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Abstract

In this paper we focus our attention on rotationally symmetric problems, where cylinder
coordinates are suitable. For Cartesian grid arrangements finite-difference schemes for the
diffusion equation in two spatial dimensions are introduced. The temporal evolution is
determined by implicit and explicit techniques. In addition to exactly solvable diffusion model

problems we present numerical results of simulation experiments of a diamond disc window.

Explizite und implizite finite Differenzenmethoden zur Lésung der Diffusionsgleichung in

zwei Raumdimensionen

Zusammenfassung

In diesem Bericht stehen rotationssymmetrische Diffusionsprobleme im Mittelpunkt, flr
welche Zylinderkoordinaten zur Beschreibung angemessen sind. Insbesondere werden fir
kartesische Gitteranordnungen Differenzenverfahren zur Lésung der Diffusionsgleichung in
zwei Raumdimensionen vorgestellt. Zur zeitlichen Integration der semi-diskreten Gleichung
werden sowohl implizite als auch explizite Techniken herangezogen. Exakt I6sbare
Diffusionsprobleme geben Auskunft Gber die Qualitat, Eigenschaften und Verwendbarkeit der
angewandten Losungsmethoden. Ferner werden Resultate von Diamantfenster-Simulationen

fur verschiedene Parameterkonfigurationen prasentiert.
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1. INTRODUCTION

New ceramic materials are good candidates for vacuum windows of gyrotrons,
barrier windows at the plasma torus and other applications in the enviroment of
electron cyclotron resonance heating of plasmas in fusion energy research (see,
e.g.[16, 19]). Detailed studies of the loss tangent, the thermal conductivity and
further thermophysical properties of these windows are of great importance regard-
ing their reliable usability. Transmission of MW power beams requires a suitable
cooling system for each material. Hence, different window geometries have to be
considered and compared. Numerical simulation is an appropriate and effective
tool to investigate the thermal properties as well as to find the radial temperature
distribution of disc windows having varying thickness and diameter. In order to
perform the thermal analysis, a computer program has been developed. The de-
scription of the applied methods for the numerical solution of the time-dependent
diffusion in two spatial dimensions is the main item of this report.

In the context of the present investigations, we focus our attention on rotationally
symmetric problems, for which (z, r)-cylinder coordinates are a suitable choice.
The computational domain is established by a Cartesian mesh, with a very clear
and regular grid zone arrangement. Furthermore, finite-difference (FD) techniques
are introduced to deal with the spatial derivatives of the diffusion equation. The
temporal diffusion is modelled using an implicit as well as explicit approximation
technique.

The organisation of this article is as follows: After the introduction of the gov-
erning equations of the two-dimensional rotationally symmetric diffusion problem
in Section 2, the numerical framework for the diffusion equation is discussed in
more detail in Section 3. There, the FD approach for the model equation is briefly
outlined, the matrix-vector form of the semi-discrete diffusion equation is intro-
duced and the implementation of some physically occuring as well as computa-
tional motivated boundary conditions are summarised. Furthermore, the temporal
integration of the conservation equation is considered: This means that some basic
explicit techniques are sketched and the implicit alternating-direction method is
briefly reviewed. Some remarks on the stability of the considered schemes round
off this section. Section 4 deals with numerical results obtained with the proposed
methods. These simulation results demonstrate that the implemented algorithms
produce accurate approximations and run in a very reliable manner. Subsequently
in Section 5, numerical experiments for a synthetic diamond disc window are per-
formed. For that purpose, the essential physical connections, which are necessary
to simulate numerically the main features of heat transfer are briefly mentioned.
Afterwards, numerical results of diamond window simulation experiments for dif-
ferent parameter configurations and boundary conditions are presented. Finally,
concluding remarks and a short outlook for the further scientific goals are given in
Section 6.



2. GOVERNING EQUATIONS

The heat transfer problem via conduction in the two-dimensional domain  C R?
for cylinder coordinates x = (z1, #2)7 = (2, )T (see Figure 2.1) and ¢ > 0 is
mathematically modelled by the local diffusion equation (see, for instance [10])
00(x,1)

ot
where 0(x,t) ([f] = K) denotes the temperature field. The conduction is driven by
an effective local power density pess(x,t;0) — also denoted as an effective source

pCyp

+V -h(x,t;0) = pesr(x,t;0) , (2.1)

term — which depends on space, time and temperature and is measured in units of
[perf] = W/em3. Furthermore, p = p(x;6) is the density ([p] = g/cm?) and C), =
C)p(x;6) denotes the specific heat ([Cp] = J/g/K) of the considered materials. The
heat flux vector function h = h(x,t;0) describes the heat flow through conduction
([h] = J/s/em? = W/em?) and is given by the linear Fourier law

h(x,t;0) = —S(x;6)- V8, (2.2)
where the thermal conductivity tensor S depends, in general, on the temperature

and, consequently, the conservation equation (2.1) establishes a nonlinear problem.
For the following considerations we assume that the tensor S has a diagonal form

o [s1(x30) 0
S(Xﬁ)—( 0 SZ(X;9)>, (2.3)

where the thermal conductivities s; are measured in [s;] = W/em/K. From (2.2)
and (2.3) we then obtain the equations

fo00t) = —si0) Tl (2.4
sxi0) = —sal0) 2D (2.5)

where the physical fluxes f and g are the components of the heat flux vector h.
Obviously, the energy conservation law established by the parabolic equation (2.1)
has to be supplemented by appropriate initial data

Oo(x) = 0(x,t = 0) (2.6)

and by the boundary conditions, which are given for the cylinder symmetrical case
by

g1(z2,t) = 0(z=0,r,t),
g2(x2,t) = 0(z=D,nrt),
hi(z1,t) = 60(z,7r=0,t),
ha(z1,t) = 6(z,7 = Ro,t) . (2.7)

These boundary conditions for the computational domain 2 are schematically de-
picted in Figure 2.1. The special measurements of this domain of interest are
discussed below for exactly solvable problems and are summarized in Table 5.1 for
a praxis relevant problem. Furthermore, from our intention (cf., Figure 2.1) it is
obvious, that the boundary function hi(z1,t) coincides with the z-axis, which is

the symmetry axis in our considerations.
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h,(z.0)
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gl(r,t) gz(r,t)
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D

FiGure 2.1. Computational domain Q of a window disc with
thickness D is schematically illustrated in the (z, r)-plain. The
space and time dependent boundary data are denotd by g; and h;,
respectively. For the geometrical parameters D, Ry, R; and R4
the values summarised in Table 5.1 are used.

2.1. Assumptions and useful rearrangements. Under the assumption that the
system is rotationally symmetric with respect to the z-axis, then (z,7) - cylinder
coordinates are obviously a suitable choice. In this case the divergence operator
applied to the heat flux vector h is given

of 10
h=_~+-—|rg|,

0z r 8r[ 9]
where the heat fluxes f and g are already specified by (2.4) and (2.5), respectively.
We assume that the abbreviation

V- (2.8)

1
€0 = o (29)

does not depend on the spatial coordinates, then the cylindrically symmetric con-
servation equation (2.1) can be recast into the following compact form

00 OF 10
_ = A A Pe ’ t; 0 ’ 2.1
ot 9z +T‘8’I"[TG]+ ff(x ) (2.10)
where the reduced physical heat fluxes are now determined by
00
F = ;0) — 2.11
S1 (X) 0) 9z’ ( )
G = S3(x;0) 09 (2.12)

E ’
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and measured, respectively, in units of [F] = [G] = ¢m - K/s. By doing this, the
abbreviations
Si(x;0) =£0)si(x;0); i=1,2, (2.13)
and
Pepp(x,t;0) = £(0) pess(x,t;0) (2.14)
are introduced, which denote the reduced conductivities and effective power den-
sity. These new quantities (2.13) and (2.14) are measured in units of [S;] = ”7;2
and [P.rs] = %, respectively. Equation (2.10) holds for 0 < z < D, 0 < r < Ry
and t > 0. Since this equation is parabolic, the conditions (2.6) have to specified

initially. Moreover, at the border of the computational domain appropriate bound-
ary conditions (2.7) have to prescribed, which may depend, in general, on space
and time. We emphasize that (2.10) is not true at the symmetry axis where r = 0.
Assuming that 00/0r = 0 at r = 0 — which it will be if the problem is symmetrical
with respect to the z-axis — then it is obvious that the flux G (2.12) vanishes if
r — 0. Performing a Taylor expansion of G around r = 0, we obtain

. G 0G
lim o= Wh«:o , (2.15)
and, consequently, the diffusion equation(2.10) now reads as
08 OF oG
E—aﬂ-zg-f—])eff(x,t,o), (216)

for r & 0 (on the symmetry axis). Clearly, the solution 6(x,t) of the diffusion
problem posed by (2.10) has to fulfil the latter equation (2.16) in the limit where r
tends to zero.

We remark that in order to implement discrete circularly symmetric boundary
conditions it is important to take the fact into account that the flux G is zero at
the symmetry axis.

3. NUMERICAL FRAMEWORK FOR THE DIFFUSION EQUATION

In the following chapter we introduce a semi-discrete form of the conservation
equation (2.1) in the domain 2, which is conveniently written as

Wik = 5,01, (31)
forj=1,...,Jp,=J—1land k=1, ..., K,, = K — 1, where the right-hand side
(rhs) S; i (t) is a suitable approximation of the physical fluxes and the effective local
power density. For that, the approximation strategy applied to the conservation
form is outlined for the cylinder symmetrical diffusion, where finite-diffference (FD)
techniques are useful. In further subsections we present the temporal integration of
the semi-discrete conservation law (3.1), where explicit as well as implicit numerical
schemes are used.



3.1. Spatial discretisation using the finite difference approach.

3.1.1. COMPUTATIONAL MESH. In all cases the bounded domain of computa-
tion € is discretised in a simple manner by a Cartesian mesh as depicted in Figure
3.1. The nodes of the computational mesh are calculated according to

ro4[k]
Az

[j]

z

FiGUuRE 3.1. Schematic discretisation of the computational do-
main 2.

zj = z+Az-j, j=0,1,..J, (3.2)
re. = ro+Ar-k, k=0,1,..K, (3.3)

where (zo,70) are the coordinates of the starting point (left lower point) and Az
and Ar denote the equidistant spacing of the discretisation points along the z- and
r-axis, respectively. The notation 741 /2, for instance, is an obvious abbreviation
for the coordinate explicitly given by ry 10 = ro + Ar (k +1/2).

We remark, that in the context of the present paper only regular geometries are
considered for which (z, r) cylinder coordinates are the appropriate boundary-fitted
numerical model of the computational domain. The treatment of irregular-shaped
geometries within a simple Cartesian discretisation of the (z, r)-plain is postponed
to a forthcoming article [13].

3.1.2. NUMERICAL FLUX AND GRADIENT APPROXIMATION. For the
cylinder symmetrical problems in the (z, r)-plain, the rhs of the semi-discrete equa-
tion (3.1) is a direct approximation of the conservation equation (2.10) and reads

as

where the fluxes are defined by (2.11) and (2.12), respectively. Clearly, we now

+Peff(x,t;0)> , (34)
7.k

Jik
have to specify how the approximations of the derivatives of the fluxes as well as

of the fluxes itself should be performed. In both cases the standard central FD
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approach is applied. Hence, the derivations with respect to the z-coordinate are
approximated according to

853))].7,6: Aiz [Fﬁl/?,k(t) - Fj—l/z,k(t)] (3.5)

with

B0 (t) — mm] , (3.6)

while those with respect to the spatial r-coordinate are obtained by the following

1
Fj+1/2,k(t) = (Sl)j+1/2:k Az

sequence of expressions

10 11
rarl G(t)]> ~ o Ar [Tkﬂ/? Gir1/2(t) = Th-1/2 Gj,k—l/Q(t)} (3.7)
jk
with
1
Gikr1/2(t) = (S2)jkt1/2 A [9j,k+1(t) - onc(t)] : (3.8)

We remark that the spatial dependence of the modified conductivities (2.13) is
explicitly taken into account in the proposed approach. Furthermore, it is very
convenient to use the abbreviation

1
ik = (Bj+1/2,k + Bj—l/Q,k) + - ('7j,k+1/2 + '7j,k—1/2) , (3.9)
where the coefficients § and v are determined by
1
Bj+1/27k = (AZ)Z (Sl)j+1/27k (310)
and .
Vik+1/2 = Tk41/2 W(Sz)j,kH/Z ) (3.11)

respectively. The modified conductivities (2.13) are computed as average values at
the intermediate location and are given by

Sz = |Gt (S 3.12)
(S2)jkt1/2 = %[(52)j7k+1+(52)j7k:|~ (3.13)

Using these definitions and inserting them into the relations (3.5)-(3.8), we finally
find for the rhs of the semi-discrete equation (3.1) in the cylinder symetrical case:

Sik®) = Bj—ronbi—1.6(t) =Xk 05k (#) + Bjv1/2.4 0j+1,(t)

MR (1) + L g () + [Pogr ()] (3.14)
Tk Tk Jrk

+

where [Pe ff(t):| . denotes the nodal approximation of the modified local power
g,
density (2.14). We note that the source (3.14) of the semi-discrete equation depends

on the variables 0;  (t) lying inside the computational domain Q. However, S (t) is
also determined by the values 0 x(t), 8.5,1(t), 6;,0(t) and 0; k (), which are located
at the border of the domain.

We finally remark that a Cartesian problem can be treated very similar to the

cylinder symmetric case discussed in this section. This is managed by setting the
6



ratios

Tk Tre— . .
P2 and '“rkl/ 2 equal to one in the above given formulas. Therefore, the

overall form of S; 1 (t) is the same for both Cartesian and cylinder coordinates.

3.1.3. MATRIX-VECTOR FORM OF THE SEMI-DISCRETE DIFFUSION
EQUATION. It is now desired to rewrite the semi-discrete equation (3.1) with the
rhs (3.14) in order to obtain a compact matrix-vector formulation for this problem.
To manage this task, we use a hierachical index organisation of the form

Vi: i=Jn(k—1)+j with j=1,..., Jo; k=1,..., Kpn (3.15)

to express S; 1 (t) in terms of a matrix and vectors. Moreover, it is useful to separate
the nodes inside the domain 2 from these one located at the border 0 of the
computational domain (cf., Figure 3.1). For the nodes located in the interior of €2,
it is easy to verify that the rhs (3.14) — without [Peff(t)] — can be brought into

)

the form
A-w(t), (3.16)

where A is a sparse, penta-diagonal matrix and w(t) denotes the solution vector.
This variable vector has the structure

T
W(t): (0171, ...,9Jm71,0172, ...,9Jm72, "'7917Km7 ...,ejmme) , (317)

from which it is clear that the length of the column vector w is J,, - K, so that
w € R/ Em_  The explicit block structure of the sparse matrix A, consisting of
K,, = K — 1 main diagonal blocks, is given by

D U3 0 O 0 e 0
I, D U, O 0 .. 0
0 Ly D3 Us 0 e 0
A= . o . : ; (3.18)
0 0 0 0 Lk, Dg, 1 Ux, 1
0o 0 0 0 0 Lk,  Dx,
where the diagonal block matrices D, € R/ */m k=1,..., K,,, with a block size
of Jp X Jm = (J — 1) x (J — 1) possesses a tridiagonal character
R 0 0 0
Bajak  —Xok Bsjonk 0 0 0
0 Bsppe —Xsk Brjok 0 ces 0
De=1| . : . : :
0 0 0 0 Bim—3/2k —Zdp-1k Brn—1/2k
0 0 0 0 0 Blm—1/2k  — Xk
(3.19)

The lower and upper block matrices Ly, and Uy with Ly, U, € R/ %= are simple
diagonal matrices of the form

Lyy1 =0 = diag('Yl,k+1/2> V2, k41/25 - 7Jm,k+1/2); k=1,..., K, . (3.20)

The entries of the matrices Dy, Ly and Uy are computed with the aid of the relations
(3.9)-(3.11). In addition to the inner nodes of 2, we have to consider those lying

at the border 0, since the source S; (t) also depends on these boundary values.
7



After some rearrangements of the equation (3.14), we observe that it is possible to
combine the boundary value dependent terms in a vector of the form
T

b,
Boy=| : | . (3.21)

bxk, —1
bk

m

where the column vectors by, € R/™ are computed by the prescrition

Y1,1/2
Biy2,1 001+ == 010
Y2,1/2
T1 9 ’

by = : , (3.22)
Vo =11/
Dbz g, g

VYIm,1/2
Brmt1/21 00411 + =25 07,,0

VY1, Km +1/2

B2,k O0.K,, + 01 K., +1

Thm
%:/2 02 K, +1
bk, = : , (3.23)
%71:”“/2 07,1, K +1
Bat1/2, K Ot Ko + 2205 g
and
B2,k bok

0
by, = : k=23 Kn—1. (3.24)

0

Brmt1/2.k 000+1,k
In the following the vector B(t) is called the boundary vector which, in general,
depends on time. For sake of completness, the effective local power density vector
is introduced by

T
Pepp(t) = ([Peff]l,la oo Pepplamts - [Pepslt Ky -5 [Peff]Jm,Km) , (3.25)

and depends also on time and, in general, on the temperature field §; ;(¢). Combin-
ing the results discussed above, we obtain the following matrix-vector formulation
for the semi-discrete form of the diffusion equation (2.1)

%w(t) = S(t;w) (3.26)
S(t;w) = A-w(t)+ B(t) + Pesy(t), (3.27)

where the time-dependent variable vector w(t) € R/= K= is defined by equation
(3.17). It is obvious from this formulation that the source vector S(t; w) € R/m K=
depends explicitly on the solution vector w(t) as well as on the time-dependent
boundary B(t) € R/ Km and on the power density Pess(t) € R/ Km vector.
Furthermore, we note that (3.26) represents nothing else than a system of ordinary

differential equations, which can be numerically treated with standard techniques
8



if appropriate initial data are prescribed. Some of these — more or less — standard
methods are briefly sketched below in Section 4.2.

3.1.4. BOUNDARY CONDITIONS AND THEIR IMPLEMENTATION. In the
following discussion, we describe the numerical implementation of physically oc-
curing as well as computationally motivated boundary conditions in the FD con-
text. For that purpose, we divide the boundary surface 9N of the computational
domain (2 into, for instance, three disjoint subsets I'r, 'r and I's representing
a thermally insulated, a radiating and a circular symmetric surface, respectively,
where 00 =T'rUl'g UTs.

e Thermally insulated surface:

This condition occurs very frequently in practice and is expressed in terms of
derivatives. A heat-conducting material is said to be thermally insulated,
if there is no heat flow normal to a surface. This situation should be
established by the fact that at the corresponding boundary the condition
00
on

is enforced at every point of the insulated surface I';, where n denotes

Irr =n-VOlr, =0 (3.28)

the outwards directed unit normal at this surface. For cylinder coordinates

with n = —e, = (=1, 0)7, for instance, we obtain from (3.28) the condition
00(r,t)

e =0 3.29

5, =0 (3.29)

for the temperature, which may depend on r as well as ¢ . Obviously, the
latter condition can be used to specify the border function g;(r,t) given by
(2.7) for the thermally insulated situation. Applying a central difference
formula, the condition (3.29) is numerically modelled by

1
m(@fk - eﬁl,k) =0 << 021716 - 6?,16 VEk . (330)
Then, the boundary values are computed from the averaging
n 1 n n
0.k = 5(01,1@ + 0—1,k) ) (3.31)

yielding finally the desired boundary data
0ok =07y <= g1(ri,t") = 07, Vk (3.32)

at the time level t = ™. We note that the boundary condition (3.28) simply
represents a Neumann condition for the temperature at the border 't of
the domain.

e Surface cooling:

The rate of (heat) energy flow across any surface in the direction of the
outwards normal n is given by

n-hp, =-n- [S : va] Itn s (3.33)

where the fundamental Fourier law (2.2) is used. It is often assumed that
this energy transfer from the boundary surface ' at temperature 6 into
the surrounding medium at temperature 6.,,; is modelled according to

—n- [s : vo] tn = a (6= Beont) (3.34)
9



where a ([a] = W/em?/K) denotes the coefficient of heat transfer for the
materials of interset. Obviously, this ansatz may also be interpreted as an
inhomogeneous Neumann boundary condition. For the moment we consider
the cylinder symmetrical case, where the normal is determined by n = e, =
(0, )T and the boundary I'g is explicitly specified by 7 = Ry (cf. Figure
2.1). Consequently, we obtain from (3.34) the relation

96(z, 1)
—S9 87“ |r:R0 = (0 — 96(,0;) y (335)

which is the starting point to define the function hs(z,t) (cf., (2.7)), where
s denotes the conductivity (cf., (2.3)). We assume that the semi-discrete

equation (3.1) does not hold at r = Ry. Hence, equation (3.35) is the needed
additional relation in order to fix the boundary temperature. A suitable
numerical estimation of this temperature may be obtained by using (the
less accurate) forward differencing approach. Consequently, we find for the
updating of the boundary data at r = Ry the expression

(8%
[07 k1 — (Beoot) ' ] (3.36)

ha(zj,t") =0 1 — Arm
at the time level ¢ = t™ for all j. Numerical experiments indicate that
for most practical applications the accuraccy of the latter approximation is
sufficient.

e Circular symmetry condition:

As already mentioned above in Section 2.1, the basic diffiusion equation
(2.10) has to be replaced by the conservation equation (2.16) at the sym-
metry axis. To model numerically the symmetry condition at » = 0 (the
origin of the (7, ¢)-plane), we assume that the flux G vanishes at I's if r
tend to zero, which means that
1

Giolt) = 5[Giaeh) + Gsap ()] =0 (3.37)
at the time ¢. Using the definition (3.8) and performing some rearrange-
ments, we obtain the relation

[(52)3}71/2 - (52)j71/2:|0j,0(t) = (52)j771/2 ej,—l(t) - (52)3‘71/2 aj,l(t) (338)

for the symmetry axis temperature 6;¢(t), which depends especially on
6;,—1(t). For problems symmetrical with respect to the z-axis % =0 at

r = 0. Consequently, from the discrete version of this relation we find that
0;,—1(t) = 6;.1(¢) (3.39)

holds. Inserting this result into the relation (3.38) we immediately obtain
the temporal updating prescription

hl (Zj,t) = 0j71(t) ; Vit Z 0 , (340)

which is valid for all j = 1, ..., J,, at the symmetry axis I's located at
r = 0. As a consequence that the derivative with respect to r vanishes,
the boundary condition at the symmetry axis (3.40) represents once again
a Neumann condition for 6(x,t) at the border I's of the computational

domain.
10



3.2. Temporal integration of the conservation law.

3.2.1. EXPLICIT TECHNIQUES. The matrix-vector formulation of the semi-
discrete diffusion equation given by (3.26) and (3.27) establishes an initial value
problem for a system of ordinary differential equations. To attack such a system of
differential equations numerically, a lot of standard solvers are available (see, e.g.
[11, 17, 8, 5]). In this section we sketch out very briefly some basic integration
techniques, which are frequently used in the context of the present investigations
to solve the semi-discrete diffusion equation numerically. For the subsequent dis-
cussions we start from equation (3.26) with the source (3.27) and assume that the
initial data — abbreviated by w® = w(ty) — are given.

e Modified Euler Scheme:
In this approach an estimated value is computed for the next time level.

Afterwards an averaging yields the solution at the new time level "+, The
algorithm reads as (see, for instance, [5])

w'th = w4 AtS(t"; w") (3.41)
A
witl = w4 Tt S(™;w") + S wn | (3.42)

and preserves globally second-order accuracy with respect to time. The
local approximation error is of the order O(At?).

e Heun Scheme:
The Heun approach [5] may be written in the following way

W23 = gy %AtS(t";wn) (3.43)
A .
witl = w4 It[S(t";W”)+3S(t"“/3;‘7v"+2/3) : (344)

where ¢"+2/3 is the abbreviation for "2/ = " 4 2/3 At. This scheme is

also globally second-order accurate and the local approximation is O(A#?).
e TVD Runge-Kutta Technique:

Very resently Shu and Osher introduced a new class of modified Runge-

Kutta methods which preserves the so-called TVD property [14, 15, 7].

From the family of these special methods, this two-stage scheme with an

approximation order of two reads as

with = W — AtS(t";w") (3.45)
1 1 1
with = §W” + 5‘7"”“ - §Ats(tn+1§"~vn+l) : (3.46)

e Classical Runge-Kutta Approach:

This well-know classical four-step method [11, 5] is globally fourth-order
11



accurate and may be written as

K1 = S(tn;wn)
. A
K, = S@""'/%wm+ TtKl)
. At
Ko = S0+ 50K
K, = S(t"+1;wn + AtK3) (3.47)
At
witl = W"+? K +2Ky+2K;3+ Ky, (3.48)

with t" = tg + Atn. Furthermore, the order of the local approximation is

O(A).

3.2.2. IMPLICIT APPROACH. Somtimes a disadvantage of explicit methods is
the time step size requirement due to the Courant-Friedrichs-Lewy (CFL) condi-
tion [3]. In order to circumvent this stability restriction it is common to rely on
implicit schemes which, in addition, possesses the property of high stability. Usu-
ally diffusion problems are best treated by applying implicit methods, which are
second-order accurate in both space and time. A recommended approach [11] to
solve numerically the diffusion equation is the implicit Crank-Nicholson scheme
[4, 1,11, 17]. A consequence of the implicit differencing is that a system of coupled
linear equations has to be solved. In one space dimension the resulting system has
a tridiagonal form. However, this is no longer true in multidimensions, where the
matrix is still sparse but not tridiagonal. In this report we use a slightly modi-
fied Crank-Nicholson scheme in two dimensions: Each time step At is divided into
two substeps of size At/2, where, respectively, a different spatial dimension is ap-
proximated in an implicit way. Conceptually this approach is an operator splitting
technique, which may be called as alternating-direction implicit method (ADI). A
decisive advantage of the ADI concept is that only a tridiagonal system has to be
solved in each substep. An implicit scheme, second-order in time and space is, for
instance, proposed in [11]. This very accurate and stable algorithm is adopted for
our purposes and reads in rewritten form as

Step I:
2 0n+1/2 on _ 1 Fn+1/2 Fn+1/2
E( Bk j,k) T A \TiH1/2k T T i=1/2,k
L (Thy1/2 o Tk-1/2 ~n
+ Ar T Gk+1/2 T T dk—1/2
+ [Peff]zk ) (3.49)
Step II:
2 (ng1 +1/2 1 +1/2 +1/2
At (ejjer - HZk ) - Az <Ff+1/2,k - an71/271¢
L (Tk+1/2 ~nt1 Tk=1/2 ~n+1
+ A_r < Tk Gj7k+1/2 a Tk Gj7k71/2
+1/2
+ [Ps]IE (3.50)
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Here, the rhs (3.4) of the semi-discrete equation (3.1) is approximated in two steps,
where the discretisation of fluxes F and G are given by (3.6) and (3.8), respectively.
For further reformulations of the latter two equations, it is convenient to introduce
the following notations

At
bitijo6 = 2(A2)? (51)j+1/2716 ) (3.51)
At
Ciktl/2 = Tht1/2 m (Sz)jykﬂ/2 , (3.52)
Bjr = bjti2k +bj1/2.k (3.53)
1
Cir = - (cj7k+1/2 + Cj7k71/2) ) (3.54)

where (Sl) and (Sz) are given by (3.12) and (3.13), respectively.
J+1/2,k 3. k+1/2

Using these abbreviations and performing some rearrangements, we obtain from

(3.49) and (3.50) the two recurrence relations

—bj_1/2,k 9?:1,22 + (1 + Bj,k) 9?,;1/2 bjt1/2,k 9?111,{@2 =
Cjk—1/2 Cjk+1/2
T 07k + (1 - Cj,k) 0 + e k1
At n
+ > [Peff]j,k , (3.55)
and
Cjk=1/2 pn+1 , +1 Cjk+1/2 pnt1
—HE g+ (14 i) 051 S gt =
b1 /2 05011 (1 - Bm) 00+ b 05
At n+1/2
+ > [Peff]j,k (3.56)

n+1
Jik
very compact matrix-vector formulation of this ADI method. For that, the vector

of the variables 0?;1/2

for the unknowns 67 ". In the following we rewrite both relations in order to get a

at the intermediate time level ¢ = t"71/2 may be written as

wht1/2 = (oﬁl/“’, e e o;ﬂf},ﬁ)T e R/ Km | (3.57)
where the indices 7 and k obviously run according to j =1, ..., J,, = J —1 and
k=1,..., K, = K—1. With this in mind, we can define a sparse tridiagonal
matrix

M; O 0 0 0 0
0 My, O 0 0 0
0 0 Mg 0 O 0

(3.58)

o -

0 0 0 0 Mk,, -1 0
0 0 0o 0 O 0 Mg

m

which possesses K,, = K — 1 block matrices along the diagonal. The explicit
structure of such a diagonal block matrix My € R/ */m k=1, ... K, isfound

13



to be

1+ Bix  —bsok 0 0 0
—b3jar 14+ Bok  —bsjak 0 . 0
M = 0 —b5/27k 1 +B37k _b7/27k 0 7
: - - =by,.—1/2.k
0 0 0 0 =by,.—1/2 1+ By, k

(3.59)
revealing that the dimension of each matrix My, is Jy, X Jp, = (J—1) x (J—1). With
these definitions the recurrence relation (3.55) can be brought into the compact form

T.wnti/2 4 BnH/2 = R (3.60)

where the vector B"+1/2 contains the boundary values at t = t"+1/2 and is given
by
1/2
—bi/21 03} /
0

0
- me+1/2,1 03:1/1271
Bn-‘rl/2 — : , (361)

n+1/2
— b2k, 9071(,1{

0

0
n+1/2
- me+1/2,Km 0Jm+1,Km

while the i-th componente of the rhs vector R™ (cf. (3.55)) at the time level ¢ = ¢”
reads as:

Vis i=Jm(k—1)+j

Cig
Rt = %}f”’ 07 1 + (1 - cj,k) o
4 Gk o A [Pss]" (3.62)
" Giok+1 2 effljn :
where j=1,...,J,=J—-1land k=1, ..., K,, = K — 1. In order to obtain the

matrix-vector form of (3.56), we can proceed very similar as yet outlined for the
relation (3.55). The variable vector at the time ¢ = t"! reads now as

T
+1 _ n+1 n+1 . . on+1 n+1
w" _(9171 ,...,917Km,...,omel,...,ojmme) : (3.63)

where the second index runs fastest. The corresponding tridiagonal matrix T has

the same structure as the matrix T given by (3.58). However, T is built up by
14



Jm = J — 1 block matrices. The shape of each block matrix is specified by

1+Cj,  —=22 0 0 0
c; c;
SGar 140y, -2 0
v _ G52 . _ Gz
M; = 0 = 1+Cjs o= 0 7
' _ CiKm—1/2
: ’ TKopp—1
Cj —
0 0 0 0 —GKmoizq g

(3.64)
from which it is obvious that the bock size is K, X K,,. The boundary values at
the time level ¢t = t"*! are elements of the vector B*+! given by

C1,1/2 on+1
=00

T
0
0
_ SYKm+1/2 pgntl
TKopm 1,Km+1
B! = : : (3.65)
_ Cum,1/2 gn+l
T1 vao
0
0
_ Ym Kmt1/2 gn+l
TKum I, Km+1

Furthermore, the i-th component of the vector R"t1/2 reads as

Vii i=Kn(—1)+k

R?-H/z _ bj—l/?,k 9;1;4-11722 n (1 _ ijk) 9;17-11-1/2
2 At p
+1/2 n+1/2
+ bj+1/2,k 9;-1_,'_172 + > [Peff]j,k , (3.66)
fork=1,..., K, and j =1, ..., J,, and contains the complete rhs information

at t = t"*t1/2. Finally, putting all formulas together, we obtain the compact matrix-
vector notation of the recurrence relation (3.56)

T.- w4 B = RHY/2 (3.67)

which represents the updating prescription for the unknowns H?jgl at the new time
level t = t"t1. It is clear from the relations (3.60) and (3.67), that we have to
solve at each time step At two systems of coupled linear equations. Since the
shape of the corresponding matrices T and T is tridiagonal, we can apply powerful
numerical standard tools (see, e.g. [11]) to solve the occuring linear equations in a
very effective manner.

As already mentioned, the Cartesian situation can be treated very similar to the

Tk+1/2 Tk—1/2
Tk

presented cylinder symmetric case by setting the ratios and equal to

one in the above given formulas.
15



3.2.3. SOME REMARKS ON THE STABILITY OF THE SCHEMES. In the fol-
lowing we are interested in the stability of the schemes proposed above. For that
purpose, we consider the model equation for Cartesian coordinates without an ex-
ternal source given by

00 0?0 0?0
E = Sl @ +S‘ 8—y2 B

where the physical fluxes (2.11) and (2.12) are already inserted under the assump-

(3.68)

tion that the reduced conductivities (2.13) are independent of the spatial coordi-
nates and the temperature. An explicit as well as implicit discretisation approach
of this model is then investigated by applying the local stability analysis proposed
by von Neumann. The eigenmode solutions of the difference equations are of the
form

6?,16 — gn eiAij eiuAyk , (3.69)
where the spatial wave numbers A and p are real numbers and £ = £" (A, u) denotes
the amplification factor, which is, in general, a complex quantity that depends
on these wave numbers. If the modulus of this amplification is greater than one
for all A and g then the scheme is called unconditionally unstable. Otherwise, if
|€] < 1 for any time step size At, then the scheme possesses the property of being
unconditionally stable. For a more extended discussion of descriptive treatment of
stability we refer, for instance, to the book of Smith [17].

EXPLICIT SCHEME:
Applying a modified Euler integration method in combination with a central FD

approach for the spatial coordinates, the explicit scheme of the model equation
(3.68) reads as

=07 + [e;;m — 207, + e;.zl,,c] + as [e;{,m — 207, + e;.f,c,l] (3.70)

and
ot o= on+ % ( ik — 207 + 9;?_17,6) + (éﬁrﬁk - 25%1 i 5?1%)]
+ 3 [( P = 200+ 00 ) + (8L =20 4 80p ) | 37D
where the abbreviations
ap = % and  ay = % (3.72)

are used. Inserting the eigenmodes (3.69) into equation (3.70), we immediately
obtain that
ot =07, Z (3.73)
with \
1 2 A _ .2 H
Z=1-4q; sin (2Am) 4 ay sin (QAy) . (3.74)
Reformulating equation (3.71) with the relation (3.73) and the ansatz (3.69) and
perfoming some algebra, we finally get

§= % (1 + ZZ) , (3.75)

which is the desired equation for the amplification factor of the modified Euler

scheme. The stability of this scheme is guaranteed if |{| < 1 holds, which results
16



with the latter equation in the condition Z? < 1 for the expression specified by
relation (3.74). A quick calculation then yields
Sl . 9 A Sz .o
pae[ S (Bar) + 5 (Bag)] <1, .
[(Am)Q sin” ( 5 Az +(Ay)251n 5AY)| < (3.76)
which is the CFL stability criterion for the time step size At (see, e.g., [11]). For

small Az and Ay, equal thermal conductivities S = S; = S, and the abbreviation
A% = min [(Am)z, (Ay)z} this condition reads as

2S5 At
AT <1. (3.77)
In our numerical studies we allow that the conductivities may also depend on the
temperature and, consequently, on the spatial location. Hence, we apply for our
purposes the heuristic stability criterion
(2
At < — 3.78
< (378)
with
(S1)jk , (S2)jk
= - : 3.79
O Gay T (B 3:79)

where o denotes the Courant number, which has to be selected according to

0 < 0 < 1. Obviously, this stability condition have to be calculated in each tempo-
ral iteration cycle.

Finally we note that there are unconditionally stable explicit schemes — for exam-
ple, the DuFort-Frankel approach —, which converge for any At (see, for instance,

[12]).

IMPLICIT SCHEME:
The implicit scheme of the model equation (3.68) is obtained by using the above
introduced ADI method and reads as

9n+1/2_a1 |:9n+1/2_29;1—]|€—1/2+0n+1/2:| _ anyk_}_CEZ

;Hl—w;{ﬁa;{m] (3.80)

ik 9 |TitLk i-Lk )

and

1 G2 41 41 41 | _ gntl/2 Q1 +1/2 +1/2 +1/2

ot = S onthy -2t vt = opt ot o ot
(3.81)

where the abbreviations «; and s are already specified by the relations (3.72).
With the eigenmodes given by the ansatz (3.69), the first-step difference equations
(3.80) yields the equation

1 —2as, sin® (%Ay)

Y2 = (3.82)

1+ 2ay sin? (%Am)
for the amplification factor. With the definitions (3.72) in mind it is obvious, that
the stability criterion || < 1 in this step of the ADI approach is fulfiled for any
size At. Inserting once again the eigenmode solution (3.69) into the second-step
equation (3.81) and using the result (3.82) of the first-step equation, we get for the

amplification factor of the full time step At the expression (cf., [12])
17



1-2ay sinQ(gAy) 1-20g sinz(%Am)

é'_

1 t2m Sinz(%Am) ' 14+2ay sinz(gAy) ' (3.83)

This result reveals that the stability condition |£| < 1 is satisfied for any time step
size At and, consequently, the ADI differencing scheme is unconditionally stable.
However, in the case where the thermal conductivities are not independent of tem-
perature the unconditional stability may be lost. The reason for this behavior
of the scheme can be attributed to the occurence of nonlinear instabilities, which
could not be investigated within the framework of the considered linear analysis.
Clearly, in the context of such situation we have to estimate carefully the temporal
discretisation size.

4. NUMERICAL RESULTS

In oder to demonstrate the quality and property of the introduced approximation
methods for the diffusion equation in two-dimensional space, we discuss numerical
experiments where the numerical solution procedure is applied in different situa-
tions. First, simulation results for exactly solvable model problems are presented in
this section, which reveal that the implementation of the proposed schemes produces
accurate approximations and runs in a very reliable manner. In a separate section
the approximation techniques are applied to a more practical problem, namely, the
diamond disc window [16].

In the following we present direct comparisons between numerically computed and
the exact solutions. Then, in order to investigate the global approximation behav-
ior of the proposed numerical schemes more closely, we consider for problems with
an exact solution u(x,t) the Lo-error norm. This relative discrete Lo-error norm is
defined by

2
16(x, ) — u(x,t)]| .k[eka(t) - “(wjvykat)] Azj Ay
) - ) Ly i,k

; = 2
[EXIP 5 |utes 0] A Ay

NERY

and computed for different grids with increasing refinement. In this formula, 8; j (t)
denotes the approximation of the conservation equation (2.1) and u(zx;,yg,t) is
the exact solution of the diffusion problem at the coordinate points (zj,yx) at
[10(x,t)—u(x,t)||Ly
lu(x, D)L,
information about the global approximation error of the spatial dicretisation.

time ¢. Especially, the temporal evolution of the quantity contains

4.1. A two-dimensional rotationally symmetric problem. In the following
we consider the computational domain Q = [0,3/2] x [3,0] in the (z,r)-plain with
the property of rotational symmetry with respect to the z-axis. The parabolic
diffusion problem is specified by equation (2.10) with the heat fluxes

1 86
F = %ma (42)
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and the source term
P.yr = cos(3mz) Jo(r) (4.4)
for all (z, r) € Q and all ¢ > 0. The analytical solution of this problem is given by
u(z,r,t) = sin(372) Jo(r) e ' + cos(3mz) Jo(r) , (4.5)

where Jy(r) denotes the zeroth order Bessel function of the first kind. We remark
that the analytical solution (4.5) also satisfies the conservation equation (2.15) at
the symmetry axis = 0: this becomes obvious by inserting (4.5) into this equation
and performing subsequently the limit r — 0. From the exact result (4.5), we
immediately obtain the necessary initial data

ug(z,r) = [sin(3wz) + cos(3mz)] Jo(r) , (4.6)

as well as the boundary conditions

g1(r,t) = wu(0,r,t) = Jo(r),
go(rt) = u(3/2,r,t) = Jo(r)e ",
hi(zj,t) = 0;1(t), Vi,
)

= wu(z,3,t) = Jo(3) |sin(3mz) e~ + cos(37rz)] , (4.7)

which obviously depends on space and time and are seen in Figure 4.1 for ¢t = 1
and t = 4. To study especially the global approximation properties, the numerical
experiments are furthermore performed on three different grid arrangements com-
posed, respectively, by 15 x 30 (G1), 30 x 60 (G2) and 60 x 120 (G3) discretisation
nodes of the domain 2. The temporal evolution of the diffusion is recorded up
to t = 4, which correspond to 4000 iteration cycles for the default time step size
At = 1073, An overview of the numerical (colored contours) and exact (solid lines)
solution on the domain € discretised by G2 for the initial (4.6) and boundary (4.7) is
given in Figure 4.2. There, the temporal evolution of the temperature  is recorded
at the times ¢ = 0.5 (upper) and ¢t = 2.0 (lower plot), corresponding to 500 and 2000
iterations in time. A closer inspection of both snapshots reveals a very good agree-
ment of the general features of the numerically and analytically computed solution.
More quantitative comparisons between the numerical and analytical solutions are
depicted in Figure 4.3, which obviously demonstrates the quality and ability of
the applied approximation techniques. There, slices parallel to the z (ro = 1.2)
and r (zo = 0.75) axis are shown for the temperture 6. Clearly, the exact values
are reproduced very well by the numerical approximation. The explicit temporal
computations presented in the Figure 4.2 and Figure 4.3 are performed with the
classical fourth-order accurate Runge-Kutta approximation technique (cf., Section
3.2.1).

The relative discrete Lo-error norm defined by the expression (4.1) is an appropriate
and evident measure to check the behavior of the numerical scheme more closely.
In Figure 4.4 the approximation results measured by (4.1) for the computational
grid G1, G2 and G3 are plotted with respect to time. Obviously, the values obtained
with the classical Runge-Kutta scheme (solid lines) and the modified Euler tech-
nique (open symbols) are nearly identical. Furthermore, these results reveal that

the discrete La-error is reduced by a factor of four (= 3.9) when switching from
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F1GURE 4.1. Space and time-dependent boundary conditions
recorded at ¢t = 1 and ¢ = 4. Upper plot: left and right func-
tions g1(r,t) and g=(r,t). Lower plot: lower and upper functions
hi(z,t) and ha(z,t) (cf., Figure 2.1). Discretisation is established
by the 30 x 60 grid (G2) and the time step size At = 1073,

grid G1 to grid G2 and once again a factor of four (& 3.9) taking grid G3 instead
G2 for the computation. From this observation we can compute the experimental
order of convergence (EOC) for the scheme, which is defined by

(4.8)

_ 1 ||9h(x;t) - u(xat)HLz
EOC = @ ™10 —ux. ), |

where u(x,t) is the exact solution and 6" (x,t) and #*"(x,t) denotes the numerical
result with a minimal spacing of h and 2h, respectively. Consequently, the results
calculated with (4.8) indicates that the proposed explicit FD scheme has an averaged
experimental order of convergence of about 1.95. A comparison between an explicit
Heun scheme (cf., equations (3.43) and (3.44)) and the implicit operator splitting

approach (cf., equations (3.60) and (3.67)) is depicted in Figure 4.5, where the
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1.021
0.875
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0.583
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0.292
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-0.000
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-0.292
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FIGURE 4.2. Comparison between the numerical (colored con-
tours) and the exact (solid lines) solution. The plots are recorded
at t = 0.5 (upper) and ¢t = 2.0 (lower picture). Discretisation is
established by the 30 x 60 grid (G2) and the time step size
At =102,

discrete Lo error norm (cf., relation (4.1)) is plotted for the grid G2 (upper) and
G3 (lower curves). It is obvious from this figure, that the values from the implicit
method (open symbols) are — nearly all — on those computed with the explicit
technique (solid and dashed lines). Hence, we conclude that the experimental order
of convergence of the implicit scheme is the same as for the explicit method, namely,
about 1.95.

4.2. A two-dimensional Cartesian Problem. For the sake of completness, we
present in the following a numerical experiment which is performed on the compu-
tational domain Q = [3/2, 0] x [2, 0] in the (z, y)-plain. The diffusion problem for

Cartesian coordinates is similar defined to those one described by equation (2.10)
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T(zo, 1, 1)

T(z, 1, 1)

F1GURE 4.3. Comparison between the numerical (open symbols)
and the exact (solid lines) solution. The slices are recorded at
z0 = 0.75 (upper) and 79 = 1.2 (lower picture) for the times ¢ = 0.5,
t = 1.0 and t = 2.0. Discretisation is established by the 30 x 60
grid (G2) and the time step size At = 1073,

and reads as

00 OF 0G
A, o a. Pe X2 ’
i oz + oy + ff(x t;0)
where the fluxes and the source term are given by
00 1 06
F = Sl(xae) % - 1872 % )
00 1 06
= < 9 _— = — —
G SZ(X7 )By 272 82] ’

and

P.;; = 2cos(3V2rz) cos(V2my) ,

respectively. It is an easy exercise to proof that

u(z,y,t) = sin(3wz) cos(my) e ! + cos(3v2rz) cos(v2my)

(4.10)

(4.11)

(4.12)

(4.13)



- — — -G2=30x60
(SN {0 R — — G3=60x120
[ o
0.025 |- °
0.020 |-
€ N
o -
c -
5 0015
B L
>, [
3 [
0.010 |-
[ JUP f s e s B e s s e il B et
- Ll
0.005 |- P
[ Was
| f,A
0.000 Eieeee® ST | I ]
: 0 1 2 3 4

FIGURE 4.4. Relative dicrete Ly-error norm (4.1) computed for the
meshes G1=15 x 30 (solid), G2=30 x 60 (dashed) and G3=60 x 120
(dotted line) with a classical Runge-Kutta (lines) and a modified
Euler (open symbols) scheme. For these computations the time
step size was fixed equal to At =4-10%.
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FIGURE 4.5. Relative dicrete Lo-error norm (4.1) computed for the
meshes G2=30 x 60 (upper) and G3=60 x 120 (lower curves) with
an explicit Heun scheme (solid and dashed lines) and an implicit
operator splitting method (open symbols). The time step size was
fixed equal to At = 4-10* and At = 1072 for the explicit and
implicit computations, respectively.

is the analytical solution of the posed diffusion problem. This exact result is then
taken to fix the for numerical calculations important initial values

uo(,y) = sin(37z) cos(my) + cos(3v2rx) cos(V2my) (4.14)



and the necessary boundary datas

gily,t) = ul0,y,t) = cos(v2my) ,

g(y,t) = u(3/2,y,t) =cos(ry)e ' + cos(?w) cos(V2my) ,

hy(z,t) = u(x,0,t) = sin(3rz) et + cos(3v2mz) ,

ho(z,t) = wu(z,2,t) =sin(3rz) et + cos(3v/2rz) cos(2v2r) . (4.15)

These time and space dependent boundary conditions are depicted in Figure 4.6
for t =1 and t = 4. The temporal evolution of the considered diffusion problem is

Boundary Values
<) o
ol o (&

N

o|\\\\|\\\\|\\\\§|\\/\\v

3 hy(x.t)

3 hy(xt)

TSN

Boundary Values

F1GURE 4.6. Space and time-dependent boundary conditions
recorded at t = 1 and t = 4. Upper plot: left and right func-
tions g1 (y,t) and g2(y,t). Lower plot: lower and upper functions
hi(x,t) and ho(x,t). Discretisation is established by the 30 x 40
grid (G2) and the time step size At =8-1073.

propagated up to ¢ = 4, which is equivalent to 500 temporal iteration cycles with a

time step size of At = 8-1073. Most results discussed in the following are obtained
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with the alternating-direction implicit method introduced in Section 3.2.2, which
is second-order accurate in both space and time and known to be very stable. To

1.058
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0.743
0.585
0.427
0.269
0.111
-0.046
-0.204
-0.362
-0.520
-0.678
-0.836
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-0.132
-0.259
-0.386
-0.513
-0.640
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-0.895

FiGURE 4.7. Comparison between the numerical (colored con-
tours) and the exact (solid lines) solution. The plots are recorded
at ¢ = 1.0 (upper) and ¢ = 4.0 (lower picture). Discretisation is
established by the 30 x 40 grid (G2) and the time step size
At=8-103.

get an impression of the shape of the solution, the numerical (colored contours)
and analytical (solid lines) results at the times ¢ = 1 and ¢ = 4 are presented in
Figure 4.7 for the computational grid G2 = 30 x40. A closer inspection of these two
snapshots indicates, that we can expect an excellent agreement between numerical
and analytical calculated values. A more direct comparison of the numerically
obtained and the exactly computed data is given in Figure 4.8, where slices parallel
to the z (yo = 0.8) and y (zo = 0.75) axis are seen. Clearly, these two plots
convince us from the quality of the used numerical approximations: The numerical
values obtained with the operator splitting implementation reproduce very well the

analytical data. In order to investigate the global approximation properties of the
25



=
"
o
o

05

T(XYol)

-0.5

%X, =0.75 t=1.0
t=2.0
t=4.0

[N

o
3

o
3 o
°r—¢ Tt T T T T T 1T T T T T T T T

T Y, 1)

N

FIGURE 4.8. Comparison between the numerical (symbols) and
the exact (solid lines) solution. The slices are recorded at yo = 0.8
(upper) and zo = 0.75 (lower picture) for the times ¢t = 1.0, ¢t = 2.0
and t = 4.0. Discretisation is established by the 30 x 40 grid (G2)
and the time step size At = 8-1073.

introduced implicit approach, numerical studies are performed on two further grids
discretising the domain 2 by 15 x 20 (G1) and 60 x 80 (G3) nodes. The measure
to check the behavior of the applied implicit approximation technique more closely,
is given by the relative discrete Lo-error norm explained by equation (4.1). The
temporal evolution of the Ls-error norm computed for the three computational
meshes G1, G2 and G3 is seen in in Figure 4.9. An estimation with equation
(4.8) indicates that the averaged experimental order of convergence is of about
2.08 for the proposed implicit approach. A comparison of the discrete Lo-error for
the grid G2 (upper) and G3 (lower curves) computed with the implicit operator
splitting (solid and dashed lines) and the explicit Runge-Kutta (open symbols)
technique is given in Figure 4.10. It is obvious from this plot that the long-time

behavior (which corresponds to the equilibrium solution) of both approaches is
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FIGURE 4.9. Relative dicrete Ly-error norm (4.1) computed for the
meshes G1=15 x 20 (solid), G2=30 x 40 (dashed) and G3=60 x 80
(dotted line) with the implicit operator spliting scheme. For these
computations the time step size was fixed equal to At = 8- 1073,
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FIGURE 4.10. Relative dicrete Ly-error norm (4.1) computed for
the meshes G2=30 x40 (upper) and G3=60x 80 (lower curves) with
an explicit Runge-Kutta scheme (open symbols) and an implicit
operator splitting method (solid and dashed lines). The time step
size was fixed equal to At = 4-1073 and At = 8- 1073 for the
explicit and implicit computations, respectively.

nearly identical. However, in the short-time regime the approximation property of
the explicit method is better than those obtained with the implicit scheme. This
observation is expected, since the details of the small-scale evolution from the initial
data with the implicit scheme are less accurate for larger time step size At.
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5. SIMULATION OF A SYNTHETIC DIAMOND DISC WINDOW

In this section the basic physical quantities, which are important to simulate
numerically the main features of the heat transfer problem in the context of a
diamond disc window are introduced. A sketch of the computational domain
of such a diamond window is seen in Figure 2.1 and the corresponding typical
geometrical measurements are listed in Table 5.1. Additional, for some physical
quantities of this diamond window it is possible to establish empirical relations in
parametrised form to model the observed physical behavior accucately, which are
then highly efficient for numerical computations.

5.1. The local effective power density. The effective power density p.ys, which

locally couples to the considered medium, is composed by different physical contri-

butions and is, in general, defined by

dllcss (x,t;0)
av ’

where I sy denotes the effective power measured in [II.;;] = W. In the following

Defr(x,t;0) := (5.1)

the essential contributions to the effective power change dIL.;; are briefly reviewed.

5.1.1. POWER ABSORPTION. This kind of power deposition is based, in general,
on a volumetric heating mechanism. In the context of the present investigations we
consider a thin medium with thickness D and use the simplified ansatz

ALy (x,:6) = D~ AP(x) dV (5.2)

where P(x) denotes the power distribution in [P] = W/em? and A is the power
absorption coefficient. This coefficient represents an approximation and is given by
the formula [16]

A=1f(e+1) tan(s) g , (5.3)

which is valid only for resonant thickness of the window and for tan(§) < 1073
— for a more accurate expression of this coefficient we refer to [9]. Here, f, € and
tan(d) denote the frequency of the incident beam, the permittivity of the considered
material (where the temperature dependence can be ignored) and the loss tangent
of the medium , respectively, and ¢ = 2.99792 - 10'° ¢m/s is the velocity of light
in vacuum. Furthermore, in the present case the loss tangent may be parametrised
by an expression of the form

tan(d) = A, fP 67, (5.4)

where f is the frequency in GHz and A., p and g are constants which all depend
on the material under consideration. Because the temperature dependence of the
loss tangent is very weak, the parameter ¢ is usually set equal to zero. The power
distribution in the material can be modelled by the ansatz

P(x) = Pt D(x) , (5.5)

where P;,; is the totally deposited power by the beam in the medium. For our
purposes, we use as distribution function D(x) a Gaussian profile specified according

to 9 X
_ 222
D(x) = — e "W (5.6)
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where the parameter w denotes the so-called beam radius. Note that other power

distribution functions D(x) can be handled equally well. We finally remark that
dllgp
vt =
D~ A P(x). For the first attempt to simulate numerically a diamond disc window,

the power density deposition due to absorption is simply given by pups =

we use for the mentioned parameters the values listed in Table 5.2.

5.1.2. POWER LOSS BY CONDUCTION. Consider the situation where some
parts of the surface of interest 02 are cooled by, for instance, water. The power
change due to conduction through the surface element dA is obtained from the
expression

dHcond(X: t; 0) = —Qpp (6 - ecool) dA ’ (57)

where 6.,,; denotes the temperature of the cooling medium and «,, represents

the heat transfer (or conduction) coefficient measured in [a,,] = W/em? /K. The

Alcond
dVvV -

—Qam, (0—00005) %. For numerical purposes the two parameters occuring in relation
(5.7) are fixed to values found in Table 5.2.

power density loss as a result of conduction is then given by peong =

5.1.3. POWER LOSS BY CONVECTION. The change of heat loss rate at the
surface of the material caused by convection may be modelled in a very simplified
manner by the ansatz

AW one (%, 1;0) = —a, (9 - 06) dA . (5.8)

Here, 6. is the temperature of the enviroment and «,. denotes the convection heat
transfer coefficient measured in units of [a.] = W/em? /K. The power density due

to convection then reads as peony = deC% =—a.(0-0, %.

5.1.4. POWER LOSS BY THERMAL RADIATION. The power change as a con-
sequence of grey, diffuse thermal radiation from the surface of the material is de-
temined by the equation [6, 18]

AL oa(x,£:0) = —op €(6) (94 - 9;*) A, (5.9)

where the Stefan-Boltzmann constant is given by op = 5.603 - 10712 W /cm? /K*.
Furtermore, 6. again denotes the temperature of the enviroment and €(f) is emis-
sivity function of the material — also denoted as degree of blackness — which, in
general, depends on the temperature. The resulting power density due to radiation
is then obtained from p,.q = dg{,"d = —ope(f) (04 - 03) %.

The source term of the diffusion problems given by (2.1), namely the effective local
power density, can now be determined by applying definition (5.1) to the effective
power change contributions which are given by

dllzps forx € Q
=40 " nx . (5.10)
dllgps + dlleong + dlcopy + dllqq ,  for x € 00
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Neglecting for the moment the contribution given by convection and radiation, we
obtain with (5.2) and (5.7) the expression

D 'APx), for x € Q

, 5.11
D 'AP(x) — an (9 - 06001) A for x € OQ (5-11)

Pepr =
for the effective local power density, which will be used as the source for the numer-
ical experiments dicussed later in this section. It is obvious from the latter relation
(5.11), that the effective applied power density in the interior of the domain is given
by power absorption only, while at the border different power contributions may be
important for accurate modelling of the diffusion process.

5.2. Parameter law for the thermal conductivity. It has been observed that
the temperature dependence of the thermal conductivities can be expressed by a
parametrised law, which reads as [16]

7Zi
Si(X;a) = SR,i (%) 1= ].,2 . (512)

Here, the reference thermal conductivities sg; and the reference temperatures 0g ;
as well as the exponents Z; have to be well chosen for the materials under consid-
eration. This special form of parametrisation has been proven to be valid for the
diamond disc in the temperature range of 290 K < # < 1000 K but is not applicable
at lower temperatures [16]. For the numerical investigations discussed below the
values of these parameters are fixed and given in Table 5.2.

5.3. Parametrisation of the specific heat. The temperature-dependent behav-
ior of the specific heat capacity may be modelled by the empirical relation

Cp(0) = Poe @/ (5.13)

where the parameters Po and @ have to been selected carefully for each material of
interest. It is obvious that these parameters are measured in units of [Pc] = J/g/K
and [Q] = K, respectively. If the temperature dependence can be neglected we find
that Cp(8) = Pc holds and, hence, P may be regarded as the reference specific
heat. This situation is assumed for the numerical simulations presented below, for
which both parameters are fixed according to the values listed in Table 5.2. We
note furthermore that for the temperature-independent specific heat capacity and

for the typical mass density of p = 3.52g/cm?® the expression explained by & = p%
P

3
(cf.,(2.9)) takes the value § = 0.5463 <G,

5.4. Numerical diamond disc experiments. In this section we present numer-
ical results obtained from the diamond disc window simulation. The cylinder sym-
metrical computational domain {2 is schematically depicted at Figure 2.1 and the
measurements of this domain is listed in Table 5.1.
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Disc thickness D = 0.20 cm
Disc radius Ry = 4.40, ... ,5.00 cm
Disc radius Ry = 4.40 cm
Aperture radius Ry = 4.00 cm

Table 5.1: Geometrical parameters of the computational domain (2
depicted in Figure 2.1.

Frequency f f=14-10"*Hz
Permittivity e € =5.67
Loss tangent tan(d) tan(d) =2.0-1075
Total power P, Pt =1.0-108W
Gaussian beam radius w w=2.6cm
Heat transfer coef. «,, a, =1.2 CngK
Cooling temperature 6., Ocoor = 293 K
Mass density p p=3.52
Exponent Z 71 =4y =141
Reference conductivity sg | Sg,1 = Sr2 = 18”13/1{
Reference temperature g | g1 =02 =293 K
Reference specific heat P Po=0.52 qu
Reference temperature @) Q=0K

Table 5.2: Parameters used for modelling the power absorption, the
heat transfer due to conduction, the thermal conductivity relation
and the specific heat law.

In the following we describe a series of numerical experiments, where the physical
parameters, summarised in the Tables 5.2, are the same for all calculations while
the radius Ry and the boundary conditions are changed. The initial conditions are
fixed to

Oo(zj,m1) =293.0K; Vj, k (5.14)

in the course of all the numerical computations. Since the disc window is symmet-
rical with respect to the z-axis, the boundary function

hi(zj,t) = 6;1(t); Vj,t>0, (5.15)

already introduced above, has to be the same for all numerical computations.

EXPERIMENT 1:

For this numerical simulation the radius is fixed equal to Ry = 4.4 cm. The bound-
ary data on the left and right border of (2 are ”thermally insulated surface” condi-
tions and reads as

gi(re,t) = 61x(t); Vk,t>0, (5.16)

g2 (r,t) = 0J—1,k(t) i Vk,t>0. (5.17)
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At the top boundary of the domain at r = Ry a ”surface cooling” condition is
imposed, for which we obtain the expression (cf., equation (3.36))

[0]‘7[(_1(75) - acool] (518)

hz(Zj,t) = 0]‘7[(_1(75) — A’I“aim
(52)j7K71

for the border updating, where s, and 6., are found in Table 5.2. The spatial

hl([) EX1; rim=0
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L 1 1
290 0

FIGURE 5.1. Bottom and top boundary functions h(t) and ho(t)
with respect to time (measured in seconds). The rim length is
rrim = 0 for this simulation.

domain is discretised by J x K = 13 x 290 nodes resulting in an equidistant spacing
of Az = 0.0154 cm and Ar = 0.0152 cm, which is retained for all further com-
putations presented in the following. In Figure 5.1 the bottom (upper) and top
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FIGURE 5.2. Temperature 6(zg, r,t) as a function of the disc radius
r ([r] = em) for three different times, where z is fixed equal to
zo = 0.0923 cm. The rim length is 7,4, = 0 for this simulation.

32



(lower curve) boundary functions hi(t) and hs(t) — sometimes call center and edge
temperature — are monitored with respect to time at the location zg = 9.23 - 1072
cm. We note that the rim length r,.;, = Rg — Ry for this simulation is set equal
to zero. The temperature dependence 6(zp,r,t) for this case as a function of the

7=1.41; h,
720
._Z=141; h,

380

370

o000
.o—.-r""". -
> ad

360
350

340

h, (0, hy(t)

330

320

310

300

290 £ 1 L
0

FIGURE 5.3. Bottom and top boundary functions h; (t) and hy(t)
with respect to time (measured in seconds) for Z; = Z, = 1.41
(lines) and Z; = Z> = 0 (symbols). The rim length is 7;, = 0 for
this simulation.

disc radius r is depicted in Figure 5.2 for the times ¢t = 3 s (solid), ¢ = 6 s (dashed)
and t = 12 s (dashed-dotted curve). From these two figures it is obvious that the
convergence towards the steady-state temperature is relatively slow.

The influence of the temperature dependence of the thermal conductivities to the
temperature field is investigated in Figure 5.3. From this figure we recognise that
the top temperatures ho(t) for Z; = 1.41 and Z; = 0 (cf., equation (5.12)) are
nearly identical. However, the center temperature hy (t) obtained with Z; = 1.41 is
clearly above this one computed with constant thermal conductivities (Z; = 0).

In Figure 5.4 a comparison between an implicit (solid and dashed lines) and an
explicit (symbols) simulation for the center h;(t) and edge ho(t) temperature is
shown. In order to compare both integration methods, we use now a coarser dis-
cretisation of the computational domain established by J x K = 6 x 132 nodes. Due
to the CFL condition (see above), the time step size for the explicit computation is
restricted to At = 2.5-107° s. For implicit methods there is, in principle, no such
step size restriction. However, in general this may not be true and, hence, we fix
the time step size equal to 2-10™* s, which is eight times larger than that one used
for the explicit calculation. We monitor the numerical solution up to 5 s, which
is equivalent to 200000 and 25000 temporal iteration cycles for the explicit and
implicit computation, respectively. From the results seen in Figure 5.4, we finally
conclude that the agreement between implicit and explicit simulation is very good.
However, a very careful inspection reveals in the long-time limit, that the explicit

results are slightly above those one computed in an implicit manner.
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h,(t); implicit
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— — — = hy(t); implicit
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FI1GURE 5.4. Comparison between an implicit (solid and dashed
lines) and explicit (symbols) numerical simulation monitored at
z0 = 0.1 cm for the center hy(t) and edge ho(t) temperature. The
time is measured in seconds and the time steps size for the implicit
and explicit computation is At = 2-10"* s and At = 2.5-107°
s, respectively. The computational domain is discretised by a
J x K =6 x 132 mesh and the rim length is r;;,, = 0.

EXPERIMENT 2 and 3:
These two experiments are performed in order to study the influence of the so-called

cooling rim, which is placed at the left and right border of the computational do-
main in the range Ry < r < Rp. This part of the diamond window is cooled down
by water of temperature 0.,, in the same way as at the top of the disc. Besides

rim = 0.4 cm
rim = 0.6 cm

330

325

320

315

310

hl(t)

305

300

295

290

orTTTTTT
a

10

FIGURE 5.5. Central disc temperature hy (t) = 6(z0,0,t) as a func-
tion of time (measured in seconds) for the rim length r,.;, = 0.4 cm
(solid) and 74 = 0.6 cm (dashed curve).
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rim = 0.4 cm

— — — —fim=0.6cm

hZ(t)

292 L L L L L 1 L L L L 1

FIGURE 5.6. Edge disc temperature hy(t) = 0(z0, Ro,t) as a func-
tion of time (measured in seconds) for the rim length r,.;;, = 0.4 cm
(solid) and 74, = 0.6 cm (dashed curve).

the boundary condition already specified by the expression (5.18), we impose the
mixed updating prescription of the border values given by

Hlyk(t) — AZ(S(;% [Hlyk(t) — 00001] , for Ry <7 < Ry

(5.19)
el,k(t) ) for r S Rl

g1 (Tkat) =

and

gz(Tk,t) _ HJ—I,k(t) - Az(slﬁﬁ [OJ—l,k(t) - ecool] , for By <7 < Ry (520)
Or-1k(t), for r < Ry

which holds for all k¥ and ¢t > 0 at the left and right disc border, respectively. The
rim length during the 2" and 3" numerical experiment was respectively fixed equal
to Tim = Ro — R1 = 0.4 cm and r.;,, = 0.6 cm. The numerical results for the
temporal evolution of the central hy(t) = 0(z0,0,t) and edge ha(t) = 6(z0, Ro, 1)
temperatures are shown in Figure 5.5 and 5.6, respectively. It is demonstrated by
these plots, that the steady-state is reached within approximately 5 s and, further-
more, that the maximum temperature is reduced for the large-rim case compared
to the experiment where r,.;, = 0.4 cm. Both the edge and the center tempera-
ture are reduced by approximately three degrees. The effect of different length of
the cooling rim is also presented in Figure 5.7. There, the temperature (2o, t)
as a function of the disc radius r is recorded for three different rim sizes, namely,
Trim = 0 (solid), rpim = 0.4 cm (dashed) and 7,4, = 0.6 cm (dashed-dotted lines)
at the diagnostic point 2o = 0.0923 cm and at the time ¢t = 3 s. Figure 5.7 clearly
indicates that the temperature profiles are drastically reduced if the cooling rim is
included.

EXPERIMENT 4:

For this simulation the occuring radii (cf. Figure 2.1) are fixed according to
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FI1GURE 5.7. Temperature 6(zo,7,t) as a function of the disc ra-
dius r ([r] = em) recorded at zp = 0.0923 cm and at ¢t = 3 s
for three different cooling rim lengths: Solid: r.;, = 0; dashed:
rrim = 0.4 cm; dashed-dotted: 7,4, = 0.6 cm.

Ry4=40cm, Ry =44 cm and Ry =4.8 cm. In addition to the cooling rim lo-
cated at R; <r < Rop we consider in this experiment an additional ”radiation”
area between Ry and R;. At this surface we assume a power change due to con-
duction, which is described similarly to those given by the expression (5.7). The
temperature of the cooling medium is .,,; = 293 K while the heat transfer coeffi-
cient is now chosen to be two times larger than «,, listed in Table 5.2: &, = 2- .

For the numerical calculation we pose the condition given by equation (5.18) at

rim = 0.6 cm

e Mixed BC
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hl(t)

305
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205 |

290

FIGURE 5.8. Center temperature hy (t) as a function of time (mea-
sured in seconds). Solid: 7., = 0.6 cm; dashed-dotted: mixed
boundary conditions on the left and right border of the domain.
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rim = 0.6 cm
301 [ e—— mixed BC

hZ(t)

292 b ‘ ‘ ‘ ! ‘ ‘ ‘ ‘ !

FIGURE 5.9. Edge temperature hs(t) as a function of time (mea-
sured in seconds). Solid: 7, = 0.6 cm; dashed-dotted: mixed
boundary conditions on the left and right border of the domain.

the top of the domain. At the left and right border of the computational domain
the conditions
01 1() for r < Ra
91(re,t) = < 01 () — Az 5"”' [Hlyk(t) — 00001] , for Ra <r <R (5.21)
Hlyk(t) — Az &m [Hlyk(t) — 00001] , for Ry <r < Ry

and

Or_1x(t), for r < Rx
go(rr,t) = S 05 1(t) — Az (sl)&fjl)k [0s-1,k(t) = Ocoot] , for Ra <r <Ry
0J,17k(t) — Az (sl)ci"il)k [GJ,Lk(t) — 06001] R for Ry <r < Ry
(5.22)
for all k£ and ¢t > 0 are established, which are called "mixed boundary” conditions.

~—

The effect of these conditions on the center and edge temperature is seen in Figures
5.8 and 5.9. There, we observe that the steady-state bottom hy(t) and top ha(t)
temperature for the mixed boundary case drops of five and three degrees, respec-
tively, below those obtained from computations where the rim size is 7., = 0.6 cm.

EXPERIMENT 5:
The intention of this simulation experiment is to demonstrate the possibility to

consider real two-dimensional effects. This means, that we are now interested in
the simulation of a thick (D = 0.8 cm) model window, for which the reference con-
ductivities are reduced by a factor of six (si.g = s2.r = 3 %) while the radii are
the same as in the previous experiment. To establish an asymmetry, we use mixed
boundary conditions at the left border of the computational domain as given by

the updating prescription (5.21). At the right boundary of the domain we impose
37



9,(t)
- === g0
301

B0 — == = == m - m e mm e mmmmmm—— - = -
299
208 |

297

boundary functions g (t)

295 |

204 |

293 L L L L L 1 L L L L |

FIGURE 5.10. Left (solid) and right (dashed line) boundary
temperature ¢1(t) = 6(0,ro,¢) and g2(t) = 6(D,ro,t), respec-
tively, with restect to time (measured in seconds). The re-
sults are recorded at the diagnostic points (z, 7o) = (0, 4) and
(z, 10) = (0.8, 4). Mixed boundary conditions are specified on the
left border of the domain while the temperatre is constant equal
to g2(t) = 300 K.

a constant temperature condition according to
g2(rg,t) =300 K (5.23)

for all kK and ¢ > 0. In Figure 5.10, these boundary temperatures are monitored with
respect to time at the diagnostic points (z, o) = (0, 4.0) cm and (z, ro) = (0.8, 4.0)
cm. It is obvious from this plot, that the steady-state temperature between the left
(solid) and right (dashed line) border differ by about two degrees. This differ-
ence is now responsible for a temperature distribution, which depends also on the
z-coordinate. The spatial temperature dependence for the thick model window ob-
tained from the simulation is depicted in Figure 5.11. Additionally from these two
contour snapshots recorded at t = 0.25 s (left) and ¢t = 1.0 s (right plot), we get an
impression of the temporal evolution of the spatial temperatur distribution.

For the implicit computations of the yet presented simulation, the time step size was
fixed equal to At =2-107% s and the domain was discretised by J x K = 53 x 316
computation nodes.

6. CONCLUDING REMARKS

In the present paper we describe a computer program development for the nu-
merical solution of the two-dimensional transient diffusion equation for rotationally
symmetric domains in the (z, r)-plane. In this context the spatial derivatives of
the mathematical model are approximated by applying standard finite-difference
methods. The temporal treatment of the diffusion is modelled by explicit and im-

plicit integration techniques. The implemented algorithms make use of Cartesian
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F1GURE 5.11. Spatial temperature distribution in a thick model
window recorded at t = 0.25 s (left) and ¢ = 1.0 s (right plot). Dur-
ing the simulation experiment mixed boundary values are estab-
lished at the left border while constant data (300 K) are prescribed
at the right side. Discretisation: J x K = 53 x 316; time-step size:
At=2-10"%s.

grid arrangements, which are, in general, less flexible to map realistic geometries
to a discrete image, but which are sufficient for the applications considered here.
However, for further applications of the diffusion equation solver it seemed to be
desirable to perform computations for more complex geometries. In particular, this
aspect may be important when the millimeterwave radiation, for instance, does not
meet the center of the diamond disc window. Obviously this means, that the power
distribution in the material can no longer be modelled by an azimuthally symmetric
(Gaussian) profile.

An attractive approach to solve the two-dimensional diffusion equation in irregu-
lar geometries with the Cartesian finite-volume method was recently proposed by
Calhoun and LeVeque [2]. This very effective method avoids difficulties connected
with unstructured mesh generation by using a Cartesian grid where the physical
domain — in general, a complex geometry — is embedded. Detailed considerations
have to be carried out to adapt such a fully conservative, finite-volume scheme for
the diffusion problem in complex computational domains.
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