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Three-dimensional buoyant convection in a 
rectangular box with thin conducting walls 

in a strong horizontal magnetic field 

 
 
 

 
Abstract 

 
Three-dimensional buoyant convection in a rectangular box with electrically conducting walls 
in the presence of a strong, horizontal magnetic field has been considered. The electric 
conductance of the six walls is arbitrary. An asymptotic solution to the problem in the 
inertialess and small Peclet number approximations has been obtained for high values of the 
Hartmann number, Ha. The solution is valid for an arbitrary temperature distribution resulting 
from both differential heating of walls and internal heat sources. The three-dimensional flow 
is characterised by the presence of high-velocity jets at the vertical walls of the cavity. The 
velocity of the jets is O(Ha1/2) times higher than in the bulk of the fluid. For sufficiently high 
boxes, comparison of the velocity profiles in the middle of a box with fully developed 
solutions developed previously for infinitely long rectangular ducts gives excellent  
agreement. Properties of convective flows have been investigated and examples for various 
temperature distributions have been presented. It has been shown that for wall conductance 
ratios ~0.1, the three-dimensional effects are confined to about one value of the characteristic 
dimension of the duct cross-section at the top and the bottom of the box. The flow pattern has 
been shown to be very sensitive to symmetries of temperature and to variations of the wall 
conductance ratios. This property may be used to optimise the convective flow pattern. The 
numerical code developed on the basis of the asymptotic model is a flexible, fast tool to 
analyse and optimise convective flows in various blanket designs. 
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Dreidimensionale Konvektion in einer  
quaderförmigen Geometrie mit dünnen leitenden Wänden  

in einem starken horizontalen Magnetfeld  
 
 
 

Zusammenfassung 
 

In diesem Bericht werden dreidimensionale Konvektionsströmungen in quaderförmigen 
Geometrien mit elektrisch leitenden Wänden in einem horizontalen Magnetfeld untersucht.  
Die elektrische Leitfähigkeit der sechs Wände ist beliebig. Für große Hartmann Zahlen  Ha  
wurden asymptotische Lösungen für trägheitsfreie Strömungen bei kleinen Peclet Zahlen 
ermittelt. Diese Lösungen gelten für beliebige Temperaturverteilungen, entstanden durch 
unterschiedlich beheizte Wände und/oder durch volumetrisch freigesetzte interne Beheizung.  
Die dreidimensionale Strömung ist charakterisiert durch Jets mit hohen Geschwindigkeiten 
entlang vertikaler Wände. Die Geschwindigkeit im Jet ist O(Ha1/2) höher als im Kern der 
Strömung. Für sehr lange Kavitäten ergibt ein Vergleich der Strömung in der Mittelebene mit 
der einer voll entwickelten Strömung eine sehr gute Übereinstimmung. Es wurden 
Strömungsgrößen  für verschiedene Temperaturverteilungen bestimmt. Es konnte gezeigt 
werden, dass für Wandleitparameter  ~0.1 dreidimensionale Strömungsbereiche auf die 
unmittelbare Nähe der oberen und unteren Enden der Geometrie beschränkt sind. Die 
Strömungsverteilung reagiert sehr sensitiv auf  Symmetrien des Temperaturfeldes und auf die 
Variation der Leitfähigkeit der Wände. Diese Eigenschaft könnte zur Optimierung der 
Konvektionsströmung genutzt werden. Das entwickelte numerische Rechenprogramm auf der 
Basis eines asymptotischen Modells ist ein flexibles und schnelles Werkzeug zur Berechnung 
konvektiver Strömungen für verschiedenste Blanket-Designs. 
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1  Introduction 

Buoyant convection in cavities in the presence of an applied magnetic field received 
considerable attention due to its relevance to semiconductor crystal growth and liquid metal 
blankets for fusion reactors. For applications in nuclear fusion buoyant flows are dominant in 
blankets with separate cooling. In such blankets the liquid lithium-lead alloy Li17Pb83 serves 
mainly as breeding material while the heat is removed by another coolant. Such blankets do 
not need high velocities as those required in self-cooled blankets, where the fluid serves both 
as breeder and coolant simultaneously. For this reason pressure drop is not a serious issue for 
separately cooled blankets. A weak circulation of the fluid, however, is desired either by 
forced or buoyant convection in order to move the breeding product, tritium, out of the 
blanket. Stagnant fluid domains could accumulate tritium and cause safety problems. A 
properly designed blanket aims to avoid stagnant zones.  

Two main candidates of separately cooled lithium- lead blankets have been considered 
in the past. The one which was developed to the most detail is the European Water Cooled 
Lithium Lead blanket (WCLL) (Giancarli et al (1992), Fütterer et al (2000)). In that blanket 
the breeder is confined in long vertical rectangular boxes, similar to the geometries 
investigated in this report. The heat is removed from the blanket by water flowing in cooling 
tubes which are inserted into the boxes. From a thermal point of view this blanket has internal 
heat sources due to volumetric heating and local heat sinks at the cooling tubes. This 
arrangement leads to non-uniform temperatures in horizontal cross sections that give rise to 
thermally induced buoyant convection.  

The second candidate is the recently proposed Helium Cooled Lithium Lead blanket 
(HCLL). This blanket consists mainly of rectangular, liquid metal filled boxes, the walls of 
which are cooled internally by a high-pressure helium flow. With respect to geometry and 
thermal boundary conditions the latter design agrees perfectly with the geometries considered 
here since there are no internal obstacles inside the boxes as it was the case in WCLL. The 
internally released heat is transported mainly by thermal diffusion to the walls where it is 
removed by the helium. 

During operation all liquid metal blankets are exposed to a strong horizontal magnetic 
field confining the fusion plasma. In the presence of a magnetic field the flow of an 
electrically conducting liquid metal induces electric currents, which themselves interact with 
the magnetic field. Usually this electromagnetic interaction results in strong braking of the 
liquid motion, especially in the core of the flow occupying almost the entire box. In some flow 
subregions, however, especially in the so-called parallel layers along the electrically 
conducting walls aligned with the magnetic field, electromagnetic interaction may drive the 
flow at high velocities. The buoyancy-induced velocities in the core and moreover the 
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velocities driven in the parallel layers are of same or higher order of magnitude as the forced 
flow required for safe tritium extraction. In order to improve knowledge about magneto-
convective flows in fusion relevant geometries in strong magnetic fields such flows are 
analysed in the present report. 
 Buoyant convection has been studied by many authors, namely Hjellming & Walker 
(1987), Ozoe & Okada (1989), Okada & Ozoe (1992), Garandet, Alboussière & Moreau 
(1992), Alboussière, Garandet & Moreau (1993), (1996), Bojarevics (1995), Ma & Walker 
(1995), Tagawa & Ozoe (1997), (1998), Ben Hadid & Henry (1997), Ben Hadid, Henry & 
Kaddeche (1997), Bühler (1998), DiPiazza & Bühler (1999), Aleksandrova (2001) and 
Aleksandrova & Molokov (2000), (2002) among others. See reviews by Bühler (1998), 
Walker (1999) and Aleksandrova (2001) for more details. Below we give a brief overview of 
previous studies most relevant to the present investigation. 
 Perhaps the most important property of the buoyant flow in the presence of the 
magnetic field has been noted by Ma & Walker (1995) and Alboussière, Garandet & Moreau 
(1996). In both investigations solid walls were considered to be electrically insulating. They 
have shown that the magnitude of the induced flow may differ by orders of magnitude 
depending on whether the temperature is symmetric or anti-symmetric in the direction of the 
magnetic field. 
 The reason for this is in the closure pattern of the electric current. If the induced 
current is forced to flow through the Hartmann layers, they become active. They induce a 
potential difference in the core, which drives velocity of much higher magnitude than that 
induced originally by buoyancy. If currents bypass the Hartmann layers, no such high 
velocities are induced, and the convective flow remains highly damped by the field. 
 These ideas have been further developed by Aleksandrova (2001) and Aleksandrova & 
Molokov (2002), who gave complete classification of flows in closed cavities with electrically 
insulating walls for both vertical and horizontal magnetic fields. It has been shown that the 
flow pattern in the buoyant convective flow depends on many factors, such as the orientation 
of the field with respect to gravity, thermal conductance of the walls, symmetries of 
temperature in all three co-ordinates, the average values of the heat fluxes in all three 
directions, etc. 
 Flows in closed geometries with conducting walls have been studied mostly 
numerically (Tagawa & Ozoe (1998), DiPiazza & Bühler (1999)). Concerning analytical 
studies, Bühler (1998) investigated fully developed flow in long vertical rectangular ducts 
with thin conducting walls in a strong, horizontal magnetic field. The temperature distribution 
was arbitrary, independent of the vertical co-ordinate. It has been shown that symmetries of 
temperature are also important. Bühler (1998) presented various examples of flows owing to 
differential heating of duct walls, as well as volumetric heat sources. He has shown that jets in 
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the parallel layers at the walls parallel to the field are present, and that they may exist even if 
duct walls are perfect conductors. 
 As in hybrid liquid metal blankets ducts have a finite height, it is important to 
understand the resulting three-dimensional effects of the top and the bottom of the blanket. 
Therefore in this investigation we will be concerned with the steady, three-dimensional, 
convective flow in a rectangular box with thin, electrically conducting walls in the presence of 
a strong, horizontal magnetic field. The analysis is performed using an asymptotic flow model 
for high values of the Hartmann number. 
 

2  Formulation 

Consider the steady flow of a viscous, electrically conducting, incompressible fluid in 
a rectangular box (Fig. 1) in a strong, uniform magnetic field yB �0

∗∗ = B . The box has a height 
of 2d*, and horizontal dimensions of 2a* and 2l* in the y- and x- directions, respectively (here 
x*, y*, z* are Cartesian co-ordinates). Dimensional quantities are denoted by letters with 
asterisks, while their dimensionless counterparts - with the same letters, but without the 
asterisks. The walls of the box are numbered from 1 to 6 as shown in Fig. 1. Walls 1 and 2 are 
called the Hartmann walls, as they are transverse to the field, while those numbered 3-6 are 
called the parallel walls. All walls of the box are electrically conducting with electrical 
conductivity ∗σi  and thickness ∗

ih , i = 1�6. 
The box may be heated both externally and by internal volumetric heat sources Q*. In 

the following we will be concerned with buoyant convective flow, which sets in owing to 
differences in temperature T* implying variable density ρ* within the fluid. Assuming that the 
Boussinesq approximation is valid, the fluid density is expressed in terms of temperature as 
follows: 

 [ ])(1 00
∗∗∗∗∗ −β−ρ=ρ TT . 

The density of the fluid at temperature ∗
0T  is denoted by ∗ρ0 , and the thermal expansion 

coefficient by β∗ . Here ∗
0T  is a reference temperature at a certain, fixed point within the flow. 

The electrical conductivity, σ∗ , and kinematic viscosity, ν∗ , are assumed to be constant, 
independent of temperature. 
 Then the steady, dimensionless, inductionless equations governing the problem are 
(Bühler (1998)): 

 vvzyjv )(�� 422 ∇⋅+∇=+×+∇ −− GrHapTHa , (2.1) 

 �= −∇ φ+ ×j v y , (2.2) 

 ∇ ⋅ =j 0 , (2.3) 
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 0∇ ⋅ =v , (2.4) 

 QTPeT −∇⋅=∇ )(2 v . (2.5) 

Here the length, the fluid velocity v x y z= + +u v w� � � , the electric current density j, and the 
electric potential φ are normalised by a*, )/( 2

000
∗∗∗∗∗∗∗ σ∆βρ= BTgv , ∗∗∗σ 00 Bv , and ∗∗∗

00 Bva , 
respectively; g* is the intensity of gravity. The characteristic temperature difference ∗∆T  
depends on the nature of the heating. It may be specified either in terms of external heat flux, 
applied temperature difference at the walls, or characteristic intensity of internal heat sources. 
The dimensionless temperature, T, and pressure, p, are defined as follows: 

)/()( 0
∗∗∗ ∆−= TTTT , )/()( 2

000
∗∗∗∗∗∗∗∗ σρ+= aBvgzpp . 

 The ratio of the electromagnetic to the viscous forces is determined by the square of 
the Hartmann number,  

∗∗∗∗∗ νρσ= 00 /aBHa , 
which is supposed to be sufficiently high here for viscous effects to be confined to thin 
boundary layers. 
 The Grashof number, 

23 / ∗∗∗∗∗ ν∆β= TgaGr  
characterises the importance of the buoyancy forces. Parameter Gr/Ha2 plays the role of the 
Reynolds number, Re, while Ha4/Gr plays that of the interaction parameter, N (Alboussière, 
Garandet & Moreau (1996), Bühler (1998)). It is assumed here that the flow is inertialess in 
all the flow subregions. This requires Gr << Ha5/2, which is equivalent to N >> Ha3/2, as in 
duct flows with thin conducting walls. In a helium-cooled PbLi blanket typical values of 
dimensional parameters are: 0.1m,a ∗ = KT 100=∆ ∗ , TB 100 =∗ . Thus for Li17Pb83 at 

KT 6730 =∗  one gets Ha ~ 2.5⋅104 and Gr ~ 109 - 2⋅1010, so that the inertialess condition is 
fulfilled. For lower magnetic fields, e.g. for the outboard blanket, inertial effects might play a 
certain role. In any case, since blanket walls are electrically conducting, inertial effects, if 
present, are expected to be confined to parallel layers in the 3-D regions at the top and the 
bottom of the box. Thus the influence of inertia on the global flow in the core will be small 
even if Gr ~ Ha5/2. 
 The Peclet number, 

)/(/ 2
000
∗∗∗∗∗∗∗∗∗∗∗ σκ∆βρ=κ= BaTgavPe  

determines the ratio of convective and conductive heat fluxes. In the above κ∗  is the thermal 
conductivity of the fluid. The Peclet number can be expressed as follows: 

 2PrPe GrHa−= , 

where ∗∗ κν= /Pr  is the Prandtl number. For a sufficiently strong magnetic field Pe becomes 
sufficiently small to neglect convective heat transfer in Eq. (2.5). Thus the temperature 
distribution becomes independent of the fluid flow, while the energy equation reduces to  
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 2T Q∇ = − . (2.6) 

Eq. (2.6) is solved subject to the thermal boundary conditions. For each wall this may 
be either a specified heat flux or a fixed temperature. Specific conditions will be introduced 
when examples of various flows will be considered. Once T is known, it enters as the source 
term in Eq. (2.1). Thus, for the hydrodynamic part of the problem the temperature distribution 
is supposed to be given. 

With these assumptions Eqs. (2.1)-(2.4) become: 

 
x
pjuHa z ∂

∂=−∇− 22 ,   
y
pvHa

∂
∂=∇− 22 ,   T

z
pjwHa x −

∂
∂=+∇− 22 ,    (2.7a-c) 

 w
x

jx −
∂
φ∂−= ,   

y
jy ∂

φ∂−= ,   u
z

jz +
∂
φ∂−= , (2.8a-c) 

 0=
∂
∂+

∂
∂+

∂
∂

z
w

y
v

x
u ,   0=

∂
∂+

∂
∂

+
∂
∂

z
j

y
j

x
j zyx . (2.9a,b) 

 The boundary condition for the fluid velocity at each wall is the no-slip condition 

 v = 0. (2.10) 

The walls are supposed to be thin and electrically conducting. Thus, 

 iiii c φ∇=⋅ 2�nj    at all walls, i = 1-6, (2.11) 

where in�  is the normal unit vector to the wall i into the fluid, ∗∗∗∗ σσ= ahc iii /  is the wall 
conductance ratio, and 2

i∇  is the Laplace operator in the plane on wall i. 
 It will be assumed further that c1,2 >> Ha-1, c3-6 >> Ha-1/2, i.e. all the walls are much 
better conductors than the adjacent layers (Sec. 3). For a helium-cooled PbLi blanket this 
condition is fulfilled, as typically c ~ 0.07. 

The volume flux through any (x,y)-cross-section S of the box must vanish, which 
gives: 

 0=��
S

wdydx    for any z = constant. (2.12) 

Substituting Eq. (2.8a) into Eq. (2.7c), integrating the result over S, and using Eq. (2.12) 
yields: 

         [ ] )(
1

1
342

2
22 zTdxdy

z
pdydxdy

z
wHad

n
wHa

SS

−
∂
∂=φ−φ+

∂
∂+Λ

∂
∂

������
−

−

Λ

− , (2.13) 

where Λ is the boundary of S, and 
 ( )

S

T z Tdxdy= ��  
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is the dimensionless net buoyancy force in the cross-section S. It will be shown in Sec. 3 that 
the first two terms in the above equation are at most O(Ha-1), i.e. much smaller than the other 
ones. Neglecting these terms gives: 

 [ ]���
−

φ−φ−=
∂
∂ 1

1
43)( dyzTdxdy

z
p

S

    for any z = constant. (2.14) 

Eq. (2.14) may be interpreted as follows: at any cross-section of the box z = constant 
such a net vertical pressure gradient is induced to compensate the net buoyancy force and the 
difference between potentials of walls 3 and 4 that the total volume flux is zero. 

In Sec. 3 Eqs. (2.7) - (2.9) subject to the conditions (2.10), (2.11), (2.14) are solved for 
a given temperature by the method of matched asymptotic expansions at high values of the 
Hartmann number. Generally, only leading terms in the asymptotic expansions in each flow 
subregion are presented. 
 
 
3  Asymptotic solution for Ha >> 1 
 
 For Ha >> 1 the interior of the cavity can be divided into several subregions (Fig. 1), 
where the flow is governed by the reduced equations. The most important of the subregions, 
which determine the flow pattern, are the inviscid core C, occupying the bulk of the flow, the 
Hartmann layers H1, H2 of thickness O(Ha-1) at the walls 1 and 2 perpendicular to the 
magnetic field, parallel layers Pi of thickness O(Ha-1/2) at the walls i = 3-6 parallel to the 
magnetic field, and the corner parallel layers with dimensions O(Ha-1/2)×O(1)×O(Ha-1/2). The 
latter are formed at the intersection of layers Pi. As has been discussed by Molokov & Bühler 
(1994), the details of the flow in the corner parallel layers are not important, and thus they will 
not be considered further. 
 

3.1  Core C 
 
In the core viscous terms in Eqs. (2.7) may be neglected. Then from Eq. (2.7b) follows 

that the core pressure is a function of x and z only. This fact is used to integrate reduced Eqs. 
(2.7)-(2.9) with respect to y. As a result of integration, the core variables may be represented 
in the form used by Aleksandrova (2001) as follows: 

 ),( zxPpC = , (3.1) 

 ),,(),(),( zyxMzxJyzx xyC −⋅−Φ=φ , (3.2) 
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 ),,(, zyxT
z
Pj Cx −

∂
∂= ,   � ∂

∂+=
y

yCy dtztx
x
TzxJj

0
, ),,(),( ,   

x
Pj Cz ∂

∂−=, , (3.3a-c) 

 
zx

Pu C
C ∂

φ∂+
∂
∂−= , (3.4) 

 � ∂
∂−∇+=

y

xzyC dtztx
z
TPyzxVv

0

2 ),,(),( , (3.5) 

 
xz

PzyxTw C
C ∂

φ∂−
∂
∂−= ),,( , (3.6) 

where  

 � ∂
∂−=

y

x dtztx
x
TtyzyxM

0

),,()(),,( . (3.7) 

Throughout this paper subscripts C, Pi and Hi of the flow variables denote the flow subregion, 
i.e. the core, the parallel- and the Hartmann-layers, where corresponding limit equations are 
valid. Variables with these subscripts are O(1).  

In Eqs. (3.1)-(3.6) there are four unknown functions of x and z. These are the core 
pressure P, the electric potential Φ at y = 0, and the  y-components of current Jy and velocity 
Vy at y = 0. In the following all the core variables will be expressed in terms of wall potentials 
φi and core pressure P. As there is no jump in the O(1) electric potential across the Hartmann 
layers, then the core potential evaluated at y = ±1 equals that of walls 1 and 2, respectively. 
This fact and Eq. (3.2) yield: 

            [ ]
�
�
�

�
�
�

∂
∂−+φ−φ= �

−

dy
x
TysignyJ y

1

1
122

1 )(  

 { } ),1,(~
122

1 zxM x−φ−φ= , (3.8) 

      ( )
�
�
�

�
�
�

∂
∂−+φ+φ=Φ �

−

1

1
122

1 ||1 dy
x
Ty  

 { } ),1,(�
122

1 zxM x+φ+φ= . (3.9) 

Symbols ~ and ^ above Mx mean that either an odd, T~ , or an even, T� , part of temperature with 
respect to y, respectively, is used in Eq. (3.7). 
 Then the y-component of core current and the core potential become: 

 { } � ∂
∂+−φ−φ=

y

xCy dtztx
x
TzxMj

0
122

1
, ),,(),1,(~ , (3.10) 
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 ),,(),1,(~),1,(� zyxMzxMyzxM xxxLC −++φ=φ , (3.11) 

where 

 )()( 212
1

212
1 φ−φ+φ+φ=φ yL . (3.12) 

 
The normalization condition (2.14) gives: 

 [ ]��
−−

φ−φ−=
∂
∂ 1

1
43)(2 dyzTdx

z
Pl

l

    for any z = constant. (3.13) 

As there are four unknown functions in the core, namely P, Vy, φ1 and φ2, four 
equations are required to determine them. They are provided by the conditions of matching 
with the Hartmann-layer solutions. In Sec. 3.2 these equations will be derived for arbitrary 
values of c1,2, including c1,2 = 0 (insulating walls). Further, however, it will be assumed that 
c1,2 >> Ha-1. 
 

3.2  Hartmann layers H1 and H2 
 
As there are no jets in the Hartmann layers, the O(1) core velocity must satisfy the 

non-penetration conditions at y = ± 1. This gives the first two equations on the core variables, 
namely: 

 vC = 0     at y = ± 1. (3.14) 

Then from Eqs. (3.5) and (3.14) follows: 

 �
− ∂

∂=
1

1

)(
2
1 dyysign

z
TVy , (3.15) 

 �
− ∂

∂=∇
1

1

2

2
1 dy

z
TPxz . (3.16) 

Eq. (3.16) is the governing equation for the core pressure. 
Substituting expressions (3.15) and (3.16) into Eq. (3.5) gives: 

  ��� ∂
∂−

∂
∂−+

∂
∂+=

−

y

C dtztx
z
Tdy

z
Tydy

z
Tyv

0

0

1

1

0

),,()1(
2
1)1(

2
1 . (3.17) 

Thus the y-component of the core velocity is readily available. It is a function of temperature 
only. 

To derive the other two boundary conditions for the core variables at y = ±1 only 
Eqs. (2.7a,c), (2.8a,c) and (2.9b) will be used. We will consider first layer H1 at y = 1 and 
introduce a stretched variable yH1 = Ha(y � 1). Then Eqs. (2.7a,c), (2.8a,c) yield:  
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x
P

z
u

y
u

H
H

H

∂
∂+

∂
φ∂−=−

∂
∂ 1

12
1

1
2

, (3.18) 

 
1

1
12

1

1
2

=
−

∂
∂+

∂
φ∂=−

∂
∂

yH
H

H T
z
P

x
w

y
w . (3.19) 

The solution to these equations, which satisfies the no-slip condition at the wall y = 1, is: 

 )1( 11
1

Hy
H e

x
P

z
u −�

�

�
�
�

�

∂
∂−

∂
φ∂= , (3.20) 

 )1( 1

1
1

1
Hy

yH eT
z
P

x
w −�

�

�
�
�

� +
∂
∂−

∂
φ∂−=

=
. (3.21) 

From the current conservation law (2.9b) and Eqs. (2.8a,c), (3.18) and (3.19) follows 
that 

 )1( 11

1
1

2

1

1, HH y

y

y
xz

H

Hy e
x
Te

y
j

Ha −
∂
∂+φ∇=

∂
∂

=

. (3.22) 

Integrating Eq. (3.22) with respect to yH1, using the boundary condition (2.11) for i = 1, and 
matching the y-component of the core current given by Eq. (3.10) to that in the Hartmann 
layer, results in the equation for wall potential φ1 as follows: 

 ( )
1

1
1

1
122

1
1

2
1 )1(

2
1

=

−

− ∂
∂++

∂
∂−=φ−φ+φ∇ �

y
xz x

THadyy
x
Tc , (3.23) 

where 1
11

−+= Hacc  is the efficient conductance ratio of wall 1.  
 The Hartmann layer at wall 2 is treated in a similar way and yields a similar equation 
for φ2 as follows: 

 ( )
1

1
1

1
212

1
2

2
2 )1(

2
1

−=

−

− ∂
∂+−

∂
∂−=φ−φ+φ∇ �

y
xz x

THadyy
x
Tc , (3.24) 

where 1
22

−+= Hacc  is the efficient conductance ratio of wall 2.  
 Eqs. (3.23) and (3.24) are valid for both conducting and insulating Hartmann walls. As 
has been discussed by Aleksandrova (2001), the terms Ha-1∂T/∂x(y = ±1) in the right hand 
side of Eqs. (3.23) and (3.24) represent the y-component of the curl of the buoyancy force at 
the boundary between the core region and the Hartmann layers. They are important for 
insulating walls (or more generally, for c1,2 = O(Ha-1)) only. It is necessary to retain these 
terms in that case in order to ensure conservation of current O(Ha-1) in the Hartmann layers. 

In the following we will be concerned with walls 1 and 2 being much better 
conductors than the Hartmann layers ( 1

2,1
−>> Hac ). Thus in Eqs. (3.23), (3.24) parameter 2,1c  

will be replaced by c1,2, while terms Ha-1∂T/∂x(y = ±1) will be neglected. 
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3.3  Electric potentials of parallel walls 3-6 
 
 Owing to the assumption 2/1

63
−

− >> Hac , there is no jump of the normal component of 
the electric current across the parallel layers (Hua et al. (1988)). Thus, expressions for the x-
and z- components of core current given by Eqs. (3.3a,c) may be substituted directly into 
Eq. (2.11) with i = 3,4 and 5,6, respectively. This gives equations governing potentials of 
walls 3-6 as follows: 

 ),,(4,3
2

4,3 zylT
z
Pc

lx
yz ±±

∂
∂=φ∇

±=

� , (3.25) 

 
dz

xy x
Pc

±=∂
∂±=φ∇ 6,5

2
6,5 . (3.26) 

Thus equations for the wall potentials φ3-6 have been obtained with no reference to the parallel 
layers at all. 
 At the junction between walls electric potential must be continuous. Since all walls are 
supposed to be better conductors than the adjacent Hartmann- or parallel- layers, the electric 
current leaving one wall must enter the adjacent wall. Thus if walls i and j have a common 
boundary Γij, then 

 ji φ=φ ,   
j

j
j

i

i
i cc

η∂
φ∂

−=
η∂
φ∂    along Γij, (3.27) 

where ηi, ηj are normal, inward derivatives to Γij in the planes of walls i and j, respectively. 
 Finally, to determine the boundary conditions for the core pressure, which obeys 
Eq. (3.16), parallel layers need to be considered. 
 

3.4  Parallel layers P3, P4 
 
Flow in parallel layers is characterized by the presence of O(Ha1/2) high velocity jets 

tangential to parallel walls. Consider first parallel layer P3 at x = l. The stretched co-ordinate 
is )(2/1 lxHa −=ξ  , while the scaling of the flow variables is as follows: w, v are O(Ha1/2), u, 
jz, jy and φ are O(1), 3,

2/1
, )( PxCxx jHalxjj −+== , 3

2/1)( PpHalxPp −+== . Although it is 
possible to solve the parallel-layer equations exactly, we will restrict ourselves to the 
derivation of the boundary conditions for the core pressure, and the analysis of the integral 
characteristics of the parallel layers, such as local flow rates (Molokov&Bühler (1994)). 

Introducing scaled variables into Eq. (2.8a) and retaining leading terms as ∞→Ha  
gives: 
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ξ∂

φ∂−= 3
3

P
Pw . (3.28) 

Integrating this equation over the layer with respect to ξ yields the z-component of the local 
flow rate carried by layer P3 as follows: 

 3

0

33, )(),( φ−=φ=ξ= �
∞−

lxdwzyq CPz , (3.29) 

i.e. for given y and z the amount of fluid carried by the jet in layer P3 in the z-direction is 
proportional to the jump in the electric potential across the layer, a well-known fact.  
 Now, Eqs. (2.7a), (2.8c) and (2.9a) give: 

 
ξ∂

∂−= 3
3,

P
Pz

pj ,   3,
3

3 Pz
P

P j
z

u +
∂
φ∂= ,   0333 =

∂
∂+

∂
∂+

ξ∂
∂

z
w

y
vu PPP . (3.30a-c) 

Eliminating wP3, uP3, φP3 and jz,P3 from Eqs. (3.28) and (3.30) results in the following 
equation: 

 
y

vp PP

∂
∂=

ξ∂
∂ 3

2
3

2

. (3.31) 

Integrating this equation with respect to ξ over the layer, and using matching 
conditions with the core and Eqs. (3.30a,b) gives: 

 �
∞−=

ξ
∂

∂=
∂
∂−

∂
φ∂ 0

33 d
y

v
x
P

z
P

lx

. (3.32) 

Integrating further Eq. (3.32) with respect to y between �1 and 1, gives the following 
boundary condition for the core pressure: 

 dy
zx

P
�
− ∂

φ∂=
∂
∂ 1

1

3

2
1    at x = l. (3.33) 

 If integration of Eq. (3.31) is performed between �1 and y, and use of Eq. (3.32) is 
made, the result is the local flow rate qy,3 in the y-direction, namely: 

  ���
−−∞− ∂

φ∂+−
∂
φ∂=ζ=

1

1

3

1

3
3

0

33, )1(
2
1 dy

z
ydy

z
dvq

y

Py . (3.34) 

For ∞<3c  the expression z∂φ∂− /3  is proportional to the wall current flowing in the 
z-direction. Thus expression (3.34) may be interpreted as follows. Local flow rate qy,3 is 
proportional to the deviation of  current flowing in the z-direction from being independent of 
y. If φ3 is at most a linear function of z, then qy,3 vanishes in the whole layer. This happens, for 
example, if wall 3 is a perfect conductor. 
 The analysis of parallel layer P4 gives similar expressions for the boundary condition 
for the core pressure and the local flow rate, namely: 
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 dy
zx

P
�
− ∂

φ∂−=
∂
∂ 1

1

4

2
1    at x = -l, (3.35) 

 )(),( 44, lxzyq Cz −=φ−φ= , (3.36) 

 ��
−− ∂

φ∂++
∂
φ∂−=

1

1

4

1

4
4, )1(

2
1),( dy

z
ydy

z
zyq

y

y . (3.37) 

 

3.5  Parallel layers P5, P6 
 
Consider now layer P5 at z = d. The stretched co-ordinate is: )(2/1 dzHa −=ζ  , while 

the scaling of the flow variables is as follows: u, v are O(Ha1/2), w, jx, jy and φ are O(1), 

5,
2/1

, )( PzCzz jHadzjj −+== , 5
2/1)( PpHadzPp −+== .  

Introducing scaled variables into Eqs. (2.8c), (2.7a,c), (2.9a) and retaining leading 
terms as ∞→Ha  gives: 

 
ζ∂

φ∂= 5
5

P
Pu ,    ),,(5

5, dyxTpj P
Px −

ζ∂
∂= , (3.38a,b) 

 5,
5

5 Px
P

P j
x

w −
∂
φ∂−= ,    0555 =

ζ∂
∂+

∂
∂+

∂
∂ PPP w

y
v

x
u . (3.39a,b) 

From Eqs. (3.38) and (3.39) follows: 

 )(),( 55, dzyxq Cx =φ−φ= , (3.40) 

and 

 
y

vp PP

∂
∂=

ζ∂
∂ 5

2
5

2

. (3.41) 

Integrating this equation with respect to ζ over the layer, and using matching 
conditions with the core and Eqs. (3.38b), (3.39a), gives: 

 �
∞−=

ζ
∂

∂=
∂
∂−

∂
φ∂−

0
55),,( d

y
v

z
P

x
dyxT P

dz

. (3.42) 

Integrating Eq. (3.42) with respect to y between �1 and 1, gives the following 
boundary condition for pressure: 

 dyTdy
xz

P
��
−−

+
∂
φ∂−=

∂
∂ 1

1

1

1

5

2
1

2
1    at z = d. (3.43) 

 If integration of Eq. (3.42) is performed between �1 and y, and use of Eq. (3.43) is 
made, the result is the local flow rate qy,5 in the y-direction, namely: 
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  ���
−−∞−

��

�
��

� −
∂
φ∂+−��

�
��

�

∂
φ∂−=ζ=

1

1

5

1

5
0

55, ),,()1(
2
1),,( dydyxT

x
ydt

x
dtxTdvq

y

Py . (3.44) 

 The analysis of parallel layer P6 gives similar expressions for the boundary condition 
for the core pressure and the y-component of the local flow rate, qy,6, namely: 

 dyTdy
xz

P
��
−−

+
∂
φ∂=

∂
∂ 1

1

1

1

6

2
1

2
1    at z = -d. (3.45) 

 ��
−−

��

�
��

� −−
∂
φ∂++��

�
��

�

∂
φ∂−−−=

1

1

6

1

6
6, ),,()1(

2
1),,( dydyxT

x
ydt

x
dtxTq

y

y , (3.46) 

 

3.6  Summary 
  

The problem for wall potentials and core pressure is now fully defined. It consists of 
Eqs. (3.16), (3.23)-(3.26) and boundary conditions (3.27), (3.33), (3.35), (3.43) and (3.45). 
The normalization condition is given by Eq. (3.13). For convenience we present the summary 
of the results in Table 1.  
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Table 1. Summary of the asymptotic results 
 
Wall potentials 
and core 
pressure 

 

 
Equations  �

− ∂
∂=∇

1

1

2

2
1 dy

z
TPxz  (3.47)

 �
−

±
∂
∂−φ−=φ−φ∇

1

1
1,22

1
2,12

1
2,1

2
2,1 )1(

2
1 dyy

x
Tc xz  (3.48)

 ),,(4,3
2

4,3 zylT
z
Pc

lx
yz ±±

∂
∂=φ∇

±=

�  (3.49)

 
dz

xy x
Pc

±=∂
∂±=φ∇ 6,5

2
6,5  (3.50)

 
Boundary 
conditions 

 ji φ=φ ,   
j

j
j

i

i
i cc

η∂
φ∂

−=
η∂
φ∂    along Γij (3.51a,b)

 dy
zx

P
�
− ∂

φ∂
±=

∂
∂ 1

1

4,3

2
1    at x = ±l  (3.52)

 dyTdy
xz

P
��
−−

+
∂
φ∂

=
∂
∂ 1

1

1

1

6,5

2
1

2
1

�    at z = ±d  (3.53)

Core variables  ),,(),1,(~),1,(� zyxMzxMyzxM xxxLC −++φ=φ  (3.54)

 T
z
Pj Cx −

∂
∂=,  (3.55)

 { } � ∂
∂+−φ−φ=

y

xCy dtztx
x
TzxMj

0
122

1
, ),,(),1,(~  (3.56)

 
x
Pj Cz ∂

∂−=,  (3.57)

 
zx

Pu C
C ∂

φ∂+
∂
∂−=  (3.58)

 ��� ∂
∂−

∂
∂−+

∂
∂+=

−

y

C dtztx
z
Tdy

z
Tydy

z
Tyv

0

0

1
2
1

1

0
2
1 ),,()1()1(  (3.59)

 
xz

PTw C
C ∂

φ∂−
∂
∂−=  (3.60)

Layers P3, P4, 
local flow rates 

 [ ]4,34,3, )(),( φ−±=φ±= lxzyq Cz  (3.61)

 ��
−− ∂

φ∂
+

∂
φ∂

±=
1

1

4,3

1

4,3
4,3, )1(

2
1),( dy

z
ydy

z
zyq

y

y �  (3.62)

Layers P5, P6, 
local flow rates 

 [ ])(),( 6,56,5, dzyxq Cx ±=φ−φ±=  (3.63)
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�
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�
�

� ±−
∂
φ∂

+�
�

�
�
�

�

∂
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−±±=
1

1

6,5

1

6,5
6,5, ),,()1(

2
1),,( dydyxT

x
ydt

x
dtxTq

y

y �   (3.64)
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4  Numerical method 

 
 For a general temperature distribution and walls of finite conductance the system of 
equations governing wall potentials and core pressure is solved numerically. An iterative 
method is used as described by Molokov & Bühler (1994) and in more detail by Molokov & 
Bühler (1993). 
 Briefly, at each iteration step n Eqs. (3.47)-(3.50) are solved separately using a second-
order accurate finite-difference scheme combined with a Fast Poisson Solver. The scheme has 
been used with 64 points per unit length in all calculations presented below. The values in the 
right hand sides of Eqs. (3.48)-(3.50), (3.52), (3.53) are taken from a previous iteration step.  
 For a wall potential φi (i = 1,�,6) at each iteration step the boundary conditions along 
Γij are given by either Eq. (3.51a) or (3.51b). If for a wall i, 

 )1()( −φ=φ n
j

n
i     along Γij, 

then for the wall j  

 
i

n
i

j

i

j

n
j

c
c

η∂
φ∂−=

η∂
φ∂ − )1()(

. 

Under-relaxation is used in the Neumann boundary condition of the type above, especially for 
cj << 1. The value of the under-relaxation parameter ω = 0.05 was sufficient to achieve 
convergence in all cases presented here. 
 Iterations stopped when the maximal difference in the derivatives of the wall 
potentials at two successive iteration steps becomes below 10-10. 
 

5  Results and discussion  

 
For insulating walls one or the other symmetry of temperature may lead to changes of 

the fluid velocity by O(Ha1/2) or even by O(Ha) in either the core or the parallel layers 
(Aleksandrova (2001)). If walls are electrically conducting, the velocity in the core is always 
O(1), while that in parallel layers is at most O(Ha1/2), so no such drastic changes of the flow 
pattern are expected. However, as follows from Table 1 symmetries of temperature with 
respect to all three co-ordinates still affect qualitatively the flow pattern in the core. The effect 
of these will be discussed in the next sections.  

We split the discussion into two major sections depending on symmetry of the flow 
with respect to y. Within each section other symmetries with respect to x and z are discussed. 
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Further, in each section the discussion starts for boxes with certain walls being perfect 
conductors with the following aims. On the one hand, this helps (i) to understand the reason 
why certain walls are being active or passive in a sense that the values of their wall 
conductance ratios do or do not affect the flow; (ii) to understand the driving mechanism of 
the flow in various flow regions. On the other hand, in some experiments on buoyant 
convection heated and cooled walls are made of thick copper. Thus in the first approximation 
they may be considered as being perfectly conducting. 

For various symmetries flow pattern is demonstrated on several examples of 
temperature distribution, which includes practically important cases of differentially heated 
walls and internal heat sources. These examples have been selected in such a way as to show 
the qualitative difference in the resulting flow pattern depending on either symmetries or 
thermal boundary conditions. Some of the examples of temperature variation may look 
artificial. However, as the problem is linear, temperature may be represented as a linear 
combination of functions, which are qualitatively similar to those used in the examples.  

Calculations for the helium-cooled PbLi blanket will be performed once the design is 
fixed.  

 

5.1  y-anti-symmetric case 
 
 If temperature is anti-symmetric in y and c1 = c2, all the core flow variables become 
either symmetric, or anti-symmetric in y. In particular, core pressure vanishes, while φC, jx,C, 
wC, uC are anti-symmetric, while jy,C and vC are symmetric. The volume flux condition (3.13) 
is satisfied automatically. In addition, from Eqs. (3.55) and (3.57) follows that 

 Tj Cx
~

, −= ,   0, =Czj , (5.1a,b) 

i.e. the core current flows in the (x,y)-planes, while the x-component of current is fully 
determined by temperature. All other flow variables depend not only on temperature directly, 
but on the wall potentials as well. The terms involving temperature in Eqs. (3.56) and (5.1b) 
represent the primary driving �force� for the core currents. Those terms involving wall 
potentials are secondary ones resulting from the necessity of the currents to complete their 
circuits in the conducting walls. In order to understand the flow better, we will consider first 
the case when the wall potentials vanish, i.e. all walls being perfect conductors.  
 



 

 
 

23

5.1.1  All walls perfectly conducting 

 
If all the walls are perfectly conducting ( ∞→ic , i = 1,�,6), the solution for the core 

becomes expressed in terms of temperature only, and thus is known. It is given by Eqs. (5.1), 
(3.59) and the following expressions: 

 ),,(~),1,(~ zyxMzxMy xxC −=φ , (5.2) 

 � ∂
∂+−=

y

xCy dtztx
x
TzxMj

0
, ),,(

~
),1,(~ , (5.3) 

 
z

u C
C ∂

φ∂= ,   
x

Tw C
C ∂

φ∂−= ~ , (5.4a,b) 

which follow from Eqs. (3.54), (3.56), (3.58) and (3.60).  
From Eqs. (5.1) and (5.3) follows that the streamfunction for the core current is 

 �� −−=Ψ
1

00

),,(~)1(),,(~ dtztxTtdtztxT
y

C , (5.5) 

where 

 xj CCy ∂Ψ∂=, ,   yj CCx ∂Ψ∂−=, . (5.6) 

The expressions for the local flow rates in layers P3-P6 are: 

 )(),(4,3, lxzyq Cz ±=φ±= ,   0),(4,3, =zyqy , (5.7a,b) 

 )(),(6,5, dzyxq Cx ±=φ= � ,   �
−

±=
y

y dtdtxTyxq
1

6,5, ),,(~),( . (5.8a,b) 

From Eq. (5.7b) follows that whatever the core flow, there is no redistribution of the fluid in 
the y-direction in layers P3, P4. On the contrary, in layers P5 and P6 the y-component of the 
local flow rate is always non-zero unless 0~ =T  at z = ±d. 

Consider now further particular cases. If temperature is independent of both z and x, 
i.e. )(~~ yTT = , then all the core flow variables, except for jx,C, wC, vanish, the latter being 

 TwC
~= . (5.9) 

In particular, for yT =~  (differentially heated Hartmann walls y = ±1; all other walls 
being thermally insulating), one gets:  

 yj Cx −=, , ywC = . (5.10) 
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The core current, induced in the negative and positive y-direction for y > 0 and y < 0, 
respectively (Fig. 2), shortcuts in the perfectly conducting walls 3 and 4 in the same cross-
section z = constant, which is schematically shown with broken lines in Fig. 2. 
 There are no jets in layers P3, P4. Thus the flow in the bulk of the box is fully 
developed irrespective of the aspect ratio. The fluid simply ascends or descends in the core 
where T~  is positive or negative, respectively. At z = ±d the fluid turns in layers P5 and P6 in 
high-velocity jets. Consider layer P5, for example. For yT =~  local flow rates for this layer are 
given by the following expressions: 

 qx,5 = 0,   )1( 2
2
1

5, −= yqy . (5.11) 

Thus the fluid, which enters layer P5 at the top of the box for y > 0 flows in the �y-direction 
and then descends in the core in a symmetric way. A schematic diagram of such a flow is 
shown in Fig. 2. As there is no flow in the x-direction in the layer, the flow is two-
dimensional, in the (x,z)-planes, similar to that discussed by Garandet, Alboussière & Moreau 
(1992). 
 If temperature is independent of z, i.e. ( , )T T x y=� � , both y- and x- components of 
velocity vanish, and fluid ascends or descends in both the core and layers P3, P4. As the core 
potential evaluated at walls 3 and 4 is in general not equal to zero, from Eq. (5.7a) follows that 
jets are present in layers P3, P4. As follows from Eqs. (5.2), (5.7) and (5.9), locally the 
direction of the flow in the jets may not be the same as that in the adjacent core.  

As an example consider the flow for xyT =~  (heating/cooling of the vertical walls with 
maxima and minima of temperature at the ribs y = ±1, x = ±l, Fig. 3). The core variables are: 

 )1( 2
6
1 yyC −=φ ,  xyj Cx −=, ,   0, =Czj ,   2

2
1

6
1

, yj Cy +−= , (5.12) 

  ( )3
12

2
1 −=Ψ yxC ,   0=Cu ,   0=Cv ,   xywC = , (5.13) 

 )1( 2
6
1

4,3, yyqz −±= ,   04,3, =yq , (5.14) 

 )1( 2
6
1

6,5, yyqx −= � ,   )1( 2
2
1

6,5, −±= yxqy . (5.15) 

We observe that: (i) the core current has two components; the loops of current are 
shown in Fig. 4; (ii) apart from the vicinity of walls 5 and 6 the flow is fully developed; (iii) in 
layers P5 and P6 both components of local flow rates are non-zero (Fig. 5).  

As there is a volume flux into layer P5 from the core, vector lines for the local flow 
rate in layer P5, shown in Fig. 5, cannot be considered the streamlines. Once the fluid from 
the core enters layer P5 for certain values of x and y, it follows these vector lines and finally 
leaves the layer back to the core in a symmetric way. 
 If temperature is independent of x, i.e. ),(~~ zyTT = then wC and jx,C are given by 
expressions (5.1a) and (5.9). All other core variables, except for vC (given by Eq. (3.58)), 
vanish. The current loops are as those described for )(~~ yTT = . As the core velocity now 
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involves the second component, vC, the flow in the core occurs in the (y,z)-planes, i.e. exactly 
transverse to the core current. It is obviously no longer fully developed in the whole box. In 
addition, there are no jets in layers P3, P4. 
 It should be noted that for ),(~~ zyTT =  and for 0~ =T  at z = ±d (fixed, constant 
temperature at the top and bottom walls), jets in all the parallel layers vanish (cf. Eqs. (5.7), 
(5.8)). The fluid simply recirculates in the core in the planes x = constant. An example of such 
a temperature distribution is )(~ 22 zdyT −= , which yields: 

 )1( 2 −= yzvC ,   )( 22 zdywC −= . 

The streamlines for this flow for d = 1 are shown in Fig. 6. 
 

5.1.2  Perfectly conducting walls 1, 2; walls 3-6  - finite conductors 

 
Now suppose that walls 1 and 2 are perfectly conducting, i.e. φ1 = φ2 = 0, while 

parallel walls 3-6 being of finite conductivity. Then potentials of walls 3-6 obey the following 
equations: 

 ),,(~
4,3

2
4,3 zylTc yz ±±=φ∇ , (5.16) 

 06,5
2

6,5 =φ∇ xyc . (5.17) 

subject to boundary conditions (3.51) and 

 φ3-6 = 0   at y = ±1. (5.18) 

It should be noted that the problem for wall potentials φ3-6 may be solved analytically in terms 
of Fourier series. 

Taking into account y-symmetry of the problem, the y-components of the local flow 
rates carried by layers P3-P6 become: 

 �
− ∂

φ∂
±=
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y dy
z

zyq
1

4,3
4,3, ),( ,   �

−
�
�

�
�
�

�

∂
φ∂

−±=
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y dt
x

dtxTq
1

6,5
6,5, ),,(~

� , (5.19) 

while those transverse to the field are given by Eqs. (3.61) and (3.63). 
It follows that while the core flow is exactly the same as for all walls being perfect 

conductors, jets in parallel layers P3 and P4 are present. Thus the flow in parallel layers is 
three-dimensional even if temperature is independent of x or z.  

There is one exception to the above flow pattern, namely for 0),,(~ =± zylT , i.e. for a 
fixed, constant temperature of walls 3 and 4. In this case potentials of walls 3-6 vanish 
irrespective of the values of their wall conductance ratios. The reason for this is that there is 
no normal component of core current to the parallel walls. An example of such a temperature 
distribution is )(~ 22 xlyT −=  (Fig. 7). In this case, 
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 )( 22
, lxyj Cx −= ,   )( 2

3
1

, yxj Cy −= ,    2
6
1222

2
1 )( xxlyC +−=Ψ . (5.20) 

The core current, shown in Fig. 8, shortcuts via perfectly conducting Hartmann walls. Thus 
there is no �need� for the current to pass through the parallel walls, which thus remain 
passive. 
 

5.1.3  Perfectly conducting walls 3-6; walls 1 and 2 - finite conductors 

 
If walls 3-6 are perfectly conducting, then potentials φ3-φ6 vanish. For an odd 

temperature with respect to y, and for c2 = c1 one gets φ2 = -φ1, while the problem governing 
potential φ1 becomes: 

 � ∂
∂−=φ−φ∇

1

0
11

2
1

~
dy

x
Tyc xz ,  (5.21) 

 01 =φ     at x = ±l,  (5.22) 

 01 =φ     at z = ±d.  (5.23) 

It should be noted that the solution to this problem may be obtained analytically in terms of 
Fourier series for an arbitrary temperature distribution.  

The core variables are given by equations: 

 ),,(~),1,(~
1 zyxMzxMyy xxC −+φ=φ , (5.24) 

 � ∂
∂+−φ−=

y

xCy dtztx
x
TzxMj

0
1, ),,(

~
),1,(~ , (5.25) 

 
z

u C
C ∂

φ∂= ,   
x

Tw C
C ∂

φ∂−= ~ . (5.26) 

Compared to Sec. 5.1.1 there are new terms involving φ1 in Eqs. (5.24) and (5.25). 
They are related to the additional current flowing in the y-direction owing to the difference of 
potentials of walls 1 and 2.  

However, if temperature is independent of x, from Eqs. (5.21)-(5.23) follows that 
φ1 = 0, so that the flow becomes exactly the same as that for all walls being perfect 
conductors. This holds, for example, for yT =~  (the case of differentially heated Hartmann 
walls, discussed in Sec. 5.1.1). The reason is that the core current enters neither wall 1 nor 2 
(cf. Fig. 2). It shortcuts in walls 3 and 4 between y > 0 and y < 0 in the same cross-section z = 
constant.  

If temperature varies with x, the are two possibilities. The first one is that the 
expression 
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 � ∂
∂−=

1

0

~
~ dy

x
Tymx  (5.27) 

vanishes. Then φ1 vanishes as well, and the core flow is again exactly the same as for perfectly 
conducting walls.  

The expression (5.27) represents the y-component of the temperature-driven current 
entering the Hartmann walls. Even if such a current is induced in the core, but it does not 
enter the Hartmann walls, the latter again remain passive. An example of such a flow occurs 
for )1(~ 2

3
5 yxyT −=  (Fig. 9). In this case 

    )1( 2
3
5

, yxyj Cx −−= ,   )561( 42
12
1

, yyj Cy −+−= ,   )561( 42
12
1 yyxC −+−=Ψ . (5.28) 

The lines of core current are shown in Fig. 10. 
Even if c1 and c2 are arbitrary, not equal to each other, but 0~ =xm , then the flow will 

still be anti-symmetric with respect to y. Indeed, from Eqs. (3.47), (3.52), (3.53) follows that 
for y-anti-symmetric temperature and perfectly conducting parallel walls the core pressure 
vanishes even if c1 ≠ c2, and thus cannot affect the core flow. Further, if 0~ =xm  functions φ1 

and φ2 obey homogeneous Eqs. (3.48) subject to boundary conditions 

 φ1,2 = 0   at x = ±l and at z = ±d. (5.29) 

The solution to the problem is trivial, namely 

 φ1,2 = 0. (5.30) 

Thus conductance of walls 1 and 2 plays no role, i.e. they behave as if they were perfectly 
conducting.  

The second possibility is that expression (5.27) is non-zero. Then the whole core flow 
will be affected by the finite conductance of the Hartmann walls. This will happen, for 
example for current closure patterns shown in Figs. 4 and 8. In this case jets in layers P3 and 
P4 are always present.  
 Finally we note that the flow discussed in this section has many similarities with that 
in an insulating rectangular box in a vertical magnetic field considered by Aleksandrova 
(2001). In that problem, however, jets in the parallel layers were of much higher magnitude, 
namely O(Ha).  
 

5.1.4  All walls of finite conductance 

 
Suppose now that all the walls have a finite electrical conductance. Now conductance 

ratios of all walls will affect the flow pattern unless normal component of the core current 
vanishes at all the boundaries of the box. The latter situation occurs if and only if 

 0~ =T    at x = ±l, (5.31) 
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and 0~ =xm . (5.32) 

For the sake of simplicity we further assume that one of the conditions (5.31) or (5.32) 
is not fulfilled and that all the walls have the same walls conductance ratio, i.e. ci = c for 
i = 1,�,6. Then owing to symmetry one gets φ2 = -φ1, φ4 = -φ3, φ6 = φ5.  

Consider the case of differentially heated Hartmann walls, i.e. yT =~ , discussed in 
Sec. 5.1.1. Then the equations governing electric potentials of walls 1, 3, 5 are: 

 011
2 =φ−φ∇ xzc , (5.33) 

 yc yz =φ∇ 3
2 , (5.34) 

 05
2 =φ∇ xy . (5.35) 

The flow is symmetric with respect to both x and z, which leads to the following conditions: 

 01 =φ ,   05 =φ   at x = 0, (5.36) 

 03 =φ ,   05 =φ   at y = 0, (5.37) 

 0/1 =∂φ∂ z ,  0/3 =∂φ∂ z  at z = 0. (5.38) 

The expressions for the core variables become: 

 1φ=φ yC , (5.39) 

 yj Cx −=, ,   1, φ−=Cyj ,   0, =Czj , (5.40a-c) 

 
z

yuC ∂
φ∂= 1 ,    0=Cv ,    

x
yywC ∂

φ∂−= 1 . (5.41a-c) 

 From Fig. 2 one might conclude that the closure pattern of the electric current 
indicates that only walls 3 and 4 would be active. This is not the case, however. The primary, 
x − component of current driven by temperature, is given by Eq. (5.40a),  which is the same as 
for perfectly conducting walls. This current creates differences in the electric potential along 
both walls 3 and 4, which drive wall currents along these walls in the positive and negative 
y− direction, respectively. However, as a result of this, potential difference is created between 
corners of the z = constant cross-section of the box, namely x = -l, y = 1 and  x = -l, y = 1. This 
leads to the variation of the potential of wall 1. Owing to symmetry, the same in magnitude 
but the opposite in sign potential difference is created between the other two corners, namely 
x = −l, y = −1 and  x = −l, y = −1. This leads to variation of function φ2 (= -φ1). The resulting 
core potential (Eq. (5.39)) drives the y-component of the core current (Eq. (5.40b)). Thus the 
whole closure pattern of current is restructured. While it resembles that shown in Fig. 2, the 
core current may now enter/leave the Hartmann walls, which become active. 
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The results of numerical calculations for yT =~ , c = 0.1, l = 1, d = 5 are shown in 
Figs. 11-16. As the box is sufficiently high, the flow near the centre-plane, z = 0, is close to 
being fully developed, i.e. independent of z (cf. Fig. 12 for potentials of walls 1 and 3, for 
example). Thus it is the same as for an infinitely long duct with the fluid flowing strictly along 
the z-axis. Such a flow has been studied analytically by Bühler (1998). It should be noted that 
the co-ordinate system in that study has a different orientation from that used here. The 
numerical method used here has been verified on an analytical solution presented by Bühler 
(1998). The results for potential φ3, shown in Fig. 11, are in excellent agreement.  
  Consider first the fully developed flow region at z = 0. As has been mentioned before 
the core current passes through walls 1-4, creating potential difference along all these walls as 
shown in Fig. 13 (signs in circles). The difference in potentials of walls 1 and 2 results in the 
non-zero core potential, Eq. (5.39). Variation of this potential in the box cross-section affects 
the distribution of the vertical velocity via the second term in Eq. (5.41c). From Fig. 14 
follows that the finite conductance of walls significantly affects the core flow. The maximum 
value of the core velocity, reacted at the corners x = ±1, y = 1 at z = 0 is 3.43 compared to the 
value of 1 for all walls being perfect conductors.  

The reason why velocity becomes higher is this. If the Hartmann walls are perfect 
conductors, the core potential vanishes. It is a very well known fact that the flow in ducts with 
perfectly conducting walls is highly damped by a transverse magnetic field. If walls are finite 
conductors, Hartmann-wall potentials are no longer zero, leading to wall currents flowing in 
the opposite direction to those induced by buoyancy term in the core (Fig. 13). Thus the non-
zero wall potentials, which drive these currents, tend to increase the core velocity. Note that 
for insulating walls such an increase in some cases may be by O(Ha) (Aleksandrova (2001)). 

As there is a difference between potentials of walls 3 and 4 and the values of the core 
potential estimated at x = ±1, there are jets at parallel walls 3 and 4. The z-component of the 
local flow rate for layer P3 is shown in Fig. 15 (solid line).  

Closer to the top of the box the flow is no longer fully developed. As P = 0, the flow 
restructures exclusively by the closure pattern of the electric current. Fig. 12 shows isolines of 
potentials of walls 1, 3 and 5 in the 1/8th of the box. The wall current flows transverse to 
these isolines. The core current, still being induced in the cross-section z = constant, thus 
enters walls 1-4 only. However, it may now turn in the z-direction and complete the circuit in 
wall 5 if such a path is shorter and by implication resistance lower. As a result, the induced 
core potential becomes a function of z. Thus the z-component of core velocity is modified 
(Fig. 14). As close to the top of the box potential differences become lower, then wC decreases 
with increasing z for y > 0. The core looses fluid into parallel layers P3 and P4, which is 
carried by the positive x-component of core velocity (Fig. 16).  

Basically, at the top of the box the upward-moving fluid for y > 0 must turn and flow 
downwards for y < 0 in a symmetric way. For perfectly conducting walls this turning core 
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flow occurred strictly in the �y-direction in a layer P5. Such a path for the fluid will also 
remain for the present flow. The core velocity profile at the boundary with layer P5 is shown 
in Fig. 14 for z = 5. From the magnitudes of core velocity at z = 0 and z = 5 follows that most 
of the core flow will follow this path. It should be noted that the turning of the flow in the �y-
direction in the core is forbidden as vC = 0. 

As the walls here are finite conductors, jets in layers P3 and P4 are present. The flow 
in these jets must also turn in the �y-direction at the top. As a result the magnitudes of the 
z− components of the local flow rate in the layers decrease with increasing z. The fluid which 
was �lost� by the core owing to the x-component of core velocity also turns in the layers and 
reappears in the core for y < 0 in a symmetric way. 

From Figs. 12, 14-16 follows that for the chosen values of c and of dimensions of the 
box all the three-dimensional effects are confined to about one value of characteristic length 
from the top (and the bottom). 

Finally, the height of the box, d, has been varied to determine the minimum value of d 
for the fully developed flow to establish in the centre-plane, at z = 0. The results for the 
maximum vertical component of core velocity, shown in Fig. 17, indicate that the value of d 
of about 3 is sufficient. 
 

5.2  y-symmetric case 
 
If temperature is symmetric with respect to y and c1 = c2, then P, φC, jx,C, wC, uC are 

symmetric, while jy,C and vC are anti-symmetric. We note first that the core pressure is no 
longer zero, and thus the core current may have all three components. For c1 = c2 one gets 
φ1 = φ2, so that the core potential and y-component of current become: 

 ),,(�),1,(�
1 zyxMzxM xxC −+φ=φ , (5.42) 

 � ∂
∂=

y

Cy dtztx
x
Tj

0
, ),,(

�
. (5.43) 

It is seen that jy,C is directly expressed in terms of temperature.  
Again, we start the investigation for a box with certain walls being perfect conductors. 

 

5.2.1  All walls perfectly conducting 

 
If all the walls are perfectly conducting, then wall potentials vanish, while the core 

flow now depends on temperature and pressure only. Once pressure is determined from Eq. 
(3.47) subject to boundary conditions 
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 0=
∂
∂

x
P    at x = ±l,  (5.44) 
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z
P

�
−

=
∂
∂ 1

12
1    at z = ±d,  (5.45) 

the core flow becomes fully defined. It should be noted that the problem for core pressure may 
be solved analytically in terms of Fourier series. 

The expressions for the local flow rates in layers P3-P6 are: 

 )(),(4,3, lxzyq Cz ±=φ±= ,   0),(4,3, =zyqy , (5.46a,b) 

        )(),(6,5, dzyxq Cx ±=φ= � ,  ��
−−

±+±±=
1

11
6,5, ),,(�)1(

2
1),,(� dtdtxTydtdtxTq

y

y � .(5.47a,b) 

As for the y-anti-symmetric temperature, there is no redistribution of the flow in the y-
direction in layers P3, P4. 

Consider now particular cases. If temperature is independent of both z and x, i.e. 
)(�� yTT = , then the solution for the core pressure is: 

 P = kz, (5.48) 

where constant�
2
1 1

1

== �
−

dyTk  is the pressure gradient, which equals average temperature. 

 The core variables become: 

 0=φC ,   Tkj Cx
�

, −= ,   0, =Cyj ,   0, =Czj , (5.49a-d) 

 0=Cu ,   0=Cv ,   kTwC −= � . (5.50a-c) 

From the above expressions follows that the current is induced in the x-direction only, while 
the core flow is strictly vertical.  
 As the total current vanishes, the current induced in the x-direction in the cross-section 
z = constant, shortcuts in the walls 3 and 4, and returns in the �x-direction in the same cross-
section. Concerning velocity, there is an upward motion if temperature is higher than average, 
and downward one if it is lower than average.  
 There are no jets in layers P3 or P4. In layers P5, P6 the fluid flows along the y-axis 
only. 

An example of such a flow for  )1(� 2
2
1 yT −= , i.e. for uniform volumetric heating 

Q = 1, 0� =T  at the Hartmann walls, and all other walls being thermally insulating, is shown 
in Fig. 18. In this case, k = 1/3, )( 2

3
1

2
1

, yjw CxC −=−= , )1( 2
6
1

6,5, yyqy −±= . In the core the 
fluid flows upwards in the centre and downwards at the Hartmann walls. When upward-
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moving fluid enters layer P5, it is redistributed towards the Hartmann walls in the ±y 
direction.  
 If temperature is independent of z, i.e. ),(�� yxTT = , the y-component of velocity and 
the source term in equation (3.47) for the core pressure vanish. However, in contrast to the 
y−anti-symmetric temperature, the x-component of velocity is non-zero as it depends on core 
pressure. Thus in the core the flow is in the planes y = constant.  
 If temperature is independent of x, i.e. ),(�� zyTT = then Eqs. (5.49), (5.50a,c) still 
hold, while vC is given by expression (3.59). All other core variables vanish. The current loops 
are as those described for )(~~ yTT = . As the core velocity now involves the second 
component, vC, the flow in the core occurs in the (y,z)-planes, i.e. exactly transverse to the 
core current. It is no longer fully developed in the whole box.  
 For either walls 1, 2, or walls 3-6 being perfect conductors, while the other walls of 
finite conductivity, the analysis is similar to that for y-anti-symmetric temperature. In 
particular, if ∞→ic , then walls 1 and 2 become passive if the net heat flux 

 � ∂
∂=

1

0

�
� dy

x
Tmx  (5.51) 

vanishes.  
 

5.2.2  All walls of finite conductance 

 
In this section two examples of flows owing to the y-symmetric temperature 

distribution will be considered. Supposed that the fluid is heated with uniform distribution of 
volumetric heat sources, i.e. Q = 1, and that the dimensionless temperature of either the 
Hartmann walls or walls 3 and 4 is zero, while all other walls are thermally insulating. This 
leads to two different temperature distributions as follows: (i) )1(� 2

2
1 yT −=  and 

(ii) )(� 22
2
1 xlT −= , respectively. 

  
Case (i): )1(� 2

2
1 yT −=   

 
The flow in a box with perfectly conducting walls owing to this temperature 

distribution has been studied in Sec. 5.2.1. Now suppose, for the sake of simplicity, that 
ci = c ∞< (i=1,�,6), i.e. that all walls have the same, finite wall conductance ratio. Owing to 
symmetry φ2 = φ1, φ4 = -φ3, φ6 = φ5. Then the equations governing electric potentials of walls 
1, 3, 5 and pressure are: 

 01
2 =φ∇ xz , (5.52) 
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yz −+

∂
∂−=φ∇

=

, (5.53) 

 
dz

xy x
Pc

=∂
∂=φ∇ 5

2 , (5.54) 

 02 =∇ Pxz . (5.55) 

These equations are solved subject to boundary conditions (3.51)-(3.53) and the following 
symmetry conditions: 

 01 =φ ,   05 =φ ,   0/ =∂∂ xP     at x = 0, (5.56) 

 0/3 =∂φ∂ y ,   0/5 =∂φ∂ y     at y = 0, (5.57) 

 0/1 =∂φ∂ z ,   0/3 =∂φ∂ z ,   P = 0    at z = 0. (5.58) 

The core variables become: 

 1φ=φC , (5.59) 
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φ∂−−= 12 )1(

2
1 . (5.61a-c) 

The core current now has two components, x and z. As y-component of current is zero, 
close to the centre-plane z = 0 the current may enter/leave walls 3 or 4 only. Further it selects a 
path to complete its circuit either inside walls 3 or 4, or between walls 3 and 4 through walls 1 
or 2. Inside the walls the current flows transverse to the isolines of wall potential shown in 
Fig. 19. At the top of the box wall 5 is also involved in the current closure pattern. 

The vertical velocity component depends now on the wall potential φ1 (Eq. (5.61c)), 
and thus is a function of all the three co-ordinates (Fig. 20). The velocity profile at z = 0, 
shown in Fig. 20, looks similar to that for a box with perfectly conducting walls. However, it 
is shifted downwards compared to the profile presented in Fig. 18.  The reason is that almost 
the entire volume flux in the z-direction is now carried by jets in layers P3 and P4 (Fig. 21). In 
fact, vertical component of velocity in the core is negative almost in the whole cross-section 
apart from immediate vicinity of the centre-plane y = 0, where it reaches a value of 
approximately 0.01.  

As for a box with perfectly conducting walls, vertical pressure gradient is induced as 
described at the end of Sec. 2. Now, however, it depends on the wall conductance ratio, and 
thus differs from the value of 1/3 for perfectly conducting walls. 
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At the top of the box potential φ3 starts varying with z, and this induces the pressure 
gradient in the x-direction (cf. Eq. (3.51)). As a result the z-component of current appears. The 
results show, however, that the transverse pressure difference between x = 0 and x = 1 is very 
small and is confined to the immediate vicinity of the top of the box. 

At the top of the box the fluid must turn from the upward flow in layers P3, P4 into 
the downward one in the core. This happens both in layer P5 and the core owing to the 
x−component of velocity. The second path is possible in the core owing to a non-zero 
x−component of velocity. From Fig. 19 follows that the three-dimensional effects are confined 
to about one value of the characteristic length at the top of the box. 

 
Case (ii): )(� 22

2
1 xlT −=   

 
The fully developed flow under such conditions has been discussed by Bühler (1998). 

Note that in that paper temperature at the centre, at x = 0, denoted by Θ was chosen to such a 
value that the pressure gradient evaluates to zero. That approach was guided by the idea that it 
is possible to chose the reference temperature *

0T  to such a value that the hydrostatic pressure 
gradient ∗∗∗ρ− gT00  in the Boussinesq approximation balances the pressure gradient induced by 
the flow.  

For the temperature distribution (ii), and for all walls having the same wall 
conductance ratio, the same symmetry conditions for wall potentials and pressure hold as for 
(i). Thus the only difference is in the equations for φ1  and φ3, namely: 

 xc xz =φ∇ 1
2 , (5.62) 
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yz z
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∂−=φ∇ 3

2 . (5.63) 

The core variables become: 
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2
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The core current now has all three components. In the fully developed region, 
however, the z-component of current vanishes, so that the current flows in the (x,y)-planes. 
Once current enters walls, it flows transverse to the isolines of wall potential shown in Fig. 22. 

Vertical velocity component also depends on all three co-ordinates (Fig. 23). The 
velocity profile at z = 0, shown in Fig. 23, looks similar to that presented by Bühler (1998) for 



 

 
 

35

a box with perfectly conducting walls. However, the magnitude of velocity is higher. The 
buoyancy-induced contribution into wC, given by the first term in Eq. (5.66c) has a maximum 
value of 0.5 compared to the maximum value of 4 in Fig. 23. Thus, the flow at these values of 
parameters, c, l, and d, is mainly electrically driven. In the core the fluid flows upwards at the 
centre plane x = 0 and downwards at walls x = ±l. At walls 3 and 4 downward jets are present 
(Fig. 24). Again, this is similar to the results presented by Bühler (1998).  

At the top of the box the induced pressure starts varying with x owing to variation of 
φ3 with z. Thus the pressure gradient in the x-direction is induced (Fig. 24). As a result the 
z−component of current appears. 

At the top of the box the fluid must turn from the upward flow in the core at x = 0 into 
the downward one at x = ±1 in both core and layers P3, P4. This happens both in layer P5 and 
the core owing to the x-component of velocity. From Figs. 22 and 24 follows that the three-
dimensional effects are confined to about one value of the characteristic length at the top of 
the box. 
 
 
6  Conclusions 
 
 Buoyant convection in a rectangular box with thin electrically conducting walls in the 
presence of a strong, uniform, horizontal magnetic field has been considered. The 
temperature, which drives this convective flow was supposed to be an arbitrary function of all 
the three co-ordinates. This includes such practically important cases as differentially heated 
walls and volumetric heat sources. 
 The driving mechanism of the flow is buoyancy. Variation of temperature leads to 
buoyancy force leading to the ascending fluid in some parts of the box and descending in the 
other ones. Once fluid starts moving in a transverse field, electric currents are induced in the 
flow. The current induced by buoyant motion creates potential gradients in the fluid and along 
various walls. Induced potentials along the Hartmann walls serve as boundary values for the 
solution in the core and thus restructure both the core current closure pattern and the velocity 
profiles. Thus the resulting flow patterns are created not only by purely thermal buoyancy. 
They are a result of all mechanisms involved, i.e. buoyant-, viscous- and electromagnetic- 
forces. The latter ones depend on current magnitude and path which is very sensitive to the 
conductivity of the walls. 
 In addition to this, jets with velocities on the order O(Ha1/2) may be present in the 
parallel layers. In the jets the component of high velocity transverse to the field is created by 
the strong gradients of the electric potential normal to the layer. The flow rate carried by the 
layer in this direction is related to the jump of potential across the layer between the wall and 
the core. Therefore, jets may or may not vanish depending on whether such jumps exist. There 
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exist certain distributions of temperature which may exclude jets in parallel layers if the 
induced current is tangential to all the walls, even if these walls are poorly conducting.  

This and ultimately the whole flow pattern strongly depends on the following 
conditions: (i) symmetries of temperature with respect to all the three co-ordinates, (ii) the 
type of thermal boundary conditions at the walls parallel to the magnetic field, (iv) average 
heat fluxes in the x- and z-direction, (iii) the values of wall conductance ratios. The flow turns 
out to be sensitive to any variation of the above conditions. 

Finally, we note that the numerical code developed to model buoyant convective flows 
in a rectangular box for arbitrary conductance ratios of all the walls is a fast, flexible tool, 
which may be efficiently used to analyse and optimise convective flows in liquid metal 
blankets. 
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Fig. 3 Temperature T = xy and vertical component of core velocity.
           All walls are perfectly conducting.
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Fig. 4 Lines of core current for T = xy. All walls are perfectly conducting.
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Fig. 5 Vector lines of local flow rate in layer P5 for T = xy.
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Fig. 6 Streamlines for T = y(1-z2). All walls are perfectly conducting.
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Fig. 7 Temperature T = y(1-x2) and vertical component of core velocity.
           Perfectly conducting walls 1 and 2.
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Fig. 8 Lines of core current for T = y(1-x2). Perfectly conducting
           walls 1 and 2. No current enters walls 3 or 4.
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Fig. 9 Temperature T = xy(1-5y2/3) and vertical component of core velocity.
           Perfectly conducting walls 3-6.
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Fig. 10 Lines of core current for T = xy(1-5y2/3). Perfectly conducting
             walls 3-6. No core current enters walls 1 or 2.
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Fig. 18 Vertical component of core velocity for T = (1-y2)/2.
             All walls perfectly conducting.
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Fig. 20  Vertical component of core velocity for T = (1-y2)/2, l = 1, d = 5, c = 0.1.
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Fig. 23  Vertical component of core velocity for T = (l2-x2)/2, l = 1, d = 5, c = 0.1.
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