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Validation of turbulence models in the computer code 
FLUTAN for a free hot sodium jet in different buoyancy flow 

regimes  
 
 

ABSTRACT 
 

The large diffusivity for heat and the small one for momentum in general hinder to 
use the Reynolds analogy to model turbulent heat transfer in liquid metal flows. 
Nevertheless, most code applications for technical flows are using a turbulent Prandtl 
number concept for calculating the turbulent heat transfer for any fluid. More adequate for 
fluids with strongly different diffusivities is to use a full second order modeling. Here, we 
apply the Turbulence Model For Buoyant Flows (TMBF) and a standard k-ε-σt model to 
recalculate the TEFLU experiments with a free hot sodium jet in several buoyancy 
regimes. The TMBF is a combination of a standard k-ε model for the turbulent 
momentum transfer and a full second order modeling for the turbulent heat fluxes. The 
numerical results show that the k-ε-σt model requires flow dependent local adaptations of 
the turbulent Prandtl number σt for accurate predictions of temperature distributions. In 
contrast, the TMBF, which has special model extensions for liquid metal flows, achieves 
widely acceptable results. Possibilities for required further model improvements are 
discussed.  



 

 
 

Validierung der Turbulenzmodelle im Rechenprogramm 
FLUTAN für einen heißen Natriumfreistrahl bei 

unterschiedlichen Auftriebsbedingungen 
 
 

ZUSAMMENFASSUNG 
 

Die Reynolds-Analogie zwischen dem turbulenten Wärme- und dem 
Impulstransport kann nicht für die Modellierung des turbulenten Wärmetransports in 
Strömungen mit flüssigen Metallen verwendet werden, da die Diffusivität der Wärme viel 
größer als die des Impulses ist, und da deshalb auch die turbulenten 
Geschwindigkeitsfluktuationen und Temperaturfluktuationen nicht ähnlich sind. Trotzdem 
benutzen die meisten thermohydraulischen Rechenprogramme das Konzept der 
turbulenten Prandtl-Zahl zur Berechnung des turbulenten Wärmetransports für beliebige 
Fluide. Bei Fluiden mit stark unterschiedlichen Diffusivitäten sind die Turbulenzmodelle 
zweiter Ordnung, wie z. B. das im Rechenprogramm FLUTAN implementierte 
Turbulenzmodell für Auftriebsströmungen (TMBF), geeigneter. Das TMBF ist eine 
Kombination eines Modells erster Ordnung, nämlich des k-ε Μodells, für den turbulenten 
Impulstransport und eines Modells zweiter Ordnung mit fünf Gleichungen für den 
turbulenten Wärmetransport. Im Rahmen der Validierung von Turbulenzmodellen für 
flüssige Metalle werden das TMBF and das k-ε-σt Modell angewendet. Dazu werden die 
TEFLU-Experimente mit einem beheizten turbulenten Freistrahl in Natrium mit 
unterschiedlich starken Auftriebseinflüssen nachgerechnet. Die numerischen Ergebnisse 
zeigen, dass das k-ε-σt Modell von der Strömung abhängige lokale Anpassungen der 
turbulenten Prandtl Zahl braucht, um die Temperaturfelder richtig zu berechnen. Dagegen 
erreicht das TMBF, das eine Modellerweiterung für flüssige Metalle besitzt, überwiegend 
gute Ergebnisse. Möglichkeiten für weitere notwendige Modellverbesserungen werden 
diskutiert.   
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1 Introduction 

 
In the framework of the Benchmark Working Group (BWG) for Accelerated 

Driven Systems (ADS) both, experimental and computational investigations are being 
performed to explore the capability of Computational Fluid Dynamics (CFD) codes to 
predict heavy liquid metal turbulent flows with heat transfer (Knebel et al. 2000).  

The conservation equations for mass, momentum, and thermal energy do not form a 
closed set of equations if the statistical approach is used to describe turbulence. In fact, 
unknown correlations called turbulent shear stresses jiUU ′′  and turbulent heat fluxes TUi ′′  
exist in these equations. They represent the turbulent transport of momentum and heat. A 
way of determining these correlations is to adopt turbulence models which introduce laws 
to simulate the turbulent transport.  

A well-known and widely used class of turbulence models is based on the eddy 
viscosity / eddy heat diffusivity concept (Rodi 1980). The eddy viscosity νt and eddy heat 
diffusivity Γt are respectively introduced by a mean gradient approach in the terms 
representing the turbulent transport of momentum and heat. The eddy viscosity for the 
turbulent momentum transport is usually approximated by using any variant of the widely 
known k-ε model. The eddy heat diffusivity is approximated mostly much less 
sophisticated; it is assumed to be also isotropic and to be linked to the eddy viscosity by a 
fixed turbulent Prandtl number σt = νt / Γt . This implies that the turbulent transport of heat 
is assumed to be strictly analogous to the turbulent momentum transport. These 
assumptions are the basis of the Reynolds analogy. This analogy works well for a wide 
class of flows but not for liquid metal flows, see Table 1. Due to the strongly different 
values of relatively small molecular viscosity ν and relatively large thermal diffusivity Γ, 
the statistical features of the turbulent velocity and temperature fields are not similar. This 
means, the Reynolds analogy should not be applied because it has no basis for fluids with 
small molecular Prandtl numbers Pr = ν / Γ. For these fluids the turbulent Prandtl number 
is no longer a fixed value, but it depends on a number of parameters, see e.g. in Kays 
(1994). 

In contrast to this modelling, formulations independent of νt should be used to 
approximate the turbulent eddy conductivity Γt in liquid metals, like in the first order 4-
equation model by Nagano et al. (1994). Such 4-equation models based not only on k- and 
ε-equations, but in addition on transport equations for the temperature variance and its 
dissipation or destruction, allow also for different time scales in the turbulent velocity and 
temperature fields. 

For buoyant flows one gets strong anisotropy in the turbulence field due to the 
orientation of the buoyancy force. In such flows even a second-order description of the 
turbulent transport of heat should be applied, which means the use of independent 
transport equations for the three turbulent heat fluxes. Such models are not constrained by 
any of the above mentioned problems. Therefore, in order to simulate turbulent flows in 
liquid metals with buoyancy it is reasonable to use a second-order model at least for the 
turbulent transport of heat. 

The Turbulence Model for Buoyant Flows (TMBF) (Carteciano 1996) developed 
and implemented in the CFD Code FLUTAN (Willerding & Baumann 1996) is potentially 
suitable for the simulation of the turbulent transport of mass, momentum, and heat in 
liquid metals because it uses a second order model for the turbulent transport of heat, 
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Table 1. This model was already successfully validated for a sodium flow in a forced 
convection regime (Carteciano et al. 1997, Baumann et al. 1997). In order to extend the 
range of the TMBF to low Peclet numbers, new model relationships were introduced into 
the model based on analyses of direct numerical turbulence simulations (Carteciano et al. 
1999); they were previously validated for natural convection by investigating the buoyant 
air flow along a vertical heated wall (Prudhomme 1998).  

This extended version of the TMBF is being validated here for liquid metal flows by 
means of numerical calculations of a turbulent hot jet in sodium. Unfortunately, there are 
no sufficiently accurate experimental turbulent heat transfer data available for a heavy 
liquid metal, so that existing data for the light weight sodium with a smaller Prandtl 
number were used instead. Using a free jet experiment in a highly turbulent multi-jet 
surrounding to analyze the performance of turbulence models has the advantage that the 
numerical results are mainly governed by the turbulence models and do not suffer from 
any inadequate wall modeling. The experiments were performed in the test facility 
TEFLU at the Forschungszentrum Karlsruhe (Knebel et al. 1998). Three different 
buoyancy regimes were considered for the verification of the TMBF which were 
classified by the experimenters as forced jet, buoyant jet, and plume. The FLUTAN 
calculations were carried out using not only the TMBF but also the standard k-ε-σt model 
in order to show the advantage of the TMBF compared to the k-ε-σt model and to show 
the limits of applicability of an eddy diffusivity approach to liquid metal flows. In this 
report, the results, which are compared with experimental data, are documented and 
discussed. 
 
 

Table 1: Classification of existing turbulence models for buoyant liquid metal flows. 
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2 FLUTAN Computer Code 
 

FLUTAN is a highly vectorized computer code for 3d fluid-dynamic and thermal-
hydraulic analyses in Cartesian or cylinder coordinates (Willerding & Baumann 1996). 
Starting from its methodological precursor COMMIX-2 (Bottoni et al. 1985 and Bottoni & 
Willerding 1987) and its highly vectorized and optimized version COMMIX-2(V) 
(Borgwaldt 1990), FLUTAN was developed in order to simulate single phase flows of 
several fluids with small compressibility.  

The conservation equations for mass, momentum, energy, and the transport equations 
for the turbulence quantities are discretized on a structured grid by a finite volume method. 
A staggered grid is used for the velocities. The discretization of the diffusive terms is 
performed by a central difference scheme. A first order upwind or one of two second order 
upwind methods can be chosen for the convective terms; i.e. QUICK (Leonard 1979) and 
LECUSSO (Günther 1992). Several Poisson solvers are available for pressure calculation, 
e.g. the highly vectorized CRESOR solver (Borgwaldt 1990). A first order implicit Euler-
method is used for time discretization.  

Recently developed and implemented numerical features are achieving a larger 
numerical efficiency and an improved numerical accuracy: One is a method to decouple 
the time integration between the different transport and conservation equations, so that 
different time steps may be used in the different equations (Moser 1996). An other one is 
an explicitly treated static local grid refinement method for the Cartesian grid (Ammann 
1997). The recent one is a newly developed method to use body fitted coordinates in a 
code based on a staggered grid: the conservation equations are transformed from the 
Cartesian to a general curvilinear system by keeping the physical Cartesian velocity 
components as dependent variables and by defining three Cartesian velocity components 
on every cell surface (Jin 2001). 

Several turbulence models are available in FLUTAN like the Prandtl-mixing length 
model and models based on transport equations for some turbulence quantities. The most 
important one is the Turbulence Model for Buoyant Flows (TMBF) which consists of a 
first order k-ε model in a low-Reynolds number formulation and a second order five-
equations turbulent heat flux model (Carteciano et al. 1997). In several benchmarks it 
turned out that the TMBF in its current development status is a powerful tool at least for 
forced and mixed convection even for liquid metal flows (Baumann et al. 1997).  

Special thermal boundary conditions are available in FLUTAN like a heat exchanger 
model, a one-dimensional wall model, and a model for heat radiation between solid 
surfaces (Cheng & Müller 1998). A three-dimensional heat conduction model for the 
structures was developed for the investigation of the SUCOS experiments (Grötzbach et al. 
2002a). This is necessary for simulating solid structures with internal non-uniform 
transport of heat. The structure temperatures are discretized on an own grid on which the 
heat conduction equation is solved in all dimensions independent of the solution of the 
corresponding equation in the fluid domain. Accurate coupling of the radiation model and 
of the 3d structure model to the energy in the fluid is automatically achieved by 
implementing both models within the outer iteration loop. 

For handling of the code a modern graphical user interface was developed in which 
the programs for pre- and post-processing, for solving the equations, for data conversion, 
and for maintenance of the FLUTAN code system were implemented. This user interface, 
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as well as the ONLIVIS program for the local online visualization of some selected results 
from an ongoing FLUTAN calculation running on an other remote computer system is 
based on the program language Tcl/Tk; thus, it can be used on Windows and on UNIX-
based systems (Carteciano et al. 2001, Olbrich 2001). 

 
 

 
3 Turbulence Model for Buoyant Flows TMBF 

 
The TMBF is a combination of a first-order 2-equation model for the turbulent 

transport of momentum and of a second-order 5-equation model for the turbulent transport 
of heat. The turbulent stresses are calculated assuming an isotropic eddy viscosity and 
solving the transport equations for turbulent kinetic energy k and for its dissipation rate ε. 
The three turbulent heat fluxes ′ ′U Ti  are determined by means of transport equations for 
these quantities. Moreover, transport equations for the variance of temperature fluctuations 
T '2  and its dissipation rate εT’ are used in the description of the turbulent transport of heat. 
All five equations are formulated in a so-called ‘low-Peclet number’ formulation which 
means, the conductive wall layers have to be resolved by the grids.  

 
 

3.1 Turbulent Shear Stress Modeling 
 
The turbulent shear stresses are modeled in the TMBF using the gradient 

assumption of Boussinesque: 
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The isotropic eddy viscosity νt is introduced by this assumption. The distribution of 

νt is calculated using an extended Prandtl-Kolmogorov relationship: 
 

.
2

εµµν kfct =  
 
(2) 

 
This relationship contains an empirical coefficient cµ and a damping function fµ, which is 
necessary to extend the validity of this relationship to low Reynolds numbers 
Reτ=Uτy/ν  (Uτ = shear velocity). In this model, the formulation for fµ which was proposed 
by Nagano and Kim (1988) is used for smooth walls: 
 

( )[ ] .25.26/Reexp1 τµ −−=f  (3) 

 
In order to calculate the eddy viscosity, the transport equations of the turbulent 

kinetic energy k and its dissipation rate ε are solved: 
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The turbulent diffusion terms of the transport equations for k and ε are modeled 

with mean gradient assumptions (Rodi 1972). In order to consider the buoyancy influence 
on ε, the production term Pεb contains the buoyancy term Gk and a correction term 
depending on the flux Richardson number Rif (eq. 8). This number is defined as  

 
Rif = -0.5 GV’ / (Pk + Gk )  

 
where GV’ is the buoyancy production of only the lateral energy component V’ (Rodi 
1980). For the sink term Sε in the transport equation for ε, the modeling of Jones & 
Launder (1972) is used (eq. 9 and eq. 10) with a correction function f2 for the empirical 
coefficient cε2 in order to extend the validity of the standard value of cε2 to locally low 
turbulence Reynolds numbers: 
 
Ret = k2/(νε)  
 

The transport equations for k and ε contain the buoyancy term Gk which depends on 
the turbulent heat fluxes (eq. 7). This is an important term for a turbulence model for 
buoyant flows because it represents the only mechanism in which the temperature field 
affects the turbulence in the momentum field by means of buoyancy.  
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3.2 Turbulent Heat Flux Modeling 
 
The TMBF does not apply first order turbulent heat flux modeling by introducing 

gradient assumptions and eddy conductivities, but it solves the second order transport 
equations for the turbulent heat fluxes; therefore, it incorporates a detailed modeling of 
Gk. The modeled transport equations for the three turbulent heat fluxes are as follows (for 
i=1,2,3): 
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The molecular and turbulent diffusion terms are modeled by mean gradient 

assumptions (Launder 1978). The modeling of the pressure-temperature gradient 
correlation πi of Monin (1965) and Launder (1975) also contains a wall function in order 
to consider the damping effect of the wall on the turbulent heat flux perpendicular to the 
wall (Gibson & Launder 1978): 
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There is no summation over the index n, which indicates the normal direction to a wall. 

The modeling of the dissipation or destruction rate of the heat fluxes εU’T’ is based 
on ideas of Shikazono & Kasagi (1990) with an additional term for liquid metal heat 
transfer:  
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The contribution of this term in the transport equation (11) is negligible at high 
Peclet numbers but becomes important at low Peclet numbers. For this reason, an 
exponential function of not only the turbulence Reynolds number, but of the sum of the 
local turbulence Reynolds and Peclet numbers (Pet = Ret * Pr) is introduced here, which is 
supported by the Direct Numerical Simulation (DNS) investigations of Wörner & 
Grötzbach (1995). The complete expression of this modeling can be derived by 
dimensional analysis (Carteciano 1996).  

The transport equation (11) contains a buoyancy term GUi’T’ in which the variance of 
the temperature fluctuations 2'T  appears formally: 
 

2TigTiUG ′=′′ β .  
(14)

 
Thus, for a detailed description of buoyancy effects, a transport equation for the 

variance of the temperature fluctuations 2'T  is also solved: 
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This equation contains the modeling of Spalding (1971) for the turbulent diffusion 

term and the modeling of Nagano & Kim (1988) to consider the low Peclet number 
effects.  

The dissipation rate of the temperature variance εT' is often modeled using the 
definition of the turbulent time-scale ratio R:  
 

.
2

2

kR
T

T
′

=′
ε

ε  
 
(16)

 
In this modeling, R is usually assumed to be constant. This assumption is not 

satisfactory because from our current understanding of the spectral distribution of the 
quantities appearing in eq. (16) we have to expect that R depends on the Reynolds 
number, on the type of the flow, on the molecular Prandtl number, on wall distance, and 
even on the type of thermal boundary conditions. To avoid the problems with the limited 
knowledge on R for an arbitrary type of flow, a transport equation for εT’ can optionally 
be solved in the TMBF instead of using eq. (16): 
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The models proposed by Hanjalic (1994) are used in this equation. Furthermore, the 

modeling of Nagano & Kim (1988) is introduced in order to consider the low Peclet 
number effects. 

In order to extend the range of applicability of the TMBF model to very low Prandtl 
numbers, new optional model relationships have been implemented in the production-
buoyancy term bPε  (eq. 8) of the ε equation and for the dissipation term TUi ′′ε  (eq. 13) of the 
turbulent heat flux equations (Carteciano et al. 1999). These were deduced by means of an 
analytical method using the two-point correlation technique, Ye et al. (1997) and Wörner 
et al. (1999). The models were calibrated using the DNS data base by Wörner & Grötzbach 
(1997) for several buoyant flows in fluids with Prandtl numbers ranging from 0.006 to 7. 
The new optional model extensions, which replace those in equations (8) and (13) are: 
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In this extended turbulent heat flux model with 5 transport equations, the required 

very problematic time scale ratio R has not to be specified as a model parameter, but it 
can be calculated from eq. (16) , see chapter 7. 

The interaction due to buoyancy between the transport equations for turbulence 
quantities is complex in this TMBF model. This interaction is roughly represented in Fig. 
1. An important feature which gets obvious from this figure is, that the turbulent heat 
fluxes in buoyant flows may become strongly anisotropic due to source terms containing 
temperature variances. On the other hand, the turbulent heat fluxes themselves are the 
important buoyant source or sink terms in the k and ε equations. Having in both terms 
results of modeled transport equations instead of using algebraic model relations is an 
advantage regarding an adequate phenomenological behavior and also regarding the 
accuracy of the TMBF. 

 

 
 

Fig. 1: Coupling between turbulence quantities in the TMBF.  
 
 
 

3.3 Model Coefficients 
 
The extended TMBF contains seven transport equations and 17 empirical 

coefficients. The standard set of empirical coefficients (Table 2) from Gibson & Launder 
(1978) and Nagano & Kim (1988) is used in the TMBF. The model has been implemented 
in the FLUTAN computer code and it has been validated by means of experimental data 
from turbulent flows in forced, mixed and natural convection; examples are given in 
(Carteciano et al. 1997, 1999, and Prudhomme 1998). 

The TMBF does not introduce six additional transport equations for the turbulent 
shear stresses and thus differs from a so-called full Reynolds stress model. However, the 
calculated turbulent stresses and heat fluxes are no longer related through a fixed turbulent 
Prandtl number and are therefore not linked by the Reynolds analogy. In contrast, due to 
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the separate modeling it is possible to analyze an approximate spatial distribution for the 
turbulent Prandtl number σt from the numerical results, see chapter 7. 
 
 

Table 2: Standard set of empirical coefficients in the TMBF. 
 

k-tr.eq. ε-tr. eq ′ ′UiT -tr. eq. T '2 -tr.eq. εT’-tr.eq. 

coeff. value coeff. value coeff. value coeff. value coeff. value 
σk 1.0 σε 1.3 cTD 0.11 cTT 0.13 cDD 0.13 
cµ 0.09 cε1 1.44 cT1 3.0   cD1 2.2 
  cε2 1.92 cT2 0.33   cD2 0,8 
  cε3 0.8 cT3 0.5   cP1 1.8 
    cT4 0.5   cP2 0.72 

 
 

 
 

4 The k-ε-σt Model 
 

In the following calculations of the sodium jet experiments, also the widely used  
turbulent Prandtl number concept will be applied for comparison. Therefore, this model is 
also shortly introduced. 

The common k-ε-σt model is a first-order 2-equation model. It consists of the 
transport equations of k (eq. 4) and ε (eq. 5) using an isotropic eddy viscosity (eq. 2) and 
of a simple isotropic heat flux approximation. A constant turbulent Prandtl number tσ  is 
used to approximate the turbulent thermal conductivity tΓ  from the turbulent viscosity 
calculated by the k-ε model:  
 

.
t

t
t σ

ν
=Γ  

(20)

 
This means, the Reynolds analogy is assumed. This is a very crude approximation for 

liquid metal flows, because the strongly different molecular diffusivities for momentum 
and heat cause large differences in the thicknesses of the viscous and conductive wall 
layers. An additional problem may arise from the large differences in the time scales of the 
turbulent velocity and temperature fluctuations in liquid metals. Instead of solving the 
transport equations for the turbulent heat fluxes like in the TMBF model (eq. 11), these 
fluxes are calculated by using the gradient assumption of Fourier: 
 

.
ix

T
tTiU

∂
∂

Γ=′′−  (21)

 
Different to the TMBF model (eq. 7), in which the buoyancy term Gk needs no model 

assumptions, here it has to be modeled e.g. by using eq. (20) and eq. (21): 
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.
ix

T

t

t
igkG

∂
∂

σ

ν
β=  

(22)

 
The production term due to buoyancy Pεb in the transport equation for ε is modeled 

like in eq. (8). 
The standard set of coefficients of this model is summarized in Table 3. For the 

turbulent Prandtl number, the standard value is tσ  = 0.9. 
This model is also implemented in the FLUTAN code. Like the TMBF model, it is 

available in a low-Reynolds number formulation which requires an adequate resolution of 
the viscous wall layer; in addition it is available in a simpler high Reynolds number 
version which, for wall bounded flows,0 

 has to be used together with wall functions for the mean velocity field and at Prandtl 
numbers greater or around one also for the temperature filed. 
 
 

Table 3: Standard set of empirical coefficients in the k-ε-σt model. 
 

k-tr.eq. ε-tr. eq 
coeff. value coeff. value 
σk 1.0 σε 1.3 
cµ 0.09 cε1 1.44 
σt 0.9 cε2 1.92 
  cε3 0.8 

 
 
 
5 TEFLU Experiments 

 
The experiment which is used here to investigate the performance of the two classes 

of turbulent heat flux models consists of a heated turbulent free jet of sodium in a highly 
turbulent multi-jet surrounding. The experiment was performed in the test facility TEFLU 
(Knebel 1993, Knebel et al. 1998). A similar experiment was performed earlier also in a 
water channel by Krebs (1979) and by Krebs et al. (1981). A schematics of the sodium test 
facility is shown in Fig. 2. The test section consisted of a pipe of D=110 mm diameter and 
a multi-bore jet block with 158 bores of d=7.2 mm diameter, placed on a triangular pitch of 
8.2 mm. The length to diameter ratio for individual bores is 16.7.  
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Figure 2: Sketch of a heated free jet in sodium behind a multi-bore jet block 
 
Sodium was injected into the central bore with higher temperature ∆T and higher 

velocity ∆U than in the other bores. By modifying the ∆T, ∆U, and the co-flow velocity 
Ucf, three turbulent flow regimes were experimentally investigated with different buoyancy 
contributions: a forced jet, a buoyant jet, and a plume regime, see Table 4. These regimes 
were classified by the experimenters. The Reynolds number Recf is calculated using the co-
flow velocities and the outer diameter D. Rej is calculated using the maximum value of the 
velocity at the exit of the jet and the bore diameter d. The value of the densimetric Froude 
number at the exit of the jet block determines the flow regime: 
 

( ) ( )dgUUFr cfjcf

2
cf

2
jj ρ−ρρ−= . (23)

 
The subscripts j and cf refer to the exit of the jet and to the co-flow respectively and 

ρ  indicates the density. 
Radial profiles of mean velocity, mean temperature and variance of temperature 

fluctuations were measured at several positions downstream the jet block.  
 

 
Table 4: Experimental conditions. 

 
Experiment ucf  

(m/s) 
Tcf  
(K) 

Recf ∆u j  
(m/s) 

∆ T j  
(K) 

Rej Frj 

a) forced jet 0.05 573 1.4×104 0.50 30 1.01×104 521 
b) buoyant jet 0.1 573 2.8×104 0.33 25 7.9×103 365 
c) plume 0.1 573 2.8×104 0.17 75 4.96×103 43.1 
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6 FLUTAN Calculations 
 

6.1 Numerical Model Specifications 
 

6.1.1 Geometry and Boundary Conditions  
 

With nowadays computer capabilities it is still not practicable to record all the bores 
in the block and the jets in the outer pipe together with sufficient spatial resolution. 
Therefore, a computational domain was chosen which only models part of the jet area in 
the pipe. So, the grid records the fluid domain downstream the jet block starting from the 
plane x/d=6 for an axial length of 400 mm. By using symmetry conditions only half of the 
tube is modeled, from the axis to the wall. After parametric investigations a two-
dimensional numerical grid composed by 19,200 cells (64x1x300) in an cylindrical axi-
symmetric geometry was found as reference grid which is sufficient to obtain a grid 
independent solution. This grid is used for all three regimes. The mesh size of the grid 
changes from 0.36 mm to 1.44 mm in the radial direction and from 0.72 mm to 2.88 mm in 
the axial direction.  

The inlet profiles play an important role in such calculations, especially as the 
computational domain begins in an area with inhomogeneous flow data. A more detailed 
discussion of the problem with the inlet conditions for this type of flow is given in 
Carteciano (1996). The inlet profiles for mean velocity, mean temperature, and variance of 
temperature fluctuations were determined from measured values. The other turbulence 
quantities described by separate transport equations also need inlet specifications, but 
directly measured data are not available from TEFLU. The inlet profiles for k were 
deduced from analogous experiments performed by Corrsin (1943) with air using 
similarity considerations: 
 

)r(u

)r(u)r(k)r(k 2
a

2
s

as =  .  
(24)

 
The subscripts s and a refer to sodium and air respectively and u  indicates the inlet 

normal velocity. This procedure becomes inappropriate with increasing buoyancy effects. 
However, because of the lack of better approximation possibilities it will be applied in all 
three regimes. The inlet profiles for ε are calculated from the k profiles using the following 
relation based on the equilibrium of production and dissipation of turbulence energy in a 
fully developed flow: 
 
ε = cµ k2/ νt. (25)
 

Here a mean value of νt is deduced from the air experiments by using similarity 
considerations. The estimated ε profiles were modified on the basis of calculations 
performed by Bunk et al. (1995) in order to obtain a correct inlet momentum flux.  

The uncertainty regarding the inlet boundary conditions of the turbulence quantities 
should be considered as an important topic to be analyzed, because the numerical results 
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are strongly depending on the inlet boundary conditions. The topic of our calculations is to 
compare and benchmark the turbulence models implemented in FLUTAN: therefore, we 
do not consider the uncertainty due to the inlet boundary conditions and we accept the inlet 
boundary condition given for the benchmark within the BWG (Maciocco 2000). This 
means, we do not try to improve the results by modifying the inlet conditions because we 
think it is not meaningful to circumvent the well-known jet-anomaly of the k-ε model by 
artificially adapting the inlet conditions. We instead adapt the value for cµ to 0.06 as it is 
usually done for jet flows. 

The complete data set used for the inlet profiles of the normal velocity, the mean 
temperature, the variance of temperature fluctuations, the turbulent kinetic energy, and its 
dissipation rate are shown in Tables 5-7 for all three regimes. 

The inlet profiles for εT’ and for the turbulent heat fluxes were calculated using 
following empirical relationships (Carteciano 1996):  
 
(εT’)inl = ( )inl

2' kT ε  ; (26)
  
( ) ( )inlinlx xT1.0Tu ∂∂−=′′  . (27)
 
Equation (26) is based on the local equilibrium of production and dissipation of turbulence 
energy in a fully developed flow, and equation (27) is following from eq. (21). 

 
 
6.1.2 Physical and Numerical modeling  

 
The turbulence models employed here are the TMBF and the standard k-ε-σt 

turbulence models. Both are used with their standard values for the model coefficients, 
except for some modifications which are specially mentioned in the results chapter. The 
TMBF is used in its full version, including the transport equation (17) for the dissipation 
rate of the temperature variance εT', instead of using the simpler model (16) which includes 
the unknown time scale ratio R, which would need adaptation to the special flow type and 
to the fluid. The dissipation or destruction rate of the heat fluxes εU’T’ is modeled using the 
new modeling (19) instead of using (13), and the production term Pεb in the dissipation 
equation is modeled also according to the new model, equation (18), instead of using 
equation (8). 

In the standard k-ε-σt model the turbulent Prandtl number has to be prescribed. Here 
we are not interested in optimizing or investigating the performance of this model for 
liquid metals, but in using it in a manner as most users do it: I.e., we use the standard value 
of 

tσ  = 0.9 in all calculations with this first order model in this report. 

The calculations were performed with the first order upwind discretization method 
for the convective terms in the momentum, energy, and turbulence equations. A first order 
time discretization was used with ∆t=0.1s. The system of transport equations is solved by a 
direct GAUSS-Solver. The numerical solution of higher order turbulence models with a 
larger number of transport equations may be problematic. Here, a very low value for the 
convergence criterion parameter was chosen for the outer iteration loop to calculate the 
material property data etc.: 10-7. The steady state is reached when the change of each 
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velocity component divided by the maximum velocity magnitude and the change of the 
enthalpy divided by the maximum enthalpy value in the entire field are less than 10-7. 

 
 
6.2 Results 
 
6.2.1 Forced Jet  

 
Experience has shown that the radial spreading of an axi-symmetric jet in forced 

convection is over-predicted by about 20 to 30 per cent (in the case of a stagnant ambient 
flow) when the standard value of the empirical coefficient cµ=0.09 in the k-ε model is used 
(Rodi 1980). The coefficient cµ must be corrected by a function of suitable flow 
parameters. This function is not implemented in FLUTAN but the mean velocity field 
calculated by the k-ε-σt model and by the TMBF model shows a satisfactory agreement 
with the experiment when the value of cµ=0.06 is used (Figs. 3 and 4). The TMBF and the 
k-ε-σt model give the same numerical results in predicting the velocity field. In fact, both 
models describe the turbulent transport of momentum using the same transport equations 
for k and ε. The main difference in this description is the modeling of the buoyancy term 
(eq. 14 and eq. 22) which is, as expected, of negligible magnitude in this forced jet regime.   

The radial temperature profiles predicted by the k-ε-σt model are flatter than the 
measured one (Fig. 5) due to an over-estimation of the radial heat transport from the axis to 
the outer flow. In contrast, the mean temperature field is better predicted by the TMBF 
(Fig. 6) which calculates a smaller turbulent heat flux in the radial direction than the one 
calculated by the k-ε-σt model (Fig. 7).  

The TMBF also provides results for the variance of temperature fluctuations T '2 . The 
calculated data meet the experimental data quite well, Fig. 8. This agreement is achieved 
by using the transport equation for εT’  following eq. (17) instead of using a the modeled 
sink term εT’ according to eq. (16) in the equation for the variance of temperature 
fluctuations. 

 
 
6.2.2 Buoyant Jet  

 
In contrast to the forced jet, the calculated velocity field for the buoyant jet agrees 

satisfactorily with the experimental one when the standard value of cµ=0.09 is used (Figs. 9 
and 10). No reduction of the value of cµ is needed in this case. This is probably due to the 
smaller ∆Uj (0.33 m/s versus 0.5 m/s) and due to the higher value of the co-flow velocity 
(0.1 m/s versus 0.05 m/s). The fact that the TMBF simulates the same velocity field 
calculated by the k-ε-σt model means that the influence of buoyancy on the velocity field is 
still negligible.  

As in the forced regime, the radial spreading of the temperature profile is 
overestimated by the k-ε-σt model (Fig. 11). The mean temperature field is well 
reproduced by the TMBF (Fig. 12) which calculates a lower radial heat transport by 
turbulence (Fig. 13). However, it must be noted that the overestimation of the radial heat 
transport by the k-ε-σt model is now reduced in comparison with the forced jet. 
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An astonishingly good agreement between the calculated T '2  and the experimental 
data is again achieved by using the TMBF (Fig. 14); these data usually react very sensitive 
against any deficiencies of the model or of the inlet conditions. 

 
 
6.2.3 Plume  

 
As a confirmation of the results for the buoyant jet, the experimental velocity field is 

again properly simulated using the standard value of cµ=0.09: ∆Uj is in the plume regime 
further reduced to 0.17 m/s. The TMBF and the k-ε-σt model calculate again the same 
velocity field (Figs. 15 and 16). This result signalizes that the temperature influence on the 
velocity field due to the turbulent transport of heat is still negligible, whereas this regime 
was classified as plume by the experimenters. 

In contrast to the calculations for the forced and buoyant jet, the radial temperature 
profiles are well simulated by both models, even if a better agreement to the experiment is 
reached by the TMBF for the profile at x/d=11, Figs. 17 and 18. However, the TMBF still 
calculates lower values of the radial turbulent heat flux like in the previous cases (Fig. 19). 
An explanation for this result will be given in the next chapter. 

The radial profiles of  T '2 , which can be calculated by the TMBF, are in this case 
clearly overestimated (Fig. 20). This calculation and the analysis of direct numerical 
simulation data for convection in several fluids by Wörner & Grötzbach (1996) and 
Wörner et al. (1999) shows that the standard set of empirical coefficients for the transport 
equation for εT’ is not sufficient for getting a good agreement with the experimental field of 
the temperature variances at small Prandtl numbers. Thus, either corrective functions 
depending on the Peclet number should be developed for some coefficients in this 
equation. Or, the new formulation for the transport equation for εT’ developed by using the 
two-point correlation technique by Otic (Grötzbach et al. 2002b, Otic & Grötzbach 2003) 
should be investigated instead. 
 
 

7 Discussion 
 

The TMBF and the k-ε-σt model can adequately simulate the turbulent transport of 
momentum using the standard values of the empirical coefficients for the buoyant jet and 
for the plume regime. However, the value of cµ must be reduced to 0.06 in the case of the 
forced jet in order to damp the well known attitude of the k-ε model to overestimate the 
radial spreading of an axi-symmetric jet. The fact that the TMBF simulates the same 
velocity field as calculated by the k-ε-σt model signalizes that the temperature influence on 
the velocity field by means of the turbulent transport of heat is negligible even in the case 
of the plume regime. In fact, both models describe the turbulent transport of momentum 
using essentially the same transport equations of k and ε. The main difference in this 
description is in the model of the buoyancy term which is obviously of negligible order in 
all the calculations.   

The TMBF is a significant improvement in comparison to the k-ε-σt  model in the 
simulation of the turbulent transport of heat. The TMBF can reproduce the mean 
temperature field well by using the standard values of empirical coefficients in all 
experiments. This good agreement is due to the separate treatment of the turbulent 
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transport of heat and momentum in the TMBF using the transport equations for the three 
heat fluxes instead of using the isotropic Fourier assumption. In contrast, the k-ε-σt model 
cannot accurately simulate the mean temperature field when the standard turbulent Prandtl 
number is used. As a result of a strong anisotropy in the field of the temperature gradient 
which shows very high values perpendicular to the flow direction, the turbulent heat flux 
acting perpendicular to the flow direction has very high values when the heat fluxes are 
calculated setting them proportional to the temperature gradient as in the first order models 
which use the Fourier assumption. For this reason the k-ε-σt model gives an unsatisfactory 
prediction of the turbulent heat fluxes overestimating the values compared with the TMBF.  

The fields of σt can be calculated by the TMBF (Fig. 21). They represent 
approximate values because σt is calculated using the turbulent heat fluxes, which are 
modeled by transport equations, and the turbulent shear stresses, which are modeled like in 
the k-ε model by velocity gradients. The calculated turbulent Prandtl number has higher 
values than the standard one of σt = 0.9, which is used by the calculation with the k-ε-σt 
model. Moreover, it is not constant. It depends not only on the fluid, what is well known 
(Kays 1994), but also on the flow regime and on the position. The k-ε-σt model can give 
good results only by adjusting the value of σt reducing the turbulent heat flux acting 
perpendicularly to the flow direction (Carteciano 1995). 

The influence of the overestimation of the turbulent radial heat flux on the 
temperature field by the k-ε-σt model becomes negligible in the plume regime because the 
turbulent conductivity Γt, which is in all three flow regimes lower than the molecular one, 
which is Γ =76 W/(m K), is reduced from the forced jet to the plume regime (see Fig. 22). 
Therefore, the heat transport by turbulence becomes less and less important compared with 
the molecular one going from the forced flow to the plume regime. This explains the good 
prediction of the temperature field performed by the k-ε-σt model in case of the plume 
regime. 

The TMBF adequately simulates the variance of temperature fluctuations T '2  in two 
experiments but not in the plume regime. Due to the use of a transport equation for εT’, the 
spatial distribution of the problematic value of the turbulent time-scale ratio 
 
R=0.5*( T '2 /εT’)/(k/ε) (28)
 
can be analyzed from the calculations using equations (16) or (28) which is otherwise 
needed on input to model the sink term in the T '2  equation; this is also important for the 
new model term in the transport equations for the heat fluxes, see eq. (18). The different 
values calculated for R in each experiment show that R depends not only on the molecular 
Prandtl number and on the position, but also on the Reynolds number (Fig. 23). The 
results for the plume are surprisingly large; they suffer from the problem that the 
temperature variances are badly reproduced by the TMBF in this case.  

There exist no data for R which are determined by direct measurements of the 
quantities appearing in eq. (28), because the dissipative range of the spectrum can only be 
resolved by modern sensors for a few flows and only at small Reynolds numbers; instead 
most data from experiments are determined by some modeling assumptions. So, for this 
peculiar type of flow and fluid Bremhorst et al. (1989) and Gehrke & Bremhorst (1993) 
deduced R data in the order of about 0.4, what is larger then analyzed from the TMBF 
results. Instead, most directly determined R data are coming from the analysis of DNS 
results. For forced convection in a heated plane channel Kawamura et al. (1998, 1999) 
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gives data for a somewhat larger Prandtl number, Pr = 0.025, of below or around 0.2. He 
finds that this value depends only weakly on Re, but more strongly on Pr and wall 
distance. For Rayleigh-Bénard convection for several liquid metals Grötzbach & Wörner 
(1992), Wörner (1994), Wörner & Grötzbach (1995), and Grötzbach & Otic (2002) give R 
data from their DNS; the data depend at small Prandtl numbers on Prandtl number, 
Rayleigh number, and wall distance. The values found here by the TMBF are with R < 0.2 
roughly in that range as it was found in the DNS for liquid sodium. So, the problem of 
getting reliable data for R gets obvious from this comparison. Currently a model is under 
development to describe the profiles of R at least for Rayleigh-Bénard convection in 
fluids with a wide range of Prandtl numbers (Otic 2003). Such a model should allow for 
more accurate calculations and to avoid the solution of the additional transport equation 
for εT’ with its many models and coefficients. 
 
 

8 Conclusions 
 

FLUTAN calculations of a turbulent hot jet of sodium are performed for three 
different buoyancy regimes called forced jet, buoyant jet, and plume. The jet flow has the 
advantage that the calculated turbulent mixing only depends on the turbulence models 
used, and perhaps also on the numerical schemes, but not on any wall models like wall 
functions. Two different turbulence models are used: the standard k-ε-σt model and a 
combination of a standard k-ε model with a full second order heat flux model called 
Turbulence Model for Buoyant Flows (TMBF).  

The calculations of the TEFLU experiments show the limits of the applicability of 
an eddy diffusivity approach used by the k-ε-σt model to liquid metal flows. Whereas the 
calculated velocity fields are in close agreement with the measurements, the calculated 
temperature profiles are only in those cases acceptable in which the heat fluxes are more 
or less governed by the molecular diffusivity. The TMBF which is a compromise between 
the classical k-ε-σt model and the Reynolds stress model is clearly an improvement of the 
k-ε-σt model for turbulent flows in which the turbulent transport of heat is complex and 
the Reynolds analogy is not valid, such as in liquid metal flows. In all cases, the 
temperature fields calculated by the TMBF agree better with the measured data. The 
TMBF does already contain some specific model extensions which were deduced from 
direct numerical simulations for turbulent liquid metal convection. Further improvements 
of the TMBF are still necessary for liquid metal flows to reduce the overestimation of the 
radial profiles of T '2  in the plume regime. The inclusion of the Peclet number dependency 
in the transport equation of εT’ (Wörner et al. 1996 and 1999) should lead to physically 
sound results. An alternative could be to use the new formulation with an improved 
modeling for the dissipation of thermal variances εT’ as currently deduced by Otic (Otic & 
Grötzbach 2003).  

Even though the FLUTAN predictions agree well with experimental data, further 
validation of the TMBF is needed especially for liquid metal flow regimes in which the 
calculated fields are mainly determined by the turbulent heat transport and not by the 
molecular one.   

One should keep in mind that the range of validity of the TMBF could be restricted 
by the assumption of isotropy of the eddy viscosity νt whereas anisotropy is included in 
the calculated turbulent heat fluxes. Such anisotropy in the eddy viscosity may become 
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important in 3-D flows and near walls. For these kinds of flows, at least Algebraic Stress 
Model (ASM) extensions for the two-equation Reynolds stress models should be used, 
Table 1. Such a model would combine the necessary features to include anisotropic eddy 
diffusivities and an accurate heat flux modeling together with an acceptable numerical 
effort and with robustness. 
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Figures 
 
 
 
 
 

 

 

Figure 3: Forced Jet, radial velocity profiles at three different axial positions (left) and axial velocity profile at 
r=0 (right). Comparison between measurements and calculation with the k-ε-σt model. 
 
 

  

Figure 4: Forced Jet, radial velocity profiles at three different axial positions (left) and axial velocity profile at 
r=0 (right). Comparison between measurements and calculation with the TMBF model.  
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Figure 5: Forced Jet, radial temperature profiles at three different axial positions (left) and axial temperature 
profile at r=0 (right). Comparison between measurements and calculation with the k-ε-σt model.  
 

  

Figure 6: Forced Jet, radial temperature profiles at three different axial positions (left) and axial temperature 
profile at r=0 (right). Comparison between measurements and calculation with the TMBF model.  
 
 

Figure 7: Forced Jet, calculated fields of the radial turbulent heat flux with the k-ε-σt model (left) and with the 
TMBF model (right).  
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Figure 8: Forced Jet, radial profiles of the temperature variance at three different axial positions. Comparison 
between measurements and calculation with the TMBF model.  
 

  

Figure 9: Buoyant Jet, radial velocity profiles at three different axial positions (left) and axial velocity profile at 
r=0 (right). Comparison between measurements and calculation with the k-ε-σt model. 
 
 

  

Figure 10: Buoyant Jet, radial velocity profiles at three different axial positions (left) and axial velocity profile at 
r=0 (right). Comparison between measurements and calculation with the TMBF model. 
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Figure 11: Buoyant Jet, radial temperature profiles at three different axial positions (left) and axial temperature 
profile at r=0 (right). Comparison between measurements and calculation with the k-ε-σt model. 

 
  

Figure 12: Buoyant Jet, radial temperature profiles at three different axial positions (left) and axial temperature 
profile at r=0 (right). Comparison between measurements and calculation with the TMBF model. 
 
 
 

Figure 13: Buoyant Jet, calculated fields of the radial turbulent heat flux with the k-ε-σt model (left) and with the 
TMBF model (right). 
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Figure 14: Buoyant Jet, radial profiles of the temperature variance at three different axial positions. Comparison 
between measurements and calculation with the TMBF model. 

 
 
   

Figure 15: Plume, radial velocity profiles at two different axial positions (left and middle) and axial velocity 
profile at r=0 (right). Comparison between measurements and calculation with the k-ε-σt model.  
 
   

Figure 16: Plume, radial velocity profiles at two different axial positions (left and middle) and axial velocity 
profile at r=0 (right). Comparison between measurements and calculation with the TMBF model. 
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Figure 17: Plume, radial temperature profiles at three different axial positions (left) and axial temperature 
profile at r=0 (right). Comparison between measurements and calculation with the k-ε-σt model. 

 
 
 
  

Figure 18: Plume, radial temperature profiles at three different axial positions (left) and axial temperature profile 
at r=0 (right). Comparison between measurements and calculation with the TMBF model. 
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Figure 19: Plume, calculated fields of the radial turbulent heat flux with the k-ε-σt model (left) and with the 
TMBF model (right). 
 
 

Figure 20: Plume, radial profiles of the temperature variance at three different axial positions. Comparison 
between measurements and calculation with the TMBF model. 
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Figure 21: Field of the turbulent Prandtl number tσ  calculated with the TMBF model for the forced jet (left), 
buoyant jet (middle), and plume (right).  
 
 
 

Figure 22: Field of the turbulent conductivity tΓ  calculated with the TMBF model for the forced jet (left), 
buoyant jet (middle), and plume (right). 
 
 

   

Figure 23: Field of the turbulent time-scale ratio R calculated with the TMBF model for the forced jet (left), 
buoyant jet (middle), and plume (right). 

r [m]

X (m)

Forced Jet - TMBF Model

σT

5.0
4.0
3.0
2.0
1.0

r [m]

X (m)

Buoyant Jet - TMBF Model

σT

5.0
4.0
3.0
2.0
1.0

r [m]

X (m)

Plume - TMBF Model

σT

4.0
3.0
2.0
1.0

Forced Jet Buoyant jet Plume

[W / (m  K)]
λT

55
45
35
25
15

5

X (m)

Forced - TMBF Model

R

r [m]

0.18
0.14
0.10
0.06
0.02

X (m)

Buoyant - TMBF Model

R

r [m]

0.16
0.12
0.08
0.04

X (m)

Plume - TMBF Model

R

r [m]

2.4
1.6
0.8



 32

Tables 
 
 

Table 5: Inlet profiles for forced jet case (x/d=6) 
r/d v  

(m/s) 
T  

(K) 
T '2  
(K2) 

k  
104 (m2/s2)

ε  
103 (m2/s3) 

0 0.365 588.66 0.236 23 13 
0.1 0.358 588.30 0.325 25.4 15.4 
0.2 0.338 587.70 0.430 28.2 20.2 
0.3 0.312 586.92 0.529 33 27 
0.4 0.282 586.03 0.599 37.2 33.2 
0.5 0.251 585.06 0.627 39.8 38.8 
0.6 0.220 584.05 0.608 40 40 
0.7 0.192 583.03 0.550 38 37 
0.8 0.166 582.03 0.465 36 31 
0.9 0.143 581.07 0.367 31 24 
1 0.124 580.16 0.272 27 18 

1.1 0.108 579.32 0.189 22 13 
1.2 0.094 578.54 0.122 18 7.5 
1.3 0.084 577.84 0.074 14 4.4 
1.4 0.076 577.21 0.043 9.9 2.2 
1.5 0.071 576.66 0.023 7 1.1 
1.6 0.067 576.17 0.012 4.8 0.6 
1.8 0.062 575.38 0.004 4.0 0.4 
2 0.061 574.80 0.002 4.0 0.4 

2.2 0.061 574.38 0.0005 4.0 0.4 
2.4 0.061 574.06 0.000007 4.0 0.4 
2.6 0.061 573.82 0.000001 4.0 0.4 
2.8 0.062 573.63 0.000001 4.0 0.4 
3 0.062 573.48 0.000001 4.0 0.4 

3.4 0.064 573.16 0.000001 4.0 0.4 
3.8 0.067 573 0.000001 4.0 0.4 
4.2 0.071 573 0.000001 4.0 0.4 
4.6 0.074 573 0.000001 4.0 0.4 
5 0.077 573 0.000001 4.0 0.4 

>7 0.050 573 0.000001 4.0 0.4 
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Table 6: Inlet profiles for buoyant jet case (x/d=6) 
r/d v  

(m/s) 
T  

(K) 
T '2  
(K2) 

k 
104 (m2/s2) 

ε 
103 (m2/s3) 

0 0.294 582.95 0.0934 14 9.2 
0.1 0.283 582.77 0.1054 14.5 10 
0.2 0.269 582.45 0.1297 16 12 
0.3 0.253 582.03 0.1548 18 16 
0.4 0.237 581.51 0.1721 20 19 
0.5 0.221 580.94 0.1767 22 23 
0.6 0.205 580.32 0.1682 24 26 
0.7 0.190 579.68 0.1495 24 27 
0.8 0.176 579.04 0.1249 24 27 
0.9 0.163 578.4 0.0989 23 24 
1 0.152 577.79 0.0747 21 22 

1.1 0.143 577.2 0.0543 19 18 
1.2 0.135 576.66 0.0383 17 14 
1.3 0.128 576.16 0.0264 15 11 
1.4 0.124 575.7 0.0181 12 7.8 
1.5 0.120 575.3 0.0123 11 5 
1.6 0.117 574.95 0.0084 8.7 3.3 
1.8 0.115 574.4 0.0041 6.8 2.2 
2 0.116 574.02 0.0020 5.1 1.2 

2.2 0.117 573.78 0.0010 3.9 0.7 
2.4 0.119 573.63 0.0005 2.8 0.35 
2.6 0.120 573.52 0.0003 2 0.2 
2.8 0.120 573.41 0.0002 2 0.2 
3 0.121 573.31 0.0001 2 0.2 

3.4 0.121 573.19 0.0001 2 0.2 
3.8 0.125 573 0.0001 2 0.2 
4.2 0.130 573 0.0001 2 0.2 
4.6 0.131 573 0.0001 2 0.2 
5.0 0.127 573 0.0001 2 0.2 

>7.0 0.100 573 0.0001 2 0.2 
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Table 7: Inlet profiles for plume case (x/d=6) 
r/d v  

(m/s) 
T  

(K) 
T '2  
(K2) 

k 
104 (m2/s2) 

ε 
103 (m2/s3) 

0 0.202 595.65 0.3611 5.9 2.5 
0.1 0.195 595.4 0.3634 6.2 2.8 
0.2 0.189 594.76 0.4215 6.8 3.3 
0.3 0.182 593.83 0.4879 7.6 4.2 
0.4 0.176 592.68 0.5338 8.5 5.3 
0.5 0.169 591.38 0.5457 9.3 6.1 
0.6 0.163 589.99 0.5240 9.7 6.9 
0.7 0.157 588.56 0.4772 9.9 7.1 
0.8 0.151 587.13 0.4163 9.8 6.9 
0.9 0.146 585.72 0.3509 9.6 6.6 
1 0.140 584.38 0.2877 9 5.8 

1.1 0.136 583.1 0.2303 8.2 5 
1.2 0.131 581.91 0.1803 7.3 3.9 
1.3 0.127 580.82 0.1376 6.4 3.1 
1.4 0.123 579.82 0.1022 5.5 2.2 
1.5 0.120 578.92 0.0734 4.8 1.7 
1.6 0.117 578.13 0.0509 3.9 1.1 
1.8 0.112 576.81 0.0220 3.1 0.7 
2 0.109 575.84 0.0090 2.5 0.4 

2.2 0.107 575.14 0.0043 2 0.3 
2.4 0.106 574.65 0.0020 2 0.2 
2.6 0.106 574.32 0.0002 2 0.2 
2.8 0.106 574.09 0.0002 2 0.2 
3 0.106 573.92 0.0001 2 0.2 

3.4 0.107 573.67 0.0001 2 0.2 
3.8 0.107 573.48 0.0001 2 0.2 
4.2 0.109 573.37 0.0001 2 0.2 
4.6 0.113 573.36 0.0001 2 0.2 
5 0.116 573.25 0.0001 2 0.2 

>7 0.100 573 0.0001 2 0.2 
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