Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Wissenschaftliche Berichte FZKA 6769

Investigation of a Method for Multielement Determination with OPTIMA 4300 (ICP-OES)

Y.-Q. Ji, C. Adelhelm and R. Köster

Institut für Technische Chemie Institut für Materialforschung

Forschungszentrum Karlsruhe GmbH, Karlsruhe 2002

Impressum der Print-Ausgabe:

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)

ISSN 0947-8620

Investigation of a Method for Multielement Determination with OPTIMA 4300 (ICP-OES)

Abstract

We have studied and optimized the analytical conditions for quick, multielement analysis by inductively coupled plasma optical emission spectrometry (ICP-OES). The detection limits (LD) of 47 elements measured in total at 100 wavelengths have been evaluated for both plasma viewing modes; for axial viewing the LD vary from 0.00009 to 0.1 ug/g. The axial plasma offered an approximately $1 \sim 83$ -fold improvement in detection limits, while the radial plasma maintained a superior linear dynamic range. Using a dual view plasma instrument to measure waste water samples we got coincident results. The RSD was between 0.1% to 15% by axial view and about 1% to 30% by radial view.

After a series of different blank preparations and measurement by ICP-OES, we found that the source of a high Al blank signal was the automatic sampling system (Dispensette HF). To check possible interferences concentrated matrix solutions of Fe, Pb and $Li_2B_4O_7$ materials have been prepared partly by pressurized microwave digestion. The effect of the matrix interferences at 100 wavelengths of the multielement method have been discussed qualitatively.

Key words: Inductively coupled plasma-optical emission spectrometry (ICP-OES), interference, Waste-water, Multielement, Al-contamination, Microwave digestion

Untersuchung einer Methode zur Multielementanalyse mit dem ICP-OES-Gerät OPTIMA 4300

Kurzfassung

Die analytische Kapazität eines neuen ICP-OES-Gerätes wurde anhand einer Multielementanalyse von wässrigen Proben untersucht und optimiert. Die Erfassungsgrenzen von 47 Elementen und insgesamt 100 Emissionslinien wurden für zwei Plasmabeobachtungen ermittelt; für die axiale Beobachtung liegen sie im Bereich von 0,00009 bis 0,1 µg pro g Lösung. Die axiale Plasmabeobachtung ermöglicht bis zu 83 mal bessere Erfassungsgrenzen als die radiale Plasmabeobachtung; letztere verfügt über einen größeren linearen Messbereich. Mit beiden Beobachtungsweisen wurden in einer Abwasserprobe übereinstimmende analytische Daten erzielt. Die Standardabweichung von Wiederholmessungen für die axiale Beobachtung liegen zwischen 0,1 und 15 % relativ und für die radiale zwischen 1 und 30 % relativ.

Nach einer Serie unterschiedlich hergestellter Säureblindwerte und deren ICP-OES Messungen wurde ein automatischer Dispensor (Dispensette) als Quelle für hohe Al Blindwerte festgestellt. Zur Untersuchung möglicher Interferenzen wurden konzentrierte Fe-, Pb- und Li₂B₄O₇-Lösungen, zum Teil unter Einsatz eines Mikrowellendruckaufschlusses, hergestellt. Die Auswirkung möglicher spektraler Störungen dieser Matrixlösungen auf die 100 Emissionslinien der Multielementmethode qualitativ diskutiert.

1. Introduction

After the first commercial ICP-OES instruments were introduced to the analytical community in the 1980's, they have been applied to a wide variety of fields such as agricultural-, food-, biological- and clinical-, geological- and environmental science. Metals and organics were investigated and the success of the method was mainly due to its ability to achieve both low detection limits and trace multielement analyses rapidly. Perkin-Elmer Optima 4300DV ICP-OES is the newest system, which permits the use of different data collection and processing techniques than those used for traditional optical spectrometers which use an exit slit and photomultiplier tube in the focal plane. While the default parameter selected for the system provides an excellent performance, there are special cases where the performance may be improved further by invoking optional data collection and processing techniques.

The goals of this study are: (1) to determine the effects of some of these data collection and processing options on the detection limits (LD) and analyse the precision for the Optima 4300DV and to discuss the instrument's short-term and long-term stability; (2) to compare the LOD's of axial and radial plasma viewing; (3) the application of the multielement method to analyse a waste water sample; (4) to look for a possible source of Al-contamination as seen in a number of different samples measured in our lab; (5) to investigate possible interferences of the high concentrated Fe, Pb an Li₂B₄O₇, which always existed as the matrix by spectra examination; (6) to study on the solid sample decompositions with pressurized wave-digestion system.

Fig.1 shows a periodic table representation of the elements that can be determined by ICP-OES. A schematic of diagram the Optima 4300DV instrument is shown in Fig.2. The sample is usually transported into the instrument as a liquid. In a spray chamber the liquid is converted into an aerosol by a process known as nebulization. The sample aerosol is then transported into the plasma where many processes such as aerosol drying, sample evaporation, atomisation and excitation are induced by the transfer of energy from the RF-field to the electrons in the plasma and then to the sample components. The excited atoms and ions emit characteristic radiation which is dispersed, in this case, by an echelle polychromator. The radiation is detected by a two-dimensional Segmented-array Charge-coupled Device Detector (SCD) converting the incoming photons into electrons for measurement. By measuring standard solutions with known elements concentration at the same time as the sample solutions, quantitative analysis is achieved.

					-			122	-	Gre Red	y viewi eleme	ing = c nts = n	an be 1 neasur	neasu ed this	red by work	ICP-0	DES
н			I														He
Li	Be		ų							2		в	С	Ν	0	F	Ne
Na	Mg					1	14					A	Si	P	s	CI	Ar
к	Ca	Sc	π	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
Fr	Ra	Ac	Ku	На													
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
		Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

Fig.1 Periodic table with ICP-OES analysis

Fig.2 Major components and layout of a typical ICP-OES instrument

2. Experiments

2.1 ICP-OES Operating Parameters

A Perkin-Elmer Optima 4300 DV inductively coupled plasma optical emission spectrometer (ICP-OES) was used. The argon plasma source is powered by an RF generator. There are two kinds of photon detectors: one is an SCD array, covering an extended ultraviolet wavelength range from 165 to 403 nm. The VIS detector – a filter detector - covers the visible wavelength range from 404 to 782 nm. Both allow the simultaneous analysis of approximately 5000 analytical emission lines. A Ryton double-pass Scott-type spray chamber and the GemTip Cross-Flow pneumatic nebulizer are the standard components supplied with the instrument. Additionally a Perkin-Elmer AS-90+ autosampler was also used for sampling. The instrument is computer controlled using WinLab32TM-Software. Table 1 lists the operating parameters.

Parameter setting for	Al analysis	Multi_47elements Analysis axial view	Multi_47elements Analysis radial view
RF Power	1300 W		
Nebulizer Ar gas flow	0.75 L/min	0.75 L/min	0.75 L/min
Auxiliary Ar gas flow	0.2 L /min		
Plasma Ar gas flow	15 L/min		
Sample and wash flow rate	1.00 mL/min	1.20 mL/min	1.20 mL/min
Wash time	60 s	90 s	90 s
Sample read delay time	65 s	60 s	60 s
Resolution	High	Normal	Normal
Processing mode	Peak area		
Background	Manual selection o	f points	
Optical viewing	Axial	Axial	Radial
Replicate measurements	3	3	3

Table 1	ICP-OES	Operating	Parameters
---------	----------------	-----------	------------

2.2 Reagents and blanks

2.2.1 Reagents

- a. HNO₃ (analytical grade, Merck) (65 %);
- b. HCl (analytical grade, Merck) (32 %);
- c. Diluted (1:10) HNO₃: 1 L HNO₃ (2.2.1 a) diluted with water to 10 L;
- d. HNO₃ (super-pure, Merck) (65 %);
- e. HCl (super-pure, Merck) (30 %);
- f. HF (super-pure, Merck) (40 %);
- g. 1,3% HNO₃: 2 mL HNO₃ (2.2.1 d) per 100 g solution;
- h. 2,6% HNO₃: 4 mL HNO₃ (2.2.1 d) per 100 g solution;
- i. 1,4% HCl: 4 mL HCl (2.2.1 e) per 100 g solution;
- j. 0,4% HF: 1mL HF (2.2.1 f) per 100 g solution.

2.2.2 Procedure to Wash PE (Poly-Ethylene) Bottles

As the sensitivity of the ICP-OES measurement is very high (i.e. < 1 ng/mL), solution contamination should be avoided and the containers and bottles where sample solution were stored or prepared have been cleaned by the following procedure:

a. Wash by a washing machine (Miele, mielabor G7733) using de-ionised water;

- b. Fill a second wash solution composed of 200 mL HNO₃ (2.2.1 a), 100 mL HCl (2.2.1 b) in and $3700 \sim 4200$ mL H₂O in a 4000 ~ 4500 mL beaker;
- c. Heat the beaker containing the bottles within the wash solution to 70 °C for approximately 3 h using the warm plate;
- d. Switch off the warm plate and keep the bottles in the washing solution over night;
- e. 24 h later, take out the bottles from the washing solution and wash 5-6 times with de-ionized water;
- f. Wash again with Millipore water;
- g. Dry the plastic bottles in the laminar flow hood.

2.2.3 Procedure to Wash Teflon FEP(Fluorinated Ethylene Propylene) Bottles

For preparation and storage of calibration solutions (standards) FEP bottles are recommended:

- a. Wash with Millipore water (once for new ones; three times for the used ones);
- b. Fill with diluted (1:10) HNO₃ (2.2.1c) and keep the bottles in a big vessel for 24 hours;
- c. Wash again with Millipore water 5-6 times;
- d. Dry the Teflon FEP bottles in the laminar flow hood.

2.2.4 Blank sample preparation using Dispensette for investigating Al-contamination

For sample and standard preparation HNO_3 (2.2.1 d), HCl (2.2.1 e) and HF (2..2.1 f) was dispensed by two kinds of Dispensettes (Fig.3 and Fig.4) attached to the bottles of super-pure acids.

Fig.4 Automatic Sampling (Dispensette) for HCl and HNO₃

- a. Different amounts of acid were dispensed from the Dispensette into the PE bottles containing Millipore water for preparing the blank samples as shown in Table 9;
- b. Five days after first dispensing acid, having left acid in contact with the Dispensette material, a further series of blank samples were prepared as in a;
- c. After press Dispensette 10 times to keep acid in bottles, than take the acid with Dispensette to prepare the blank samples again.

2.2.5 Reagent blanks preparation for experiment 2.2.4

Reagent blanks for the above blank preparations were made from the same acid bottle on which the Dispensette had been attached, but, PE Pasteur Pipettes were used for sampling or

pipetting the acids. The blank solutions were diluted with Millipore water and stored in PE bottles.

2.3 Standard solution preparation

2.3.1 Al single standard

Aluminium single standard solutions (Merck) were successively diluted using PE bottles and the acid concentration was always adjusted to 1,3% HNO₃ (2.2.1 g)

Table 2	Al Standard	Solution	Preparation
---------	-------------	----------	-------------

Al standard solution	Al-EP1	Al-EP2	Al-EP3	Al-EP3
Concentration (µg/g)	0.0500	0.1020	0.1971	0.5046

2.3.2 Multielement standard solutions preparation

Calibration standards were made from single element standard solutions with a certified element concentration of approximately 1000 mg/L. All solutions were acidified to an acid concentration of 1,3% HNO₃ (2.2.1 g), 2,6% HNO₃ (2.2.1 h), 1,4% HCl (2.2.1 i), or 1,4% HCl (2.2.1 i) + 0,4% HF (2.2.1 j).

ICP-Multi (St	d6)				
Element	ICP-Multi Standard	EP1(Std6)	EP2(Std6)	EP3(Std6)	EP4(Std6
Element	Con (µg/g)*	$(\mu g/g)$	(µg/g)	(µg/g)	(µg/g)
Ag	50	1,027	0,514	0,206	0,053
Al	150	3,082	1,542	0,617	0,159
В	15	0,308	0,154	0,062	0,016
Ba	5	0,103	0,051	0,021	0,005
Be	1	0,021	0,010	0,004	0,001
Bi	200	4,109	2,056	0,823	0,212
Cd	20	0,411	0,206	0,082	0,021
Со	20	0,411	0,206	0,082	0,021
Cr	25	0,514	0,257	0,103	0,026
Cu	20	0,411	0,206	0,082	0,021
Fe	15	0,308	0,154	0,062	0,016
Ga	150	3,082	1,542	0,617	0,159
In	200	4,109	2,056	0,823	0,212
Mn	5	0,103	0,051	0,021	0,005
Ni	50	1,027	0,514	0,206	0,053
Pb	200	4,109	2,056	0,823	0,212
Sr	1	0,021	0,010	0,004	0,001
T1	400	8,218	4,112	1,646	0,424
Zn	20	0,411	0,206	0,082	0,021
HNO3		4 %			

Table 3 Mass Content of Elements in Calibration Standard (Multi 006f2002)

* ICP-multi-element standard solution (19 elements), Merck company

Table 4 Mass Content of Elements in Calibration Standard (Multi_006f2002)

Nonmetal-Multi (Std1)						
	Single Standard	G	EP1(Std1)	EP2(Std1)	EP3(Std1)	EP4(Std1)
Element	Con (ug/mL)	Company	(ug/g)	(ug/g)	(ug/g)	$(\mu g/g)$
As	995	Merck	2,005	1.072	0.500	0 1 1 0
Те	1000	Alfa	2.015	1,077	0.503	0,111
Sb	1000	Alfa	2.015	1.077	0.503	0.111
P	1000	Merck	1 008	0.539	0.251	0.055
Sn	1000	Alfa	1,008	0.539	0.251	0.055
Se	1000	Merck	1,008	0.539	0.251	0.055
HCl	1000	meren	1,000	0,000	0,201	1 4%
HF						0.4%
	\					-,
Refractory-Multi (Std2)) Circele Oten dend		ED1(0411)	ED2(6441)	ED2(0441)	
Element	Single Standard	Company	EPI(Sid1)	EP2(Star)	EP3(Stall)	EP4(Sid1)
XX7	$Con (\mu g/mL)$	4.10	(µg/g)	(µg/g)	(µg/g)	(µg/g)
W	1000	Alfa	1,000	0,501	0,250	0,050
Nb	1000	Alfa	0,100	0,050	0,025	0,005
Та	1000	Alfa	0,100	0,050	0,025	0,005
Mo	1000	Alfa	0,100	0,050	0,025	0,005
V	1000	Merck	0,100	0,050	0,025	0,005
Zr	1000	Alfa	0,100	0,050	0,025	0,005
Hf	1000	Alfa	0,100	0,050	0,025	0,005
Ti	999	Merck	0,020	0,010	0,005	0,001
HCI			,	,	,	1.4%
HF						0.4%
						,
Alkali-Multi (Std3)		-	ED1/0/11)	ED2 (0, 11)	ED2(0, 11)	
Element	Single Standard	Company	EPI(Std1)	EP2(Std1)	EP3(Std1)	EP4(Std1)
· · ·	$Con (\mu g/mL)$		(µg/g)	(µg/g)	(µg/g)	(µg/g)
Li	1000	Merck	1,001	0,500	0,250	0,050
Na	1000	Alfa	1,001	0,500	0,250	0,050
K	998	Merck	0,999	0,499	0,249	0,050
Rb	1000	Alfa	1,001	0,500	0,250	0,050
Ca	1001	Merck	0,100	0,050	0,025	0,005
Ba	1000	Merck	0,100	0,050	0,025	0,005
Mg	1000	Merck	0,020	0,010	0,005	0,001
Sr UNIO2	1000	Merck	0,020	0,010	0,005	0,001
HNO3						2,0%
Steel-Multi (Std4)						
Element	Single Standard	Company	EP1(Std1)	EP2(Std1)	EP3(Std1)	EP4(Std1)
Element	Con (µg/mL)	company	$(\mu g/g)$	$(\mu g/g)$	(µg/g)	(µg/g)
Bi	1002	Merck	1,003	0,501	0,252	0,051
Pb	1001	Merck	1,002	0,500	0,252	0,051
Ag	1002	Merck	0,101	0,050	0,025	0,005
Al	999	Merck	0,100	0,050	0,025	0,005
Cr	996	Merck	0,100	0,050	0,025	0,005
В	1001	Merck	0,101	0,050	0,025	0,005
Cu	1000	Alfa	0,100	0,050	0,025	0,005
Ni	1000	Alfa	0,100	0,050	0,025	0,005
Zn	1000	Merck	0,100	0,050	0,025	0,005
Co	1000	Alfa	0,020	0,010	0,005	0,001
Cd	1000	Merck	0,020	0,010	0,005	0,001
Fe	1001	Merck	0,020	0,010	0,005	0,001
Mn	1000	Merck	0,020	0,010	0,005	0,001
HNO3						2,6%
Noble-Multi (Std5)						
	Plasma Standard		EP1(Std1)	EP2(Std1)	EP3(Std1)	EP4(Std1)
Element	Con (ug/mL)	Company	(ug/g)	(ug/g)	(ug/g)	(IIg/g)
Au Ir Os Pd	2011 (mg/11112)		(10 6)	(100 5)	(10, 2)	(mb/ b)
Pt Re Rh Ru	100ug/mL	Alfa	0,201	0,100	0,050	0,010
.,,	1	ı	L	1	1	1 4%

2.4 Waste-water sample preparation

Waste-water samples, which came from an experimental laboratory from ITC-TAB in FZK were well shaken and acidified to 2,6% HNO₃ or diluted with 2,6% HNO₃, individually.

2.5 Decomposition of matrix samples for the investigating the matrix interferences

(Method 1, Method 2 and Method 3)

In order to investigate possible interferences of the matrix solutions by spectra examination, we prepared the pure Fe, Pb, $Li_2B_4O_7$ (Spectromelt 10A) and Steel solutions as below procedure.

2.5.1 Dissolution of matrix samples without microwave (Method 1)

- a. Accurately weigh Iron powder, Steel, Lead shot and Li₂B₄O₇ about 1.0000 g into the PE bottles;
- b. Add 10mL Millipore water, add 10mL HNO₃ (2.2.1 d) dropwise to the sample to keep reaction, in the meantime shake the bottle;
- c. Put the bottle in the water-bath to heat approximately at 90 °C about 3 hours;
- d. Cool to room temperature;
- e. Dilute to 100 g with Millipore water.

2.5.2 Dissolve matrix samples using microwave system(Method 2 and Method 3)

Steel and Iron power matrix samples were prepared by pressurized microwave digestion using a MULTIWAVE microwave sample preparation system:

- a. Accurately weight 0,5000 g Iron powder and Steel sample into the Teflon PFA liner;
- b. Add 6 mL HNO₃ (2.2.1 d) (Method 2) or drop 6 mL aqua regia (Method 3) to the samples;
- c. Allow the pre-reaction for approximately 3 hours;
- d. Cap the vessel in the capping station;
- e. Digest following the procedure in Table 5;
- f. Cool for five minutes, vent and open the vessels;
- g. Transfer the samples into PE bottles and dilute to 50 g with Millipore water.

Step	Power(w)	Time(min)	Max Temperature(°C)	Fan
1	200	5	150	1
2	900	25	280	1
3	0	15	120	3
4	0	0	room temperature	0
5	0	0	room temperature	0
6	0	0	room temperature	0

Table 5 Microwave Digestion Parameters for Steel analysis

2.6 ICP-OES analyses

In general, the samples were analysed by ICP-OES with the following procedure:

- a. After checking system connection, open argon gas, ignite plasma;
- b. After stabilization of 72 minutes, measure $1 \ \mu g/mL$ Mn standard solution to check the instrument sensitivity and stability (above 1.2×10^5 cps per 1 $\mu g/mL$, RSD less than 0.6 %);
- c. Begin to analyse calibration blanks, standards, samples and again blank, standard as samples to check and to exclude a possible drift of the instrument;
- d. After the last sample was measured, measure 1 µg/mL Mn standard solution again to check the instrument sensitivity and stability;
- e. Wash instrument with diluted 1,3% HNO₃ 15 min and Millipore water for 10 min;
- f. Turn off plasma, close argon gas.

According to the ICP-OES operating parameters shown in Table 1 , following samples are measured individually: Al blank samples; Multi-elements in waste-water samples (Axial and Radial viewing); Multi-elements in 1000 μ g/g solution (μ g/g Sol), 5000 μ g/g Sol and 10000 μ g/g Sol high pure iron; 10000 μ g/g Sol steel; 10000 Pb μ g/g Sol and 10000 Li₂B₂O₇ μ g/g Sol matrix samples.

Table 6 - Table 9 depict the wavelengths, background correction and points per peak for 47 elements analysis using dual viewing method.

Element	Emission wavelength	Background Correction (r	าm)	Points per	ints per Element w		Emission Background wavelength Correction (nm)		
	(nm)	BGC1 (-)	BGC2 (+)	_peak		(nm)	BGC1 (-)	BGC2 (+)	-peak
Ag	328,068	0,020	0,021	3	Ni	221,648	0,027	. ,	3
	338,289		0,054	3		231,604	0,021		3
Al	237,313		0,036	3	Os	225,585		0,014	3
	394,401	0,048	0,060	3		228,226		0,015	3
	396,153	0,060	0,067	3	Р	177,434	0,017	0,011	3
As	188,979	0,029	0,034	3		178,221	0,016	0,016	3
	193,696	0,013	0,013	3		213,617	0,020		3
Au	242,795	0,015	0,014	3		214,914	0,033	0,019	3
	267,595	0,031	0,034	3	Pb	217,000	0,014	0,013	3
В	182,528		0,011	3		220,353	0,014		3
	249,677	0,033	0,026	3		405,781	0,041	0,056	3
	249,772	0,025	0,033	3	Pd	340,458	0,031	0,011	3
Ва	233,527	0,021	0,022	3		363,470		0,033	3
	455,403	0,046	0,051	3	Pt	214,423	0,008	0,013	3
Be	313,042	0,031	0,025	3		265,945	0,009	0,016	3
	313,107	0,017		3	Rb	780,023	0,080		3
Bi	190,171	0,035	0,023	3	Re	197,248	0,016		3
	222,821	0,014	0,014	3		204,908	0,018	0,011	3
	223,061	0,016		3		227,525	0,028		3
Са	315,887	0,068		3	Rh	233,477	0,021	0,031	3
	317,933	0,066		3		343,489	0,012	0,021	3
	393,366	0,047	0,065	3	Ru	240,272	0,015	0,019	3
Cd	214,440	0,025		3		349,894	0,021	0,033	3
	228,802	0,021	0,021	3	Sb	206,836	0,013	0,015	3
Co	228,616	0,014	0,020	3		217,582	0,013	0,020	3
	238,892	0,015	0,022	3		231,146	0,016	0,036	3
Cr	205,560	0,018		3	Se	196,026	0,012	0,016	3
	267,716	0,025	0,054	3		203,985	0,013		3
Cu	221,459		0,034	3	Sn	189,927		0,018	3
	324,752	0,020	0,020	3		235,485	0,014		3
	327,393	0,057		3		283,998	0,019	0,017	3
Fe	238,204		0,043	3	Sr	407,771	0,068	0,054	3
	239,562		0,021	3		421,552	0,057	0,085	3
	259,939	0,016	0,051	3	Та	226,230	0,041	0,009	3
Ga	294,264	0,019	0,009	3		240,063	0,017	0,037	3
	417,206	0,028	0,027	3	Те	214,281	0,014	0,020	3
Hf	232,247	0,014	0,028	3		238,578	0,016	0,035	3
	277,336	0,017	0,034	3	TÌ	334,940	0,093	0,030	3
In	303,936	0,036	0,027	3		336,121		0,021	3
	325,609	0,033	0,030	3	11	190,801	0,012	0,024	3
lr K	224,268	0,035	0,040	3		276,787	0,025	0,031	3
ĸ	766,490	0,160	0,141	3	V	290,880	0,019	0,019	3
LI	670,784	0,183		3		310,230	0,018	0,020	3
Mg	285,213	0,056	0,026	న	VV	207,912	0,019	0,018	<u>ა</u>
Mn	257,610		0,018	3	_	224,876	0,014	0,014	3
N 4 -	259,372	0,025	0.040	న	∠n	206,200	0,017	0,014	<u>ა</u>
IVIO	202,031	0,025	0,019	კ	7	213,857	0.004	0,038	პ
N1-	∠U3,845	0,013	0,019	კ	∠r	339,197	0,021	0,021	პ
Na	200,440	0,090	0,125	ა ი		343,823	0,021	0,021	3
IND	309,418 212.070	0,019	0.020	ა ი					
	313,079		0,030	3					

Table 6 Wavelengths, Background Correction and Points per Peak for 47elements Analysis (Axial)

	Emission	Background		Points per		Emission	Background		Points per
Element	wavelength	correction (n	ım)	-peak	Element	wavelength	correction (n	m)	-peak
	(nm)	BGC1	BGC2	pour		(nm)	BGC1	BGC2	poun
Ag	328,068	0,02	0,021	3	Ni	221,648	0,011		2
	338,289		0,021	3		231,604	0,014		3
AI	237,313		0,036	3	Os	225,585		0,014	3
	394,401	0,107	0,06	3		228,226		0,015	3
	396,153	0,048	0,061	3	Р	177,434	0,014		3
As	188,979	0,012	0,034	3		178,221	0,012	0,01	3
	193,696	0,013	0,013	3		213,617	0,033	0,013	3
Au	242,795	0,015	0,014	3		214,914	0,033	0,019	3
	267,595	0,031	0,034	3	Pb	217,000	0,014	0,013	3
В	182,528	0,013		3		220,353	0,015	0,019	3
	249,677	0,013		3		405,781	0,05	0,048	3
	249,772	0,013		3	Pd	340,458	0,031	0,011	3
Ва	233,527	0,021	0,022	3		363,470		0,033	3
	455,403	0,046	0,047	3	Pt	214,423	0,008		3
Be	313,042	0,031	0,027	3		265,945	0,009	0,016	3
	313,107	0,096	-	1	Rb	780,023	0,081	-	3
Bi	190.171	0.035	0.023	3	Re	197.248	0.016		3
	222.821	0.014	0.014	3		204.908	0.018	0.011	3
	223.061	0.016	- , -	3		227.525	0.02	- , -	3
Са	315.887	0.068		3	Rh	233.477	0.007	0.014	3
	317 933	0,066		3		343 489	0.012	0.021	3
	393 366	0 129		3	Ru	240 272	0.022	0.008	2
Cd	214 440	0.019		3	T G	349 894	0,022	0.033	3
ou	228 802	0.015	0.02	3	Sh	206 836	0.006	0.013	3
Co	228 616	0.014	0.02	3	00	217 582	0,009	0.018	3
00	238 892	0,014	0,02	3		231 146	0,005	0,010	3
Cr	205,560	0,014	0,022	3	Se	196.026	0,014	0.012	3
01	267 716	0.025	0.025	3	00	203 985		0,012	3
Cu	201,110	0,020	0,020	3	Sn	189 927		0,017	3
Ou	324 752	0.04	0,004	3	On	235 485	0.014	0,017	3
	327 303	0,04	0,04	3		283 008	0,014	0.017	3
Fo	228 204	0,05	0.043	3	<u>Sr</u>	203,330	0,013	0,017	3
16	230,204		0,043	3	0	407,771	0,000	0,059	3
	259,502			3	Та	226 220	0,037	0,009	3
Ga	204 264	0.010	0.018	3	Ia	220,230	0,041	0,012	3
Ga	294,204 417 206	0,019	0,018	1	То	240,003	0,017	0,013	3
Цf	417,200	0,039	0,014	3	16	214,201	0,011	0,017	3
111	232,247	0,022	0,014	3	ті	230,570	0,008	0,019	3
In	203 036	0,017	0,034	3	11	336 121	0,095	0,05	3
	225 600	0.022	0.02	3	ті	100 901	0,021	0.024	3
Ir	323,009	0,023	0,03	3	11	190,001	0,012	0,024	3
	224,200	0.16	0,011	3	V	270,707	0,017	0,017	3
	670 794	0,10	0,156	3	v	290,000	0,017	0,019	3
LI	070,704	0,165	0.026	3	14/	310,230	0,010	0,02	3
ivig	200,213	0,052	0,020	ა ი	vv	201,912	0,014	0,013	ა ი
IVIN	257,610			3	7	224,876	0,014	0,014	3
N4 -	209,012	0.025	0.010	ა ი	Zn	200,200	0,017	0,014	ა ი
IVIO	202,031	0,025	0,019	3	7	∠13,85/ 200 40 7	0.004	0,038	ა ი
	203,845	0,013	0,019	న	∠r	339,197	0,021	0,021	პ
Na	589,592	0,143	0,125	პ		343,823	0,021	0,021	3
ND	309,418 313,079	0,019	0,01	ა ვ					

 Table 7 Wavelengths, Background Correction and Points per Peak for 47elements Analysis (Radial)

3. Discussion and Conclusion

3.1 Al-contamination from the sample preparation procedure

After a series of blank sample analyses by ICP-OES, as shown in Table 6, the preliminary results concerning Al-contamination were as listed below:

- a. Acid blanks prepared by automatic sampling (Dispensette) gave a higher Al concentration than those prepard using a PE Pasteur Pipette by hand;
- b. Automatic HF sampling gave a higher intensity than HNO₃ and HCl;
- c. Al concentration increases with time for the Dispensette produced blanks;
- d. The higher Al background comes from the automatic sampling system (Dispensette HF).

The Dispensette HF which is in contact with the acid is made of Ceramic, Platinum-Iridium, ETFE (Ethylen-Tetrafluorethylen-Copolymer), PFA (Perfluoralkoxy- Copolymer), FEP (Perfluorethylenpropylen-Copolymer) and PP (Polypropylen). Whilst the Dispensette Organic is made of boro-silicate glass, Ceramic, Tantalum, ETFE, PFA, FEP and PP.

So aluminium is possibly leached from the Ceramic of the Dispensette system. The longer HF is kept inside the Dispensette, the more Al will be produced.

Information of Samples	Sample ID	Int (Corr)	Conc (ug/g)
Calib blank	blank(1,3%HNO3)	-13,3	0,00
Al standard solution	Al-EP1	894,4	0,0500
	Al-EP2	1811,4	0,1020
	Al-EP3	3569,2	0,1971
	Al-EP4	9093,6	0,5046
Washing acid between samples	ore	-17,3	
Water, Millipore	BK-H2O	3,9	-
BK, BKb-15.11.2001 Sample Weight: 50g	BK-5mlHNO3	67,9	-
BK = acid taken by hand with a PE tube	BK-10mlHNO3	70,4	-
	BK-4mlHF	268,0	-
	BK-6mlHF	246,6	-
	BK-3mlHCl	-35,4	-
	BK-6mlHCl	212,6	-
BKb-HCl,HNO3=same acid taken by Dispensette(organic)	BKb-5mlHNO3	617,0	-
	BKb-10mlHNO3	179,2	-
Bkb-HF=same acid taken by Dispensette(HF)	BKb-4mlHF	1786,0	0,112
	BKb-6mlHF	413,1	-
	BKb-3mlHCl	911,1	0,051
	BKb-6mlHCl	346,0	-
Autom- 09.11.2001	Autom4mlHF/50g	4474,1	0,301
AutomHF/HNO3 =acid taken by Dispensette(organic)	Autom6mlHF/50g	8425,5	0,578
O.A13. 11. 2001 Sample Weight: 50g	O.A.4mlHF/50g	182,9	-
O.A. HNO3/HF acid taken by hand with a PE tube	O.A.6mlHF/50g	223,3	-
	O.A.5mlHNO3/50g	72,6	-
	O.A.10mlHNO3/50g	67,3	-
vor-first time to take acid	BK2vor-6mlHF/100g	221,7	-
	BKb2vor-3mlHF/100g	1925,5	0,121
nach-after press Dispensette 10 times to keep acid in bottle,	BKb2vor-6mlHF/100g	565,5	0,026
than take acid by Dispensette	BKb2nach-3mlHF/100g	148,3	-
	BKb2nach-6mlHF/100g	287,3	-
	BK2nach-6mlHF/100g	293,1	-
	BKb3-6mlHF/50g	582,1	-

 Table 6
 Al Content in Blank Samples

3.2 Correction coefficient and detection limits of 47 elements (100 analysis lines) in dual viewing by ICP-OES

The detection limits for plasma dual viewing, defined as 6 times the standard deviation of replicate measurements of calibration blank solutions, together with the linear dynamic range calibration correction coefficient (corr. coef.) are listed in Table 7. For axial viewing the LOD vary from 0.00009 to 0.1 ug/g. The axial plasma offered an approximately $1 \sim 83$ -fold improvement in detection limits, while the radial plasma maintained a superior linear dynamic range.

	Emission	Ах	tial	Ra	dial	\underline{LOD}_{R}		Emission	Ax	ial	Ra	dial	LOD _R
Element	wavelength	corr coef	LOD	corr coef	LOD	$LOD_X)$	Element	wavelength	Corr Coef	LOD	corr coef	LOD	LOD_X
	(nm)		(ug/g)		(ug/g)			(nm)		(ug/g)		(ug/g)	
Ag	328.068	0.9999	0.0014	1.0000	0.023	16	Ni	221.648	1.0000	0.0022	1.0000	0.011	5
	338.289	0.9998	0.0063	1.0000	0.034	5		231.604	0.9997	0.0032	1.0000	0.024	8
Al	237.313	0.9999	0.0046	0.9999	0.24	51	Os	225.585	0.9969	0.0032	0.9952	0.033	10
	394.401	0.9998	0.010	0.9999	0.0050	0		228.226	0.9969	0.0050	0.9975	0.053	10
	396.153	0.9997	0.013	0.9999	0.13	10	Р	177.434	0.9999	0.022	-	-	-
As	188.979	1.0000	0.012	0.9996	0.31	25		178.221	0.9998	0.067	0.9062	1.21	18
	193.696	1.0000	0.031	0.9992	0.23	7		213.617	1.0000	0.024	0.9999	0.14	6
Au	242.795	0.9996	0.0015	0.9997	0.0077	5		214.914	0.9999	0.034	0.9983	0.29	9
	267.595	1.0000	0.0026	0.9999	0.0076	3	Pb	217.000	0.9998	0.047	0.9992	0.28	6
В	182.528	0.9995	0.0034	0.9425	0.049	15		220.353	0.9996	0.0086	0.9997	0.096	11
	249.677	0.9991	0.0070	0.9953	0.0032	0		405.781	0.9993	0.022	0.9996	0.15	7
_	249.772	0.9991	0.0057	0.9954	0.0030	1	Pd	340.458	0.9997	0.0099	0.9998	0.016	2
Ba	233.527	0.9955	0.0006	0.9961	0.0029	5		363.470	0.9681	0.30	-	-	-
_	455.403	0.9966	0.00010	0.9954	0.00086	8	Pt	214.423	1.0000	0.0016	0.9986	0.076	48
Be	313.042	0.9997	0.00035	0.9999	0.00040	1		265.945	1.0000	0.0051	0.9996	0.030	6
	313.107	0.9999	0.00030	0.9998	0.00059	2	Rb	780.023	0.9996	0.050	0.7922	1.7	35
Bi	190.171	0.9998	0.027	0.9986	0.79	29	Re	197.248	1.0000	0.0040	0.9963	0.060	15
	222.821	0.9998	0.0086	0.9997	0.21	24		204.908	0.9995	0.046	0.5943	2.7	59
~	223.061	0.9996	0.0094	0.9996	0.075	8		227.525	1.0000	0.0021	0.9996	0.010	5
Ca	315.887	0.9988	0.010	0.9950	0.083	8	Rh	233.477	1.0000	0.010	0.9976	0.063	6
	317.933	0.9990	0.0013	0.9997	0.011	9		343.489	0.9999	0.011	0.9997	0.014	1
	393.366	0.9989	0.00011	0.9985	0.0007	6	Ru	240.272	1.0000	0.0028	0.9998	0.0076	3
Cd	214.440	0.9999	0.00016	1.0000	0.0049	31		349.894	0.9995	0.030	0.9923	0.058	2
_	228.802	1.0000	0.00032	1.0000	0.0086	27	Sb	206.836	1.0000	0.0037	0.9998	0.073	20
Со	228.616	1.0000	0.0019	1.0000	0.0097	5		217.582	1.0000	0.0042	0.9998	0.066	16
	238.892	0.9999	0.0011	1.0000	0.0035	3		231.146	1.0000	0.0060	0.9999	0.19	32
Cr	205.560	0.9999	0.0022	0.9998	0.034	16	Se	196.026	1.0000	0.036	0.9915	0.34	9
0	267.716	0.9998	0.00067	0.9998	0.0042	6	C	203.985	1.0000	0.034	0.9913	0.23	7
Cu	221.459	0.9998	0.017	0.9976	0.13	8	Sn	189.927	1.0000	0.010	0.9994	0.32	31
Б	324.752	0.9994	0.0025	0.9999	0.01/	/		235.485	0.9999	0.015	0.9999	0.17	11
ге	327.393	0.9996	0.0048	0.9997	0.054	11	0	283.998	1.0000	0.042	0.9998	0.113	3
	238.204	0.9996	0.00033	0.9999	0.0053	16	Sr	407.771	0.9946	0.00015	0.9960	0.0003	2
	239.562	0.9998	0.0036	0.9999	0.0064	2	Т-	421.552	0.994/	0.0002	0.9956	0.0012	/
Ca	259.939	0.9998	0.0015	0.9998	0.0017	1	Ta	226.230	0.9998	0.0063	0.9845	0.031	2
Ga	294.204	0.9998	0.021	1.0000	0.025	1	Та	240.005	1.0000	0.0020	0.9998	0.005	2
Цf	417.200	1.0000	0.013	0.0004	0.18	15	10	214.201	1.0000	0.019	0.0000	0.039	2
111	232.241	1.0000	0.0011	0.9994	0.028	23 8	Ti	230.378	0.0000	0.004	0.9999	0.17	2
In	303 936	0.9999	0.11	1 0000	0.0090	1		336 121	1 0000	0.0002	0.9997	0.0014	1
	325 609	0.9999	0.058	1.0000	0.035	1	T1	190 801	1.0000	0.0020	0.9999	0.0014	64
Ĭr	222.007	1 0000	0.00420	0.9972	0.033	7	11	276 787	0.9999	0.007	1 0000	0.12	12
K	766 490	0.9998	0.010	0.9974	0.15	15	V	290.880	0.9997	0.009	0.9998	0.0040	0
Li	670,784	0.9998	0.00018	0.9999	0.011	57	İ	310 230	1.0000	0.023	1.0000	0.0052	0
Mg	285,213	0.9999	0.00042	0.9998	0.0013	3	W	207.912	1.0000	0.0012	0.9995	0.10	83
Mn	257,610	0.9996	0.00009	0.9998	0.00041	5		224 876	1.0000	0.0046	0.9997	0.082	18
	259,372	0.9996	0.0011	0.9997	0.00043	0	Zn	206.200	0.9999	0.0004	0.9998	0.017	42
Мо	202.031	1.0000	0.0015	0.9999	0.032	22		213.857	0.9997	0.0004	0.9998	0.0024	6
	203,845	0.9999	0.0090	0.9976	0.068	8	Zr	339.197	1.0000	0.0018	1.0000	0.0019	1
Na	589,592	0.9999	0.0039	0.9997	0.15	38		343.823	1.0000	0.0018	1.0000	0.0022	1
Nb	309,418	0.9997	0.0052	0.9999	0.0027	1	-						
	313,079	0.9997	0.015	0.9999	0.0070	0							
	313.079	0.9997	0.015	0.9999	0.0070	0							

Table 7 Correction Coefficient and Limit of Detection (LOD) Relative to Wavelengths

It is clear that the axial configuration gives better detection limits than the radial. Fig.5 is a schematic diagram of the Optima 4300 DV optical system. The axial plasma is a horizontal ICP which is viewed from the end, produces higher analysed emission, improved sensitivity and LD. However, along with this enhancement, there are increased spectral interference problems and matrix-induced interferences. On the other hand, the radial plasma is viewed from the side, and has less interferences. So much thought must be given when deciding what viewing configuration to use when analysing more complicated samples. Generally, unless detection limit is the major criterion when analysing a set of samples, the radial-viewing configuration should always be the first option.

Fig.5 Schematic diagram of the Optima 4300 DV optical system

3.3 ICP-OES Instrument stability

Table 8 summarizes the intensities and the corresponding relative deviation of the Mncheck solution 1 μ g/mL before and after the multi-elements determinations. Data collection for three replicates requires approximately 6 minutes and as can be seen the short term precision is excellent, generally less than 0.6%; The relative standard deviation of both intensities (before and after) indicates a drift over three hours period to be less than 3.5% of RSD.

Table 8 Mn 257.610 Testing Results

Date	The Beginn	ing	The End	d	Middle term precision		
	Corrected Intensity	RSD%	Corrected Intensity	RSD%	Mean Intensity	RSD%	
14.01.2002	152078,2	0,25	156519,9	0,54	154299,1	1,44	
15.01.2002	146871,5	0,23	150210,5	0,15	148541,0	1,12	
23.01.2002	146351,7	0,14	155657,0	0,27	151004,4	3,08	
24.01.2002	154314,9	0,23	153302,9	0,57	153808,9	0,33	
25.01.2002	145952,4	0,16	145595,1	0,26	145773,8	0,12	
07.02.2002	151830,5	0,05	141755,0	0,18	146792,8	3,43	
20.02.2002	139413,2	0,04	144369,0	0,10	141891,1	1,75	

3.4 Results of waste-water sample by ICP-OES

The results of the waste water investigation are presented in Table 9. Generally there is a very good agreement between the results of axial and radial measurements.

An alanta Nama	006f200	02_Axial	006f2002_Radial			
Analysis Name	Mean (µg/mL)	SD	Mean (µg/mL)	SD		
Ag 328.068	0,004	0,0001	ND	-		
Al 396.153	47,0	0,3	45,6	1,2		
As 188.979	0,19	0,003	0,23	0,04		
Au 242.795	0,04	0,0001	0,04	0,0004		
B 249.677	1,10	0,02	1,10	0,02		
Ba 455.403	0,04	0,02	0,076	0,027		
Be 313.107	0,002	0,000003	0,002	0,00005		
Bi 190.171	0,20	0,002	ND	-		
Ca 315.887	286	7,2	280	5,2		
Cd 228.802	1,00	0,002	0,98	0,01		
Co 228.616	0,028	0,00008	0,029	0,001		
Cr 267.716	1,11	0,05	1,14	0,02		
Cu 324.752	9,8	0,04	9,4	0,16		
Fe 238.204	15,9	0,03	15,5	0,1		
Ga 417.206	0,13	0,004	ND	-		
Hf 232.247	ND	-	ND	-		
Ir 224.268	ND	-	ND	-		
In 325.609	ND	-	ND	-		
K 766.490	386	12,9	334	4,3		
Li 670.784	0,46	0,0009	0,29	0,003		
Mg 285.213	35,0	1,1	33,3	0,5		
Mn 257.610	3,4	0,01	3,3	0,02		
Mo 202.031	0,15	0,002	0,20	0,001		
Na 589.592	439	21,4	366	4,4		
Nb 313.079	0,071	0,002	0,060	0,004		
Ni 231.604	0,51	0,002	0,57	0,01		
Os 225.585 or Os228.226	ND	-	ND	-		
P 178.221	5,9	0,5	11,9	2,1		
Pb 220.353	5,0	0,2	5,3	0,05		
Pd 340.458	0,010	0,001	ND	-		
Pt 265.945	0,073	0,0002	ND	-		
Rb 780.023	2,8	0,03	ND	-		
Re 197.248; Re204.908 or Re197.248	ND	-	ND	-		
Rh 233.477 or Rh 343.489	ND	-	ND	-		
Ru 240.272 or Ru 349.894	ND	-	ND	-		
Sb 206.836	0,50	0,002	0,64	0,004		
Se 196.026	ND	-	ND	-		
Sn 189.927	0,084	0,004	ND	-		
Sr 407.771	0,51	0,01	0,48	0,005		
Ta 226.230 or Ta 240.063	ND	-	-	-		
Te 214.281	ND	-	ND	-		
Ti 334.940	0,97	0,005	0,92	0,03		
TI 190.801	0,036	0,003	ND	-		
V 290.880	0,054	0,001	0,057	0,002		
W 207.912	0,54	0,03	0,86	0,13		
Zn 206.200	35,2	0,1	33,9	0,26		
Zr 343.823	0,011	0,0002	0,013	0,0009		

Table 9 Main Elements of Waste Water (sample number 006f2002)

ND = Not Detected; Signal below the LOD (see Table 7)

3.5 Samples Decomposition

Obviously, Table 10 shows that lead and $Li_2B_2O_7$ can be dissolved using concentrated HNO₃ in open heating water-bath (Method 1). But for steel and high pure iron decomposition in pressurized microwave digestion system should be used with aqua regia complex acid (Method 3).

Matrix	Samole	Company	method 1	method 2	method 3
Fe	Iron powder, -22mesh,	Alfa Aesar	No decomposition	No decomposition	complete
	Puratronic, 99.998%				decomposition
	EG-Nr.: 231-096-4				
	CAS: 7439.89-6 0/0				
Steel	Analysen-Kontrollprobe	BAM, MPI	No decomposition	No decomposition	complete
	030-4/ 2421	MPA			decomposition
Pb	Lead shot, 3mm (0.2in),	Alfa Aesar	complete		
	99.9999% (metal basis)		decomposition		
Li ₂ B ₄ O ₇	Li ₂ B ₄ O ₇	Merck	complete		
	M=169.12g/moL		decomposition		
	Spectromelt A10				

Table 10 Matrix Samples Decomposition Results

The benefits of pressurized microwave digestion are:

- a. Intensified contact of sample and reagents;
- b. Shorter reaction times;
- c. Better recoveries;
- d. Easy to handle.

3.6 Matrix interferences in ICP-OES

Fig.6, 7 and 8 show the spectra of Al at 237.313nm, 394.401nm, 396.153nm of the standard solutions and Fe matrix solutions. All three spectra display the complex interferences and the stepwise elevated background caused by the 1000 μ g/g, 5000 ug/g, 10000 μ g/g pure Fe and steel matrices. Qualitative results concerning Fe matrix interferences to 47 elements, as well as left and right beside 100 wavelengths, are summarized in Table 11. In comparison to the Fe and steel solutions, neither the background of 10000 μ g/g pure Pb or 10000 μ g/g Li₂B₄O₇ solutions is raised, nor do other emission lines interferences are listed in Table 11 too.

Fig.6 Spectra of Al at 237.313nm with the Fe matrix

Fig.7 Spectra of AI at 394.401nm with the Fe matrix

Fig.8 Spectra of AI at 396.153nm with the Fe matrix

Fig.9 Spectra of AI at 396.153 nm with the Li₂B₄O₇ (Spectromelt A10) and Pb matrix

	Emission Fe				Emission	Fe					
Element	wavelength -	left	right	Pb	Li ₂ B ₄ O ₇	Element	wavelength	left	right	Pb	Li ₂ B ₄ O ₇
	(nm)	ion	ngin			N	(nm)	ion	ngin		
Ag	328.068	-	-	-	+	IN1	221.648	+	+	-	-
	338.289	-	+	-	-		231.604	-	-	-	-
Al	237.313	-	++	-	-	Os	225.585	+	+	-	-
	394.401	+	+	-	+		228.226	-	+	-	+
	396.153	-	-	-	+	Р	177.434	-	-	-	-
As	188.979	-	-	-	+		178.221	+	+	+	+
	193.696	+	-	-	-		213.617	+	+	-	-
Au	242.795	-	++	+	-		214.914	+	++	+	-
	267.595	+	+	-	-	Pb	217.000	++	+		-
В	182.528	-	-	+			220.353	+	-		-
	249.677	-	++	+			405.781	-	+		+
	249.772	-	++	+		Pd	340.458	++	+	-	+
Ba	233.527	+	+	-	-		363.470	+	+	+	+
	455.403	-	-	-	-	Pt	214.423	-	++	-	-
Be	313.042	-	-	-	-		265.945	+	+	+	+
	313,107	-	-	-	-	Rb	780.023		+	-	-
Bi	190 171	+	_	+	-	Re	197 248	_	++	++	_
	222 821	++	_	+	-	-	204 908	+	+	++	_
	223.061		+		_		201.500	++	+	+	+
Са	315 887		+		+	Rh	227.323	++	+		I
Cu	317.033	-	, ++	-	+	Tui	233.477		, ++	-	-
	202 266	-		-	-	Ru	240 272	-		-	
Cd	393.300	-	- -	-	Ŧ	Ku	240.272	++	-	Ŧ	
Cu	214.440	-	TT	-	-	Sh	349.894	-	Ŧ	-	Ŧ
Ca	228.802	-	-	-	-	50	206.836	+	-	-	-
Co	228.616		++	+	-		217.582	++	+	++	-
C	238.892	+	+	++	-	G	231.146	++	-	-	+
Cr	205.560	++	-	-	-	Se	196.026	-	+	-	-
C	267.716	-	-	-	-	G	203.985	++	+	-	-
Cu	221.459	+	-	+	+	Sn	189.927	-	++	+	+
	324.752	++	+	+	-		235.485	-	++	+	+
-	327.393			-	+	~	283.998	+	-	-	-
Fe	238.204			-	+	Sr	407.771	-	-	-	+
	239.562			-	+		421.552	+	-	-	+
	259.939			+	+	Та	226.230	+	-	-	-
Ga	294.364	+	+	-	-		240.063	++	-	+	-
	417.206	+	+	-	-	Te	214.281		+	-	-
Hf	232.247	++	-	-	+		238.578	+	+	+	+
	277.336	+	-	-	-	Ti	334.940	-	-	-	+
In	303.936	+	+	-	-		336.121	++	-	+	+
	325.609	++	+	-	-	Tl	190.801	+	-	+	-
Ir	224.268	+	+	++	-		276.787	++	+	-	-
K	766.490	-	-	-	-	V	290.880	-	++	-	-
Li	670.784	-	-	-	-		310.230		+	+	+
Mg	285.213	+	-	-	+	W	207.912	-	+	+	+
Mn	257.610	-	-	++	_		224.876	-	++	+	+
	259.372		++	-	+	Zn	206.200	-	-	++	-
Мо	202.031	_	-	+	_		213.857	-	++	-	-
	203 845	-	+	-	_	Zr	339 197	_	++	+	-
Na	589 592	_	-	+	_		343 823	+	+	+	_
Nh	309/118	+	+	-	-		5 15.025				
	313 070	, ++		+	+						
1	515.077		-	1	1	1					

 Table 11 Interferences of Fe, Pb and Li2B4O7 to 100 emission lines of 47elements

+: spectral inteference; ++: high spectral inteference; -: no spectral inteference

4. Suggestion on next steps

- a. Comparison of the LOD obtained by mulitelement solutions without matrix with the results of multielement analysis of high matrix solutions of 1000 μ g/mL high pure Fe, Pb and Li₂B₄O₇;
- b. Elimination of matrix effects (matrix matching and internal standard calculation);
- c. Elimination of interferences by using multicomponent spectral fitting (MSF) method.