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Computation of the crack opening displacements for Vickers indenta-
tion cracks

Abstract:
Vickers indentation cracks are an appropriate tool to determine the crack-tip toughness
KI0 and possibly the bridging relation of ceramics with an R-curve behaviour from the
total crack opening displacements. Two contributions to the total crack opening dis-
placement field are addressed. First, the residual stresses occurring in the uncracked
body are considered and then, the contact stresses generated by preventing crack-face
penetration are computed. The COD solution resulting from superposition of residual
and contact displacements is given in the form of diagrams for graphic interpolation
and in the form of a table for interpolation by bi-cubic splines. In addition, an analyti-
cal expression is provided. The near-tip displacements are represented by the first
terms of series expansions.

Berechnung des Rissuferverschiebungsfelds für Vickerseindruckrisse

Kurzfassung:
Die beim Vickers-Eindruckversuch in keramischen Materialien auftretenden Risse sind
geeignet, die Rissspitzenzähigkeit KI0 und möglicherweise auch die Brückenspannun-
gen von Keramiken mit R-Kurveneffekt aus Rissuferverschiebungsmessungen zu
bestimmen. Es werden zwei verschiedene Beiträge zur Rissuferverschiebung ange-
sprochen. Zum einen ist das beim Eindruck in der ungerissenen Probe entstehende Ei-
genspannungsfeld für einen Teil der Verschiebungen in der gerissenen Probe verant-
wortlich. Andererseits ist auch das Spannungs- und Verschiebungsfeld erforderlich,
das durch Kontaktspannungen im inneren Rissbereich auftritt. Die Gesamtverschie-
bungen resultieren aus der Überlagerung dieser beiden Beiträge. Die Ergebnisse der
Berechnungen werden in Form von Diagrammen für graphische Interpolation und ei-
ner Tabelle für Spline-Interpolation wieder gegeben. Zusätzlich werden Näherungs-
formeln für das Gesamt- und das Rissspitzen-Nahfeld hergeleitet.
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1.  Introduction

The increasing crack resistance of ceramic materials is often caused by crack-bridging effects
occurring between the opened crack surfaces. For the determination of bridging stresses for
cracks in ceramic materials, it is necessary to know the crack opening profile in the absence of
any bridging effect, the “applied” crack opening displacements δappl caused by the externally
applied load. The differences between the applied and the measured total displacements (δtotal)
are called “bridging displacements” δbr, i.e. δbr = δtotal - δappl with δbr < 0. From the difference
between the applied and the measured displacements, the bridging stresses σbr can be deter-
mined by solving an integral equation (see e.g. [1]).

In the case of fracture mechanics test specimens, the applied displacements can be computed
from the externally applied load. In the case of a Vickers indentation, the residual stress field
caused by non-elastic deformations is responsible for the applied displacements. A few stud-
ies were performed in the past to compute these displacements from the residual stresses (e.g.
[2]). The main problem in the evaluation is how to deal with negative displacement in the
damage zone.

It is the aim of this report to compute the “applied” crack opening displacement field caused
by a superposition of residual stresses in the uncracked material, which result from Vickers
indentation and contact stresses in the inner contact zone. For this purpose, the indentation
crack is assumed to be semi-circular. It is furthermore assumed that the crack can be de-
scribed as a half of a fully embedded crack, i.e. a change of the stress intensity factor along
the crack contour is neglected.
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2. Residual stress intensity factor and COD
2.1 Residual stresses
For the description of the residual stress field in the uncracked body, the model of an inter-
nally pressurised cavity [3,4] is applied. This model yields for the tangential component of
residual stresses
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For the geometric data see Fig. 1. The stress distribution according to eqs.(1) and (2) is illus-
trated in Fig. 2 for the case of f(r/b) = 1.
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Fig. 1 Deformation zone and geometrical quantities.

2.2 Residual stress intensity factor

The residual stress intensity factor for a crack of radius a is given as
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Fig. 2 Residual stress distribution in the absence of a crack according to eq.(1) for f(r/b) = 1.

It can be shown that the residual stress intensity factor is negative for any function f(r/b) and
any crack size a. Application of the mean value theorem to the first term of eq.(3b) with
eq.(2) yields
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since the bracket is positive for any r0 and b. As a first consequence of the negative residual
stress intensity factor, penetration of the crack faces has to be expected at least for the near-tip
crack opening displacement field.

2.3 Displacements caused by the residual stresses
In order to demonstrate the penetration of crack faces in the residual stress field, the crack
opening displacements δ have to be computed. It holds
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with the Young's modulus for plane strain E’. For a simpler representation of results, the
stress intensity factors and crack opening displacements are normalised as
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Figure 3 shows the crack opening displacements δres for homogeneous p, i.e. for f(r/b) = 1.

The displacements (Figs. 3a and 3b) are negative over the whole crack area, and crack-face
penetration occurs at any distance r/a. A decomposition of the displacements is given in Fig.
3c. Curve 2) was computed from the compressive stresses in r < b exclusively and for curve 3)
only the positive residual stresses at r > b were considered. It is of importance to know that
stresses active outside r = b will affect the COD also in the region r < b.
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Fig. 3 Residual COD for a crack computed with f(r/b) = 1, a), b) crack opening displacements, c)
decomposition of displacements: 1) total residual displacement, 2) contribution caused by the stresses

in r < b, and 3) contribution of the (positive) stress at r > b.

Influence of residual stress distribution in r<b
In order to assess the effect of the special shape of the residual stress distribution in the region
r<b, the residual displacement field was computed for different power-shaped functions f(r/b)
∝  rn, resulting in the same stress intensity factor K. Figure 4 shows that the crack opening
displacements for the strongly different stress distributions differ hardly. In Fig. 5 the region
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near r/b is zoomed. Deviations of 5, 10, and 15% are indicated. Having this in mind, we rec-
ommend to use f(r/b) = 1 without any loss of accuracy worth mentioning.
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Fig. 4 Crack opening displacement for different residual stress distributions f(r/b) according to eq.(1),
yielding the same residual stress intensity factor.
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Fig. 5 Deviations of crack opening displacement of Fig. 4 near the location r/b=1.

For f(r/b) = 1 the residual displacements δ1 caused by the stresses at r/b < 1 are [5]
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and the displacements δ2 related to the stress distribution in the region r > b
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with the complete elliptical integrals E and K and the incomplete elliptical integrals E and F.
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3. Contact stresses
3.1  Contact stress intensity factor and related COD
In a real structure, this is not possible, of course. Prevented crack-face penetration results in a
distribution of (positive) contact stresses σcont which cause a positive contact COD field δcont
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and a contact stress intensity factor
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This stress intensity factor is positive, since the contact stresses open the crack. The related
contact stresses are restricted to a contact area of radius d with d ≅  b and must disappear in the
region of real (positive) crack opening (see Fig. 6).
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Fig. 6 Contact stresses in the centre region of aVickers crack.

As an example, let us use the residual stress field according to eqs.(1) and (2) with f(r/b) = 1.
The residual stress intensity factor reads
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The related displacements are shown in Fig. 3a.

3.2  Numerical considerations for the case of d=b
For the numerical treatment, a power series expansion (truncated after the term N) of the un-
known contact stresses is applied according to
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In order to make the procedure transparent, it is restricted to the first three terms in the series
representation (12) only. The first inner integrals read
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The first integrals Jn (n=1-3) defined by eq.(13) are shown in Fig. 7 for a crack of a/b=3.
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Fig. 7 First integrals defined by eq. (13).

The unknown coefficients An can determined exclusively from the condition δtotal = 0 for r < d.
The integral Jn and the residual displacements were evaluated at m>N equidistant points in
0<r<b. A least squares procedure was applied, which minimised the expression
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providing An. Figure 8a shows the increasing approximation of the residual displacements by
the (plotted in negative direction) contact displacements computed with an increasing number
of terms in eq.(12). After 5 terms already are the deviations hardly visible. In Fig. 8b the re-
lated contact stresses are plotted for d=b as a function of the number of used terms. The com-
putations were performed for different values of d ≈ b. It was found that for the computation
of the contact displacement field at r>max(d,b) no significant influence of d was detectable.
Therefore, we restricted our considerations to d=b.
From a convergence study as illustrated in Fig. 8, it was found that the contact stress for our
example can be adequately expressed by

))/(1( q
cont brD −=σ  (19a)

(see Fig. 8c). By introducing this type of stress distribution in eq.(9) and minimising
(δres+δcont)2, an improved solution was found as plotted in Fig. 9 for several values of q. The
parameters D and q resulting for several ratios a/b are given in Fig. 10 and approximated by

abD /1127.0898.0 +≅  (19b)

2)/(33.13/69.232.5 ababq ++≅  (19c)

The contact displacements were computed using the approximate contact stress solution
eq.(19). The resulting δcont are shown in Fig. 11 together with the residual displacements δres.
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Fig. 8 a) Approximation of the total displacements by an increasing number of terms in eq.(13), b)
contact stresses for N=0-8, c) asymptotic solution, (a/b=3).
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tion of the stresses.
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Fig. 10 Parameters for the contact stress distribution, eq.(19).
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4.  Total stress intensity factor and total COD

4.1 Results for d=b
The really active total stress intensity factor is then

contrestotal KKK += (20)

and the total crack opening displacements are given by
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with contrestotal σ+σ=σ  (22)

The total displacements δtotal were found by superposition of these two solutions (Figs. 11b,
11c).
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Fig. 11 a) Fitting of the displacements in 0<r<b, b) and c) total displacements δtotal obtained by super-
position of the residual and contact displacements.
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The small deviations from δtotal = 0 in 0 ≤ r ≤ b indicate the slight differences between the cor-
rect and the approximate contact stress solutions (i.e. the differences visible in Fig. 9a).
Total displacements are represented in Fig. 12a for several relative crack lengths a/b. This
figure is recommended for interpolation in 2.5 ≤ a/b ≤ 5. The related (normalised) total stress
intensity factor is plotted in Fig. 12b, exhibiting the well-established proportionality K ∝  a-3/2

for a/b ≥ 2.5

2/3)/(
372.0'
ba

K ≅  (23)

Relation (23) allows to estimate the pressure p from the experimentally determined depend-
ency between indentation load P and crack size
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Fig. 12 a) Total crack opening displacement, b) normalised total stress intensity factor c) coefficient λ
for eq.(25).



14

4.2 Influence of the contact zone radius b

For the preceding computation, it was made use of the fact that the contact zone is close to the
region of compressive residual stresses, i.e. d≅ b. For these computations, it was assumed d=b.
In order to illustrate the influence of the value d, the computations were repeated for d=0.95b
and d=1.05b. The resulting displacements δ’ are plotted in Fig. 13a for a/b=3. A slight influ-
ence of d can be seen. The same effect was obtained for the normalised stress intensity factor
K’. In Fig. 13b the ratio δ’/K’ is represented. No difference is visible in the region r>b.
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Fig. 13 Influence of the contact zone radius.
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5.  Approximated COD field
Based on the preceding considerations, an approximate analytical description of the total
crack opening displacement can be given by
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with λ represented in Fig. 12c. The unknown quantity p may be determined from the total
stress intensity factor
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in combination with Fig. 12b or eq.(23).

Having in mind the slight influence of the stress distribution in the contact zone on the dis-
placements (see e.g. Fig. 5) we restrict the solution (25) to r > 1.25b and 2.3 < a/b < 10.

Expressed by the stress intensity factor, the displacements read
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A representation of the crack opening displacement in the normalised form δ’/K’ is given in
Fig. 14. This plot is appropriate for performing interpolations with respect to r/b and a/b. The
data of Table 1 allow interpolations using bi-cubic splines.

A FORTRAN program for the computation of the normalised COD δ’/K’ is given in the Ap-
pendix.
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6.  Near-tip displacements
In practical applications, for instance, the determination of the “crack-tip toughness” KI0, it is
of interest to know the near-tip displacement field. A simple relation for the COD can be de-
rived by replacing the inner integrals in (5), (9), and (21) by the stress intensity factors K(a‘)
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with a certain intermediate crack length r≤ α≤  a. For r→ a we can replace α by a and obtain
for the near-tip displacements
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A series expansion of eq.(25) gives
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with the coefficients
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with 2.5<a/b<10 for B and C.

By exclusive use of the first coefficient A, the well-known Irwin relation results
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A comparison of the crack-tip approximations, eqs.(34-37), with the numerical results is made
in Figs. 15a and 15b. In Fig. 15c, the numerical solution, approximation (33) and the Irwin
relation (38) are compared. The best solution, of course, is the one given by eqs.(34-37). Irre-
spective of the actual a/b ratio, the best solution is eq.(33).
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Fig. 15 Comparison of the normalised COD with different crack-tip approximations.
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r/b a/b=3 4 5 6 8 10
1.2 2.586 4.254 6.196 8.45 13.48 19.23
1.4 2.599 4.360 6.410 8.78 14.07 20.16
1.6 2.353 4.056 6.029 8.31 13.41 19.28
2 1.745 3.252 4.976 6.96 11.42 16.55
2.5 1.032 2.355 3.809 5.46 9.26 13.47
3 0 1.635 2.896 4.30 7.49 11.09
3.5 1.00 2.167 3.39 6.11 9.26
4 0 1.551 2.67 5.07 7.83
5 0 1.50 3.51 5.73
6 0 2.38 4.26
8 0 2.23
10 0

Table 1  Normalised displacements δ’/K’ for interpolation with bi-cubic splines.

References
[1] Munz, D, Fett, T., CERAMICS, Failure, Material Selection, Design, Springer-Verlag, Heidel-

berg, 1999.
[2] Rödel, J., Rissüberbrückung in keramischen Werkstoffen, VDI-Verlag, Reihe 5: Grund- und

Werkstoffe, Nr. 331, Düsseldorf 1993.
[3] Hill, R., Mathematical Theory of Plasticity, Oxford University Press, 1950, Oxford
[4] Evans, A.G., Charles, E.A., Fracture toughness determinations by indentation, J. Am. Ceram.

Soc. 59(1976), 371–372.
[5] Gröbner, W, Hofreiter, N., Integraltafeln I, Springer Verlag, 1975, Heidelberg.
[6] Fett, T., Munz, D., Stress intensity factors and weight functions, Computational Mechanics Pub-

lications, 1997, Southampton.
[7] Timoshenko, S.P., Goodier, J.N., Theory of Elasticity, 1970, McGraw-Hill, Kogakusha.
[8] Harwell Subroutine Library, A Catalogue of Subroutines, Computer Science and Systems Divi-

sion, AERA, Harwell 1981.



20

Appendix

A1. Crack opening under pure displacement boundary conditions

The residual stress problem considered before was treated under pure stress boundary
conditions. For the computation of the crack opening displacements by eq.(5), we applied the
weight function technique with a weight function h
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1

ra
h

−
∝ (A1)

where now integration has to be performed over the crack area instead of the crack length, i.e.
∝ rdr instead of r. This is a typical weight function for stress boundary problems in which the
stresses are not affected by the crack opening. In the present case, the compressive residual
stresses will decrease with increasing COD, because the extension of the stress field is limi-
ted. A correct analysis would be possible by using a weight function for mixed boundary con-
ditions. Unfortunately, such a weight function is not available. Nevertheless, it is possible to
consider the two limit cases:

•  Crack opening under pure stress conditions using the stresses which are present in the
uncracked body only (Fig. A1a). This problem was dealt within the preceding chapters
for σres = const. in 0 < r < b.

•  Crack opening under pure displacement conditions δres = const. in 0 < r < b (Fig. A1b).

 

r 

b 

σ

2δ0 
r 

a)

b)

Fig. A1 a) Limit case of pure stress boundary conditions, b) limit case of pure displacement condi-
tions.

In order to compute the displacements outside of the plastic zone (i.e. for r>b), the stresses
have to be computed, which produce the displacement δ = δ0 in 0<r<b. The stress distribution
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which causes constant displacements δ0, can be approximated sufficiently by the displace-
ments of a rigid stamp pressed into a plane surface, i.e. the crack surface (see e.g. [7])
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exhibiting a stress singularity for r→b as shown in Fig. A2 as the dashed curve. Introducing
these stresses into eq.(5) yields for r > b
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Fig. A2 Stress distribution producing constant displacements in 0<r<b.

The displacements are represented in Fig. A3a. Figure A3b shows the displacements δ’, now
defined as

04
''

ap
Eπ=δ (A4)

normalized to the stress intensity factor K’ defined by

bp
KK

0

' =  (A5)

In Fig. A4, the displacements according to eq.(A3) are compared with those caused by pure
stress conditions. It can be concluded that the two solutions differ by less than 5% for (r-
b)/(a-b)>0.5.
In the case of displacement boundary conditions, the effective visible COD shows a sharp
maximum near r/b≈1.
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In order to estimate the influence of the mixed boundary conditions, the two solutions for pure
stress and pure displacement are superimposed

10,)1( ≤≤−+= βδββδδ δσ (A6)

where δσ stands for the solution under stress conditions and δδ for the solution under pure
displacement conditions. The displacements computed with eq.(A6) are plotted in Fig. A5.
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Fig. A3 a) Crack opening profile δ’(r) for a half-penny-shaped crack opened under a constant
displacement in the zone 0<r<b, b) displacements δ’ normalized to the stress intensity factor K’.
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Fig. A4 Curves from Fig. 14 compared with results from Fig. A3b.
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Fig. A5 Interpolation of the limit cases of stress and displacement boundary conditions according to
eq.(A6) for stresses given by eq.(A2).

A2. Displacement boundary conditions with non-singular stresses

As can be seen from eq.(A2), the stresses become infinite for r→b. This is, of course, not pos-
sible in real materials. Stresses are reduced, for instance, by exceeding the yield stress. To
illustrate the influence of a disappearing stress singularity, let us consider the modified stress
distribution which is cut at r = κb
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This distribution is entered in Fig. A2 as the solid curve. Introducing these stresses into eq.(5)
yields the normalized displacements δ’ as shown in Fig. A6a and the ratio δ’/K’ as shown in
Fig. A6b for α=0.95. The influence of the parameter κ can be seen from Fig. 6c and Fig. 6d.
The interpolation of the limit cases according to eq.(A6) results in the displacement curves
shown in Fig. A7. As has to be expected, only the displacements near r = b are influenced by
the modified stress distribution.
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Fig. A6 Displacements computed with the non-singular stress distribution eq.(A7).
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Fig. A7 Interpolation of the limit cases of stress and displacement boundary conditions according to
eq.(A6) for stresses given by eq.(A7).
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A3. Computation of the crack profile

The following program computes the relative COD given as “drel”=δ’/K’. In the program, the
contact zone radius b is set to b=1. The crack size a is chosen to be variable, i.e. a is identical
with the ratio a/b.
The subroutines FB02AD and FB01AD are routines of the HARWELL program library [8].

IMPLICIT REAL*8 (A-H,O-Z)
open (9,file='p02.dat',status='old',access='append')
PI=4.d0*datan(1.d0)
b=1.d0
a=3.d0
am1=a-1.d0
do 50 i=1,200
r=1.d0+am1/200.d0*(i-1)
CALL displ(a,b,r,delta,ak)
drel=delta/ak
write(6,101) r,delta,drel
write(9,101) r
write(9,101) drel

c write(9,101) dr1
50 CONTINUE

101 FORMAT(1H 5F14.6)
STOP
END

C ***************************************************************

SUBROUTINE displ(a,b,r,delta,aks)
IMPLICIT REAL*8 (A-H,O-Z)
PI=4.D0*DATAN(1.D0)
CALL FUNKT(a,b,r,ds1,ds2)
alam=0.9828d0*(a/b)**0.00565d0
b1=alam*b
CALL FUNKT(a,b1,r,ds3,ds0)
res1=-a*ds1
res2=0.5d0*b*ds2
res=res1+res2
pstern=0.635d0+0.319d0/a
dcont=ds3*a*pstern
delta=dcont+res
ak=2.d0*(pstern-1.d0)/dsqrt(pi*a)*(a-dsqrt(a**2-b**2))+

. 1.d0/dsqrt(pi*a)*(b/a)**2*dsqrt(a**2-b**2)
aks=ak/dsqrt(b)
RETURN
END

C ***************************************************************

SUBROUTINE FUNKT(a,b,r,ds1,ds2)
IMPLICIT REAL*8 (A-H,O-Z)
PI=4.D0*DATAN(1.D0)
opt=3.d0
bdr=b/r
rda=r/a
bda=b/a
emsq=bdr**2
cosp=dsqrt(1.d0-rda**2)
call fb02ad(emsq,rda,cosp,EE,FF)
call fb01ad(emsq,opt,vk,ve)
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ds1=dsqrt(1.d0-rda**2)*(1.d0-dsqrt(1.d0-bda**2))+rda*(ve-ee
. -(1.D0-BDR**2)*(vk-ff))
ds2=(ve-ee)/r
RETURN
END

C ***************************************************************

SUBROUTINE FB01AD(C,B,VK,VE)
C STANDARD FORTRAN 66 (A VERIFIED PFORT SUBROUTINE)

DOUBLE PRECISION B,C,D,E,VE,VK,XLG
DATA XLG/.723700557733226211D+76/
D=1.0D0-C
IF(D .GT. 0.0D0)E=-DLOG(D)
IF(B .LT. 2.0D0)GO TO 1
IF(C .GE. 1.0D0)GO TO 2

VE=E*((((((((((
A 3.18591956555015718D-5*D +.989833284622538479D-3)*D
B +.643214658643830177D-2)*D +.16804023346363385D-1)*D
C +.261450147003138789D-1)*D +.334789436657616262D-1)*D
D +.427178905473830956D-1)*D +.585936612555314917D-1)*D
E +.937499997212031407D-1)*D +.249999999999901772D0)*D)
F +(((((((((
G .149466217571813268D-3*D +.246850333046072273D-2)*D
H +.863844217360407443D-2)*D+.107706350398664555D-1)*D
I +.782040406095955417D-2)*D +.759509342255943228D-2)*D
J +.115695957452954022D-1)*D +.218318116761304816D-1)*D
K +.568051945675591566D-1)*D +.443147180560889526D0)*D
L +1.0D0
GO TO 1

2 VE=1.0D0
1 IF(B .EQ. 2.0D0)GO TO 3

IF(C .GE. 1.0D0)GO TO 4
VK=E*((((((((((

A .297002809665556121D-4*D +.921554634963249846D-3)*D
B +.597390429915542916D-2)*D +.155309416319772039D-1)*D
C +.239319133231107901D-1)*D +.301248490128989303D-1)*D
D +.373777397586236041D-1)*D +.48828041906862398D-1)*D
E +.703124997390383521D-1)*D +.124999999999908081D0)*D
F +.5D0)+(((((((((
G .139308785700664673D-3*D +.229663489839695869D-2)*D
H +.800300398064998537D-2)*D +.984892932217689377D-2)*D
I +.684790928262450512D-2)*D +.617962744605331761D-2)*D
J +.878980187455506468D-2)*D +.149380135326871652D-1)*D
K +.308851462713051899D-1)*D +.965735902808562554D-1)*D
L +1.38629436111989062D0
GO TO 3

4 VK=XLG
3 RETURN

END

C ***************************************************************

SUBROUTINE FB02AD(CAYSQ,SINP,COSP,E,F)
C STANDARD FORTRAN 66 (A VERIFIED PFORT SUBROUTINE)

DOUBLE PRECISION A,CAYDSQ,CAYMOD,CAYSQ,CFI,CFI1,
1CFJ,CFJ1,CFL,CFM,CFN,COSP,CRIT,DEL1,DEL2,DEL3,DEL4,
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2E,F,FACT,FACTM,FACTN,FACTOR,FACTRO,FACT1,FLOG1,H,
3H1,PHI,RECIP,SIG1,SIG2,SIG3,SIG4,SINP,SIN2,TERM,T1,T2
PHI=DATAN(SINP/COSP)
IF(CAYSQ*SINP*SINP-0.5D0)1,1,5

1 H=1.0D0
A=PHI
N=0
SIG1=0.D0
SIG2=0.D0
SIN2=SINP*SINP
TERM=SINP*COSP*0.5D0
CRIT=PHI

2 N=N+1
RECIP=1.0D0/FLOAT(N)
FACT=(FLOAT(N)-.5D0)*RECIP
H1=H
H=FACT*CAYSQ*H
A=FACT*A-TERM*RECIP
TERM=TERM*SIN2
CRIT=CRIT*SIN2
DEL1=H*A
DEL2=-.5D0*RECIP*CAYSQ*H1*A
SIG1=SIG1+DEL1
SIG2=SIG2+DEL2
IF(DABS(DEL1)-4.0D-16)4,3,3

3 IF(DABS(CRIT)-DABS(A))4,2,2
4 F=PHI+SIG1

E=PHI+SIG2
GO TO 8

5 CFI=1.D0
CFJ=1.D0
CFL=0.D0
CFM=0.D0
CFN=0.D0
SIG1=0.D0
SIG2=0.D0
SIG3=0.D0
SIG4=0.D0
N=0
FACT1=1.0D0-CAYSQ*SINP*SINP
FACTOR=.5D0*COSP*DSQRT(CAYSQ/FACT1)
FACTRO=FACTOR+FACTOR
CAYDSQ=1.0D0-CAYSQ

6 N=N+1
RECIP=1.0D0/FLOAT(N)
FACTN=RECIP*(FLOAT(N)-.5D0)
FACTM=(FLOAT(N)+.5D0)/(FLOAT(N)+1.0D0)
FACTOR=FACTOR*FACT1
CFI1=CFI
CFJ1=CFJ
CFI=CFI*FACTN
CFJ=CFJ*FACTN*FACTN*CAYDSQ
CFL=CFL+.5D0/(FLOAT(N)*(FLOAT(N)-.5D0))
CFM=(CFM-FACTOR*RECIP*CFI)*FACTM*FACTM*CAYDSQ
CFN=(CFN-FACTOR*RECIP*CFI1)*FACTN*FACTM*CAYDSQ
DEL1=CFM-CFJ*CFL
DEL2=CFN-(FACTN*CFL-.25D0*RECIP*RECIP)*CAYDSQ *CFJ1
DEL3=CFJ
DEL4=FACTM*CFJ
SIG1=SIG1+DEL1
SIG2=SIG2+DEL2



29

SIG3=SIG3+DEL3
SIG4=SIG4+DEL4
IF(DABS (DEL1)-4.0D-16)7,6,6

7 CAYMOD=DSQRT(CAYSQ)
FLOG1=DLOG(4.0D0/(DSQRT(FACT1)+CAYMOD*COSP))
T1=(1.0D0+SIG3)*FLOG1+FACTRO*DLOG(.5D0+.5D0*CAYMOD*DABS (SINP))
T2=(.5D0+SIG4)*CAYDSQ*FLOG1+1.0D0-FACTRO*(1.0D0-CAYMOD*DABS(SINP))
F=T1+SIG1
E=T2+SIG2
IF(PHI.GE.0.0D0) GO TO 8
F=-F
E=-E

8 RETURN
END
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