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Abstract 
 
A two-level model describing He- and H-like ions by their ground state and 

one isolated excited level with collisional and radiative transitions between 

these levels and the continuum was developed. The model allows to take into 

account re-emisson of line radiation when calculating line radiation transfer in 

plasmas with non uniform temperature and density distribution without solving 

detailed balance equations for level populations. For application of the two-

level model in 1 dimensional line radiation transfer calculations several 

numerical schemes were developed and tested for a beryllium plasma. It is 

demonstrated that re-emission in the resonance lines increases the back 

radiated flux, the radiative flux to the target and the reradiated flux from the 

plasma cloud. 

 

 
 
 
Zusammenfassung 
 
Zwei Niveau Modell zur Berechnung des Transport von Linienstrahlung in 
niedrig Z Target Plasmas 
 
Zur Berechnung des Transports intensiver Linienstrahlung He- und H- 

ähnlicher Ionen wurde ein einfaches Zwei Niveau Modell, bestehend aus 

Grundzustand, einem angeregten Niveau und dem Kontinuum, entwickelt. 

Stoß- und strahlungsinduzierte Űbergänge zwischen verschiedenen Niveaus 

und dem Kontinuum werden berűcksichtigt. Das Modell erlaubt die 

Berechnung der Re-Emission von Linienstrahlung in einem Plasma mit  

Dichte und Temperaturgradienten.  Zur Anwendung des 2 Niveau Modells in 

1-D Berechnungen des  Linienstrahlungstransports wurden mehrere 

numerische Verfahren entwickelt und fűr ein Beryllium Plasma getestet. 

Reemission in Resonanzlinien He- und H-ähnlicher Ionen erhőht den 

zurűckgestrahlten Strahlungsfluß, den Strahlungsfluß zum Target und die 

Abstrahlung von der Plasmawolke. 
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1. Introduction 

Interaction of intensive hot plasma streams with peak power densities in the 

MW/cm2 range with a solid surface produces target plasmas with non-uniform 

temperature and density distributions [1]. A cold, rather dense plasma, with temperatures 

of a few eV and densities of 1018 – 1019 cm-3 is formed close to the target surface. In the 

region where the energy of incident hot plasma ions is absorbed a hot low dense plasma 

is formed. The plasma temperature there can achieve hundreds of eV, with densities 

being in the range 1014 –1015 cm-3. For graphite or beryllium as target material the 

plasma in the hot region is fully ionized and near the surface the degree of ionization of 

the plasma is close to one. A rather thin transition region with large temperature and 

density gradients connects these two regions. In this thin plasma layer the ionization of 

the plasma changes drastically from fully to weakly ionized plasma. The hot plasma 

region in spite of rather large spatial size is optically thin because of its low density. The 

transition region is also optically thin because of its rather small spatial size. For these 

reasons the intensity of continuum radiation, generated in both regions, is rather low and 

line radiation with a considerable fraction in the soft x-ray (SXR) energy region 

dominates there. Most of this radiation is radiated back from the plasma but part of it 

penetrates through the cold plasma and heats the target.  

Intense line radiation from the high temperature plasma results in radiative 

excitation processes in the low temperature region. The line radiation from the high 

temperature plasma excites bound electrons and increases the population of the excited 

level of the corresponding transition if the ion exists in both temperature regions. 

Otherwise the line radiation is absorbed by free electrons and heats them or is absorbed 

by bound electrons resulting in ionization. Due to this additional excitation the 

population of excited levels increases. The additionally excited electrons are deexcitated 

by collisions with free electrons resulting in electron heating and spontaneous radiative 

decay. Due to this spontaneous decay the emissivity of such lines can exceed the local 

thermodynamic equilibrium (LTE) emissivity corresponding to the local plasma 

temperature. The additional excitation can penetrate rather deeply into the cold plasma. 

In this case the total radiative flux could become larger. This effect can be very important 

for the lines of He-like ions because they exist over a rather large temperature interval, 

which for carbon extends from 4 eV up to 100 eV and for beryllium from 1.5 eV up to 50 

eV. Therefore He-like ions are present in most regions of the target plasma and line 

 1



radiation from the rather hot region can change the level populations of He-like ions in 

the total volume of the cold plasma. For a realistic estimation of the target heat loads the 

penetration of this line radiation through the cold rather dense plasma has to be 

investigated.  

The usual multi-group approach with opacities cannot describe adequately the line 

radiation transport through a non-uniform plasma from the hot to the cold region. Only a 

self-consistent radiative transfer model where all the processes of level population are 

taken into account together with solving the radiation transport problem is able to 

describe this situation adequately. The self-consistent approach means solution of the 

system of kinetic equations describing the level populations of all the ions together with 

radiation transfer equations in each time step. Such an approach is too bulky to be used in 

2-D radiative transfer calculations. Therefore a two-level model was developed. In this 

model the radiative transfer in the continuum and for weak lines is calculated in the usual 

way by use of multigroup opacities. These are obtained from the collisional-radiative 

equilibrium (CRE) model with escaping factor corrections taking into account re-

absorption of line radiation in non-LTE plasmas [2]. The radiative transfer in strong lines 

is calculated using a two-level model for the reemission of absorbed energy and the 

amount of energy transferred to free electrons in collisional transitions from the excited 

levels is estimated. 

2. Description of the two-level model 

The local radiation properties of a plasma are described by absorption εκ  and 

emission  coefficients. The absorption coefficients are determined by the population 

of the lower states and by free electrons. The emission coefficients are connected with 

populations of the upper (excited) states. In the LTE model all the excited levels are 

populated in accordance with the Boltzman equation corresponding to optically thick 

plasma. with equilibrium between radiation and level populations. In the CRE model 

collisional processes, spontaneous radiative decay between excited levels and between 

excited levels and the ground state, and di-electron recombination are taken into account. 

The influence of the plasma radiation on the level populations (processes of the radiation 

excitation, ionization, and induced deexcitation) is neglected. Level populations are 

obtained from the system of the balance equations connecting the level populations of 

ions and free electrons by the above-mentioned transitions. In the CRE model with 

εJ
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escaping factor correction the influence of the plasma radiation on the population of 

excited levels is taken into account by means of introduction of a special factor (escaping 

factor) which decreases the velocity of the spontaneous radiative decay. Thus the 

escaping factor describes re-absorption of line radiation in a plasma layer of finite size 

[3]. The escaping factors are defined for plasma layers of constant temperature and 

density. Thus for all the above mentioned models the absorption and emission 

coefficients correspond to local temperatures and densities of the plasma and the non 

local character of the radiation in optically transparent plasma is not taken into account.  

For plasma ions with exited levels close to the continuum and far away from the 

ground state the influence of radiation on the level population can be approximately 

described by a two-level model. This model is based on the following assumptions: 

transitions occur only between the ground state and the excited level and the excited 

level and the continuum. Electron transitions between excited levels are neglected. A 

detailed calculation of level populations is not necessary, because of the high energy of 

the first excited level and the rather large energy intervals between the neighboring 

excited levels. Therefore there is no correlation between different lines and each line can 

be described separately. This model is applicable to He and H like ions of low Z 

materials such as beryllium and carbon. Figs. 1 a and b show the energy level structure of 

He-like and H-like ions of beryllium and carbon. 

Radiation transfer within isolated lines at given temperature and density profiles is 

considered. The change of the radiation intensity  along the length dl at the given 

frequency ε is given according to: 

Iε

d I I dl J dl J dlε ε ε ε εκ=− + +
~   (1) 

The first term at the right side of the expression κε εI dl

J dlε

 describes the absorption of the 

radiation at the given frequency, the second  the local plasma emissivity at the 

given frequency. The third term ~J dlε  is the re-emission of the absorbed energy within 

the line of given shape. Thus the radiation transfer equation can be written in the 

following form: 
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d I
dl

I J Jε
ε ε ε εκ=− + +

~   (2) 

All terms except ~Jε  are known. ~Jε can be defined as ratio between energy re-

emitted (due to spontaneous decay and induced radiative de-excitation) and absorbed at 

the given frequency within the full line. The energy absorbed within the line can be re-

radiated at any frequency within the line with the probability given by the line contour. 

This assumption of complete redistribution in the line is used in the two-level model. 

The normalized line shape is assumed to have a Voight contour Φ( )ε  with the 

absorption coefficient κ0  in the line center [4]. The total absorbed energy F per unit 

length l within the line is given as: 

F d I=
∞

∫∫ Ω Φκ
π

ε ε0
04

dε   (3) 

The absorbed energy from the excited level m to the ground state 1 is redistributed by 

several ways. A part of the energy is re-radiated by spontaneous radiative decay with the 

rate , and by induced radiative de-excitation with the rate . A part of the energy is 

used for heating of free electrons resulting in collisional de-excitation with the rate V  

and collisional ionization with the rate V . A part of the energy is used for radiative 

ionization from the excited level with the rate .  

Am1 Bm1

ZZ
m1

1,
1

+ZZ
m

ν 1,
1

+ZZ
m

Re-emission by spontaneous decay Ψs  is given by the ratio of the transition 

frequency for spontaneous decay and the sum of all transition processes described by 

their transition frequencies. Ψs  thus is given according to: 

( ) e
ZZ

m
ZZ

mm
ZZ

mm

m
s NVVBA

A

1
1,

11
1,

11

1

++++
=Ψ ++ν

  (4) 

Re-emission by induced radiative de-excitation iΨ  in analogy to eq. (4) is given as: 

( ) e
ZZ

m
ZZ

mm
ZZ

mm

m
i NVVBA

B

1
1,

11
1,

11

1

++++
=Ψ ++ν

  (5) 
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with  the density of the free electrons. eN

Assuming complete redistribution in the line and isotropic emission the re-emission term 
~Jε  can be written in the following form: 

( )~ ( )J F s iε π
ε= ⋅ + ⋅

1
4

Ψ Ψ Φ   (6) 

The energy transferred to the free electrons in the collisional transitions  can be 

estimated by the same way  

ctE

( ) F
NVVBA

VE
e

ZZ
m

ZZ
mm

ZZ
mm

ZZ
m

ct
1

1,
11

1,
11

1

++++
= ++ν

  (6a) 

For the velocities of the processes occurring in equations (4) and (5) well-known 

analytical expressions are used [3,5]. For the rate of the spontaneous radiative decay 

from the excited level m to the ground state the following expression is used: 

A
E e

m c
f Em

m

e
m1

1
2 2

2 2 1
7

1
2

1
2

4 35 10= = ⋅
h

. fm m   (7) 

with  the oscillator strength and  the transition energy. Collisional excitation and 

de-excitation are connected by a detailed balance equation. 

fm1 Em1

g V g V
E E

Tm m m
m

e
1 1 1

1=
−






exp   (8) 

The rate of the collisional de-excitation is described by the Meve formula. 

( )




















+
−

+
+−++⋅= −

2
11

12
111

1

15
1 )1(

4.01ln1058.1
mm

m
mmm

m

mZZ
m xx

xDCxBxCxA
TE

fV  (9) 

Here  and A, B, C, D are the approximation parameters with A=0.15, 

B=C=0, D=0.28 for the transitions in He- and H- like ions with 

x Em m1 1= / Te

∆n ≥1. For collisional 

ionization the Lotz formula is used. 
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






⋅= −+ µ   (10) 

where  with Iemm TIx /= m   the ionization potential from the excited level m, µm – the 

number of equivalent electrons at the level m and )( mi  the exponential integral [6]. xE −

For the induced de-excitation and photo ionization the following expressions are 

used: 

B
g
g

I
dm

m

m
1

1 1=
−∞

∞

∫
σ ε

ε
εε( )

  (11) 

∫∫
∞

+ Ω=
m

d
I

d fZZ
m

ε

ε

π

ε
ε
εσ

ν
)(

4

1,
1   (12) 

Here σ ε1m( )  is the photo-excitation cross section per energy interval from the ground 

state, σ εf ( )  is the photo-ionization cross-section from the excited level, ε  is the photon 

energy,  is the radiation intensity, gIε 1, gm are the statistical weights of the ground state 

and the excited level. 

The photo-excitation and photo-ionization cross sections are obtained by using 

Hartree-Fock-Slater (HFS) calculations performed with TOPATOM [2]. 

3. Difference methods for the solution of the 1-D angular dependent 
 radiation transfer equation 

Two main approaches exist for calculation of radiation transfer in a plasma: 

solution of the radiation transfer equation either in the differential form or in the integral 

form. Each of them has some advantages and disadvantages. The local character (in the 

difference scheme quantities are related to mesh knots) is the main advantage of the 

differential radiation transfer equation. Due to this the calculational procedure is rather 

simple. Its main lack is that there is no simple way to build the difference schemes giving 

the correct limits both for optically thin and optically thick plasmas. In 1-D geometry 

most of the difference schemes give the correct limit for optically thin plasma. The non-

local character of the integral radiation transfer equation means the following: the 
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calculated value in a mesh is connected not only with known values related to the mesh 

but with values related to surrounding meshes. The non-local character can be rather easy 

overcome for one-dimensional plane geometry. The main advantage of the integral 

radiation transfer equation is that most of the difference schemes give the correct limits 

both for optically thin and for optically thick plasmas. Below the difference schemes for 

both cases are described. 

The differential form of the radiation transfer equation in analogy to eq. (2) is 

given as: 

µ κε
ε ε ε ε

d I
dx

I J J=− + +
~   (13) 

with the following relationship between the path element dl and the x coordinate: 

dl
dx

= =
µ

µ θ, cos  

Here θ  is the angle between the x-axis and the direction of the photon motion (polar 

angle). 

The integral form of the radiation transfer equation is given as: 

( )I l I l J dl dl

J dl dl

l

l

l

l

l

l

ε ε ε ε ε

ε ε

κ κ

κ

( ) ( )exp exp

~ exp

' ''

' ''

''

''

= − + −








 +

+ −










∫ ∫

∫ ∫

0
0

0

  (14) 

with the same relationship between l and x. 

The total radiation flux S is calculated by integration over the space angle Ω  and the 

photon energy ε . 

S d I=
∞

∫∫ Ω Ω ε
π

ε
04

d   (15) 
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To get the difference scheme for both cases the space coordinate x is divided by N 

non-uniform meshes of mesh size ∆x xj j+ + x j= −1 2 1/  . Angular grids are defined 

separately for positive (µ >0 ) and negative (µ<0 ) directions. x=0 is the left boundary of 

the plasma layer, x=X0 its right boundary. ∆l , ∆x  and µ  are connected according to 

(the index i refers to the angular grid): 

ijij xl µ/2/1,2/1 ++ ∆=∆   (16) 

Radiative intensities are given at the mesh boundary; temperatures and densities of the 

plasma are given in the mesh center. The mesh boundary through which a photon enters a 

mesh is named incoming photon boundary. The mesh boundary through which a photon 

leaves a mesh is named outgoing photon boundary. A mesh { / }j +1 2  has the left side 

boundary  and the right side boundary { . For the negative direction of the 

photon propagation (

{ }x j }x j+1

µ<0 )  is the incoming photon boundary and {  is 

outgoing photon boundary. For the positive direction of the photon propagation (

{ }x j+1 }x j

µ >0 ) 

 is the incoming photon boundary and {  is the outgoing photon boundary. Let 

positions (0) and (

{ }x j }j+1x

∆l ) in the difference schemes indicate the incoming photon and 

outgoing photon mesh boundaries for an arbitrary mesh. 

Using these definitions the final expressions for the outgoing radiative intensity 

 can be written for the differential and the integral radiation transfer equation for an 

arbitrary mesh { . Here 

I l(∆ )

/ }j +1 2 ∆ ∆l l j i≡ +1 2/ , , the index i refers to the angular grid, the 

index j to the space grid. 

For equation (13) the difference scheme is written in the following form: 

( )
I l

l J l J l I
lε

ε ε ε

εκ
( )

( ) ~ ( ) ( )
∆

∆ ∆ ∆
∆

=
+ +
+

0
1

  (17) 

The source terms and the absorption coefficient are defined at the mesh boundaries Thus 

eq. (17) can be written according to: 
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~
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+

=
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+
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=
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+
<

1
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1 1 2

1 2 1

1 2

1
0

1
0

∆

∆

∆

∆

  (17*) 

Eq. (17) describes the SN method. The photon path il∆ , the cosine iµ  and the mesh size 

 are connected by eq. (16). x∆

ε

For eq. (14) the difference scheme can be derived assuming that the source terms 

( J Jε , ~ ) either are constant within the mesh or linearly dependent on the optical length. 

For constant source terms within the mesh the difference scheme can be written in the 

following form: 

( ) ( )( )

( ) iii

i
ii

ii

xll

llJlJlIlI

µκκκ

κ
κ

κ

εεε

εεε
ε

εεε

/,)()0(
2
1~

~exp1
2

~
2~

1~exp)0()(

∆=∆∆+=

∆−−













 ∆+






 ∆+∆−⋅=∆

 (18) 

here the source terms  and εJ εJ~  are defined at the mesh center where the initial 

temperatures and densities are defined. The photon path il∆ , the cosine iµ  and the mesh 

size  are connected by eq. (16). x∆

Using eq. (14) and the assumption of linear dependence of the source terms and Jε
~Jε  on the optical length τ κε= ∆l  within the mesh the difference scheme can be written 

in the following form: 

( ) ( )

( ) ( ) ( ) ( )

( ) iii

i
i

i

i

i

iiiii

xll

l
l

lJJ
l

l

lJlJ
l

llIlI

µκκκ

κ
κ

κ
κκ

κ

κ
κ

εεε

ε
ε

ε
εε

εε

ε

εε
ε

εεε

/,)()0(
2
1~

,~exp~
~exp1)0(~)0(

)0(
1

~
~exp11

)(~)(
)(

1)(exp)0()(

∆=∆∆+=









∆−−

∆
∆−−

⋅++







∆

∆−−
−×

×∆+∆
∆

+∆∆−⋅=∆

 (19) 

here κε , , Jε
~Jε  refer to the mesh boundaries. The photon path il∆ , the cosine iµ  and 

the mesh size  are connected by eq. (16). x∆
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As soon as the values κε , , Jε
~Jε  are determined for the given boundary 

conditions at both surfaces of the plasma layer the intensities can be calculated for all 

meshes and angles as described below. Let  be the boundary condition at 

the right surface (x=X

I Ii r iε εµ( ) ( )= 0 µ

0) for µ < 0 and  the boundary condition at the left 

surface (x=0) for 

Iε ( ) Ii l iεµ µ( )= 0

µ > 0. Thus starting from the mesh number N the outgoing intensities 

at the left mesh boundary are used as the incoming intensities  for negative Ir iε µ0 ( ) µi . 

Using these values the outgoing intensities for the mesh number N-1 are obtained and so 

on till the mesh number 1. After obtaining the outgoing intensities at the left surface of 

the plasma layer the same procedure is performed to calculate the outgoing intensities in 

the positive directions µi  for all the meshes starting from mesh number 1 using  

as the incoming intensities for this mesh. The numerical procedure is the same for the 

eqs. (17) - (19). 

I ε
0
l iµ( )

The total spectral radiation flux  and spectral radiation fluxes S  in negative 

direction (

Sε
−
ε

0<µ ) and  in positive direction (+
εS 0>µ ) are obtained by integration over 

µ : 

+−

><
+=+= ∑∑ εεε

µ
ε

µ
ε µµµµ SSAIAIS iiiiii

ii

)()(
00

  (20) 

with  the weights of for instance the Gaussian quadrature formula. Ai

Performing the calculations for all energy groups and integrating over the photon 

energy the radiative flux S(xj) is obtained for all meshes according to: 

S S=∑ ε
ε

ε∆   (21) 

For deriving the difference expressions (17) and (19) it was assumed that the 

absorption and emission coefficients κε , , Jε
~Jε  refer to the mesh boundaries 

Temperature and density are given in the mesh center. Only in this case the difference 

approximation of the radiation transfer equation (as shown in [7]) gives the correct limit 

of the radiative flux S for an optically thick plasma: S ~ - τddB /  (B is the Planck 

function) [8]. This limit follows directly from the diffusion radiation transfer equation: 
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x
UcgS e

∂
∂

−= 2
εεκ     (22) 

with Uε  the radiation energy density, c the speed of light, g2 the Eddington factor, which 

is equal to 1/3 for isotropic radiation. Assuming εε  results in a weakly 

anisotropic radiation and in blackbody density U  of the radiation energy in the plasma. 

Thus eq. (22) can be rewritten as: 

Pl
ε

∞→= xκτ

ε

ε
ε τ∂

∂
−=

PlUcS
3

    (23) 

PlUε is given as ε
π

ε
π B
c

dB
c

Pl
e

41

4

=Ω= ∫U  with the Bε Planck function. After substitution 

into eq. (23) it is obtained: 

ε

ε
ε τ

π
∂
∂

−=
BS

3
4    (24) 

No simple difference schemes exist satisfying the correct limit for optically thick 

plasma if the absorption and emission coefficients are given at the mesh center. For 

optically thin plasmas the above-described schemes are automatically fulfilled. The 

asymptotic behavior of all the above-described difference schemes for the case of 

optically thick plasma is investigated in Appendix 1. It is not necessary to assume that all 

these values are identical from the left and the right side of a mesh boundary (they relate 

to different meshes). For instance  (right side value for boundary {j}) can be 

different from  (left side value). For the boundary {j} the right side value relates to 

the mesh {j+1/2} and the left side value relates to the mesh {j-1/2}. Hence in eqs. (17) 

and (19) all the terms defined at the mesh boundaries (

κ εj,
+

κ εj,
−

κε , , Jε
~Jε ) are determined by the 

calculated mesh and direction of the calculation. For negative µ  the incoming values 

have to be taken as left side ones and the outgoing values as right side ones. For positive 

µ  the incoming values have to be taken as right side ones and the outgoing values as left 

side ones. 
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For determination of κε , , Jε
~Jε  at the mesh boundaries a two-step procedure is 

used. At the first step preliminary values of temperatures are defined at the mesh 

boundaries and at the second step the final values of temperatures are obtained. For 

calculation of preliminary temperatures the number of meshes is doubled. Each mesh is 

divided into two equal parts. For the boundary temperatures of the new meshes whose 

boundaries coincide with the centers of the old meshes the old center temperatures are 

used. For these boundaries the temperatures from left and right sides are equal. For the 

other mesh boundaries three temperatures are calculated: the first is the result of an 

interpolation between the neighboring meshes, the second one is the result of an 

extrapolation from the left neighboring meshes and the third one is the result of an 

extrapolation from the right neighboring meshes. Then for the right side temperature the 

minimum between the interpolated value and the right side extrapolated value is chosen 

and for the left side temperature the minimum between the interpolated value and the left 

side extrapolated value is chosen. Therefore for these mesh boundaries the left side 

temperature must not coincide with the right side one. The densities at the mesh 

boundaries of the doubling mesh grid are obtained by simple interpolation.  

At the second step temperatures are recalculated to conserve the total integral over 

each old mesh as described. For each old mesh the values 2/12/1 ++ ∆ jj MT  have to be 

conserved (  is the mass in the mesh). The integral is calculated for each old 

mesh and for the two new meshes produced from it. Then the boundary temperatures are 

multiplied by a factor having the ratio of these integrals to get the final boundary 

temperatures. Then 

2/1+∆ jM

κε , , Jε
~Jε  are determined using the boundary values of temperature 

and density. 

The new doubled mesh grid is used for radiation transfer calculation. This method 

was tested and showed good agreement with analytical solutions for a wide range of the 

optical thickness of the plasma layer from optically thin up to optically thick case [7]. 

For radiative transfer calculations it is more preferable to use the integral form 

instead of the differential form for the following reasons: the integral form of radiation 

transfer equation describes the radiation transport more correctly for the cases of large or 

optically thick meshes. Also in the case of large temperature and density gradients the 

linear integral method gives radiative fluxes with reasonable accuracy for rather rough 

meshes. Moreover for the integral form it is easier to take into account non-constant 
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distributions of source functions along a mesh, a fact being rather important for the 

radiation transfer in lines using the two-level model. 

For all the above mentioned difference schemes the forward-reverse 

approximations can be obtained if the number of angles in each hemisphere is reduced to 

1 and if µ   is taken as µ =
1
2

 for the positive direction and µ = −
1
2

 for the negative 

direction. 

For the calculation of the radiation transfer in resonance lines by the two-level 

model the  iteration procedure [9] is used. For increasing the stability and the velocity 

of convergence the iteration parameter 

Λ

Λ  is chosen for each line separately. In Λ  

iteration the final value after iteration is taken as the sum of the value obtained from the 

difference equations (preliminary value) with weight Λ  and the value from the previous 

iteration with weight (1- ). (Λ 10 ≤Λ< ). At Λ =1 the final value coincides with the 

preliminary calculated value and at Λ  close to 0 the preliminary calculated value 

becomes a small correction to the value from the previous iteration. This method is used 

for non-monotonic convergence. 

4. Discussion of numerical results 

Radiation transfer calculations were performed for beryllium plasmas using two 

sets of Planck opacities: with 254 and with optimized 461 spectral groups. The optical 

properties of the beryllium plasma were obtained from TOPATOM [2] using the CRE 

model with escaping factors for a plasma layer of thickness L=1 cm. The spectral groups 

were chosen to describe as close as possible the features of the spectral radiation flux. If 

it is not mentioned separately in each hemisphere 16 Gaussian distributed angular 

directions were used. For the calculations of the line transfer with the two level model 

the Voight line contour was used for the He-like lines and either Holtsmark or Voight 

line contours were used for the H-like lines. The Holtzmark line contour was applied for 

the main transition in H-like ion. 

4.1. Optical properties of Be plasma. 

The steady-state CRE model was used for the calculation of the absorption and 

emission opacity tables of the beryllium plasma. In this model ion concentrations and 

level populations are obtained from the system of the steady-state balance equations. The 
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number of balance equations in the system corresponds to the total number of the energy 

levels of all ions taken into account in the calculations. For an arbitrary level i of an ion 

of charge m the balance equation is written in the following way: 
 

 
1 1 1 1( ) ( ) 0m m m m m m m m m m

i ij i i j ji j j j j
j j j j

N K N K N K N i K N i K− − + +− − + + +∑ ∑ ∑ ∑ =  

 

with - the population of the level i  of an ion of charge ;  - the population of 

the level 

m
iN m m

jN

j of an ion of charge ;  - the population of the level j of an ion of 

charge -1;  - the population of the level j of an ion of charge m +1; 

m 1( )i−m
jN

m 1( )m
jN i+ m

ijK - the 

velocity of the collisional and radiative transition from the level i to the level j;  - the 

velocity of the collisional and radiative transition from the level j to a level i; - the 

velocity of ionization from the level j of an ion of charge m-1; - the velocity of 

recombination on the level j of an ion of charge m+1; - the velocity of ionization 

from the level i of an ion of charge m. 

m
jiK

1m
j
−K

1+m
jK

m
iK

The first term in the balance equation describes the decrease of the population of 

the level i due to collisional excitation to the upper levels and collisional and radiative 

deexcitation to the lower levels. The second term describes the decrease of the level 

population due to collisional ionization. The third term describes the increase of the 

population of the level i due to collisional excitation from the lower levels j and 

collisional and radiative deexcitations from the upper levels j. The fourth term describes 

the increase of the population of the level i due to the ionization to the desired 

configuration from the ion of the lower rate of ionization. The fifth term describes the 

increase of the population of the level i due to recombination to the desired configuration 

from the ion of the higher charge. 

The following processes were taken into account: electron excitation and de-

excitation, impact ionization, three-body recombination, spontaneous emission and photo 

and dielectronic recombination [5]. The velocities of the collisional transitions from the 

ground states were calculated using either the Born or the Born-Coulomb approximations 

[5]. The Van Regemorter expression was used for the collision transitions between 

excited levels and the Lotz expression - for the impact ionization. The Berdgess 
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expression was used for dielectronic recombination and HFS calculated velocities for the 

spontaneous transitions and the photo-recombination.  

The processes of radiation excitation and ionization are not usually taken into 

account in the framework of the CRE model because the increase of the excited level 

population due to absorption inside the resonance lines is larger than due to radiative 

excitation by the continuum radiation. Therefore the influence of the continuum radiation 

is not so important. The influence of the own plasma radiation on the excited level 

population can be taken into account by use  of escaping factors which describes the 

decrease of the spontaneous decay velocity due to self-absorption of lines [3]. The 

escaping factor depends on the optical thickness in the center of a line and on the line 

shape. In case of a non uniform temperature and density profile the escaping factor can 

be obtained from a solution of the Biberman-Holstain equation. For a plasma layer with 

constant temperature and density the escaping factor  can be expressed by the simple 

analytical formula:  

ijΘ

πη/67.0=Θij        for the Lorentz line shape  

ηπη ln/5.0=Θij       for the Doppler line shape  

5/3/22.0 η=Θij       for the Holtzmark line shape  

with L0κη = , 0κ  - the absorption coefficient in the line center and L – the thickness of 

the plasma layer. The spontaneous decay velocity for each line is multiplied by the 

appropriate escaping factor in the system of balance equations. 

In the calculation of the optical properties of beryllium plasma the escaping factors 

were taken into account for all the lines (with different kinds of line shapes) assuming 

that the thickness of the plasma layer is equal to 1 cm. 

Absorption and emission coefficients of beryllium plasma for different plasma 

temperatures and densities of 1017 and 1018 cm-3 are shown on Figs. 2 a-g. The absorption 

and emission coefficients within the high frequency region between 100 and 200 eV 

which corresponds to the main lines of the He-like and the H-like ions are shown on 

Figs. 3 a and b for a plasma density of 1017 cm-3 and two temperatures - 10 eV (a) and 32 

eV (b). From these figures the following conclusions are drawn: He-like ions exist in the 
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rather wide temperature region at least from 2 eV up to 50 eV (see Fig.2). In the low and 

intermediate frequency region the absorption coefficient practically coincides with the 

emission one i.e. equilibrium between absorption and emission exists (excited levels are 

populated according to equilibrium conditions LTE). In the high frequency region (He-

like and H-like ions) this equilibrium is violated and the emission coefficient becomes 

lower than the absorption coefficient (for resonance lines also (see Figs. 3 a and b)). This 

is due to the following: for the H- and He-like ions the velocities of the spontaneous 

decay from excited levels (corrected by self-absorption within the lines in the escaping 

factor assumption) are much higher than the velocities of the collisional excitation from 

the ground states and there is not enough radiation excitation from the ground state also. 

Therefore the populations of the excited levels are much lower than the equilibrium 

populations. The degree of non-equilibrium in the high frequency region (difference 

between absorption and emission coefficients) increases with increasing temperature and 

decreasing density. The He-like lines are placed rather far from the Li-like threshold 

from the ground state. Therefore the continuum radiation cannot significantly influence 

the excited level population of these lines. For the H-like lines, which are located in the 

vicinity of the He-like threshold from the ground state the intensity of continuum 

radiation is rather high. This can increase the excited level populations of the H-like ions. 

Thus in the plasma with non-uniform temperature and density the population of the 

excited levels of the He-like ions can be increased by excitation due to line radiation 

from the high temperature plasma region and excited level populations of the H-like ions 

can be increased by the continuum radiation from the He-like threshold. These processes 

cannot be described by the escaping factor model and must be described by special 

theoretical models as for instance the two level model. 

4.2. Difference schemes for calculation of the 1-D radiation transfer. 

For checking the accuracy of the used difference schemes and the adequacy of 

mesh resolution numerical calculations with different spatial resolutions of the given 

temperature and density profile were performed for a beryllium plasma layer. Typical 

temperature and density profiles in the beryllium plasma as used in the calculations are 

presented on Figs. 4 and 5. For the given temperature and density profile the three 

methods 1-D SN (eq. (17)), linear integral method (eq. (19)) and constant integral method 
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(eq. (18)) were used for calculation of the radiation transport. For the optical properties 

Planck opacities were used.  

Figs. 4 and 5 show the initial temperature and density profile as solid curves with 

16 meshes (giving rather rough space resolution of the transition region) and as dashed 

curves with 64 meshes produced by adding additional meshes. The new meshes are 

implemented mainly in the region with large temperature and density gradients. 

Calculated total radiation fluxes and fluxes in the positive and negative direction 

are shown in Figs. 6-8 for the initial profile and in Figs. 9-11 for the adequately resolved 

profile. In these figures the solid curves show the radiative fluxes obtained by using eq. 

(17*) (SN method), the dashed curves show the radiative fluxes obtained by using the 

integral method (eq. (19)) with linearly depending source terms within the mesh, the 

dotted curves show the radiative fluxes obtained by using eq. (18) with constant source 

terms related to the mesh center. Radiative fluxes for initial and adequately resolved 

profiles using the linear integral method are presented in Fig. 12. 

An analysis of the character of the radiation generated in the different plasma 

regions can help to understand the numerical results. The low temperature plasma region 

close to the wall is optically thick due to it’s low temperature and it’s rather high density. 

Due to this the radiation fluxes close to the target in positive (µ >0) and negative (µ <0) 

directions are rather similar (compare Figs. 7 and 8, 10 and 11) and the spatial 

dependence of the one-side radiation fluxes repeats the spatial dependence of the plasma 

temperature (Fig. 4). This behavior is typical to near blackbody radiation.  Because of 

rather high optical thickness the continuum radiation dominates in this region. The 

continuum radiation from this region contributes with about 30% to the back-radiated 

flux (see Fig. 7 and 8, 10 and 11). The hot plasma region is optically thin and a rather 

small amount of radiation is generated there (Figs. 7 and 8, 10 and 11). The main part of 

the back-radiated flux is generated in the vicinity of the transition region where the Li-

like and He-like ions are the main ions (see the one side radiative fluxes in positive 

direction Figs. 7 and 10). Due to the rather small spatial size of the transition region and 

the fast drop of the plasma density this region is optically thin for continuum radiation 

and line radiation dominates here. A rather large amount of line radiation is generated in 

the transition region also in negative direction (Figs. 8 and 11), but due to the large 

optical thickness of the cold plasma this radiation is absorbed there and the rather cold 

plasma reradiates in the continuum. Such transformation of the spectral radiation flux in 
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the negative direction  due to it’s propagation from the transition region into the cold 

plasma is shown on Fig. 13 where the spectral radiation flux is plotted at several 

positions in the vicinity of the transition region. 

−S

From Figs. 6-11 it is seen that there are differences between the cases with 

adequately resolved mesh and the rough mesh related with convergence of the results 

obtained from the different schemes. For an adequately resolved mesh all the schemes 

give quite similar radiative fluxes in all the space points (see Figs. 9-11) whereas for the 

rough mesh rather large differences in the radiative fluxes (see Figs. 6-8) were obtained. 

The behavior of the calculated radiative fluxes using the two difference schemes SN and 

linear integral methods with boundary determined source terms is similar. There is no 

difference in the radiative flux onto the wall and in the plasma region between the wall 

(x=0) and x=3.5 cm (the low temperature plasma region).  Differences in the radiative 

fluxes appear in the transition region (sharp increase of the plasma temperature and 

decrease of the plasma density) and are up to 7%. In all the space points the radiative 

flux obtained by the linear integral method is greater than the radiative flux calculated by 

the SN method. The integral difference scheme with constant source terms (eq.  (18)) 

gives similar values of radiative flux onto the wall and close values of back radiated 

fluxes, difference being less then 3.5%.  But there are large differences in the radiative 

flux inside of the plasma layer especially in the transition region. The differences amount 

up to 25% at the position x=5 cm and a factor of 3.5 at the position x=3.5 cm. This 

method gives a rather large radiative flux in the direction towards the low temperature 

plasma exceeding the correct value by a factor of 3.5 (see Fig. 6). Thus radiative cooling 

of the transition region and heating of the low temperature plasma are overestimated. 

The reason for this large difference can be explained in the following way. In 

Appendix 1 it is shown, that difference schemes with source terms defined at the mesh 

centers incorrectly describe the energy exchange between neighboring meshes in 

optically thick plasmas. The radiation flux between meshes is proportional to the sum of 

two terms: the first of them is the difference between the Planckian functions (B) 

belonging to neighboring meshes (S ~ 2/12/1 +− − ii BB ) the second term is ( τ∂∂− /B )-like 

term. (The correct asymptotic is the radiative flux has to be proportional to τ∂∂B− ). 

The first term dominates in case of large temperature gradients therefore total radiation 

flux is overestimated significantly for such regions. In [7] it was shown for high-energy 

explosions that the incorrect energy exchange between meshes leads to a rather large 

 18



overestimation of the velocity of the radiation wave and to a rather quick cooling of the 

hot plasma. The influence of the non-correct additional term decreases with reducing the 

mesh size. Thus rather large differences in the radiation fluxes exist if rough spatial grids 

are used (Figs. 6-8). And the differences decrease for adequately resolved spatial grid 

(Figs. 9-11). 

From the numerical calculations it follows that all the above-described methods 

can be used in combination with an adequately resolved mesh. The linear integral method 

and the differential method are suitable for radiation transfer calculations if a rough mesh 

is used. The linear integral method (eq. (19)) is more preferable in all the cases because it 

gives radiative fluxes with higher accuracy than the other methods both for the 

adequately resolved mesh and for the rough mesh (see Fig. 12). 

The dependency of the radiative fluxes from the number of rays is investigated 

using two limiting cases: 1) forward-reverse method where full isotropy of radiation in 

each hemisphere is assumed; 2) good angular resolution with 16 rays in each hemisphere. 

The comparison was performed on the fixed profile with adequately resolved mesh for 

all the above described difference schemes. The total radiation fluxes and one-side fluxes 

in positive (S(+)) and negative (S(-)) directions are shown in Figs. 14 – 16. For all the 

difference schemes the radiative fluxes directed from the high temperature region 

towards the low temperature region are slightly overestimated by the forward-reverse 

method in the vicinity of large temperature gradients (see one-side radiative fluxes in 

negative direction in Figs. 14-16). The radiation fluxes in back direction as obtained by 

forward-reverse method are also higher in the optically thin high temperature region. 

Thus radiation is close to isotropy in the optically thick low temperature plasma region. 

In both cases the radiation intensities along axis are smaller than along inclined lines 

because along inclined lines optical thickness is greater. The differences between 

radiation fluxes obtained using different angular resolutions are not so high. Therefore 

the adequate angular resolution is not so important for the given temperature and density 

profiles. 

4.3. Two level model with step function for temperature and density. 

The main features of the two level model were investigated by use of artificial 3-

step temperature and density profiles. Using such step profiles eliminates the influence of 

the transition zone where together with change of temperature and density ion 
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concentrations can drastically change. Highest and intermediate temperatures were 

chosen so that He-like ion existed at both temperatures. At the lowest temperature He-

like ions are absent. At intermediate temperatures practically all the electrons of He-like 

ions are in the ground state. The highest temperature corresponds to practically equal 

concentrations of He- and H-like ions. The three temperature and density profiles as used 

in the test calculations are shown in Fig. 17,19,21 (temperature), and in Fig. 18,20,22 

(density). These test profiles differ one from another by decrease of density of low 

temperature regions. The density in the high temperature region differs from that one in 

the intermediate temperature region by two order of magnitude for the first case, by one 

order of magnitude in the second case and is practically equal for the third case.  

The linear integral method (as more accurate) was used in these test calculations. 

The higher accuracy is necessary for radiation transfer calculations because temperature 

and density discontinuity is present. The Λ  iteration procedure converges rather quickly. 

It needs less about 15 iterations for each line. Calculated radiation fluxes (total fluxes 

and fluxes  and ) are shown in Figs. 23,24 for the first test profile, in Figs. 27,28 

for the second test profile, and in Figs. 31,32 for the third test profile. Initial and final 

results after 15 iterations using the two level model are plotted. The initial results are the 

results obtained using Plank opacities. For the demonstration of the anisotropy of the 

radiation average cosines in the positive 

+S −S

+µ  (µ >0) and in the negative  (−µ µ >0) 

direction are shown in Figs. 25,26, Figs. 29,30, and Figs. 33,34 for the same test profiles. 

The average cosines are defined according to: 
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Radiation can be assumed to be isotropic if the averaged cosines ±µ  are equal to ±0.5. 

For the test cases in all regions radiation drastically differs from isotropy: <0.5,  

>-0.5. This is a typical situation for an optically thin plasma where radiation 

intensities under large angles to the x-axis dominate. The application of the two level 

model with amplification of line intensities only slightly changes the average cosines, i.e. 

the radiation flux remains significantly anisotropic. 

+µ

−µ
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The main features of test calculations with the two level model are presented 

below. The spatial distribution of the relative velocity of energy transfer to the free 

electrons by the collisional deexcitation given as  V  in eq. (9) and by spontaneous 

decay for the main He-like line (transition from the first excited level to the ground state) 

given as  in eq. (7) are shown in Figs. 35-37. In the high temperature plasma re-

emission by spontaneous decay is the main process. Collisional deexcitation of electrons 

competes with the spontaneous decay in the intermediate temperature region at rather 

high density (first case, Fig. 35). But with decrease of density re-emission by 

spontaneous decay dominates in all temperature regions where He-like ions are present 

(second and third cases, Figs. 36,37). Thus the additional excitation of the lines by 

radiation from the plasma region with higher temperature is practically spent for re-

radiation and for maintaining populations on the excited levels at rather far distance from 

the high temperature region if the density of low temperature plasma is not so high. The 

additional excitation of the lines is partly spent for heating of free electrons if the plasma 

density is rather high and line intensity can damp rather quickly inside the cold plasma in 

this case. Calculated radiation fluxes in the lines (total fluxes and fluxes in the positive 

 and negative 

zz
m1

1mA

+S −S  direction) are shown in Figs. 38,39 for the first test profile, in Figs. 

40,41 for the second test profile, and in Figs. 42,43 for the third test profile. Initial and 

final results after 15 iterations are plotted. Despite of comparable total initial and final 

radiation fluxes in the low temperature region (see Figs. 23,27,31) there are difference in 

the initial and final line radiation fluxes because of excitation of ground state electrons 

by line radiation from the high temperature region. This fact is evident from the Fig. 44 

showing the spectral radiation flux in the positive (µ >0) direction at the position x=3.2 

cm for first test variant (in direction from low temperature region to high temperature 

region). This position corresponds to the intermediate temperature region close to the 

high temperature region. In the initial spectral radiation flux radiation in the He- and H-

like lines is practically absent. After 15 iterations using two level model intensive 

radiation in these lines appears. The intensity of this line radiation practically equals the 

intensity of the line radiation in the negative direction at the same place  (see Figs. 

45,46). Amplification of the lines due to re-absorption is observed in the high 

temperature plasma too. Due to this the lateral leakage radiation from the plasma 

significantly increases (see Figs. 47-49). Here the lateral leakage radiation is calculated 

 21



as the angular integrated volumetric energy loss by a plasma of lateral width of 0.1 cm 

with constant lateral temperature. The significant increase of the lateral leakage radiation 

in the high temperature region is mainly due to a rather large amplification of one H-like 

line caused by continuum radiation from the He-like threshold. That is continuum 

radiation of the He-like threshold significantly increases the population of the excited 

levels of H-like ions. This is seen in Figs. 50 a and b where the lateral leakage spectral 

radiation fluxes and integrated lateral leakage radiation fluxes (defined as 

) are shown for the first test profile at position x=4 cm for the opacity 

approach (initial) and the two level model. According to Fig. 50b the lateral leakage 

radiation is dominated by the two lines at 123.6 eV( He-like ion) and 162.4 eV (H-like 

ion). 

')(
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ε
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Thus amplification of the line radiation in He- and H- like lines due to re-

absorption of line radiation from the high temperature region increases with decreasing 

difference in the plasma densities of high and low temperature region. When spontaneous 

decay dominates in the low temperature region the influence of the line radiation from 

the high temperature plasma can penetrate up to a rather far distance inside of the low 

temperature plasma. 

4.4. Radiation transfer with the two level model. 

The test calculations showed that both the linear integral method and the 

differential method with good angular resolution can be used for calculations with the 

two-level model. The linear integral method is preferable because it gives a more 

accurate description of the re-emission term within the mesh. Therefore this method was 

used. 

Calculations were performed with the temperature and density profiles as shown in 

Figs. 4, 5 using the adequately resolved mesh. Results (spectral radiation fluxes back 

radiated and to the wall) are shown in Figs. 51-54. The calculations were also performed 

for modified temperature and density profile of the beryllium plasma as shown in Figs. 

55, 56. The profiles have steeper temperature and density gradients in the transition 

region. Calculated results are presented in Table 1 and in Figs. 57-60. The  iteration 

procedure converges rather quickly. It needs less than 20 iteration for each line. For these 

cases the two-level model was applied only for the resonance He-like lines. 

Λ
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From Figs. 4, 5, 55 and 56 it is seen that the plasma density decreases quickly 

between the transition region and the free surface of the expanding plasma, with the 

temperature being approximately constant. In this case the emissivities of lines decreases 

also between the transition region and the free surface. The maxima of the line 

emissivities are close to the transition region. The optical thickness of the plasma in the 

center of the resonance lines calculated from the transition region to the free surface are 

several orders of magnitudes. The region with optical thickness τ ≈ 1 calculated from the 

free surface determines the radiation outgoing from the plasma. In radiation transfer 

calculations with multigroup opacities where re-emission is not taken into account the 

outgoing intensity in the resonance lines is less than the maximum values due to 

absorption in the path from the transition region to the position with τ ≈ 1. For the two-

level model taking re-emission of the absorbed radiation into account the outgoing 

intensity of lines increases and comes closer to the maximum value as can be seen from 

the calculated results. 

These arguments are also valid for line radiation transport from the transition 

region through the cold dense plasma to the wall. But in this case due to the increase of 

the plasma density and decrease of the plasma temperature (see Figs. 5 and 6) the larger 

part of the absorbed energy is spent for heating of plasma electrons and not for re-

emission. Therefore line intensity decreases more quickly than in the opposite direction. 

From the back-radiated spectral flux (Figs. 51, 52, 57, and 58) it is seen that due to 

re-emission of absorbed radiation coming from the transition region the intensities of the 

resonance lines increase. Therefore the back-radiated flux increases also (see Table 1). 

From the spectral radiation flux onto the wall (Figs. 53, 54, 59, and 60) it is seen that 

only the intensity of the first resonance He-like line increases and the deep cutting of the 

line center is removed for both profiles. For the first temperature and density profile 

(Figs. 5 and 6) the second resonance He-like line also penetrates through the cold plasma 

to the wall (see Figs. 53 and 54). 

Finally results of the radiation transport calculations using different opacity 

approaches are compared in Table 1. The fixed temperature and density profiles from 

Figs. 55 and 56 were used in these calculations. Radiation transfer calculations with 

multi-group Rosseland opacities describe only continuum radiation. Calculations with 

multi-group Planck opacities take line radiation into account but neglect re-emission.  
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In the opacity approaches the radiation heat flux to the wall is determined by the 

continuum radiation. Penetration of the resonance lines through the cold plasma due to 

re-emission increases the target heat load significantly. The back radiation flux is 

determined by line radiation and taking into account re-emission in the resonance line 

increases the value at least by 10%. 

5. Conclusions 

Calculations with different schemes for the radiation transfer equation have shown 

that the radiation fluxes calculated with the linear integral scheme are only weakly 

dependent on the used spatial grid. Therefore this scheme is preferable. The two-level 

model developed for radiation transfer in strong lines allows taking into account re-

emission of the line radiation in plasmas with non uniform temperature profiles without 

performing detailed calculations of level populations. The radiation transfer calculations 

for given temperature and density profiles show that amplification of the line radiation in 

He- and H- like lines due to re-emission of line radiation from the high temperature 

region increases with decreasing difference in the plasma densities of low temperature 

and high temperature plasma regions. The radiation transfer calculations with a given 

temperature and density profile in a beryllium plasma shield show that taking into 

account re-emission in the resonance lines of He- and H- like ions increases the back 

radiated flux at least by 10% and the radiative flux to the target by about 30%. 

Test calculations show that the continuum radiation of the He-like threshold 

significantly increases the excited level populations of H-like ions. This leads to an 

increase of the line radiation from the hot plasma region. 

The opacities obtained using the CRE model with escaping factor take into account 

the influence of the plasma radiation on the level populations under the following 

assumptions only: no influence of continuum radiation on the level populations, re-

absorption of the line radiation increases the population of excited levels by means of 

multiplication of the velocity of spontaneous decay by escaping factor, constant 

temperature and density profile inside a plasma layer of fixed size is supposed for 

obtaining the escaping factor. The two level model allows to overcome these restrictions. 
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Table 1 

 
Calculated radiation heat fluxes to the wall and back radiated  

for typical temperature and density profiles 
 of a beryllium plasma shield 

 
Radiative heat flux to 

wall Back radiated flux  

MW/cm2 

Multigroup Planck 0.23 7.2 

Multigroup Rosseland 0.21 3.0 

Two-level model for He- and H-like ions  0.30 8.0 
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Appendix 1. Asymptotic behavior of the difference schemes in the limit 
of optically thick plasma. 

 
The radiation flux for an optically thick plasma has to be proportional to - τd/dB  

where B is the Planck function and τ the optical thickness. (eq. 24). Eq. (24) can be 
written in a difference form by two ways depending on whether the source terms are 
defined in the center of meshes (half-integer index j) or whether they are defined at the 
mesh boundaries (integer index j): 
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Here the Eddington factor g is the µcos  averaged on the total solid angle. Therefore in 
the limit of the optically thick plasma all the difference schemes with source terms 
defined in mesh centers have to be transformed into equations like (A.1) and difference 
schemes with source terms defined in the mesh boundaries have to be transformed into 
equations like (A.2).  

The asymptotic behavior of the difference schemes of eqs. (17), (18), (19) are 
investigated below for the case of an optically thick plasma. The following assumptions 
are used: ∆ ∞→∆= lκτ , the LTE assumption is fulfilled and the radiation intensity 
becomes close to the blackbody radiation, equidistant meshes are used with a view to 
simplification. 

The difference scheme (17) with source terms and absorption coefficients defined 
at the mesh boundaries in case of optically thick plasma is transformed into the following 
form:  
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  (A.3) 

In the LTE assumption the source is given as product of the Planck function and the 

absorption coefficient. Thus eqs. (A.3) can be rewritten according to:  
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Subtracting the second equation from the first one the analog of the radiative flux is 
obtained for the given angle µi: 
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To get the radiative flux eq. (A.5) has to be integrated with weight µ over the half of the 
solid angle.  After integration the analog of equation (A.2) is obtained. Therefore the 
difference scheme (17) has the correct asymptotic behavior of the radiative flux for an 
optically thick plasma. 
 

If the source terms and the absorption coefficients are defined in the center of the 
meshes the following expressions can be written: 
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For an optically thick plasma eqs. (A.6) can be rewritten according to:  
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Subtracting the second equation from the first one the analog of the radiative flux is 
obtained for the given angle µi: 
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The term in the second brackets has the form being close to the derivative of the Planck 
function on the optical thickness (the correct asymptotic behavior (see eq. (A.2)). But the 
term in the first bracket is the simple difference between the Planckian functions in the 
neighboring meshes. This term dominates for all the cases 1≥∆τ . Therefore in the case 
of rather large temperature gradient the radiative flux calculated using difference 
schemes of such kind is significantly overestimated if 1≥∆τ . Error of the radiation flux 
calculations is proportional to the optical thickness of the meshes and rises with 
increasing the optical thickness of a mesh and roughing the mesh grid. 
 

The difference schemes (18) and (19) are investigated by the same way. For 
simplification of the difference scheme analysis )exp( lk∆−  is expanded into Tailor series 
up to first term and is used in the following form: 
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Thus in case of an optically thick plasma ( ∞→∆=∆ lκτ ) the terms containing 
 in expressions (18), (19) have the following limits: )exp( lk∆−
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Using the limits (A.9) and (A.10) the integral difference scheme with source terms 
defined in the mesh centers (eq. 18) can be rewritten by the following way: 
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Subtracting the second equation from the first one in the limit of ∞→τ  the expression 
analogous to eq. (A.8) is obtained. 
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Thus the integral difference scheme with source terms defined in the mesh centers 
also has no correct limit in case of an optically thick plasma. Difference schemes of such 
kind can be used for the radiation transfer calculations if condition 1<∆τ  is satisfied for 
all the meshes and frequency groups. 

The integral difference scheme (19) with source terms defined in the mesh 
boundaries can be rewritten in analogy to (A.11) in the following form: 
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Using the limits (A.9) and (A.10) in the limit ∞→τ the eq. (A.13) can be rewritten by 
the following way: 
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Subtracting the second equation from the first one the analog of the radiative flux is 
obtained for the given angle µi: 
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Eq. (A.15) coincides with eq. (A.5). Therefore the integral difference scheme (19) has the 
correct limit in case of an optically thick plasma also. 
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Fig. 1a. Energy level structure of the He-like ions of beryllium and carbon. 
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Fig. 1b. Energy level structure of the H-like ions of beryllium and carbon. 
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Fig. 2a. Absorption and emission coefficients of Be plasma at temperature 
T=1 eV and density N=1018 cm-3. 
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Fig. 2b. Absorption and emission coefficients of Be plasma at temperature 
T=2 eV and density N=1018 cm-3. 
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Fig. 2c. Absorption and emission coefficients of Be plasma at temperature 
T=3 eV and density N=1018 cm-3. 
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Fig. 2d. Absorption and emission coefficients of Be plasma at temperature 
T=5 eV and density N=1018 cm-3. 
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Fig. 2e. Absorption and emission coefficients of Be plasma at temperature 
T=10 eV and density N=1017 cm-3. 

 
 
 

10-1 100 101 102 103
10-7

10-6

1x10-5

1x10-4

10-3

10-2

10-1

100

101

102

T= 32 eV
N=1017 cm-3

co
ef

fic
ie

nt
 (c

m
-1
)

frequency (eV)

 absorption
 emmission

 
 

Fig. 2f. Absorption and emission coefficients of Be plasma at temperature 
T=32 eV and density N=1017 cm-3. 
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Fig. 2g. Absorption and emission coefficients of Be plasma at temperature 
T=40 eV and density N=1017 cm-3. 
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Fig. 3a. Absorption and emission coefficients of a Be plasma in the soft X-ray 
region showing the lines from He- and H- like ions at a plasma 
temperature of 10 eV and density of 1017 cm-3. 
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Fig. 3b. Absorption and emission coefficients of a Be plasma in the soft X-ray 
region showing the lines from He- and H- like ions at a plasma 
temperature of 32 eV and density of 1017 cm-3. 

 

 
 

Fig. 4.  Typical profile of plasma temperature in a beryllium  
plasma layer as used. 
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Fig. 6. Tot
 
 

 

Fig. 5. Typical profile of plasma density in a beryllium plasma 
layer as used
 

al radiation flux, calculated by different methods using the initial profile 
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Fig. 7. Radiation flux in positive (µ >0) direction, calculated by different methods using 
the initial profile 

 
 

 

Fig. 8. Radiation flux in negative (µ <0) direction, calculated by different methods using 
the  initial profile 
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Fig. 9. Total radiation flux, calculated by different methods using the adequately resolved 
profile 

 
 
 

 

Fig. 10. Radiation flux in positive (µ >0) direction, calculated by different methods 
using the adequately resolved profile 
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Fig. 11. Radiation flux in negative (µ <0) direction, calculated by different methods 
using the adequately resolved profile 

 
 
 

 

Fig. 12. Comparison of total radiation fluxes calculated with different mesh resolution 
using the linear integral method 
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Fig. 13. Typical spectral radiation flux in negative (µ<0) direction at different positions 
in the vicinity of the transition region. 

 

 

Fig. 14. Comparison calculated radiative fluxes using the forward-reverse method and 
the SN method with high angle resolution (fixed profile with 64 meshes). 
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Fig. 15. Comparison calculated radiative fluxes using the forward-reverse method and 
the constant integral method with high angle resolution (fixed profile with 64 
meshes). 

 

 

Fig. 16. Comparison calculated radiative fluxes using the forward-reverse method and 
the linear integral method with high angle resolution (fixed profile with 64 
meshes). 
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Fig. 17. Temperature profile for first test variant 
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Fig. 18. Density profile for first test variant 
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Fig. 19. Temperature profile for second test variant 
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Fig. 20. Density profile for second test variant 
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Fig. 21. Temperature profile for third test variant. 
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Fig. 22. Density profile for third test variant. 
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Fig. 23. Total radiation flux calculated for the first test variant (initial and final after 15 
iterations) by use of the two level model and the linear integral transport method. 
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Fig. 24. Radiation flux in positive (µ >0) and negative (µ <0) directions for the first test 
variant (initial and final after 15 iterations) by use of the two level model and the 
linear integral transport method. 
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Fig. 25. Average cosine in positive direction (µ >0) for the first test variant (initial and 
final after 15 iterations) by use of the two level model and the linear integral 
transport method. 
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Fig. 26. Average cosine in negative direction (µ <0) for the first test variant (initial and 
final after 15 iterations) by use of the two level model and the linear integral 
transport method. 
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Fig. 27. Total radiation flux calculated for the second test variant (initial and final after 
15 iterations) by use of two level model. 
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Fig. 28. Radiation flux in positive (µ >0) and negative (µ <0) directions for the second 
test variant (initial and final after 15 iterations) by use of the two level model. 
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Fig. 29. Average cosine in positive direction (µ >0) for the second test variant (initial 
and final after 15 iterations) by use of the two level model. 

 

0,1 1
-0,50

-0,45

-0,40

-0,35

-0,30

-0,25

-0,20

 initial
 final

av
er

ag
e 

co
si

ne
 µ

-

distance from target (cm)

 

Fig. 30. Average cosine in negative direction (µ <0) for the second test variant (initial 
and final after 15 iterations) by use of the two level model. 
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Fig. 31. Total radiation flux calculated for the third test variant (initial and final after 15 
iterations) by use of the two level model. 
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Fig. 32. Radiation flux in positive (µ >0) and negative (µ <0) directions for the third 
test variant (initial and final after 15 iterations) by use of the  two level model. 
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Fig. 33. Average cosine in positive directions (µ >0) for the third test variant (initial and 
final after 15 iterations) by use of the two level model. 
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Fig. 34. Average cosine in negative direction (µ <0) for the third test variant (initial and 
final after 15 iterations) by use of the two level model. 
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Fig. 35. Relative velocities of decay of excited electrons for the first test variant. 
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Fig. 36. Relative velocities of decay of excited electrons for the second test variant. 
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Fig. 37. Relative velocities of decay of excited electrons for the third test variant. 
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Fig. 38. Radiation flux in lines calculated for the first test variant (initial and final after 
15 iterations). 
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Fig. 39. Radiation flux in lines for positive (µ >0) and negative (µ <0) directions for the 
first test variant (initial and final after 15 iterations). 
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Fig. 40. Radiation flux in lines calculated for the second test variant (initial and final 
after 15 iterations). 
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Fig. 41. Radiation flux in lines for positive (µ >0) and negative (µ <0) directions for the 
second test variant (initial and final after 15 iterations). 
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Fig. 42. Radiation flux in lines calculated for the third test variant (initial and final after 
15 iterations. 
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Fig. 43. Radiation flux in lines for positive (µ >0) and negative (µ <0) directions for the 
third test variant (initial and final after 15 iterations). 
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Fig. 44. Typical spectral radiation flux in positive (µ >0) direction at position x=3.2 cm 
for the first test variant (initial and final after 15 iterations). 
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Fig. 45. Typical spectral radiation flux in negative (µ <0) direction at position x=3.2 cm 
for the first test variant (initial and final after 15 iterations). 

 

100 120 140 160 180 200
1E-5

1E-4

1E-3

0,01

0,1

1

10

100

 initial
 final

Sp
ec

tra
l r

ad
ia

tio
n 

flu
x 

S-  (M
W

/c
m

2 eV
)

photon energy (eV)

 

Fig. 46. Typical spectral radiation flux (in SXR range) in negative (µ <0) direction at 
position x=3.2 cm for the first test variant (initial and final after 15 iterations). 
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Fig. 47. Angular integrated lateral leakage radiation flux in lines calculated for the first 
test variant (initial and final after 15 iterations). 
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Fig. 48. Angular integrated lateral leakage radiation flux in lines calculated for the 
second test variant (initial and final after 15 iterations). 
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Fig. 49. Angular integrated lateral leakage radiation flux in lines calculated for the third 
test variant (initial and final after 15 iterations). 
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Fig. 50a. Typical lateral leakage spectral radiation flux in the SXR range, showing the 

lines from He- and H-like ions for the first test variant at a distance of x=4 cm 
from the target. 
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Fig. 50b. Integrated lateral leakage radiation flux showing the contributions from the line  

radiation for the first test variant at a distance of x=4 cm from the target. 
 
 

 

Fig. 51. Calculated back radiated spectral flux using the fixed profile from Figs. 4,5. 
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Fig. 52. Calculated back radiated spectral flux in a narrow spectral range. 
 
 
 
 
 

 

Fig. 53. Spectral radiation flux to the target, calculated for fixed profile from Figs. 4,5. 
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Fig. 54. Spectral radiation flux to the target in a narrow spectral range.  
 
 
 

 

Fig. 55. Typical temperature profile for a beryllium plasma shield. 
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Fig. 56. Typical density profile for a beryllium plasma shield. 
 
 

 

Fig. 57. Back radiated spectral flux, calculated for the fixed profile from Figs.55,56. 
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Fig. 58. Back radiated spectral flux in a narrow spectral range.  
 
 
 
 

 

Fig. 59. Spectral radiation flux to the target, calculated for fixed profile from Figs.55,56. 
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Fig. 60. Spectral radiation flux to the target in a narrow spectral range. 
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