
Forschungszentrum Karlsruhe
Technik und Umwelt

Wissenschaftliche Berichte

FZKA 6388

Status Report on experiments and modelling
of the cleavage fracture behaviour of F82Hmod

using local fracture criteria

(Task TTMS-005)

H. Riesch-Oppermann, M. Walter

Institut für Materialforschung
Projekt Kernfusion

Association Forschungszentrum Karlsruhe / EURATOM

Forschungszentrum Karlsruhe GmbH, Karlsruhe

2001



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Impressum der Print-Ausgabe: 
 
 

Als Manuskript gedruckt 
Für diesen Bericht behalten wir uns alle Rechte vor 

 
Forschungszentrum Karlsruhe GmbH 

Postfach 3640, 76021 Karlsruhe 
 

Mitglied der Hermann von Helmholtz-Gemeinschaft 
Deutscher Forschungszentren (HGF) 

 
ISSN 0947-8620 



Abstract

Within the European Fusion Technology Programme framework, a fracture mechanics descrip-
tion of the material behaviour in the ductile to brittle transition-regime is developed using local
fracture criteria. Based on experimental results using axisymmetrically notched and pre-cracked
specimens together with a numerical stress analysis at fracture load, a statistical evaluation
of cleavage fracture parameters can be performed along the lines described in various code
schemes such as the British Energy R6-Code or the ESIS P6 procedure.

The report contains results of the experimental characterization of the deformation and frac-
ture behaviour of the fusion candidate RAFM steel variant F82Hmod, details and background
of the numerical procedure for cleavage fracture parameter determination as well as additional
statistical inference methods for transferability analysis. Fractographic results give important
information about fracture mode and fracture origin sites and their location. Numerical predic-
tion of fracture origin distribution is an important tool for transferability assessment.

Future issues comprise constraint effect and ductile damage as well as incorporation of irradia-
tion effects, which are topically addressed.

The methodology developed and described in the present report will be applied to character-
ize material behaviour of future RAFM variants as the EUROFER 97, for which analysis is
currently under way.

Zusammenfassung

Beschreibung des Sprödbruchverhaltens des niedrigaktivierbaren Stahles
F82Hmod mit Hilfe lokaler Versagenskriterien

Innerhalb des Europäischen Fusionsprogramms wird eine bruchmechanische Beschreibung des
Materialverhaltens im Bereich des spröd-diktilen Übergangs auf Basis lokaler Versagenskrite-
rien angestrebt. Auf Grundlage von geeigneten Experimenten an gekerbten sowie angerissenen
Rundzugproben erfolgt mittels numerischer Auswerteprozeduren eine statistische Beschreibung
der Sprödbruchparameter entsprechend der in verschiedenen Regelwerken bereits eingearbeit-
eten Verfahren.

Der vorliegende Bericht enthält Ergebnisse und Grundlagen der Modellierung für den niedri-
gaktivierbaren japanischen Stahl F82Hmod. Fraktografische Analysen geben Auskunft über
Bruchmodus und Art sowie Verteilung der Bruchursprünge. Mittels ebenfalls bestimmter nu-
merischer Vorhersagen der Verteilung der Bruchursprünge erhält man ein wichtiges Hilfsmittel
für Übertragbarkeitsaussagen.

Kurz gestreift werden weiterführende Themen wie Einfluss von Dehnungsbehinderung oder
starker Spannungsgradienten, duktiler Schädigung sowie die Berücksichtigung von Bestrah-
lungseffekten.

Eine Fortführung der hier dargestellten Arbeiten wird augenblicklich mit der Charakterisierung
der europäischen Variante EUROFER97 eines niedrigaktivierbaren Stahls durchgeführt.
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Introduction

The present analysis is part of the EURATOM Fusion Technology - Blanket programme for
1999 to 2002. It was related to the former Work Package SM 5 Structural Materials, the Task
5.2 Fracture Mechanics Concept and the subtask 5.2.1 Local Fracture Criteria for EURO-
FER in the DBT regime and is now incorporated within the EFDA Technology Workpro-
gramme 2001 under EFDA Reference TT MS - 005 RAFM STEELS: Rules for Design,
Fabrication, and Inspection.

Within this framework, it is intended to develop a fracture mechanics concept for the description
of the ductile-to-brittle-transition behaviour of ferritic-martensitic steels and to incorporate the
concept into the structural design codes. Due to the need of transferability, a concept based on
the mechanisms of ductile or brittle behaviour is indispensable for the assessment of size and
geometry effects, irradiation effects, and effects due to complex mechanical as well as thermal
loading conditions.

In contrast to the global approaches, where geometrical limits on validity of test results are
imposed to ensure transferability of test data to component design, a local approach relies on
the combination of local (i.e. micro-structurally based) fracture criteria and stress field analyses
of selected geometries to ensure the transferability of material data. That is, within a local ap-
proach transferability is inherently guaranteed as long as the local fracture mechanism remains
unchanged, which has to be verified by suitable investigations of the fractured specimens.

A key issue of the local fracture description is the determination of the fracture parameters,
which requires considerable (numerical and experimental) efforts. Fracture parameters are ob-
tained by numerical Finite Element (FE) elasto-plastic deformation analyses of fracture tests.
In the case of brittle fracture, a statistical approach is necessary because of the inherent scat-
ter. If the metallographic investigations of fractured specimens indicate that ductile damage
precedes final cleavage fracture, changes in the stress field have to be accounted for by appro-
priate damage models and competing failure modes of ductile and cleavage fracture have to be
appropriately incorporated into the statistical fracture modelling.

The present report is a compilation of results obtained during characterization experiments on
the Japanese F82Hmod RAFM steel. It contains both experimental results, which serve as a
database for the applicability of local fracture criteria, and modelling achievements. Modelling
is concerned with material behaviour of deformation and fracture as well as with the develop-
ment of statistical inference approaches that are necessary for transferability assessment.

In Chapter 2, some basic information about background and application of local approach meth-
ods is given.
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Chapter 3 contains relations for numerical analysis of cleavage fracture parameters and the
calculation of Weibull stresses from experimental data including statistical evaluation using
maximum likelihood methods. The local risk of rupture is introduced which enables prediction
of fracture origin distribution and thus verification of fracture modelling by experiments.

Chapter 4 gives background and results of a novel statistical approach based on resampling
method which is a useful statistical inference tool that goes beyond the limits of conventional
maximum likelihood methods.

Chapter 5 contains the results on deformation behaviour of smooth axisymmetric specimens
and subsequent specimen design while Chapter 6 covers fracture behaviour and Weibull stress
results of the F82Hmod RAFM steel under investigation obtained at notched and pre-cracked
axisymmetric specimens.

In Chapter 7, a summary of future work or work outside the scope of the present report is given
together with the state of development that is available today. This includes irradiation damage,
multiaxial loading, constraint effects and dynamic failure.

1.1 Objective

Main objective of the work presented in this report is to characterize the F82Hmod steel using
the methodology of the Local Approach as well as to develop numerical tools for the statistical
characterization of uncertainties in the material parameters that characterize cleavage fracture.
For the comparison between experimental results and numerical predictions, the local risk of
rupture was used. The local risk of rupture is available from fractographic analyses via the
distribution of fracture origin locations. Predictions of the local risk of rupture require statisti-
cal treatment and a suitable numerical integration procedure, which was developed within this
subtask.

Evaluation of cleavage fracture parameters is currently under standardization efforts in different
contexts (SINTAP [50], R6 [8], ESIS [21], ASTM [19]). Part of the procedures developed and
presented in the report were tested and verified within an ESIS round robin [55].

1.2 Outlook

The characterization of cleavage fracture as described in this report is currently performed for
the European variant of a RAFM steel, EUROFER 97 [56]. Results will provide an extended
data base for future modelling efforts.

For design considerations, simplified approaches may be of some value as described e.g. in Ref.
[17], where a parametrized description of material behaviour is used to obtain suitable design
curves.

Various authors deal with implications of irradiation effects on fracture toughness, e.g. [46, 48,
62, 74, 75]. The basic effect of irradiation on fracture toughness is a shift of the ductile-to-
brittle transition temperature (DBTT) towards higher values and a reduction of the upper shelf
Charpy energy. Unfortunately, DBTT of Charpy and fracture toughness data do not coincide.
It is claimed [74] that the Charpy-V transition shift has a tendency to underestimate the true
fracture toughness shift due to irradiation. In terms of local approach, irradiation damage is
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described mainly by the influence on yield stress. It turned out that the critical cleavage stress is
not affected by irradiation effects so that the basic framework of the local approach is therefore
easily adopted and it is only necessary to identify a suitable description of irradiation hardening
[46, 48].

Application of the local approach to Charpy test results was shown successfully by [64] and
[67]. A modelling of the strain-rate dependent deformation material behaviour is required,
which is also a matter of the available data base.
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2

Background

Body-centered cubic materials exhibit a transition from brittle (low toughness, cleavage) frac-
ture behaviour at low temperature to ductile (microvoid initiation and coalescence) fracture at
high temperature. In the transition regime, the material is characterized by a large scatter of
toughness [9] and the presence of a pronounced size effect of critical toughness parameters
such as KIc or Jc [40]. This behaviour can be described using ideas known as “Local Approach”
[5].

2.1 Physical description of fracture processes

The basic background of this methodology is that global failure of the material is triggered by
the local behaviour in the vicinity of stress concentrations [61]. In the cleavage regime, fracture
is caused by unstable growth of crack initiation sites whose activation is thought to coincide with
the onset of plastic deformation [69]. The worst (in some sense) initiation site is determining
failure, which leads to an extreme value distribution of the fracture (toughness) parameter. Basic
assumptions which are essential for the validity of the model are that the possible initiation sites
are statistically independent and (for fracture mechanics specimens) that the stress field obeys
small scale yielding (SSY) conditions. Also, it is essential that the fracture mode is purely
cleavage and that there is no void initiation (i.e. no ductile damage). If these basic assumptions
are violated, modification of the model is necessary to take into account the effects of gross
yielding and of microvoid initiation [6].

Result of the model is the description of the dependence of toughness parameters like KIc or Jc

of temperature as well as the scatter of the parameters in the different temperature regimes.

In the ductile regime, the fracture mechanism is characterized by the formation and growth of
voids from inclusions. Void formation is thought to coincide with the onset of plastic deforma-
tion, the initial void volume fraction thus given by precipitations, inclusions etc.. The growth
rate of voids triggered by stress triaxiality is given in the model of Rice & Tracey [54], its cor-
rections [30] or other models, e.g. Gurson [32, 65]. Main purpose of the “Local Approach” is
to combine stress and strain field analyses with micro-structural features of the material causing
failure events. This approach allows predictions with respect to size effects and with respect to
scatter in the material behaviour at the expense of an increased numerical effort.
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2.2 Historical development of Local Approach ideas

Basic ideas of the Local Approach for cleavage fracture have its foundation in a long tradition
of micro-mechanical investigations, theoretical as well as using fractography which all aim at
a fundamental understanding of the fracture processes on a microscopic scale. Among others,
there are Stroh [69] (formation of micro-cracks within grains due to inhomogeneous plastic
deformation), Ritchie et al. [33, 62], Rosenfield [63], Hahn [28] etc. Substantial progress was
made during the last years with the advent of more powerful computers. Accurate numerical
analysis of stress and strain fields even for cracked specimens is possible with moderate effort.

Essential ingredients for a successful application of the ideas of the Local Approach consist
of firstly a precise description of the initiation of unstable crack propagation and an exact de-
scription of the stress field in the material. Also an appropriate statistical treatment of the
experimental data and its numerical evaluation is essential. Fractography is indispensable for
an appropriate interpretation of the applied model and also to ensure that the basic assumptions
of the model with respect to the fracture mode are justified.

Recent efforts to model cleavage by self-consistent models of dislocation arrangements in the
vicinity of a crack tip and their impact on crack propagation and cleavage fracture should be
mentioned [4], but are not feasible for an engineering level of modelling.

Local fracture criteria in the ductile regime rely on models of void formation, growth [30, 32,
54, 65], and coalescence [72, 73].

In the transition regime, competition between cleavage and ductile fracture is present and gov-
erns the failure behaviour. While uncoupled models essentially consider void formation in a
stress field of undamaged material [2], coupled models contain the effect of damage on the
stress field [39]. Uncoupled models have some application in the post-processing of existing
results, where stress field solutions are already available, while new problems are usually anal-
ysed using coupled models that are currently available in most academic as well as commercial
FE codes.

For intergranular brittle fracture and multiaxial loading conditions, [37] provide a verification
of the Beremin model after observation of the orientation of fracture surfaces and the necessity
of plastic deformation for the initiation of brittle fracture.

6



3

Numerical analysis of cleavage fracture
parameter in the lower shelf regime

Cleavage fracture is a process that is triggered by micro-crack formation and propagation within
the material. Micro-crack formation is a local process and governed by the microstructure of
the material. Inhomogeneous plastic deformation leads to yielding of suitably oriented grains
and causes dislocation pileups that lead to the formation of a population of micro-cracks im
the material. The size and orientation of the micro-cracks depend on the microstructure of the
material, especially on inhomogeneities such as precipitations, grain boundaries, or inclusions.
While in the beginning most of the initiating cracks remain stable and do not propagate, with
increasing load level, the stress acting on a certain micro-crack may exceed its critical value and
unstable fracture will lead to final failure.

The overall stress level at which final failure occurs will depend on the size of the micro-crack;
for inhomogeneous stress fields, it will also depend on its location and orientation. The size of
the micro-crack is random, micro-cracks will also be distributed randomly within the material
so that location and orientation are random quantities as well.

Final cleavage fracture is therefore a stochastic event and has to be treated accordingly.

The stochastic variable that is used for cleavage fracture modelling is called the Weibull stress.
It is obtained by an elasto-plastic analysis of the stress field at fracture. A suitably chosen
loading parameter is necessary which is accessible experimentally and numerically.

The basic relations and numerical procedure of the Weibull stress analysis, known as the local
approach to cleavage fracture, are given in the following section. After that, statistical analysis
of experiments is addressed leading to distribution parameters of the Weibull stress. Finally,
statistical uncertainties are investigated.

3.1 Basic relations and numerical procedure

The basic line of arguments in the establishment of Local Approach in the field of cleavage
fracture ([2, 5, 37, 44]) are based on some essential assumptions which are summarized below.
The reasoning which leads to the essential relations that govern Weibull stress considerations is
given in the sequel. The following assumptions characterize the micromechanical and statistical
model:
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� There is a large population of weak spots in the material, which can be modelled in the
framework of fracture mechanics (e.g. as penny-shaped cracks)

� Failure of the material starts from and is triggered by the most dangerous ’weak spot’

� The weak spots are randomly distributed within the material

� The weak spots are acting independently, i.e. there is no interaction

� The weak spots become ’active’ with the onset of plastic deformation, i.e. only weak
spots within the plastic zone are relevant for failure

� The size of the weak spots is a random variable

� The critical size of a weak spot is described within the framework of fracture mechanics
through a relation of the form

ac(~r) =
Wp

σ2
c(~r)

(3.1)

where Wp contains parameters of the material relevant for fracture resistance as well as
crack geometry parameters and σc is the stress at location~r that is responsible for fracture
(usually the first principal stress).

Based on these assumptions, the probability for failure of a single weak spot is just the proba-
bility that its size a exceeds the critical size ac (Eqn. 3.1) and is given by the relation

P(a > ac) =
Z ∞

ac(~r)
fa(a)da (3.2)

where fa is the probability density of the size distribution of the weak spots.

Now we are prepared to calculate the probability of failure for a given specimen or component.

We will proceed in two steps. In the first step, Step 1, we will assume, that there is exactly one
weak spot in the specimen. In the second step, Step 2, we will take into account the contribution
of a random number of k weak spots per specimen.

Step 1 - One weak spot of random size in the specime n

We calculate the probability Q1 for the weak spot to cause failure of the specimen. Q1 is given
by

Q1 =
1

Vpl

Z

Vpl

Z ∞

ac(~r)
fa(a)dadV (3.3)

where fa is the probability density of the size distribution and Vpl denotes the volume of the
plastic zone. Here, it is assumed that weak spots are distributed randomly within the plastic
zone and that the location of the weak spots follows a uniform distribution. Thus, Vpl can
be interpreted as a normalization parameter of the location distribution and dVpl =Vpl is the
probability of having a weak spot in a randomly chosen volume dVpl at an arbitrary location
within the plastic zone. Now we proceed to

8



Step 2 - k weak spots in the specimen

We now assess the probability for at least one out of a random number of k weak spots in the
specimen to cause failure. If we have k independent weak spots, the survival probability Rk of
the specimen is

Rk = (1�Q1)
k (3.4)

where Q1 is the failure probability of one weak spot. If there is a mean number of M weak spots
per unit volume, the probability pk of having exactly k weak spots in the plastic zone is given
by the POISSON distribution with mean MVpl and leads to

pk =
(MVpl)

k

k!
exp(�MVpl) (3.5)

We obtain the survival probability Ps of the specimen by summing up the contributions for all
possible numbers of weak spots in the specimen

Ps =
∞

∑
k=0

pkRk (3.6)

and, using Eqns. (3.4) and (3.5), we finally end up with the relation

Ps = exp(�MVplQ1) (3.7)

which leads to the failure probability Pf of the following form:

Pf = 1�Ps

= 1� exp
�
�MVplQ1

�
= 1� exp

0B@�M
Z

Vpl

Z ∞

ac(~r)
fa(a)dadV

1CA (3.8)

To determine the failure probability Pf , some knowledge of the size distribution of the weak
spots is necessary. Assuming a decay of the probability density fa which is of a power-law
type: fa(a) ∝ a�n, the second integral of Eqn. (3.8) takes on the following form:

Z ∞

ac(~r)
fa(a)da =

C
n�1

ac(~r)
�(n�1) (3.9)

with a normalization constant C. With Eqns. (3.1) and (3.9) we obtain Q1 from Eqn. (3.3) as

Q1 =
C

(n�1)W n�1
p

1
Vpl

Z

Vpl

σ2(n�1)
c dV (3.10)
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and it is now possible to define a new variable termed the Weibull stress σW . This is done by
inserting Q1 into Eqn. (3.8) and observing that we may write Pf in the following alternate form:

Pf = 1� exp

�
�
�

σW

σu

�m�
(3.11)

with σW defined through

σm
W =

1
V0

Z

Vpl

σm
c dV with m = 2(n�1) (3.12)

and σu defined through

σm
u =

(n�1)Wn�1
p

MV0C
(3.13)

so that it is possible to interpret the failure probability Pf as the value of the cumulative distri-
bution function of the Weibull stress σW at failure:

Pf = FσW (σW )

= 1� exp

�
�
�

σW

σu

�m�
(3.14)

This means, that we have introduced the Weibull stress σW as a random variable that character-
izes the fracture resistance of the material against cleavage (brittle) fracture. The Weibull stress
σW at failure is a material parameter (i.e. it is independent of the stress state in the material)
but may depend on temperature. (Recent work, however, indicates that this is perhaps not the
case [29].) The Weibull slope m characterizes the scatter of the Weibull stress. The C.O.V
(coefficient of variation) of σW is a function of m alone and given by

COVσW =

q
Γ(1+ 2

m)�
�
Γ(1+ 1

m)
�2

Γ(1+ 1
m)

(3.15)

(see Fig. 3.1). The parameter σu gives the 1�1=e (=63.2%)-quantile of σW .

The unit volume V0 which appears in eqns. (3.12) and (3.13) is introduced for dimensional
purposes only and is usually set to 1mm3. 1

For the analysis, the Weibull stress at fracture has to be determined from suitably chosen exper-
imental loading parameters, such as e.g. the diameter reduction for notched tensile specimens
at fracture or the value of the J-integral for cracked specimens.

1Some authors use V0 as an additional parameter related to σu (see e.g. [5, 44]) chosen to be small enough
that stress gradients can be neglected and large enough that the weakest link argument for finding a micro-crack
of a given size still holds (e.g. 10 grains). If stress gradients are important for the fracture behaviour, this can be
directly incorporated into the fracture model leading to eq. (3.14) at the expense of losing the meaning of σ u and
m as material parameters (see Chapter 7).
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Figure 3.1: COV of Weibull distributed random variate for different moduli m

3.2 Numerical integration of finite element stress results

For numerical reasons, the integration of the Weibull stress according to eq. (3.12) is performed
after normalizing σ1 by a suitably chosen reference stress, e.g. the flow stress. This is done
to avoid numerical difficulties resulting from large values of the Weibull exponent m which is
typically in the range of 10-30. The correction is removed after the numerical integration is
complete. Eq. (3.12) then reads:

�
σW

σref

�m

=
1

V0

Z

Vpl

�
σ1

σref

�m

dV (3.16)

and final correction is simply made by multiplying the resulting integral value by the value of
the reference stress σm

ref.

The first principal stress values σ1 are obtained from the ABAQUS stress analysis with the
help of the post-processing routine WEISTRABA described in [58]. Stresses are given at the
integration points of the ABAQUS elements. Reduced integration is used, which means that
we have 2x2=4 integration points per element in the 2D case and 2x2x2=8 integration points in
3D problems. The Weibull stress is integrated element-by-element. In the general case of a 3D
model, we have

σW = σref

"
1

V0
∑
el

σWel

# 1
m

with the auxiliary quantity of

σWel =
ki

∑
i=1

wi

k j

∑
j=1

wj

kk

∑
k=1

wk

�
σ1(ri; s j; tk)

σref

�m

(detJ(ri; s j; tk)) (3.17)

with ki, k j, kk the number of integration points in each dimension and wi, wj, wk the respective
weights. The contributions from each element are summed up to give the final result. For
ki = k j = kk = 2, we have wi = wj = wk = 1 and ri, s j, tk =�1=

p
3.
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A plastic zone indicator flag is used to extend numerical integration only over the plastic zone
and not over the entire volume of the specimen. This plasticity flag is set to 1 for each integration
point where plasticity occurs (in terms of a von Mises yield criterion or by checking the plastic
strains of the FE output) and 0 otherwise. Any averaging procedures are avoided. Only the
stress values at the integration points, which are known to be the most exact values within an
element [3], are used.

For each FE load step, corresponding to a specimen fracture event, the first principal stress
values are checked against the values of the previous step and a stress envelope is constructed
to take into account locally decreasing stresses due to stress redistribution which may lead to
decreasing values of the local risk of rupture.

3.3 Statistical inference

Due to the large scatter present in cleavage fracture parameters, statistical inference methods
are necessary. Point estimators and confidence bounds are obtained by using well established
statistical inference methods such as the maximum likelihood method. In the statistical liter-
ature, special results are available for the parameter estimation in case of Weibull distributed
random variates [71]. These results are used for initial parameter estimation and determination
of confidence bounds. However, the use of maximum likelihood confidence bounds is of limited
value because it turns out that the distribution parameters m and σu according to Eqn. (3.14) are
not independent as can be seen from Eqn. (3.12).

If different samples have to be investigated with respect to compatibility, advanced statistical
inference methods are preferred. These are addressed shortly and described in more detail in
Chapter 4.

The maximum likelihood parameter estimates are used to calculate the local risk of rupture.
The local risk of rupture is a useful quantity for the prediction of the fracture origin location
distribution and allows comparison with fractographic results.

3.3.1 Maximum likelihood parameter estimation

The determination of the two parameters m and σu has to be performed iteratively as σW depends
on the (unknown) parameter m [43].

Step 1: A starting value of e.g. m = 20 is used and the Weibull stress σW at fracture is calcu-
lated for each fractured specimen (i.e. at different load steps according to the experimental
loading parameter) as described above.

Step 2: A plotfile is generated containing the results in increasing order of Weibull stress σW

together with lnln[ 1
1�F(x(i))

] as a function of lnx(i), where x(i) is the Weibull stress of

the specimen with rank i and F(x(i)) =
i

N+1 is the mean (cumulative) frequency of the
i-th observation (using i

N+1 as plotting position is generally recommended for statistical
reasons – e.g. [27] –, although it plays no role provided that the maximum likelihood
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method is used for parameter estimation). As the theoretical relation between failure
probability and σW is given by

Pf = 1� exp

�
�
�

σW

σu

�m�
,

a plot of lnln[ 1
1�F(σW(i)

)
] versus lnσW(i) , where σW(i) is the “experimental” Weibull stress

for the specimen with rank i, should give an approximately linear relation.
(Step 2 is only for illustration and not necessary for Step 3)

Step 3: The maximum likelihood method is used to determine the parameters m and σu of the
Weibull distribution of the Weibull stress. The maximum likelihood estimators of m and
σu are denoted by m̂ andcσu, respectively. m̂ is the solution of the non-linear equation

N
m̂
+

N

∑
i=1

lnσW(i)�N
∑N

i=1 σm̂
W(i)

lnσW(i)

∑N
i=1 σm̂

W(i)

= 0

which is obtained by an interval sectioning procedure. Using m̂, the maximum likelihood
estimatorcσu is obtained from the equation

cσu =

 
1
N

N

∑
i=1

σm̂
W(i)

! 1
m̂

The parameter m̂ is corrected with the unbiasing factor b(N) [71]:

m̂unb = m̂�b(N)

(see also Table B.5).

Step 4: If the maximum likelihood estimatorscσu and m̂unb agree within a fixed tolerance with
those of the previous iteration, their values are considered acceptable. Otherwise, steps 2-
4 are repeated. A flow diagram is given in Figure 3.2 on page 14 to illustrate the iterative
procedure.

3.3.2 Maximum likelihood confidence intervals for m and σu

Confidence intervals for the Weibull parameters m and σu determined by the maximum likeli-
hood method are obtained according to the following procedure:

1. For a confidence level 1�α (80 %, 90% or 96% is possible, i.e. α = 0:20, α = 0:10 or
α = 0:04) α1 = α=2 and α2 = 1�α=2 are calculated.

2. t1(N; α1) and t2(N; α2) are taken from Table B.6
A =cσu � exp(�t2=m̂) and B =cσu � exp(�t1=m̂) are calculated.
[A; B] is reported to be the confidence interval for σu for a confidence level of 1�α.
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Fix initial m

#

Step 1: Calculation of Weibull stress σW

#

Step 2: Plot of lnln[ 1
1�F(xn)

] as a function of lnx(n)

#

Step 3: Calculation of m̂unb andcσu

#

Step 1 with m = m̂unb  no Step 4: m̂unb � initial m ?

yes #

m̂unb,cσu

Figure 3.2: Flow diagram for iterative Weibull parameter estimation procedure

3. l1(N; α1) and l2(N; α2) is taken from Table B.7
C = m̂=l2 and D = m̂=l1 are calculated.
[C; D] is reported to be the confidence interval for m for a confidence level of 1�α.

These quantities have to be calculated with the maximum likelihood estimate of m without the
unbiasing factors, m̂, and not from m̂unb.

Note: The confidence intervals for m and σu are valid only, if m̂ and cσu were obtained by
the maximum likelihood method. Any other estimation procedure for the Weibull parameters
yields different confidence intervals.

The Tables B.5 - B.7 were taken from Ref. [71]. 2

Upon completion of the analysis, a plotfile is generated. It contains the values of the Weibull
stress as well as pre-processed data in a form that allows immediate generation of a Weibull
plot via some plotting programs like e.g. gnuplot. Figures A.42 and A.43 are generated in this
way. The calculated values for lnσW are plotted together with the Weibull distribution which is
a line with the slope m̂ and containing the point (cσu; 0).

3.3.3 Improved confidence intervals from bootstrap procedures

It should be emphasized that the evaluation of the distribution parameters of σW , namely m
and σu, is based on statistical inference methods that are applied without fully meeting the
conditions of their applicability. It is not clear beforehand whether the maximum likelihood
parameter estimation gives valid results for the present case, where the random variate depends
on the distribution parameter itself and an iterative procedure is used to obtain consistent results.

2An EXCEL template for the evaluation of the Weibull parameters is available upon request from the first
author: riesch-oppermann@imf.fzk.de.

14



There are no methods available to quantify the statistical properties of the estimators of the
Weibull parameters.

For these reasons, the confidence intervals based on the results found by Thoman et al. [71] and
used in the ESIS P6 procedure [21] may only approximately reflect the statistical uncertainty
of the parameter estimates. This situation is completely different from the Weibull parameter
estimation in the strength measurement for ceramics, where no iterative procedure is required.

There are novel statistical techniques capable to reflect the complex behaviour of random vari-
ates because they are not based on parametric models: so-called bootstrap or resampling meth-
ods can be used to generate confidence intervals by simulation [20]. The parent distribution
used for the simulation is the empirical distribution of the available experimental sample. The
essential advantage over classical statistical inference methods is the fact that these methods use
empirical distributions of statistical estimates for the generation of confidence intervals. Thus,
there is no need to know the closed-form solution for the distribution of the statistical estimate as
is the case in the classical methods. From a statistical point of view, this is equivalent to the use
of non-parametric maximum-likelihood estimators instead of parametric maximum-likelihood
estimators, for which the usual confidence intervals are generated [14].

Resampling methods are well-known in the field of medicine and biology, but only begin to en-
ter in materials science [24], though there is some effort to base coding schemes on resampling
ideas [12].

In Chapter 4, results for parameter correlation and confidence intervals are given and compared
with standard Maximum Likelihood results.

3.4 Local risk of rupture prediction

Using weakest link arguments, it is possible to obtain the probability that fracture is initiating
from a micro-crack at a specific location in the specimen with arguments similar to those used
in [82]. Two events must be present: (A) a micro-crack must be present at this location and,
(B), the stress must be sufficiently high to cause unstable propagation of the micro-crack.

3.4.1 Basic relations

In statistical terms, we obtain the local risk of rupture as conditional probability of having a
micro-crack in some sub-volume, Vs, of the specimen under the condition that this micro-crack
causes unstable fracture. If A denotes the event that a micro-crack is located within a certain
sub-volume, Vs, the probability P(A) is given by

P(A) =
Vs

Vpl
(3.18)

for a material with homogeneously distributed micro-cracks within the plastic zone Vpl . The
probability P(B) that a given micro-crack causes failure is identical with Q1 given in Eqn.
(3.10):

P(B) = Q1 = C̃
Z

Vpl

σm
1 dV (3.19)
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The proportionality factor, C̃, contains material characteristics of micro-crack fracture resis-
tance as given in Eqn. (3.10). The conditional probability P(AjB), i.e. the probability that
a certain micro-crack that causes fracture is located within sub-volume Vs, is obtained using
Bayes’ theorem by

P(AjB) =
P(A\B)

P(B)
(Bayes0 theorem) with

P(A\B) = C̃
Z

Vs

σm
1 dV (3.20)

P(A\B) is obtained according to Eqn. (3.20) by integrating P(B) over Vs only (instead of Vpl)
so that finally P(AjB) is obtained as:

P(AjB) =

C̃
Z

Vs

σm
1 dV

C̃
Z

Vpl

σm
1 dV

=

Z

Vs

σm
1 dV

V0 σm
W

(3.21)

Eqn. (3.21) shows that P(AjB) depends only on the scatter of the Weibull stress σW , which
is characterized by the Weibull modulus, m, but not on its characteristic value, σu. This is
expressed by the fact that C̃ can be cancelled in Eqn. (3.21).

For infinitesimal Vs, we obtain from the integrand of Eqn. (3.21) a (conditional) probability
density πi(~xjσW (i)) of the local risk of rupture at location~x which is given by:

πi(~xjσW (i)) =
σm

1 (~x; i)

V0 σm
W (i)

(3.22)

πi(~xjσW (i)) characterizes a certain load level i, so that only the fracture origin distribution at
this particular load level is obtained. Experimentally, however, the observed fracture origins
correspond to different load levels. In the experiment, we observe the (unconditioned) proba-
bility density π(~x), which can be obtained by integrating πi(~xjσW (i)) over the whole range of
σW . The integrated local risk of rupture density π(~x) is then obtained as:

π(~x) =
∞Z

0

πi(~xjσW ) fσW (σW )dσW (3.23)

where fσW (σW ) denotes the probability density of the Weibull stress σW . Eqn. (3.23) can
be solved by numerical integration over a suitable load level range covering the experimental
values of σW .

π(~x)�
n

∑
i=0

πi(~xjσW (i)) [σW (i)�σW (i�1)] (3.24)
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with σW (0); : : : ; σW (n) chosen appropriately.

Appropriate choice of the range σW (0); : : : ;σW (n) and the necessary refinement of loading
range intervals ∆σW (i) can be checked by the fact that π(~x) is a probability density so that
integration over the total volume of the specimen should give a value of unity:

Z

V

π(~x)dV = 1: (3.25)

3.4.2 Results for notched specimens

Figures A.31 and A.32 show the integrated local risk of rupture for the 1mm and 2mm notched
specimens tested at -150�C.

In case of the 2mm notched specimens, the fracture origins tend to be located near the specimen
axis. For the 1mm notched specimens, the fracture origin locations are predicted to lie in the
middle region between specimen axis and notch root.

These results agree with the fracture origin distributions from the corresponding experiments,
which are shown in Figure A.33 [76].

It is essential to integrate the local risk of rupture over the whole range of Weibull stresses
because otherwise only results for specific loadcases would be obtained. A typical example is
shown in Figures A.29 and A.30, where the local risk of rupture density for small and large
Weibull stress values are showed. With increasing loading, the region of maximum density
values for the local risk of rupture is shifted towards the specimen axis.

3.4.3 Results for pre-cracked specimens

For pre-cracked specimens, preliminary calculations lead to a predicted local risk of rupture
which is confined to a small region (� 40µm) close to the crack tip. Interpretation of this result
has to be done with some caution, because no effects of stress redistribution due to ductile
void formation were taken into account. Figure A.49 shows the contours of the local risk of
rupture density at a load level corresponding to the highest fracture strain for deeply notched
pre-cracked specimens (see also Chapter 6).
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4

Statistical inference by bootstrap
simulation

This chapter contains results obtained with the help of some novel statistical techniques, known
as bootstrap or resampling techniques as well as some background needed for basic under-
standing of the methodology. Bootstrap methods (also known by the more descriptive name
resampling methods) have been well-known since about 20 years in the field of biological and
medical research [20] both because of the large economic impact of statistically-based deci-
sions and because of the lack of analytical solutions for sophisticated statistical models, but
they are relatively unknown in materials science. The methods rely heavily on the availability
of sufficient computing power, which is the main reason for their coming up only recently.

Their essential advantage is that analytical solutions are replaced by suitably designed statistical
simulations. Parametric as well as non-parametric stochastic models can be used which makes it
possible to adapt modelling to the available knowledge. Especially for the case of small sample
sizes, where statistical inference methods based on large sample approximations fail, use of
bootstrap methods leads to significantly enhanced power of statistical inference results.

4.1 Background and procedure

Traditional methods of statistical inference are based on the fact that estimates of parameters
calculated from random samples are themselves random variates (also known as statistics).
Often, they have known statistical distributions, at least under certain conditions with respect to
the sample value distribution and/or the sample size. As an example, the mean of a sample of
independent identically distributed variables is known to follow a normal distribution for large
sample sizes, the variance of a random sample of known mean value is χ2-distributed. If closed-
form distributions cannot be obtained, it is sometimes possible to obtain special-case solutions
and to derive general solutions by an appropriate transformation of the variables. This is for
instance done in [71] for the distribution of the maximum likelihood estimates m̂ andcσu which
can be obtained from the special case of a Weibull distribution with m = σu = 1, i.e. a standard
exponential distribution.

From the known statistical distributions, confidence intervals are obtained easily by using quan-
tiles of the respective distributions.
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In the present case, however, where the Weibull stress σW is the random variable under consid-
eration, the situation becomes somewhat difficult. From the definition of σW (see Eq. (3.12)), it
follows that σW itself contains the (originally unknown) distribution parameter m. This, in prin-
ciple, violates the conditions of applicability of conventional methods of statistical inference.
The results obtained for estimates and confidence intervals are therefore only approximate.

4.1.1 Basic idea of bootstrapping

One way of dealing with the lack of closed-form expressions for statistical quantities is to
use Monte Carlo methods. Bootstrapping is one of them. In the following, a very concise
description of the bootstrap method mainly based on [20] is given. (We use the traditional
nomenclature, hats (:̂) denote estimates, asterisks (:�) denote quantities related to bootstrap
samples, n is the sample size, B is the number of bootstrap simulations.)

Suppose we observe x1; : : : ;xn independent data points, from which we compute a statistic of
interest s(x1; : : : ;xn).

A bootstrap sample x� = (x�1; : : : ;x
�

n) is obtained by randomly sampling, n times, with replace-
ment, from the original data points x1; : : : ;xn. If this is repeated B times, we can generate a large
number of independent bootstrap samples x�1; : : : ;x�B, each of size n.

Corresponding to each bootstrap sample x�b there is a bootstrap replication of s, namely s(x�b),
the value of the statistic of interest computed for sample x�b.

Besides s(x�b), we also obtain a bootstrap estimate for its standard deviation, namely

bseboot =

vuut 1
B�1

B

∑
b=1

�
s(x�b)� s(:)

�2
(4.1)

where s(:) = ∑B
b=1 s(x�b)=B is the mean value of the statistic s after B bootstrap simulations.

4.1.2 Bootstrap confidence intervals

Using bseboot and s(:), it is possible to attribute confidence intervals to bootstrap estimates θ̂�(:)=
∑B

b=1 θ̂�(b)=B, where θ̂�(b) = s(x�b) is the bootstrap replication of θ̂ = s(x1; : : : ;xn) as defined
above. For example, we obtain the usual standard normal (1� 2α)-confidence interval for θ,
which is

θ̂� z(α)� bse (4.2)

where z(α) is the α-quantile of a standard normal distribution, e.g. z(0:95) = 1:645 for the 90%
confidence intervals. This leads to the so-called standard bootstrap confidence intervals which
still rely on normal theory assumptions as can be seen from Eq. (4.2), which only holds exactly
if θ̂ follows a normal distribution.

But it is also possible to obtain accurate confidence intervals for non-normally distributed statis-
tics, i.e. without relying on normal theory assumptions. This is done by using Ĝ, the cumulative
distribution of the bootstrap replications θ̂�. The 1� 2α percentile interval for θ is defined by
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the α- and (1�α)-quantiles of Ĝ. From B independent bootstrap samples, we obtain the per-
centile confidence intervals by taking the B�α-th value in the ordered list of the B bootstrap
replications of θ̂� as the lower limit and the B� (1�α)th value of the list as the upper limit of

the confidence interval. These empirical percentiles are denoted θ̂�(α)B and θ̂�(1�α)
B respectively

and the percentile confidence interval reads

[θ̂�(α)B ; θ̂�(1�α)
B ] (4.3)

for a confidence level of 1�2α.

Some drawbacks of the percentile intervals with respect to coverage probabilities are handled
by an improved version of the percentile method including bias correction in the bootstrap
replications. Bias correction z0 is obtained from the cumulative distribution function Ĝ of the
bootstrap replication and the original estimate θ̂ of the original sample via

z0 = Φ�1(Ĝ(θ̂)) (4.4)

where Φ�1(:) is the inverse standard normal cumulative distribution function (CDF). We obtain
the bias-corrected bootstrap confidence intervals as

�
Ĝ�1 �Φ(2z0 +Φ�1(α))

�
; Ĝ�1 �Φ(2z0+Φ�1(1�α))

��
(4.5)

with z0 from Eq. (4.4). Confidence intervals according to Eq. (4.5) are used throughout the
presentation of the bootstrap results in the following section. Calculation of z0 is indicated in
some of the Figures, e.g. A.36, A.37, A.39, A.38. z0 = 0 indicates no bias correction. In that
case, the lower limits of the confidence intervals would coincide with the empirical CDF shown,
as nearly is the case in Figure A.39. z0 6= 0 leads to a shift of the confidence intervals.

Further improvements of confidence levels can be obtained by application of still more advanced
methods like the BCa-method or the ABC-method suggested in the statistical literature [20].
These methods have not yet been implemented and therefore are not used in the sequel.

4.2 Results

The general ideas presented in the previous section are now applied to obtain confidence inter-
vals in the specific case of the Weibull parameter estimation of the Weibull stress.

4.2.1 Weibull stress bootstrapping procedure

In the present case, where we are interested in statistical inference about the distribution pa-
rameters m and σu of σW , the basic situation is as follows: the original sample consists of the
n values of ∆D at fracture or - equivalently - of the n maximum principal stress envelopes at
fracture, from which the σW -values are computed. In this case, the statistic under consideration
is not available as an analytical expression, but only numerically as a result of an iteration al-
gorithm. When doing bootstrap simulations, this does not cause any problem. The procedure
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is explained for the parameter m for the sake of simplicity; more accurately, we should use
(m; σu) as a two-dimensional statistic.

From the original sample, we obtain the original estimate θ̂ = m̂ using the iterative maximum
likelihood procedure together with the usual maximum likelihood confidence intervals.

Bootstrapping is now performed by randomly sampling, n times, with replacement, from the
sample of the ∆D at fracture, from which n values, σ�

W(1)
; : : : ;σ�

W(n)
, are computed. This is

repeated B times, thus giving B samples σ�b
W . For each bootstrap sample, a value of m̂�(b) is

obtained by the iterative maximum likelihood procedure.

After completion of the bootstrap simulations, the bootstrap confidence intervals are generated
according to Eq. (4.5) for confidence levels (1� 2α) corresponding to α = 0:02;0:05;0:10 in
agreement with the maximum likelihood confidence intervals available from literature [21, 71].

4.2.2 Bootstrap results for parameter estimation

The pairs of corresponding outcomes for the parameters of the Weibull stress distribution,
(m̂�(b); σ̂u

�(b)); b = 1; : : : ; B are directly available from the bootstrap simulation. m and
σu appear to be strongly correlated as can be seen from Figure A.34 for the 1mmm notched
specimens tested at 150�C.

Incidentally, this remarkably strong dependency of the two parameters does not occur in the case
of a Weibull parameter estimation for strength measurements in ceramics, where also weakest
link mechanisms determine the fracture behaviour. Even if a strong R-curve behaviour suggests
some deviation from the Weibull distribution assumptions, the correlation seems to be very
small [57].

The pronounced correlation which is present in the Weibull stress results is a consequence of
the fact that σW contains the Weibull modulus m (see Eqn. (3.12) on page 10).

4.2.3 Bootstrap results for confidence intervals

Figure A.36 shows the bootstrap results for m in terms of the empirical CDF Ĝ for the 1mm
notched specimens tested at -150�C. Bootstrap confidence intervals for confidence levels are
indicated by horizontal lines at the appropriate CDF levels of 2, 5, and 10%, respectively, corre-
sponding to 96%-, 90%-, and 80%- confidence intervals. From the value of the bias correction
variable z0 = �0:29, it can be seen that there is a considerable bias in the bootstrap estimate
towards higher values. The confidence interval limits are therefore shifted towards lower m-
values, as can be seen in Figure A.36 (see also Table B.4 for the numerical results).

For the 2mm notched specimens tested at -150�C, results for m in terms of the empirical CDF Ĝ
are shown in Figure A.37. The bias correction variable z0 amounts to z0 =�0:20. The shape of
Ĝ(m) indicates that there is a considerable fraction of quite large values of m in the simulation.

The empirical CDF Ĝ of the parameter σ̂u for the 2mm notched specimens, which is shown in
Figure A.39 shows a quite strange behaviour, if compared to corresponding results for the 1mm
notched specimens in Figure A.38. A pronounced plateau around σu � 2000MPa indicated a
gap in the simulation results around this value.
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Examination of the corresponding (m̂; σ̂u)-points shows a clustering of the bootstrap simulation
results (see Figure A.35). Clustering does not occur for the r=1mm notched specimens (results
in Figure A.34). Figures A.35 and A.34 contain also the 90% confidence intervals for m̂ and
σ̂u, respectively, based on the maximum likelihood method. It is obvious, that the confidence
intervals give a poor reflection of the uncertainty in the two parameters, m̂ and σ̂u, so that their
use is of limited value for a transferability analysis of results for different specimen geometries.

Here, an additional feature of the bootstrap method has a useful application: the assessment of
confidence intervals for the complete CDF.

4.2.4 Bootstrap intervals for probabilities

Bootstrapping does not only allow conclusions to be drawn with regard to parameters, but also
inferences to be made regarding the entire CDF. This is not possible using ML confidence
intervals.

Figure A.40 contains results of the empirical CDF of the Weibull stress σW as outcome of the
bootstrap simulation procedure together with the respective 0.05- and 0.95- confidence limits.
The procedure to obtain these confidence limits is as follows:

During bootstrap simulations, a number of, say, B bootstrap samples is generated. From all
of the B bootstrap samples, we obtain B values corresponding to the quantiles of interest, e.g.
0.05- or 0.95-quantiles for each of the n probability levels corresponding to the original sample.

For each probability level, i=n, corresponding to the i-th value of an ordered sample of size n, a
90% confidence interval is so obtained. Figure A.40 contains two empirical CDFs, namely for
1mm- and 2mm- notched specimens tested at -150�C. Each of the two CDFs is enclosed in a
band formed by the limits of the 0.05- and 0.95-quantiles at the corresponding probability level.

The 90% confidence bands do overlap for all Weibull stress values. The empirical CDF of the
1mm notched specimens is completely contained in the quite wide 90% confidence band of
the 2mm notched specimens. Conversely, the empirical CDF of the 2mm notched specimens
is contained in the (smaller) 90% confidence band of the 1mm notched specimens only in the
upper regime of Weibull stress values. Figure A.40 indicates that both samples of Weibull
stresses are compatible.

Increasing the bootstrap sample size from B = 200 to B = 1000 does not change the width of
the confidence intervals significantly. Results are shown in Figure A.41 for the 2mm notched
specimens. This confirms that stable results even for confindence bounds are usually obtained
with a quite small number of simulations.

It should be emphasized that statistical inference based on bootstrap confidence intervals does
not rely on underlying assumptions about probability models and therefore is not restricted in
applicability like e.g. inference procedures based on the ML approach.
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5

Material characterization and design of
RNB specimens

5.1 Material characterization

The ferritic-martensitic chromium steel with designation F82H-mod was produced by NKK-
corporation (Japan). The material was vacuum-induction-melted and rolled plates of 7.5 as
well as 15 mm thickness were available for specimen fabrication. The plates were consec-
utively numbered and submitted to a heat treatment procedure which was performed by the
manufacturer.

5.1.1 Chemical composition and microstructure

The chemical composition is given in table B.1. The material is available in a reference heat
treatment condition of 1040�C/38min + 750�C/60min with a DBTT observed in Charpy V tests
of about �70 to �50�C [59]. In the reference condition, the material has fully martensitic
structure and is free of δ-ferrite. The average grain size is about 70µm with no significant
difference in LT, LS and TS orientation.

Due to the low carbon content, lath martensite is present with laths of about 2 µm thickness.
Laths are oriented along < 111>-direction within the former austenite grains. The laths as well
as the former austenite grain boundaries are decorated with (Fe;Cr;W)23C6 precipitates. These
M23C6 special carbides are homogeneously distributed. Their average size is about 0.20 µm and
the volume fraction is about 1.9%.

Additionally, oxide particles in the form of (Ti;Ta)(1�x)Ox�Al2O3 are present in the material
with an average size of 5.7 µm and a volume fraction of about 0.057%. Fig. A.1 shows a SEM
image of a metallographic section in the reference condition.

5.1.2 Elasto-plastic deformation behaviour

A detailed knowledge of the stress-strain relation up to fracture of the material is required for
the calculation of the Weibull stress at fracture at various temperature levels. Tensile tests with
smooth cylindrical bars were conducted at -150�C, -75� C and ambient temperature. Young’s
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modulus E and true stress-strain curves were obtained from load F vs. extensometer longitudi-
nal displacement l measurements (see Fig. A.15) up to necking of the specimens. True stresses
σ and ε were calculated from engineering stresses s = F=A0 and strains e = ∆l=l0 according to
the relations:

ε = ln(1+ e) and σ = s(1+ e): (5.1)

Eqns. (5.1) are based on the presence of a homogeneous strain distribution along the gage
length and a constant volume relationship and thus are valid only to the onset of necking of
the specimen [16]. An elastic-plastic material law with a hardening exponent of n = 0:07 and
temperature dependent parameter K was fitted to the true plastic strain range of [:1; : : : ;10%]
according to the so-called Ludwik [41] or Hollomon relation

σ = Kεn
pl: (5.2)

A summary of the parameters that were used for the subsequent analysis of the RNB specimens
is given in Table B.2.

Figure A.14 shows the obtained stress-strain curves for -150� C, -75�C, and ambient tempera-
ture up to necking together with the Ludwik approximation that was used to extrapolate beyond
the range of extensometer recordings.

Beyond necking (i.e. for strains exceeding about 7-13%, see Fig. A.16), the calculated stresses
and strains from load-displacement recordings become invalid, for reasons mentioned above.
For a detailed analysis of the uniaxial stress-strain behaviour after necking, stress corrections
using the shape of the developing neck [7] would be necessary because of the multiaxial stress
state after necking and the corresponding increase of the yield stress compared to uniaxial load-
ing.

Fig. A.16 shows that the power-law fit is relatively poor at low strains, especially in cases,
where a slight yielding plateau can be observed. However, a parametric description of the
stress-strain law is useful if systematic investigations on material behaviour are envisaged [17].
In the following, mainly the parametric description of the stress-strain law is used. Due to
difficulties in the numerical stability, piecewise linear approximation of the stress-strain law is
preferred if large fracture strains are to be modelled.

5.2 Design of axisymmetrically notched (RNB) specimens

The results of the elasto-plastic characterization were used to select suitable notch geometries.
In order to avoid effects from notch root finishing and to ensure that fracture is initiating from
locations well inside the material, the final geometries were selected in a way that the axial
stress in the plane perpendicular to the notch root attains its maximum inside the specimen.
Also the course of the axial and circumferential stresses as well as the degree of multiaxiality
in that plane should vary significantly for the various geometries.
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5.2.1 Finite Element analysis of RNB specimens

Large strain deformation plasticity calculations with the ABAQUS Finite Element code [1]
with a Ramberg-Osgood material law equivalent to Eqn. (5.2) were performed. Eight-node
axisymmetric elements with reduced integration were used for the analysis. A basic geometry
of cylindrical notched bar specimens with 10mm diameter, notch depth 2.5mm was selected.
From the results of the Finite Element Analysis, notch radii of 1, 2, and 5mm were chosen. An
example of the obtained stress distributions for the 1mm notched specimen at the three different
temperature levels is shown in Fig. A.17 together with the used finite element mesh. Figures
A.18 and A.19 show the results for the 2mm and 5mm notched specimens, respectively. The
stress curves show the axial stresses along a line from the notch root to the specimen centre.
Results for the multiaxiality h, which is defined as

h =
σkk

3σeq
(5.3)

are shown in Figures A.20, A.21 and A.22, respectively, each Figure containing results for the
three different temperature levels of -150� C, -75�C, and ambient temperature. Figures A.23,
A.24 and A.25 show corresponding results for the von Mises stress distribution, Figures A.26,
A.27 and A.28 contain the equivalent plastic strains along the line from the notch root to the
specimen centre.
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6

Cleavage fracture results

Chapter 6 contains experimental results for Weibull stress parameters obtained from on axisym-
metrically notched specimens. Additionally, axisymmetrically pre-cracked specimen results are
given. For both cases, Weibull stress results and results of the accompanying fractographic in-
vestigations are compared.

6.1 Tensile tests on axisymmetrically notched bars

Following the results of the Finite Element stress and multiaxiality results, axisymmetrically
notched bar specimens with a raw diameter of 10mm and a minimum diameter of d0 = 5mm
were fabricated from plates of 15mm thickness. The orientation of the specimen axis was
perpendicular to the main rolling direction. Notches of 1, 2, and 5mm radius were introduced
and surface finish of the notches was achieved by polishing in axial direction. All specimens
were measured and the initial notch diameter compared to the nominal values.

The tests were performed on a Instron 50kN servohydraulic tensile testing machine under dis-
placement control with a crosshead speed of .5mm/min and continuous recording of load F
and minimum notch diameter d. Continuous recording of the minimum notch diameter d was
performed using an optical data acquisition system described in Ref. [77].

A brief description of the experimentally determined quantities at fracture as well as the respec-
tive fractographic results is given in this section.

6.1.1 Deformation and fracture

For the numerical evaluation of the tests, the load (F) vs. reduction of diameter (∆d) curve is
required. For a temperature level of -150�C, Figure A.4 shows the calculated curves together
with the values of the specimens at fracture. For the sharp (1 mm) notched specimens, the
fracture occurred before maximum load within a relatively small ∆d- range, whereas for the 2
mm notched specimens a larger range of ∆d at fracture was observed and some doubt on the
homogeneity of the data is caused by one specimen fracturing at a considerable larger ∆d than
the rest. Fractographic investigations revealed that the fracture appearance was quite different
from the rest of the sample (see below). This could be attributed to some irregularities in the
specimen preloading before testing.
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For the 5mm notched specimens, ∆d at fracture attained considerable larger values and exces-
sive plastic deformation occured. Surprisingly, the experimentally obtained values were still
met with good accuracy by the calculated F�∆d-curve despite the fact that no ductile damage
was contained in the constitutive Ramberg-Osgood model.

This behaviour is also reflected in the results of the observed mean stress σM = 4F=(πd2) and
mean strain εM = 2lnd=d0 at fracture given in Figures A.5 and A.6. At -75� C, all of the 5mm
notched specimens as well as some of the 2mm notched specimens exhibited pronounced drop
in the mean stress value which is also associated with an audible crackling during the course
of the test. This stress drop was taken as indicative for specimen failure and the corresponding
stress and strain values at fracture are those shown in Figure A.6.

Fractographic results given below will provide an explanation of the observed fracture be-
haviour.

6.1.2 Fractography

All of the tested specimens were fractographically investigated. Low resolution SEM images
were taken to show the overall fracture appearance and as basis for a subsequent location of
fracture origin location identification. A quantitative analysis of the fracture origins was per-
formed with respect to the kind of initiation sites, their size, and their location at the fracture
surface. A sizing of the fracture initiating defect was performed for a subsequent calculation of
local fracture toughness values.

Fracture appearance

Pure trans-granular cleavage fracture was observed for 1 and 2mm notched specimens at -
150�C. A mixed trans- and intergranular fracture appearance with some amount of ductile
damage was observed for the 5mm notched specimen at -150� C as well as for the 1mm notched
specimens at -75� C. The 2 and 5mm notched specimens at -75� C showed a substantial amount
of axial cracking, i.e. several micro-cracks are visible on the fracture surface with the micro-
crack planes in direction of the specimen axis. At RT, ductile fracture occurred for all specimen
geometries with populations of small and large voids corresponding to carbides and oxide in-
clusions, respectively.

Representative for the differences in the fracture behaviour, typical examples of fracture sur-
faces are shown in Figs. A.7 (pure trans-granular cleavage fracture, -150� C, 2mm), A.8 and
A.9 (mixed trans- & inter-granular cleavage fracture, -75�C, 2mm and -150�C, 5mm), and
A.13 (ductile fracture, RT, 1mm).

Fracture origin sites

Fracture origins were identified by following the river patterns in case of pure cleavage fracture.
At -150�C, for the 1 and 2mm notched specimens, oxide inclusions could be identified at most
of the fracture origin sites. The size of the inclusion was determined and a corresponding micro-
crack was approximated by a penny-shaped crack geometry. Here, we assume that initiation and
propagation of the micro-crack are uncoupled events. Initiation may occur in an early stage at
comparatively low stress levels. Initiated cracks lead to spontaneous fracture if the local stress
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exceeds some critical value. From the local stress at fracture and the micro-crack size, local
fracture toughness values can be obtained. Results are described later.

For the 5mm notched specimens, no identification of inclusions etc. at fracture origin sites was
possible. For two specimens, micro-cracks were identified at the respective sites.

At -75�C, mixed trans/inter-crystalline fracture was prevalent in all specimens. For the 1mm
notched specimens, fracture originated from the vicinity of ductile islands on the fracture sur-
face. For the 2 and 5mm notched specimens, axial cracking became even more pronounced with
fracture surfaces showing two large axial cracks of T- or X-shape which join at the specimen
centre (see Fig. A.10).

At ambient temperature, ductile fracture was observed for all specimen geometries (see Fig.
A.13 for a 1mm notched specimen). Two different void populations were present. The large
voids correspond to oxide particles whereas the small voids are generated by carbides.

Distribution of fracture origin locations

A quantitative statistical analysis of the fracture origin locations was performed in cases where
fracture origin localization was possible.

For the -150�C specimens with 1mm notch radius, fracture origins were evenly distributed
over a range from about 350 to 2100 µm measured from the specimen centre. A tendency was
observed that, with increasing fracture strain, fracture origins were located at lower distances
from the specimen centre.

For the -150�C specimens with 2mm notch radius, fracture origins were evenly distributed over
a range from about 250 to 1000µm measured from the specimen centre. No correlation between
the fracture origin locations and the fracture strains, which were larger than for the 1mm notched
specimens, was observed.

For the -150�C specimens with 5mm notch radius, fracture origins were concentrated within a
small region of 250-350µm measured from the specimen centre. The observed notch diameter
reduction at fracture was considerable larger than for the 1 and 2mm notched specimens.

Fig. A.46 gives the fracture origin locations and the corresponding fracture strain characterized
by the notch diameter reduction ∆d.

For the -75�C specimens, fracture origins were located evenly distributed along a distance of
5-700µm from the specimen axis. For the 5mm notched specimens, no fracture origins could
be localized.

Complementary analysis on axial cracking

Complementary investigations were performed to reveal the cause of axial cracks present in
some of the broken specimens. Flat specimens were tested at ambient temperature and after
fracture micrographs were taken from undeformed regions (Figure A.11) and from adjacent to
the necking region of the specimen (Figure A.12). The different orientation of the carbide dec-
orations indicating martensite laths is clearly visible. While the orientation of the martensite
laths is uniformly distributed in Figure A.11, plastic deformation of the specimen causes align-
ment of the martensite laths in axial (i.e. loading) direction. Change in orientation is connected
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with shear stresses acting on carbide decorated martensite laths so that finally cracks may be
able to initiate. The origin of cracks as shown in Figures A.7, A.10 and A.9 is attributed to that
kind of shear-controlled crack initiation mechanism.

6.1.3 Weibull stress results

Numerical analysis of the samples tested at -150� C and -75� C was performed according to
the numerical scheme described in Chapter 3 and led to the results given in Table B.3. Here,
maximum likelihood estimators m̂ and σ̂u are given together with the respective ML confidence
bounds. Bias correction for m̂ was applied according to Table B.5 to account for finite sample
size.

Two groups of results can be identified. The first group is characterized by moderate values
of m̂, whereas in the second group, m̂ attains high values of about 80-100. The first group
corresponds to low temperature testing conditions and small notch radii (see Weibull plot in
Figure A.42). The second group failed at considerable larger strains (see also Figures A.5 and
A.6).

As mentioned above, larger fracture strains correspond to the presence of a mixed trans- and
inter-granular fracture appearance. For the 2mm notched specimens tested at -150� C, one spec-
imen failed at considerable larger strain than the rest of the sample and exhibited also a mixed
trans- and intergranular fracture appearance contrary to the rest of the sample that failed by
pure trans-crystalline cleavage. There was some evidence that experimental conditions may be
responsible for the untypical fracture mode. An accidental preload was imposed to the speci-
men. On the other hand, in some cases cleavage fracture was observed well above the transition
temperature [13]. A stress analysis showed that the related loading was well below the elastic
limit so that there was no reason to exclude the specimen from the analysis.

Excluding the specimen from the sample would lead to a considerable change in the m̂-value
from 10.7 to 17.3 and to a change of σu from 2107 MPa to 1843 MPa. This shows the large
influence of single results on the distribution parameters for small sample sizes. For the purpose
of statistical inference, the full sample size was retained.

For future analyses, a complementary analysis has to be provided where the formation of cracks
due to plastic deformation of the material is addressed.

6.2 Tensile tests on axisymmetrically pre-cracked specimens

Tensile tests on axisymmetrically pre-cracked (RCB) specimens were performed in order to
confirm transferability of cleavage fracture parameters obtained at notched specimens to pre-
cracked specimens. RCB specimens are favoured for a number of reasons such as easy numer-
ical analysis and absence of edge effects in the stress field an have attracted special emphasis
for small specimen testing purposes [15]. Transferability between cleavage fracture parameters
obtained from notched and pre-cracked specimen tests is still an open issue and remains topic
of investigation for different materials [49].
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6.2.1 Geometry and pre-cracking procedure

The specimen geometry is based on the RNB basic geometry and is shown in Figure A.44.
Pre-cracking was done under rotating bend loading with a setup as shown in Figure A.45. The
initial prestressing load was adjusted by imposing a fixed deflection. After crack initiation, the
load drops due to the increasing compliance of the system. At a final load value, the specimen
is unloaded and dismounted.

For all of the specimens, a symmetric circular pre-crack could be obtained with negligible
eccentricity.

A total of fifteen specimens was available for testing at -150�C. Additionally, one specimen
was tested at -75�C and ambient temperature, respectively.

6.2.2 Testing and Weibull stress analysis

The specimens were tested under displacement controlled loading with a crosshead speed of
0.5mm/min. Load and longitudinal displacement were continuously recorded. An extensometer
(gage length 25mm) was used for the recording of the displacements that later served as loading
variable for the numerical analysis of the specimens.

The geometry of the FE mesh is shown in Figures A.47 and A.48. Initial blunting of the crack
tip was introduced as proposed by McMeeking [42] with an initial blunting radius of about 1µm.
The initial blunting radius should be smaller than the CTOD value at limit load of the specimen.
According to McMeeking [42], the value of CTOD can be calculated from

CTOD =
0:6K2

Eσ0

�
2σ0(1+ν)(1+n)

p
3nE

�n

(6.1)

where n is the strain hardening exponent, ν is the Poisson ratio and E is Young’s modulus. σ0

is the yield stress of the material.

For the F82Hmod at -150�C, using values of E � 200GPa, n= 0:09, σ0 � 800MPa and ν= 0:3,
we obtain a CTOD-value of about 3µm at K � 30MPa

p
m. The initial blunting radius actually

used was 1µm, so that we expect to obtain quite accurate results for the stress and strain fields.

It turned out, however, that the values if the initial diameters exhibited considerable variations
from specimen to specimen, so that an analysis with one single Finite Element model was not
feasible. Due to the high numerical effort (each specimen would require its own Finite Element
model) the full analysis was postponed and only one representative specimen was analysed with
respect to local risk of rupture prediction (see 3.4.3).

A full analysis of all tested specimens will be subject of future work, where prediction of cleav-
age fracture parameters between pre-cracked and notched specimen geometries has to be vali-
dated.

6.2.3 Fractography

All specimens tested at -75 and -150�C showed pure trans-crystalline cleavage fracture [76].
Identification of fracture origins was possible. Fracture origins were located in the vicinity
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of the crack front at a distance of about 150-400 µm. Unlike for the notched specimens, no
cleavage fracture facets were observed and oxide inclusions were found at only about 40% of
the fracture origin sites.

At ambient temperature, trans-crystalline cleavage fracture after some amount of ductile crack
propagation was observed. No numerical analysis was performed because material parameters
for ductile damage were not available.

Using material parameters for -150� C, calculation of the local risk of rupture predictions showed
a concentration to a small region (� 40µm) ahead of the crack tip. A typical result is shown
in Figure A.49, where the contours of the local risk of rupture density πi(~xjσW (i)) (Eqn. 3.22)
are shown for a value of σW (i) = 1378MPa. This corresponds to the deeply notched RCB
specimen fractured at the highest σW -level. It is remarkable that the corresponding Weibull
stress of σW (i) = 1378MPa leads to a CDF value of FσW (σW )� 0:2 which is fairly below unity.
A fracture origin location prediction would therefore require an extended range of σW , say,
σW � 1800MPa with FσW (1800)� 0:98 for the integration according to Eqn. (3.23) or (3.24),
respectively.

The numerical values of the local risk of rupture are calculated with parameters m = 11:6 and
σu = 1943MPa obtained from the analysis of the 1mm notched RNB specimens tested at -
150�C.

6.3 Evaluation of local fracture toughness values

Results of fractographic analyses together with numerical analyses of fracture stresses are used
for the evaluation of local fracture toughness values. For this purpose, a sizing procedure for
the fracture origin sites was established, which is sketched in Figure A.50. The cleavage origin
surrounds an oxide inclusion. The size of the cleavage origin site was modelled as penny-shaped
crack, from which a critical crack size ac was obtained. Using the results of the stress analysis,
a local fracture toughness kc can be obtained via

kc = 2σ1

r
ac

π
(6.2)

according to [70]. Eqn. (6.2) provides a rather simplified measure of toughness. It has to
be kept in mind that it is based on linear elastic fracture mechanics considerations, while the
material undergoes substantial plastic deformation before fracture occurs. Also the existence of
a stress gradient along the crack is neglected, which seems of less importance in case of notched
specimens but may become of concern for crack tip situations.

In principle, kc should lead to similar results for notched and pre-cracked specimens, if the
underlying fracture mechanics description of the fracture process is adequate. A quantitative
analysis is difficult, however, because even if fracture origin initiation locations could be de-
tected, identification and sizing of cleavage fracture origin sites was not always possible, so that
the resulting sample sizes mostly were too small for statistical inference purposes.

Figure A.51 shows results obtained at the -150�C temperature level. The step curves show the
empirical cumulative distribution of the kc-values while the continuous curves are maximum
likelihood fits to a Weibull distribution. There is an obvious discrepancy between the results
obtained at notched and pre-cracked specimens. Scatter for notched specimens is considerable
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smaller than for pre-cracked specimens while the average local fracture toughness values are
larger for the pre-cracked specimens. Uncertainty in the results for pre-cracked specimens may
partly be attributed to the fact that the stress distribution used for the calculation of the kc-values
did not account for residual stresses which might be present due to the pre-cracking procedure.

For the notched specimens tested at -75�C, scatter in kc is considerable larger, but due to small
sample sizes of the local fracture toughness values that were available, no statistical evaluation
was performed.
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7

Present limitations and future work

Despite the successful application of local approach methods for cleavage fracture modelling
of structural steels, some questions remain to be solved. Main issues are 1) the transferability
between results from notched specimens to crack tip situations and 2) the behaviour in the tran-
sition regime, where void nucleation and ductile damage leads to different fracture appearance.
For crack tip situations, constraint influence is an important parameter. A method for constraint
correction in cleavage fracture modelling is therefore addressed in this Chapter. Steep stress
gradients that are present in crack tio situations may play a role in difficulties with transferabil-
ity from notched to pre-cracked specimens. Steep stress gradients require refined analysis of
critical stresses an lead thus to modifications of the weakest link model. The main consequences
are described below.

In the transition regime, statistical modelling is not determined by pure weakest link arguments
but has to be extended to cover presence of void formation. The basic arguments are summa-
rized shortly.

A topic of future investigation will be the characterization of material behaviour under irradia-
tion conditions, where also analysis of Charpy results (dynamic fracture) has to be provided.

7.1 Constraint correction in cleavage fracture modelling

Constraint influence is handled by so-called toughness scaling relations. Various approaches
are possible (e.g. [11, 18, 66] and, more recently, [25]). The main idea behind these approaches
is to take into account the variations in the stress fields due to limited size of specimens or
cracks in a systematic way by establishing relations between Jc for infinite bodies (i.e. JIc) and
measured Jc-values for low constraint specimens.

Constraint correction is inherent in the Weibull stress for fracture mechanics (pre-cracked) spec-
imens (see e.g. [11]).

For a power-law hardening material

ε
ε0

=
σ
σ0

+α
�

σ
σ0

�n

(7.1)
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(σ0 - reference stress, ε0 = σ0=ε0, n - hardening exponent, α - strain offset at σ0), the stress field
in the vicinity of a mode I crack tip can be described by a three-term asymptotic expansion [81]

σi j

σ0
= A0r̄sσ̃(0)i j (θ)�Ar̄tσ̃(1)i j (θ)+

A2

A0
r̄2t�sσ̃(2)i j (θ) (7.2)

with the dimensionless quantities

r̄ =
r

J=σ0
, where J is the J-integral

σ̃(k)i j � n - dependent angular stress functions. (7.3)

The coefficient A0 is given by

A0 = (αε0In)
�1=(n+1) (7.4)

with In according to [35]. The exponent s =�1=(n+1) is theoretically known [35, 53] and for
the exponent t an eigenvalue problem has to be solved (e.g. [81]). The amplitude A is deter-
mined by curve fitting of eq. (7.2) to FE crack tip stress results. The three-term approximation
of the stress field is used for the calculation of the Weibull stress σW (see eq. (3.12)). In case of
small scale yielding, i.e. if the first term of eq. (7.2) yields a good approximation of the stress
field, and for two-dimensional cracks with a constant J along the crack front, it can be shown
[5, 44] that σW can be re-written as

σm
W =

J2
c

σ2
0

B
V0

Z

Upl

σm
1 dU (7.5)

where B is the specimen thickness, Jc is the value of the J-integral at the onset of cleavage
fracture and Upl is the normalized plastic zone size of a specimen of unit thickness given in
terms of r̄ = rσ0=J.

Under small-scale yielding conditions, and in case of a constant J along the crack front, σW

and JIc can thus be expressed in terms of each other by identifying corresponding values of the
cumulative distribution function of both quantities. This leads to the relation (see e.g. [44])

1� exp

�
�
�

σW

σu

�m�
= 1� exp

 
�
�

JIc

b

�2
!

(7.6)

where b is a distribution parameter of the JIc distribution, or, solved for σW :

�
σW

σu

�m

=

�
JIc

b

�2

or JIc = b

�
σW

σu

�m=2

(7.7)

If there is a significant loss of constraint, higher-order terms are needed for a description of the
stress field. In this case, the Weibull stress is of the form�

σW

σ0

�m

=
J2

c

σ2
0

B
V0

G(A; M) (7.8)
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where M stands for the material parameters and the dimensionless function

G(A; M) =
Z

Upl

�
σ1

σ0

�m

dU (7.9)

depends on the load level only and not explicitly on the crack size or specimen geometry. Thus,
it is possible to select a reference solution for A, e.g. the small-scale yielding value, ASSY. ASSY

can be obtained by a modified boundary layer solution for small-scale yielding for suitably
selected values of the stress intensity factor K and the amplitude T resulting in prescribed elastic
displacements at the boundary of the elasto-plastic boundary value problem. For a given value
of σW , Jc can then be transformed into an equivalent small-scale yielding value, JSSY, by�

Jc

JSSY

�2

=
G(ASSY; M)

G(A; M)
(7.10)

which, as σW ∝ J2=m holds for SSY, implies that the failure probability can be written in terms
of a Weibull distribution for the transformed values of JSSY with a shape factor of m = 2.

For a given amplitude A, is is thus possible to predict JIc from the σW results using the following
two-step procedure:

1. Compute σW at fracture from the Jc results according to eq. (7.8).

2. Calculate JIc from experimentally obtained Jc values according to eq. (7.10) and deter-
mine the parameter b of the JIc distribution (which is a Weibull distribution with m = 2)

This procedure additionally allows the scatter bands in the data to be determined by using the
appropriate relations for the respective quantiles of σW and JIc.

Analysis of literature data in Ref. [11], where Jc=JIc was predicted for typical fracture mechan-
ics specimens (ECP, CCP, 3PB, CT) showed promising results. Good agreement was found for
the following function

G(A; M) = exp
�
a0(M)+a1(M)A+a2(M)A2� (7.11)

with the material-dependent parameters ai.

The essential advantage of this scaling approach is the fact that there is no explicit dependence of
crack size or specimen geometry. Thus, the stress field is characterized by the (elastic) boundary
conditions (J and T ) of an elasto-plastic (modified) boundary layer (MBL) problem, from which
the scaling function G(A; M) is deduced, and FE analysis of the specimen is replaced by use of
appropriate stress amplitudes in the MBL approach.

In the field of nuclear fusion energy applications, this scaling approach seems to be especially
promising for the processing of data from small (sub-sized) specimen testing results, provided
that the influence of material heterogeneity on this scale still allows the use of a continuum
mechanics approach.

Dodds et al. [18, 66] use the concept of equivalent stressed volumes ahead of the crack front
for the correction of toughness values in the lower transition regime obtained by testing SENB
specimens with different a=W ratios. A significant reduction in the scatter of the results is
obtained, also the corrected Jc-values for different a=W ratios agree very well.

A somewhat different approach based on a process zone crack instability model is used in [47].
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7.2 Modifications in case of steep stress gradients

If steep stress gradients exist, which means that the assumption of a constant stress along the
existing cleavage origins is violated, the weakest link argument leading to the Weibull distri-
bution of σW still holds. However, the fracture mechanics description of the cleavage origins
as micro-cracks with a critical crack size ac ∝ 1=σ2

c (or, equivalently: K ∝
p

a) is no longer
valid. Instead, ac depends not only on the magnitude of the local stress field, but additionally
on the stress gradient, or, equivalently, on the location of the crack. As a consequence, m loses
its significance as material parameter [10, 23] and becomes dependant on the relation between
stress intensity factor K and crack length a (which depends on the type of loading). Steep stress
gradients may be relevant at very low temperatures due to very small plastic zone sizes as well
as for thermal loading. In these cases, weight function methods are necessary [22] and the eval-
uation of the stress integral requires the use of location-dependent critical stresses which may
be obtained e.g. by neural network approaches [68].

7.3 Transition behaviour and the influence of ductile damage

In the transition regime, a competitive process between ductile and cleavage fracture mecha-
nisms takes place [52]. Void nucleation and growth change the stress and strain field and final
cleavage fracture can only occur, if the stresses remain sufficiently high to trigger unstable crack
propagation. So, for a volume element dV , the two competitive processes can be stated as fol-
lows: Cleavage occurs, if a critical cleavage stress is exceeded in dV , while ductile failure by
void coalescence occurs, if a critical void volume fraction fc

0 (ε
p
eq) (depending on the equivalent

plastic strain εp
eq) is exceeded in dV .

The modelling of this competitive process must consider the respective probabilities (see e.g.
[78, 79, 80]). In case of ductile and cleavage fracture being independent of each other, the
respective survival probabilities multiply and give the overall survival probability for combined
fracture [39, 51, 52]. This means, that Eqns. (3.3) and (3.4) have to be modified and now read:

Qduc
1 =

1
Vnuc

Z

Vnuc

1�Ff0( f c
0(ε

p
eq;~r))dV (7.12)

and

Rduc
k = (1�Qduc

1 )k (7.13)

where Qduc
1 is the failure probability of one ductile fracture initiation site and Rduc

k is the corre-
sponding survival probability if k ductile fracture initiation sites are present. The void nucleation
volume Vnuc is determined by a critical nucleation stress. The probability distribution Ff0 of the
initial void volume fraction, f0, has to be obtained by image analysis. In [52], a lognormal
probability distribution was used.

A weakest link argument for ductile fracture leads to the following form of the failure probabil-
ity Pduc

f :

Pduc
f = 1�

∞

∑
k=0

pkRduc
k (7.14)
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where pk =
(MdVnuc)

k

k! exp(�MdVnuc) is the Poisson density and Md is the mean number of void
initiation sites per unit volume. Summing up the terms of Eqn. (7.14) we end up with

Pduc
f = 1� exp(�MdVnucQduc

1 )

= 1� exp(�Md

Z

Vnuc

1�Ff0( f c
0(ε

p
eq;~r))dV (7.15)

which is similar to Eqn. (3.8) and has to be solved via a Finite Element post-processing routine.

For the modelling of the ductile-to-brittle transition, competition between ductile and cleavage
fracture modes is assumed to take place without interaction. This can be justified for fracture
mechanics specimens, if ductile crack growth preceding fracture is negligible.

The overall survival probability for kc spots triggering cleavage and kd ductile void nucleation
sites is given by the product of the survival probabilities of either cleavage or ductile fracture:

Rtrans
k = (1�Q1)

kc(1�Qduc
1 )kd (7.16)

The failure probability can then be obtained by summing up all possible contributions according
to

Ptrans
f = 1�

∞
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1A

To solve Eqn. (7.17), calculation of σW together with knowledge about the distribution of
inclusion size and number of inclusions per unit volume is required.

A detailed analysis is scope of current work but experimental results are not yet available.

7.4 Material characterization under irradiation conditions

In terms of the local approach, irradiation damage is described mainly by the influence on yield
stress. It turned out that the critical cleavage stress is not affected by irradiation effects. The
basic framework of the local approach is therefore easily adopted and it is only necessary to
identify a suitable description of irradiation hardening [48, 46]. It has to be ensured, how-
ever, that for the material under consideration neutron irradiation does not generate additional
populations of flaws.
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7.5 Failure under multiaxial loading

The influence of the degree of multiaxiality on fracture toughness of F82H steel is investigated
by Huaxin Li et al. [31] for mixed mode I-III-loading. Gao & Fong Shi [26] deal with the
influence of mode-mixity on ductile fracture. Hourlier & Pineau [34] and Itoh et al. [36] use
tests on circumferentially pre-cracked specimens for fatigue crack propagation under mixed
mode I-III-loading.
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Summary and Conclusions

Within the present report, the status of experimental and modelling work is given for the analysis
of cleavage fracture using local fracture criteria.

The experimental programme contained

� material characterization of F82Hmod reduced activation steel by specifically designed
experiments on axisymmetrical notched specimens,

� identification of fracture appearance and fracture origin distribution using quantitative
fractography,

� numerical analysis of stress and strain fields at fracture using elasto-plastic Finite Element
Analyses,

� post-processing of Finite Element Analyses and determination of cleavage fracture pa-
rameters,

� statistical inference using maximum likelihood methods and statistical resampling tech-
niques,

� transferability analysis between notched and pre-cracked specimens via local risk of rup-
ture prediction,

� modelling of constraint effects for pre-cracked specimens in the framework of local frac-
ture criteria,

� modelling of competitive failure modes in the transition regime between cleavage and
ductile fracture.

The numerical models were partly applied and verified within Round Robin activities on ma-
terial parameter determination for micromechanical models in the cleavage fracture regime of
structural steels. The present stage of knowledge can be summarized as follows:

Transferability of cleavage fracture parameters seems to be possible for F82Hmod, if the strains
at fracture are limited. For large strains, i.e. higher temperatures or low degree of multiaxiality,
plastic deformation leads to the formation of shear cracks and a mixed trans-intercrystalline
fracture appearance.
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It is possible that different fracture modes occur under nominally identical test conditions. Iden-
tification of outliers is possible using statistical resampling methods and can be confirmed by
subsequent fractographic analysis.

For transferability analysis, limitations imposed by the use of (maximum likelihood) confidence
intervals for distribution parameters can be overcome by direct assessment of the respective
distributions using resampling methods.

Agreement between predicted fracture origin distributions from local risk of rupture calcula-
tions and experimentally obtained results from fractographic analyses is used as indication of
appropriateness of the numerical approach.

Design issues can be addressed via parametrized material behaviour description. Fracture
toughness values for low-constraint situations can be obtained from scaling functions using a
modified boundary layer (MBL) approach. Constraint effects and impact of multiaxial loading
require additional experimental support which will be available from EUROFER97 results.

Modelling of irradiation damage is possible within the framework of local fracture criteria but
relies on availability of fracture data from irradiated specimens.
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Appendix A

Figures

Figure A.1: SEM section of F82Hmod in reference condition.

Figure A.2: Geometry of axisymmetrically notched bar (RNB) specimens.
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Figure A.3: Calculated F�∆d-curves and experimental ∆d at fracture (-75�C).
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Figure A.4: Calculated F�∆d-curves and experimental ∆d at fracture (-150�C).
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Figure A.5: Mean stress σM and strain εM at fracture (-150�C).
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Figure A.6: Mean stress σM and strain εM at fracture (-75�C).
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Figure A.7: Fracture surface for 2mm notched specimen tested at -150�C.

Figure A.8: Fracture surface for 2mm notched specimen tested at -75�C.
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Figure A.9: Fracture surface for 5mm notched specimen tested at -150�C.

Figure A.10: Axial cracks on fracture surface of 5mm notched specimen tested at -75� C.
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Figure A.11: Orientation of martensite laths in undeformed part of the specimen.

Figure A.12: Orientation of martensite laths in deformed part of the specimen.
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Figure A.13: Fracture surface for 1mm notched specimen tested at ambient temperature.
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Figure A.14: F82Hmod stress-strain curves for smooth tensile specimens.
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Figure A.16: F82Hmod stress-strain curves for smooth tensile specimens.
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Figure A.17: F82Hmod axial stress curves for 1mm notched tensile specimens.
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Figure A.18: F82Hmod axial stress curves for 2mm notched tensile specimens.
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Figure A.19: F82Hmod axial stress curves for 5mm notched tensile specimens.
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Figure A.20: F82Hmod multiaxiality curves for 1mm notched tensile specimens.
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Figure A.21: F82Hmod multiaxiality curves for 2mm notched tensile specimens.
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Figure A.22: F82Hmod multiaxiality curves for 5mm notched tensile specimens.
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Figure A.23: F82Hmod von Mises stress curves for 1mm notched tensile specimens.
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Figure A.24: F82Hmod von Mises stress curves for 2mm notched tensile specimens.
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Figure A.25: F82Hmod von Mises stress curves for 5mm notched tensile specimens.
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Figure A.26: F82Hmod equivalent plastic strain curves for 1mm notched tensile specimens.
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Figure A.27: F82Hmod equivalent plastic strain curves for 2mm notched tensile specimens.
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Figure A.28: F82Hmod equivalent plastic strain curves for 5mm notched tensile specimens.
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Figure A.29: Calculated local risk of rupture density for r=1mm notched specimen at -150�C
at low load level.

Figure A.30: Calculated local risk of rupture density for r=1mm notched specimen at -150�C
at high load level.
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Figure A.31: Calculated fracture origin distribution for r=1mm notched specimen at -150�C.

Figure A.32: Calculated fracture origin distribution for r=2mm notched specimen at -150�C.
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Figure A.33: Rupture origin location distribution of 1 and 2mm notched specimens tested at
-150�C.
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Figure A.34: Bootstrap simulation results for r=1mm notched specimens tested at -150�C.
(Auxiliary lines indicate 90% Maximum-Likelihood confidence intervals)
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Figure A.35: Bootstrap simulation results for r=2mm notched specimens tested at -150�C.
(Auxiliary lines indicate 90% Maximum-Likelihood confidence intervals)
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Figure A.36: Bootstrap empirical CDF Ĝ(m) for r=1mm notched specimens tested at -150�C.
(Horizontal lines mark length of bias corrected bootstrap confidence intervals)
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Figure A.37: Bootstrap empirical CDF Ĝ(m) for r=2mm notched specimens tested at -150�C.
(Horizontal lines mark length of bias corrected bootstrap confidence intervals)
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Figure A.38: Bootstrap empirical CDF Ĝ(σu) for r=1mm notched specimens tested at -150�C.
(Horizontal lines mark length of bias corrected bootstrap confidence intervals)
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Figure A.39: Bootstrap empirical CDF Ĝ(σu) for r=2mm notched specimens tested at -150�C.
(Horizontal lines mark length of bias corrected bootstrap confidence intervals)
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Figure A.40: Bootstrap empirical CDF of σW for r=1mm and r=2mm notched specimens tested
at -150�C.
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Figure A.41: Influence of bootstrap sample size on CDF confidence limits for r=2mm notched
specimens tested at -150�C.
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Figure A.42: Results of Weibull stress calculation for -150�C.
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Figure A.43: Results of Weibull stress calculation for -75� C.
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Figure A.44: Geometry of circumferentially pre-cracked bar (RCB) specimens.

Figure A.45: Setup of the pre-cracking rig.

1. motor
2. driving shaft
3. bearing block
4. drive shaft bearing
5. specimen
6. prestressing adjustment
7. load cell
8. voltmeter

79



0

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500

re
du

ct
io

n 
in

 n
ot

ch
 d

ia
m

et
er

 a
t f

ra
ct

ur
e/

m
m

distance from specimen axis/my

fracture origin locations at -150 deg C

2mm notch radius
1mm notch radius

Figure A.46: Fracture origin locations vs. ∆d values for r=1mm and r=2mm notched specimens
tested at -150�C.
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Figure A.47: Crack tip detail of the FE mesh used for the analysis of RCB specimens.

Figure A.48: Overall view at notch of the FE mesh used for the analysis of RCB specimens.
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Figure A.49: Local risk of rupture density for deeply notched pre-cracked specimen (parameters
correspond to -150�C).
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Figure A.50: Sizing of fracture initiation sites for calculation of local fracture toughness values.
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Figure A.51: CDF of local fracture toughness values from notched and pre-cracked specimens
at -150�C.
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Appendix B

Tables

C Si Mn P S Cu Ni Cr Mo
0.09 0.11 0.16 0.002 0.002 <0.01 0.02 7.66 <0.01

V Nb B T.N Sol. Al Co Ti Ta W
0.16 <0.01 0.0002 0.005 0.001 <0.01 0.001 0.02 2.00

Table B.1: Composition (wt-%) of F82Hmod; Heat No. 9741

RT �75� C �150� C
K σ0 E K σ0 E K σ0 E

820 520 214000 950 570 240000 1200 810 220000

Table B.2: Material parameters K, σ0 (0.2% offset yield strength), E (units are MPa).

m 90% ML-CI σu 90% ML-CI

r = 1mm 11.6 [8.2, 16.6] 1943.0 [1868.6, 2022.0]
T =�150�C r = 2mm 10.7 [7.5, 15.3] 2106.7 [2019.3, 2199.7]

r = 5mm 78.9 [50.8, 124.5] 1913.2 [1899.9, 1927.1]

r = 1mm 107.5 [69.2, 169.5] 1941.1 [1927.9, 1954.7]
T =�75�C r = 2mm 78.8 [50.8, 124.3] 1764.6 [1752.2, 1777.4]

r = 5mm – – – –

Table B.3: Maximum likelihood results for σW -parameters (V0=1mm3).

85



(r=1mm) ML intervals BC intervals
Quantiles m σu m σu

0.02 7.4 1846.2 8.0 1863.9
0.05 8.2 1868.6 9.0 1831.0
0.10 9.0 1887.0 9.2 1796.1

0.90 15.5 2003.7 13.9 2183.5
0.95 16.6 2022.0 14.7 2115.5
0.98 17.8 2044.6 15.8 2183.5

(r=2mm) ML intervals BC intervals
Quantiles m σu m σu

0.02 6.8 1993.1 8.6 1765.4
0.05 7.5 2019.3 8.9 1787.4
0.10 8.3 2040.8 9.1 1802.0

0.90 14.3 2178.1 19.3 2242.7
0.95 15.3 2199.7 20.8 2282.7
0.98 16.5 2226.4 25.6 2307.9

Table B.4: Maximum likelihood (ML) confidence intervals of -150� C results compared with
bias-corrected (BC) bootstrap confidence intervals.

N b(N)
5 0.669
6 0.752
7 0.792
8 0.820
9 0.842

10 0.859
11 0.872
12 0.883
13 0.893
14 0.901
15 0.908
16 0.914

N b(N)
17 0.919
18 0.923
19 0.927
20 0.931
21 0.935
22 0.938
23 0.941
24 0.943
25 0.945
26 0.947
27 0.949
28 0.951

N b(N)
29 0.953
30 0.955
31 0.957
32 0.958
33 0.959
34 0.960
35 0.961
36 0.962
37 0.963
38 0.964
39 0.965
40 0.966

Table B.5: Unbiasing factors b(N)
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N α1 = 0:02 α1 = 0:05 α1 = 0:10 α2 = 0:90 α2 = 0:95 α2 = 0:98
5 -1.631 -1.247 -0.888 0.772 1.107 1.582
6 -1.396 -1.007 -0.74 0.666 0.939 1.291
7 -1.196 -0.874 -0.652 0.598 0.829 1.12
8 -1.056 -0.784 -0.591 0.547 0.751 1.003
9 -0.954 -0.717 -0.544 0.507 0.691 0.917

10 -0.876 -0.665 -0.507 0.475 0.644 0.851
11 -0.813 -0.622 -0.477 0.448 0.605 0.797
12 -0.762 -0.587 -0.451 0.425 0.572 0.752
13 -0.719 -0.557 -0.429 0.406 0.544 0.714
14 -0.683 -0.532 -0.41 0.389 0.52 0.681
15 -0.651 -0.509 -0.393 0.374 0.499 0.653
16 -0.624 -0.489 -0.379 0.36 0.48 0.627
17 -0.599 -0.471 -0.365 0.348 0.463 0.605
18 -0.578 -0.455 -0.353 0.338 0.447 0.584
19 -0.558 -0.441 -0.342 0.328 0.433 0.566
20 -0.54 -0.428 -0.332 0.318 0.421 0.549
22 -0.509 -0.404 -0.314 0.302 0.398 0.519
24 -0.483 -0.384 -0.299 0.288 0.379 0.494
26 -0.46 -0.367 -0.286 0.276 0.362 0.472
28 -0.441 -0.352 -0.274 0.265 0.347 0.453
30 -0.423 -0.338 -0.264 0.256 0.334 0.435
32 -0.408 -0.326 -0.254 0.247 0.323 0.42
34 -0.394 -0.315 -0.246 0.239 0.312 0.406
36 -0.382 -0.305 -0.238 0.232 0.302 0.393
38 -0.37 -0.296 -0.231 0.226 0.293 0.382
40 -0.36 -0.288 -0.224 0.22 0.285 0.371
42 -0.35 -0.28 -0.218 0.214 0.278 0.361
44 -0.341 -0.273 -0.213 0.209 0.271 0.352
46 -0.333 -0.266 -0.208 0.204 0.264 0.344
48 -0.325 -0.26 -0.203 0.199 0.258 0.336
50 -0.318 -0.254 -0.198 0.195 0.253 0.328
52 -0.312 -0.249 -0.194 0.191 0.247 0.321
54 -0.305 -0.244 -0.19 0.187 0.243 0.315
56 -0.299 -0.239 -0.186 0.184 0.238 0.309
58 -0.294 -0.234 -0.183 0.181 0.233 0.303
60 -0.289 -0.23 -0.179 0.177 0.229 0.297
62 -0.284 -0.226 -0.176 0.174 0.225 0.292
64 -0.279 -0.222 -0.173 0.171 0.221 0.287
66 -0.274 -0.218 -0.17 0.169 0.218 0.282
68 -0.27 -0.215 -0.167 0.166 0.214 0.278
70 -0.266 -0.211 -0.165 0.164 0.211 0.274

Table B.6: Auxiliary variables for the confidence interval for σu
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N α1 = 0:02 α1 = 0:05 α1 = 0:10 α2 = 0:90 α2 = 0:95 α2 = 0:98
72 -0.262 -0.208 -0.162 0.161 0.208 0.269
74 -0.259 -0.205 -0.16 0.159 0.205 0.266
76 -0.255 -0.202 -0.158 0.157 0.202 0.262
78 -0.252 -0.199 -0.155 0.155 0.199 0.258
80 -0.248 -0.197 -0.153 0.153 0.197 0.255
85 -0.241 -0.19 -0.148 0.148 0.19 0.246
90 -0.234 -0.184 -0.144 0.143 0.185 0.239
95 -0.227 -0.179 -0.139 0.139 0.179 0.232

100 -0.221 -0.174 -0.136 0.136 0.175 0.226
110 -0.211 -0.165 -0.129 0.129 0.166 0.215
120 -0.202 -0.158 -0.123 0.123 0.159 0.205

Table B.6: Auxiliary variables for the confidence interval for σu (cont’d.)

N α1 = 0:02 α1 = 0:05 α1 = 0:10 α2 = 0:90 α2 = 0:95 α2 = 0:98
5 0.604 0.683 0.766 2.277 2.779 3.518
6 0.623 0.697 0.778 2.03 2.436 3.067
7 0.639 0.709 0.785 1.861 2.183 2.64
8 0.653 0.72 0.792 1.747 2.015 2.377
9 0.665 0.729 0.797 1.665 1.896 2.199

10 0.676 0.738 0.802 1.602 1.807 2.07
11 0.686 0.745 0.807 1.553 1.738 1.972
12 0.695 0.752 0.811 1.513 1.682 1.894
13 0.703 0.759 0.815 1.48 1.636 1.83
14 0.71 0.764 0.819 1.452 1.597 1.777
15 0.716 0.77 0.823 1.427 1.564 1.732
16 0.723 0.775 0.826 1.406 1.535 1.693
17 0.728 0.779 0.829 1.388 1.51 1.66
18 0.734 0.784 0.832 1.371 1.487 1.63
19 0.739 0.788 0.835 1.356 1.467 1.603
20 0.743 0.791 0.838 1.343 1.449 1.579
22 0.752 0.798 0.843 1.32 1.418 1.538
24 0.759 0.805 0.848 1.301 1.392 1.504
26 0.766 0.81 0.852 1.284 1.37 1.475
28 0.772 0.815 0.856 1.269 1.351 1.45
30 0.778 0.82 0.86 1.257 1.334 1.429
32 0.783 0.824 0.863 1.246 1.319 1.409
34 0.788 0.828 0.866 1.236 1.306 1.392
36 0.793 0.832 0.869 1.227 1.294 1.377
38 0.797 0.835 0.872 1.219 1.283 1.363
40 0.801 0.839 0.875 1.211 1.273 1.351

Table B.7: Auxiliary variables for the confidence interval for m
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N α1 = 0:02 α1 = 0:05 α1 = 0:10 α2 = 0:90 α2 = 0:95 α2 = 0:98
42 0.804 0.842 0.877 1.204 1.265 1.339
44 0.808 0.845 0.88 1.198 1.256 1.329
46 0.811 0.847 0.882 1.192 1.249 1.319
48 0.814 0.85 0.884 1.187 1.242 1.31
50 0.817 0.852 0.886 1.182 1.235 1.301
52 0.82 0.854 0.888 1.177 1.229 1.294
54 0.822 0.857 0.89 1.173 1.224 1.286
56 0.825 0.859 0.891 1.169 1.218 1.28
58 0.827 0.861 0.893 1.165 1.213 1.273
60 0.83 0.863 0.894 1.162 1.208 1.267
62 0.832 0.864 0.896 1.158 1.204 1.262
64 0.834 0.866 0.897 1.155 1.2 1.256
66 0.836 0.868 0.899 1.152 1.196 1.251
68 0.838 0.869 0.9 1.149 1.192 1.246
70 0.84 0.871 0.901 1.146 1.188 1.242
72 0.841 0.872 0.903 1.144 1.185 1.237
74 0.843 0.874 0.904 1.141 1.182 1.233
76 0.845 0.875 0.905 1.139 1.179 1.229
78 0.846 0.876 0.906 1.136 1.176 1.225
80 0.848 0.878 0.907 1.134 1.173 1.222
85 0.852 0.881 0.91 1.129 1.166 1.213
90 0.855 0.883 0.912 1.124 1.16 1.206
95 0.858 0.886 0.914 1.12 1.155 1.199

100 0.861 0.888 0.916 1.116 1.15 1.192
110 0.866 0.893 0.92 1.11 1.141 1.181
120 0.871 0.897 0.923 1.104 1.133 1.171

Table B.7: Auxiliary variables for the confidence interval for m (cont’d)
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