Forschungszentrum Karlsruhe Technik und Umwelt

Wissenschaftliche Berichte FZKA 6598

Detailed FE-Analysis of the LCT-coil with Input of Displacements (version Nr. 3) taken from the Global Model of the Configuration with the TFMC

A. Grünhagen

Institut für Medizintechnik und Biophysik Projekt Kernfusion

Juni 2001

Forschungszentrum Karlsruhe

Technik und Umwelt Wissenschaftliche Berichte FZKA 6598

Detailed FE-Analysis of the LCT-coil with input of displacements (version Nr. 2) taken from the global model of the configuration with the TFMC

A. Grünhagen

Institut für Medizintechnik und Biophysik

Projekt Kernfusion

Forschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)

ISSN 0947-8620

Detailierte FE-Analyse der LCT-Spule mit vorgeschriebenen Verschiebungen (Version Nr. 2) aus der globalen Model-Konfiguration zusammen mit der TFMC

Zusammenfassung

Für die Entwicklung von ITER-Magneten ist das Testen einer TF-Modellspule in einer Konfiguration mit der LCT-Spule in der TOSKA-Anlage eine wichtige Vorbereitungsstufe. In diesem Versuchsaufbau muss auch die mechanische Zuverlässigkeit der LCT-Spule gewährleistet sein. Die Festigkeitsberechnungen mit dem Finite-Element-Programm ABAQUS zu dieser Spule zeigen ein unkritisches Verhalten der LCT-Struktur.

Abstract

For the development of ITER magnets, the testing of a TF model coil in the TOSKA facility is an important preliminary step. The test configuration consists of the model coil and the LCT coil. The mechanical reliability of the LCT coil has to be guaranteed in this experiment assembly. The strength calculations of this coil with the finite-element program ABAQUS show an uncritical behaviour of the LCT structure.

	Contents	Page
1.	Introduction	1
2.	Finite Element Analysis	2
	2.1 Objective	2
	2.2 Model Description	5
	2.3 Results	9
3.	Conclusion	44
4.	References	45

1. Introduction

The construction of the **TF** (**T**oroidal **F**ield) model coil is a major item of the R&D program for the **ITER** magnets. The main objectives of the **TF** Model Coil (**TFMC**) are to demonstrate the:

- feasibility of the manufacturing processes
- reliability of the integrated system

Most of the manufacturing processes require testing before use in a full size coil, in particular the joints, the radial plates, the insertion of the conductor into the grooves, heat treatment, transfer, insertion of winding pack into casing. Of course, separate tests will be performed for each item, but the feasibility of the whole concept will only be demonstrated by manufacturing a model including all different features of the coil.

The test of an integrated system is the only way to fully qualify the different techniques used during the manufacture. The extensive test program must be representative concerning the constraints which occur in the real device. Furthermore, the test should be able to evaluate the safety margins of the parameters investigated.

In the test configuration the TFMC is positioned adjacent to the LCT coil under an angle of 4.5 degrees (figures 1 and 2) in the TOSKA facility at the Forschungszentrum Karlsruhe.

2. Finite Element Analysis 2.1 Objective

The assembly of the test configuration consists of the TFMC (winding, casing, and support structure), intercoil structure, and the LCT coil (figures 1 and 2). The magnetic field computed with EFFI /1/ is 9.64 T for a current I=80 kA of the TFMC winding and I=16 kA for the LCT winding. The D-shaped LCT coil produces the magnetic background field for the test with the TFMC. The coil systems in the TOSKA reference coordinate system are subject to an attraction force (out-of-plane) of $F_v=82.6$ MN and an in-plane force of $F_x=14.6$ MN. The intercoil structure connects both coils and provides for the transfer of the in-plane and out-of-plane forces. The attraction forces are transmitted by a set of five horizontal plates inserted between the steel belts of the LCT-coil. Three upper and three lower belts of the original twelve steel belts are removed. From the remaining outer-most lower and upper belt, one inner half belt was removed, too for increasing the thickness of the two outerhorizontal plates. Over the whole width, most two pads positioned at the top and at the bottom of the LCT casing are also utilised for the transmission of these forces. The in-plane forces are transferred by two hooks situated at the outer corners of the LCT casing. Furthermore, the five horizontal plates have hooks resting on the LCT casing side plate. The hooks will also be used for the transmission of the in-plane forces.

The behaviour of the LCT coil in this assembly is of great interest. The calculations of the deformations and the stresses are performed by the Finite Element Method (FEM) with the program system ABAQUS /2/.

Figure 1 - LCT-ITER TF model coil configuration in TOSKA

Figure 2 - Top view of the LCT-ITER TF model coil configuration in TOSKA

2.2 Model Description

For structure analyses of the LCT coil, an existing FE model /3/ was used. A complete FE model with this detailed LCT model has not been developed. Figure 3 shows the FE model of the LCT-coil.

The choice of elements and the material behaviour of the LCT coil are described in detail in the report /3/. The model was meshed with 9546 elements, 13501 nodes, and 40044 degrees of freedom.

The link between the intercoil structure and the LCT casing was simulated with the following boundary conditions shown in figure 4:

- Four nodes $(z_1, z_2, z_3, and z_4)$ at the bottom of the LCT casing are fixed in z-direction
- All other marked nodes simulate the intercoil structure.
 All these nodes are subject to a prescribed displacement
 (Table 1)/5/, which simulates the deformation between
 the LCT and ITER model coil.

The two vertical lines represent the inner contour of the TFMC coil and the five horizontal lines show the z-positions of the horizontal plates of the intercoil structure.

POI	POINT X-DISPLACEN		Y-DISPLACEMENT	Z-DISPLACEMENT
Node Node Node Node	8716 8718 9145 9149 9153	4.58038E-02 1.98461E-01 -1.65899E+00 -1.59202E+00 -1.57121E+00	2.35656E+00 1.23649E+00 5.50886E+00 5.83183E+00 5.96131E+00	-6.51176E-01 3.7858SE-01 1.75246E+00 9.93081E-01 2.82553E-01
Node Node	9166 9170	-1.54797E+00 -1.554797E+00 -1.55419E+00	5.90131E+00 5.97175E+00 5.80503E+00	-4.24133E-01 -1.16437E+00
Node	$12105 \\ 12189 \\ 12244$	-2.51613E+00	-3.09450E-01	-9.79467E-01
Node		-3.31962E+00	-2.44497E-02	3.73359E-01
Node		-5.69166E+00	-6.80944E-01	5.25705E-01
Node	12347	-1.28677E+00	5.78687E+00	1.82285E+00
Node	12380	-6.24956E+00	5.25879E-01	7.66121E-02
Node	12483	-1.25219E+00	6.35782E+00	1.05777E+00
Node	12516	-6.43581E+00	2.54630E-01	-3.98420E-01
Node	12619	-1.21368E+00	6.58032E+00	3.36637E-01
Node	12652	-6.28126E+00	-1.62928E-01	-8.70049E-01
Node	12755	-1.18529E+00	6.59563E+00	-3.86736E-01
Node	12788	-5.75937E+00	-7.02626E-01	-1.31685E+00
Node	12891	-1.16146E+00	6.30406E+00	-1.13817E+00
Node	40853	-4.49085E+00	4.71259E-02	1.38191E-01
node	41853	-4.51/42E+00	-4.358/2E+00	-/.02324E-U1

Table 1

Figure 4 - Boundary conditions in x-, y- and z-direction of the LCT coil

The material behaviour of the **LCT casing** is assumed to be isotropic.

Young's modulus	Е	2.1E+(05 M	Pa	L	
Poisson's ratio	ν	0.3				
0.2 strength	σ2	1050 I	MPa	(4 °	K)

The material behaviour of the **LCT winding** is assumed to be orthotropic and all material data are summarised in Table 2.

critical shear stress τ = 50 MPa

winding radius								
	Young's modulus	R1 front of winding	R2 transition zone	R3 back of winding				
radial	E _r [GPa]	10.0	14.9	2.7				
azimuthal	E ₍ [GPa]	120.0	120.0	120.0				
axial	E _z [GPa]	53.0	53.0	53.0				
	Poisson number							
	ν _{φr}	0.298	0.298	0.298				
	ν _{zφ}	0.126	0.126	0.126				
	v _{rz}	0.145	0.145	0.145				
	G modulus							
	G _{rφ} [GPa]	21.0	21.0	21.0				
	G _{Zφ} [GPa]	26.0	26.0	26.0				
	G _{rz} [GPa]	10.0	10.0	10.0				

Table 2

2.3 Results

The presentations of the results are plotted with ABAQUS-Post /4/. In Fig. 5 the distributions of the von Mises stress are illustrated as discrete filled colour levels in a detail view of the structure. Each coloured contour corresponds to a range bounded by the values indicated on the similarly coloured band within the legend. It is difficult to show the stress distribution on the surface of the LCT casing, because there is not such a great variety of the values. On an average, the stresses amount to approximately $\sigma_v=160$ MPa.

	von Mises stress
casing	[MPa]
	$\sigma_{\mathbf{v}}$
maximum	1208.0

Table 3 - Casing

$\sigma_{0.2}$ = 1050 MPa (4° K)

The maximum equivalent von Mises stress (Table 3) has the value $\sigma_v=1208.0$ MPa and is about 15% higher than the strength $\sigma_{0.2}$. The critical regions occur in the front and back part of the casing (figures 5 and 6). In Fig. 6 the von Mises stresses σ_v (position line G89) of the LCT casing are plotted over the azimuth angle of the casing.

Figure 5 - Contour plot of von Mises stresses in a detail view of the LCT-casing

Figure 7 shows the azimuthal graduation of the structure.

The maximum of the von Mises stresses appears on the position line G89 shown in figures 8 and 9. Two peaks of the stresses σ_v (figures 5 and 6) are found symmetrically at opposite positions at 0.0° (360.0°) (1208.0 MPa) and 182.0° (1056.0 MPa). These stress peaks are very small and represent superelevations of the stress. According to the principle of St. Venant, the stress values taken at a sufficient distance from the peak position (1 to 2 element lengths) decrease to about 600 MPa. The von Mises equivalent stresses σ_v are smaller than the strength $\sigma_{0.2}$ by about a factor of 1.75.

A further stress concentration (figures 5 and 6) appears at the position at 48.3° (682.70 MPa) on the side surface in close proximity to the tower.

Figure 6 - von Mises stresses of the LCT casing over the azimuth angle

Figure 7 - Azimuthal graduation of the LCT casing and description of the position lines

Figure 8 - Cross section of the LCT casing with a description of the position lines

The maximum shear stresses of the LCT winding are summarised in tables 4 and 5.

		normal stress					
winding	[MPa]						
	σ _r	σ _z	σ_{ϕ}				
maximum	-0.231	+59.97	+207.8				
minimum	-33.28	-250.8	-75.31				

Table 4 - LCT winding

winding		shear stress [MPa]			
	τ _{rz}	τφΖ	τ _{rφ}		
maximum	+44.45	+22.11	+27.15		
minimum	-24.18	-31.30	-28.21		

Table 5 - LCT winding

critical shear stress τ = 50 MPa

The maximum shear the winding stress of is only 10% [τ_{rz}]=44.45 MPa (table 5) below the critical shear stress $\tau=50$ MPa. The regions with the maximum stresses are at the outer edge of the winding (figure 10). The other shear stresses are far away from the critical shear stress. They are about 40% smaller than the limit value. Figures 11 and 12 show the stress distributions τ_{0z} and τ_{r0} . In figures 16, 17, and 18 the shear stresses τ_{rz} , τ_{0z} , and τ_{r0} of the LCT winding are plotted over the azimuth angle of the winding. The azimuthal graduation of the structure is given in figure 13. The maximum shear stresses τ_{rz} appear on the position lines W79, which can be taken from figures 14 and 15. Both peaks of the shear are situated about symmetrically stresses T_{rz} at opposite positions of 70° (44.45 MPa) and 315° (41.12 MPa). They are located above the uppermost and below the lowermost horizontal plate of the intercoil structure. The peaks are very small and decrease by about 15 MPa at a distance of 1 or 2 element lengths off the peak position. The shear stresses au then are smaller than the limit value about a factor of 1.6.

Figure 10 - Contour plot of shear stresses τ_{rz} of the LCT winding

Figure 11 - Contour plot of shear stresses $\tau_{\phi z}$ of the LCT winding

Figure 12 - Contour plot of shear stresses $\tau_{r\phi}$ of the LCT winding

Figure 13 - Azimuthal graduation of the LCT winding and description of the position lines

with a description of the position lines

Figure 15 - Lower half of the LCT winding with a description of the position lines

Legend: shear stress $xz - \tau_{rz}$ shear stress $yz - \tau_{\phi z}$ shear stress $xy - \tau_{r\phi}$

Figure 16 - Shear stresses of the LCT winding over the azimuth angle on the position line W49

Legend: shear stress $xz - \tau_{rz}$ shear stress $yz - \tau_{\phi z}$ shear stress $xy - \tau_{r\phi}$

Legend: shear stress $xz - \tau_{rz}$ shear stress $yz - \tau_{\phi z}$ shear stress $xy - \tau_{r\phi}$

The deformations of the casing are presented in figures 19, 20, 21 and 22 in top view, front view and side view, respectively.

Figure 20 - Front view of the undeformed (red) and deformed (green) LCT casing

Figure 21 - Side view of the deformed LCT casing

Figure 22 - Isometric view of the deformed LCT casing

In figure 23, the maximum displacements $\mathbf{u}_{\mathbf{x}}$, $\mathbf{u}_{\mathbf{y}}$, and $\mathbf{u}_{\mathbf{z}}$ of the LCT casing are plotted over the azimuth angle of the casing. The maximum displacements are summarised in table 6. The $\mathbf{u}_{\mathbf{x}}$ maximum displacements (+0.199 mm and -6.365 mm) occur at the outer edges of the side wall (position line S84), $\mathbf{u}_{\mathbf{z}}$ (+2.828 mm) in the middle of the inner ring (position line S31) as well as (-2.929 mm) in the middle of the side wall (position line G87), and $\mathbf{u}_{\mathbf{y}}$ (+7.411 mm and -4.676 mm) at the outer edges of the side wall (position line S34) of the LCT casing.

	displacement of the casing						
	u _x (mm)	angle (°)	u _y (mm)	angle (°)	u _z (mm)	angle (°)	
max	+0.199	311.75	+7.411	6.67	+2.828	0.00	
min	-6.436	180.00	-4.676	145.00	-2.929	96.25	

Table 6

Figure 23 - Displacements of the LCT casing over the azimuth angle

As a result of the radial electromagnetic forces, the LCT coil stretches in x-direction at $\Delta x=6.237$ mm and in z-direction $\Delta z = 5.757$ mm. reduces at The deformations are clearly recognisable in figure 20. The prescribed displacements and the out-of-plane forces bend the LCT coil in y-direction (figures 19 and 21). The large displacements are $ymax_1=7.411$ mm and ymax₂=-4.676 mm. The maximum displacement in ydirection at Δy =-6.621 mm is situated at the highest corner of the tower of the LCT coil. This position is marked with "Pmax" in figure 25. All displacements of the LCT casing concerning the position lines S84, S04, and S31 are summarised in tables 7, 8, and 9.

Displacement of the LCT casing position line S84							
node	angle (degree)	u _x (mm)	u _y (mm)	u _z (mm)			
30084	0.0000	-1.2140	6.5800	0.3366			
30184	6.6667	-1,1850	7.0990	0.2825			
30284	13.3333	-1.1610	6.4710	-0.0187			
30384	20.0000	-1.8010	6.0960	-0.1721			
30484	21.8333	-1.1190	5.9030	-0.0109			
30584	43 5000	0.0458	2 3570	-0.6512			
30784	48.2500	-2.5160	-0.3095	-0.9795			
30884	53.0000	-2.5580	-0.3095	-0.6078			
30984	61.3333	-2.6810	-0.9700	-0.3789			
31084	69.6667	-3.0440	-1.6400	-0.4333			
31184	78.0000	-3.0400	-2.3100	-0.4490			
31284	84.0000	-3,5520	-2.9800	-0.7509			
31384	96.2500	-3.4160	-3.6500	-0.5694			
31484	145 0000	-4.51/0	-4.3590	-0.7623			
31884	153 5000	-4.2630	-3.8720	0.0625			
31984	163.7500	-4.5050	-3.1140	0.2748			
32084	174.0000	-4.9790	-2.2370	0.3276			
32184	175.0000	-5.2520	-1.7880	0.3320			
32284	176.0000	-5.4830	-1.3660	0.2859			
32384	177.0000	-5.7290	-0.7026	0.2479			
32484	179 0000	-6.1560	-0.1629	-0 1032			
32684	180.0000	-6.3650	0.2546	-0.4098			
32784	181.0000	-6.0620	0.1392	-0.2928			
32884	182.0000	-6.1080	0.5259	-0.0515			
32984	183.0000	-5.6510	0.6809	-0.4976			
33084	184.0000	-5.3330	0.5449	-0.6090			
33184	185.0000	-5.0430	0.5124	-0.6817			
33284	186.0000	-4.7240	0.4475	-0.7099			
33484	206.5000	-3,9180	0.1797	-0.4837			
33584	215,0000	-3.9780	-0.0730	-0.1515			
33884	251.5000	-4.4910	0.0471	0.1382			
33984	263.7500	-2.6690	0.0300	-0.7515			
34084	276.0000	-3.2080	0.0200	-0.5809			
34184	282.0000	-1.9840	0.0100	-1.1460			
34284	290.3333	-2.0400	0.0000	-1,0670			
34384	298.6667	-0.3339	-0.0100	-0.8989			
34584	311.7500	0.1985	1.2360	0.3786			
34684	316.5000	-3.3200	-0.0245	0.3734			
34784	324.3333	-2.2280	-0.0960	-0,1365			
34884	332.1667	-1.7410	5.7910	1.0070			
34984	340.0000	-1.9130	5.8180	0.9863			
35084	346.6667	-1.2870	5.9360	1.2460			

Table 7

Displacement of the LCT casing position line S04								
node	angle (degree)	u _x (mm)	u _y (mm)	u _z (mm)				
30004 30104 30204 30304 30404 30504 30504 30504 30704 30904 31004 31104 31204 31204 31204 31404 31704 31404 32004 3204 32204 32404 32404 32504 32604 32604 32704 32604 32704 32804 32904 33004 3304 3304 3304 33404 33504 33904 34	0.0000 6.6667 13.3333 20.0000 27.8333 35.6667 43.5000 48.2500 53.0000 61.3333 69.6667 78.0000 96.2500 108.5000 145.0000 145.0000 175.0000 176.0000 176.0000 177.0000 176.0000 178.0000 178.0000 180.0000 181.0000 183.0000 183.0000 183.0000 184.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 185.0000 215.0000 251.5000 276.0000 282.0000 290.3333	$\begin{array}{c} -0.0586\\ -0.7830\\ -0.4551\\ -0.1682\\ -0.0648\\ -0.3434\\ -0.2309\\ -0.5509\\ -1.0260\\ -1.1440\\ -1.2940\\ -1.4610\\ -1.6250\\ -1.7980\\ -2.0420\\ -2.7950\\ -3.1520\\ -3.5710\\ -3.8910\\ -3.9900\\ -4.0720\\ -4.2220\\ -4.2650\\ -4.3400\\ -4.2650\\ -4.3400\\ -4.3650\\ -4.3710\\ -4.3650\\ -4.3710\\ -4.3650\\ -4.3710\\ -4.3650\\ -4.3710\\ -4.3650\\ -4.3710\\ -2.2940\\ -4.1680\\ -4.0920\\ -2.3690\\ -2.29940\\ -2.3690\\ -2.2490\\ -2.1630\\ -1.9750\\ -1.8710\\ \end{array}$	6.4190 7.4110 7.0720 6.5980 5.6060 3.3890 2.0660 0.5238 -0.0530 -0.8798 -1.7820 -2.4520 -2.4520 -2.4520 -2.4520 -2.4520 -3.6440 -4.6760 -3.9720 -3.1400 -2.2630 -1.8080 -1.3940 -0.7050 -0.5061 -0.7050 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5061 -0.5050 -0.5233 0.4934 0.4261 0.2727 0.1012 -0.3943 0.2166 -0.0535 0.0880 -0.0324 0.0740	0.0070 0.0665 -0.2793 -0.3483 -0.4482 -0.5995 -0.7653 -1.0160 -1.3970 -1.9130 -2.1610 -2.2460 -2.3080 -2.1640 -1.2590 -1.1250 -1.1250 -1.1180 -1.1220 -1.00610 -0.9514 -0.9514 -0.9109 -0.8315 -0.7859 -0.7463 -0.6890 -0.6588 -0.5566 -0.5582 -0.4741 -0.4632 -0.4519 -0.3354 0.8512 1.0660 1.2860 1.2400 1.2970				
34304 34404 34504 34604 34704 34804 34904 35004 35104	298.6667 307.0000 311.7500 316.5000 324.3333 332.1667 340.0000 346.6667 353.3333	-1.8310 -1.9690 -1.8620 -2.0910 -1.3680 -0.6746 -0.5743 -0.7184 -0.8737	0.2765 0.0080 0.4197 0.1428 1.3650 5.4140 6.3250 6.6780 7.2170	0.9730 0.8109 0.0000 -0.3695 0.0500 0.0466 0.1996 -0.1237				

Table 8

		lon line	3 23T	
node	angle (degree)	u _x (mm)	u _y (mm)	u _z (mm)
30031	0.0000	-0.3807	6.0670	0.3073
30131	6.6667	-0.1750	5.8750	0.3077
30231	13.3333	-0.0244	5.6340	0.3031
30331	20.0000	-0.0263	2.3320	0.1527
30531	35.6667	-0.3359	4.3540	-0.0803
30631	43.5000	-0.7114	3.7140	-0.4397
30731	48.2500	-0.9622	3.2800	-0.7156
30831	53.0000	-1.2180	2.8200	-1.0310
30931	61.3333	-1.6360	1.9630	-1.6130
31031	59,6667 78 0000	-1.9600 -2.1730	1.0860	-2.1620
31231	84.0000	-2.2780	-0.3212	-2.8990
31331	96.2500	-2.3470	-0.8010	-2.9290
31431	108.5000	-2.4510	-1.0910	-2.7470
31531	122.5000	-2.6870	-1.2780	-2.3450
31631	136.5000	-3.0880	-1.3150	-1.8850
31/31	145.0000	-3.4080 -3.7540	-1.2730 -1.1840	-1.0270
31931	163.7500	-4.1690	-1.0280	-1.2200
32031	174.0000	-4.5370	-0.8198	-1.1080
32131	175.0000	-4.9380	-0.5466	-0.9733
32231	176.0000	-5.2060	-0.2559	-0.8766
32331	177.0000	-5,3760	-0.0006	-0.7885
32431	179 0000	-5.5330	0,2300	-0.6213
32631	180.0000	-5.5380	0.6741	-0.5405
32731	181.0000	-5.4940	0.8804	-0.4622
32831	182.0000	-5.4090	1.0920	-0.3847
32931	183.0000	-5.2740	1.2870	-0.3057
33031	184.0000	-5.0820	1.4620	-0.2214
33231	186.0000	-4.4400	1.6690	-0.0330
33331	196.2500	-4.0820	1.7240	0.1223
33431	206.5000	-3.6680	1.7790	0.3090
33531	215,0000	-3.3290	1.8200	0.5147
33631	223.5000	-3.0250	1.8620	0.7507
33/3⊥ 33831	⊿37,5000 251 5000	-2.4520	1,9440 2,0620	1,4960
33931	263.7500	-2.3680	2.2200	1.6310
34031	276.0000	-2.3240	2.4450	1.5970
34131	282.0000	-2.2700	2.8260	1.4100
34231	290.3333	-2.1850	3.3640	1.1810
34331	298.6667	-2.0930	3.9840	U 03EV
3443⊥ 34531	311 7500	-1.9290	4.9980	0.8929
34631	316.5000	-1.8340	5.3270	0.8255
34731	324.3333	-1.6310	5,7830	0.6966
34831	332.1667	-1.3720	6.0930	0.5569
34931	340.0000	-1.0950	6.2550	0.4429
35031	346.6667	-0.8480	6.2730	0.3669

,

Table 9

In figures 24, 25, and 26, the displacement distributions of the LCT casing, $\mathbf{u_x}$, $\mathbf{u_y}$, and $\mathbf{u_z}$ are plotted in discrete filled colour levels in a detail of the structure. Each coloured contour corresponds to a range bounded by the values indicated on the similarly coloured band within the legend.

Figure 24 - Contour plot of the displacement u_x of the LCT casing

Figure 25 - Contour plot of the displacement u_y of the LCT casing

1

Figure 26 - Contour plot of the displacement u_z

of the LCT casing

The deformations of the winding are plotted in figures 27, 28, 29, and 30 in the top view, front view, and side view, respectively.

Figure 27 - Top view of the deformed LCT winding

Figure 28 - Front view of the deformed LCT winding

Figure 29 - Side view of the deformed LCT winding

Figure 30 - Isometric view of the deformed LCT winding The maximum displacement $\mathbf{u}_{\mathbf{x}}$ occurs on the border of the inner ring (position line W81), $\mathbf{u}_{\mathbf{z}}$ on the border of the outer ring (position line W07), and $\mathbf{u}_{\mathbf{y}}$ in the middle of the outer ring (position line W29) of the LCT winding. In figure 31, $\mathbf{u}_{\mathbf{x}}$, $\mathbf{u}_{\mathbf{y}}$, and $\mathbf{u}_{\mathbf{z}}$ of the LCT winding are plotted over the azimuth angle of the winding. The maximum displacements are summarised in table 10.

	displacement of the winding							
	u _x	angle	uy	angle	uz	angle		
	(mm)	(°)	(mm)	(°)	(mm)	(°)		
max	+0.488	27.83	+6.606	340.00	+1.037	276.00		
min	-7.535	180.00	-4.318	122.50	-2.001	96.25		

Table 10

(figure legend: displacements x,y,z correspond to $\mathbf{u}_x, \mathbf{u}_y, \mathbf{u}_z$)

Figure 31 - Displacements of the LCT winding over the azimuth angle

3. Conclusion

For the test configuration consisting of the LCT coil, the intercoil structure, and the ITER-TF model coil, the estimate with the assumed boundary conditions shows that the stresses in the LCT winding and casing are not so critical. There are some small peaks with high stresses which are reduced rapidly in a distance of 1 or 2 element lengths off the peak position.

4. References

- /1/ S.J. Sackett, UCID 176221 "EFFI a code for calculating the electromagnetic field, force and inductance in coil systems of arbitary geometry", 1977
- /2/ ABAQUS USER MANUAL, Version 5.4, Hibbitt, Karlson & Sorensen, Inc.
- /3/ A. Grünhagen, unpublished report Kernforschungszentrum Karlsruhe, Oktober 1992
- /4/ ABAQUS/Post Reference Guide Version 5.4,
- Hibbitt, Karlson & Sorensen, Inc.
- /5/ S. Raff, unpublished report