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Abstract 

The Karlsruhe Dynamo experiment is aimed at showing that a liquid sodium flow in an 
array of columnar helical vortices, confined in a cylindrical container, can generate a mag-
netic field by self-excitation. The flow structures in the liquid core of the Earth are topologi-
cally comparable to those being realized within the Karlsruhe test module. 

In three test series it has been demonstrated that magnetic self-excitation occurs and 
a permanent magnetic saturation field develops which oscillates about a well defined mean 
value for fixed flow rates. Dynamo action is observed as an imperfect bifurcation from a seed 
magnetic field of the environment. Two quasi-dipolar magnetic fields of opposite direction 
have been realized. A transition between these two states can be enforced through an impo-
sition of a sufficiently strong external magnetic perturbation on the initially existent dynamo 
field. These perturbations were induced with the aid of two Helmholtz coils. 

A time series analysis of the magnetic field fluctuations shows several characteristic dynamic 
features which are in agreement with theoretical predictions of models available in the litera-
ture. 
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Das Karlsruher Dynamoexperiment 

Zusammenfassung 

Das Karlsruher Dynamoexperiment hat gezeigt, dass ein Feld säulenartiger, gegen-
sinnig rotierender Stömungswirbel in einem mit flüssigem Natrium gefülltem Zylinder ein   
dauerhaftes magnetisches Feld durch Selbsterregung erzeugen kann. Das im Karlsruher 
Experiment erzeugte Strömungsmuster hat gewisse topologische Ähnlichkeit mit dem im 
flüssigen Erdkern.  

In drei bisher durchgeführten Versuchsreihen erschien beim Überschreiten einer kriti-
schen Strömungsgeschwindigkeit ein Magnetfeld durch Selbsterregung. Beim Überschreiten 
der kritischen Strömungszustände entwickelte sich ein permanentes, gesättigtes Magnetfeld 
mit signifikanter Intensität, das um einen definierten Mittelwert oszillierte. Im Experiment stell-
te sich die magnetische Selbsterregung als imperfekte Verzweigung ein, die sich aus einem 
Streufeld heraus entwickelte. Es konnten zwei magnetische Dipolfelder mit entgegengesetz-
ter Richtung realisiert werden. Der Übergang zwischen den beiden Zuständen wurde durch 
ein mit Hilfe externer Helmholtzspulen generiertes Magnetfeld erzwungen, das dem  selbst-
erregten Magnetfeld überlagert wurde.  

Eine Analyse der Zeitreihensignale der Magnetfeldfluktuationen hat mehrere charak-
teristische dynamische Eigenschaften aufgezeigt, die im großen und ganzen mit aus der 
Literatur bekannten Modellvorstellungen in Einklang stehen. 
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1 Introduction 

Mechanical systems capable of converting mechanical into electromagnetic energy 
are called dynamos. Technical dynamos are utilized for electricity generation in our 
industrialized civilization. In principle these power generators are constructed in a complex 
way using multiply-connected copper wiring arranged in several coils combined with 
ferromagnetic material which rotate relatively to each other in such a way that self-excitation 
of an electro-dynamic state occurs. A detailed description of a technical dynamo can be 
found in any textbook of fundamental and applied physics. These dynamos in multiply- 
connected material systems are to be distinguished from homogeneous dynamos which in 
principle originate from vortical flows in electrically conducting homogeneous fluids contained 
in singly-connected domains where the fluid flow may be driven by external or internal forces. 
The existence of such homogeneous hydromagnetic dynamos is not obvious, as any induced 
current in the homogeneous conductor may short circuit and vanish from the conductor with-
out amplifying a seed magnetic field which together with the fluid motion generated the cur-
rent.  

The investigation of homogeneous dynamos has received much attention in geo- and 
astrophysics during the last fifty years, as it is generally accepted today that the origin of ob-
served planetary-, solar- and even galactic magnetic fields is dynamo action in the interior of 
these celestial bodies or "clouds". The historic development and the present state of the art 
can be obtained from numerous survey articles on this subject (see e.g. Busse (1978, 2000), 
Rittinghouse Inglis (1981), Rädler (1995), Moss (1997), Glatzmaier & Roberts (2000), Müller 
& Stieglitz (2002)). The vast majority of the performed research has been focused on theory 
of homogeneous dynamos. Only recently a number of experimental research programs have 
been initiated to demonstrate homogeneous dynamo action in the laboratory. So far only in 
two laboratories, at the Physics Institute in Riga and at the Forschungszentrum Karlsruhe, 
dynamo actions has been successfully realised in an experiment (see Gailitis et al.(2001), 
Stieglitz & Müller (2001) and for further information on this subject the survey of experimental 
activities by Müller & Stieglitz 2002)).  

In this article we report the results of hydrodynamic dynamo experiments performed 
at the Institut fuer Kern- und Energietechnik (IKET) of the Forschungszentrum Karlsruhe. The 
article is organized as follows: Chapter 2 outlines a theoretical dynamo model for the experi-
ment. Chapter 3 describes the experimental set-up and the measuring techniques being 
used. The experimental results are presented in chapter 4. Finally, in chapter 5 experimental 
and theoretical results are compared and discussed. Chapter 6 draws some conclusions and 
gives perspectives. 
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2 The theoretical background 

2.1 General aspects 

It is generally accepted today that planetary dynamos are driven by buoyant convec-
tion in the liquid and electrically well conducting core of celestial bodies. A general descrip-
tion of the dynamo process requires the solution of the complete set of coupled thermo-
fluiddynamic and electro-magnetic transport equations in finite, e.g. spherical  domains to-
gether with appropriate boundary conditions. This is a formidable mathematical problem 
which only recently has been tackled with some success by several research groups utilizing 
advanced methods of Computational Fluid Mechanics (CFD). A summary of the state of the 
art of the numerical approach of the convection-driven geodynamo problem is given by 
Jones (2000), Busse (2000), Glatzmaier & Roberts (2000). 

In the past the thermo-fluiddynamic and the magneto-hydrodynamic aspects of the 
planetary dynamo problem have often been considered separately in order to reduce the 
complexity of the overall problem to mathematically treatable or experimentally accessible 
subtasks. 

From numerous theoretical and experimental investigations on buoyant convection in 
rapidly rotating spheres or spherical shells a convincing picture of the coherent flow struc-
tures in the liquid core of rotating planets has emerged (see e.g. Busse (1971, 1992), Carri-
gan & Busse (1974, 1976, 1983), Zhang (1992)). A characteristic feature of the internal, 
buoyancy driven flow in major planets is an assembly of large columnar vortices with axes 
parallel to the planet’s axis of rotation. These vortices are of the Taylor-Proudman type in the 
near equator range and of the Bénard type in the pole regions. This is sketched in figure 2.1, 
but the details will not be further discussed here, as we shall focus in this article on the mag-
netohydrodynamic aspects of planetary dynamos. With regard to the origin of the vortex flow 
we refer to the literature for more details.  

Figure 2.1 Columnar vortex pattern of buoyancy driven convection in a rapidly rotating 
spherical shell after Busse (1994). 
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 The associated hydromagnetic dynamo problem starts from the assumption that the 
velocity field is known or can be directly calculated from a given pressure or conservative 
force distribution. This reduced problem has recently been reformulated by Tilgner & Busse 
(2002). It is governed by the following set of dimensionless equations for the velocity  the 
pressure p and the magnetic induction B  

 ,)(
1

)( 2 fBB +××∇+∇+∇−=∇⋅+∂
Re

pt  (2.1a) 

 ∇· = 0, (2.1b) 

 ,
1

)( 2 BBB ∇=××∇+∂
Rmt  (2.1c) 

 ∇·B = 0. (2.1d) 

Here the hydrodynamic and magnetic Reynolds numbers (Re, Rm) are defined as 

 Re
dU

Rm,
v

dU
oo == , (2.2) 

where 0U  is a reference velocity, d  a characteristic dimension of the velocity and magnetic 
field and ν and λ are the viscous and the magnetic diffusivities. The reference velocity 0U  
may be defined by the volumetric flow rate V�  in the laboratory model and a particular flow 
cross-section. Aside from the pressure p a forcing function f has been introduced in order to 
simulate specific velocity distributions of laboratory dynamos. 

2.2 Linear theory for onset of dynamo action 

 If the onset of dynamo action is of primary interest, the model equations 2.1 can be 
simplified further by considering perfect fluids with conservative body forces and neglecting 
the coupling Lorentz forces (∇xB)xB, since they are small of second order in B .  Among 
others there is a whole class of steady solutions for velocity fields, called Beltrami flows, 
which satisfy the condition x(∇x )=0 and which can easily be constructed for plane, cylin-
drical and spherical geometries (see Pekeris et al. (1973)). These solutions may be intro-
duced into equation 2.1c. Together with boundary conditions for the magnetic field at the 
surface of the flow domain equations 2.1c and 2.1d define a so-called kinematic dynamo 
problem. A solution of this problem can be obtained in form of a complex product function 

 B(x,t) = exp(γ t)⋅b(x), (2.3) 

where the growth rate γ  is determined by the associated boundary eigenvalue problem. For 
R(γ ) > 0 self-excitation of the magnetic field i.e. dynamo action occurs; for R(γ ) < 0 any 
initially given seed magnetic field decays in time. Naturally, the growth rate depends on the 
magnetic Reynolds number Rm and the structure of the velocity field. 
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 With regard to the anticipated quasi-regular vortical flow structure in the liquid core 
of a planet (see figure 2.1) it is of particular interest to investigate the potential for dynamo 
action of periodic velocity fields. This was done first in a general form by Childress (1967, 
1970) and Roberts (1970, 1972) for infinitely extended fields. They proved mathematically 
that dynamos exist "for almost all steady spatially periodic motions of a homogeneous con-
ducting fluid at almost all values of the conductivity." Moreover, Childress (1967) derived an 
existence proof for magnetic self-excitation in a spherical liquid conductor containing a quasi-
periodic velocity distribution. The proof is constructive and is based on the presumption of 
scale separation between the period length L and the radius of the sphere R. Gailitis (1967) 
elaborated an analytical solution of this problem using the “Mean Field Theory” of Steenbeck 
et al. (1966). He shows that in liquid sodium and for geometrical dimensions of 1m for the 
sphere and 0.1m for the velocity period the velocity should be of the order of ≈1m/s to 
achieve self-excitation. Furthermore, he concludes from the current distribution that a cylin-
drical confinement of the periodic velocity field would be more favourable for dynamo action 
at low velocities i.e. at low magnetic Reynolds numbers. Busse (1992) derived an approxi-
mate solution for the kinematic dynamo problem for a periodic velocity field in a cylindrical 
confinement. He started from a Roberts' type velocity distribution in the form 

 ).sinsin,sincos2,cossin2( y
a

x
a

Cy
a

x
a

Ay
a

x
a

A
ππππππ ⋅⋅−⋅=  (2.4) 

A pattern of this velocity distribution is sketched in figure 2.2a.In his analysis he as-
sumed that the period length L=2a is much smaller than the cylinder radius r0 and its height d 
and that the only boundary condition at the cylinder surface S is a vanishing normal compo-
nent of the mean electric current density j which gives 

 0)(
1 =⋅×∇=⋅ nBnj

Rm
      on   S, (2.5) 

where n is the unit normal vector on the cylinder surface. In terms of magnetic Reynolds 
numbers and geometrical scales he obtains a condition for dynamo action in the form 

 .
83.3
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








+≥⋅

o
CH r

d

d

a
RmRm

ππ
 (2.6) 

In a slight modification of the original formulation of Busse and with regard to the 
forth-coming explanations we have introduced here Reynolds numbers based on the volu-
metric flow rates of the axial and azimuthal velocity components in an individual flow cell (see 
figure 2.2a) and the relevant length scales as )/(,)/( λλ ⋅=⋅= hVRmaVRm HHCC

��  with λ as 
the magnetic diffusivity and h the helical pitch (see figure 3.1b ). (It must be mentioned here 
that relationship (2.6) is not suitable for a direct comparison with the experimental results in 
chapter 5, as it was derived for an axisymmetric magnetic field. Therefore, it is not further 
discussed). Busse (1992) proposed to demonstrate the feasibility of a homogeneous dynamo 
in the laboratory and to design an experiment according to his model conception which is 
sketched in figure 2.2b. With regard to the coherent and quasi-periodic columnar vortex 
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structures there is some similarity between the conjectured flow pattern in the liquid core of 
fast rotating planets and the suggested laboratory model. However, Busse’s original model is 
affected with an unrealistic feature, as it implicates, due to the simplified boundary condition 
for the current density, a quasi-periodic continuation of the magnetic field to the outside of 
the cylinder. 

For laboratory application the model has been decisively improved by Tilgner 
(1997), and Rädler et al. (1996, 1998). These authors embedded the cylinder, containing the 
arrangement of counter rotating helical vortices, into a sphere containing the same conduct-
ing material inside but being bounded by vacuum to the outside (see figure 2.2c). This re-
quires that equations 2.1c and d must be solved inside the cylinder. In the spherical sections 
of stagnant fluid and in the outside domain Ampere's equation 2.1c has to be satisfied to-
gether with equation 2.1d for  = 0 and with appropriate matching conditions for the current 
density and the magnetic field at the interfaces. Tilgner (1997) used a spectral method to 
determine numerically the amplification rates and the mode of the magnetic field under 
conditions of self-excitation. In particular he derived conditions for the marginal state i.e. for 
the case of zero amplification in terms of helical and axial flow rates. Rädler et al. 
(1996,1998) applied the Mean Field Theory to solve the eigenvalue problem associated with 
the amplification rate of dynamo action. Tilgner (1997) as well as Rädler et al. (1996) predict 
similar results for the structure of the magnetic field and the dependency of the amplification 
rate on the magnetic Reynolds numbers and the volumetric flow rates respectively. The non-
axisymmetric mode with an azimuthal order number m=1 shows the largest amplification for 
all combinations of magnetic Reynolds numbers. The mean magnetic field has a spiral stair 
case structure in the near field and a dipolar orientation perpendicular to the cylinder axis in 
the far distance. 

 

Figure 2.2: a) Non-confined periodic vortex pattern after Roberts (1972) and in modified 
 form after Busse (1992); b) Busse's vortex arrangement confined in a cylin-
 drical domain; c) Tilgner's (1997) and Apel et al. (1996) vortex arrangement 
 in a sphere. 
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2.3 The nonlinear saturated dynamo states 

 An interesting aspect of the hydrodynamic dynamo beyond the marginal state 
(which we shall denote further as "critical" state) is the hydromagnetic mechanism which 
leads to a saturated magnetic state. The saturation effect is principally caused by the feed-
back of the Lorentz forces fL = j×B on the velocity field described by equation 2.1a. For liquid 
metals like sodium and mercury, commonly used in the laboratory, the kinematic viscosity ν 
is much smaller than the magnetic diffusivity λ  (e. g., νsodium=0.6× 10-6m2/s, λsodium=0.1m2/s). 
This implies that the hydrodynamic Reynolds number is much larger than the magnetic Rey-
nolds number Rm. For super-critical conditions with Rm ≥ 1 we have Re ∼ 0(105-106). This 
means, the flow is fully turbulent. Compared to turbulent shear stresses the viscous shear 
stresses and so the viscous term (1/Re)·(∇2υ ) can be neglected. Nevertheless, using Rey-
nolds' representation for turbulent flow the form of equation 2.1a is maintained for fully turbu-
lent flow conditions, if the velocity is defined as a mean value and the Reynolds number is 
based on an assumed constant eddy viscosity νt (see, e. g., Hinze (1975)). Tilgner & Busse 
(2002) studied this modified problem numerically employing spectral methods for the spatial 
resolution and finite differences for the time integration. 

 Their procedure to achieve numerically supercritical finite amplitude steady states is 
as follows: For a specified Reynolds number Re and a prescribed solenoidal velocity field the 
body force field f in equation 2.1a is calculated for B=0. A suitable velocity distribution υ 0 
which fills the whole sphere and has a zero normal component at the surface is numerically 
constructed from the velocity field (see equation 2.4) by implementing a boundary adjustment 
function. This velocity field is taken as the initial kinematic state. As an initial magnetic state a 
small seed magnetic field 

 B = B0 (2.7) 

is chosen according to possible laboratory conditions. As o acts already on the seed field 
B0, this effect is calculated from equation 2.1c to give a B0’. For a new set of Re and related 
Rm values a time integration of the equations 2.1 to a steady state is conducted starting from 
the initial velocity field o and the magnetic field B0’. The process can be continued to obtain 
for increasing values Re and Rm a set of growing finite amplitude values for the magnetic field 
at a particular location e.g. the centre of the sphere. In the terminology of bifurcation theory 
these non linear steady states represent the continuous branch of an imperfect pitch fork 
bifurcation (see Golubitzky & Schaeffer (1985)). The corresponding isolated branch can also 
be realized by numerical integration by changing at a high enough super critical Reynolds 
number the direction of the external magnetic field to the opposite direction , say to B1’’=B0’–
B1'. The time integration then leads to a steady magnetic field of opposite direction, if the 
intensity of the external magnetic field B'1 has been properly chosen. If the external magnetic 
field is finally switched off and the integration is continued, steady solutions on the isolated 
branch are found in the same manner as obtained for the continuous branch. Figure 2.3 
shows a typical bifurcation graph obtained by Tilgner & Busse (2002) for a parameter set 
compatible with the Karlsruhe Dynamo experiment. In their calculations they have normal-
ised the magnetic field by the reference value Bs���� �1/2 ����0 . 
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Figure 2.3: The bifurcation diagram for the Karlsruhe Dynamo experiment  
 calculated by Tilgner & Busse (2002) for a dimensionless Bx and equal volu-
 metric flow rates. 

Tilgner & Busse (2002) have also proposed a model equation in a low order ampli-
tude approximation for B . Their results are based on the general form of the equations 2.1 
and suggest that the magnetic field saturates due to a reduction of the α- coefficient in the 
representation of the electromotive force by the “Mean Field Theory” with increasing field 
intensity. The reduction turns out to be proportional to B 2. They derive an evolution equa-
tion for  B  in the form: 

 [ ] Bcritdt

d
fBB

B +−−= αβα )( 2  (2.8) 

where fB accounts for the driving effect of an external seed field B0 and αcrit is the value for 
the marginal state in case of a vanishing seed field. 

By linking fB to B0 and αcrit by fB = αcrit B and setting α = c Rm they arrive at the 
following model equation for the amplitude B of the magnetic field. 

 0)(
3 =−−−

ocritmcritmm

c
R

c
RR BBB

ββ
 . (2.9) 

This equation contains three independent coefficients Rm crit, B 0, β/c  which may 
be adjusted to either numerical or experimental results. Rmcrit  may be taken from calculations 
for the ideal kinematic state without seed field. B0 and c/β can be determined by fitting the 
third order equation to numerically or experimentally obtained solutions on the continuous 
branch. Then, the model equation predicts the discontinuous branch in the same approxima-
tion and the quality of the approximation can be tested by comparison with corresponding 
numerical and experimental results. The linear and non-linear behaviour of dynamo action in 
the Karlsruhe test facility has also been studied by Rädler et al. (2002a,b). Some of their re-
sults will be outlined in chapter 5. 
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2.4 The linear dynamics of magnetic fluctuations at mean stationary, super-
critical states 

This section is intended to substantiate observed fluctuations of the dynamo mag-
netic field as an interaction of Alfvén waves generated in each individual helical vortex of the 
velocity model in figure 2.2. Alfvén waves are excited, if lines of force are displaced by con-
vective transport and magnetic stresses act to restore the displacement. A dynamo magnetic 
field with an orientation perpendicular to the mean flow in each helical vortex would be sub-
jected to this effect. Based on this conception we recall a fundamental relationship for  linear 
Alfvén waves. To  facilitate our considerations we start, e.g. from a velocity field in the form 
of equation 2.4. We choose the amplitudes A and C such that the flow becomes a Beltrami 
flow. This is the case for C/(A����������	
�����
���������������
����
�����
�����
����������������
waves and the associated dispersion relationship. 

The Mean Field Theory of turbulent flows applies a decomposition of the variables in 
a mean and a fluctuating part. We may therefore set 

 ’.,’,’ bBB +=+=+= ppp   

For our special velocity distribution of equation 2.4 the large scale spatial average 
across the cylinder vanishes. The only relevant large scale quantity is the mean magnetic 
field. We assume that B »

2/1
2’b  and that, as previously discussed, Re » 1. Then, we lin-

earize the Lorentz force, neglect the viscous term in equation 2.1a and also linearize the 
convective term in the induction equation 2.1c. The two equations can then be written as  

 ,)(’)()’(’’
2

1
’ 2 BbbB ××∇+××∇+×∇×−




 Φ++∇+∂ ’
p

t ρ
 (2.10a) 

 ’
1

)’(’ 2 bBb ∇+××∇−=∂
Rmt . (2.10b) 

����� �����	���������
������	��������������������f  in equation 2.1a. We now consider 
B  to be the saturated supercritical state. For simplicity and with regard to theoretical results 
and experimental observations we set 

 )0,,0( 0B=B , B0 = const.   (2.11) 

Furthermore, we rescale the dimensionless magnetic field b’ to the new reference 
scale B0. This is done by dividing the Lorentz force terms in equation 2.10a by the velocity 
ratio A=Uo/V a, where Va is the Alfvén velocity defined as Va = Bo(µρ)-1/2 and U0 the volumetric 
flux in a helical vortex of the velocity field equation 2.4. The velocity ratio A is denoted the 
Alfvén number. We follow Davidson (2001) and introduce the vorticity and current density, 
respectively, by 

 ’.,’ bj ×∇=×∇=  (2.12a,b) 
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Assuming that the velocity field �’ is a Beltrami flow, equation 2.10a reads as 

 j.
yAt ∂
∂=

∂
∂ 1

 (2.13) 

Equation 2.10b takes the form 

 .
1 2 jj ∇+

∂
∂=

∂
∂

mRyt
 (2.14) 

Eliminating � from equation 2.13 and 2.14 gives 

 .0
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∂

jjj
tRyAt m

  

This is a wave equation describing the propagation of Alfvén waves in y-direction. A solution 
can be readily given in the form 

  j = j0 exp i (kyy - Ωt) (2.15) 

for which the dispersion relation 
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 (2.16) 

holds. This relation describes a propagating Alfvén wave with an amplitude which is damped 
by Ohmic dissipation. There are two distinct asymptotic cases for very high and very small 
magnetic Reynolds numbers:  
1 the oscillatory dampened Alfvén wave with propagation speed 1/A and 

)/()2( 12 AkiRm y±⋅−= −k ; 
2 the monotonically dampened wave with Ω = - k2/Rm i. For intermediate values of Rm ≥ 1 

the frequency  and the propagation speed c = Ω/k depend on the wave vector k and 
the magnetic Reynolds number. Because of the difference expression in the radicant of 
equation 2.16 both quantities decrease for decreasing Rm compared to the case with-
out Ohmic dissipation. We introduce the relevant physical scales according to equa-
tions 2.2 and 2.4 with the length scale a and the velocity scale U0 and consider a wave 
of least damping which propagates in y-direction.  

We obtain  
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where VD is defined as the diffusion velocity VD = λ⋅π/(2a). This result shows that at a satu-
rated dynamo state magnetohydrodynamic waves can propagate and transfer energy. It is 
obvious that oscillatory wave propagation can only occur, if the Alfvén wave speed Va is lar-
ger than the diffusion velocity VD .  Furthermore, the oscillation frequency decreases for Va ��
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VD, if Va approaches VD, i.e. if the intensity of the magnetic field decreases. Therefore, the 
frequency of the magnetic field fluctuations should increase with increasing intensities of the 
dynamo magnetic field. We shall see in section 4.5 that this conforms with some experimen-
tal observations. 

2.5 Some comments on MHD-turbulence 

 In the Karlsruhe Dynamo experiment dynamo action occurs at high hydrodynamic 
Reynolds numbers Re vdu H /⋅=  of the order 106 and magnetic Reynolds numbers 

η/Hm duR ⋅=  of the order 1-10 ( dH is the relevant hydraulic diameter of a vortex generator, 
see figure 3.1 and the velocity u  is the volumetric flux in it.). Thus, the channel flow is fully 
turbulent and all magnetohydrodynamic variables are affected by turbulent fluctuations. The 
quality of these turbulent fluctuations can be judged by utilizing the characteristic functions of 
random processes. In our analysis of measured time signals we shall evaluate the mean 
values, the probability density functions (PDF) and the higher moments, the variance, skew-
ness and flatness (σ2, S, K). The temporal and spatial coherence of the signals can be recog-
nized from their auto- and cross-correlation functions. The definition of these function and 
more about their physical meaning for turbulent flows can be found in classical textbooks on 
turbulent flows (Tennekes & Lumley (1970), Hinze (1970)). 

 A key issue for MHD-turbulence is the distribution of energy between the kinetic en-
ergy of the velocity fluctuations and the energy of fluctuations of the magnetic field. A meas-
ure for this quantity is the variance σ or its square root, the RMS-value, denoted here as υ* 
or b* for the velocity and magnetic field fluctuations respectively. 

For a more subtle analysis of turbulent processes the exchange and transport of en-
ergy between the different size structures of the velocity and the magnetic field must be con-
sidered where the structures can be imagined as eddies of either the velocity or current field. 
The scale of these structures is limited by viscous and Joule dissipation on the lower side by 
the Kolmogorov (1941) time and length scales (see Hinze (1975)) . They read for the viscous 
and Joule dissipation as 

 

4/132/1

, 





=





=

εε
τ v

L
v

KvKv   viscous dissipation, (2.18) 

 
2/1






=
ε
λτ λK , 

4/13







=

ε
λ

λKL   Joule dissipation. 

Here ε is the specific energy flux which is dissipated. It may be defined by the large scale 
velocity  u and its characteristic gradient  

ε = u3/l 

or in case of channel flow by the pressure loss ∆p, the volumetric flow rate 
.

V  and the fluid 
mass M as 

MpV /∆⋅= �ε . 
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The upper limit of scales is determined by the dimensions of the test facility. This is 
in our case typically for the velocity u  the diameter Hd  of a vortex generator, for the mag-
netic field and the associated currents the diameter of the cylindrical test module 2r0. An ap-
propriate time scale for the magnetic field has to be based on the Alfvén velocity defined by 
an external magnetic field or, in case of dynamo action, on the induced magnetic field. 

 The energy transfer between the different scales is commonly discussed in turbu-
lence theory by a spectral decomposition of the state variables and a spectral transformation 
of the governing equations, in our case equations 2.1. The variables in the so-called Fourier 
space depend on wave numbers kn and frequencies ωn which are related to the correspond-
ing length and time scales of the turbulent structures as 

.
2

,
2

n
n

n
n L

k

τ
πω

π

=

=
 

For turbulent channel flow, where uu /* « 1 holds, Taylor’s hypothesis (see Hinze 
(1975)) applies and kn can be expressed by ωn and the mean velocity as ./ uk nn ω=  

 With this in mind we carry on with the further discussions on turbulent energy trans-
fer in the wave number space. The spectral distribution of the turbulent energies is obtained 
by a Fourier transformation of the auto-correlation function of the velocity and magnetic field 
fluctuations respectively. One obtains the turbulent energies EV and EM defined as 

∫ ∫
∞ ∞

==
0 0

)(,)( dkkEEdkkEE M
k

MV
k

V 1), 

where V
kE  and M

kE  are the energy distributions of the velocity and the magnetic field. In 
three-dimensional turbulent flow, not influenced by strong magnetic fields or intensive rota-
tion, the kinetic energy of large scale motion is transferred to smaller scale motions in a cas-
cade of successive flow instabilities induced by vortex stretching and shearing processes. 
This occurs without dissipative losses in a wave number range between the low wave num-
ber kL of the large scale inertial flow and the high wave number kKν for viscous dissipative 
small scale flow. Based on the assumption that the flux of kinetic energy is conserved, a rela-
tion between the spectral energy density V

kE , the injected energy rate ε and the wave num-
ber k can be derived in the form 

 V
kE  = cKε 2/3 k -5/3       in     kL < k <  kKν (2.19) 

with kKv  as the wave number based on the Kolmogorov viscous dissipative length scale 
(Kolmogorov (1941), Tennekes & Lumley (1977)). This is called the inertial range of kinetic 
energy transfer by a non-linear interaction of vortices and for negligible viscous dissipation. 
The transfer process has to be modified in conducting fluids in the presence of a magnetic 
field, as the small scale motions are influenced by large scale magnetic fields. This may be 

                                                

1 The formalism of spectral decomposition holds strictly only for homogeneous turbulent flows in infi-
nite domains (see textbooks on turbulent flows). 
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an external magnetic field or a self-exited mean magnetic field B . The energy transfer may 
occur through Alfvén waves in an inertial range of wave numbers which is limited from above 
by the Joule dissipative wave number ( ) 4/13/2 λεπλ =Kk . Irishnikov (1964) and Kraichnan 
(1965) derived an interdependence between the spectral energy V

kE , the dissipation ε and 
the Alfvén velocity Va  (see section 2.4). They used dimensional arguments based on the as-
sumption that the energy flux was constant and an equipartition of kinetic and magnetic en-
ergy holds in the inertial wave number range. They arrive at the following power relationship 
for the kinetic spectral energy: 

 EV
k ( )k  = cK(εVa)

1/2 k -3/2    in kL < k < kK λ . (2.20) 

This relationship holds as long as the velocity and magnetic field fluctuations are 
spatially uncorrelated, which is true for low intensity mean magnetic fields and the interaction 
of waves with the same size wave numbers. However, if the velocity and magnetic field be-
come correlated at increasing magnetic field intensities, the energy exchange by Alfvén wave 
interaction occurs in a wide range of wave numbers. Equipartion between kinetic and mag-
netic energy can not be anticipated anymore. This case has been treated by Grapin et al. 
(1983)2. Using Elsasser variables 2/1)/(ρµBZ ±=±  they consider modified spectral quan-
tities based on these variables and relate them to the energy spectral densities )(kE v

K  and 
).(kE M

k They define  

∫∫ Ω=Ω= −+±±
KKK

R
kKKk dEdE ZZZ

2

1
,

4

1 2
, 

where ΩK is the angle in the k-space. By definition the following relations hold between the 
total spectral energy EK and the Elsasser spectral energy quantities Ek

± 

−+ +=+= kk
M
k

V
kk EEEEE      , 

.M
k

V
k

R
k EEE −=  

Making assumptions of strong separation of scales in the inertial range, i.e., k«k+, 
but requiring equal dissipation wave numbers kKλ for both Elsasser spectral energy densities, 
Grapin et al. (1983) derive the following power laws for the inertial range 

 
±−

±






≈

m

K
ak k

k
VCE

λ

λ1 , (2.21)  

with m++m-=3 and 

 .)( 2
2

−⋅=−= kVCEEE a
M
k

V
k

R
k  (2.22) 

These correlations merge into the Irishnikov-Kraichnan (1964, 1965) relationship under the 
assumption of equipartition between kinetic and magnetic spectral energies. 

                                                

2 See also Biskamp (1993) 
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The relations 2.21, 2.22 suggest that the decrease of the spectral energies V
KE and 

M
KE may be stronger in the inertial range in case of non equipartition of spectral energies and 

strong correlations between the velocity and the magnetic field fluctuations than predicted by 
the Irishnikov-Kraichnan relation 2.20. Indeed, Léorat et al. (1981) have performed numerical 
calculations on fully developed MHD- turbulence near critical magnetic Reynolds numbers 
using a spectral simulation of the MHD-equations 2.1 and turbulence models within the 
scope of the Eddy-Damped Quasi Normal Markovian (EDQNM) approximation. They find for 
supercritical magnetic Reynolds numbers power laws for the kinetic energy spectrum of the 
kind 4.2−≈ kEV

k and for the magnetic energy spectrum 4.4−≈kE M
k which they attribute to an 

inertial range of the MHD-power spectra. 

The spectral behaviour of the MHD energies under the influence of Joule dissipation 
but still in the inertial range of fluid dynamic wave numbers has been analysed by Moffat 
(1961). Assuming that 1 « Rm « Re holds, he finds that the magnetic spectral energy 
distribution is correlated to the kinetic spectral energy as 

 .22 V
k

M
k EkE −−≈λ  (2.23) 

Using further for the kinetic spectral energy V
kE of the Kolmogorov spectrum of equation 2.19 

he proposes the following expression for the magnetic spectral energy in the Joule dissipa-
tive regime of wave number kKλ  <  k  <  kKν : 

 3/1123/22

4

9 −−⋅= kHRmE o
M
k λε in  kKλ  < k < kKν . (2.24) 

Here 2
oH  is the magnetic energy of the large scale magnetic field, e.g., an external magnetic 

field or a self-exited dynamo field. Compared to the spectral energy behaviour in the inertial 
range with assumed equipartion of energies, this relationship indicates a strong reduction of 
the turbulent magnetic energy with increasing wave numbers, as Joule dissipation destroys 
the eddy currents and thus the small magnetic field variations. 

If large scale magnetic fields have an intensity such that Lorentz forces become sig-
nificant for the momentum transfer, even local homogeneity of the velocity field can not be 
sustained. Velocity fluctuations in the direction of the magnetic field and perpendicular to it 
are differently dampened by Joule dissipation and there is a quasi-equilibrium transfer of 
energy between the fluctuations of different spatial orientation. The effect has been analysed 
in detail by Alemany et al. (1979). The effect should be observed if the interaction parameter 
based on the local quantities, the RMS value of the velocity fluctuation u*, the vortex dimen-
sion � and the magnetic field intensity B0 is of the order one, i. e. 

 )1(
*

2

O
u

B
N o ≈=

ρ
σ �

 

(With regard to the model velocity field in figure 2.2 and dynamo action, B0 would correspond 
to the self-excited magnetic field intensity B  and u* to the mean helical velocity u  defined 
as the helical volumetric flux; �would correspond to the half period a of the velocity field.) 

Equivalently it can be stated that the transport time of energy or the vortex turn over time  
τt∼�/u* is of the same order as the Joule dissipation time scale τj ∼ρ/(σ 2

0B ). 
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With �∼1/k and a spectral representation of the velocity *, u ∼ 2/1)( )( kE v
k , this results in the 

power relationship: 

 V
kE ∼ 32 −− kjτ . (2.25) 

If the condition N∼O(1) holds and, as a consequence, for the spectral kinetic energy the 
power law (2.25) is valid, then the spectral behaviour of the magnetic energy will be modified 
in the wave number range larger than the wave number kin at which energy or helicity is in-
jected into system. In a subrange kin < k < kKλ we may assume an equipartition of spectral ki-
netic and magnetic fluctuation energies, as we may neglect magnetic diffusion effects in the 
transport equation of the magnetic field and, furthermore, linearise in the fluctuation terms. 
This gives for the spectral magnetic energy distribution 3 

 M
kE ∼ V

kE ∼ 2−
jτ  k -3 . (2.26) 

For the Kolmogorov wave number range kKν > k > k. ��of diffusive magnetic losses in-
sert the spectral kinetic energy distribution (2.25) applies. This inserted it into relationship 
(2.23) for the spectral magnetic energy gives 

 ,522 −−≈ kE j
M
k τλ for k> kKλ  . (2.27) 

This power law indicates a very rapid decrease of the magnetic spectral energy in the Kol-
mogorow range of wave numbers. 

So far we have considered the spectral energy transport from large scale vortices 
and eddy currents downward to smaller scales. It has been observed, however, in model 
calculations that in three-dimensional turbulent vortical flow small scale magnetic energy 
associated with small scale eddy currents may build up large scale magnetic fields by self-
organisation. This effect is known as reverse cascade of spectral energy transfer. This proc-
ess has been described theoretically for helical turbulence in a series of papers by Frisch et 
al. (1975), Pouquet et al (1976), Leorat et al. (1981). Here we outline some results of Pou-
quet et al. relevant for the discussion of our observations. 

In magnetohydrodynamics the magnetic helicity is a conserved quantity, if dissipa-
tive effects are neglected. It is defined as 

∫ =⋅∇×∇=⋅=
V

dV
V

H ,0,
1

AABBA with  

                                                

3 The proportionality between M
kE and V

kE  can be derived from the transport equation for the mag-
netic field for vanishing diffusivity λ. For this case B� = ∇x(�xB). Decomposing B as usual in 
B= B +b’ and = U + u’  and Fourier-transforming the equations one obtains  

     ωk bn = B kn un.   . 

Using the relationship bn=( 2/12/1 )(,) n
V
nnn

M
n kEukE = and Uknn =/ω  

we get V
n

M
n EUBE )/(

22=  

where 
2

U  is a measure for the injected kinetic energy and 2B represents the energy of the large 

scale magnetic field. 
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and it is 

dH/dt = 0  for (λ,ν) → 0. 

Here A is the magnetic potential. Frisch et al. (1975) pointed out that in the spectral 
domain of helical, isotropic MHD-turbulence a self-organisation of this quantity towards larger 
scales may occur. This reverse cascade has been corroborated by Pouquet et al. (1976) by 
extensive numerical calculations using the EDQNM-approximation for turbulent helical flow in 
the spectral domain. They find that together with the reverse helicity cascade a reverse en-
ergy cascade exists. Their time integrations in the spectral domain suggest that energy trans-
fer to smaller wave numbers approaches an equilibrium steady state, if energy or magnetic 
helicity is injected into the turbulent system at a fixed rate and a characteristic scale, say, 
wave number kin. In the spectral domain their results indicate a quasi-stationary behaviour in 
form of power relationships 

 2~)( −kkH M
k ,    )(kE M

k � 1−k ; (2.28) 

for the magnetic spectral helicity M
kH and the magnetic spectral energy M

kE . They support 
these findings by dimensional arguments of the Kolmogorov type for the reverse inertial 
transport mechanisms. They argue that there should exist a unique functional dependence 
between the relevant quantities M

KE  and HK(k) on the one side and the effective helicity injec-
tion rate M

effε  and the wave number k on the other side. The effective helicity injection rate 
may differ from the total injection rate, as a part of it may cascade into helicities of smaller 
scale and finally dissipate. A similar statement holds for the injected energy. The dimensional 
considerations result in the relationships 

                    23/2
2

13/2
1 )()(,)()( −− == kCkHkCkE M

eff
M
k

M
eff

M
k εε for k < kin, (2.29a,b) 

where C1 and C2 are dimensionless constants. 

From an experimental point of view for dynamo action the injected kinetic helicity is 
the actual control parameter rather than the magnetic helicity. 

 Under the random action of small scale Alfvén waves it may be assumed that the 
kinetic and magnetic energies and helicities relax to quasi-equipartition. Using the conserva-
tion equations for these quantities in the spectral domain (Pouquet et al. (1976)) the following 
relationship 

 M
k

V
k HkH 2≈  , (2.30) 

can be obtained. Here V
KH  is the spectral representation of the kinematic helicity 

 ∫ ×∇⋅=
V

V dV
V

H .)(
1

 (2.31) 

This relationship holds also for the effective injection rate of this quantity i. e. V
eff

M
eff k εε 2−≈ . 

Following Pouquet et al. (1976) we give an estimation for the time it takes to build up 
a large scale magnetic field of dimension L∼ 1−

Lk  from a small scale turbulent seed field char-
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acterized by an injection length scale �in∼
1−

"
k . It is reasonable to define this time to be pro-

portional to the ratio 

 T∼
M
eff

MH

ε
. (2.32) 

This is the magnetic helicity contained in the large scales divided by its effective in-
jection rate. An integration of equation 2.29b gives: 

 ∫ −==
in

L

k

k

in
M
eff

M
k

M LCdkHH ).()( 3/2
2 �ε  

Furthermore we get 

 T∼( M
effε ) -1/3 ( L-�in ). 

Using relationship 2.30 results in   

 T∼ ).()( 3/12
2 inin

V
eff LC �� −⋅ −ε  (2.33) 

We shall utilize the outlined relationships for turbulent MHD-flow in our discussions of the 
experimental results in chapter 5. 
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3 The dynamo test facility and instrumentation 

The Karlsruhe dynamo test facility has been described in detail by Stieglitz & Müller 
(1996). Here we restrict ourselves to a brief outline of the main features. The test rig consists 
essentially of a cylindrical dynamo module which contains 52 vortex generators connected to 
three different loops each of which is equipped with a magnetohydrodynamic feed pump of 
about 210 kW power and heat exchanger to assure constant temperature in the liquid so-
dium during the experimental runs. Using a water-steam heat exchanger allows to keep the 
operation temperature within a threshold of ±1°K during runs of several hours. The module 
and the loop are entirely fabricated of stainless steel. The outer hull of vortex generators as 
well as the inner tube consist of 1 mm thick stainless steel sheets or tubing material, whereas 
the guide vanes producing the vortical flow are built up of 0.5 mm thick material. Taking into 
account the different specific electric conductivites of stainless steel and sodium and operat-
ing the dynamo module in a temperature range between 120°<T<125°C yields a magnetic 
diffusivity of λ=0.1m2/s with an accuracy of ±0.002 m2/s.  

 

Figure 3.1: Semi-technical sketch of the Karlsruhe dynamo test module. a) internal 
structure and velocity distribution; b) vortex generator; c) technical de-
sign. 

A semi-technical sketch of the dynamo module, the individual vortex generator and the op-
erational set up is seen in figure 3.1.The ideal helical flow of the vortex pattern according to 
equation 2.4 is approximated by a quasi vortex free flow in the central duct and a spiral flow 
in the annular gap enforced by a helical baffle plate. The diameter of a vortex generator is 
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a=0.21m; the inner duct diameter is ai=0.1m. The height of a complete helical winding is 
h=0.19m. The radius of the cylindrical container is r0=0.85m, its height is d=0.9m. The vortex 
generators are interconnected at their ends by bends for the central flow and by fitting chan-
nels for the helical flow. The helical flow in the vortex-generators is provided by two separate 
loops each supplying 26 helical flow channels arranged in a right and left semi-section of the 
cylinder. The central flow is controlled by a third sodium loop. The maximum capacity of the 
MHD-pumps is V� =150m3/h each. The pressure drop across the module in each of the three 
independent channel systems is measured by sensitive capacitance pressure gauges with 
an accuracy of δp=±5⋅102Pa. The sodium volumetric flow rate in each of the three loops is 
determined by electromagnetic (EM) flow meters which are calibrated to give errors less than 

%.3/)( ≤VV ��δ   

The module is located in a separate room and sheltered against electromagnetic stray 
fields from the MHD-pumps and EM-flow meters by soft iron plates. Thus, the intensity of the 
stray field in the test room is less than 0.5 Gauss (G), i.e. of the order of the Earth’s magnetic 
field. The magnetic field in the test module is measured by Hall sensors with a resolution of 
δB≤ 0.05G. During the dynamo tests the magnetic field is recorded at two fixed locations near 
the equator of the cylinder, separated at 120°, and on variable positions along the cylinder 
axis between the center and the "North Pole" using a traversible probe. Two Hall sensors 
(H3,H4) are fixed to the traversible probe. One (H3) is capable to measure all three compo-
nents (Bx, By, Bz) of the B-field, the other (H4) located at a distance of 135 mm from the first 
one measures By only. The Hall sensors near the equator (H5,H6) are arranged to measure 
the radial component of the field. One of them (H5) also measures the axial component Bz. 
The sensor locations are schematically shown in figure 3.2. 

Figure 3.2: Sketch of the locations of the Hall sensors in the test module at location H3: 
two Hall sensors to measure three field components Bx, By, Bz; location H4: one 
Hall sensor to measure By; location H5: one Hall sensor to measure two com-
ponents Bz and Br, i.e. the radial component; location H6: one Hall sensor to 
measure the radial component Br. 
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Before each measuring campaign of a day the pressure-transducers, the EM-
flowmeters and the Hall sensors were calibrated to assure high measuring accuracy and to 
avoid systematic errors. In particular the flow rate was calibrated before each coherent set of 
measurements. Also the environmental seed magnetic field was repeatedly recorded with the 
traversable Hall sensors for vanishing volumetric flow rates and at intermediate subcritical 
flow rates. Two typical recordings for the mean magnetic field intensities on the module axis 
in the range 0 mm ≤ z ≤ 350 mm are shown in the graphs of figure 3.3a, b for flow rates indi-
cated in the figure captions. The graph shows that the seed magnetic field is subject to varia-
tions during a measuring period. However, the observed variations were always smaller than 
the local intensity of the Earth’s magnetic field.  

 

Figure 3.3: The distribution of the seed magnetic field along the module axis in the range 
0≤ z(mm)≤ 350 recorded at (a) the beginning and (b) the end of a measuring 
campaign. There is a noticeable change in the local characteristic of the 
seed field. Volumetric flow rates CV� = 2,1HV� = 0 m3/h; λ= 0.1m2/s. 
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Furthermore, arrays of mobile compass needles were attached to two vertical wood 
boards, one placed sidewise and one in front of the cylindrical dynamo vessel, in order to get 
a qualitative impression of the structure of the generated magnetic field. By the orientation of 
the compass needles during dynamo action the global structure of the magnetic field could 
be identified. In support to this qualitative instrumentation the normal component of the mag-
netic field with regard to the vertical boards was measured using a carry-on Hall probe in 
some cases. 

The test module was operated generally in two modes. In order to study the onset of 
self-excitation and the saturation of the magnetic field at super-critical conditions, the volu-
metric flow rates in the three loops were scanned up (or down) in flow rate variations 
0.1 ≤ ∆V� (m3/h) ≤ 5 within time intervals of typically between 1 and 10 minutes to assure a new 
hydromagnetic equilibrium, i. e. a saturated dynamo state. The variation of one flow rate was 
performed, while the other helical or central flow rates were kept constant or all flow rates 
were simultaneously varied at the same rate. 

The other operation mode of the test facility is concerned with long term runs at 
constant volumetric flow rates. Time series of signals of the magnetic field intensities, pres-
sure differences, and volumetric flow rates were recorded during time intervals of 1200 up to 
4000 seconds (s). 
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4 Results 

4.1 Self-excitation of the magnetic field 

In our experiments we used time series signals recorded by Hall probes, EM-flow 
meters and pressure-transducers respectively as indicators of dynamo action. Typical time 
signal recordings for the volumetric flow rates in the three loops, the three components of the 
magnetic field at the centre of the module (position H3 in figure 3.2) and the pressure drop in 
the three channel systems of the module are shown in figure 4.1. In this experiment the two 
helical flow rates VH1 and VH2 were simultaneously raised stepwise from subcritical to super-
critical conditions during a period of totally 1600 seconds, while the central flow rate was kept 
constant at CV� =85m3/s or 86m3/h. 

Figure 4.1 Time signal recordings for a) volumetric flow rates; b) pressure losses in the 
helical and central channels; c-d) magnetic field components for an experi-
mental operation with stepwise changing flow rates. 
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The signals of the first 1000 seconds are displayed. The magnetic field components follow 
the stepwise variation of the helical flow rates and achieve a saturation level during each 
time interval without flow rate variation. There is particularly no delay time between the rise 
time of the volumetric flow rate and the one of the magnetic field components. An evaluation 
of the predicted self-organisation time for the large scale magnetic field according to equation 
2.33 gives time scales of less than 0.6s which are much smaller than any realised rise time 
for the pumping power. After 900 seconds of test time the record shows a saturated B-field of 
B ~300G in the centre of the module with strong x- and y-components and a small z-
component. 

In figure 4.2 the stationary states are plotted versus the helical flow rates. This graph 
shows a weak increase for lower and a strong increase for higher flow rates with a tendency 
to reduced growth rates at even higher flow rates. A point of inflection can be recognized in 
the interpolation curve of the measured data points. The onset of dynamo action can not be 
sharply allocated to a particular volumetric flow rate HV� . The observation suggests a smooth 
rather than a sharp bifurcation i.e. imperfect bifurcation of the steady dynamo states from the 
hydrodynamic basic state. To quantify the near critical dynamo conditions it may be sugges-
tive to draw the tangent to the interpolation curve of figure 4.2 in the inflection point and take 
its intersection with the flow rate axis as an indicator for onset of dynamo action. From a 
theoretical point of view this procedure underestimates the onset of dynamo action for the 
ideal case of an infinitesimal small seed magnetic field. In the laboratory there is at least the 
finite Earth’s magnetic field which is first intensified by hydrodynamic stretching before real 
self-amplification occurs. 

Figure 4.2: Magnetic field components Bx and By for saturated steady dynamostates for a 
constant central flow rate CV� = 85m3/h and variable helical flow rates 110 < 

2,1HV� (m3/h) < 130. 

In a similar way as in case of hydrodynamic bifurcation problems of shear flow, the piping 
pressure loss across the module indicates the onset of self-excitation by a significant pres-
sure increase due to the additional magnetohydrodynamic losses. In figure 4.3 the pressure 
differences between inlet and outlet of the three loops at the test module are shown for the 
corresponding steady hydrodynamic and magnetohydrodynamic states. The hydrodynamic 

110 115 120 125 130 
-300 

-200 

-100 

0 

100 

200 

B
 [

G
] 

VH1=VH2    [m3/h]. .

By

By

Bx



Results 

 23

and magnetohydrodynamic flow states can be distinguished by a change in the increment of 
the data sequence. Linear interpolation curves for the hydrodynamic and the magnetohydro-
dynamic losses then define experimentally in a good approximation the bifurcation point for 
this particular test run. Here, we emphasise that the pressure loss measurements in the 
three independent loops result in the same transition value within a margin of ∆ HV�  ≤ 1 m3/h or 
a relative error of 1%. Corresponding test runs were performed and evaluated for other fixed 
central and variable helical flow rates or in some cases vice versa, e. g., for a fixed flow rate 

CV� =105 m3/s (see figure 4.3b). 

a)  b) 

Figure 4.3: Pressure losses in the helical and central piping systems of the test module  
under steady state operation conditions for a) CV� =85 m3/h, 
110< 2,1HV� (m3/h)<130; b) CV� =105 m3/h, 80< 2,1HV� (m3/h)<120. 

 

 
Figure 4.4: The state diagram for dynamo action for the Karlsruhe test module,  pressure 

loss criterium; O tangent criterium. 
 

The evaluation of the pressure losses results in a phase diagram of dynamo action for our 
test module presented in a (
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state transition criterion extracted from this data set using the "tangent-inflection point" crite-
rion, outlined above, is also plotted in figure 4.4 by a line. This line runs parallel to the pres-
sure criterion curve but is shifted by about ∆ HV� ≅2.5m3/h to the hydrodynamic side. The 
measured y-components of all observed steady magnetic fields are displayed in figure 4.5 as 
an interpolated isoline graph. The slight roughness of the isoline surface reflects the limited 
number of experimental data points and insufficient smoothing of the graphic software.  

 

Figure 4.5: Isoline surface of the y-components of the magnetic field measured in the
centre of the module depending on the helical and central volumetric flow
rates CV�  and 2,1HV� . 

4.2 The structure of the magnetic field 

The overall structure of the dynamo fields at clearly supercritical conditions was 
tested by the orientation of an array of compass needles arranged on plane boards which 
were placed vertically sidewise and in front of the cylindrical test vessel. The needles may 
turn in the plane of the board and thus react to the magnetic field components in this plane. A 
photograph of the needle array is shown in figures 4.6a,b. The particular test was performed 
for the volumetric flow rates hmVVV HHc /115 3

21 === ��� . The photo in figure 4.6a shows a set 
of needles of random orientation near the plate centre. Otherwise the orientation of the nee-
dles is towards the periphery of the plate. This indicates a source (or sink) of magnetic field 
lines near a centreline perpendicular to the cylinder axis of the module and suggests a dipole 
structure of the field. This impression is supported by photo 4.6b showing the orientation of 
compass needles at the front side of the module. Two centres of random needle orientation 
are located at a certain distance from the two vertical rims of the plate and slightly below (left 
side) and above (right side) its horizontal centreline.  

..

By [G]
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 (a)       (b) 

Figure 4.6 a.) Array of compass needles arranged on vertical wood boards sidewise of 
the test module and parallel to its axis; b.) in front of the module and perpen-
dicular to its axis. Experimental conditions: hmVC /134 3=� , hmVH /101 3

2,1 =�  
and λ=0.1m2/s. 

Between these centres and towards the plate periphery the needles show an orientation along 
lines of force which are compatible with a quasi-dipole field whose axis penetrate the module 
perpendicular to the cylinder axis and is slightly tilted. This observation is supported by an 
isoline field of the normal components of the magnetic field, which were measured by a carry-
on Gauss meter on the sidewise located board. The isoline plot is shown in figure 4.7. The 
centre of largest field intensity coincides nearly with the area of disorder in the needle array at 
the side board (see figure 4.8b). 

Further insight into the local structure of the magnetic field is gained by the distribution 
of the field components along the cylinder axis obtained by traversing the Hall probe in the 
range 0 ≤ z ≤ 350mm. This distribution is shown in figure 4.8a for the volumetric flow rate condi-
tion hmVVV HHc /115 3

21 === �� . There is only a small Bz-component compared to the Bx and By 
components. The maximum of the field intensity is not achieved in the centre of the module. 
There is rather a small shift of the maximum towards a position z ~ 100mm. The angle of incli-
nation β of the B-field vector to the x-coordinate axis changes in the range 144° ≤  β  ≤  188° 
along the z-axis in the range 0 ≤ z ≤ 350mm. This is shown by the B-vector graph in figure 4.8c. 
The B-field is twisted along the z-axis in the manner of a spiral stair case. At lower supercritical 
volumetric flow rates e.g. hmVVV HHc /110 3

21 === ���  the general behaviour of the B-field on the 
z-axis is the same except that the intensities are reduced. The turning of the B-field vector 
along the z-axis is not significantly affected. This general observation is displayed in figure 
4.8b and d. Here the magnetic field vector turns about the z-axis by 43° from the inner to the 
outer measuring position. The intensity of the B-vector is noticeably reduced. In general, in the 
whole range of tested supercritical flow rates 85 < 1HV� = 2HV� (m3/h ) < 125 and 85 < CV� (m3/h ) < 
140 the measured turning angle of the magnetic field vector along the positive z-axis varied 
only modestly between 40° < β < 45° along the positive z-axis. 

x

z

2r
0 =

1854

x

y

pin wall

50

1350

x

y



Results 

 26

Figure 4.7: Isolines of the normal components of the magnetic field measured in the plane 
of the sidewise arranged vertical wood board for the conditions 

hmVC /134 3=� , hmVH /101 3
2,1 =�  and λ=0.1 m2/s. 

 

Figure 4.8: Distribution of the intensities of the magnetic field components on the module 
axis in the range 0≤ z(mm)≤ 350 mm for equal volumetric flow rate:  
a) == CH VV �� 115 m3/h; b) == CH VV �� 110 m3/h;  variation of the angle of inclina-
tion of the magnetic field relative to the module’s position for  
c) == CH VV �� 115 m3/h; d) == CH VV �� 110 m3/h. 
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4.3 The effect of perturbations by external magnetic fields 

We have tested the effect which an initial external magnetic field, generated by two 
Helmholtz coils, has on the dynamo magnetic field. The two coils are placed on both sides of 
the test module such that they generate an unidirectional magnetic field of quasi-dipole char-
acter penetrating the module perpendicular to its axis. The coils were operated at a DC-
current of 50A and produced a nearly homogeneous magnetic field of about 20G in the mod-
ule area. For tests the power for the coils was switched on or off suddenly. The direction of 
the external magnetic field could be changed by changing the current direction. 

An interesting question is: Can saturated dynamo states of opposite field direction 
be established by a specific perturbation of an active dynamo state with the help of an exter-
nal magnetic field? The experimental procedure for an answer is as follows. A saturated dy-
namo state is first produced starting from the environmental seed field by a controlled scan 
up of flow rates to an intermediate level of dynamo action of, say, 20-30G intensity. Next, by 
switching on the external magnetic field of opposite direction the dynamo field is destabilised 
and in a transient process, lasting between several seconds up to minutes, a new saturated 
dynamo state of opposite field direction settles in together with the still existing external 
magnetic field. If the external field is switched off, a mean magnetic field of the same direc-
tion persists and a new complementary dynamo state is found. Other saturated states be-
longing to the same set can be generated by a suitable scan up or down of flow rates. How-
ever, the magnetic field undergoes a jump-transition to the initial dynamo state with opposite  
direction of the magnetic field, when the volumetric flow rates fall short of a lower bound of 
flow rates. The result of the outlined experimental procedure is displayed in figure 4.9. The 
graph shows for a fixed central flow rate of =CV� 112.5m3/h and variable helical flow rates the 
saturated mean value of y-components of the magnetic field By on a continuous branch and 
the complementary isolated branch of existing stationary dynamo states. Here the field com-
ponent was measured by a Hall probe at the centre of the module (H3, see figure 3.2). This 
experimental observation conforms well with the theory of imperfect bifurcations from a sta-
tionary hydrodynamic state to a stationary magnetohydrodynamic state. The lowest values of 
the volumetric flux for the isolated branch may be identified as a turning point from which a 
branch of unstable i.e. experimentally not realizable states bifurcate for higher flow rates (for 
more details on bifurcation theory see textbooks on hydrodynamic stability e.g. Joss & Jo-
seph (1980)). Tilgner & Busse (2002) and Rädler et al. (2002b) calculated the stationary so-
lutions of this branch ( see figure 2.3). 

Our experiments on supercritical dynamo states with field intensities larger than, 
say, 300G and with perturbations by strong external magnetic fields revealed an unexpected 
effect. The dynamo magnetic field, enhanced by the temporary presence of the external field, 
may noticeably influence the environmental magnetic seed field which determines the initial 
conditions for the onset of dynamo action for each sequence of stepwise rising flow rates. It 
so happened that, after an up-scan along a continuous branch of states and a termination of 
the test series at high field intensities, a subsequent test series, starting again from low sub-
critical flow rates, resulted in magnetic saturation fields of opposite direction on a continuous 
branch. A typical example is shown in figure 4.10 in form of another bifurcation graph for the 
By-component. The graph shows the continuous and the isolated branch of states. 
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Figure 4.9: The stationary dynamo states at supercritical conditions represented by the 
measured local By-component. The graph shows two sequences of stationary 
states, one set on a continuous branch and another set on an isolated branch. 
The return jump from the isolated branch to the continuous branch is indicated 
by the symbol . Parameter range: CV� =112 m3/h, 92< 2,1HV� (m3/h)<110. 

 

Figure 4.10: Stationary dynamo states on a continuous and an isolated branch of a bifurca-
tion graph, however, compared to figure 4.9 the branches are reversed due to 
a modification of the environmental seed magnetic field by the dynamo mag-
netic field of the preceding experiment. Parameter range: CV� =112 m3/h, 98 < 

2,1HV� (m3/h) < 113. 
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The character of the complementary isolated branch could only be assured in a test series, if 
the transitions from the continuous to the isolated branch and reverse are triggered by an 
external perturbation at an intermediate intensity level of the dynamo and the external mag-
netic field, say in the range 50 ≤ B (G ) ≤ 200. If a transition is enforced at high intensity lev-
els of dynamo action (B > 300 G) the complementary dynamo states of opposite direction 
can be scanned down in a continuous manner to vanishing field intensities. This is demon-
strated in figure 4.11. More details are given in the graph and the figure caption. The expla-
nation of this behaviour has to be associated with the impact of high intensity magnetic fields 
on the steel structures of the laboratory building. Indeed, although the seed magnetic field 
level proved to be always of the order of the Earth’s magnetic field, i.e. BE ~ 0.5G, meas-
urements done with a carry-on Gauss meter show that the orientation of the seed magnetic 
field near the dynamo module is nearly perpendicular to the orientation of the Earth’s mag-
netic field measured outside the building. 

Figure 4.11: Stationary dynamo states continuously connected to hydrodynamic states for 
both directions of the magnetic field. The states were obtained in a monotonic 
up- and down-scan with a switch over to the other branch at high magnetic 
field intensities. It is suggested that the change of the field direction at high 
field intensity modifies the environmental seed field by changing the remanent 
week ferromagnetism in the steel structures of the laboratory building. Pa-
rameter range: CV� =115m3/h, 89< 2,1HV� (m3/h)<130. 

Moreover, measurements of the seed magnetic field along the module axis by trav-
ersing the Hall probe show a distinct but small change for the measured data before and 
after dynamo tests. This can be seen in figures 3.3a,b and 4.12a,b. This observation sup-
ports our conjecture that dynamo action of high enough intensity may modify the seed field 
and thus result in different saturated solutions. 
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Figure 4.12: The measured seed magnetic field at low sub-critical volumetric flow rates 
== cH VV �� 77.5 m3/h before (a) and after (b) a measuring campaign with dynamo 

action of high intensity, i. e. B ∼O(400 G). 

4.4 The effect of non-symmetric helical flow rates 

The dynamo test facility can be operated with different flow rates in the three inde-
pendent channel systems of the test module. We investigated the influence of a non-
symmetric velocity distribution on the structure of the dynamo magnetic field by feeding, e.g., 
one helical loop with a flow rate 1HV� = 85 m3/h and the second helical loop with 2HV� = 115 m3/h 
and vice versa at a constant flow rate of cV� = 128 m3/h in the central loop. The change in the 
magnetic field structure was qualitatively checked by the orientation of the compass needle 
array on the side board and the recordings of the traversable Hall probes. Figure 4.13 shows 
the distribution of intensities of the field components along the semi-axis of the module. 
Three situations are displayed by the graphs in figure 4.13: the distribution (a) for equal heli-
cal flow rates == 21 HH VV �� 100m3/h, (b) for non equal helical flow rates 1HV� =85 m3/h, 

2HV� =115 m3/h and for the complementary case (c) 1HV� =115 m3/h, 2HV� =85 m3/h. The first ob-
servation is, that even significantly different  flow rates lead to steady mean fields. There is 
an obvious tendency that the intensities of the x- and y-components of the magnetic field for 
the non-symmetric flow rates are larger than for the symmetric case. i.e. equal helical flow 
rates. Moreover, the non-symmetric cases do not achieve the same intensity values. The 
case for 1HV�  =115 m3/h, 2HV� =85 m3/h shows significantly higher intensities compared to the 
case 1HV� =85 m3/h, 2HV� =115 m3/h. The reason for this is not clear. It is conjectured, that this 
effect is caused by certain structural non-symmetries in the module such as the particularities 
of the feeding piping system connected to the module and inhomogeneities of the seed mag-
netic field due to the steel structures of the laboratory building. The main difference com-
pared to the flow situation with equal helical flow rates is the largely enhanced z-components 
of the magnetic field shown in figure 4.13b,c. Depending on the shift of the helical flow rates 
from the reference case positive or negative field components Bz  occur. This indicates that 
the axis of the reference magnetic field  B inclined to one or the other direction of the module 
axis. 
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Figure 4.13: Distribution of the magnetic field components along the axis of the module in 
the range 0 ≤ z ≤ 350 mm for symmetric and non-symmetric flow distributions. 
(a) == 21 HH VV �� 100 m3/h, CV� =128 m3/h; (b) 1HV� =85 m3/h, 2HV� =115 m3/h, 

CV� =128 m3/h; (c) 1HV� =115 m3/h, 2HV� =85 m3/h, CV� =128 m3/h.  
 Legend: ∆ → Bx, →By, O→Bz. 

4.5 Temporal features of saturated dynamo states 

The saturated dynamo states are steady in the time average, but, fluctuate about a 
mean value of the magnetic field. For characterizing these turbulent fluctuations long term 
recordings of the magnetic field components (Bx, By, Bz) of a duration between 1200s up to 
4800s were taken using the Hall probes. A listing of all combinations of flow rates of long term 
recordings is displayed in figure 4.14. A typical recording for volumetric flow rates 

=== 21 HHc VVV ��� 115 m3/h is shown in figure 4.15a. An extended intersection is shown in fig-
ure 4.15b. From the time signal of figure 4.15b two quasi-periodic features can be recog-
nized. There are fluctuating events of a frequency of about 3 Hz and 35 Hz. 
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Figure 4.14: Combinations of volumetric flow rates of long time signal recording experiments. 
 

Figure 4.15: Typical time signals of the volumetric flow rate and two components of the 
magnetic field (By, Bz) recorded by the Hall-probe H3 for constant volumetric 
flow rates == 2,1HC VV �� 115 m3/h at z=0. (a) time interval 20s; (b) time interval 2s. 
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We shall identify these frequencies in the power density spectra (PDS) later. The qual-
ity of the fluctuations may be judged from the probability density function (PDF) and the first 
three moments, the square root of the variance (RMS), the skewness and flatness. Figure 
4.16 shows a typical PDF-function for the recording in figure 4.15. 

Figure 4.16: Probability density function (PDF) of the time signals of the volumetric flow 
rate and the two components of the magnetic field (By, Bz) of the Hall-probe H3 
for constant volumetric flow rates == 2,1HC VV �� 115 m3/h at  z=0.  

The associated higher moments of the component of the magnetic field By are shown in fig-
ure 4.17 for a recording period of 1000 s. The moments in this figure were evaluated for peri-
ods of 10s and for signal recording rates of 512 Hz. The characteristic features are the quasi-
Gaussian PDF with a vanishing skewness, a constant flatness of 2.5 and a constant RMS 
value by*=0.58G. The latter has to be compared with the mean value By=260G  which gives a 
small relative fluctuation level of about 0.25 %. It has been observed, that this level is larger 
for the z-component Bz and for all components near the onset of self-excitation. Thus, the 
graph 4.17 indicates that characteristic turbulence properties are constant at saturation. 
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Figure 4.17: The square root of the variance (RMS), skewness and flatness values of time 
signal By(0,0,0,t) of Hall-Probe H3 at z=0 for the flow rates CV� = 2,1HV� =115 m3/h. 

Figure 4.18: The square root of the variance (RMS values) and the associated mean val-
ues for the time signals of Bx, By, Bz as a function of the flow rates. (a) RMS-
values; (b) the associated mean values. 
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RMS values were also evaluated for other lower and equal flow rates 
( CHH VVV ��� == 21 ). They are shown in figure 4.18 together with the associated mean values of 
the magnetic field. The tendency towards a sub-linear increase of the RMS values of Bx, By, Bz 
for higher flow rates in graph 4.18a is significantly stronger than that of the mean values in 
graph 4.18b. In particular By and Bz seem to achieve saturation levels for V� >112m3/h. This 
feature can be quantified by normalising the RMS value by the corresponding mean values. 
The normalised RMS values clearly decrease with increasing flow rates. From this observa-
tion we may conjecture, that the increasing intensity of the mean magnetic field limits the 
growth rate of the turbulent fluctuations of the field. 

Further insight into the character of the fluctuations is gained by considering their 
power spectral density (PDS). Spectra for y- and z-components of the magnetic field for five 
choices with equal volumetric flow rates V� = 95 m3/h, 102 m3/h, 106 m3/h, 110 m3/h and 115 m3/h 
are displayed in figure 4.19a and b. Spectra for the y-component for the fixed flowrate 2,1HV� = 
100 m3/h and for five variable central volumetric flow rates CV� = 106 m3/h, 116 m3/h, 120 m3/h, 
125 m3/h and 136 m3/h are displayed in figure 4.19c. The spectra were obtained from long time 
Hall probe recordings in the centre of the module (probe position H3, see figure 3.2). We 
consider figure 4.19a. According to our criterion for onset of self-excitation, as sketched in 
figure 4.4, the flow rate V� =102 m3/h is sub-critical and the flow rates V� =110 m3/h and 115m3/h 
are supercritical. The spectra of the two super-critical states show the following characteristic 
features: the spectra exhibit three distinct ranges of power distribution, a lower frequency 
range 0.1 <  f(Hz) < 3 with nearly constant power for the Bz -fluctuations and a dependence on 
the frequency like  ∼ f  -1 for the By-fluctuations.In the range 3 < f(Hz )< 20 the spectral power 
decays nearly as ∼ f -3 and beyond this range the power decays even more rapidly in particu-
lar for the higher flow rate V� =115m3/h nearly as ∼ f –5 or even more strongly4. The transition 
from the first to the second range is distinctly marked by a cut-off frequency in the spectrum 
of the Bz-component and a broad but distinct power peak in the By-power spectrum. The cen-
tre of this power peak shifts to lower frequencies for lower supercritical flow rates. It becomes 
broader and less pronounced and disappears completely when critical conditions are ap-
proached. In our specific case the power peak frequency reduces from 2.7Hz to about 1.2Hz. 
A similar effect is seen in figure 4.19c for volume flow rates == 11 HH VV �� 100m3/h and variable 
106 ≤ ]/[ 3 hmVC

�  ≤ 136. We shall return to this observation later in the general discussions. 
For the sub-critical case a broad band spectrum without particular features in the By spectra 
but with some indication for a cut off-frequency in the Bz spectrum is observed. These obser-
vations for a test sequence of equal volumetric flow rates have been confirmed for other su-
percritical tests listed in figure 4.14. We conducted also some experiments at sub-critical 
volumetric flow rates under the influence of an external magnetic field of about 20G gener-
ated by the Helmholtz coils. The typical results for the power spectral density of the magnetic 
field fluctuations is shown in figure 4.19a for equal flow rates === CHH VVV ���

21 95m3/h. The 
power spectrum is comparable with the spectrum for volumetric flow rate 

=== CHH VVV ���
21 102m3/h but without external magnetic field. As a further example the spectra 

of the field components Bx, By, Bz for the volumetric flow rates CV� =105m3/h, 2,1HV�  =120m3/h 

                                                

4 The power spikes in the spectrum for higher frequencies f>30 Hz are associated with experimental 
noise originating from the general power supply for the test rig by the 50 Hz AC grid and the 30 Hz 
tyristor controlled power supply for the MHD-pumps. 
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and the flow rates CV� =115m3/h, 2,1HV� =105 m3/h are presented in figure 4.20.The first example 
is in the distinctly super critical regime, the second one is also in a supercritical state but 
close to the margin of self-excitation. 

Figure 4.19: Power spectral density (PSD) for the components Bx, By, Bz for five different 
volumetric flow rates of operation at the position z=0 of Hall-probe H3. (a) PSD 
for the By-component for five equal volumetric flow rates V� =95, 102, 106, 111 
and 115m3/h; (b) PSD for the Bz-component for five equal volumetric flow rates 
V� = 95, 102, 106, 111 and 115m3/h; (c) PSD for the By-component for 

== 21 HH VV �� 100m3/h and for five central volumetric flow rates =CV�  106, 116, 

120, 125 and 136m3/h. 
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Aside from the long time recordings in the centre of the module, measurements were 
also performed on the module axis in the range 0 ≤ z(mm) ≤ 350 in five equidistant positions. 
Complementary to the previous spectra of the centre position we present in figure 4.21 some 
power spectra of the components By and Bz evaluated from signal recordings at the locations 
z=0, 85, 175, 350 mm for the case of equal volumetric flow rates V� =115 m3/h. The spectra of 
Bz–component at z=175 mm and z=350 mm exhibit a broad band behaviour with the same dis-
tinct ranges of power decrease as in the previously discussed cases namely as ∼ f -1 in the 
range f ≤ 2Hz, in the range 2 ≤ f ≤ 30Hz as ∼ f -3 and less than ∼ f -5 in the range f  > 30 Hz. The 
spectra of the By–component reveals the characteristic power peak in the range f ∼ 2-3 Hz 
and for positions z < 170 mm. However, the power peak broadens and decreases with grow-
ing distance from the centre and disappears in the spectrum near the boundary of the mod-
ule i.e. at z = 350  mm. Simultaneously the characteristic power ranges get blurred. This be-
haviour is attributed to the decrease of the mean magnetic field intensity with increasing dis-
tance from the centre. 

Figure 4.20: Power spectral density functions for the components Bx, By, Bz for two different 
volumetric flow rates of operation. (a) CV� =105m3/h, 2,1HV� =120m3/h; (b) 

CV� =115m3/h, 2,1HV� =105m3/h. 
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Figure 4.21: Power spectral density (PSD) of the components By, Bx, Bz of Hall-probe H3 
for volumetric flow rates 2,1HC VV �� = =115m3/h and at the positions X

�
=(0, 0, 

0mm), Χ =(0, 0, 87.5mm), Χ =(0,0,175 mm), Χ = (0, 0, 350 mm). (a) By ; 
(b) Bx and (c) Bz. 

Dynamic regularities of the magnetic field can also be identified by evaluating auto- 
correlation (ACF) and cross-correlation functions (CCF) of the time signals. In particular 
cross-correlation functions (CCF) may serve as a tool to detect the spatial coherency of time 
signals recorded at different locations. Such CCF’s have been evaluated from Hall probe 
signal recordings. Typical sets of CCF’s for time series of By-signals from the Hall probes H3 
and H4 are displayed in figures 4.22a, b, c for the volumetric flow rate combination CV� = 

HV� 1,2= 115m3/h. Each figure shows five CCF graphs associated with five different positions of 
the two probes as they are simultaneously traversed along the module axis at a constant 
distance from each other. The set of CCF’s is presented in different time intervals ranging 
from –400 < τ(s) < 400 in figure 4.22a to –4 < τ(s) < 4 in figure 4.22c. 

All CCF’s exhibit two characteristic features: 1) a base caused by correlated low fre-
quency events, 2) a narrow band peak of highly correlated high frequency fluctuations. The 
first feature can be identified in all CCF graphs of figure 4.22a as a peaky bulge at location 
τ = 0 which is large and positive at the outermost position of the two probes (H4 at 
z = 215 mm, H3 at z = 350 mm) and small and even negative at the innermost position (H4 at 
z = -135 mm, H3 at z = 0 mm). The transition from the negative to the positive correlation peak 
at z = 0 mm can be explained by the traversing of the two probes through a By-field with a 
maximum near the position z ≈ -0 mm (see figure 4.8b) and a varying gradient. Accordingly 
the low frequency time signals of the two probes may be in phase or in opposite phase re-
sulting in a positive and negative “pointed cap” peak of the correlation curve. 
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The time scale of the low frequency correlation base may be estimated by the intersection of 
the tangent line to the cap peak with the abscissa as indicated in figure 4.22a (By3: z = 
265.5mm, By4: z = 127.5mm). The estimate is τ ≈ 50–100s which corresponds to a low frequency 
event of  f ≈ 0.02–0.01Hz. 

Figure 4.22: Cross-correlation function (CCF) obtained from By-recordings of Hall probes 
H3 and H4 at different positions on the module axis in the range 
-135< zH4(mm)< 365, 0< zH3(mm)< 350; displayed time intervals. 
(a) –200 < τ(s) < 200; (b) –20 < τ(s) < 20; (c) –5 < τ(s) < 5. Experimental con-

dition: 2,1HC VV �� = =115m3/h, λ=0.1m2/s. 

The other feature, the narrow band oscillatory behaviour of the CCF near τ =0s  
(which is particularly pronounced for Hall probe locations near the centre of the module) is 
well recognized in figure 4.22b. The character of the CCF’s in the near centre range reflects 
the properties of the power density spectra near their power peaks (see figure 4.19 and 
4.20). The frequency of the power peak is directly related to the oscillatory period in the CCF 
(e. g. for By3: z = 0mm, By4:  z= -135mm one reads in figure 4.22c the value τ ≈ 0.3s and corre-
spondingly in figure 4.19 the value f ≈ 2.8Hz). The band width of the power peak in figure 4.19 
is correlated to the decay time scale of the corresponding CCF. It may be assessed as ∆f ≈ 
1s. The associated decay time scale (indicated in figure 4.22) is τ ≈ 1–2s. (For more general 
information on signal analysis see e. g. Bendat & Piersol (1986)). In principle the CCF’s 
should also indicate a transit time of wave-like events passing in a more or less regular time 
sequence the spatially separated probes. Indeed, for the measurements near the module 
centre a very small signal transit time of ∆τ ≈ 0.1s between the positions  z = 0mm and z = -
135 mm may be conjectured. However, so far the evaluated CCF’s did not give unbiased re-
sults for a delay time in the whole range of oscillatory behaviour of the CCF near τ = 0s. A 
more precise evaluation of transit times would require new Hall probe measurements with 
higher temporal resolution and variable spacing between the traversable sensors.
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Cross-correlation measurements between Hall probes at large distance, i. e. between 
positions H5 or H6 and H3 or H4 have shown only week correlation of about 10% in a very low 
frequency range f < 0.03Hz. In all evaluated cases no delay time could be observed. This indi-
cates that the low frequency events occurred at both measuring positions simultaneously. A 
typical CCF for this kind of correlation measurement is shown in Figure 4.23. 

 
Figure 4.23: Cross-correlation function (CCF) obtained from signal recordings of Hall probes 

at positions H3 and H6. Experimental condition: 2,1HC VV �� = = 115 m3/h, 
λ= 0.1m2/s. 
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5 Discussions 

In order to facilitate the discussions we have evaluated relevant magnetohydrody-
namic parameters for some characteristic experimental conditions. Such parameters are the 
fluid flow Reynolds number Re and the magnetic Reynolds number Rm, the Hartmann num-
ber Ha, the interaction parameter N, the injected mechanical helicity HV and the mean dissi-
pation rate ε. The quantities are defined by the following relationships: 

 Re ,,
λν

H
m

H du
R

du ⋅
=

⋅
=  Reynolds numbers; 

 2

1






=
ρν
σ

HdBHa  Hartmann number, 

 
u

dB
N H

ρ
σ 2

=  Interaction parameter, 

 ∫ ×∇⋅=
V

V dV
V

H ))((
1

 helicity (see equation 2.31) 

 ∑
=

⋅

∆=
3

1

.1

i

ii pV
M

ε  specific dissipation 

Here  is the mean velocity in the helical or central channels, dH their hydraulic diameter, B  
a measured local mean intensity B  of the magnetic field. For B  we shall use the measured 
mean field intensity at the module centre (position H3). The helicity may be evaluated, if sim-
plifying assumptions are made for the velocity distributions in the channels. We assume that 
a quasi rigid body rotation prevails in the helical channels and plug flow in the central chan-
nel. The angular velocity of the helical flow and the helicity of the total channel flow are then 
defined as 

  ααα
2sin,cos

cos 2

r

u
H

r

u

rF

V HVH

H

H =≈
⋅

⋅
≈

�
, (6.2) 

where HF  is the cross-section of the helical channel, r  its mean radius and α accounts for 
the helix pitch ( −⋅= − hrharctg ,))2(( 1πα helical pitch). The total specific dissipation is 
evaluated using the measured volumetric flow rates iV�  in the helical and central channels, 
the associated measured pressure losses ∆pi and the total fluid mass M contained in the 
channel systems. Alfvén velocities based on the measured magnetic field intensity at location 
H3 are also listed in table 1. The parameters were evaluated for experimental conditions of 
equal volumetric flow rates in the helical and central channels, i.e. CHH VVV ��� == 21 , and are 
listed in table 1.The data of the table show that the realized volumetric flow rates correspond 
to high Reynolds numbers on the one side but result in low magnetic Reynolds number on 
the other side. In figure 5.1 the phase diagram for dynamo action is once more displayed as 
a function of magnetic Reynolds numbers for the helical and central flow. In the supercritical 
range the dynamo may be characterized by the two magnetohydrodynamic groups, the 
Hartmann number Ha and the Interaction parameter N. It is seen in the table that the Hart-
mann numbers can take on a considerable size of about Ha = 500 at the highest supercritical 
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flow rates and still have values of Ha = 20 at near critical conditions. It is well known from 
Hartmann channel flow that the fluid dynamic velocity profile is subjected to significant de-
formation by Lorentz forces at Hartmann numbers of the order Ha=20. At Hartmann numbers 
of several hundred channel flow is generally strongly influenced by the Hartmann layers at 
the channel walls. This is certainly the case in the channel system of the dynamo module at 
supercritical saturated dynamo states. The significant increase in the pressure drop is an 
obvious sign of retardation of the velocity by Lorentz forces and dissipative Joule losses. 
Moreover it is to be expected that turbulent fluctuations in the high Reynolds number channel 
flow are strongly damped by the dynamo magnetic field according to its intensity distribution 
in the module. This conjecture is supported by the size of the interaction parameter N of or-
der one at the higher volumetric flow rates (see section 2.5). As the interaction parameter is 
a measure for the ratio of the Joule dissipation time of a vortex of the size of the channel 
diameter and the vortex turn-around time, even the largest possible fluctuations experience a 
significant Joule damping. The dissipative destruction of smaller vortices is certainly stronger. 
Thus, a tendency to partial relaminarisation of the channel flow may be expected. 

Figure 5.1: The phase diagram of the Karlsruhe dynamo experiment as a function of the 
helical and central Reynolds numbers RmH and RmC respectively. 

The self-excitation of the dynamo has been defined in section 4.1 according to ex-
perimental criteria. These findings have been confirmed by model calculations of Tilgner 
(2002) and Rädler et al. (2002a). Figure 5.2 shows for comparison the experimental data and 
the calculated curves of Tilgner (2002) in the dynamo phase diagram. In Tilgner’s calcula-
tions an effective magnetic diffusivity λeff has been used, which accounts for a correction of 
molecular magnetic diffusivity λ by about 10% due to turbulent motion. He also tested the 
sensitivity of the marginal states with regard to slight variations of the geometry of the dy-
namo module (the aspect ratio). The agreement between experiment and model calculation 
is good. Similar results have been obtained by Rädler et al. (2002a, see their figure 16). 
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Figure 5.2: Phase diagram for dynamo action in the Karlsruhe dynamo experiment as a 
function of the different flow rates. Comparison between experiment and 
model calculations of Tilgner (2002). The continuous line corresponds to a 
magnetic diffusivity λ=0.1m2/s and an aspect ratio d/r0=1.2. The dashed line 
is for λ = 0.11m2/s and d/r0=1. The dashed-dotted lines show results for 
d/r0=1,  different magnetic diffusivities λ=0.11m2/s (a), λ=0.115 m2/s (c) and 
a slightly modified velocity profile. 

The overall structure of the observed magnetic field mode, as displayed in the fig-
ures 4.6 and 4.7, is in good agreement with the predictions of the model theories of Tilgner 
(1997, 2002) and Rädler et al. (2002). Both model theories predict a quasi-dipolar magnetic 
field of the mode type m=1 as realized in the experiment. Indeed, Tilgner & Busse (2002) 
calculate an isoline magnetic field which conforms with the measured isoline field of figure 
4.7. There are, however, discrepancies between theoretical predictions and measurements 
concerning the local structure of the magnetic field. For equal helical volumetric flow rates 
the theory gives for positions along the cylinder axis a twisting of the radial magnetic field 
vectors of an angle π. The experimental measurements indicate an angle of π/2 only, as is 
seen from figure 4.8d. Another striking observation is the deviation of the measured distribu-
tion of the magnetic field components on the module axis. Although the measurements were 
taken only on the semi-axis 0 < z(mm) < 350 there are qualitative deviations from the symme-
tries predicted by theory. This is seen from figure 5.3 which is a reproduction of the figure 6 
of Rädler et al. (2002a) in which the experimental findings of figure 4.8a are roughly 
sketched. It is yet unclear, what causes this non-symmetric behaviour of the dynamo mag-
netic field. On the other hand, non-symmetric magnetic properties may be induced by kine-
matic means, i.e. by operating the test module with different helical flow rates as shown in 
figures 4.13a, b, c. The main effect is here the occurrence of a significant z-component of the 
magnetic field. It is not obvious in which way these controlled non-symmetries interfere with 
the inherent ones of the test module and its environment to form the actual observations. 
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Figure 5.3: The calculated distribution of the B-field components on the module axis 
(x=y=0mm) after Rädler et al. (2002a), displayed as continuous lines for the flow 
rates 2,1HC VV �� = =115m3/h, λ=0.1m2/s. The experimental results correspond to 
figure 4.8 and are denoted by symbols  and O. 

 The weakly non-linear behaviour of the Karlsruhe dynamo in the supercritical regime 
is best characterised as an imperfect bifurcation of the magnetohydrodynamic state from a 
pure hydrodynamic state of helical channel flow. Although the kind of bifurcation has been 
identified from local field measurements only (see figures 4.9, 4.10, 4.11) one may conclude 
that a spatially averaged intensity of the magnetic field would show the same behaviour. The 
experimental results suggest that the smooth transition from the non-magnetic to a magnetic 
state is determined by the initial distribution of the seed field and, moreover, that this initial 
condition is subjected to changes depending on the intensity and duration of the action of the 
dynamo magnetic field on the structural environment of the test module. There is yet another 
permanent feature of the magnetic field generated by this test module. The intensity of the 
magnetic field component By is stronger at high supercritical conditions, if its orientation is in 
the negative y-direction. This again indicates a systematic structural non-symmetry of the test 
facility. 

 Tilgner and Busse (2002a) and Rädler et al. (2002b) have developed models to de-
scribe dynamo action in the slightly trans-critical regime. They find an imperfect bifurcation 
for the transition to dynamo action depending on the orientation of a initial seed field and thus 
confirm the overall observation. There is however a quantitative difference between the pre-
dicted and the measured intensities of the isolated branch. As a demonstration we reproduce 
here figure 9 of Rädler et al. (2002b) as figure 5.4. 
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Figure 5.4: The magnetic field component By at the centre of the test module as a function 
of equal helical volumetric flow rates 2,1HV�  for a fixed central flow rate 

CV� =112m3/h. The symbol ���������	��
������
��������
�	���	��	��
�	���������
figure 4.10. The continuous and the dashed lines are solutions for this pa-
rameter set obtained by Rädler et al. (2002b). They employed “Mean Field” 
Methods in their calculations. 

The experimental data correspond to those in figure 4.10. The calculations of Rädler et al. 
are based on a “Mean Field” approach. Tilgner & Busse (2002a) arrive at equivalent results 
using spectral numerical and low order analytical methods. Their results are displayed to-
gether with the data of figure 4.9 in figure 5.5. The latter procedure is briefly outlined in sec-
tion 2.3. Furthermore, the model equations 2.8 and 2.9 suggest that the saturation of the 
magnetic field to a steady state is achieved by a reduction of the 	�
��
��	��������

��������� �- 

B 2 )  caused by the action of Lorentz forces which is reflected in the term 
2

Bβ  of equa-
tion 2.8.  

In general it can be stated that the theoretical predictions based on independent 
mathematical procedures are in fair agreement with the observations and measurements, 
except for certain not represented structural non-symmetries of the test module and except 
for some differences between the local measurements of the field intensity and the calcu-
lated values for the mean field. This is not surprising, as the calculations are based on a 
smoothing approximation using small scale spatial averaging. 

The Gaussian character of the probability distribution of the fluctuations of the volu-
metric flow rate and the magnetic field components in figure 4.16 suggests that the turbulent 
hydromagnetic processes may be locally quasi-isotropic. This is corroborated by the vanish-
ing skewness factor and a flatness factor of 2.5 which is close to the Gaussian value 3. Com-
pared to the intensity of the mean magnetic field, the intensities of the fluctuations, measured 
by the RMS value, are small of the order less than 1% and, moreover, the relative level 
seems to decrease for growing mean field intensity (see figure 4.18). This indicates the 
higher Joule dissipative damping rates for the small scale hydromagnetic turbulence. 
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Figure 5.5: The magnetic field component By at the centre of the test module as a function 
of equal helical volumetric flow rates 2,1HV�  for a fixed central flow rate 

CV� =112m3/h. The circles indicate the experimental results as presented in figure 
4.9. The continuous and the dashed lines are solutions of the model equations 
2.9 with Rm replaced by 2,1HV�  and Vcrit=102m3/h, B0=-0.5G and c/β=9×103G2h/m3 
according to Tilgner & Busse (2002). 

The power spectra of the magnetic field fluctuations, displayed in figures 4.19-4.22 
exhibit the following general features: The power level increases in the whole spectral range 
with increasing intensity of the local mean magnetic field. The lower frequency range f < 
0.1Hz in the PSD seems to approach a saturation level for the most intensive dynamo states 
which is particularly obvious for the Bz-component. For active dynamo states of more than 
about 50G the PSD of the By-components show a pronounced broad peak whose centre fre-
quency fp increases with the increasing intensity of the local mean magnetic field. It varies for 
our experimental conditions roughly in the range 1 < f(Hz) < 3 (see figures 4.19). The other 
two field components do not show a similarly marked power peak. However, the Bz-
component indicates a cut off frequency in the same range 1 < f(Hz ) < 3 which separates the 
saturated power range from the range of decaying power. The functional character of the 
power spectra may be discussed in the light of spectral models for magnetohydrodynamic 
turbulence and dynamo theory. As outlined in section 4.5 we may roughly distinguish three 
characteristic functional ranges in the power spectra of the By-component for strong dynamo 
action, the low frequency range f < fp with PSD ∼ f -1 behaviour, the range f > fp with PSD ∼ f -3 
dependence and a high frequency range f ≥ 20Hz with PSD ∼ f -5. There seems to exist a con-
stant saturation level for frequencies f < 0.1Hz for the most intensive dynamo states (see fig-
ure 4.19a). The functional relationships for the different ranges are suggested based on the 
outline of relevant spectral models for MHD-turbulence in the literature. The PSD ∼ f -1 rela-
tionship in the low frequency range seems to support the theoretical findings of Pouquet et al 
(1976), indicating a reverse energy cascade for a dynamo driven by a helicity injection into 
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the system at a particular frequency (in their terminology wave number). The spectral decay 
of the intensity in the frequency range f > fp may be attributed to a non dissipative forward 
cascading process of energy by non-local Alfvèn waves, as proposed by Grapin (1983), 
which would result in decay functions PSD ∼ f –m,  m > 3/2 (see equation 2.20 and 2.21, 2.20). 
It may also reflect the structural reorganisation of the kinetic turbulence under the influence 
of the dynamo magnetic field with the side effect of significant Joule damping as suggested 
by Alemany et al. (1979) (see section 2.5). 

The high Hartmann numbers as well as the size of the interaction parameter N of 
order one for intensive dynamo action suggests for the high frequency range that the decay is 
predominantly governed by Joule dissipation in Hartmann layers and in the bulk by current 
circuits in the free eddies of the turbulent flow. The bounding frequency fK beyond which 
Joule dissipation would dominate the spectral distribution is given by the Kolmogorov Joule 
dissipation time scale defined in equation 2.18 in section 2.5. This is evaluated in table 1 for 
two cases. It varies roughly between 10 and 15 in experiments of significant dynamo action.5 
Thus, the spectral decay of the magnetic field fluctuations should vary in the frequency range 
f > fK between PSD ∼ f –11/3 and PSD ∼ f -5 depending on the spectral energy distribution of the 
turbulent velocity fields which may be of the order VE  ∼ f –5/3 or V

rE ∼ f –3 (see equation 2.19 
and 2.25 section 2.5). The experimental observation according to figures 4.19a,b,c is that 
there is certainly a decrease in the power for frequencies f > 20Hz  which may be described 
by rates –5 < m <  –11/3. 

It may be conjectured that the peaks in the power spectra of intensive dynamo ac-
tion may correlate to the injection frequency of helicity into the dynamo module. This injection 
frequency is roughly defined by equation 6.2. However, the evaluation of these frequencies 
for the typical experiments listed in table 1 gives values between 4.2 <  fin(Hz ) < 4.7 (favour-
able evaluation). This is on the one hand a frequency range which is about twice as high as 
the observed frequency band of the power peaks ranging between 0.7 <  f(Hz) < 3 ( cf. figure 
4.19a,c ) and on the other hand the experimental range of the injection frequency is consid-
erably smaller, as its variation depends essentially on the experimentally realised volumetric 
flow rates. Thus, a scaling of the power peak frequency with the helicity injection frequency 
seems to be inadequate. A more suitable time scale for the frequency associated with the 
power peaks seems to be the transit time of an Alfvén wave along the structural wave 
lengths of the module which is L=2a. The corresponding frequency scale is aVf aA 2/≈ . In 
table 1 these frequencies are evaluated for three relevant cases. The frequencies of the 
power peaks in the spectra agree fairly well with the reciprocal transit times of the Alfvén 
waves along the characteristic structural length scale. An equivalent result has been ob-
tained by evaluating the location of power peaks in figure 4.19c. It may therefore be conjec-
tured that the power peaks in the power density spectra reflect a resonant interaction of 
Alfvén waves with wave lengths comparable to the small structural length scale a of the mod-
ule. This conjecture is supported by the cross-correlation measurements (see figures 4.22, 
4.23) which show that the high frequency signals are strongly correlated at short distances of 

                                                

5 The corresponding Kolmogorov length scale has also been evaluated for the considered cases. It 
varies in the range  0,08 – 0,105m and is thus of the order of the hydraulic diameters of the channels 
of the vortex generators (see Table 1). 
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tances of two Hall probes, but are uncorrelated at distances of the module’s dimension. 
Moreover, the correlation function for the high frequency signals indicate a delay time, while 
the low frequency correlations for large distances of the probes do not. This is not surprising 
in the light of the theory or Alfvén waves as outlined in section 2.4. Even for the most inten-
sive dynamo actions in our experiments Alfvén waves are dampened in liquid sodium on 
length scales of about 0.1 to 0.4 m. 6 

                                                

6 It may be questioned, whether the oscillatory features of the magnetic field should be associated to 
the phenomena of linear Alfven wave propagation, as these waves are strongly dampened in liquid 
sodium. However, at supercritical conditions there is the possibility of non-linear interactions of damp-
ened waves which may lead to sustained finite amplitude waves. In this context Grapin et al.(1983) 
speak of ‘Alfvenic fluctuations’. 
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6 Conclusions and perspectives 

 The Karlsruhe dynamo experiment has demonstrated that a permanent magnetic 
field of considerable intensity can be spontaneously generated by a regular arrangement of 
stationary vortices in a conducting fluid. The saturation of the magnetic field is achieved by 
the feed back of the magnetic field on the velocity distribution. This is suggested by the dy-
namo model of Tilgner & Busse (2002) as well as that of Rädler et al. (2002b) which are well 
supported by the experimental findings. Another characteristic property of the dynamo mag-
netic field are the turbulent fluctuations of the field intensity about its mean value. Although it 
may be conjectured that these fluctuations correlate with the velocity fluctuations of the tur-
bulent channel flow, direct measurements could not yet be performed, as velocity measure-
ments, in particular velocity fluctuation measurements, in liquid metal flow are difficult and 
tedious. Further experiments with an adequate instrumentation for velocity measurements 
should corroborate this conjecture and also confirm the feedback of the dynamo magnetic 
field on the mean velocity. 

 There is yet another deficiency concerning the magnetic field measurements. The 
Hall probes provide only information on the local field intensity. For the overall assessment of 
the generated magnetic energy an integral measurement of the magnetic field would be 
more appropriate. Three induction coils penetrating the dynamo axis and closing along the 
cylinder mantle could provide valuable integral information about field transients and oscilla-
tions. However, because of technical difficulties in eliminating uncontrolled perturbations the 
time signals have not yet been evaluated properly. In a forthcoming experiment this instru-
mentation will have to be improved and utilised. 

 The Karlsruhe test facility bears another challenge. It is to realize a second mode of 
possible non-symmetric dynamo field solutions. The axis of this quasi-dipole field would be 
oriented vertically and perpendicular to the cylinder axis of the module. This mode has been 
predicted by Tilgner (1998). It is intended to initiate this dynamo mode by a properly shaped 
initial seed magnetic field in another dynamo test campaign. 
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9 Appendix A.1 Figure Captions 

Figure 2.1 Columnar vortex pattern of buoyancy driven convection in a rapidly rotating 
spherical shell after Busse (1994). 

Figure 2.2: a) Non-confined periodic vortex pattern after Roberts (1972) and in modified 
form after Busse (1992); b) Busse’s vortex arrangement confined in a cylindri-
cal domain; c) Tilgner’s (1997) and Apel et al. (1996) vortex arrangement in a 
sphere. 

Figure 2.3: The bifurcation diagram for the Karlsruhe Dynamo experiment  
 calculated by Tilgner & Busse (2002) for equal volumetric flow rates. 

Figure 3.1: Semi-technical sketch of the Karlsruhe dynamo test module. a) internal struc-
ture and velocity distribution; b) vortex generator; c) technical design. 

Figure 3.2: Sketch of the locations of the Hall sensors in the test module at location H3: 
two Hall sensors to measure three field components Bx, By, Bz; location H4: one 
Hall sensor to measure By; location H5: one Hall sensor to measure two com-
ponents Bz and Br i.e. the radial component; location H6: one Hall sensor to 
measure the radial component Br. 

Figure 3.3: The distribution of the seed magnetic field along the module axis in the range 
0≤z(mm)≤350 recorded at the beginning and the end of a measuring campaign. 
There is a noticeable change in the local characteristic of the seed field. 
Volumetric flow rates CV� = 2,1HV� =0m3/h; λ=0.1m2/s. 

Figure 4.1 Time signal recordings for a) volumetric flow rates; b) pressure losses in the 
helical and central channels; c-d) magnetic field components for an experi-
mental operation with stepwise changing flow rates. 

Figure 4.2: Magnetic field components Bx and By for saturated steady dynamostates for a 
constant central flow rate CV� = 85m3/h and variable helical flow rates 
110< 2,1HV� (m3/h) < 130. 

Figure 4.3: Pressure losses in the helical and central piping systems of the test module  
under steady state operation conditions for a) CV� =85 m3/h, 
110< 2,1HV� (m3/h)<130; b) CV� =105 m3/h, 80< 2,1HV� (m3/h)<120. 

Figure 4.4: The state diagram for dynamo action for the Karlsruhe test module, pres-
sure loss criterium; O tangent criterium. 

Figure 4.5: Isoline surface of the y-components of the magnetic field measured in the cen-
tre of the module depending on the helical and central volumetric flow rates 

CV�  and 2,1HV� . 
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Figure 4.6: a.) Array of compass needles arranged on vertical wood boards sidewise of 
the test module and parallel to its axis; b.) in front of the module and perpen-
dicular to its axis. Experimental conditions: hmVC /134 3=� , hmVH /101 3

2,1 =�  
and λ=0.1m2/s. 

Figure 4.7: Isolines of the normal components of the magnetic field measured in the plane 
of the side wise arranged vertical wood board for the conditions 

hmVC /134 3=� , hmVH /101 3
2,1 =�  and λ=0.1m2/s. 

Figure 4.8: Distribution of the intensities of the magnetic field components on the module 
axis in the range 0mm≤z≤350mm for equal volumetric flow rate: a) 

== CH VV �� 115 m3/h; b) == CH VV �� 110m3/h;  variation of the angle of inclination 
of the magnetic field relative to the module’s position for c) == CH VV �� 115m3/h; 
d) == CH VV �� 110m3/h. 

Figure 4.9: The stationary dynamo states at supercritical conditions represented by the 
measured local By-component. The graph shows two sequences of stationary 
states, one set on a continuous branch and another set on an isolated branch. 
The return jump from the isolated branch to the continuous branch is indicated 
by the symbol . Parameter range: CV� =112 m3/h, 92< 2,1HV� (m3/h)<110. 

Figure 4.10: Stationary dynamo states on a continuous and an isolated branch of a bifurca-
tion graph, however, compared to figure 4.9 the branches are reversed due to 
a modification of the environmental seed magnetic field by the dynamo mag-
netic field of the preceding experiment. Parameter range: CV� =112 m3/h, 
98< 2,1HV� (m3/h)<113. 

Figure 4.11: Stationary dynamo states continuously connected to hydrodynamic states for 
both directions of the magnetic field. The states were obtained in a monotonic 
up- and down-scan with a switch over to the other branch at high magnetic 
field intensities. It is suggested that the change of the field direction at high 
field intensity modifies the environmental seed field by changing the remanent 
week ferromagnetism in the steel structures of the laboratory building. Pa-
rameter range: CV� =115m3/h, 89< 2,1HV� (m3/h)<130. 

Figure 4.12: The measured seed magnetic field at low sub-critical volumetric flow rates 
== cH VV �� 77.5m3/h before (a) and after (b) a measuring campaign with dynamo 

action of high intensity i.e. B ∼0(400 G. 

Figure 4.13: Distribution of the magnetic field components along the axis of the module in 
the range 0≤z≤350mm for symmetric and non-symmetric flow distributions. (a) 

== 21 HH VV �� 100m3/h, CV� =128m3/h ; (b) 1HV� =85m3/h, 2HV� =115m3/h, CV� =128m3/h; 
(c) 1HV� =115m3/h, 2HV� =85m3/h, CV� =128m3/h. Legend: ∆ → Bx, →By, O→Bz. 

Figure 4.14: Touples of volumetric flow rates of long time signal recording experiments. 
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Figure 4.15: Typical time signals of the volumetric flow rate and two components of the 
magnetic field (By, Bz) of the Hall-probe H3 for constant volumetric flow rates 

== 2,1HC VV �� 115m3/h at z=0. (a) time interval 20s; (b) time interval 2s. 

Figure 4.16: Probability density function (PDF) of the time signals of the volumetric flow 
rate and the two components of the magnetic field (By, Bz) of the Hall-probe H3 
for constant volumetric flow rates == 2,1HC VV �� 115m3/h at z=0.  

Figure 4.17: The square root of the variance (RMS), skewness and flatness values of time 
signal By(0,0,0,t) of Hall-Probe H3 at z=0 for the flow rates CV� = 2,1HV� =115m3/h. 

Figure 4.18: The square root of the variance (RMS) values and the associated mean values 
for the time signals of Bx, By, Bz as a function of the flow rates. (a) RMS-values; 
(b) the associated mean values. 

Figure 4.19: Power spectral density (PSD) for the components Bx, By, Bz for five different 
volumetric flow rates of operation at the position z=0 of Hall-probe H3. (a) PSD 
for the By-component for five equal volumetric flow rates V� =95, 102, 106, 111 
and 115m3/h; (b) PSD for the Bz-component for five equal volumetric flow rates 
V� = 95, 102, 106, 111 and 115m3/h; (c) PSD for By-component for 

== 21 HH VV �� 100m3/h and for five central volumetric flow rates =CV� 106, 116, 120, 
125 , and 136m3/h. 

Figure 4.20: Power spectral density (PSD) for the components Bx, By, Bz for two different 
volumetric flow rates of operation. (a) CV� =105m3/h, 2,1HV� =120m3/h; (b) 

CV� =115m3/h, 2,1HV� =105m3/h. 

Figure 4.21: Power spectral density (PSD) of the components By, Bx, Bz of Hall-probe H3  
for volumetric flow rates 2,1HC VV �� = =115m3/h and at the positions X

�
=(0, 0, 

0mm), =(0, 0, 87.5mm), =(0,0,175 mm), = (0, 0, 350 mm). (a) By ; (b) Bx 
and (c) Bz. 

Figure 4.22: Cross-correlation function (CCF) obtained from By-recordings of Hall probes 
H3 and H4 at different positions on the module axis in the range  
-135<zH4(mm)<365, 0<zH3(mm)<350; displayed time intervals. (a) –200< τ(s)< 200; 
(b) -20< τ(s)< 20; (c) -5< τ(s)< 5. Experimental condition: 2,1HC VV �� = =115m3/h, 
λ=0.1m2/s. 

Figure 4.23: Cross-correlation function (CCF) obtained from signal recordings of Hall 
probes at positions H3 and H6. Experimental condition: 2,1HC VV �� = =115m3/h, 
λ=0.1m2/s. 

Figure 5.1: The phase diagram of the Karlsruhe dynamo experiment as a function of the 
helical and central Reynolds numbers RmH and RmC respectively. 
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Figure 5.2: Phase diagram for dynamo action in the Karlsruhe dynamo experiment as a 
function of the different flow rates. Comparison between experiment and 
model calculations of Tilgner (2002). The continuous line corresponds to a 
magnetic diffusivity λ=0.1m2/s and an aspect ratio d/r0=1.2. The dashed line is 
for λ = 0.11m2/s and d/r0=1. The dashed-dotted lines show results for d/r0=1,  
different magnetic diffusivities λ=0.11m2/s (a), λ=0.115 m2/s (c) and a slightly 
modified velocity profile.  

Figure 5.3: The calculated distribution of the B-field components on the module axis 
(x=y=0mm) after Rädler et al. (2002), displayed as continuous lines for the flow 
rates 2,1HC VV �� = =115m3/h, λ=0.1m2/s. The experimental results correspond to 
figure 4.8 and are denoted by symbols  and O. 

Figure 5.4: The magnetic field component By at the centre of the test module as a function 
of the helical volumetric flow rate 2,1HV�  for a fixed central flow rate 

CV� =112m3/h. The symbol ���������	��
������
��������
�	���	��	��
�	���������
figure 4.10. The continuous and the dashed lines are solutions for this pa-
rameter set obtained by Rädler et al. ( 2002). They employed higher order 
“Mean Field” Methods in their calculations. 

Figure 5.5: The magnetic field component By at the centre of the test module as a function 
of the helical volumetric flow rate 2,1HV�  for a fixed central flow rate 

CV� =112m3/h. The circles indicate the experimental results as presented in fig-
ure 4.9. The continuous and the dashed lines are solutions of the model equa-
tions 2.9 with Rm replaced by 2,1HV�  and Vcrii=102m3/h, B0=-0.5G and 
c/β=9×103G2h/m3 according to Tilgner & Busse (2002)  
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