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Continuum models for pebble beds in

fusion blankets

Abstract

Continuum models for granular materials in fusion blankets are outlined. The work
focuses on the capabilities of the Abaqus finite element code which is used for the
calculations. Special attention is paid on the modelling of the nonlinear elastic behavior
of the pebble beds, granular particle flow caused by shear, volume compaction and
hardening, and thermal creep. The derived material model gives results which are in
reasonable accordance with known experimental data. The models are calibrated or
verified for Li4SiO4. Nevertheless they are relatively general so that an application to
other materials is straightforward.



Kontinuumsmodelle für Schüttbetten
in Fusionsblankets

Zusammenfassung

Dieser Bericht beschreibt Kontinuumsmodelle zur Simulation des mechanischen Ver-
haltens granularer Medien in Fusionsblankets. Die Beschreibung orientiert sich an den
Fähigkeiten des Finite Elemente Programms Abaqus, das für die Berechnungen ver-
wendet wird. Besondere Aufmerksamkeit gilt der Modellierung des nichtlinearen elasti-
schen Verhaltens von Schüttbetten, granularem Fliessen von Partikeln, volumetrischer
Kompaktierung und Hardening und thermischem Kriechen. Das entwickelte Material
modell beschreibt das Verhalten in ausreichender Übereinstimmung mit experimentellen
Daten. Die Stoffgesetze wurden für Li4SiO4 geeicht bzw. validiert. Die Modelle sind
jedoch relativ allgemein, so dass eine Anwendung auch für andere Materialien nach einer
entsprechenden Eichung möglich sein sollte.
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1 Introduction
For a reliable design of fusion blankets with breeding pebble beds it is important to
have validated computational tools for predicting the thermomechanical conditions like
stresses, strains, or heat transfer. An early blanket using pebble beds as breeding
material had been proposed by Dalle Donne, Fischer, Norajitra, Reimann and Reiser
(1995). Recently improved and advanced versions have been considered by Hermsmeyer,
Gordeev, Kleefeldt, Schleisiek, Schmuck, Schnauder, Fischer, Malang, Fütterer and
Ogorodnikowa (1999) and Boccaccini (2000), respectively. All these blankets have in
common that the breeder region is split into a number of subregions, alternatingly filled
with the breeding ceramic material e.g. lithiumorthosilicate, Li4SiO4, and the neutron
multiplier beryllium, Be. Both materials are used in the form of small spheres as com-
pact assemblies of granular material. The walls separating the breeder from Be have
internal cooling channels through which the fusion heat is removed by high-pressure he-
lium flow. The breeding product tritium required as ”plasma fuel” in the fusion process
is removed from the packed beds by a low-pressure helium purge flow.
The special design described above requires a high thermal contact between the

granular particles themselves and between particles and the cooling walls in order to
keep the temperature induced in the bed by internal heat release within acceptable
limits. The thermal expansion of the granular filling and the irradiation swelling of the
particles may be favorable for heat transfer reasons. The stresses within the granular
material lead to a local increase in the contact areas between particles and thus to an
increase of the heat transfer properties.
On the other hand, the stresses created in the particles by their volumetric expansion

may become so large, that some fraction of the particles will be destroyed or the wall
material may fail during operation of the blanket. However, Reimann and Wörner
(2000) showed recently that if the material becomes ductile at the maximum operating
temperatures near 900 ◦C the particles will exert a plastic deformation due to thermally
activated creep. The particles may remain entirely intact but exhibit permanent plastic
deformations mainly near their contact areas. These plastic deformations can not be
recovered during thermal cycles when the beds reach lower temperatures such as 350 ◦C.
It is assumed in this report that the beds retain their cohesionless granular behav-

ior. There is a possibility that the granular bed may reduce high local stresses by
macroscopic movements of intact particles. Such consolidation of the beds is possible
if the initial packing density was not the highest possible one. Internal forces between
particles may contribute to consolidation processes but also movements along larger
distances seem possible supposed that the beds find enough space for an expansion.
Such effects are known especially from soil mechanics (see e.g. Nedderman (1992)) and
various models exist do describe such phenomena as shown in figure 3. The figure dis-
plays typical results shown by Reimann, Müller, Arbogast and Thomauske (1998) for
cyclic uniaxial compression. During an initial increase of the load the sample undergoes
irreversible deformation due to a rearrangement of particles and reversible deformation
due to elasticity of the bed. The latter fraction becomes visible if the load is decreased
and increased again. Cycling loads to a continuous compaction which indicated that the
bed had not the most dense initial packing. After a large number of cycles the results
converge toward a closed curve which is dominated by nonlinear elasticity. The small
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Figure 1: Part of an improved Helium Cooled Pebble bed Blanket (Hermsmeyer et al.
(1999))

Figure 2: View of an Advanced Helium Cooled Pebble bed Blanket ( Boccaccini (2000))
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hysteresis may be caused by minor friction effects.
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Figure 3: Cyclic oedometric compression of Li4SiO4 at 400 ◦C as shown by Reimann
et al. (1998).

A theoretical description is obtained by using constitutive equations to describe the
granular behavior on a macroscopic scale, i.e. the granular assembly whose characteristic
dimensions are large compared with the particle size is treated as a continuum. We
outline in the following models which account for nonlinear elasticity, irreversible volume
compaction during compression, shear failure and granular flow (movement) of particles
and thermally activated creep. These effects should dominate the thermomechanical
behavior of confined dense pebble beds.
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2 Characterization of granular materials
Granular materials are characterized both by the particle density ρs and most impor-
tantly by the bulk density ρb. For the same value of ρs different values for the bulk
density ρb are possible, ”depending on the manner in which the vessel is filled. The bulk
density is found to increase with the application of elevated stresses or when the sample
is vibrated.” (Nedderman (1992)) The bulk density is related to the void fraction ε
(volume fraction occupied by the interstitial medium with density ρg) as

ρb = (1− ε) ρs + ερg. (1)

For the applications considered the interstitial medium is a gas with ρg ¿ ρs so that
the relation above simplifies to

ρb = (1− ε) ρs. (2)

The specific volume v is the ratio of volume of the sample to the volume of the solid
and is related to the so called voids ratio

e =
ε

1− ε
(3)

as
v = 1 + e. (4)

There is a number of other physical parameters that may characterize an assembly
of granular particles (like particle size, particle shape, particle porosity, thermal and
electrical properties, ... see e.g. Nedderman (1992)). The breeder particles Li4SiO4
foreseen in fusion blankets are much smaller than the dimensions of the containers.
Therefore one can assume that the shape and size are of minor importance so that the
relations given just above may be sufficient for the further description of the mechanical
behavior.
The granular material is constrained by walls and therefore differences in thermal

expansion between the wall material and the granular bed will cause thermal stresses.
On the other hand one can imagine that the beds have initial compression created by the
filling procedure. Some initial stresses are desirable in order to avoid gap formation near
the walls or to ensure higher thermal conductance compared with unconstrained beds.
For many purposes it is convenient to decompose the stress tensor σ into a deviatoric
part S and into a spherical part −pI as

σ = S− pI, (5)

where p = −1
3
trace(σ) is called the pressure (see e.g. Durelli, Phillips and Tsao (1958)).

This decomposition allows an evaluation of the Mises equivalent stress as

q =

r
3

2
S : S (6)

and the third stress invariant becomes

r =

µ
9

2
S : S · S

¶1/3
. (7)
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2.1 Elasticity

A material is called a Cauchy elastic solid if there exits a unique relation between the
stress tensor σ and the deformation

σ = f (F) , (8)

where F is the displacement gradient matrix (Hunter (1983)). In the isotropic case the
most simple form of equation (8) is the linear version, known as Hook’s law

σ = λ (∇ · u) I+ 2µe. (9)

In this notation the pressure reads as

p = −
µ
λ+

2

3
µ

¶
trace (e) . (10)

The vector u stands for the displacement and e is the matrix of the strain components
which reads for the small displacement gradient approximation in spatial coordinates xi:

eij =
1

2

µ
∂ui
∂xj

+
∂uj
∂xi

¶
. (11)

The change in volume is∇·u =trace (e) and the parameters λ, µ are the Lamé constants.
The parameter µ is also known as the shear modulus. According to equation (10) the
pressure is related to the first strain invariant as

p = −K trace (e) = −K∆V/V = Kεvol (12)

where K is the ratio of hydrostatic pressure to the applied volume shrink or volumetric
strain, εvol = −∆V/V . This property is known as the bulk modulus and can be expressed
with the Lamé constants as

K = λ+
2

3
µ. (13)

It is possible to invert equation (9) and find

e =
1

2µ

µ
σ +

3λ

3λ+ 2µ
pI

¶
(14)

or in terms of the Poisson ratio ν = λ
2(λ+µ)

e =
1

2µ

µ
σ +

3ν

1 + ν
pI

¶
. (15)

The equations displayed above describe the elastic behavior of a solid body. The
elasticity of a sample of granular particles in form of cylinders (2D models) or spheres
(3D applications), however, deviates from that of a solid sample of the same material.
If the solid sample has a linear relation between stress σ and strain e according to
equation (9), this is not necessarily the case for granular assemblies as can be shown in
experiments.
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Figure 4: Porous elastic volumetric behavior

2.2 Porous elasticity

The behavior of a volume of granular particles during compression is quite different from
that of a solid sample of same size and material. While for a solid sample the elastic
parameters are constant over a wide range of the applied stresses a granular assembly
of the same material shows a pronounced load dependence of these quantities.
It has been shown that the elastic behavior of dense packings of Li4SiO4 can be

explained by Hertz contact between particles ( Walton (1987), Endres (1990)). Con-
tacts exist between a number of particles and additional contacts are generated between
points which were initially at some distance. Such a simple model is able to reproduce
experimental observation with sufficient accuracy and may help to get some insight into
the physics involved. Nevertheless, it is not suitable for practical use. In the following a
nonlinear elastic law is outlined that is more or less empirical but is available in standard
finite element codes. We use experimental results to calibrate the constitutive models in
the Abaqus finite element code (ABAQUS / Standard (1996)) for applications to fusion
blankets. This code allows a flexible modelling of nonlinear elastic material properties
by the use of the ∗porous elasticity option. Using the definitions introduced above the
elastic part of the change in volume is accurately modeled by

∆V

V
= −εvol = κ

1 + e0
ln

µ
p0 + pt
p+ pt

¶
. (16)

Here, e0 is the initial voids ratio and κ is the so-called logarithmic bulk modulus. The
quantity p0 characterizes the initial stress state and pt the elastic tensile strength in the
sense that ∆V/V → ∞ as p → −pt. For a granular assembly pt looses the physical
meaning since the pressure is always positive, p > 0, but it serves as a parameter to fit
the experimental data.
The porous elasticity option requires additionally to the input data described above

the value of a Poisson ratio ν∗ for the granular bed. Since no information exists on this
property it is assumed that ν∗ = 0.05, a value that is between the theoretical limit for
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perfectly smooth particles (ν∗ = 1
4
) and perfectly rough ones (ν∗ = ν

2(5−3ν)) in random
packings of spheres (Walton (1987)).

2.3 Granular flow

The elastic parts of the experimental curves can be reproduced well with the simple
porous elastic option. To account for permanent plastic deformations (consolidation)
during the initial compression the material model must be extended. The deficiency to
deal with plastic deformations while using elastic models can be removed by using the
Drucker-Prager cap model to describe more realistically the material behavior. What is
described below is related to the capabilities of the Abaqus FE code and can be found
in the Theory- and User’s Manual ABAQUS / Standard (1996).
The material is assumed to behave as a nonlinear (porous) elastic body as long as

the stress state lies within a volume in stress space, the surface of which is called the
yield surface. A typical yield surface is shown in figure 5 as a curve in a p− t plane. The
variable p = −trace(σ) denotes, as introduced above, the pressure stress and t stands
for a measure of tangential (deviatoric) stresses. The variable t can be related to the

Mises equivalent stress q =
q

3
2
S : S and to the third stress invariant r =

¡
9
2
S : S · S¢1/3

as

t =
1

2
q

"
1 +

1

K
−
µ
1− 1

K

¶µ
r

q

¶3#
, (17)

where 0.778 ≤ K ≤ 1 is a material parameter that controls the dependence of the yield
surface on the value of the intermediate principle stress as shown in figure 6. The value
of K used in the following is chosen to K = 1, as advised by the Abaqus manual if it
is desired to be used in conjunction with creep (to be used in a further step). Then the
equation displayed above reduces to

t = q. (18)

Returning to Fig. 5 one can recognize that the yield surface is built up by a linear
part, the Drucker-Prager shear failure surface,

Fs = t− ptanβ − d = 0, (19)

and the so-called cap,

Fc =

s
(p− pa)2 +

µ
Rt

1 + α− α/cosβ

¶2
−R (d+ patanβ) = 0. (20)

The parameters involved in this definition can be seen from Fig. 5. For a smooth
connection a transition surface, Ft is introduced.
The material is about yielding by shear if the stress state lies on Fs. Shear occurs

when the tangential (deviatoric) stresses exceed values that depend linearly on the nor-
mal stress. Such a behavior is closely related to Coulomb friction. The parameter β is
known as the material’s friction angle. For cohesionless granular materials the parame-
ter d vanishes, d = 0. The Code input, however, requires d > 0. For this reason, the
input of d is chosen positive but as small as possible, d = 1 · 10−6. In the equations
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Figure 5: Yield surface in the p− t plane ABAQUS / Standard (1996)

Figure 6: Typical yield/flow surfaces in the deviatoric plane ABAQUS / Standard
(1996).
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displayed above α is a small parameter that helps to connect smoothly the cap and the
shear failure line. Its value is set to α = 0 as advised by the Abaqus manual if it is
desired to be used in conjunction with creep (to be used in a further step).
The material is about yielding by compression (consolidation) if the stress state lies

on Fc.
Plastic shear and compression are described by the flow potentials,

Gs =

s
(pa − p)2 tan2 β +

µ
t

1 + α− α/ cosβ

¶2
(21)

and

Gc =

s
(p− pa)2 +

µ
Rt

1 + α− α/ cosβ

¶2
, (22)

respectively. Plastic flow with strain rates

ė ∼∂G

∂σ
(23)

will last as long as the stress state lies beyond the yield limit. The flow rule is non-
associated since the flow potential and the yield function are different. The flow will
stop when either stresses are released to tolerable values by the flow, or for the case,
when the yield surface itself is modified by the flow such that a stable state is reached
again. A modification of the yield surface is possible by cap hardening by which the cap
position pb and consequently the value pa is related to the current state of deformation.

2.4 Hardening

During compression the granular material undergoes hardening for various reasons.
Without modelling the details one can describe the macroscopic observations by the
definition of the cap hardening parameters pb (εvol,pl) which defines the cap position and
fixes the parameter pa in the yield function and in the flow potential. The representation
in form of a power law as

pb = p̂b

µ
εvol,pl
ε̂vol,pl

¶a
(24)

has enough degrees of freedom for fitting the experimental observations with sufficient
accuracy. Here p̂b and ε̂vol,pl are typical magnitudes and n is an exponent. For vibrated
Li4SiO4 pebble beds at room temperature these values are close to p̂b ≈ 3.3 MPa,
ε̂vol,pl ≈ 3.33 · 10−3 and a ≈ 1.66.
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Figure 7: Cap hardening for Li4SiO4 with p̂b = 3.3 MPa and εvol,pl = 0.0033.
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3 Calibration and applications
We apply the granular models to experiments performed by Reimann and co-workers
for calibration of the material input data and for validation of the used models. One
of these experiments has been described already e.g. by Bühler, Reimann, Arbogast
and Thomauske (2000) but the main features are briefly outlined in the following. The
spherical breeder pebbles with diameters between 0.25mm and 0.65mm are filled into
a cavity as shown in Fig. 8 and experiments are performed at room temperature. The
investigated geometry consists of a flat granular bed closed by a rigid plate at the top
which is loaded at its center by an external force Fy to simulate the thermal stresses
in the blanket. The position of the plate center is at y = Ly and the plate may rotate
around the z-axis by a small angle α. The cavity is built by rigid fixed walls at x = 0
and y = 0. At x = Lx the bed is confined by a piston that has translational degree of
freedom along x to allow for a balance of the reaction force created by the horizontal
stress σxx in the bed with the externally applied force Fx. If the bed reaction force is
smaller than Fx the piston is fixed mechanically at its initial position Lx0. The vertical
and horizontal forces are divided by the areas on which they act and represented in
the following as σ̄yy and σ̄xx, respectively. The other rigid walls that confine the cavity
in z-direction are fixed at a distance Lz0. The vertical dimension of the experiment is
close to the blanket scale for the breeder gap with a height H0 = 0.011m. The lateral
extensions along the coordinates x and z are chosen much larger than the height, with
Lx0 = Lz0 = 0.1m. The contact between wall and granular material is described using
a measured coulomb friction coefficient µw = 0.25. This is important especially for
modelling since the bed may be in sliding or sticking contact, depending on the ratio of
normal and tangential stress.

Fy

Fx

x

y

Lx

Ly

α

µw

Figure 8: Sketch of the experimental geommetry

In order to describe theoretically the pebble bed behavior, results from uniaxial
compression tests are needed. These tests are performed in the same test section, keeping
the horizontal piston fixed at Lx0 and recording the vertical compaction, the change in
Ly, as a function of σ̄yy. The simultaneous measurement of σ̄xx is a valuable quantity.
Uniaxial compression data are available in addition from other experiments performed
in cylindrical cavities. As long as these experiments are performed at room temperature
they show essentially the same behavior (compare e.g. with Reimann andMüller (1998)).
For investigating the biaxial particle movements the load σ̄yy is increased monoton-

ically while σ̄xx can not exceed a certain value. The volumetric compaction of the bed
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is measured by recording at the plate the vertical position Ly = H0 + uy and the hori-
zontal position of the piston Lx = Lx0+ux, where uy and ux are vertical and horizontal
displacements, respectively. In addition the experiment allows for recording of α and for
measuring whether the system is really two dimensional by having some sensors out of
the symmetry plane z = 0. The two-dimensional behavior is essential for the application
of plane strain conditions during the analysis.

3.1 Uniaxial compression

A calibration for the elasticity model and for the cap hardening input is done by a
comparison of computed data with the uniaxial compression experiments. The adjusted
values are used later for the biaxial flow applications. Figure 9 shows a comparison of
measured data and calculated results both for loosely filled beds and for vibrated beds.
It is possible to reproduce the loading curve with sufficient agreement. The vertical load
is increased up to the maximum value in about 15min and kept constant for 1h. The
ongoing compression during the period of constant load indicates that quasi steady state
conditions were not completely reached. The assembly needs some time in order to find
the final state. However, the deformations during this period are small compared to the
deformation due to compression during the loading part. Later, the load is reduced.
The bed expands again, but does not reach its initial extension.
Figure 9 demonstrates moreover the dominating influence of the initial treatment of

the bed. If the bed is loosely filled one finds larger deformations during compression
than for the case when the bed is initially vibrated even if the void fractions of both
experiments are similar. The differences caused by different filling methods are even
more pronounced if one considers the stresses caused by the same displacements uy.
The results for σ̄yy then can deviate at least by one order of magnitude between loosely
filled and initially vibrated beds. It is important to notice that the volumetric expansion
during blanket operations is most likely related to the latter case. Therefore it is recom-
mended that experiments should be performed carefully, using the same densification
method (e.g. vibrations) as in the blanket. In addition, experiments should be repeated
to ensure reproducible results.
For obtaining the numerical data displayed in Fig. 9 two different material input

data sets were created, one for the vibrated beds and one for the loosely filled beds. They
differ essentially in the cap hardening data. While it is possible to fit the experimental
data for vibrated beds well with ε̂vol,pl ≈ 3.33 · 10−3 a value of ε̂vol,pl ≈ 1.27 · 10−2 is
required for the loosely filled beds for the reference pressure p̂b ≈ 3.3 MPa. The exponent
in the power law (24) for the cap position is a ≈ 1.66 and does not depend on the initial
treatment. The cap hardening curves used are shown in Fig. 10.
The horizontal force necessary to keep the piston at its initial position has been

recorded and results are shown in Fig. 11. During compression the lateral load σ̄xx is
roughly related linearly with the vertical one σ̄yy reflecting the constant angle of internal
friction. The value σ̄xx stays at large values when the vertical load is released and returns
to zero for small σ̄yy. Note, during this experiment the bed height was about twice as
high as the vertical extension of the piston.
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Figure 9: Uniaxial compression; σ̄yy versus uy for a loosely filled and initially vibrated
breeder bed. Comparison of experimental and numerical data.
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Figure 10: Cap hardening data used in ABAQUS for calculations of uniaxial compression
experiments.
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Figure 11: Uniaxial compression; σ̄yy versus σ̄xx for loosely filled and initially vibrated
Li4SiO4 beds.

3.2 Biaxial granular flow

In the following section results are shown for the case when during vertical compression
the horizontal piston can move. The biaxial particle flow experiments were performed
in such a way that the vertical load was increased up to the maximum value of about
σ̄yy,max = 5MPa in a given time period (2 h for the experiments with σ̄xx = 0.058, 0.12,
and 0.4MPa, and 16 h for σ̄xx = 0.075MPa), then the load was kept constant for 2 h and
finally, the force was reduced to zero during 15min. When the vertical force is increased
above a certain value, depending on σ̄xx the horizontal piston starts to move. It moves
more or less linearly with increasing vertical force over a wide range (see Fig. 12).
The important result is that the values ux are very small: for σ̄xx = 0.4MPa the

maximum horizontal displacement of particles becomes roughly ux/H0 = 10−2 (corre-
sponding to 0.1mm) at the highest vertical load. Even the maximum displacement of
about ux/H0 = 4 · 10−2 (0.4mm) for σ̄xx = 0.075MPa is not very large considering
the very small horizontal load compared with the maximum vertical one. The experi-
mental observations are compared with Abaqus calculations using an internal friction
angle of β = 44◦. The agreement is satisfactory and deviations are within the range of
experimental accuracy.
Not shown in the figures are the displacements uy as a function of σ̄yy. The fact that

the horizontal dimension extends monotonically leads to the result that larger vertical
displacements are possible now for the same vertical loads compared with the uniaxial
compression tests.
In addition to the vertical displacement the inclination angle α of the top plate is

recorded and plotted versus the displacement ux of the horizontal piston. The results are
shown in Fig. 13. The granular material is displaced in the x-direction near x = Lx and
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Figure 12: Vertical load versus horizontal displacement of the piston ux for σ̄xx = 0.058÷
0.4MPa for vibrated beds. Symbols denote ABAQUS calculations.

the stress (or the pressure) is locally released. This gives an unbalanced stress acting on
the plate with the result that the plate turns by an angle α. With increasing inclination
the granular bed is less compressed near x = 0 so that in a final balanced state one
finds high pressure near the center x = Lx/2 and reduced loads almost symmetrically
distributed around the center, although the bed can expand laterally only at the right
side. One finds from calculations almost a linear relation between α and ux with only
marginal dependence on the lateral confinement. During experiments this tendency
is confirmed especially for low lateral constraints and for the case when the load is
applied over a long period of 16 h. Experiments which are performed on smaller time
scales deviate from the predictions with increasing lateral force. The reason is unclear
for the moment but could be attributed to friction effects or transient behavior in the
experiment especially at high and fast loads. This point needs further investigations.
The experimental curve bends at the position where the vertical force is released. Then
the piston is pushed back and the plate is tilted towards its initial orientation.
Some experiments have been performed with loosely filled beds. Already the uniaxial

tests showed that the physical behavior is quite different. Biaxial experiments plotted in
Fig. 14 show larger horizontal displacements for same vertical loads compared with the
vibrated case. This indicates that the internal friction angle β is influenced by the filling
method. This is also confirmed by Fig. 11, where different slopes have been measured
for both types of filling. The result here is that about three times larger displacements
ux are to be expected in loosely filled beds compared with the initially vibrated beds. A
friction angle β ≈ 41◦ was found to describe the situation with reasonable accordance
with the experimental data.
The inclination is reproduced qualitatively by the calculations. It is found, however,
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Figure 13: Change of inclination angle α with horizontal displacement ux for σ̄xx =
0.058÷ 0.4MPa for vibrated beds. Symbols denote ABAQUS calculations.

that the magnitude is larger than observed in the experiment. One can speculate that
if during the experiment the load would have been applied more slowly the agreement
would have been better as it was the case for vibrated beds.
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4 Thermal creep
Recent experiments showed that thermal creep of granular breeder materials becomes
important at higher temperatures. If for example a bed of Li4SiO4 at 800 ◦C is com-
pressed by a uniform vertical load of σ̄yy = 4.2 MPa the thermal creep strain exceeds
already after one day the plastic and elastic strains occurring during the loading period
so that thermal creep is essentially important for a realistic description of the long-term
behavior of a fusion blanket with pebble beds.
Munz and Fett (1999) describe the creep behavior of solid samples of ceramic ma-

terials. They distinguish between a primary creep phase, a secondary creep phase and
a tertiary creep phase. Since all experiments done so far with granular beds did not
show the tertiary phase for the investigated time periods we do not address this phase
here. The secondary creep phase is the one which is active over most of the time during
experiments. Moreover, many materials do not exhibit a primary phase. Therefore we
do not distinguish between primary and secondary creep in this report and when we
talk about creep we suppose that the creep law is of the type

ε̇ = A (T ) pntm, (25)

with a magnitude A depending on temperature T . In a granular bed creep will not
occur with the same magnitude in the whole material. Especially at the surfaces where
granular particles are in contact with each other we have the highest stresses so that the
magnitude of the creep stain rate ε̇ is larger than at other places in the particle where
the stresses are much lower. During creep the contact areas increase. This reduces the
local stresses for the same externally applied load so that ε̇ is decreased. In addition
initial gaps may close during creep compaction. This fact creates new contacts which
transmit a fraction of the load and decreases the average stress per contact surface,
resulting in lower creep strain rate ε̇ with progressing time.
Let us support the creep law shown above with some heuristic arguments. Suppose

a granular particle is in contact with its neighboring particles at the contact areas at
which the force F is transmitted. We suppose further that the particles had initially
locally spherical shapes before the contact areas have been deformed by the applied load.
The situation is depicted in Fig. 16. In the following we denote the average compressive
stress as p ∼ F/d2. During creep the radius of the contact area and the contact surface
increase as ε1/2d and εd2, respectively, where ε is proportional to the volumetric strain
of the granular bed. Munz and Fett (1999) report that creep of a solid sample in the
second phase often follows a law with constant strain rate as

ε̇ ∼ σα. (26)

Such a relation may hold in our case near the contact region where the stress is related
to the compressive granular load as

σ ∼ F

εd2
∼ 1

ε
p. (27)

This yields with (26)

ε̇ ∼
µ
1

ε
p

¶α

(28)
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Figure 16: Sketch of a particle in creeping contact

and after integration

ε ∼ p α
α+1 t

1
α+1 or ε̇ ∼ p α

α+1 t
−α
α+1 = pntm. (29)

This equation shows that even if a solid material has a constant creep velocity a granular
bed with particles of the same material may have different behavior. The exponent m
may be extracted form granular experiments to be close to m ≈ −0.8. This means that
the exponent α would have values about α ≈ 4, which is in the range as reported by
Munz and Fett (1999) for ceramic materials under compression where e.g. α = 3.65
for silicone carbide. The assumptions introduced so far oversimplify the real situation.
This is manifested by an inaccurate prediction of the pressure dependence in (29) where
the model would predict n = −m which overestimates the measured pressure exponent
mmeasured = 0.65 (Reimann and Wörner (2000)). The deficiency of the model may be
caused by the fact that the stress at the contact surface is not uniform and because the
contact areas are estimated from simple geometric considerations without reference to
precise deformations. We therefore chose the more general creep law (25) and show later
that the degrees of freedom are sufficient to reproduce well the data obtained in creep
experiments.
Creep for Drucker-Prager-Cap materials may consist of two contributions. One is

the so-called cohesion creep while the other is the cap-creep causing consolidation of the
sample. We assume that the granular material is cohesionless so that the relevant creep
mechanism is consolidation. Plastic creep flow is determined by the strain rate tensor

ė ∼∂Gc
∂σ

, (30)

with the consolidation creep potential as foreseen in the Abaqus cap creep option

Gc =

q
(p− pa)2 + (Rq)2. (31)

This standard cap creep potential is shown in Fig. 17 as the dashed sector of the cap.
The magnitude of the strain rate is controlled by a constitutive equation defining the
volumetric consolidation creep strain rate. For a strain hardening mechanism we have

ε̇c = (A p̄
n
c [(m+ 1) εc]

m)
1

m+1 . (32)
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For the creep pressure Abaqus uses p̄c = p − pa. The evaluation of (30) yields with
∂q/∂σ = n and ∂p/∂σ = −1

3
I

ė =ε̇c
1

Gc

µ
R2q n− 1

3
p̄c I

¶
. (33)

As we saw before in Fig. 5, the quantity pa is closely related to the cap position pb.
During creep the cap position is shifted to higher values and as a consequence pa as well.
If the external load is kept constant the quantity (p− pa) decreases continuously during
creep and vanishes finally. In case of isotropic compression we would loose the driving
mechanism for creep and the material would ”freeze”. During experiments, however,
creep magnitudes are observed which are much higher than those attainable with the
above model. Therefore, the model may serve for a description only during some short
initial state.
For modelling of short and long-term behavior another model is proposed and out-

lined in the following. The experiments showed that for a realistic description of creep
the creep pressure foreseen in Abaqus, p̄c = p − pa is irrelevant since creep does not
stop when p = pa. Therefore we chose the pressure stress as the effective creep pressure
for our modelling as

p̄c = p. (34)

This quantity is independent from the cap position and does not cause ”freezing” of
the creep process in accordance with experimental observations. For a definition of the
creep strain rate tensor we define a new creep potential as

Gc =

q
p2 + (rq)2 (35)

from which we derive ė ∼∂Gc/∂σ. For a lack of knowledge we chose r = 1 and assume
for the moment orthotropic creep deformations. If creep due to shear would become
important for applications one must perform, in addition to the uniaxial creep tests,
some tests for shear creep to determine the other components of the strain tensor or
triaxial creep experiments to determine r. The creep model is general enough to account
for these properties if necessary.
During uniaxial compression we have σyy > σxx = σzz. We can evaluate from

equation (33) e.g. the strain rate component ėxx and find

ėxx ∼ 20σxx − 7σyy − 7σzz (36)

which is equivalent to
ėxx ∼ 9σxx + 7p. (37)

The same results hold for the other components. Normalization such that ėxx+ėyy+ėzz =
ε̇c finally yields

ėxx =
ε̇c
6

µ
9
σxx
p
+ 7

¶
, (38)

ėyy =
ε̇c
6

µ
9
σyy
p
+ 7

¶
, (39)

ėzz =
ε̇c
6

µ
9
σzz
p
+ 7

¶
. (40)
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These strain rates can not be used directly for a code input in the Abaqus creep
laws. However, the user subroutine UEXPAN foreseen for modelling of user defined
incremental strain allows to define ∆exx, ∆eyy, and ∆ezz. This is done by integration
of equations (38)-(40) over the time increment ∆t.
For the time integration we assume for simplicity that the stress and temperature stay

constant for the time interval ∆t considered. This causes no serious restriction since the
time step during calculations can be chosen small enough that the final results are nearly
unaffected by this simplification. On the other hand, the temperature is kept constant
during the whole experiment and the stress varies only during the initial loading time
which is negligible compared with the total time of the experiment. Nevertheless, the
loading cycle is resolved in the present calculations by a high number of time increments
so that the results are accurate even for varying stress. We use the constitutive equation
(25) to define the creep strain rate and integrate forward in time with A and p kept
constant during the time step. This yields

∆εc =
1

m+ 1
Apntm+10

"µ
1 +

∆t

t0

¶m+1
− 1
#

(41)

or with the magnitude of creep strain εc0 at the beginning of the time step

∆εc = εc0

"µ
1 +

∆t

t0

¶m+1
− 1
#
. (42)

The variable t0 is a fictive time which is determined from the accumulated creep defor-
mation, the current load and thermal conditions, i.e.

t0 = t̂

"
εc0
ε̂c

Â

A

µ
p̂

p

¶n# 1
m+1

, (43)

where the quantities ε̂c, t̂, Â, p̂ are taken from a reference experiment.
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In a next step we complete the creep model by introducing the appropriate tempera-
ture dependence. The temperature dependence for thermally activated creep of ceramic
materials may be described according to Munz and Fett (1999) by

A = C exp

µ
− Q

RT

¶
, (44)

where Q is the activation energy and R is the gas constant. Such a behavior is observed
also for beds of granular breeder materials and described by Reimann and Wörner
(2000). In equation (43) only the ratio Â/A is important. Therefore we do not need to
determine the value of C and we find directly

Â

A
=
exp

³
− Q

R T̂

´
exp

¡− Q
RT

¢ . (45)

The quantity Q/R has been determined by Reimann and Wörner (2000) from a number
of experiments and given as Q/R = 10.22 · 103K.
The model has been calibrated with the creep experiment performed by Reimann

and Wörner (2000) at 800 ◦C . The best agreement between the numerical predictions
and the experimental data is achieved if we chose the exponent for time and pressure
dependence as m = −0.82 and n = 0.705. These values are close to those given by
Reimann and Wörner (2000) who propose values as m = −0.8 and n = 0.65 for a fit
of a number of experiments. The magnitude of creep strain and the reference time are
ε̂c = 3.12 · 10−2 and t̂ = 5000min and p̂ = 2.62MPa.
During the loading phase the granular bed undergoes some initial compression caused

by inelastic granular deformation and creep as shown in Fig. 18. During this period the
vertical load is increased linearly up to its final value. The fraction of creep deformation
during the loading period is already comparable with (for 800 ◦C) or even larger (for
900 ◦C) than the permanent plastic deformation without creep, given by the curve for
low temperature. At temperatures lower than 400 ◦C thermal creep is irrelevant. The
long term behavior can be seen more clearly from Fig. 19. The reference case with
T = 800 ◦C is reproduced well. There is almost no difference between the numerical
predictions and the experiment. Thermal creep for T < 400 ◦C is negligibly small. The
sample is deformed during the loading phase and nearly keeps this deformation for the
whole time of the experiment.
Thermal creep leads to monotonic increase of contact surfaces between the particles.

This changes both, the elastic properties of the material and the granular behavior
during compaction with the result that the cap position is modified. As a consequence
the bed would behave stiffer during a second increase of the load. This effect has been
observed during experiments and it will be taken into account for calculations in which a
second increase of the load occurs. We disregard for the moment the change in the elastic
properties and focus our attention on the cap hardening due to thermally activated creep,
say on creep hardening. It is straightforward to incorporate creep hardening depending
on the accumulated creep strain εc in the cap hardening equation (24) as

pb = p̂b

µ
εvol,pl + εc

ε̂vol,pl

¶a
, (46)
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Figure 18: Vertical load versus volumetric strain for various temperatures. The case of
800 ◦C is compared to experimental results.
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is compared to experimental results.
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and we apply this equation for most of the creep phase, except for the very short
transients in which the load is increased. The reason is very simple. Suppose there
would be a compression without creep, then we would have a result similar to that at
low temperature as shown in Fig. 18. The applied vertical load σ̄yy is related to the total
volumetric strain εvol as shown by the line for 400 ◦C and creep is irrelevant. If creep is
active during the time when the load is increased the sample exhibits larger deformations
which are caused by consolidation as for low temperatures plus deformations due to
creep. The granular bed behaves softer for a compression for which creep is active.
However, if we would apply equation (46) during this phase the result would be that the
sample behaved stiffer compared with a case where creep is not active since pb increases
with creep strain. To resolve this contradiction we replace εc in equation (46) by ε0c and
determine this quantity as

ε0c =
Z t

t0

ε̇c dt (47)

for the times t > t0. Here, t0 is the time at which the load has reached the final
magnitude. In the experiment the time during which the load is applied is very small
compared with the total time during which creep is active, t0/tmax < 10−3, so that this
assumption seems to be justified. We keep all other parameters as they were introduced
above. We repeat the calculations for the same cases as shown previously with σ̄yy =
4.3MPa for t0 = 5min < t < 5600min. We increase the load in a second step linearly
to σ̄yy = 8.58MPa and keep it constant for 5605min < t < 12850min. The results are
shown in Figs. 20 and 21. The first part of the figures has been already shown during
the discussion of creep at constant load. A comparison with the experimental data at
800 ◦C shows here a perfect agreement also for the second step after the external load
is raised.
We observe from calculations strain magnitudes of εvol > 0.08. For higher tempera-

tures the model would predict even larger creep strain rates. If the creep model predicts,
e.g. for higher temperatures, volumetric deformations which become of the same order
of magnitude as the void fraction of the granular bed, it is obvious that the creep mech-
anism must change since an extrapolation to larger times could predict a density of the
bed which is higher than the density of the particles.
We have seen already from Fig. 18 that for high temperatures creep gives an essential

contribution to the strain magnitude already during the initial period when the load is
applied. This fact is analyzed in the following by using for the stress increase different
load ramps between 0.15MPa /min and 4.7MPa /min as shown in Fig. 22. The load
ramps used for the calculations and the temperatures correspond to values used in
experiments (Bühler and Reimann (2001)). Note, during experiments one observes
typically a very small (negligible) stress increase with initial volumetric strain ε0. The
values of ε0 depend rather on the initial conditions than on the applied load. This
behavior may be explained by a rearrangement of particles near the walls or in the bed.
The experimental results plotted in Fig. 22 show the vertical load σ̄yy (εvol − ε0) where
we used ε0 = 0.003, 0.003, 0.0002, and 0.001, for the cases with 0.15, 2.8, 4.7MPa /min,
and for no-creep, respectively. We observe large creep strain during the loading period
if the load ramp is very small, i.e. when the material finds enough time to deform. For
fast ramps (shorter time) the deformation due to creep is smaller. For a comparison
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Figure 20: Vertical load versus volumetric strain for various temperatures. The case of
800 ◦C is compared to experimental results.
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σ̄yy = 8.58MPa. The case of 800 ◦C is compared to experimental results.

25



and as a check of the numerical procedure two loading cycles at low temperature are
added to the diagram. In fact, for low temperature, creep during the loading period is
negligible and results become therefore independent of the load ramps.
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Figure 22: Influence of different load ramps on thermally activated creep.

The creep behavior as a function of time is shown in Fig. 23 for the two investigated
load ramps of 0.17MPa /min and 2.8MPa /min. After the vertical stress reaches a level
of 6.5 MPa this magnitude is held constant for the rest of the creep experiment. It can
be seen from the figure that the creep strain rates differ during the loading period and
even some time later. However, on a longer time scale the remaining difference becomes
insignificant.
In applications for fusion blankets the load is established by differences in thermal

expansion coefficients between the granular material and the confining walls. Under
such constraints thermal creep will relax stresses during the operation of the blanket.
In order to investigate such effects the third type of experiments has been performed
in which the granular bed has been compressed up to σyy = 8MPa to simulate the
thermally induced loads (Bühler and Reimann (2001)). Then the vertical load has been
manually controlled in order to keep the piston in a constant position while the vertical
force (vertical stress) is recorded (see Fig. 24). This manual control was crucial in a
sense that vertical load amplitudes up to 1MPa were required in order to reestablish
the initial position of the plate. The agreement between theory and experiment in the
initial stage is not satisfactory. However, for 770 ◦C the experimental data approach the
theoretical one for the long-term behavior. It can be seen that after a time less than one
hour the stress is released to a fraction of the initial value. This means that at higher
temperatures thermal stresses do not cause severe problems if the thermal ramps are
slow enough that stresses can be released by thermal creep. For high temperatures a
decrease of stress according to a power law σyy ∼ t−0.2 is observed.
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5 Conclusions
Continuum models are efficient means for the determination of the mechanical behav-
ior of granular breeder materials in fusion blankets. Such models account for various
effects such as nonlinear elasticity, granular flow of particles due to shear failure or
consolidation, and thermally activated creep.
The mechanical behavior of Li4SiO4 pebble beds at ambient temperature was inves-

tigated using a blanket typical geometry where the bed is mechanically compressed in
the vertical (poloidal) direction, simulating the stresses caused by thermal expansion of
the breeder material. The bed is allowed to expand horizontally, simulating granular
particle flow due to radial stress profiles caused in the blanket by radial temperature
gradients.
It is shown that for densely filled beds the horizontal movements become negligi-

ble for already quite small lateral loads. From this observation one might conclude
that for blanket conditions the flow of particles is not very expressed. There are two
consequences:

• Compared to a stress release if particles would move, higher local internal stresses
occur which result in a larger thermomechanical interaction between pebble beds
and structural material;

• The computational description of this interaction becomes simpler as well as the
experimental effort to generate the required input data for numerical codes: in-
ternal friction and wall friction are less important and the required data could be
obtained essentially by uniaxial compression tests.

The strong influence of the initial state of the pebble beds on the mechanical behavior
has been shown. It must be ensured that experiments used to calibrate computational
tools use the same methods as in the blanket to get a dense packing (e.g. vibrations).
These computational models used to predict the behavior of pebble beds assume quasi
steady state conditions. In blankets a quite fast load increase during start-up is ex-
pected which will change the bed behavior. This effect, should be quantified in future
experiments.
Thermal creep of solid breeder materials has been investigated. Experiments per-

formed at elevated temperatures close to the operating temperatures in fusion blankets
show that the creep strain reaches values as large as the elastic and plastic granular
deformations. The time after which these large creep deformations occur is relatively
small (some hours). This has the consequence that thermally induced loads in the peb-
ble beds or loads due to irradiation swelling are continuously released by creep of the
breeder material and should not cause severe problems at high temperatures. Contin-
uum models are efficient means for the determination of the mechanical behavior of
granular breeder materials in fusion blankets. Such models account for various effects
such as nonlinear elasticity, granular flow of particles due to shear or consolidation, and
thermally activated creep. The modelling of thermally activated creep is possible by
using a modified cap-creep potential. The new creep potential has been implemented in
a user defined subroutine and yields results which agree well with experimental data.

28



References
ABAQUS / Standard: 1996, Hibbitt, Karlsson & Sorensen, INC.

Boccaccini, L.: 2000, Advanced helium cooled pebble bed blanket, Technical Report
FZKA 6402, Forschungszentrum Karlsruhe.

Bühler, L. and Reimann, J.: 2001, Thermal creep of granular breeder materials in fusion
blankets, 10th International Conference on Fusion Reactor Materials, October 14-
19, 2001, Baden Baden.

Bühler, L., Reimann, J., Arbogast, E. and Thomauske, K.: 2000, Mechanical behavior of
Li4SiO4 pebble beds in a blanket typical geometry, Fusion Engineering and Design
49-50, 499—505.

Dalle Donne, M., Fischer, U., Norajitra, P., Reimann, G. and Reiser, H.: 1995, European
DEMO BOT solid breeder blanket: The concept based on the use of cooling plates
and beds of beryllium and Li4SiO4 pebbles, in K. Herschbach, W. Maurer and
J. E. Vetter (eds), Fusion Technology 1994, Vol. 2, Elsevier, pp. 1157—1160.

Durelli, A. J., Phillips, E. A. and Tsao, C. H.: 1958, Introduction to the Theoretical
and Experimental Analysis of Stress and Strain, McGraw-Hill Series in Mechanical
Engineering, McGraw-Hill Book Company, INC.

Endres, A. L.: 1990, The effect of contact generation on the elastic properties of a
granular medium, Transactions of the ASME 57, 330—336.

Hermsmeyer, S., Gordeev, S., Kleefeldt, K., Schleisiek, K., Schmuck, I., Schnauder, H.,
Fischer, U., Malang, S., Fütterer, M. and Ogorodnikowa, O.: 1999, Improved he-
lium cooled pebble bed blanket, Technical Report FZKA 6399, Forschungszentrum
Karlsruhe.

Hunter, S. C.: 1983, Mechanics of continuous media, Ellis Horwood Series in Mathe-
matics and its Applications, 2nd edn, Ellis Horwood Limited.

Munz, D. and Fett, T.: 1999, Ceramics Mechanical Properties, Failure Behav-
iour, Materials Selection, Springer Series in Materials Science, Springer-Verlag,
Berlin/Heidelberg.

Nedderman, R. M.: 1992, Statics and kinematics of granular materials, Cambridge
University Press.

Reimann, J. and Müller, S.: 1998, First experiments on the thermomechanical behaviour
of Li4SiO4 pebble beds., Fusion Technology 1998, Proceedings of the 20th Sympo-
sium on Fusion Technology, Marseille, September 7-11, 1998, Vol. 2, pp. 1337—1340.

Reimann, J., Müller, S., Arbogast, E. and Thomauske, K.: 1998, Experiments on the
thermomechanical behaviour of ceramic pebble beds, Technical Report FZKA 6148,
Forschungszentrum Karlsruhe.

29



Reimann, J. and Wörner, G.: 2000, Thermal creep of Li4SiO4 pebble beds, Fusion
Technology 2000, 21th Symposium on Fusion Technology, Madrid, September, 11-
15, 2000.

Walton, K.: 1987, The effective elastic moduli of a random packing of spheres, J. Mech.
Phys. Solids 35(2), 213—226.

30


	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	2 Characterization of granular materials
	2.1 Elasticity
	2.2 Porous elasticity
	2.3 Granular flow
	2.4 Hardening

	3 Calibration and applications
	3.1 Uniaxial compression
	3.2 Biaxial granular flow

	4 Thermalcreep
	5 Conclusions
	References

