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Magnetohydrodynamic ßow in ferromagnetic pipes

Abstract

The major part of the magnetohydrodynamic pressure drop in the European water
cooled concept for a fusion blanket arises in the circular pipes which distribute the
liquid metal breeder among the poloidal containers. These channels are surrounded by
a very massive structure of electrically conducting ferromagnetic material. The present
work highlights the key problems which concern pressure drop and ßow distribution in
circular pipes with thick conducting walls. The point which has not been investigated
in the past is the inßuence of ferromagnetic wall material. The wall acts like a magnetic
shielding for moderate external magnetic Þelds. The Þeld inside the pipe is strongly
reduced and as a result also the magnetohydrodynamic pressure drop. For conditions
relevant for applications in fusion blankets the magnetic shielding is not as perfect since
the wall material reaches magnetic saturation at the very strong external Þelds required
for the magnetic conÞnement of the fusion plasma. Therefore the reduction of pressure
drop is small for magnetic Þelds which are much larger than the saturation Þeld of the
wall material. The most interesting regime exists near the magnetic saturation where
curvilinear Þeld lines inside the pipe are observed. They result in velocity proÞles which
differ from the well known classical solutions.



Magnetohydrodynamische Strömungen in

ferromagnetischen Rohren

Zusammenfassung

Der Hauptanteil der magnetohydrodynamischen Druckverluste im Europäischen was-
sergekühlten Fusionsblanket entsteht in kreisförmigen Rohren, die den Flüssigmetall-
Brutstoff auf die poloidalen Container verteilen. Diese Kanäle sind von massiven, elek-
trisch leitenden, ferromagnetischen Strukturen umgeben. Die wichtigen Fragen bezüg-
lich Druckverlust und Strömungsverteilung in dickwandigen, elektrisch leitenden Rohren
werden in diesem Bericht beantwortet. Ein Punkt, der bisher nicht beachtet wurde, ist
der Einßuss ferromagnetischer Wände. Für moderate Magnetfelder wirkt eine solche
Wand als magnetische Abschirmung. Das Magnetfeld im Rohr sowie der magnetohy-
drodynamische Druckverlust werden stark reduziert. Für fusionsrelevante Bedingungen
ist die Abschirmung nicht mehr so perfekt, da das Wandmaterial bei den hohen Feld-
stärken, die zum Plasmaeinschluss benötigt werden, die magnetische Sättigung erreicht.
Aus diesem Grund ist die Reduktion des Druckverlusts für Magnetfelder, die stärker
sind als die Sättigungsfeldstärke des Wandmaterials, klein. In der Nähe der Sättigungs-
feldstärke Þndet man im Inneren des Kanals gekrümmte magnetische Feldlinien. Diese
führen zu Geschwindigkeitsverteilungen, die von den bekannten klassischen Lösungen
abweichen.
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1 Introduction
The knowledge about the magnetohydrodynamic (MHD) pressure drop and the ßow
structure in pipes made of ferromagnetic material with thick walls is of importance for
the European water cooled concept of a fusion blanket. The header of this blanket will
be fabricated from ferromagnetic manet steel which has according to Ruatto (1996)
relative magnetic permeabilities up to µw = 400. On the other hand the saturation
magnetization is considerably large with Ms ≈ 1.65T, which is of similar order of
magnitude than the externally applied magnetic Þeld B0 = 6− 8T required for plasma
conÞnement. The pressure drop in most of the blanket is reactively small except in the
headers where the ßow of the liquid-metal breeder is distributed to and collected from
the poloidal containers. A sketch of the blanket with the headers is shown in Fig. 1.

Figure 1: Sketch of the European water-cooled liquid-metal blanket

Flows in circular pipes have been the subject of a number of studies since the early
60th of the last century. Pressure drop and ßow pattern are known for a variety of
applications. If the magnetic Þeld is very strong Shercliff (1953) derived a solution by
asymptotic techniques for walls which are electrically insulating. An exact solution has
been published by Gold (1962). Asymptotic solutions for conducting thin walls have
been given by Shercliff (1956) and Shercliff (1962) or by Chang and Lundgren (1961).
All analyses assumed that the walls conÞning the electrically conducting ßuid are made
of non-ferromagnetic material, i.e. the transverse component of the magnetic Þeld inside
the pipe is the same as outside and therefore known.
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The wall material in the European water-cooled blanket now has ferromagnetic prop-
erties so that care has to be taken when the results mentioned above are applied. For
relatively small applied external Þelds B0 ¿ Ms, where Ms stands for the saturation
of magnetization the wall acts like a magnetic shield and reduces the Þeld inside the
pipe to very small values. On the other hand, for B0 À Ms the wall material reaches
its magnetic saturation and the Þeld inside the pipe is close to the external Þeld B0.
Between both liner limits there exists a strongly nonlinear regime in which the relative
permeability depends essentially on the magnitude of the magnetic Þeld itself. Solutions
in this regime are unknown to the knowledge of the author and subject of the present
study.
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2 Formulation

2.1 Governing equations

The magnetohydrodynamic ßow of a conducting viscous incompressible ßuid though a
pipe is governed by the momentum equation

ρ [∂tv + (v ·∇)v] = −∇p+ ρν∇2v+ j×B (1)

with
∇ · v = 0, (2)

where v is the ßuid velocity and p stands for the pressure. The Lorentz force j × B
determines the interaction of the electric currents j with the vector Þeld of magnetic
induction B. For simplicity we call B the magnetic Þeld throughout this manuscript.
The ßuid has a density ρ and a kinematic viscosity ν.

The currents and the magnetic Þeld are related to each other via Ampère�s law

∇× 1

µ
B = j, (3)

with the consequence that the currents are solenoidal, i.e.

∇ · j = 0. (4)

Ohm�s law gives the coupling with the velocity Þeld due to the induced electric Þeld
v ×B caused by by the ßuid motion.

j =σ (E+ v ×B) (5)

In these equations µ and σ are the permeability and conductivity of the material and E
stands for the electric Þeld. The electric and magnetic Þelds are coupled via Faraday�s
law

∇×E = −∂tB (6)

requiring a solenoidal magnetic Þeld

∇ ·B = 0. (7)

The latter condition is satisÞed identically by introducing a vector potentialA such that

B = ∇×A. (8)

With this deÞnition Faraday�s law becomes

E = −∇φ− ∂tA, (9)

where the electric Þeld is determined by the gradient of the scalar electric potential φ
and the temporal changes in the magnetic vector potential A.
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In the following we substitute B in (3) by its vector potential (8) and introduce the
result in (5). This yields

∇×
µ
1

µ
∇×A

¶
=σ (−∇φ− ∂tA+ v×∇×A) . (10)

The equations shown above apply in the ßuid as well as in the wall or outside the wall.
Note, the wall generally has a conductivity and permeability different from those of the
ßuid and the exterior domain is usually the non-conducting atmosphere.

2.2 Nondimensional equations

We multiply the equation (10) with the permeability of free space µ0 and Þnd with the
characteristic scales v0, L, B0, B0L, and v0B0L for velocity, length, magnetic Þeld, mag-
netic potential, and electric potential the nondimensional form for stationary problems

∇×
µ
1

µr
∇×A

¶
=Rmσr (−∇φ+v×∇×A) , (11)

where µr and σr stand for the relative permeability and conductivity of the materials,
respectively compared with the non-ferritic ßuid. The values for µr depend on the
material and range from 1 for non-ferritic materials as the ßuid to 103 for ferritic steel.
In applications considered in the following the ßuid domain is bounded by a wall that
consists of a single material so that we have µr = σr = 1 in the ßuid and µr = 1 and
σr = 0 in the insulating atmosphere surrounding the pipe. For the wall we generally
have different values and denote them as µr = µw and σr = σw. The magnetic Reynolds
number

Rm = σµ0v0L (12)

gives the ratio of the magnetic Þeld induced by the ßow and the externally applied Þeld.
Rm is small in laboratory or engineering applications with typical values on the order
of Rm < 10−2.
Introducing nondimensional notation in the momentum equation yields

N−1 [∂tv + (v ·∇)v] = −∇p+Ha−2∇2v+ j×B, (13)

where now p represents the pressure scaled by σv0B20L. The nondimensional groups

N =
σLB20
ρv0

(14)

and

Ha = LB0

r
σ

ρν
(15)

are the interaction parameter and Hartmann number, which account for the importance
of electromagnetic forces compared with inertia and viscous friction, respectively. For
applications to fusion relevant ßows N = 102 − 104 and Ha = 103 − 104.
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3 Analysis

3.1 The magnetic Þeld

The smallness of Rm suggests to expand the magnetic potential in a power series as

A = A0 +RmA1 +O
¡
R2m
¢
. (16)

This yields at leading order

∇×
µ
1

µr
∇×A0

¶
= 0. (17)

The leading order magnetic Þeld is unaffected by the ßow. If we restrict the analysis
to the case of a transverse magnetic Þeld with B · �x = 0, uniform along the axis, the
magnetic potential has only a single component as A0 = A (y, z) �x. If other nonuniform
components of A0 were present the magnetic Þeld would vary along the axis and the
assumption of a fully established ßow would no longer be justiÞed. These assumptions
reduce (17) to

∇ ·
µ
1

µr
∇A

¶
= 0, (18)

Therefore we have to solve a scalar equation of heat conduction type where µr = 1 in the
ßuid and in the insulating surrounding atmosphere and µr = µw in the wall. At large
distance from the duct wall the magnetic Þeld is unperturbed by the presence of the
pipe with a single component in the y-direction, B = �y. This requires for the magnetic
potential that

∂zA = 1, ∂yA = 0 as y, z →∞. (19)

For geometry and coordinates see Fig. 2.

B0

z

y
r

ϕ

Fluid

Wall

R

1

1

Figure 2: Sketch of geometry and coordinates

The equation (18) with the condition (19) determines the problem uniquely. For
practical reasons we split the computational domain into three subregions. One is the
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wall region where we solve the nonlinear equation

∇ ·
µ
1

µw
∇A

¶
= 0. (20)

The function µw (∇A) is determined by the magnetization properties of the material.
The other subregions are the interior and exterior regions where the linear equation

∇ · (∇A) = 0 (21)

can be satisÞed much easier by either analytical solutions or via boundary integral
methods. The conditions at interfaces between different materials become·

1

µr
∂nA

¸
= 0, (22)

[A] = 0, (23)

where [ ] denotes the jump across the interface. For general solutions we apply an
iterative numerical scheme which solves for the iteration step the nonlinear equation
(20) by efficient numerical techniques for given Dirichlet conditions at the interior and
exterior surface of the wall. The calculated approximation for A in the wall determines
via (22) the normal derivatives ∂n A outside and inside the pipe and, as a matter of
fact, the global solutions for A. Once improved estimates for A in the pipe and in the
exterior region are found we impose the values according to (23) on the wall surfaces as
Dirichlet conditions for the next iteration.

3.2 Magnetization of the wall material

For applications in fusion engineering the magnetic Þeld conÞning the plasma is so
strong that the wall material reaches its magnetic saturation. A typical hysteretic
magnetization behavior is shown in Fig. 3. We follow the suggestions of Ruatto (1996)
and neglect for the moment the magnetic hysteresis. For Þrst calculations we propose
an approximation of the magnetization curve by two linear parts as shown in the Þgure
with

B =

½
µw,lB0 ferritic
Ms +B0 saturated

. (24)

where B0 = µ0H. The quantity µw,l is the relative permeability in the linear ferritic
regime and Ms characterizes the magnetic saturation. The approximation has the ad-
vantage that the function B (B0) can be simply inverted. This equation ensures a linear
non-ferritic behavior as the externally applied magnetic Þeld is very large, i.e.

B → B0 as B0 →∞, (25)

but exhibits ferritic character for small magnetic Þelds, for which we use a linear approx-
imation for the ferritic regime with permeability µw,l. The global behavior is determined
once the magnetic saturation Ms and µw,l are known.
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B0 = µ0H

B

Ms

Figure 3: Typical magnetization behavior of ferromagnetic materials.
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Figure 4: Measured magnetization of MANET and model proposed for numerical cal-
culations
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For numerical calculations it is important to know the value of µw = B/B0 or

1

µw
=
B0
B
=

½
µ−1w,l ferritic
1− Ms

B
saturated

. (26)

The quantity µ−1w approaches unity as B À Ms in the saturated regime but exhibits
ferritic behavior with µw = µw,l as B ≤ Ms. The variation of µ−1w with the strength of
the applied magnetic Þeld is shown in Fig. 5. Ruatto (1996) determined the magnetic
permeability (or the susceptibility) from measured data for the ferritic MANET steel
which is foreseen as structural material for fusion blankets. If we replot his data we Þnd
a situation as shown in Fig. 4 or in Fig. 5. As B approaches Ms the measured quantity
µ−1w deviates from the bilinear model. We therefore use a modiÞed relation such as

1

µw
=
B0
B
=

 µ−1w,l

µ
1 +

³
0.43

B/Ms−1.305
´4¶

ferritic

1− Ms

B
saturated

, (27)

which approximates the real situation much better.

3.3 The ßow

Solutions of the equations displayed above for the magnetic Þeld will show that in general
the magnetic Þeld inside a duct may vary in the transverse direction and that the Þeld
lines are possibly curved. Therefore, classical solutions known for MHD pipe ßows do not
cover all applications under consideration. In the following subsection we assume that
the magnetic Þeld is known inside the ßuid region. We derive an asymptotic solution
for fully developed ßows that is valid for strong, non-uniform magnetic Þelds.
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Figure 6: Magnetic coordinates

For fully developed stationary conditions the velocity and pressure gradient have
only a single component along the axis v = U �x, ∇p = −k�x , while electric currents
ßow in the plane of the cross section as j · �x = 0. For high Hartmann numbers viscous
effects are conÞned to thin boundary layers along the duct wall while most of the ßow is
carried by the inviscid core. Boundary layers in which the magnetic Þeld has a signiÞcant
normal component are called the Hartmann layers.

3.3.1 Magnetic coordinates

Formulations of MHD problems for arbitrary magnetic Þelds have been given by Ku-
likovskii (1974), Bühler (1995) or by Alboussière, Garandet and Moreau (1996). Here
we use a curvilinear orthogonal coordinate system deÞned by the base vectors

a1 = �x,
a2 = ∇A× �x (= B) ,
a3 =

1
(∇A)2∇A.

(28)

In this coordinate system the vector a2 coincides with the magnetic Þeld since we had
B = ∇ × (A�x) = ∇A × �x = a2. The axial direction, now denoted by a1, remains
unchanged and a3 is the transverse direction, orthogonal to both, the axis of the pipe
and the magnetic Þeld. For details see Fig. 6 The metric tensor gik = ai · ak has only
diagonal entries and reads as

gik =

 1 0 0
0 B2 0
0 0 B−2

 , (29)

with B2 = (∇A)2. Any vector quantify f may be expressed by contravariant components
f i as f = f iai of the general base but also by covariant components as f = fkak of the
reciprocal base for which ai · ak = δki . Co- and contravariant vector components are
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related to each other by the metric coefficients as fi = gikfk. A line element dx Þnds
the representation in the new coordinates ui as

dx = aidu
i (30)

and a volume element is determined by

dV =
√
gdu1du2du3 = du1du2du3, (31)

where g denotes the determinant of the matrix formed by the metric coefficients which
evaluates identically to unity. Note, the coordinate u3 is simply related to the magnetic
potential as u3 = A.

3.3.2 The core ßow

For fully developed stationary conditions the core velocity and pressure gradient have
only a single component along the axis vc = u a1, ∇p = −k a1, while electric currents
ßow in the plane of the cross section as jc = j2a2 + j3a3. The inviscid ßow in the core
is governed by a balance between Lorentz forces and pressure forces as

∂1p = −k = −j3. (32)

The current component perpendicular to the Þeld is therefore uniquely determined.
Conservation of charge requires a solenoidal current Þeld

∂ij
i = 0. (33)

Ohm�s law reads

j2 = −∂2φ, (34)

j3 = −∂3φ+ u. (35)

After substituting j3 according to (32) in (33) we Þnd with the symmetry condition
j2 = 0 at u2 = 0 that

j2 = j2 = 0. (36)

Therefore the current density in the core Þnds the representation as jc = j3a3. As a
consequence Ohm�s law yields

∂2φ = 0, (37)

which simply states that the electric potential is uniform along magnetic Þeld lines, i.e.
magnetic Þeld lines are isolines of potential. Since the potential does not vary along
Þeld lines it is sufficient to know the potential at one point along the line, e.g. at the
ßuid-wall interface. If we suppose for the moment that the core potential at the ßuid
wall interface is known we may evaluate the core velocity by (35)

u = k

µ
1

B2
+
∂Φ

∂A

¶
, (38)

where we replaced the potential by φ = kΦ.
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Figure 7: Boundary layer coordinates

3.3.3 Boundary layer coordinates

Knowing that the viscous boundary layers are very thin for strong magnetic Þelds we
stretch the wall normal coordinate by the boundary layer thickness δ and denote it by

η =
n

δ
with δ ¿ 1. (39)

Here, n is the local coordinate normal to the wall and n = ∇n is the the unit normal to
the wall at Γ, pointing into the ßuid. We further suppose that the magnetic Þeld does
not change at leading order across the boundary layer. For the description of the ßow
in the viscous boundary layers at the duct walls we use a second curvilinear orthogonal
coordinate system deÞned by the base vectors

a1 = �x,
aη = δ n,
aτ = �x× n = τ .

(40)

In this coordinate system the vector a1 coincides with the channel�s axis while aη points
into the ßuid, normal to the wall. The third base vector aτ is tangential to the wall.
The situation is sketched in Fig. 7. The metric tensor in the layer has only diagonal
entries and reads as

gik =

 1 0 0
0 δ2 0
0 0 1

 . (41)

A line element dx Þnds the representation in the new coordinates as

dx = a1du
1 + aηdη + aτdτ (42)

and a volume element is determined by

dV =
√
gdu1dη dτ = δdu1dη dτ . (43)
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3.3.4 The Hartmann layer ßow

We assumed for the ßow in the core that viscous effects are negligible and that the ßow
is balanced by an equilibrium between pressure and Lorentz forces. Viscous effects are
conÞned to thin boundary layers along the walls. We consider now these viscous layers
and suppose that a uniquely valid solution in the whole ßuid domain is composed by two
parts, one is the core solution as derived above and the other is the viscous correction in
the boundary layer. As an example we may express the total axial velocity component
by U . It is composed by the core velocity and its viscous correction as

U = u+ uδ. (44)

The total current density vector may Þnd a representation as

j = j3a3 + (j
τaτ + j

ηaη) . (45)

For electric potential we can assume a similar relation with φδ or Φδ as viscous correc-
tions. The viscous corrections to the inviscid core solution in the Hartmann layers are
needed in order to satisfy no-slip at the walls. The viscous corrections vanish at large
distance from the wall, i.e. (uδ, jτ , jη, φδ)→ 0 as η →∞.
Ohm�s law in the boundary layer yields now

jη = −∂ηφδ, (46)

jτ = −∂τφδ + δ uδBη, (47)

and the momentum equation reduces to

1

Ha2
1

δ2
∂ηηuδ − δ jτBη = 0. (48)

The core variables disappear from the boundary layer equations since they satisfy the
equations in the inviscid limit. Note, due to the coordinate stretching introduced just
above the component of magnetic Þeld Bη = (B · n) /δ is one order of magnitude larger
than Bτ=(B · τ ). For that reason Bτ does not appear in the analysis at this order of
approximation. This assumption holds as long as (B · n) À (B · τ ) δ, where τ stands
for a unit vector in the tangential direction. For very thin viscous layers with δ ¿ 1
this assumption is fairly valid along most of the pipe wall. It would break down only in
a very narrow region near the sides where the magnetic Þeld becomes tangential to the
walls. Roberts (1967) pointed out that this region is small for high Hartmann numbers
and that it does not affect the core velocity and the pressure drop in the other ßuid
domain at leading order.
We Þnd in the boundary layer a balance between viscous forces and Lorentz forces.

This requires that jτ is of the same order of magnitude as the viscous forces, say of
leading order in the analysis. The conservation of charge

∂η (δj
η) + ∂τ (δj

τ ) = 0 (49)

requires that jη is of the same order of magnitude. The quantity jη = gηηj
η = δ2jη,

however, is negligible in Ohm�s law for δ ¿ 1. Since the viscous correction for potential
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disappears at large distance from the wall and since it does not change across the layer
according to (46) it is zero in the whole boundary layer, i.e. φδ = 0.
Now we can substitute jτ = jτ in (48) by (47) and Þnd an ordinary differential

equation governing the viscous correction for velocity in the Hartmann layer.

1

Ha2 (B · n)2
1

δ2
∂ηηuδ − uδ = 0. (50)

For a reasonable balance of forces we have to keep the viscous term ∂ηηuδ in the equation
as Ha → ∞ to balance the Lorentz force term −uδ. This requirement determines the
thickness of the viscous layer as

δ =
1

Ha |B · n| . (51)

The governing equation for velocity reduces to

∂ηηuδ − uδ = 0 (52)

with solution
uδ = −uΓ exp (−η) . (53)

Here, uΓ is the core velocity taken at the ßuid-wall interface Γ. With this correction the
velocity vector is entirely determines as

v = [u− uΓ exp (−η)] �x. (54)

It satisÞes the no-slip condition at the wall and viscous corrections vanish rapidly with
increasing distance to the wall.
After the viscous correction of velocity is obtained we determine jτ = jτ using (47)

as
jτ = uΓ (B · n) exp (−η) . (55)

The viscous correction to the tangential currents in the layer is determined by the
velocity of the inviscid core solution and shows exponential decay towards the core. In
the next step we substitute these currents into (49) and Þnd

δ∂η (j
η) +Ha−1 exp (−η) ∂τuΓ = 0, (56)

an equation that is easily integrable along the wall-normal direction to yield

δjη (η = 0)−Ha−1 ∂τuΓ = 0. (57)

The quantity δjη (η = 0) is the ßux of current entering the boundary layer at the interface
to the wall. It is determined by the fact that all currents leaving the ßuid enter the wall.
This requires that

j · n = j3a3·n+ δjη = −σw∇φw · n. (58)

Recalling the deÞnition of the base vector a3 (28) yields with (32)

1

B2
∇A · n+ 1

Ha
∂τ

³u
k

´
= −σw∇Φw · n at Γ, (59)
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where we have to take ∇A in the ßuid and ∇φw in the wall. If we further substitute the
core velocity at the wall by (38) we Þnd the interface condition for wall potential as

∂nA

B2
+
1

Ha
∂τ

µ
1

B2
+
∂Φ

∂A

¶
+ σw∂nΦw = 0 at Γ. (60)

This condition applies to the wall potential at the interface to the ßuid while at the
interface towards an insulating atmosphere we have ∂nΦw = 0. The equation which
determines the potential inside the wall is the Laplace equation

∇2Φw = 0. (61)

For applications in engineering the duct wall is either fabricated from metals (steel,
copper, etc. ) or the wall is insulating (e.g. glass, Þberglass, ceramic materials). In
addition, for pressure drop reduction, metallic walls may be covered by an insulating
layer to prevent currents induced in the ßuid to enter the conducting walls. While the
Hartmann number is large for all applications we have in mind the relative conductivity
of the walls may be of order unity for metals or negligibility small for insulating walls or
for conducting walls which are covered by an insulating layer. In the following we shall
discuss these two cases.
If the wall is well conducting, say σw À Ha−1, equation (60) Þnds a major balance

between the Þrst and the third term. The physical reason for this balance is that
the currents cross the viscous layer unchanged before they enter the conducting wall.
They close their circuit inside the wall thus bypassing the viscous layers. The reduced
boundary condition for that case reads

∂nA

B2
+ σw∂nΦw = 0 at Γ. (62)

We note that the Hartmann number disappears from the analysis. As a matter of fact the
solution for the leading order core velocity and for pressure drop becomes independent
of the strength of the magnetic Þeld.
The other case of practical interest is that the wall is insulated from the ßuid. This

happens for σw ¿ Ha−1. In the latter case we neglect the currents which enter the wall
in comparison with the other terms in (60) and Þnd

Hak
∂nA

B2
+ ∂τu = 0 at Γ, (63)

an equation that determines directly the core velocity by integration. The Þrst term
describes the currents which enter or leave the core from the layer, while u is proportional
to the integrated currents in the viscous layer. Now all currents which leave the core
enter the viscous layer and change therefore the total current inside the layer along the
contour of the pipe. This Þxes the constant of integration and the velocity evaluates as

u = −Hak
Z τ

0

∂nA

B2
dτ at Γ. (64)

Note, the tangential coordinate τ has its origin where the magnetic Þeld touches the
wall in one point. If we know the velocity at Γ we can extract the quantity ∂Φ/∂A
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which applies to each point along Þeld lines. We substitute the latter quantity in (38)
and Þnd the core velocity inside the pipe as

u = k

µ
1

B2
− 1

B2Γ
−Ha

Z τ

0

∂nA

B2
dτ

¶
. (65)

The last two terms on the right-hand side are evaluated at the wall and spread into the
ßuid along Þeld lines. For planar Þelds, B and BΓ are equal so that the Þrst two terms
on the right-hand side cancel exactly. If the Þeld lines are curved they generally differ
and do not cancel completely. Nevertheless, since Ha À 1 for all applications we have
in mind, the third term is dominant and the core velocity in the whole ßuid domain is
well approximated as

u = −Hak
Z τ

0

∂nA

B2
dτ . (66)

This equation is easily evaluated at the ßuid-wall interface and, since the velocity does
not change along Þeld lines, we know the velocity in the whole ßuid region. We note
that ∂nA = −B · τ so that the equation determining the core velocity can be expressed
also as

u = Hak

Z τ

0

B · τ
B2

dτ . (67)

Let us apply this condition now to the simple example of a planar magnetic Þeld
B = �y for which we Þnd

u = Hak

Z τ

0

(�y · τ ) dτ = Hak
Z Y

o

dy = HakY, (68)

where Y denotes the y position of the interface. It is a well known result that for MHD
ßows in insulating pipes the core velocity proÞle is proportional to the extension of the
duct measured along Þeld lines. This result is very general and applies for ducts on any
type of cross section (see e.g. Müller and Bühler (2001)). For circular pipes we have
Y = cosϕ. The ßow rate Q =

R
uY dz evaluates with dz = cosϕ dϕ as

Q = Hak

Z π/2

0

cos3 ϕdϕ =
2

3
Hak. (69)

Normalization of the velocity requires that Q = π/4 which yields the pressure drop as

k =
3π

8

1

Ha
, (70)

is in agreement with results obtained by Shercliff (1962).
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4 Circular pipes
In the following we focus on ßows in circular pipes which are most widely used in
engineering applications. In a Þrst step we restrict the analysis to cases for which the
wall material does not reach its magnetic saturation. Cases for which the wall material
reaches its magnetic saturation are analyzed in a separate subsection.

4.1 Constant magnetic permeability

We assume that the relative permeability depends only on the material and that it is
independent of the magnitude of the applied magnetic Þeld. Such regimes occur for
magnetic Þelds which are much smaller than the saturation Þeld, i.e. B ¿Ms. For such
cases µr = 1 in the ßuid and outside the wall. In the wall the permeability µr = µw is
constant and can be extracted from the Laplacean. It is further convenient to formulate
the problem in cylindrical coordinates

x = x, y = r cosϕ, z = r sinϕ, (71)

in which (18) becomes
r∂r (r∂rA) + ∂ϕϕA = 0. (72)

We expand the magnetic potential in a Fourier series such as

A =
∞X
i=1

ai sin iϕ (73)

and Þnd equations for the Fourier components ai (r)

r∂r (r∂rai)− i2ai = 0. (74)

The interface conditions are ·
1

µr
∂rai

¸
= [ai] = 0, (75)

and the condition at large distance reads

∂ra1 = 1, ∂rai = 0 for i > 1. (76)

The condition (76) at large distance shows together with (74) that the only nontrivial
solution exists for a1. Applying the interface conditions determines uniquely the solution
as

a1 =


α r for r < 1

1
2
α (1 + µw) r + 1

2
α (1− µw) r−1 for 1 < r < R

r +1
4
α (µ2w − 1) (R2 − 1)µ−1w r−1 for r > r

(77)

where the coefficient

α = 4
µwR

2

1 + µ2w

µ
R+

µw − 1
µw + 1

¶−1µ
R− µw − 1

µw + 1

¶−1
(78)

16



1 200 400 600 800 1000
µw

10-3

10 -2

10 -1

100

α

R = 1.1
R = 2.0
R  = 5.0

Figure 8: Factor α by which the magnetic Þeld is reduced inside a ferritic circular pipe
in comparison with non-ferritic walls. Examples for a thin wall with R = 1.1 and for
thick walls with R = 2 and R = 5 are shown

determines the strength of the magnetic Þeld inside the pipe bore hole.
We Þnd that the magnetic potential in the ßuid region has the representation as

A = αr sinϕ = αz. (79)

This yields a strength of the magnetic Þeld in the pipe as

B = ∇× (A�x) = α�y. (80)

The result is a uniform magnetic Þeld inside the pipe in the ßuid region, with a Þeld
strength reduced to a fraction α compared with the unperturbed Þeld that would be
present for the case when the wall material is non-ferritic. The reduction factor α of
the magnetic Þeld is shown in Fig. 8. A reduction of the Þeld strength by orders
of magnitude is possible. Magnetic Þeld lines for different permeabilities of the walls
are shown in Figs. 9-12. The major result is that the magnetic Þeld inside the duct is
strongly reduced but that it is still uniform. This is a special property resulting from the
circular shape of the pipe and does not apply to other duct geometries like rectangular
ducts.
It is planned to operate different types of test sections with ferritic and non-ferritic

materials simultaneously in an experimental campaign in theMekka laboratory of the
Forschungszentrum Karlsruhe. It is important to notice that the ferritic test section
modiÞes the magnetic Þeld in its neighborhood as can be seen from Fig. 12. For
this reason it is necessary to keep other test sections at a save distance of some outer
diameters away from the ferritic test section in order to avoid undesired perturbations
of the results by the presence of adjacent ferritic channels.
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Figure 9: Magnetic Þeld lines (blue) and electric current path (red) through a non-ferritic
pipe
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Figure 10: Magnetic Þeld lines (blue) and electric current path (red) through a ferritic
pipe with µw = 2
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Figure 11: Magnetic Þeld lines (blue) and electric current path (red) through a ferritic
pipe with µw = 10
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Figure 12: Magnetic Þeld lines (blue) and electric current path (red) through a ferritic
pipe with µw = 100
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We apply now the asymptotic solution procedure as outlined above to ßows with the
uniform magnetic Þeld transverse through the ßuid region. Many results are already
known for MHD ßows in pipes so that we may use this example to verify the analysis.
The uniform Þeld inside the pipe is given by the magnetic potential A = αz so that the
general base is determined according to (28) as

a1 = �x, a2 = α�y, a3 =
1

α
�z. (81)

The unit vector normal to the duct wall is n = cosϕ�y+sinϕ�z. This leads to the interface
condition for wall potential according to (60) as

1

α
sinϕ = −σw∂rΦw at r = 1 (82)

for the wall potential determined by the Laplace equation

r∂r (r∂rΦw) + ∂ϕϕΦw = 0. (83)

We express the electric potential in the wall in a Fourier series as

Φw =
∞X
i=1

Φw,i sin iϕ. (84)

Due to the condition (82) the exact solution requires only a single Fourier mode. For
insulating conditions at the interface to the surrounding atmosphere with ∂rΦw = 0 at
r = R we Þnd the solution as

Φw =
1

ασw

1

r

R2 + r2

R2 − 1 sinϕ (85)

in the wall and at the ßuid-wall interface at r = 1 we have

Φw (z) =
1

ασw

R2 + 1

R2 − 1 z . (86)

We saw that for the present case magnetic Þeld lines are not curved. Since magnetic
Þeld lines and isolines of potential coincide we Þnd as solution for the potential in the
pipe

Φ (y, z) = Φw (z) =
1

ασw

R2 + 1

R2 − 1 z (87)

The core velocity is determined according to (38) as

u =
k

α2

µ
1 +

1

σw

R2 + 1

R2 − 1
¶
. (88)

The core velocity is uniform and a normalization of the ßow rate yields the pressure
drop as

k = α2
µ
1 +

1

σw

R2 + 1

R2 − 1
¶−1

. (89)
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This result agrees for non-ferritic walls (α = 1) with results of Elrod and Fouse (1952).
We can compare special limits for which solutions are known. The pressure drop asymp-
totes for inÞnitely thick non-ferritic walls with R → ∞, α = 1, to the results obtained
by Bühler (1998) who Þnds

k =
1

1 + 1
σw

. (90)

The pressure drop in ducts with thin conducting walls where R = 1+ ε yields for ε¿ 1

k =
c

1 + c
α2. (91)

Here, c = σwε is the wall conductance ratio. This result is in accordance with Chang
and Lundgren (1961) for α = 1. In thin-wall ferritic pipes with µw À 1 the coefficient
α asymptotes to α→ 2 (µwε)

−1. This determines the pressure drop as

k =
4

(µwε)
2

c

1 + c
for ε¿ 1. (92)

For ferritic materials the relative permeability is often very large, i.e. µwε > 1 so that
a signiÞcant reduction of pressure drop is achieved compared with ßows in non-ferritic
pipes.
If we consider MHD ßows in electrically insulating pipes in which the magnetic Þeld

is reduced to a factor α compared to non-ferritic materials, i.e. B = α�y we derive from
(67) the pressure drop as

k =
3π

8Ha
α. (93)

All asymptotic results derived above are valid for the case that the magnetic Þeld inside
the pipe is still very strong, i.e. αHa À 1. For other cases one should use the exact
solution for pipe ßow (Gold (1962)) which covers the hydrodynamic limit for αHa¿ 1
and replace therein the magnitude of the magnetic Þeld by α.

4.2 Field-dependent magnetic permeability

In the following we consider the regime, when the material reaches its magnetic satura-
tion. We approximate the nonlinear magnetization according to (27) and perform the
analysis for the magnetic Þeld as outlined in Sect. 3.1. Results are obtained for ducts
with very thick walls, i.e. R = 5, which are used during experiments In the MEKKA
laboratory of the Forschungszentrum Karlsruhe. The solutions in the ferritic regime
have been already outlined before and are not discussed here again. Instead we consider
solutions for which the wall material reaches the magnetic saturation. One solution is
shown in Fig. 13. Here the externally applied Þeld has a value B0 = 1

2
Ms. Although

the external Þeld is far below the saturation value the magnetic Þeld inside the wall
may reach saturation since Þeld lines are concentrated in the wall. This modiÞes the
solution in comparison with the linear ferritic behavior for which we had B0 ¿ Ms.
The pipe has still good shielding properties but the Þeld penetrating the ßuid domain is
much higher than for the non-saturated materials. More important, however, is the fact
that the magnetic Þeld in the pipe is not uniform as shown in Fig. 14. Moreover, we
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observe a signiÞcant curvature of Þeld lines. If the external Þeld increases the shielding
becomes weaker. The magnetic Þeld inside the pipe increases and approaches the value
of the externally applied Þeld as B0 ÀMs. The magnetic Þeld in the center of the pipe
has been measured in the experiment. A comparison of measured and calculated data
shows a good agreement. SigniÞcant deviations from the linear ferritic regime occur for
B0 & 0.4Ms. Then the magnetic Þeld inside the pipe starts to increase strongly before
it approaches very slowly the asymptote for non-ferritic materials.

After the magnetic Þeld is known we can determine in a second step the electric
potential inside the wall. The solution is efficiently obtained by expanding the wall
potential in a Fourier series as Φw =

P∞
i=1Φi sin iϕ. In the wall we solve the Laplace

equations
r∂r (r∂rΦi)− i2Φi = 0 (94)

with boundary conditions at the ßuid-wall interface

∂nΦi = − 1

σw

2

π

Z π

o

∂nA

(∇A)2 sin iϕ dϕ at Γ. (95)

Remember, the Φi are taken in the wall while A is taken in the ßuid. After the solution
is obtained as

Φw = −
∞X
i=1

∂nΦi
iri

R2i + r2i

R2i − 1 sin iϕ (96)

the potential at the interface becomes

Φw = −
∞X
i=1

∂nΦi
i

R2i + 1

R2i − 1 sin iϕ at Γ. (97)

Knowing this result it is possible to construct the relation

Φ (A) = Φw (A) at Γ (98)

which determines uniquely the potential Φ in the ßuid for any given value of A inside the
pipe. The latter condition ensures that isolines of Φ coincide with magnetic Þeld lines
since the potential does not vary along magnetic Þeld lines. The solution of potential in
the ßuid region is simply obtained by spreading the quantity Φw along Þeld lines into
the ßuid. Isolines of potential in the ßuid and in the wall are shown in Fig. 13.

We determine the velocity by similar means. We know that according to (38) the
velocity is given by

u

k
=

1

(∇A)2 +
∂Φ

∂A
(99)

and since Φ and A do not vary along Þeld lines we can determine ∂Φ/∂A at the wall
and spread this quantity along Þeld lines into the ßuid. By the ßux conditionZ 1

0

Z π/2

0

ur dϕ dr =
π

4
(100)
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Figure 14: Magnetic Þeld inside the pipe
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Figure 15: Magnetic Þeld inside a ferromagnetic pipe

we determine the pressure drop k. Results for pressure drop depending on the strength
of the applied magnetic Þeld have been calculated. Instead of plotting directly results
for pressure drop we assume a relationship similar to (89) as

k = α2k

µ
1 +

1

σw

R2 + 1

R2 − 1
¶−1

(101)

and we determine the coefficient

αk =

s
k

µ
1 +

1

σw

R2 + 1

R2 − 1
¶

(102)

by which the effective magnetic Þeld is reduced in comparison with the applied external
Þeld. Values of αk are shown in Fig. 16. The geometry (R = 5) and the material
data is taken according to the planned experiment in the Mekka laboratory. The
coefficient α which determines the pressure drop exhibits two asymptotes. One is for very
strong magnetic Þelds for which the material reaches perfect saturation everywhere for
B0/Ms À 1. In this regime we have µw = α = 1 and the pressure drop is given by (89) as
k = 0.279 forB0/Ms →∞. For small magnetic Þelds α would approach very small values
according to (78) and the pressure drop would become k = 9.89 ·10−6 as B0/Ms ¿ 1 for
µw = 700. We have to notice here, that the magnetic Þeld inside the pipe for the latter
case is strongly reduced due to shielding by the ferritic material. On the other hand we
assumed high magnetic Þelds inside the pipe for the asymptotic analysis. The presented
results are valid as long as αHa À 1. This may not be guarantied in general for small
applied Þelds, even if the Hartmann number is high so that results for B0/Ms ¿ 1 are
to be considered as academic. For applications related to fusion the magnetic Þeld is
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Figure 16: Magnitude of the effective magnetic Þeld inside the pipe responsible for
pressure drop depending on the ratio of saturation ÞeldMs and the applied Þeld B0. The
pressure drop for thick conducting walls is obtained according to (101) that for insulated
conducting liners by (106) and the pressure drop for perfect electrical insulation of the
ßuid by (93).

generally very high and the analysis applies perfectly. For a comparison we plot from
the data shown in Fig. 14 the value α (r = 0) = B (r = 0) /B0 evaluated at the center of
the duct. Since the magnetic Þeld in the center is the lowest in the pipe it is clear that
these values are smaller than those calculated from the pressure drop. Nevertheless,
the difference between both results is small. From these considerations we conclude,
that if the magnetic Þeld in the center of the pipe is known by either measurements or
calculations one can estimate the pressure drop with reasonable accuracy by standard
relations.
Isolines of core velocity and velocity proÞles along y and z are shown in Figs. 17 and

19. We observe a decrease of the velocity towards the sides as z → 1 and an increase of
velocity along y. The velocity increase along y can be explained by the fact that due to
the curvature of the magnetic Þeld lines the Þeld intensity is lowest near z = 0, y = 1.
For smaller values of the externally applied Þeld, i.e. in the linear ferritic regime the
Þeld lines become straight again and the velocity, Þrst along y, but later also along z,
becomes more and more uniform and approaches unity. For very strong external Þelds
we observe similar effects, since the relative permeability of the wall asymptotes towards
unity so that the Þeld lines are not perturbed by the presence of the wall. Therefore the
velocity in the core approaches also unity as B0 ÀMs.
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4.3 Insulated conducting inserts

We have seen that the pressure drop depends essentially on the electrical conductivity
of the duct wall. However, for design reasons we have not the freedom to chose wall
materials of lower conductivity for reducing the pressure drop. An efficient means could
be to cover the ßuid-wall interface by an insulating layer in order to prevent currents
from entering the well conducting wall. This idea has been proposed e.g. by Malang,
Borgstedt, Farum, Natesan and Vitkovski (1995) but it remains to be seen that the
insulation material will be able to withstand corrosion by the liquid metal coolant.
Even a small number of cracks in the insulation could cancel all beneÞts. Therefore, a
more conservative solution is to protect the insulation by a thin sheet of steel from a
direct contact with the ßuid. If the steel liner is very thin its electric resistance is large
even if the conductivity of the sheet is comparable with that of the ßuid. A sketch is
shown in Fig. 20.
In the following we assume that the insulating layer is very thin and does not affect

the magnetic Þeld. Therefore the analysis presented above applies as well for the de-
termination of the magnetic Þeld. However, since no currents will cross the insulating
layer we have to use the boundary condition

∂nΦw = 0 (103)

now at the insulating layer at Rφ = 1+ε while the total major radius of the ferritic wall
is still R. We further suppose that the conductivity of the liner is very high compared
with the conductivity of the Hartmann layer, i.e. c = εσw À αHa. After the magnetic
Þeld is obtained the analysis is as outlined before, if we replace in all formulas concerning
the potential inside the wall the external radius of the conducting sheet as R = Rφ. For
very thin protecting liners with ε¿ 1 the solution for wall potential becomes at leading
order

Φw = −
∞X
i=1

∂nΦi
i2

sin iϕ (104)
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where

∂nΦi = −1
c

2

π

Z π

o

∂nA

(∇A)2 sin iϕ dϕ. (105)

with A taken in the ßuid at r = 1.
We may also deÞne the coefficient αk by which the effective magnetic Þeld is reduced

in comparison with the externally applied Þeld. For cases with insulating liners we may

deÞne the coefficient as αk =
q
k
¡
1 + 1

c

¢
, a quantity that becomes independent if of c

as c¿ 1. The pressure drop simply evaluates from the latter quantity as

k = α2k
c

1 + c
. (106)

Results for αk for ßows with insulated liners with c = 0.01 are shown in Fig. 16.
The results almost agree with those those obtained for thick conducting walls while the
pressure drop differs by two orders of magnitude. This result justiÞes the use of α in
order to evaluate pressure drop since the results obtained are more general than the
pressure drop itself.
Results for velocity are shown in Fig. 21. Now the isolines of velocity coincide almost

with the magnetic Þeld lines. The reason is that for poorly conducting walls the last
term in (38) becomes dominant. Since Φ and A do not vary along Þeld lines the velocity
is also uniform along magnetic Þeld lines. For both limits as B0 ¿Ms and as B0 ÀMs

the magnetic Þeld inside the pipe become uniform and the core velocity asymptotes to
unity in the whole cross section.

We supposed above that the conductivity of the liner is high, compared with the
conductivity of the Hartmann layers. If the liner becomes very thin, or if there exists
a perfectly insulating coating which is in direct contact with the ßuid this assumption
is no longer justiÞed. For that reason we investigate now the ßows for which we may
neglect the conductivity of the wall. Such ßows arise for c ¿ αHa. We calculate the
velocity proÞle according to (66). Normalization of the ßow rate yields the pressure
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drop k. The coefficient of effective magnetic Þeld is determined according to αk = 8Ha
3π
k

in order to allow for a comparison with MHD ßows in insulating pipes with uniform
magnetic Þelds. Knowing αk the pressure drop is determined according to

k =
3π

8Ha
αk. (107)

Results for αk are added to Fig. 16. The results indicate that in both liner regimes the
value of αk are close to the value of the magnetic Þeld in the center of the pipe. In an
intermediate regime 0.4 < B0/Ms < 1, however αk may be twice as high as α (r = 0),
reßecting the strong inßuence of the nonuniformity of the Þeld. Results for velocity are
shown in Fig. 22. The isolines of velocity follow the magnetic Þeld lines. The proÞles of
core velocity show the typical slug ßow proÞle along the Þeld lines. In the other direction
we observe similarity with the elliptically shaped proÞle along z that would be present
for uniform magnetic Þelds as B0 À Ms. The latter one has been added to the Þgure
for comparison. Note, the results shown here require for being valid that αkHaÀ 1.
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5 Conclusions
An asymptotic analysis has been performed for the magnetohydrodynamic ßow in circu-
lar pipes the walls of which are made of ferromagnetic material. The knowledge about
pressure drop and ßow structure in such pipes, especially with thick walls, is of impor-
tance for the European water cooled concept of a fusion blanket. The header of this
blanket will be fabricated from ferromagnetic manet steel which has relative magnetic
permeabilities up to µw = 400. On the other hand the saturation magnetization is
considerably large with Ms ≈ 1.65T, which is of similar order of magnitude than the
externally applied magnetic Þeld B0 = 6− 8T.
In a Þrst step we determine the magnetic Þeld inside the pipe by introducing a

magnetic vector potential. For simplicity we disregard the magnetic hysteresis of the
material and assume a uniform permeability of the wall material for B0 ¿Ms. For this
case the solution is obtained analytically. The result is that the magnetic Þeld inside the
pipe is strongly reduced to a factor α = B/B0 ¿ 1 depending on µw and the thickness
of the wall. On the other hand, the magnetic Þeld remains uniform in the ßuid so that
we are able to apply all results known from literature in order to predict pressure drop.
We should keep in mind that the magnetic Þelds inside the pipe are very weak and
that asymptotic results for MHD ßows may become invalid. Then, results covering the
hydrodynamic limit should be used to describe the ßow more realistically (see e.g. Gold
(1962)).
The situation becomes more interesting when the external magnetic Þeld is close

to or larger than B0 ≈ 0.4 Ms. For such conditions the material reaches partly mag-
netic saturation. The result is that the Þeld inside the pipe becomes non-uniform with
curved Þeld lines. Again we calculate in a Þrst step the magnetic Þeld in the ßuid re-
gion. The non-linear equations for magnetic potential in the wall are solved numerically
by applying a numerical heat transfer code. The solution outside the wall and inside
the pipe is still governed by linear equations and solved analytically. Analytical results
obtained for these domains are coupled via the magnetic interface conditions to the nu-
merical procedure during an iterative process. This restricts the computational domain
in the numerical calculation to the region of the wall and gives us the possibility to
apply an external magnetic Þeld B0 = B0�y which is unperturbed by the presence of the
ferromagnetic pipe as r→∞.

After the magnetic Þeld is known we derive by asymptotic techniques, using magnetic
coordinates, a solution for the ßow in the inviscid core. Viscous boundary layers do not
affect the ßow in the core if the wall is highly electrically conducting. The currents close
their circuit inside the wall and bypass the viscous layer. The viscous layers are purely
passive and the solution in the layers simply matches the core velocity smoothly with
the no-slip condition at the wall. The solutions for core velocity show a decrease towards
the sides as z → 1. The core velocity increases along y and reaches its maximum at
y = 1, z = 0. For stronger magnetic Þelds the velocity proÞle in the core becomes
gradually ßat and approaches unity. It is shown that the pressure drop for a number of
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cases can be obtained by a relation as

k = α2k

Ã
1 +

1

σw

R2φ + 1

R2φ − 1

!−1
, (108)

where Rφ is the outer radius of the conducting part of the wall. The distinction between
Rφ and the outer radius of the pipe has been introduced since it is planned to insert in
the wall a thin layer of insulating material to decouple electrically the interior region
(minor part of the wall and the ßuid) from the well conducting thick wall. It is shown
that (108) is a very general relation since it applies for very thick conducting walls with
Rφ = R = 5 and for very thin liners with Rφ = 1 + ε with ε¿ 1. The values of αk for
both cases are practically equal. In the latter case, (108) reduces to

k = α2k

µ
1 +

1

c

¶−1
, (109)

where c = σwε is the wall conductance ratio.
If the conductivity of the wall becomes much smaller than the conductivity of the

Hartmann layers, i.e. for c ¿ (αkHa)
−1, the currents close their circuit through the

viscous layers. For that case the pressure drop follows a law according to

k =
3π

8Ha
αk (110)

and the core velocity shows a proÞle monotonically decreasing from the maximum value
at z = 0 to u = 0 at z = 1.
The strongest dependence of αk on the externally applied Þeld is observed in a

region 0.4Ms < B0 < 2Ms. For stronger magnetic Þelds αk approaches unity, αk → 1
as B0 ÀMs. If the magnetic Þeld is weaker, αk approaches the value α obtained by the
analytic solution for the linear problem and the pressure drop becomes very small. The
pressure drop may eventually reach hydrodynamic values.
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