21.2 Disconncclor forsingle opentioo oflhe Powersupplics(30 kA, t.HV) 

Fig. 3.4.3-1: Technical version of the TFMC dump circuit described already in 
scheme in Fig. 3.4.1-4 
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Fig. 3.4.4.1-1: The POLO switching circuit with a counteracting current switch 
for generating the high valtage loading across the TFMC 
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Simplified circuit for the HV discharge with center grounding and 
a +1- voltage across the coil terminals 
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Fig. 3.4.4.1-3: Simplified circuit for pulse valtage tests with center grounding and +1-
voltage across the terminals. A simplified network of the TFMC is 
indicated. 
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The ideal voltage distribution across the TFMC if the shear plate potential is connected to the high field joint 
across a current limiting resistor. 
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Fig. 3.4.4.2.1-1: High frequency test with dummy Ioad representing the 
impedance of the coil 
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Normal operating mode arrangement of ITER TFMC with direct 
connection of the radial plates to the inner pancake joints across 
fuses 

' 
layer 

grounded case 

radial plate 

_____ warm vacuum 
vessel feedthrough 

1 .2 Mn resistor 

.. ----' 

Normal operating mode arrangement of the ITER TFMC with 
connection of the radial plates to the inner pancake joints across 
resistors 
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' -----------------------------------------------' 

Fig. 3.4.4.2.1-4: Arrangement of the ITER TFMC with directly grounded radial plates 
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Fig. 3.4.5-1 : Circuit for testing of the parallel operation of the 30 kA and 50 kA power supply with the POLO coil and the POLO 
dump circuit (R: resistors, S: switches, 1: current transformers, L: POLO coil, E: pyro-breaker) 
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Fig. 3.4~5-2: The current of the 30 kA as weil as the 50 kA power supply and the valtage du ring ramping up of the POLO coil 
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Fig. 3.4.5-3: Valtage and current traces in the dump circuit during a dump triggered 
by a fault in the 50 kApower supply. The traces show the shifting of the 
sum current INao to the 30 kApower supply until the short circuit branch 
S 1, 82 closes. 
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Fig. 3.4.5-4: Voltage and current traces during a safety discharge using the 80 kApower supply and the 80 kA dump circuit 
released by manual triggering. (EIN30: Voltage of the 80 kApower supply; CIN30: Current of the 30 kA power supply; 
CINSO: Current of the 50 kApower supply; CIRSO: Current through the dump resistor; CIS180: Current through the 
fast closing short circuit path; CIS280: Current through the slow closing short circuit path. 
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Fig. 3.4.5-5: Voltaga and current traces during a safety discharge using the 80 kA power supply and the 80 kA dump circuit 
released by switch oft of the 50 kA power supply. (EIN30: Voltaga of the 80 kA power supply; CIN30: Current of the 30 
kApower supply; CIN50: Current of the 50 kApower supply; CIR80: Current through the dump resistor; CIS180: 
Current through the fast closing short circuit path; CIS280: Current through the slow closing short circuit path 
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J\~c·p~nc~ test ·of so kA s~tching :circuit 
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Fig. 3.4.5-6: Voltage and current traces du ring a safety discharge using the 80 kA power supply and the 80 kA dump circuit 
released by switch oft of the 30 kA power supply. (EIN30: Voltaga of the 80 kA power supply; CIN30: Current of the 30 
kApower supply; CINSO: Current of the 50 kApower supply; CIR80: Current through the dump resistor; CIS180: 
Current through the fast closing short circuit path; CIS280: Current through the slow closing short circuit path 
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Figure 3.4.7-1 Circuit diagram of the 80 kAPower System with W7-0H coil. 
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Figure 3.4.7-2 DC Equivalent model of the 30 kApower supply 



(91----+1~ I T 

Clock To Workspace2 

30kAPower 
suppty 

Load Reference 

Currenl ConlroQer 

50 kAPower 
Supply 

Fl2 

- 115-

file: D:-/psb/tfmc/model/'01/tfmcps6.mdl 

11 

II (y),l2 (rn) 

IL 

SUbsystem3 

PSB Model for the 80kA power system wlth TFMC Ioad (Hmcps6) 

Double click on the More Info button (?) for details 

[J 
MOJelnfo 

Figure 3.4.7-3 PSB model for the 80 kApower system (overview) 

aoKADump 
Clrcuft 

SUb"'f5lerll4 



- 116-

-11fmcps6, Sub. 4:80 kA Dump Clrcuit • 

136E·6 248-6 

Z39 

Z45 

ToMs3 

R=6.7e-3 

64E-6 11e-6 

12e-6 12e-6 

TS22 

Z67 

2 

s1.1 ~ e 

- "' 

0.5 

2 

TS21 

Figure 3.4.7-4 PSB model for the 80 kA dump circuit 
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Figure 3.4.7-13 TFMC simulated safety discharge at 80 kA. Case 2: only fast 

crowbar activated. 
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3.5 Measuring, control and data acquisition 

3.5.1 General description, overview [3.5.1-1] 

Every component of the TOSKA facility is equipped with an adequate 

instrumentation for measuring and control in order to oparate the facility in 

standby mode without attendance. This part of the TOSKA facility was 

completely modernized after the completion of the POLO Project 1995. 

While the measuring and control of the power supplies has to be considered 

as a "black box", those ones of the cryotechnique and of the electrical safety 

discharge circuits as weil as their interaction have to be optimized during 

operation. This work was a collaboration with industry, experts from the 

HPE/FZK and the ITP. 

The sensors of the cryogenic system are the same types used for the 

superconducting coil or vice versa. Most of them have no linear 

characteristic over the whole temperature range from 1 .8 K to 300 K. The 

digitized measuring values have to be converted by the sensor characteristic 

in the dedicated computer . system to engineering units. Same of the 

thermohydraulic quantities, e.g., the mass flow of helium gas, heating power, 

have to be calculated from other measured values (differential pressure, 

pressure, temperature). Some of the sensors (voltage taps, temperature) are 

at high valtage potential and have to be linked to the common signal 

conditioning by special developed isolation amplifier. The data of the sensors 

described are fed into the system every 5 s by computers (rtVAX 300 - 1, 2, 

3), pogrammable logic controllers (PLC) and scanners (Fig. 3.5.1-1 ). 

The facility is controlled by PLC's which communicate with the master 

system. Operators can follow the status of the facility on work stations (e.g., 

VAX-Station 4090) and can handle the facility by display and mause click. 

The facility is handlad by an emergency unit in case of a breakdown of the 

computer system or the local area network. 

The cryogenic system of the TOSKA facility communicates with the process 

system TELEPERM of the 2 kW refrigerator. The PLC of the safety 

discharge circuits and the power supplies is only in operation during magnet 

testing. The transient data acquisition is only triggered by certain events e.g., 
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a safety discharge, heater pulses etc. For special measurements, certain 

sensors have to be summarized in a group which can be triggered to a 

certain event independently from the safety discharge. All measured data 

are stored in the data base ORACLE in engineering units. They are available 

for evaluation by PCs. 

The TOSKA facility is operated in two shifts during an experiment. Overnight 

and on weekends, the facility is in unattended standby mode. 

The measuring and control system as weil as the data acquisition system 

was successfully tested in its basic components at the 1.8 K test of the LCT 

coil [3.5.1-2] and the test of the W 7-X prototype coil [3.5.1-3]. lt has tobe 

rearranged each time for the special requirements of the test objects. 

3.5.2 Control system 

The control engineering of the cryogenic system is realized by means of two 

PLC's (S5-135, Siemens) and conventional hardware controller (DR22, 

Siemens) (Fig. 3.5.1-1, system 2). One PLC handles the infrastructure 

system (cryogenic supply, vacuum, etc.), the other one controls the test 

magnets (LCT-coil and TFMC). The number of PLC channels are given in 

T able 3.5.2-1 . The number of transducers and controllers for the TFMC are 

summarized in Table 3.5.2.2-2. The usual operation is done by a 

visualization system (section 3.5.6). This system is connected by means of a 

third PLC (data concentrator). The alarm handling is executed on the Ievei of 

the individual PLC. ln case of failure of components like the data 

concentrator, the visualization system or the bus connection, the system can 

still be operated at reduced performance by an emergency operation panel. 

The fail-safe conditions are realized by hardwired pressure switches. The 

basic Iayout is shown in Fig. 3.5.2-1 and Fig 3.5.2-2. 
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Table 3.5.2-1: Number of PLC-channels 

No. of channels lnfrastructure Test PLC- LCT Test PLC-
PLC TFMC 

Digital - Input 192 64 128 

Digital - Output 160 96 128 

Analog -Input 96 64 88 

Analog - Output 24 16 32 

The scan rate of each individual PLC is lower then 1 00 ms. Therefore the 

responsetime in case of alarms is in the range of 200ms. 

Table 3.5.2-2: Number of transducer and controller for TFMC 

Transducer, controller Number foreseen for TFMC 

Differential pressure 20 

Pressure 20 

Mass flow 2 

Controller 15 

The number of temperature measurements is described in section 3.5.4. 
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3.5.3 Quench detection system 

Each pancake is equipped with his own quench detector. To get 

redundancy, each detector is doubled (Fig. 3.5.3-1 ). The detector watches 

the resistive valtage drop of the pancake by valtage taps applied as co

wound tapes. The analytic circuit contents clipper, RC-Iow pass filter, 

comparator and output stage with galvanic isolation. Output is a (normally 

closed) relay contact. Additionally the input circuit sends a DC current (0.8 

J.IA to 0.8 mA, depending on the selected threshold) through the valtage tap 

to indicate a wire break [3.5.3-1]. The whole device is made in fail save 

performance. A quench, a wire break or a failure of one component of the 

electronic of the quench detector initiates a dump. The threshold and time 

constant are selected in fixed steps. 

Threshold steps: 1-2-5-1 0-20-50-1 00-200-500-1 000 m V. 

Time constant (delay) steps: 0.01-0.02-0.05-0.1-0.02-0.05-1-2-5-10 S 

Isolation voltage: 20 kV, 

Supply voltage: 230 V AC. 

3.5.4 Slow scanning system 

The slow scanning system is divided in different subsystems in accordance 

to the specific requirements of signal conditioning and characteristics of the 

sensors [3.5.1.-1]. Due to the hardware components, each subsystem has a 

different operation software. The data transfer to the on line data base is 

done by inter-process communication (IPC). 

3.5.4.1 CAMAC subsystem 

All temperature sensors as platinum resistors, carbon resistors, carbonglas 

resistors, Cernox resistors [3.5.4.1-1] and TVO resistors [3.5.4.1-2] are 

sampled at three CAMAC Grates. An intelligent controller sends the raw data 

into the archives and performs the calculation of the engineering units and 

transfer to the data base. Depending of the sensor types, the signals are 
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routed to the specific crate. All sensorsbelanging to the facility and LCT coil 

are routed to CAMAC Grate 1 and 2. The main part of the TFMC 

temperature sensors are associated in CAMAC crate 3. ln order to keep the 

heating power less than 1 JJW, the current supplies of the sensors are 

adjusted by computer control. On line data are available every 2 seconds. 

The present design of the CAMAC system is able to handle 360 temperature 

sensors: 120 channels platinum resistors, 1 05 channels carbon resistors, 45 

channels carbonglas resistors and 90 channels TVO/CERNOX resistors. 

For diagnostic and control of the facility and the LCT coil, 80 channels of Pt 

resistors, 1 00 channels of carbon resistors and 30 channels of carbonglas 

resistors arealready occupied (total21 0). 

150 channels are still available. The scanning rate is 0.5 Hz. 

Required for testing the TFMC, 75 channels are needed, distributed to 55 

TVO/CERNOX sensors and 20 Pt sensors [3.5.4.1-3]. 

3.5.4.2 Hottinger subsystem 

All strain gauge based sensors as weil as DC-signals are assigned to three 

Hottinger devices with 60 channels each, which are scanned in parallel. Out 

of the 180 channels, 70 channels are used for sensors applied at the LCT 

coil. Sampling of the raw data and calculation of the engineering units are 

done by a personal computer. On line data are available every 5 seconds. 

11 0 channels are still available. The scanning rate 0.2 Hz 

Planned for TFMC test [3.5.4.1-3]:.86 channel; Requested: 95 

distributed to strain gaugetype (half bridge) 

strain gauge type (rosettes) 

DC valtage sensors 

3.5.4.3 Programmable logical controller (PLC): 

34 sensors 

11 sensors 

28 channel 

All sensors which are related to cryogenic control as pressure, differential 

pressure, Ievei indicator, valve control and positioner, heater etc. are 
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assigned to different PLCs. Control and protection of the test facility as weil 

as sampling of the raw data and transfer to engineering units are realized 

with this subsystem. This is already described in detail in section 3.5.2 

3.5.5 Fast scanning system 

For acquiring of transient events like safety discharge, stability 

measurements, representative sensors are allocated to the transient 

recorder. The recorder are placed in three CAMAC crates with 16 modules 

and four channels each. Triggering of transient events can be done 

independently for each crate. The sampling rate and storage depth must be 

set in advance. The sampling frequency can be set in discrete steps as 

1, 10,100 Hz, 1, 10, 50,100,500, 1000kHz. 

Three blocks of 64 channels each (192 channels in total) with 64 k storage 

depth. 

Sampling frequency: 1 Hz up to 1 MHz 

Trigger: Each block independently 

3.5.6 High valtage signal conditioning 

Most of the transient signals are at high valtage potential. Therefore, special 

signal routings are necessary to the isolated amplifiers. The signal 

conditioning of such signals requires particular attention. The LCT coil 

related high valtage signal conditioning of the compensated voltages 

remained as it was du ring the domestic test at 1984 [3.5.6-1 ]. 

The present signal routing and signal conditioning for the TFMC test cover 

all requirements about diagnostic and protection. The valtage taps 

connected to the TFMC winding and their patehing are presented in Fig. 

3.5.6-1 and Fig. 3.5.6-2. Each high valtage instrumentation cable at the 

potential of the inner joints (high field joint) or of the shear disks is routed to 

a HV patehing box in the vacuum vessel area (Fig. 3.5.6-1 ). ln this type of 

patch box the connection between shear disk and inner joint potential is 

performed across a resistor or a fuse for normal current operation (Fig. 

3.4.4.1-4). This connection has to be separated for partial discharge 
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measurements as described in section 3.4.6. From these patch boxes, the 

cables are routed to the HV cabin. ln a secend type of HV patch boxes the 

cables are patched to the individual isolation amplifiers for each channel 

(Fig. 3.5.4-2). Voltage taps which are used for measuring the voltage drop 

across pancakes run across a fuse boxes to avoid darnage to the 

instrumentation cables in case of a short at the amplifier side. 

For signal conditioning the following components are needed: 

Patch panel : 

High voltage fuse : 

lsolated amplifier: 

Quench detector 

16 boxes 

6 boxes 

57 modules 

24 modules 

3.5. 7 Fast scanning system (transient data acquisition ) 

For acquiring of transient events like safety discharge, stability measure

ments, representative sensors are allocated to the transient recorder (Fig. 

3.5.1-1 , system 4). The recorder are placed in three CA MAC crates with 16 

modules and four channels each. Triggering of transient events can be done 

independently for each crate. The sampling rate and storage depth must be 

set in advance. 

Three blocks of 64 channels each 

Sampling frequency 

Trigger: 

64 k storage depth 

1 Hz up to 1 MHz 

Each bleck independently 
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3.5.8 Operationsystemsand software used [3.5.1-1] 

VXL was selected as control system running under Open VMS on VAX 

stations as weil as on Alpha platforms. 

RTDB, VXL's Real-Time Data Base using ORACLE RdB, is a database 

management system especially developed for data retrieval in a real-time 

environment. The tables of ORACLE RTDB, VXL's Real-Time Database 

using RdB contain all the information needed to describe graphical objects 

on a screen or sub window and are accessible by the application 

programmer. Using VXL ACCESS, a library of database access routines, a 

programmer can write custom application programs to run concurrently and 

to exchange data with subsystems. The data flow into and out of RTDB is 

shown in Fig. 3.5.8-1 . Except for the transient recorded data all subsystems 

data are stored in RTDB from which they are accessed and periodically 

recorded. 

VXL provides utilities to set up the data blocks and data types used in the 

PLCs data concentrator. About 22 data blocks are defined, each holding 256 

16-bit unsigned integer words for digital and analogaus input-output-data. 

The above mentioned data blocks are dedicated in VXL to an external data 

source. A set of the incoming data is taken to execute calculations, 

visualization, alarm and event handling. 

VXL has integrated the powerful graphical editor DATA VIEWS which allows 

to design the users interface to the process and windows to display and 

monitor process data. To control and visualize all the operations in the 

TOSKA facility, about 40 high resolution (1280 X 1 024) windows and 25 sub 

windows are available to the operator. 

The engineering unit data collected by the VXL real time database (RTDB) 

are recorded periodically into the relational ORACLE database by the 

archives server. After a session, recorded data may be concentrated to save 

hard disk space by requesting to delete any recorded data of a user

specified time period except, e.g., one value per hour. 

For visualization of recorded data, the scientific data analysis software 

package ORIGIN is coupled to the graphical database user interface 
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ORACLE Forms via ODE, a standardized interface to transfer data between 

MS Windows applications. 

To reduce transmission time, the user may choose a time interval and 

specify to see, e.g., only one value per 20 minutes for a quick Iook at the 

data. 

ln addition, to periodically recording physical data, transient data are also 

stored in the ORACLE database. For visualization, similar tools are available 

to the one described above. 

3.5.9 Impact of magnetic fringe fields 

One goal of the second test of the TOSKA facility with the LCT coil was to 

investigate the impact of magnetic fringe fields on installed electrical 

equipment as the control units for the 30 kA power supply, operation of the 

POLO dump circuit, programmable logic controllers (PLC) and intelligent 

controllers up to the highest possible field Ievei [3.5.9-1 ],[3.5.9-2). 

The last test showed that compact arrangement of different components in 

the experimental area are influenced by magnetic fringe fields. 

Measurements of the fringe fields at certain positions allow scaling to future 

tests (Tab. 5.9-1). The operation of the LCT coil at 19 kA corresponds to 65 

% of the Ampereturns of the TF model coil configuration. Fig. 3.5.9-1 shows 

the fringe field Ieveis in the basement where the 30 kA power supply and the 

POLO switching circuit are located. Fig. 3.5.9-2 shows the fringe field Ievei in 

the control room. 

The operation of the POLO switching circuit and the 30 kA power supply 

which will be later used also in the TFMC test were tested in relevant fringe 

field Ieveis with a resistive coil. Safety and high valtage discharge mode of 

the POLO circuit were tested up to 3.3 MA turn in the LCT coil and worked 

weil. The fringe field of 1.0 MA turn is required for transient TFMC testing. 

ln getting some experience for the 80 kA TFMC dump circuit the safety 

discharge mode of the POLO switching circuit was investigated up to the 

maximum background field generated by 11.2 MA turns. lt was found that 
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the control unit of the POLO dump circuit showed disturbances at about 7.6 

MA turns which corresponds to local field Ieveis of about 3 mT in the control 

unit. lt was found out that the malfunction of Reed relays blocked the control 

loops. After overcoming the problern by changing the orientation of the 

relays the control unit of the dump circuit worked up to 11 .2 MA turns LCT 

coil excitation. At these Ampere turns the background field Ievei at the DC 

arc chute breaker was about 25 mT. No impactwas observed on the breaker 

operation. 

Another problern arose at the power supply current transformer (Type Foeldi, 

Switzerland, ± 30 kA) which showed saturation effects at about 1 0 MA turns 

LCT coil excitation corresponding to a field Ievei of about 5 mT. An iron plate 

screening brought a screening of about 0.5 so that the power supply and 

dump circuit worked weil up to the maximum possible 11 .2 MA turns. 

lncreasing current Ieveis at the test of the W 7-X prototype coil led again to 

saturation effects in the current transformer core. Some experiments showed 

that the saturation effect cannot be mastered by screening because the 

superimposed field Ieveis (busbar field + fringing field) are too high. 

Presently it is investigated to perform the current measurement by a shunt 

resistor or a LEM current transformer which is less sensitive against 

superimposed magnetic fields. ln both cases the accuracy of the current 

measurement is reduced from about 1 o-4 to 1 o-3• This is acceptable 

compared to the operation disturbance of the electrical supply system. 

A PLC was tested with a special test routine. The main parts of the PLC 

(CPU, CP, 1/0-components) where tested in a stray field up to 22 mT. No 

malfunction was observed up to 17 mT. The conditions during operation will 

be in the range of 1.5 mT to 1.8 mT. 

ln case of testing the TFMC, this Ievei will increase nearly by a factor of two. 

A centrifugal pump for He 1111 operation (dm/dt = 60 g/s at 200 rev/s) was 

tested during ramp up, flat top at 19 kA and ramp down. No impact on mass 

flow rate was observed. The fringe field at the pump location was in the 

range of 6 mT. 
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Summarizing the gained experience, the most critical items are air core 

driven relays and elements with soft magnetic cores. The impact is strongly 

dependent on the magnetic field direction at the location of the elements. 

The following guide lines can be given: 

Air core driven relays have to be avoided in control circuits to exposed 

magnetic fringe fields. 

Control units have tobe located in areas with fringe field Ieveis < 2 mT. 

Screening by iron shields is applicable for units with locations already fixed 

and not changeable. The effectiveness of the screening have to be checked 

every at the real operation field Ievei. 

Table 3.5.9-1: Testarrangements in the TOSKA vacuum vessel 
The table allows a scaling of the magnetic fringe fields in the experimental area of 
TOSKA for the different test configurations. The fringe field is in a first approximation 
direct proportional to the number of Ampere turns. 
Coil axes perpendicular to vacuum vessel axes: perp. 
Coil axes parallel to vacuum vessel axes: par. 

Coil Configuration Conductor Current Ampere Turns Position 

[kA] [MPa] 

LCT 10.0 5.88 perp. 

LCT 19.0 11.2 perp. 

POLO 15.0 0.84 par. 

POLO 22.5 1.25 par. 

LCT + W7-X LCT (14) + W7-X (18.7) 11.0 perp. 

LCT + ITER TF LCT (16) + ITER TF (80.0) 17.2 perp. 

ITERTF 80 3.2 perp. 

ITERTF 25 1.0 perp. 

3.5.1 0. References 

[3.5.1-1] A. Augenstein, H. Barthel, I. Donner, H. Frankrene at al., A data 
acquisition, control and visualization system for the upgraded TOSKA 
facility at FZK, Proc. 1 gth SOFT, Sept. 16-20, Lisbon, Portugal 



- 134-

[3.5.1-2] M. Darweschsad, G. Dittrich, A. Grünhagen et al., Operation of the 
Upgraded TOSKA Facility and Test Results of the EU-LCT Coil Cooled 
with Forced Flow Helium II at Supercritical Pressure, Proc. Ufh SOFT, 
Sept. 16-20, Lisbon, Portugal 

[3.5.1-3] R. Heller, W. Maurer, A. Ulbricht, I. Schoenwolf, F. Wüchner, G. Zahn, 
Abschlußbericht zum Test der Wendelstein 7-X Demonstrationsspule in 
TOSKA, Wissenschaftliche Berichte, FZKA 6486, Juli 2000 

[3.5.3-1] G. Nöther, S. Gauß, W. Maurer, L. Siewerdt, A. Ulbricht, F. Wüchner, 
Quench detection system of the EURATOM coil for the Large Coil 
Task, Cryogenics, 1989, Vol. 29 December, pp. 1148-1153 

[3.5.4.1-1] J. Spiegel, M. Süßer, Der CERNOX Temperaturfühler, Interna! Raport 
31.03.01/10 A, March 1995 

[3.5.4.1-2] J.Spiegel, M . Süßer, Untersuchungen mit TVO Temperaturfühlern 
Interna! Raport F 130 0013.012 A. June 1997 

[3.5.4.1-3] Faclitiy description and interface document of the TOSKA facility, 5. 
draft, Forschungszentrum Karlsruhe, Institut für Technische Physik, 
July 24, 1995 

[3.5.6-1] W. Herz, H. Katheder, H. Krauth, Nöther G. et al., Results of the test of 
the European LCT coil in the TOSKA facility. ASC, San Diego, Calif. 
September 9-13, 1984, Proc. IEEE Trans. Act. on Mag., MAG-21 
(1985) s. 249-52 

[3.5.8-1] J. Zimmermann, A. Ulbricht, F. Wüchner, Streufelder beim Betrieb der 
LCT-Spule, Forschungszentrum Karlsruhe, Interner Bericht 
F130.0016.012/G, Juli 1997 

[3.5.7-2] J. Zimmermann, M. Süßer, F. Wüchner., Test einer Siemens Simatic 
S5-135 im statischen Magnetfeld, Forschungszentrum Karlsruhe, 
Interner Bericht F.130.0016.012/H, August 1997 



PO 
D 

REFRIGERATOR 
500 I 2000W 

CONTROL SYSTEM 

TELEPERM 

I 

PLC 
S5-155U 
DATACONC. 

I 
CS275· BUS 

SUBSYSTEM 1 

TEMPERATURE 

rtVAX300- 3 
TFMCCOIL 

~ 

rtVAX 300-2 
LCTCOIL 

SUBSYSTEM 4 
rtVAX 300- 1 

INFRASTRUCTURE TRANSIENT DAT A 
PROGRAMMABLE LOGIC SAMPLING RATE TO 1 MHz 

CONTROLLER (PLC) 
rtVAX300- 6 

SUBSYSTEM 2 

DR22 CONTROLLER 

<=3 

<=3 
1 

D 1 

R D 2 R 
"'":- 2 2 

#2 ~ 2 
#1 

...... 

SUBSYSTEM 3 

HOTTINGER 

MULTIPLEXER 

I UPM 60.3 

UGR 60.2 

UGR 60.1 

FIBER I WER SUPPLY OPTIC TRIGGER GROUP 3 
JMPSYSTEM CRYOGENIC COMPONENTS ~ 

I 
I 

rtVAX300- 5 
TRIGGER GROUP 2 

PLC PLC PLC PLC I XYPLEX 
SS-135U SS-135U SS-155U SS-13SU rtVAX 300-4 l TERMINAL SERVER 

3 2 1 DATACONC. TRIGGER GROUP 1 

BRIDGE 
FZK·LAN 

TOSKA ETHERNET SEGMENT 
I 

I I I I I 

r--. ,_ ~ 
VAX-STATION ALPHA-STATION PC- OS I 2 

4090 250 
VISUALIZATION AND DA TABASE SERVER WOMISA SERVER 

CONTROL DA TABASE "ORACLE" SYSTEMS 2/3 

USER INTERFACE TO 
DATABASE, VISUALIZATION AND CONTROL 

Fig. 3.5.1-1: The data acquisition system of the TOSKA facility. All components of the system communicate across the TOSKA 
Ethernet segment. 

I 

__. 
Ul 
01 



-136-

Visualisation 

Process 

Fig. 3.5.2-1: The basic Iayout of the communication paths 

Operation 

I 

I 
I 

I 
I 

I 
I 

___ j 

Reduced 
operation 
in case of 
failure 



MELDEANLAGE 

1nr 

I • ~ • 

2 

WAATE 
MOSAIK 
NOTBEDIENEIE HE 

-137-

-t~i
,-+ ~~~ ~-u-.,...,..,. ~ITAilALOOIII. 

-rTr TTT____ -- -----

(J.~J. 2 ! 1 2 1 IZJ~~ ..J :,r,:_ 

Fig. 3.5.2-2: The connection of the programmable controllers (PLC) to the bus SINEC H1 

Lll'iCE II:AL tfi,-NLAGE lOOGW 

TELEPERM M CD 
46#.F,J 



n 
1-l 

§]~---

.l..f 
u 
... H 

rLf 
J 

·H 

rLf 
J 

·H· 

rLf 
u 
I.. H 

rLf 
8 u 
QCWij 

I 
PC1 

J J 
SP 

l l 
PC2 

J 

l PC3 
Jl 

SP 

l I 
PC4 

J 

PC5 l 
J I 

SP 

I I 
PC6 _l 

PC7 L 
J I 

SP 

I I 
PC8 J 

I 
PC9 

J I 
SP 

L I 
PC10 

J 

Winding 
Cowound tape 

J 

-

-
r 

J 

-
r 

Jr 

-r 

Jr 

-
-

-= 

r 

-138-

QCW11 

QCW12 

QCW21 

QCW22 

QCW31 

QCW32 I--

QCW41 f---

QCW42 r---

c 
QCW51 r--

~ 
QCW52 

>1 -
J 

-

QCW61 

QCW62 ~ ~ 

QCW71 
,_ 

QCW72 r---

QCW81 I--

QCW82 

QCW91 

QCW92 

QCW101 

QCW102 

SP - Shear plate 
SPi Shear plate voltage tap 

ltPE 21:10 ' l_I.Ja 
1 30 pm. 18 Feh,\Ja' 1999 

Fig. 3.5.3-1 : The quench detection scheme of the TFMC 



8 
Jij 

QCWij 

rl 
Tl 

r4 
ll 

-H 

r4 
u 
.... H 

r4 
u 
-H 

rif 
u 
~ H 

r4 
~u 

I 
1 I 

PC1 r I 
SP 

PC2 
-1 I 
I 

I 

I I 
PC3 r I 
SP 

I l 
PC4 r 

I 
1 I 

PC5 
I I 

SP 

I I 
PC6 r 

I 
I I 

PC7 r r 
SP 

I I 
PCB r 

I 
l 1 

PC9 
I I 

SP 

l I 
PC10 I 

Winding 
Joint 
Cowound tape 

r 

r 

" r 

1-1 

h r 

1-1 
.J 

.J 

r 

.Jr 

'I r 

h 
.Jr 

.J 

r 

h r 

r, 
.Jr 

.Jr 

.Jr 

h 

1-1 
r 

.J 

-139-

tank area 

'Pc1' 
HV patch1ng box 

QCW11 

QCW12 

SP1 HS·RV 2.1 ~ 
J12a 
J12b 

QCW21 

QCW22 

'PC3' 

lL QCW31 

QCW32 

SP2 HS·RV 3.1 ~ 
J34a 
J34b r QCW41 

QCW42 

r;;c51 

lL QCW51 

QCW52 

SP3 HS·RV 4.1 ~ 
J56a 
J56b r QCW61 

QCW62 

'PC7' 

lL QCW71 

QCW72 

SP4 HS·RV 5.1 ~ 
J78a 
J78b r QCW81 

QCW82 

'PC9' 

lL QCW91 

QCW92 

~ HS-RV 6.1 ~ 
J910a 
J910b r QCW101 

QCW102 

PCi Pancake voltage 

SP - Shear plate 
SPi Shear plate valtage tap 

ltPI~ :•f\011'10 :1 
1 30 prn. Ht I eb1urtr I!EW 

Fig. 3.5.6-1 Patehing scheme of the sensors at high potential 



I HV cabine J isolated amplilier 

- 140-
1x tzxz~ 1 xEDS 

L1 I 
~tzxz~ 2XQD uj I HV cablne 

I 
HV cabine 

HV patch1ng box HV luse box 
4x !2X2U 4xEK 

•• 500. _;_! J I 500mV 

HS-RV 1.3 ~ 12
x

21 11 xEDI L1/L2 I 
HS-SB 1 L 

_d~ (2X2~ 2xQD L2 J PC 1 

- J 4X 12xztj 4XEK 
... 500~~ I HS·RV 2.2 

PC 1/2 t-- I 

~ 

HS-SB 2 J ~~ 12x2111 xEDS L2/L3 J 
L PC 213 

.d_X (2X21~ 2XQD 
L3 I 

:i_X !2X2tj 2xEK ~~J _j l ..... v - HS-RV 3.2 
I IX (zxz~ 1 xEDI PC3/4 t-- L3/L4 J 

~ 

HS-SB 3 

~! (2X2~ 2xQD L4 J 
PC4/5 _.d_X !2X2tj 2XEK L4 I L 

l 500mV 
500mV 

- HS-RV 4.2 • • • 
tx !2XZ~ 1 XEDS L4/L5 J 

PCS/6 
~ 

HS-SB 4 1x (zxz~ 1 xEDS L6/L7 J L 

PC 6f7 

- HS-RV 5.2 • • • 
PC7/8 r---

HS-SB 5 lx (zxz~ 1 xEDS L8/L9 J ~L 
PC8/9 

:1_X (2X2)12xQ0 
L9 J HS-RV 6.2 I ~ 12xzd 2xEK 

PC 9/10 j....__., 
L9 J HS-SB 6 I 50<>nV 

500mV 
L PC 10 

HS-RV 7.3 
~~ 12x2111 xEDI L9/L10 J 

8 _dX t2X2~ 2XQD L10 J 
_:E 12xztj 2xEK ~m~ J I ..... V 

IX {2xz'11 xEDS uoj 
Fig. 3.5.6-2 : Routing of the signals to the isolation amplifiers 



160CHANNELS 
TRANSIENT DATA TEMPERATURES 

10Hz to 1 MHZ 

CA MAC CA MAC 
rtVAX I VAXein rtVAX I VAXein 
JOBITPRTt.SYS JOBITPRTz.SYS 

VXL 

< :::::::=-
...._____ ORACLE 1--

DATA 
- BASE r--

ORACLE- FORMS 

I D L ORIGIN 

I I 

j& • X-TERMINALS PCs 

- 141 -

TELEPERM PRESSURE DISPLACEMENT 

Data DIFF.- PRESSURE VOLTAGE 

Concentrator TEMPERATURE VOLTAGE- DIFF. 
LEVEL FORCE 

t 
PLC- 55 DR22 HOTTINGER 

Data CONTROLLER 
SCANNING 

Concentrator SYSTEM 

'I' 

REAL TIME DATA BASE 

VXL 
CONTROL VISUALIZATION 

I 

•••• X- TERMINALS AND PCs 

SUB-
~SYSTEMS 

WAS 
WEB APPLICATION SERVER 

I 
~ 
~ 

ITER- PARTICIPANTS 

Fig. 3.5.8-1: Software configuration for the operation of the measuring and control of the TOSKA facility 



.... 
~ .... 
'tl 

:! 

B 

q, 
,._ro• 
' 

Stray field 
!'~ ,._'}- ,.P< ".~ .. t 

!' ~ ;~ 

experimentell area • basement 
( length statement ln meter, ( 0,0 ) = plt center) 

~ 

east 

-142-

.,.t 
q,t'. ,._",'J-

~~ 

"~ ~ ,._ro• 

'6' 
·~d' 

~., 

'I' 

~~ 
<:-0 

Fig. 3.5.9-1: Measured fringe field Ieveis in the basement of the TOSKA facility. The field Ievei of the PLC test position is indicated 

by a grey beam 



-143-

3 

.... 2,5 
t-
E 2 ..... 
"0 -G) 
t;: 
~ 

~ .... 
. t/) 

0,00 
5,60 

11,20 east 

Stray field 
experimentell area , control room 

( length statement in meter, ( 0,0) = pit center) 

Fig. 3.5.9-2: Measured fringe field Ieveis in the control room. The position of the PLC's is indicated. 

4,70 
0,50 

16,50 -4,70 north 





- 145-

3.6 TFMC installation 

3.6.1 Test procedure 

For saving time, the reduction of risk and getting results within the EDA it was 

decided to perform the test of the TFMC in two phases: 

• Phase 1: Test of the TFMC alone by replacing LCT coil by an auxiliary 

structure (Fig. 3.6.1-1 ). 

• Phase 2: Test of the TFMC with the LCT coil 

The assembly of the TFMC and ICS beside the LCT coil including assembly of 

instrumentation and cooling lines have to be performed outside the vacuum 

vessel because the space inside is limited. 

For Phase 1 the TFMC, ICS and auxiliary structure are assembled on the 

gravitational support, all electrical and thermohydraulic terminals have to be at 

the top of the test rig for connection to the facility or routing to the vacuum 

vessel feedthroughs. The configuration (TFMC + ICS + auxiliary structure) is 

lifted by the 80 t crane and the upgraded 65 t LCT cross head into the vacuum 

vessel (Fig. 3.6.1-2) and finally connected to the cryogenic supply system, 

current Ieads and data acquisition system. 

ln Phase 2 the configuration (TFMC + ICS +LCT) is lifted by the 80 t and 50 t 

crane and the 125 t cross head into the vacuum vessel 

The TOSKA coordinate system used for defining the interface dimensions in 

the vacuum vessel are presented in Fig. 3.6.1-3. 

3.6. 2 Installation procedure 

The installation will be performed in the following simplified steps: 

• Delivery of TFMC, ICS and assembly frame (for Ioad distribution on floor < 

1 0 t/m2
) as individual parts (Fig. 3.6.2-1) 

• Uprighting and positioning of the ICS beside the LCT coil and adaptation of 

the ICS to the auxiliary structure and the gravitational support (Fig. 3.6.2-2 

• Placing fiberglass sheets and resin onto the horizontal plates and screw the 

ICS onto the LCT coil during curing of the resin (Fig. 3.6.2-3) 

• Disassemble the ICS and check the contact surface for sufficient contact 

area to the LCT coil case 
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• Assembly the ICS onto the LCT coil assembly frame in horizontal position 

after certain modifications of the frame 

• Installation of the wedges onto the ICS 

• Lifting of the TFMC, using a four chain hanger, into the ICS. 

• Mounting of the upper wedges 

• Alignment of the TFMC in the ICS and fixing of the TFMC for further 

installation steps 

• Phase 1: Installation of the remaining sensors ,e.g., displacement 

transducer between ICS and TFMC as weil as deformation measurements 

across the aperture of the TFMC and ICS (Phase 2: Installation of the 

remaining sensors ,e.g., displacement transducer between ICS and LCT 

coil). 

• Campletion of the piping work of the cooling system 

• Up righting of TFMC and ICS together, using the Iifting gear from the LCT 

coil and additional equipment to support ICS, busbars and HV cables with 

warm feedthrough connectors 

• Place the ICS including TFMC beside the auxiliary structure (Phase 1) 

(LCT coil, phase 2), position and screw it to the auxiliary structure (Phase 

1) (LCT coil, phase 2) and gravitational support 

• Test of all sensor of the whole configuration and HV test of the TFMC 

winding outside the vessel 

• Lifting the complete configuration, using LCT Iifting gear (total mass < 65 t 

or the new Iifting gear for 125 t (total mass > 65 t), into the vacuum vessel 

(Fig. 3.6.2-4). For the Phase 1 configuration (TFMC, ICS, auxiliary 

structure), shorter Iifting rods are needed than for Phase 2 configuration 

(TFMC, ICS, LCT) if the 125 t Iifting gear has to be used (Fig. 3.6.2-5). 

• lnstall the tension rods and fix the configuration inside the vacuum vessel 

• lnstall temporary connections for a vacuum leak test of the TFMC winding, 

TFMC case, ICS, bus bars and auxiliary structure 

• Perform vacuum leak test 

• Connect coil to the cryogenic system and perform the flow test 

• Assembly of the cryostat extension including 80 kA current Ieads for TFMC 

coil and 20 kA current Ieads for Phase 2 with LCT coil 
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• Assembly and insulation of joints of busbarstype I and type II 

• Connection of the current Ieads to the Al busbars of the 80 kA power supply 

(Phase 2 only: and of the LCT coil power supply) 

• Connection to the He supply, recovery and relieve system 

• Route HV and low valtage (LV) cables to the appropriate ports/feed-

throughs 

• Sensor, HV and leak test of the whole configuration inside the vessel 

• Closing the Iid and evacuate the vessel 

• Finalleak test according to the vacuum method 

Detailsare given in [3.6.2-1]. 

3.6.3 Tools for Installation 

The following special tools are necessary: 

• Specific tools for installation and Iifting of the TFMC test configuration are 

needed. The components are conventional constructions and need no 

development. 

• Assembly frame for TFMC and LCT for distributing the 120 t over 12 m2 

(1 0 t/m2
) (delivery of AGAN). 

• Lifting gear to connect the 50 t and 80 t crane, Iift the weight of 125 t and 

allow an adjustment in order to reach an exact vertical position of the test 

configuration for installation into the vacuum vessel (delivery FZK). 

• Gravitational support to connected the test rig with the three feet support on 

the vacuum vessel bottom. The design is presented in Fig. 3.6.3-1. The 

existing tools, e.g., assembly frame and Iifting gear of the LCT coil were 

modified 

3.6.4 References 

[3.6.3-1] K. Bauer, S. Fink, G. Friesinger, W. Herz, A. Kienzler, A. Lingor, I. 

Meyer, E. Specht, M Süßer, A. Ulbricht F. Wüchner, G. Zahn, 

Installation Procedure of the ITER TFMC in the TOSKA facility at 

Forschungszentrum Karlsruhe, unpublished note Forschungszentrum 

Karlsruhe, Institut für Technische Physik, March 2000 
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Fig. 3.6.1-1: The auxiliary structure replacing the LCT coil (Phase 1 test 
configuration) 
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Fig. 3.6.1-2: The configuration (TFMC + ICS + auxiliary structure) is lifted by the 80 t 
crane and the upgraded 65 t cross head into the TOSKA vacuum 
vessel 
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3.7 Concluding remarks 

The basic TOSKA facility as needed for testing of the TFMC was taken into 

operation one year after the conclusion of the POLO project in 1996 I 1997. 

The basic facility consists of: 

• The cryogenic supply system with two refrigerators (2 kW and 0.5 kW) 

including two forced flow circuits (3.5 K 8250 and 1.8 K 81000, lowest 

operation temperature) with helium pumps 

• A measuring and control system as weil as a data acquisition at the state-of

the-art 

• An electrical high current supply system up to 80 kA (Option 1) and tested 

switching circuits with arc chute breakers (Option 2) and a fast counteracting 

current switch (Option 3). 

• A reliable background field generated by the EURATOM LCT coil (Option 2) 

• Overhead cranes with 130 t Iifting capability 

Thesesystems were commissioned and was used in the testing program steps 

of the TOSKA facility. 

There was one further step in the facility preparation programme before the test 

of the TFMC namely : 

• W 7 -X Prototype coil test which was completed September 1999 with the its 

removal from the TOSKA vacuum vessel. 

The components which have made available or to be adapted especially for the 

TFMC testing were: 

• The 80 kA current Ieads (an extension of the 30 kA current Iead 

development). 

Main development problems were solved in 1997. The consequence caused 

by the design change from the horizontal to the vertical installation position 

has been the need of cryostat extensions. 

• The 80 kA dump circuit for the TFMC, the 20 kA power supply for the LCT 

coil and the change over of the 20 kA dump circuit from the 50 kA power 
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supply to the 20 kA power supply. The circuits were commissioned by a 

resistive copper coil up to 10 kA to assure the quality of the control and the 

timing of the switching sequence. 

• Gravitational support and a Iifting gear for the TFMC testing configuration: 

This is a mechanical engineering and construction work which was 

completed in time. 

• A new software configuration for the visualization of the cryogenic supply 

system as weil as measuring and control with data acquisition: 

This was completed. The completion of the WWW access of the data is in 

progress 

The TOSKA facility has been completed for testing the TFMC end of 2000. 

The ICS was delivered in June 2000 and aligned with gravitational support and the 

auxiliary structure. lt was lifted in the TOSKA vacuum vessel for a trial fit to make 

sure that the necessary clearance is available. After that the support surfaces of the 

horizontal plates were matched with the surface of the LCT coil by epoxy resin 

impregnated glass sheets. At the upper and lower pads epoxy cast prints were taken 

for copy milling of the pads. 

The TFMC was delivered January 2001, installad in the ICS, up righted and lifted in 

the vacuum vessel beginning March 2001. ln the frame of the acceptance before the 

final installation a vacuum leak test is of the configuration is performed with 

temporary hydraulic connections for pressurizing the coil by helium. 

The Phase 1, testing of the TFMC without LCT, coil will start in June 2001. The 

testing with LCT coil will be completed in 2002. 
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