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Abstract

This progress report presents a thermodynamically and microscopically moti-
vated constitutive model for piezoceramics within the framework of a research
project supported by the Deutsche Forschungsgemeinschaft. This project is
aimed at developing a finite element tool for the analysis of piezoceramic
components taking into account the full range of large signal electromechani-
cal hysteresis effects exhibited by these materials. Such a tool is necessary for
the stress analysis being the basis for a reliability assessment of piezoceramic
devices subject to domain switching processes.

In a first step, the hysteresis phenomena of piezoceramics and their mi-
croscopic origin were discussed, and the phenomena to be described were se-
lected. Concerning the balance laws, the simplest form consisting of balance
of momentum and Gauf’ Law was derived by physically motivated assump-
tions step by step from nonlinear thermomechanics and Maxwell’s Equations.
Revision of the current literature revealed that a commonly accepted ther-
modynamic framework for phenomenological modeling has been established
in the international scientific discussion.

Most of the work was devoted to constructing a phenomenological consti-
tutive model for piezoceramics under multiaxial electromechanical loadings
as the physical basis for the analysis tool. The unique feature of the model are
microscopically motivated internal variables, which describe domain switch-
ing in the material, and which are related to the macroscopic irreversible
polarization and strain. A switching condition was used to characterize the
onset of the change of domain structure. The differential evolution equations
of the internal variables were deduced by using the normality flow rule, such
that thermodynamic restrictions are satisfied. An energy barrier function,
which characterizes the saturation of the domain switching, was introduced
to enforce a kinematical constraint for the evolution of the internal variables.
In this way, only consistent irreversible polarization and strain states are
possible. Numerical simulations of the material responses to some typical
loading cases show that the model is capable of describing the nonlinear
behavior of the piezoceramics.

In closing, the assumptions underlying the model are discussed in view
of microscopic considerations.



Kurzfassung

Ein thermodynamisch und mikroskopisch
motiviertes Konstitutivmodell fiir Piezokeramiken

Dieser Fortschrittsbericht beschreibt ein thermodynamisch und mikrosko-
pisch motiviertes Konstitutivimodell fiir Piezokeramiken, das innerhalb eines
von der Deutschen Forschungsgemeinschaft unterstiitzten Forschungsprojek-
tes entstanden ist. In diesem Projekt soll fiir die Analyse piezokeramischer
Komponenten ein Finite-Elemente-Werkzeug entwickelt werden, wobei der
gesamte Grofisignalbereich der elektromechanischen Hystereseeffekte, die in
diesen Materialien auftreten, abgedeckt werden soll. Solch ein Werkzeug
wird fiir Spannungsanalysen bendtigt, die grundlegend sind fiir Zuverldssig-
keitsbetrachtungen von piezokeramischen Bauteilen, in denen Doménenum-
klappprozesse stattfinden.

In einem ersten Schritt werden Hysteresephdnomene von Piezokeramiken
und deren mikroskopischer Ursprung diskutiert, und es werden die Phinome-
ne, die im Weiteren beschrieben werden miissen, ausgewihlt. Motiviert durch
physikalische Annahmen wird das einfachst mogliche System von Bilanzglei-
chungen, bestehend aus Impulserhaltung und Gauflschem Gesetz, schritt-
weise aus der nichtlinearen Thermomechanik und den Maxwellgleichungen
abgeleitet. Eine Durchsicht der aktuellen Literatur hat verdeutlicht, dass
sich fiir die phdnomenologische Modellierung ein allgemein anerkannter ther-
modynamischer Ansatz in der internationalen wissenschaftlichen Diskussion
etabliert hat.

Der grofite Teil der Arbeit widmet sich dann der Aufstellung eines phéno-
menologischen Konstitutivmodells fiir Piezokeramiken unter mehrachsiger
elektromechanischer Belastung, das das physikalische Fundament fiir das
Berechnungswerkzeug bildet. Besondere Merkmale des Modells sind mikro-
skopisch motivierte innere Variablen, die das Umklappen im Material be-
schreiben, und die zur makroskopischen irreversiblen Polarisation und der
Dehnung in Beziehung stehen. Eine Umklappkriterium wird benutzt, um
das Einsetzen des Umklappens in der Domé&nenstruktur zu charakterisieren.
Die Differentialgleichungen der inneren Variablen werden mit Hilfe der Nor-
malitéts Regel abgeleitet, wobei die thermodynamischen Nebenbedingungen
erfiillt werden. FEine energetische Hiirde wird eingefiihrt, welche die Sétti-
gung des Doménenumklappens charakterisiert, um eine kinematische Be-
schrinkung bei der Entwicklung der inneren Variablen zu erzwingen. Damit
wird erreicht, dass ausschliellich konsistente irreversible Polarisations- und
Dehnungszustdnde mdoglich sind. Numerische Simulationen des Materialver-
haltens fiir einige typische Belastungsfiille zeigen, dass das Modell geeignet
ist, das nichtlineare Verhalten von Piezokeramiken zu beschreiben.

AbschlieSend werden die dem Modell zugrunde liegenden Annahmen mit
Hilfe einer mikroskopischen Betrachtungsweise diskutiert.
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Chapter 1

Introduction

1.1 Motivation of the present work

The piezoelectric effect causes a coupling between electric and mechanical
quantities and thus it is a primary candidate for advanced sensor and actua-
tor applications. In engineering applications the piezoelectric effect is mostly
realized by the ferroelectric phase of lead zirconate titanate (PZT) and also
Barium titanate (BaTiO3) ceramics. These materials, also called piezoceram-
ics, are outstanding materials for mass applications calling for short response
times, high-precision positioning and considerable actuation forces in systems
of complex shape. The increasing economic importance of piezoceramics has
brought about the need for an improved knowledge of them. In particular,
the requirement for the reliability analysis of piezoceramic components is
becoming critical.

If a piezoceramic material has been poled by an electric field above the
coercive field at a temperature below the Curie point, its responses to small
electro-mechanical loads may be characterized by the parameters of classical
linear piezoelectricity. However, nowadays applications involve severe loading
and complicated geometies so that the assumption of small signals is no
longer justified in general. Rather, under large electromechanical loading the
nonlinear hysteresis behavior of the material can become dominant.

In order to assess the reliability of a piezoceramic component, it is impor-
tant to compute the mechanical stress state quantitatively. For this purpose,
the electric and mechanical field equations have to be solved together with an
appropriate constitutive assumption relating the histories of electric field, po-
larization, stresses, and strains to each other. The linear constitutive model
for piezoelectric materials was developed many decades ago and has found
widespread applications in analytical and numerical methods. However, as



discussed before, the linear model is not valid for the stress calculations in
critical cases, where the material exhibits nonlinear behavior at locations in
a component under large loading.

The purpose of this research project is creating a finite element tool for
the stress analysis of piezoceramic components taking into account the full
range of nonlinear electromechanical hysteresis phenomena, exhibited by the
material. Now, even in microsystem technology, the order of magnitude of
typical dimensions of components still belongs to the macroscopic level of
consideration, if compared to typical dimensions of the microstructure of the
material. Therefore, a macroscopic theory is appropriate as basis for a tool
of the type mentioned above, and such a theory consists of two types of equa-
tions. First, there are the balance laws, which are basically a combinations
of thermomechanics and Maxwell’s Equations. Second, a phenomenological
constitutive model is needed, which, mathematically, closes the system of
equations and, physically, is capable of representing the specific macroscopic
properties of the material under consideration.

1.2 Plan of the report

In view of the above motivating remarks, this report and the underlying
research work have been organized as follows:

The first task of our project was to collect and discuss large signal hystere-
sis phenomena present in typical soft-PZT actuator materials. In this way,
the phenomena to be represented by our theory should be selected. Further-
more, the microscopic origin of these phenomena should be considered at
least qualitatively to gain the physical insight necessary for the motivation
of a sound constitutive model. Especially for the latter reason, the report
about this in Chapter 2 is quite lengthy, even though conducting experi-
ments has not been subject of the present project. However, besides some
data from the relevant literature, which are still limited, most of the experi-
ments presented have been conducted by Dayu Zhou at our institute during
his dissertation project and have not been published yet.

The second preparing activity in the work plan of our research project was
to collect and review the recent literature on constitutive modeling. Chapter
3 outlines and discusses the basic ideas of the relevant papers. We consider
it important for a productive scientific interaction to acklowledge the ideas
of others and to adopt them, if they are superior to own ideas. As the main
outcome, this part of the work confirmed that a common thermodynamical
framework for constitutive modeling with internal variables has been estab-
lished. (For reasons of a consistent presentation, this aspect is reported in the



next chapter.) Almost all papers rely on remanent or irreversible polarization
and strain as internal variables.

A macroscopic theory consists of balance laws and constitutive equa-
tions. In contrast to the field of constitutive modeling, the research area of
balance laws can generally considered settled. In engineering electromechan-
ics, usually the simplest form of the balance laws being a combination of the
balance of momentum and Gaufl’ Law is used without justifying discussion.
Therefore, we included in our work plan an activity devoted to the system-
atical derivation of this simple theory from nonlinear thermomechanics and
Maxwell’s Equations. In its first part, Chapter 4 lists step by step the phys-
ical assumptions leading to the simple theory thus yielding some kind of a
hierarchy of physical generality. This makes it possible, to decide in each
case, which level of complexity of the theory has to be adopted. One ques-
tionable assumption is, for instance, to take a piezoceramic subject to poling
processes to be ideally insulating. The second part of Chapter 4 presents the
thermodynamical framework mentioned in the previous paragraph.

Having finished the presentation of all preparing work, the report now
turns to the main subject of our research project. A constitutive model for
piezoceramics has been constructed to complete the theory within the given
framework. Constitutive modeling is still a field of research in the sense that
not only existing theories and ideas are reviewed and applied. In Chapter 5,
a new approach to phenomenological constitutive modeling of piezoceramics
is developed for uniaxial loadings, which is based on ideas given in KAMLAH
AND JIANG [1999]. In building the model, care was taken for the model
not to become too involved such that the effort for its numerical evaluation
would not be too large. Two internal variables, also called microstructural
parameters, are introduced to quantify the overall domain orientation and
level of polarization. The evolution equations of the internal variables are
derived and irreversible polarization and strain are calculated as functions of
the internal variables. Thereby, as a specific feature, this model allows for
consistent irreversible strain and polarization states only, which is enforced
by a kinematical constraint for the microstructural parameters. In order to
verify the underlying a priori assumptions and to examine the ability of the
model in describing the material responses to electromechanical loadings, the
model is used to simulate different loading histories and loading combinations
in the uniaxial loading case. It can be seen that the model represents the
typical hysteresis and nonlinear electromechanical coupling phenomena.

In Chapter 6, a three dimensional formulation of the model is proposed
by the introduction of additional internal variables. At this stage of our
work, an approximate formulation was derived by restricting ourselves to
transverselly isotropic irreversible strain states instead of orthotropic ones.



In this way, the simple structure of the one dimensional model could be kept
by introducing two additional vectorial internal variables. They represent the
history dependence of the irreversible polarization direction and of a preferred
direction for the allignment of c-axes, respectively. Again, this version of the
model is compared to experimental findings.

Due to the close relation of our internal variables to the microstructure
of tetragonal ceramics, it turned out that many of our assumptions can be
checked by discussing them in relation to microscopic investigations. The key
point is the approximate represention of the orientation distribution func-
tion of the domains in the polycrystal by a finite set of parameters. These
parameters can be related to our internal variables and to the irreversible
polarization and strain.

Chapter 8 contains a brief summary and an outlook on the work which
will be done in the coming time.



Chapter 2

Nonlinear electromechanical
properties of piezoceramics

Experimental investigations into the physical properties of piezoceramics pro-
vide us with the basic knowledge about this material, which is the starting
point for all theoretical studies. Furthermore, the validity and the descriptive
ability of a constitutive model can only be examined and modified with the
help of experimental results. In this section only a brief description of the
experimental studies of the nonlinear electromechanical properties of piezoce-
ramics related to our project is presented. Detailed physical properties can be
found elsewhere ( eg. CAO AND EVANS [1993], DAMJANOVIC [1998], HALL
[2001], KAMLAH [2001], JAFFE et al. [1971], LyNCH [1996], SCHAUFELE
AND HARDTL [1996], ZrOU [2003]). Though a great deal of experimental
research has been carried out, there are relatively few experimental investi-
gations into macroscopic nonlinear properties. The studies reported by CAO
AND EvaNs [1994], LyNCH [1996] and SCHAUFELE AND HARDTL [1996]
are the pioneering works in this field and have been cited by many authors.
In his recent dissertation ZHOU [2003] reported a thorough experimental
study of nonlinear constitutive behavior of piezoceramics. In this work the
nonlinear properties of piezoceramics under uniaxial electric, mechanical and
combined electromechanical loading were thoroughly investigated. The com-
mercially available PIC151 soft PZT ceramics was used for test samples. The
detailed experimental results provide a solid data base for the development
of nonlinear phenomenological constitutive models. As the works by ZHOU
[2003] have been carried out at our institute, this section relies mainly on
them to demonstrate the nonlinear behavior of the piezoceramics (see the
remarks in Section 1.2).



2.1 Pure electric loadings

In this section, we consider a test series where a quasi-static cyclic electric
field of £2kV/mm in amplitude at a rate of 0.08kV/(mm - s) (corresponding
a frequency of 0.01Hz) is applied on a sample in the longitudinal direction,
whose dimension is 5 x 5 x 15 mm?. The polarization, longitudinal strain
and lateral strain are measured.
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Figure 2.1: Dielectric Hysteresis: Left: Polarization vs. electric field with
B3| = 0.08kV/(mm - s), three loading cycles. Right: Schematic sketch of the
dielectric hysteresis. To the selected E3 — D3 states, the simplifying domain
state symbols in the boxes are asigned. The dashed line belongs to the first
polarization process of initially unpoled material.

Figure 2.1 shows the typical response of an initially unpoled sample to
a cyclic electric field. In the initial state (I), as indicated by the arrows in
the corresponding schematic domain structure, the domains are randomly
distributed and the macroscopic polarization is zero. If the applied electric
field is sufficiently small, the domain structure is unchanged and the ions
of the unit cells are shifted within the neighborhood of their equilibrium
positions only. The corresponding macroscopic dielectric behavior of the
material is reversible and approximately linear.

As the electric field reaches the coercive field strength E€, switching pro-
cesses of domains are initiated. In this irreversible process the polarization
increases rapidly until the microscopic polarization of all domains is gradually
aligned as close in the direction of the electric field as possible, i.e., the ma-
terial approaches a saturation state. The state indicated by @) in Figure 2.1
is reached when the reservoir of switchable domains is exhausted. Further
changes of the polarization can only result from the shifting of ions near their
new equilibrium positions and, thus, the increase of the polarization is slower
and essentially reversible.



Upon unloading the ions remain in their new equilibrium positions and the
poled domain structure is preserved. Consequently, a remanent macroscopic
polarization is induced even after the complete removing of the electric field
(see state @ in Figure 2.1). In the example of Figure 2.1, it assumes the
maximum value of the saturation polarization due to complete alignment of
domains by a sufficiently high electric field.

If an electric field applied in the opposite direction reaches the coercive
field, switching processes are initiated again. The fully aligned domain state
is disturbed such that the remanent polarization decreases until a more or
less depoled state is assumed at @) . Further loading leads to a domain state
oriented in the new electric field direction (@ in Figure 2.1). Upon reversing
the electric field again, the material responds in the same manner as before
(along the path ®-@)-@ in Figure 2.1).

In summary, three different ranges of material response can be indentified:
In the initial state the behavior is reversible for sufficiently small loadings.
If the loading exceeds a critical value, irreversible processes will be initiated
and hysteresis will occur. After saturation of these irreversible processes,
further changes are merely of a reversible character.

833 (G/OU)
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Figure 2.2: Butterfly Hysteresis. Left: Strain wvs. electric field with
B3| = 0.08kV/(mm -s), three loading cycles. Right: Schematic sketch of
the butterfly hysteresis. To the selected E3 — S33 states belonging to the cor-
responding states in Figure 2.1, the simplifying domain state symbols in the

boxes are asigned. Again, the dashed line belongs to the first polarization
process of initially unpoled material.

During the electric field cycle the deformation of the sample occurs simul-
taneously with the polarization. As a counterpart of Figure 2.1, Figure 2.2
shows the relationship between electric field and strain of the sample. The
numbers in both figures are in correspondence with each other. The thermally
depoled and macroscopically isotropic initial state is defined as the state of




zero strain. When electric field is below the coercive value, the distribution
of the polarization orientation of the domains is random. Therefore, the mi-
croscopic contributions of the domains cancel each other, and we observe no
electrically induced macroscopic strain.

When the applied electric field exceeds E€, switching processes are initi-
ated. The c-axes of more and more unit cells are aligned in the direction of
the electric field. We observe a rapid elongation of the specimen because of
two contributions: The first one is due to the increasing number of domains
oriented with their longer c-axes parallel to the electric field. Secondly, as we
observed before, a resultant macroscopic remanent polarization is produced
and this is accompanied by a macroscopic piezoelectric effect resulting in
reversible strain. As soon as switching processes are completed and a fully
switched domain state is reached, only the second contribution leads to fur-
ther changes of the strain. This is indicated by the reduced slope of the
electric field-strain curve as state 2) in Figure 2.2 is approached.

Upon unloading, from state 2 to @ in Figure 2.2, the aligned new
domain state remains unchanged, the change of strain is due to the piezo-
electric effect of the poled specimen. At (@), the electric field is zero and the
reversible strain is recovered, and only the strain induced by the alignment
of the c-axes of the domains remains. If the alignmemt is complete, as in the
case considered here, the remanent strain at zero electric field assumes the
saturation strain S

Upon reversing the electric field beyond —E, back-switching processes are
initiated and the degree of order of the domains is reduced. Because of this
electric depolarization the macroscopic polarization decreases and the mate-
rial loses its inverse piezoelectric effect. The distribution of the orientation
of the c-axes becomes more random, such that the resultant switching strain
is reduced. In the state @, the lowest degree of order is reached and the
strain goes a sharp minimum. From this minimum strain on, the alignment
of the domains and thereby the switching strain as well as the piezoelectric
strain starts to increase again. Finally, at §), a domain state oriented fully
in the new direction of the electric field is reached. The material will behave
in the same manner as in the previous poled state, but oriented oppositely.

The most significant feature of the butterfly hystersis is its symmetry with
respect to the strain axis at E = 0. For the remanent strain, only the align-
ment level of the c-axes counts but not the orientation of the spontaneous
polarization vectors. In particular, two opposite remanent polarization states
will lead to the same remanet strain state. During poling by both a positive
and a negative electric field, the induced piezoelectric strain is positive, since
it is caused by a corresponding positive or negative remanent polarization,
respectively. The piezoelectric constants in the poled states ) and ) have

10



the same absolute value, but opposite signs.

2.2 Pure mechanical loadings

In this section we discuss the piezoceramic material response to mechanical
loading. We focus on uniaxial compressive states since they can be realized
comparably more easily for a brittle material with a low tensile strength. Un-
der small stress the material responses are reversible and nearly linear. If the
stress exceeds a critical value, the stress-strain behavior exhibits significant
non-linearity and remanent strain is induced. As before, the experimental
results by ZHOU [2003] are used in the discussion.
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Figure 2.3: Ferroelastic Hysteresis. Left: Ferroelastic Hysteresis behavior
under mechanical loading: Compressive stress -T33 vs. compressive strain
-S33 starting from an unpoled state with a loading rate of |T33| = 5MPa/s.
Right: Schematic sketch of the ferroelastic behavior for compressive loading
of an initially unpoled material. To selected T33 — S33 states, the simplifying
domain state symbols in the boxes are asigned.

To the left, Figure 2.3 shows the results of a compressive experiment
performed on initially unpoled PIC151 soft PZT ceramic specimen, which
was subjected to three subsequent ramp-shaped loading-unloading cycles by
a compressive stress with an amplitude of -400 MPa and a loading rate of 5
MPa/s. We discuss it with the help of the symbolic sketch on the right panel.
We will recognize a certain analogy with the dielectric behavior, since the
microscopic switching mechanisms are active in this case as well. For small
loadings near (I) the ions will be displaced only slightly from their equilibrium
positions and the material shows a linearly elastic behavior. After passing
the critical load |T33] = ¢, which is called coercive stress and is analogous
to the dielectric case, switching processes are initiated. Certain ions assume

11



new equlibrium positions such that the longer c-axes of the domains are
oriented as closely as possible to a direction which is perpendicular to the
compressive loading. This gives rise to a rapid increase of the remanent
strain. At higher stress levels when the switching process is nearly completed,
a fully switched domain structure is achieved and the remanent strain takes
the maximum value S5 at @ . Under further loading, the material reacts
more and more stiffly and approximately elastically. After unloading, at
@), the switched domain structure is preserved which leads to significant
remanent strains. For further loading and unloading cycles, the stress-strain
loops become quite narrow and only a slight hysteresis can be observed.
This is because of the nearly complete exhaustion of the switchable domains
after the first loading-unloading cycle. It should be pointed out that in
this mechanical loading cycle the resultant macroscopic polarization remains
zero. A mechanical stress cannot trigger a unique switching direction of the
spontaneous polarization of a unit cell with the following consequence: While
all the c-axes will prefer to a position close to a plane perpendicular to the
compressive stress, the distribution of these c-axes within this plane remains
random. Thus, the domain state results from uniaxial compresive stress is
transversely isotropic, but possesses no macroscopic polarization.

T
T 33V 3

~ i

T33¢\ o1 /WSS

S

Figure 2.4: Shown in the same plot, mechanical stress 733 and strain Ss3 of
two fictitious compression and tension experiments, respectively, with both
starting from a thermally depoled initial state. The distribution of the c-axes
for the initial and unloaded states is symbolized in simplifying manner by
three thick lines each representing a possible position of c-axes within a unit
cell.

Experimental results by FETT et al. [1998A, 1998B| demonstrate that
the deformation of piezoceramics under tensile and compressive stress is

12



asymmetric. However, in real tensile tests, the maximum remanent strain
will never be reached, because the stress needed is much larger than the
tensile strength of the material. Therefore, theoretical considerations are
needed.

In order to give a microscopic explanation of this asymmetry, we start
with a simplifying picture. We consider a single crystal with the mechanical
loading parallel to one of its lattice axes and assume a thermally depoled
initial state. As we have seen, the arrangement of the c-axes is responsible
for the amount of remanent strain. The orientation distribution of the c-axes
in the space is represented in Figure 2.4 roughly by three thick lines assigned
to the states before loading and after unloading. From this consideration
we would expect that the reservoir of switchable unit cells under tension
can be up to twice as large as the reservoir of switchable unit cells under
compression. Thus, starting from an unpoled state, the maximum tensile
switching strain would be twice the maximum compressive switching strain.
In this context it is noted, that the maximum remanent strain in tension,
where all c-axes are more or less parallel to the loading direction, is equal to
the maximum remanent strain due to poling, i.e., S5,

In experiments, we encounter the reponse of a polycrystal with a random
distribution of the orientation of its grains. In an investigation of the effective
properties of polycrytalline BaTiOj3, the maximum tensile and compressive
remanent strains were studied by FROHLICH [2001]. 10000 unit cells with
random distribution of the initial orientation were taken into account to
simulate the macroscopic and global behavior of the unit cells. The maximum
tensile remanent strain S{2t is reached at a domain state at which all c-axes
have switched into a cone of 45° around the axis of loading. The maximum
compressive remanent strain is reached if all c-axes are situated as closely as
possible to a plane perpendicular to the loading direction. It is found that

St = 0.55205%°" and S = —0.40355°P°", (2.1)

tens comp

where S®P°" is the spontaneous strain of the unit cell with respect to the
undistorted paraelectric state. According to this result, the ratio between
maximum tensile and compressive remanent strains is 1.37 : 1, much smaller
than the expected 2 : 1 from the aforementioned single crystal consideration.

2.3 Combined electromechanical loadings

For a better understanding of the behavior of piezoceramics under com-
plex loading conditions, it is necessary to experimentally examine the mate-
rial responses to the combined electromechanical loadings (LYNCH [1996],

13



SCHAUFELE AND HARDTL [1996]). Again, here we use the experimental
results of ZHOU [2003] for the discussion. Zhou has conducted a series of
experiments such as mechanical depolarization, electric field cycling with
prescribed compressive stress and compressive stress cycling with prescribed
bias field on piezoceramic specimens. Below we give a brief discussion of
these tests. The detailed descriptions and discussions are found in ZHOU
[2003].

In order to study the mechanical depolarization behavior of the mate-
rial, an initially unpoled PIC151 soft PZT specimen was first subjected to
a total of five cycles of ramp-shaped electric field loading under mechani-
cal load free state, with an amplitude of £2 kV/mm and a loading rate of
0.08 kV/(mm - s). Changes of strain and polarization were monitored simul-
taneously. Right after removal of the electric field, a uniaxial compressive
stress parallel to the prepoling direction was applied to the specimen. By
this procedure, the polarization and deformation history of the material is
fully known.

3 -0,35 -0,‘30 -0:25 -0,‘20 -0,‘ 15 -0,‘10 -0,‘05 0,00
D, (C/?)

Figure 2.5: Mechanical depolarization of poled specimen under compressive
stress with a loading rate of |T33] = 5 MPa/s. Left: Stress vs. strain. Right:
Stress vs. polarization.

The left panel of Figure 2.5 shows the variation of longitudinal strain and
polarization of the prepoled specimen with the application of a compressive
stress. The electric field induced remanent longitudinal strain is 0.251%.
With application of an increasing compressive stress, the microscopic spon-
taneous polarization vectors of unit cells will be gradually redistributed ran-
domly within or close to a plane perpendicular to the compressive load. In
the course of this non-180° domain switching process, the original order of
the domains in the previous poling direction is lost, therefore the electric
field induced remanent strain vanishes gradually and the compressive stress
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induced irreversible strain is observed. The ferroelastic domain switching
process will be nearly completed at a higher stress level. The stress-strain
responses during further increased stress loading and the initial unloading
period become approximately linear elastic. When unloading the compres-
sive load below about -150 MPa, similar to the unpoled material, the plots
display a slight non-linearity. The remanent longitudinal strain after the first
compression loading cycle is —0.276%. Only very slightly can more remanent
strains be further induced during subsequent cyclic stress loading.

Besides the non-linear stress-strain behavior, as shown in the right panel
of Figure 2.5, ferroelastic domain switching induced by a compressive stress
will simultaneously give rise to the gradual removal of the remanent po-
larization of a prepoled material. This phenomenon is called mechanical
depolarization. The shape of the depolarization curve resembles the corre-
sponding stress-strain behavior, suggesting that the origin of non-linear de-
formation is also responsible for the polarization changes (CAO AND EVANS
[1993]). The initial remanent polarization induced by the electric field is
about -0.328 C/m? . With the increasing of the compressive stress, the re-
manent polarization non-linearly decreases. After achieving a much higher
stress level (eg., -300 MPa), the change of the polarization becomes quite
slow for further increasing load time. The remanent polarization remain-
ing at -400 MPa is about -0.022 C/m?. Therefore, the material can not
be completely depolarized by a compressive stress loading with the maxi-
mum magnitude of -400 MPa in this experiment. Upon unloading from -400
MPa, the stress-depolarization curve initially traces a nearly vertical line.
This phenomenon indicates that the specimen behaves electromechanically
decoupled due to mechanical depolarization. After about -200 MPa, the un-
loading curve exhibits a slight non-linearity, which indicates that a small part
of the polarization can be gradually recovered. The remanent polarization
after the first loading cycle is about -0.041C/m? , which is apparently larger
than the minimum value induced at -400 MPa. A little bit more remanent
polarization can be removed by further stress loading cycles. Directly after
a total of three loading-unloading cycles, the remanent polarization is about
-0.031 C/m. When the stress magnitude is lower than a certain value during
the unloading period, both strain and polarization curves are observed to
deviate from their initially linear behavior and exhibit slight nonlinearities.

The material responses to full electric field cycling with different pre-
scribed uni-axial compressive stress are studied by Zuou [2003]. The ex-
periment was performed on initially unpoled PIC151 soft PZT ceramics and
full cycles of a ramp-shaped electric field were applied to the specimen under
different constant compressive stresses. The electric field and the bias stress
were coaxial. The electric field range was selected between -2 kV/mm and +2
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kV/mm, with a loading rate of 0.08 kV/(mm -s). The superimposed stress
levels were increased from 0 to -400 MPa, with a loading rate of 5 MPa/s.
Polarization, longitudinal and transverse strains vs. electric field hysteresis
loops were monitored simultaneously.
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Figure 2.6: Polarization vs. electric field hysteresis loops under different
constant preloaded compressive stresses.

Figure 2.6 shows polarization wvs. electric field hysteresis loops to dif-
ferent constant preload stresses. It can be seen that the hysteresis become
narrow and loops area decreases with increasing preloaded stress. Under a
compressive stress of 400 MPa the hysteresis nearly become a straight line.
Figure 2.7 is the counterpart of Figure 2.6 and it shows the butterfly curves
during electric field cycling. One of the most notable features of the butter-
fly curves is that both the maximum (at £2 kV/mm) and remanent (at 0
kV/mm) strains decrease with increasing compressive stress levels. Similar
to the polarization vs. electric field hysteresis, the butterfly hysteresis be-
comes narrower with increasing preloaded stress. Under high compression,
it nearly becomes a straight line.

The applied compressive stress hinders domain switching into the electric
field direction, thus a higher electric field is needed to induce domain switch-
ing. At the stress free state, when the electric field is unloading from 42
kV/mm to 0 kV/mm, most of the domains are preserved with orientation
parallel to the positive electric field loading direction (only a few unstable
domains are switching back to their initial unpoled states). From 0 kV/mm,
the first non-180° domain switching process starts in the material with a
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Figure 2.7: Strain vs. electric field hysteresis loops under different constant
preloaded compressive stresses.

negative electric field application. When the negative coercive field —E° is
reached, the first non-180° switching process will be completed. The strain
is found to achieve its minimum absolute value and the polarization is zero.
After —E° the second non-180° domain switching process begins, both po-
larization and strain are observed to experience an increasing jump, and
finally they become saturated at higher electric field levels. (To simplify the
discussion, here it is assumed that the polarization and strain achieve their
minimum value simultaneously).

When a relatively small compressive stress is superimposed on the speci-
men (eg., -25 or -50 MPa), the shapes of polarization-electric field and strain-
electric field curves are different from the stress free state. Due to the com-
pressive load induced depolarization, the resultant polarization and strain at
maximum electric field (£2 kV/mm) are apparently smaller than those at
the stress free state. As discussed earlier, this is because some of the domains
have been constrained by the superimposed stress and cannot be reoriented
by the electric field with a maximum amplitude of £2 kV/mm in this ex-
periment. Unloading from 2 kV/mm to 0 kV/mm, the preload stress will
induce part of the first non-180° domain switching even before 0 kV/mm.
As a result, we can see both of the polarization and strain decrease more
drastically than at stress free state. After 0 kV/mm, the negative electric
field acts together with the prestress to complete the residual first non-180°
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switching. Until the negative coercive field (—E€) is reached, the polariza-
tion and strain achieve their minimum values. The magnitude of electric
field needed to start domain switching in the specimens with compressive
stress preload is larger than that at the stress free state. This is due to
three reasons: (1) fewer domains take part in the polarization reversal; (2)
the preload stress destabilizes the poled state and leads to a part of the first
non-180° domain switching in the period of electric field unloading from +2
kV/mm to 0 kV/mm; (3) the first non-180° switching process is completed
by the combined action of electric field and prestress. After E¢, the steadily
increasing electric field load will act against the prestress to induce the sec-
ond non-180° domain switching. Consequently, the polarization and strain
experience a more gradual development rather than a jump as in the case
of T33 = 0. With further preload stress increments, less and less domains
take part in the polarization reversal, and the resultant polarization-electric
field and strain-electric field curves become flat. For example, at -400 MPa,
the former is an approximately straight line and nearly no hysteresis can be
observed in the strain curve.

ZHOU [2003] studied the effect of constant preload electric field on the
nonlinear stress-strain and stress-polarization responses of PIC151 soft PZT
ceramics. At first an initially unpoled PIC151 soft PZT specimen was sub-
jected to four cycles of an electric field of £2 kV/mm in amplitude at a rate
of 0.08 kV/(mm -s). After poling, the material possessed remanent polar-
ization and remanent strain. Due to technical reasons this polarization is
defined as negative in this experiment. A bias electric field is applied to the
specimen before the application of mechanical loading. Therefore, a nega-
tive bias electric field acts in the same direction of the initial poling state,
whereas a positive field is opposite to the poling direction. The maximum
magnitude of the positive bias electric field was chosen as +0.50 kV/mm.
This is about half of the material’s coercive field (E¢ ~ 1 kV/mm), such
that domain switching processes induced by bias electric field alone (electric
depolarization) do not occur.

Figure 2.8 shows a series of plots of compressive stress vs. polarization
curves obtained under different bias electric field conditions. It can be seen
from Figure 2.8 that, when the bias field is zero, the initial remanent po-
larization before stress loading is -0.330 C/m?. As stress loading increases,
we observe a nonlinear depolarization curve, which is due to the compressive
stress induced non-180° domain switching orthogonal to the original poling
direction. The final remanent polarization at -400 MPa is -0.019 C/m?, i.e.,
nearly 94% of the polarization is removed. From the tendency of the curves
in Figure 2.8, we can find that the development of depolarization induced
by a compressive stress becomes gradually more and more difficult with the
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Figure 2.8: Compressive stress induced depolarization of a specimen under
different bias electric fileld.

negative bias electric field increasing. At -2 kV/mm, as the stress increases
up to -400 MPa, the remanent polarization is still as high as -0.142 C/m?,
only about 68% polarization is removed by the stress. These results comfirm
the fact that an electric field acting in the direction of previous poling has
the trend to support the existing domain state and, thus, higher stresses are
needed to initiate and forward mechanically induced domain switching pro-
cesses. An electric field acting oppositely to the initial poling direction (here
positive bias electric field) will work together with the compressive stress
to destabilize the domain state. Consequently, compressive stress induced
switching processes become easier than at zero-bias electric field.

As a counterpart of Figure 2.8, Figure 2.9 shows the change of strains with
the increase of the compressive stress at different bias fields. From Figure 2.8
and Figure 2.9 we can see clearly the combined effects of stress and electric
field on the domain switching processes.

2.4 Time effects in piezoceramics

So far we have discussed the behavior of piezoceramics under electric, me-
chanical and combined electro-mechanical loadings and attributed typical
hysteresis phenomena to the switching processes of unit cells. Switching of
the central ions of the unit cells is of an instantaneous nature in the sense
that it occurs in the very momemt a critical value of applied loads or in-
vested energy is reached. Such a threshold gives rise to the irreversibility of
the hysteresis phenomena as the changed state is preserved during unloading
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Figure 2.9: Strain responses during compressive stress induced depolarization
of a specimen under different bias electric fileld.

and will stay as long as the threshold value is not passed again. Now, if
the hysteresis behavior could be caused by purely instantaneous switching
processes in the above sense, no time effects would occur in the constitu-
tive response. However, significant time effects have been observed. ZHOU
[2003] has made detailed observations on the time effects of the behavior of
piezoceramics under electric and mechanical loading. Below we give a brief
description of the time effects observed by Zhou.

2.4.1 Loading rate effects in piezoceramics
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Figure 2.10: Material response to electric loading with different rates. Left:
Polarization wvs. electric field. Right: Strain wvs. electric field.

Polarization and deformation of piezoceramics are loading rate-dependent.
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In order to study this property ZHOU [2003] performed experiments with
different loading rates (frequencies). Figure 2.10 shows polarizaion and strain
hysteresis for the loading rates of 0.02, 0.08 and 0.8 kV/(mm - s) in pure elec-
tric loading tests respectively. From the curves in Figure 2.10 it can be clearly
seen that the loading rate has a remarkable influence on the polarization and
deformation of the material. The lower the loading rate is, the more polar-
ization and deformation will be induced by the same electric field strength.
For instance, after ten loading cycles of 1 kV/mm in amplitude, the rema-
nent polarization and strain in the case of a loading rate 0.02 kV/(mm - s)
are about the twice of the corresponding values at the loading rate of 0.8
kV/(mm - s). For a larger electric field amplitude, the remanent polarization
and strain desrease with increasing loading rate, but the differences are not
so pronounced as at a smaller amplitude. For example, when the amplitude
is 2 kV/mm, after six loading cycles the remanent polarization in the case of
a loading rate of 0.02 kV/(mm - s) is about 7% larger than the corresponding
value at a loading rate of 0.8 kV/(mm - s). These experimental results show
that the loading rate effect is significant when the applied electric field is
not much larger than E¢, whereas, in the case that the electric field is much
larger than E°, the rate-dependent phenomenon is not very pronounced.

Loading rate effects are also observed in tests with pure mechanical load-
ing. Initially unpoled PIC151 soft PZT ceramic specimens were subjected
to ramp-shaped uni-axial compressive stress loading, with the amplitude of
-400 MPa. Three different loading rates of 0.4, 4 and 40 MPa/s were used
in the experiments, respectively. The material exhibits a similar nonlinear
stress-strain behavior at different loading rates. One of the notable features
observed is that to achieve the same strain value a slightly higher stress is
needed in the case of a higher loading rate.

2.4.2 Creep-like behavior of piezoceramics

To investigate the time-dependence of the material behavior under constant
electric field, initially unpoled PIC151 soft PZT ceramic specimens were sub-
jected to four full cycles of a ramp-like electric field, with the loading rate
of 0.08 kV/(mm - s) (corresponding to a frequency of 0.01 Hz). During both
the loading and unloading periods, the electric field was interrupted repeat-
edly by keeping it at a constant level for 300 seconds. The constant electric
field holding levels were selected as +0.50, £1.00, £1.50 and +2.00 kV/mm,
respectively. A total of four cycles of polarization and longitudinal strain
vs. electric field hysteresis curves are shown in Figure 2.11 . Changes of
the polarization and strain during the duration of constant electric field can
clearly be observed. For the initial 1/4 period of the first loading cycle, the
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Figure 2.11: Material responses during four loading cyeles. During both load-
ing and unloading processes the electric field was hold constant at constant
levels of +0.5, £1.0, 1.5 and +2.0 kV/mm for 300 seconds respectively.
Left: Dielectric hysteresis. Right: Butterfly hysteresis.
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Figure 2.12: Change of polarization and strain during the hold time.

electric field increases from zero to +2 kV/mm and changes in polarization
and strain at a constant electric field of 0.50, 1.00, 1.50 and 2.00 kV/mm
are plotted vs. hold time in Figure 2.12. We can see that both polarization
and strain exhibit a creep-like increase under constant electric field. As hold
time increases, the changes gradually slow down and tend to saturate eventu-
ally. The creep-like development is most pronounced at 1.00 kV/mm, which
is close to the coercive field of PIC151 soft PZT. For example, the initial
polarization and strain at the beginning of this hold time are 0.222 C/m?
and 0.1544%, respectively, and they increase up to 0.371 C/m?and 0.3243%,
respectively, after five minutes of electric field holding.

The time-dependent effect of this material is found to depend on the
magnitude of the external electric field load. As seen in Figure 2.13, only
slightly more polarization and strain are further induced during the hold time
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Figure 2.13: Comprison of polarization (left) and strain (right) responses to
electric loading with and without hold time.

at +0.50 kV/mm. This is because, under such a low external electric field
loading, most of the regions in the material possess a local electric field lower
than the coercive field. With the passage of time, only a little amount of
domain switching is further induced in some regions where the local electric
field is approaching the coercive field. With further external electric field
increase from 0.50 to 1.00 kV/mm, the coercive field will be reached in more
regions in the material. A large amount of domain switching results in a
significant polarization and strain increment. For the continuous loading
test, the induced polarization and strain at +1.00 kV/mm are about 0.189
C/m? and 0.1174%, respectively. While, for the hold time experiment, the
polarization and strain values at the beginning of holding at +1.00 kV/mm
are 0.222 C/m? and 0.1544%, respectively. The larger polarization and strain
values are apparently due to the contribution of time-dependent effects at
+0.50 kV/mm.

The most pronounced time-dependent effect is observed at +1.00 kV /mm,
which corresponds to the macroscopic coercive field of this material. During
the hold time of 300 seconds, both polarization and strain increase signif-
icantly. At the end of the hold time, the new values are 0.371 C/m? and
0.3243% for polarization and strain, respectively. To achieve the same values
in the continuous loading test, the applied electric field has to be increased
up to about +1.70 kV/mm for polarization and +1.45 kV/mm for strain,
respectively.

Since most of the domains have been switched during the long hold time
at +1.00 kV/mm, from the end of holding at +1.00 kV/mm to the beginning
of holding at +1.50 kV/mm, linear dielectric behavior and inverse piezoeffect
should be the essential contributions to polarization and strain responses in
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this loading period. For the subsequent electric field holding at +1.50 and
+2.00 kV/mm, the time-dependent effect can still be observed but becomes
relatively weaker.
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Figure 2.14: Change of strain with time under constant stress levels of -50
and -100 MPa of an unpoled specimen subjected to compressive stress.

Similar to the time-dependent effects under pure electric field loading
conditions, strains induced at each constant stress level during the increase
loading period exhibit creep-like behavior. Changes of strain with time under
constant stress levels of -50 and -100 MPa are given in Figure 2.14, respec-
tively.

In summary, polarization and strain exhibit creep-like behavior with the
passing of time. In the case of a pure electric load, the time-dependence is
most pronounced when holding the electric field close to the coercive field.
While under pure mechanical loading, the most distinct time-dependent effect
occurs at the stress level corresponding to the inflection point of the nonlinear
stress-strain curve. It was considered that the macroscopic time-dependent
polarization and strain responses were caused by further microscopic domain
switching process, which was gradually induced during the hold time of the
external load.

Besides the test results outlined above, ZHOU [2003] also observed the
material response to constant electric and mechanical loading during a hold-
ing time in the unloading phase. Detailed exprimental results and discussions
are found in his dissertation.

Up to now, the mechanisms responsible for the time-dependent effects
in piezoceramics have not been credibly explained. The commercial piezoce-
ramics such as PIC151 soft PZT used in the experiments by ZHOU [2003] are
very sophisticatedly doped systems, whose microstructures are very complex.
It is not single crystal, and various phases may coexist in the material simul-
taneously. Impurities and defects also exist. Under macroscopic uniform
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electromechanical loading, local concentrations of electric field or stress may
occur in the material, phase transition can be induced, and defect diffusion
can also occur. More experimental and theoretical studies are needed for the
understanding of the mechanisms, but this is subject of a seperat study.

2.5 Multiaxial experiments

There are very few experimental investigations into the behavior of piezoce-
ramics under multiaxial electromechanical loads. Here we outline the experi-
ments by HUBER AND FLECK [2001], LYNCH et al. [2000] and CHEN AND
LyNcH [2001].
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Figure 2.15: Loading paths for multiaxial electric loading and proportional
electromechanical loading. Left: Intially unpoled material was poled along
one of the paths OA-OG and then unloaded. After angled specimens were cut
from the material, each specimen was loaded along path OA and unloaded.
Right: Proportional loading with uniaxial stress o33 (733) and electric field
E3. Initially unpoled specimens were loaded along one of the paths OA-Og
and unloaded (HUBER et al. [2002])

HUBER AND FLECK [2001] experimentally studied the multiaxial re-
sponses of hard and soft ferroelectrics under stress and electric field. Two
loading paths were adopted in their experiments: (i) Poling with electric field,
followed by repoling with electric field at an angle to the original poling di-
rection, (ii) Propotional loading with electric field and coaxial compressive
stress, see Figure 2.15. The materials tested in their study are soft PZT-5H,
PZT-4D and Barium Titanate.

In case (i) specimens of these three materials were at first poled by appli-
cation of an electric field. After poling, electric fields were applied at angles
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of 0°, 30°, 60°, 90°, 120° and 180° to the remanent polarization direction,
which cause the polarization to change in direction and magnitude. The
change of the polarization in each direction was measured.
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Figure 2.16: Measured response to a polarization rotation test for PZT-5H.
Left: The change in electric displacement vs. electric field responses of spec-
imens poled along paths A-G shown in Figure 2.15, angled at various angles
to the loading direction. Right: Corresponding offset switching surfaces.

Figure 2.16 shows their test results. The letters A-G marked on the curves
correspond to the loading paths shown in Figure 2.15. The right-hand side
figure shows corresponding offset switching surfaces, with the radial axis
showing the electric field and the polar axis showing the angle of the ap-
plied electric field direction to the initial poling direction. For each material,
switching surfaces are shown for three levels of offset corresponding to 1%,
3% and 10% of the remanent polarization after the first poling.

In case (ii) coaxial electric fields and compressive stresses of different
fixed proportions are applied on the specimens simutaneously, as seen on
the right side of Figure 2.15. Figure 2.17 shows the measured polarization
versus electric field (left panel) and polarization versus stress (right panel)
relations for PZT-5H. Similar to case (i), switching curves corresponding to
offsets of 1%, 3% and 10% of the initial remanent polarization are drawn on
the electric field-stress plane in Figure 2.18. These experimental results are
very helpful for a deeper understanding of the material behavior and for the
formulation of a switching criterion in the general electromechanical loading
case.

The material used in the experiments by LYNCH et al. [2000] and CHEN
AND LyNcCH [2001] was unpoled PLZT 8/65/35. The poled and unpoled
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Figure 2.17: Measured response to a propoetional loading test for PZT-5H.
The stress and electric field loads follow the paths A-G in the right panel of
Figure 2.15.
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Figure 2.18: Offset switching surfaces under proportional loading for PZT-
oH, corresponding to the responses shown in Figure 2.17.

specimens were 25 mm long tubes with inner and outer diameters of 10.2
mm and 12.7 mm respectively. At first they applied an axial force of 200
N to the specimen. After preloading, the displacement was held constant.
After the load had stablized, the inner pressure and/or outer pressure was
increased to the desired level. The axial force was then increased to some
maximum value at a constant rate, and then decreased to the preload level.
Stress-strain loops for each loading cycle were monitored. From the test
results they found that the yield (switching) of the material can be described
by a Tresca yield rule. We will discuss this further in the Chapter 3.
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Chapter 3

Phenomenological constitutive
models

Besides the experimental investigations into the electromechnical behavior of
piezoceramic materials, a great deal of research activities have been carried
out in the field of continuum theoretical modeling of constitutive properties
of piezoceramics. This comparably new field is motivated by the need to
calculate the stress states in piezoceramic devices as precisely as possible as
a basis for reliability analyses.

In this section we only make a brief dicussion of several recently published
phenomenological models, which have a high reference value to our present
research. For a detailed discussion of the literature, the reader is referred to
the review article by KAMLAH [2001].

LYNCH [1998] published a model based on a set of internal variables char-
acterizing the domain state in terms of degree of relative polarization and
the degree of alignment of c-axes. The model is restricted to proportonal
loading, where the principal directions of stress and strain are fixed and co-
incide. The dependence of the internal variables on the principal stresses
takes into account different states of loading and unloading, thus realizing
the representation of hysteresis effects. The model is capable of represent-
ing the electric, butterfly and ferroelastic hysteresis and due to the choice of
the internal variables it posesses a sound, microscopically motivated basis. In
LyNcH AND CHEN [2000] and CHEN AND LyNcH [2001] the only published
multiaxial experiments for mechanical loading of a thin walled piezoceramic
tube to date have been reported. Based on experimental results the elec-
tromechanical domain switching criterion

lzmax<

01 — 02 E;
o¢ E

09 — 03 Es
o¢ E

03 — 01 E;
o¢ E

) )
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was proposed. This criterion is an extention of the Tresca yield condition
in plasticity by taking the electric field into account, in which oy, o5 and
o3 are principal stresses, and E¢ and ¢ are coercive field and coercive stress
respectively. For example, for an electromechanical loading with E; = E; =
E; = ?EC, o1 = 0.1¢¢ and oy = o3 = 0 the electric field vector reaches
the coercive strength, v/E;E; = E¢, and, additionally, there is superposed a
tensile stress. But according to the above criterion, domain switching will
not occur, because of which its validity is questionable.

In a recent paper FETT et al. [2003] presented their torsion tests carried
out on a thin-walled tube made of a commercial soft PZT. These test results
in combination with literature results from tensile and compressive tests al-
lowed to the determination of the non-symmetric switching condition for the
remanent deformation. They found that the Drucker-Prager criterion is in
good agreement with the experimental results. This finding is based on pure
mechanical loading tests, i.e., an electric field is not taken into account.

A constitutive model for piezoceramics under pure electric loading is pre-
sented in DRESCHER et al. [1999, 2000]. This model also starts from the
additive decompostion of the polarization and it takes into account the de-
pendence of the transversely isotropic permittivity tensor on the direction of
the polarization. An incremental evolution rule for the remanent polariza-
tion is derived from the formulation of the release of dielectric energy due
to switching, and the tangent permittivities are computed. KESSLER AND
BALKE [2001] reformulated the model on the basis of a macroscopic average
energy release density and extended it to the fully coupled electromechanical
loading. Even though the model can only be applied to the description of
the rotation of a prepoled state, it appears to be promising due to its sound
physical basis and its consistent formulation. In KESSLER et al. [2002],
the model has been implemented in a finite element code and applied to
the analysis of elliptic flaws. Based on the aforementioned domain switching
condition, the stability of switching is analysed in KESSLER et al. [2000]. In
this context, the macroscopic fields are derived by means of an approximate
representation of an orientation distribution function for the domains.

In COcks AND MCMEEKING [1999] a constitutive model for piezoce-
ramics is developed in the tradition of incremental plasticity for uniaxial
electromechanical loading. The model is based on the additive decomposi-
tion of polarization and strain. A convex quadratic yield surface in the space
of uniaxial electric field and mechanical stress is introduced to indicate the
onset of remanent polarization and remanent strain. The evolution equations
for remanent polarization and strain are derived from this yield function by
the normality rule and consistency condition. Similar to the kinematic hard-
ening rule in incremental plasticity, a back electric field and a back stress
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are included in the model, whose evolution equations are derived from the
irreversible part of the free energy. The irreversible part of the free energy
is given such that the dielectric and butterfly hystereses can be represented
reasonably well.

LANDIS AND MCMEEKING [1999] introduced a phenomenological con-
stitutive law for ferroelastic switching in unpoled piezoceramics under pure
mechanical loading based on the additive decomposition of strain. The elas-
tic properties are related to the remanent strain. A switching condition of
the von Mises type is used to characterize the onset of remanent deformation.
The normality rule is adopted for the calculation of remanent strain incre-
ments. As an additional property, the saturation of the remananet strains
due the fully switched domain structure is considered by means of so-called
lock-up criteria.

LANDIS [2001, 2002] united the approaches by Cocks AND MCMEEK-
ING [1999] and LANDIS AND MCMEEKING [1999] to yield a very promising
phenomenological model for the fully coupled electromechanical constitutive
behavior of piezoceramics. As it seems, a wide range of ferroelectric and
ferroelastic hysteresis phenomena is covered by this thermodynamically con-
sistent model by means of a sophisticated switching surface depending on
appropriately chosen invariants (relying with respect to electromechanical
coupling on a term lend from HUBER AND FLECK [2001]). However, there
seem to be difficulties to represent correctly the fact that not all irreversible
polarization and strain states can exist simultaneously. It is tried to handle
this constraint by complicated constitutive functions, which are not easy to
interpret.

The problems just mentioned are avoided (but not solved) in the model of
LANDIS AND MCMEEKING [2002], which can be looked at as a special case
of the former with the irreversible strain tensor being a quadratic function
of the irreversible polarizaion vector. This means, only electrically induced
irreversible strains are possible, and this restriction may exclude the appli-
cability of the model for many cases of practical importance.

LANDIS [2003] focusses on the interesting problem of the asymmetry
in the attainable levels of remanent strain in tension versus compression.
Motivated by the result of FROHLICH [2001] mentioned in Section 2.2, the
micromechanical model of HUBER et al. [1999] was used to probe the full
range of remantent strain saturation states in a first step. In this way, the
result of FROHLICH [2001], predicting a much smaller amount of asymmetry
as might be expected at first sight, was confirmed. As the second step, a
phenomenological saturation criterion was formulated within the constitutive
framework discussed above for the special case of pure ferroelastic behavior
of piezoceramics. The criterion is based on carefully selected invariants of the
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remanent strain tensor and was calibrated by means of the micromechanical
results derived before. While the coupling with the ferroelectric behavior
under electric loadings remains an open issue, the purely ferroelastic behavior
of a tetragonal polycrystal seems to be represented in a satisfying manner by
this model.

With the one-dimensional model from Cocks AND MCMEEKING [1999]
as a starting point, HUBER AND FLECK [2001] developed a rate-independent
phenomenological model for ferroelectrics under general electromechanical
loading. Remanent strain and remanent polarization are used as internal
variables. Similar to plasticity, the yield (switching) function is used to
characterize the onset of remanent polarization and deformation. The yield
surface is a function of stress invariants, electric field and internal variables
and a special electromechanical term takes care of electromechanical loadings.
The increase in remanent strain and polarization are given by the associated
normality rule, and the plastic multiplier is determind by the consistency
condition. A lock-up condition, which represents the saturation state of the
material, constrains the evolution of the internal variables. However, this
criterion does not represent general electromechaical loadings.

KAMLAH et al. [1997] and KAMLAH AND TSAKMAKIS [1999] intro-
duced a constitutive model representing the large signal hysteresis behavior
of piezoceramics in a simplified manner. In this model the remanent po-
larization and the remanent strain are used as internal variables, which are
governed by ordinary differential equations. Each of these evolution equa-
tions is subjected to two loading conditions of different natures. The first
one indicates the onset of the changes in the remanent quantities by domain
switching, while the second one characterizes the saturation value of a re-
manent quantity corresponding to a fully switched domain structure. This
multitude of loading conditions ensures that only physically possible states
of remanent polarization and strain are allowed, however, at the same time
they make it hard to follow the formulation of the model and to treat it
numerically. There are open questions with respect to the asymmetry in
tension and compression, thermodynamic embedding, and rate dependent
formulation of the model.

The model was implemented in a finite element code by KAMLAH AND
BOHLE [2001]. Irrespective of any shortcomings, finite element calcula-
tions based on this model clearly demonstrated the necessity to include for a
sound physical understanding of piezoceramic components from an engineer-
ing point of view the ferroelectric and -elastic hysteresis effects in the stress
analysis of piezoceramic components.
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Chapter 4

Continuum theory of
thermo-electromechanics

A continuum theory is given by two classes of equations. First, there is a sys-
tem of partial differential equations, which is derived from universal balance
laws holding for all bodies. As must be expected from the physical point
view, this system is not sufficient for determining the unknown quantities.
Additional information must be provided taking into account the specific
properties of the material the body consists of. This is done by the second
class of equations, the so-called constitutive equations.

The emphasis of this research project is in the field of constitutive mod-
eling. However, according to our long term experience in the field of elec-
tromechanics, the commonly used, extremely simplified version of the balance
laws needs profound reconsideration. There are definitely cases, where the
underlying assumptions of this version are not justified or need discussion.
Therefore it is one of our objectives, to derive the balance laws from the
general case by employing step by step simplifying assumptions. In this way,
it becomes obvious, for which particular application the theory has to used
at which level of generality.

For the mathematical representation of the theory in this report, we in-
troduce the following conventions: All component representations of tensors
are referred to a Cartesian coordinate system. Cartesian index notation will
be employed with summation over doubly repeated indices. When using
symbolic notation, first order tensors (wvectors) will be denoted by upright
letters with superscript arrows (&, A) and second order tensors (tensors) by
bold slanted letters (a, A, a). A dot between tensors indicates the contrac-
tion relative to one index, for example, the inner product between vectors,
i.e., a - b = a;b;, the composition of two tensors, it i.e., A- At =T (A"
inverse of A, I: identity tensor, (I);; = d;;, 0;j = 1 for i = j and d;; = 0 for
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i # j), the inner product between tensors, i.c., A: B = tr(A-B") = A;;Bij
(trA: trace of A. B”: transpose of B), the linear mapping of a vector by
a tensor, i.e., A & = Aja;. A” = A — L(trA)I stands for the deviator
of A and ||A[| = VA : A is the norm of the tensor A. & = @/ |[[d] is the
unit vector in the direction of the vector @ (||&|| = v/d-&: norm of d). For a
third order tensor dl the follwing defintions are made: (dl: A), = (dl)x;;Aij,
(le . 5:)2] = (dl)kijak, (le)ijk = (dl)kij; and dijk = (dl)mk The symbol X
indicates the dyadic product, e.g. & ® b yields a second order tensor with
components a;b;. The component representation of the cross product @ x b
between two vectors can be written by means of the alternating symbol:
(8 x B)Z = &;jpa;bg, where g;5, = 1 for a cyclic permutation of {1,2,3},
eijr = —1 for an anti-cyclic permutation of {1,2,3}, and ¢;;; = 0 otherwise.
An index following a comma denotes the partial deriviative with respect to
the corresponding space coordinate: (); = 9()/0x;. div is the divergence
operator: (divad) = a;;, (div.A); = A;;,, and grad symbolizes the gradient
operator: (grada); = a;, (gradd);; = a; ;. () = d()/dt denotes the material
time derivative of a field (). The componenent of the curl of a vector field can
be represented with the help of the alternating symbol: (curld); = e;;,ay, ;.
Very often, we will not distinguish between a function and its value. ~ means
“approximately equal”. Further mathematical definitions will be given where
they are needed.

4.1 Balance laws

A set of material points X constitutes a material body B = {X}, to which an
arbitrary but fixed reference configuration R : X — X = R(X) is assigned.
This allows for the referential representation of the motion

—

X=xXp(X,t) , (4.1)

yielding the position X of X in the current configuration X z(R(B),t) at every
instant ¢. The component representation of the motion is taken as

X; = XZ(XK,t) 5 (42)

where lower case and capital indices refer to the the current and reference
configurations, respectively. From the motion, the deformation gradient

_ 9x%x(X1)

F —
0X

o Fin = x50 (X, 1) (4.3)
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can be derived, which possesses the polar decomposition
F=R-U , Fj;=RixUgyp (4.4)

into the orthogonal rotation tensor R and the symmetric, positive definite
right stretch tensor U. Furthermore, we introduce the displacement gradient
as

(X
H— M , (4.5)
0X
where
i= (X, 1) - X (4.6)

is the displacement vector. Then the Green’s strain tensor is given by
G =}(F"-F-I)=(H+H"+H"-H) |, (4.7)
Gir = 5 (ukp + ULk + Uk pnL) (4.8)

The welocity is given by

L AR 9% 1) 0x; (X, t)
=—= "7 =" 4.9

YT ot Y ot (4.9)
with the property

d) _ 20

2= () (410
The wvelocity gradient is then defined as

L = gradfi(f&, t) 5 LZ] =Vij (411)
the symmetric and antisymmetric parts of which according to

L=D+W (4.12)

are called strain rate tensor and spin tensor, respectively.

If not stated otherwise, we will employ in the following a spatial rep-
resentation of the theory, i.e., vector and tensor fields refer to the current
configuration.

Right at the beginning of our considerations we introduce the first sim-
plification:

Assumption 1:
Any relativistic effects are neglected.
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Thus, the most general framework of balance laws for continua consists of a
combination of Maxwell’s equations of classical electro-magneto-dynamics
and the classical balance equations of thermomechanics. The uncoupled
electric and mechanical theories are represented in the classical textbooks
LANDAU AND L1FSCHITZ [1960], JACKSON [1975], TRUESDELL AND NOLL
[1965], and GURTIN [1981], to mention but a view prominent examples.
The coupled theory is discussed in the textbooks HUTTER et al. [1978],
MAUGIN [1988], and ERINGEN AND MAUGIN [1989]. (A first look at these
works gives an impression of the breathtaking complexity of the theory, and
this is probably the reason, why most authors (including us) usually turn
without discussion to the most simplyfied version of the theory.) Recently, a
very fine discussion of the combined theory focussed on appilcations closely
related to the topic of our project has been given in HARPER [1999] and
was summarized in HARPER AND HAGOOD [2000].

4.1.1 Reduced Maxwell’s Equations

Before we get into equations, let us make from the beginning on a second
assumption which means no loss of generality with respect to the topic of
our research project:

Assumption 2:
The partial derivative of the magnetic induction B and the magnetic
induction itself can be neglected:

SIS

~0 . B (4.13)

Here, the first relation is the usual “electroquasistatic” assumption. Ad-
ditionally, static magnetic induction is disregarded for convenience by the
second relation, as it allows to eliminate magnetic terms from the coupling
terms in the thermomechanical balance laws. (For a quasi-electrostatic ap-
proximation for the special case of a elastic dielectric see MAUGIN [1988],
p. 235ff.) Assumption 2 will be justified in our case, as piezoceramic mate-
rials are very bad conductors with a specific resistance of at least 10° Q cm.
Thus, for weak electric currents, the magnetic fields are taken to be negligi-
ble (HARPER [1999], p. 34, HARPER AND HAGOOD [2000], p. 29). On the
other hand, the idealization as perfect insulator is not necessarily adequate
for actuator applications with a quasistatic rate of change of the loading. In
this case, there may be enough time for the migration of free charges due to
external or depolarizing electric fields to modify the electromechanical state
of the body under consideration.
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In view of Assumption 2, the local and global forms of Maxwell’s Equa-
tions are reduced (HARPER [1999], p. 34f, HARPER AND HAGOOD [2000],
p. 29, cf. ERINGEN AND MAUGIN [1989], p. 51 and JACKSON [1975],
p. 254f). In the following, V' denotes the volume of the material body B
in the current configuration and 9V its surface with outward normal i, while
C is a material line in the body.

The electric displacement vector is defined as

D=P+¢E , (4.14)

where P is the polarization vector, € is the dielectric constant in vacuo, and
E is the electric field vector.

Gauf}3’ Law:
divD =¢" |, f B-ﬁdA:/qfdv (4.15)
ov Vv

Here, ¢' is the density of free charges. From Faraday’s Law, it follows that
the electric field vector can be represented by the scalar electric potential .

electric potential:
E = —gradp ]{ E- dZ=0 (4.16)
c
Furthermore, Ampere’s Law yields the

conservation of charge:

f
di+qfdivv+divJ:0 : i/qdenLj{ J-idA=0  (417)
dt dt Jy v

Here, J is the conduction current. The conservation of magnetic flux becomes
trivial.

4.1.2 Thermomechanical balance laws with electric cou-
pling terms

For a theory of thermo-electromechanics, to the balance laws of thermome-
chanics terms are added that represent the influence of the electric fields on
the thermomechanical fields. For the form of these terms see HUTTER et al.
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[1978], MAUGIN [1988], p. 170-182, ERINGEN AND MAUGIN [1989], p. 55-
65, HARPER [1999], p. 36-47, and HARPER AND HAGOOD [2000], p. 28f.
Again, we give the balance laws in local and global form. The definition and
motivation of these coupling terms will be given right after summarizing the
balance laws.

conservation of mass:

dp d

— divv =0 — dV =0 4.18

Here, p is the mass density. The Cauchy stress tensor T yields the surface
force density t = T - i called traction vector (see the remark in HUTTER et

al. [1978], p. 10).

balance of linear momentum:

pi—zzdivT+pE+pEe , (4.19)
d . . L.

— [ p¥ dV:/ tdA—i—/(,ok—i—pke) dv (4.20)
dt 14 oV 14

Here, k is the volume force and k¢ is the electric volume force or pondero-
motive force. Different from a purely thermomechanical theory, the Cauchy
stress tensor is in general not symmetric.

balance of moment of momentum:
T-T" =M° | (4.21)

d

G ] 8= S0 x (o) v =

/ (sa—sso)xfdA+/ ((?{—io)x(pﬁ+pﬁe)+pﬁle> AV (4.22)
oV 14

Here, the electric moment stress or ponderomotive couple m® is the axial
vector of the antisymmetric part M® of the Cauchy stress tensor, and X
corresponds to an arbitrary fixed reference point.
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balance of energy:
de
Pt
d
dt Jy

=T:L—divi+pr+pr® , (4.23)

1
(§p\72 +pe)dV =

/(f’-v—a-ﬁ)dA+/((pE+pEe)-v+pr+pre) AV (4.24)
oV 14

Here, e is the internal energy density, q is the heat flurz vector, r is the
volume heat supply density, and r® is the electric power density. The balance
of entropy in form of the Clausius Duhem inequality is not modified and
reads in its local form as

,0((11—;7 > —div(%) +p% , (4.25)
where 7 is the entropy density and T > 0 is the absolute temperature.

We now turn to the definition and motivation of the additional electric
terms. Beside its thermomechanical properties, each material point X in a
macroscopic thermo-electromechanical continuum is equiped with additional
properties. The first one is a value of the density of free charges ¢, so to
say, a local charge. The second one is a value of the polarization vector f’,
which is the density of the total dipolmoment of the body (for this physical
interpretation see, for instance, LANDAU AND LIFSCHITZ [1960], p. 36-37).
Furthermore, there is a current density in the case of a non-perfect insulator,
which allows for a stationary flow of charges.

The ponderomotive force is given by

pk¢ =¢'E+gradE-P . (4.26)

The first term is motivated from the fundamental property of the electric
field to represent the force on electric charges. The occurence of the second
term corresponds to the fact that only in an inhomogenous electric field
(gradE # 0), there is a resultant force acting on an electric dipol. The
ponderomotive force can be represented as the divergence of some tensor.
For instance, the electrostatic stress tensor

Te:E®?+60(E®E—%(E-E)I) (4.27)
yields

divT® = ¢'E + gradE - P . (4.28)
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In the global form of the balance of moment of momentum, the additional

term (X —Xp) X pEe + pm® occurs with the ponderomotive couple being given
by

pm® =P x E (4.29)

The density of the of the couple of the ponderomotive force pEe is by analogy
to the corresponding term for pE. The term pm® is related to an additional
local couple, caused by the electric field acting on the local dipolmoment P
of a material point. As a consequence of m®, the Cauchy stress tensor is not
symmetric:

T-T'=M°*=P®E-E®P (4.30)

We recognize that the antisymmetric part of T is equal to the antisymmetric
part of the electrostatic stress tensor.

In the balance of energy, the occurence of the term pEe -V is again by
analogy to the corresponding term for pE. The additional electric power is
given by

e = d [P I

pr —pE-dt (p) E-J . (4.31)
From a thermodynamical point of view, the electric field has to be looked
at as a force type quantity, as we have mentioned before. Thus, it plays
in the energy balance an analogous role to the stress. The corresponding
thermodynamic deformation quantity is the displacement of charges. With
respect to the local dipole 13, this results in a change of the polarization,
i.e., the so-called displacement current. Second, in a non-perfect insulator,
a conduction current J might occur, which can be stationary in contrast to
the displacement current due to a change of the polarization.

4.1.3 Small deformations

In this research project, we consider piezoceramic materials where the maxi-
mum electrically and mechanically induced strains usually do not exceed the
order of magnitude of one percent. Like for any other ceramic material, the
right stretch tensor in the polar decomposition of the deformation gradient
will therefore always be approximately equal to the unity tensor, U =~ I ,
implying that the deformation gradient nearly coincides with the rotation
tensor F' =~ R. Obviously, this finding means no loss of generality for ce-
ramic materials, and it will result already in a simplification of the equations.
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However, at this state of the project, the resulting theory has not yet been
considered. Rather, we employ from now on the classical small deformation
assumption, which leads to a geometrically linear theory.

Assumption 3:
The deformation Gradient F' is approximately equal to the unity tensor:

R~I1I , U~xI (4.32)

It must be noted that the exclusion of finite rotations from the theory may
be in conflict to applications to bending devices, where finite rotations may
occur even though stretches are small. However, the simplification of the the-
ory brought about by the small deformation assumption is very significant.
In particular, the reference and current configurations coincide in first ap-
proximation, implying a constant mass density, p &~ 0, and divV << 1. Thus,
material and partial time derivative can no longer be distinguished. Further-
more, there is no longer a need to distinguish between indices in the reference
and current configurations. The most characteristic simplification however
comes about from the fact that the norm of the displacement gradient is now
small,

[H| <<1 , (4.33)

and as a consequence the Green’s strain tensor can be replaced by the linear
strain tensor

S = % (H + HT) y Sij = % (Ui,j + Uj,i) s (4.34)

i.e., the nonlinear terms are dropped to yield a linear geometrical setting.
For the velocity gradient, it follows

Vi~ ui,j , L~ S + W s (435)

where the spin tensor W is now approximately equal to the antisymmetric
part of u; ;. For more details on geometric linearization see HAupPT [2000],
p. 53-57.

The relevant equations in local form for the geometrically linear case are
summarized in the following box without derivation, which is quite straight
forward.

40



electric potential:
E = —grady
linear strain tensor:
S = 1 (gradi + (gradi)”)
electric displacement:
D=P+¢F

electrostatic stress tensor:

Gauf}’ Law:
divD = ¢
conservation of charge:
¢ +div] =0
balance of linear momentum:
pit = div (T +T°) + pk
balance of moment of momentum:
T-T' =17 -1
balance of energy:

pe=T:8+T:W+E-P+E-J—divi+pr

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

4.1.4 Towards the simplest form of the theory of a de-

formable dielectric

In the last three equations of the above theory, there is a significant deviation
from classical thermomechanics in that the stress tensor T" is not symmetric.
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As pointed out before, the antisymmetric part of the stress tensor is equal to
the antisymmetric part of the electrostatic stress tensor. MAUGIN [1988],
p. 222f, points out that the electrostatic stress tensor vanishes asymptoti-
cally for a theory linearized about the neighborhood of a so-called natural
configuration that is free of fields, strains and stresses. This will be fulfilled
for classical linear piezoelectricity or for electrostrictive behavior. However,
piezoceramic materials may exhibit after unloading a remanent polarization
and a remanent strain, which in general can not be neglected compared to
total polarization and strain. Therefore, omitting the terms related to T°
is subject to an independent assumption, the justification of which needs
careful consideration for the application at hand.

Assumption 4:
The absolute magnitude of the electrostatic stress tensor, and, thus of
the ponderomotive forces and couples is neglected:

T << 1 (4.45)

As just mentioned, for ferroelectric ceramics, the condition of asymtoti-
cally vanishing polarization generally is not met even in the unloaded state.
Instead, there may be a finite non-zero remanent polarization state after pol-
ing by a high electric field and subsequent removal of the loading. Now, in
order to obtain an impression of the influence of T, we may estimate its
order of magnitude with the help of some characteristic material parameters.
Under regular conditions, the strength of the electric field HEH will hardly
exceed twice the coercive field E¢, and the magnitude of the polarization will
not be much larger than the saturation polarization P5%*. For a conservative
estimate, we may take E¢ ~ 1.0kV/mm and P**" & 0.5 C/m? which is not
too far above typical values of PZT ceramics. Thus, we can expect

|T¢|| ~ P 2E° ~ 1.0 MPa (4.46)

for regular conditions. However, this value is small compared to the mag-
nitudes of the stress tensor T relevant to reliability issues of technical ap-
plications. These considerations demonstrate, to which extent it might be
justified to follow common practice by neglecting the electrically induced
contributions to the mechanical field equations.

Commonly, materials with a specific resistance of at least 10° Qcm may
be considered perfect insulators. (For instance, the company PI Ceramic in
Lederhose (Thiiringen), Germany, gives values of 10'° ... 10'? Q ¢m for their
PZT materials.)
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Assumption 5:
The conduction current is assumed to vanish.

J=0

(4.47)

As the main simplifacation, this assumption makes the conservation of charge
trivial: ¢/ = 0. However, as pointed out in the context with assumption 2, the
idealization of materials with a high but finite resistence as perfect insulator

might be questionable for cases with slow changes of the fields.

As a result of the above consideration we end up with the generally used,

simplest theory of a deformable dielectric:

electric potential:
E=—gradp , BEj=-—g,
linear strain tensor:
S = % (gradﬁ + (gradﬁ)T) . Sij = % (wij+uj;)
electric displacement:
5:13+60E , D;=P;+¢E;
Gaufy’ Law:
divD = ¢ Di;, = ¢
balance of linear momentum:
pi=divT +pk , pi; =Ty, +pk

balance of energy:

Clausius-Duhem inequality:

. . (4 r . q; r
(@) eop o piz(3) 0op
pn = v T +PT pn = T ,i+’0T

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

pée=T:8+E.-P—divi+pr |, pé=T;S;+EP; —qii+pr (4.53)

(4.54)
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If we focus on the pure electromechanical behavior, this theory is basically
the combination of classical small deformation mechanics with Gauf3’ Law,
i.e., classical electrostatics. For the remainder of this report, we shall adopt
this simplified framework. Furthermore, for convenience we will switch from
this point on to the admittedly less instructive but mathematically easier to
handle index notation.

4.2 Thermodynamical framework for consti-
tutive modeling

As mentioned at the beginning of this chapter, the system of balance laws
has to be completed by a constitutive law representing the specific response
properties of the material under consideration. It is a generally accepted
understanding that constitutive models have to be formulated such that the
resulting theory excludes any processes that might contradict the Second Law
of thermodynamics. COLEMAN AND NOLL [1963] have develped a method-
ology to meet this demand by exploiting the the Clausius-Duhem inequality,
which has been extended to theories with internal variables by COLEMAN
AND GURTIN [1967]. At this point, we will not go into the long lasting
and controversal discussion about the physical justification of this approach.
Rather, we sketch in this section a framework for constitutive modeling based
on this approach, which has been established in the international scientific
discussion on phenomenological constitutive modeling for piezoceramic ma-
terials (KAMLAH AND JIANG [1999], COCKs AND MCMEEKING [1999],
LANDIS [2002], LANDIS AND MCMEEKING [2002], see also LyNcH [1998],
HUBER AND FLECK [2001]). In order to focus on the relevant aspects and
in absense of related experimental information, we take the constitutive func-
tions and parameters to be independent of the temperature.

4.2.1 Basic model structure

The grain of a ferroelectric polycrystal consists of domains, in which all unit
cells have the same orientation. It is the defining property of a ferroelectric
material that a By definition, a ferroelectric material undergoes polarization
switching at high electric fields (JAFFE et al. [1971], p. 37, LINES AND
GrLass [1977], p. 9). As a result, the well known ferroelectric hysteresis
occurs for loadings by a cyclic electric field. Switching processes can also
be initiated by mechanical loadings leading to ferroelastic behavior (CAO
AND EVANS [1993], SCHAUFELE AND HARDTL [1996]). On the macro-
scopic level, these hysteresis phenomena represent irreversible changes in the
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material and they can be observed for arbitrary slow loadings (CHEN AND
TUCKER [1981]).

Motivated by the findings mentioned above, polarization and strain are
decomposed additively into reversible and irreversible parts (cf. also BASSIOUNY
et al. [1988]):

P, = PI+P! | (4.55)

(1%}

Here, the superscripts “r” and indicate the reversible and irreversible
parts of the corresponding quantities.

The irreversible quantities P! and ng represent macroscopic averages of
the microscopic spontaneous polarization and strain of the ferroelectric crys-
tal structure, respectively. Irreversible polarization and strain depend on the

133
1

loading history, which is represented by a set of internal variables ¢!, ..., ¢™:
P;, - Pi(ql’ et qn) ) (4-57)
Szlj = Szi'j(qla R qn) (458)

These internal variables are associated with the microstructure in such a way
that they reflect on the macroscopic level the microscopic state of the ma-
terial. In our case, they refer to the domain structure and their evolution
describes domain switching during electromechanical loading. Note that for-
mally a purely phenomenological theory is included here, if we identify the
set of internal variables (¢!, ..., ¢°) with the components (Pi,. .., Si,) of the
irreversible quantities. (In this contex, a purely phenomenological theory
would be one, where the irreversible quantities themselves are taken as inter-
nal variables having the conceptual physical meaning of macroscopic averages
of the corresponding spontaneous quantities.)

Reversible polarization and strain are assumed to be related to the electric
field and the stress by equations possessing the structure of linear piezoelec-
tricity, i.e.,

P = KZ]E] + dik;lTk;l y (459)

)

Here, r;; are the components of the second order tensor of susceptibilities,
dyi; are the components of the third order tensor of piezoelasticity and Cjjy
are the components of the forth order tensor of elastic stiffnes measured at
constant, electric field. For fixed internal state (q¢',...,q"), these equations
approximate the response behavior linearily. However, the reversible prop-
erties depend on the domain state and, thus, on the loading history. We
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take this into account by allowing the material tensors to be functions of the
internal variables:

Rij = Kij (qla BRI qn) ) (461)
digy = dimlq',...,q") (4.62)
Cijue = Ciynlg's ..., q") (4.63)

4.2.2 Thermodynamical model restrictions for reversible
processes

In the next step, restrictions to the further formulation of the constitutive
model within the reasonable model structure motivated above are estab-
lished, such that the Second Law is obeyed in the sense of the methodology
of COLEMAN AND NOLL [1963] and COLEMAN AND GURTIN [1967]: For
every admissible thermodynamic process, the Clausius-Duhem inequality has
to be satisfied. According to our assumptions, we find for a deformable di-
electric body in an isothermal process with uniform temperature

EiPi + TS5 > ptb (4.64)

Here, v = u — T's is the Helmholtz free energy density, which is chosen as
function of strain, polarization and the internal variables. With the consid-
eration of equations (4.55), (4.56), (4.57), and (4.58), ¢ can be expressed
as

=P, S5t ") (4.65)
Then, the potential relations
a/L/) r T n
Ei = pap (P Siur ¢ d") (4.66)
81/} r T n
nj = pW(leSkl:ql:'”aq ) (467)
ij

are necessary and sufficient conditions for the Clasius-Duhem inequality to
be satisfied for reversible processes in the sense ¢* =0 (a = 1,...,n).
Assuming the latter relations to be solvable for P;, Si;, we may introduce

the Gibbs engergy density by the Legendre transform

pg = —p¥ + E;P; +T;S;; (4.68)
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which has the property

0
pro— p—a}gi(Ek,Tkl,ql,...,q”) : (4.69)
dg 1
' = p——(E.. T, 40 4.
Sz] paﬂj( kryLkl, 4, ,Q) ( 70)

For fixed ¢!, ..., ¢", these equations represent the reversible piezoelectric be-
havior, which was assumed to be linear with respect to electric field and
stress by equations (4.59) and (4.60). Therefore, upon splitting the Gibbs
engergy according to

9=¢"(E:i, T;j,q", ... d") + ¢'(¢", ... q") (4.71)

the “reversible” part has to depend quadratically on E; and T}; in the form
r 1 1 -1
pg" = rmbrBr + dig BTy + SCTiTh (4.72)

for the potential relations (4.69) and (4.70) to be consistent with the required
linear relations (4.59) and (4.60).

4.2.3 Thermodynamical model restrictions for irreversible
processes

Next, we consider irreversible processes, i.e., ¢, # 0 (« = 1,...,n). In partic-
ular, we want to exploit the Clausius-Duhem inequality in view of restrictions
for the evolution equations of the internal variables. With the help of the
potential relations (4.69), (4.70) we find from the Legendre transform (4.68)

. - o "\ dg .,
p = E;P; +T5;5;; + PZ ol (4.73)
a=1

Substitution of the right hand side of this equation into inequality (4.64)
yields with consideration of the additive decompositions (4.55), (4.56)

N 1 . I
E,—+ 1T, —2 — ) ¢* > . 4.74
Z( 8qa+ ]aqa+paqa>q —0 ( 7)

a=1

Motivated by this inequality, we call each of the the quantities

oPL . 0S; g

o =Eim—+Tij—— tr5s
0q” 7 0g p@qa

a=1,...,n (4.75)
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the driving force of the corresponding internal variable ¢®. The quantity
¢=)_ ¢ (4.76)
a=1

is called internal dissipation (COLEMAN AND GURTIN [1967]). In the orig-
inal work KAMLAH AND JIANG [1999], the requirement of a non-negative
internal dissipation was satisfied in a sufficient manner by assuming

=N , AN*>0 , a=1,...,n (nosumona) . (4.77)

However, following Cocks AND MCMEEKING [1999], HUBER AND FLECK
[2001], and LANDIS [2002], a theory closer to the established structure of
incremental plasticity can be obtained by means of a convex switching func-
tion

f=Fg. .., 0" (4.78)
containing the origin and the associated flow rule
q'a:Aaii; , a=1,...,n (4.79)

for the evolution equations of the internal variables. For a rate indepen-
dent theory, the irreversible multiplier A is determined by the consistency
condition:

.

solves f = z”: ;(;; ¢* =0 in case of f(¢',...,¢") =0
a=1

A and f ; _ >0 (4.80)
q,..,¢"=0

=0 else

\

A rate dependent theory can be obtained by taking, for instance,
A=AY(f) | (4.81)

where A’ is a non-negative material constant associated with the materials
viscosity and (f) =0 if f <0 and (f) = f if f > 0 holds for the MacAuley
bracket.

As we have seen that piezoceramics exhibit rate effects and, furthermore,
the rate independent theory is approximated for slow processes or small val-
ues of A° (cf. HAUPT et al. [1992]), we adopt the conceptually less com-
plicated formulation (4.81). In both cases, a threshold indicates that only
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external loads of sufficient magnitude can lead to an evolution of the mi-
crostructural parameters, i.e., to irreversible processes. Note that in case
of a rate independent theory, potential relations of the kind (4.69), (4.70)
are only sufficient conditions for a non-negative internal dissipation during
irreversible processes (LUBLINER [1973]). For the rate dependent formu-
lation, the potential relations are necessary and sufficient conditions for a
non-negative internal dissipation, as infinite slowing down of the process will
lead to infinitely small contributions of the internal variables (COLEMAN AND
GURTIN [1967]).

One closing remark will be made with respect to the relation to models
in the literature: If we choose in the spirit of a phenomenological theory
(qu,---,q0) as (Pi,... Si), we can identify the structure of the theories
presented in COCKs AND MCMEEKING [1999] and LANDIs [2002] with the

“back” quantities Ef = —pdg'/0P} and T}; = —pdg'/dS;;, for instance.
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Chapter 5

Microscopically motivated
constitutive model

Kamlah and Jiang [1999] developed a phenomenological constitutive model
for piezoceramics under uniaxial electromechanical loading. In this model
two internal variables are used to indicate the degree of alignment of the
domains and the degree of the orientation of their microdipoles. These two
variables are related to the macroscopic irreversible polarization and strain.
Their evolution equations are developed from thermomechnical considera-
tions. A switching function is used to indicate the onset of domain switching
(and from there, the onset of internal variables evolution). An indicator
function is used to constrain the internal variables evolution to physically
possible values and if a limit state is reached. The model presented below
is a significant improvement of Kamlah and Jiang’s model and an extention
that enables it to be used for more general loading cases.

The general constitutive framework established in the previous section is
specialized to uniaxial electromechanical loadings on piezoelectric ceramics.
The properties of the ferroelectric phase of the polycrystal are assumed to
be dominated by the tetragonality of the microstructure. A consideration
of the tetragonal microstructure provides probably the most obvious insight
into the relation between microstructure and macroscopic response.

A tetragonal unit cell is characterized by the fact that one of its lattice
axes, the so-called c-axis, is about 1% longer than the other two axes, the
a-axes. The c-axis of unit cells can be oriented in any one of the three lattice
directions of a grain. A region within a grain of ferroelectric polycrystal is
named a domain if all microdipoles of the unit cells have the same orientation.
A characteristic property of ferroelectric materials is the reorientation of
c-axes and microdipoles, if the electromechanical loadings on the material
reach critical values. At a critical state the original c-axes may move to their
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inverse direction (180° switching), or change into a-axis with an original
a-axes changing into a c-axis (90° switching).

In the thermally depoled reference state of polycrystalline ceramics the
distribution of domains is random and no direction is prefered. In the case
of uniaxial loading, the loading direction may eventually become prefered
and lead the material to exhibit transverse isotropy at the macroscopic level
irrespective of the details of its microscopic anisotropic properties.

5.1 Uniaxial formulation of the model

The loading is assumed to be in the x3-direction. In this case the external
loads are T33 and Ej, and the independent strain and polarization are Ss3
and Pj3, respectively. For convenience these quantities are denoted by o, E,
S and P respectively. The additive decomposition of polarization and strain
in equations (4.55) and (4.56) become

P = P +P | (5.1)
S = S+ 5

Again, a superscript “i” denotes the remanent or irreversible part and a
superscript “r” indicates the reversible part of the repective quantity. The

piezoelectricity equations (4.59) and (4.60) read as

P = kE+do | (5.3)
1
Sr = dE+?O' y (54)

where k, d and Y are the susceptibility coefficient, the piezoelectric coeffi-
cient, and Young’s modulus, respectively. They are functions of the internal
variables (see equations (4.61) through (4.63)). The reversible part (4.72) of

the Gibbs energy function then is

1 11
gr = 5/€E2 =+ dEo =+ 5?0'2 . (55)

5.2 Domain switching and internal variables

5.2.1 Internal variables motivated by microscopic con-
sideration

Internal variables ¢* (o =1,2,...,n) are chosen with some simplifying con-
siderations on the domain structure of the material. They represent the
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microscopic state of the ceramic in the sense of macroscopic averages. To
begin with, a ferroelectric sample in its unpoled reference state is considered.
Such a sample exhibits irreversible deformation under compressive stresses
of sufficient magnitude without any changes to the macroscopic polarization
state. This phenomenon is due to 90° switching processes of the c-axes of
the tetragonal unit cells. While the distribution of the c-axes is initially uni-
form over the unit sphere, the fraction of c-axes aligned with the x3-axis,
the axis of loading, is reduced due to 90° switching processes. The length of
the sample in the direction of loading is decreased irreversibly and it gives
way to the compressive stress. We now introduce cones of 45° angle with the

Figure 5.1: Two cones of 45° about x3-axis, being the axis of loading.

x3-axis being the cone axis (see Figure 5.1). The fraction of domains with
their c-axis situated within these cones has been reduced in the previously
discussed example of mechanical compressive loading. On the other hand,
the domains with their c-axis outside the cones have no more favorable po-
sitions under compression in the direction of the cone axis and hence will
remain unchanged. Thus, the microscopic state of the distribution of the
c-axes may be described with the help of these cones: The first internal vari-
able, denoted by 8 = ¢!, represents the fraction of domains with their c-axes
situated within the 45°-cones.

As mentioned above, each unit cell of a ferroelectric material forms a
microdipole with its axis parallel to the c-axis of the tetragonal unit cell.
Within a grain there are six possible orientations for the microdipole of a
unit cell. In particular, there are two orientations for each lattice direction.
As a result different states of macroscopic polarization can result from the
microdipoles belonging to the same degree of alignment of the c-axes with
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respect to the xs-axis, i.e., for the same value of 3. Therefore we need
additional information to determine the macroscopic state of polarization
associated with the microscopic domain state given by the local distribution
of the spontaneous polarization. In this sense the second internal variable,
v = ¢?, represents the state of relative irreversible macroscopic polarization in
x3-direction resulting from the distribution of the spontaneous polarization:

o Psat

8 (5.6)
In this equation, the saturation polarization P5* is the maximum irreversible
macroscopic polarization.

According to the definition just introduced, 7 indicates the degree of
orientation of the microdipoles with respect to the x3-axis. Since 3 represents
the fraction of cells whose c-axes are located within the 45°-cones about the
X3-axis, v may not assume values completely independent of 3. In particular,
v = =+£1 is possible only, if the c-axes of all domains are situated within
the 45°-cones about the x3-axis, 7.e., # = 1. On the other hand, if no c-
axes are left within the 45°-cones, i.e., 6 = 0, only a reduced amount of
relative irreversible polarization is possible: |y| < yimitmin For values of 3
between 0 and 1, the maximum possible relative irreversible polarization will
be some function of 3: |y| < Ai™it(3). Furthermore, the maximum possible
relative irreversible polarization will not decrease with increasing degree of
alignment of the c-axes, meaning that y"™(3) is a monotonous function.
In summary, the limit function describing the maximum possible relative
irreversible polarization has the following general properties:

Himit(Q) = o limitmin > g (5.7)
d~limit
VT@ > 0 for0<p<1 (5.8)
Himit) = 1 (5.9)

Admissible internal states § and v may take values from the set
G={(8.4) | bl <7"™®), 0<p<1} (5.10)

represented with the help of "™i*(3) possessing the properties (5.7) through
(5.9). Further details will be introduced below in section 5.2.4.
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5.2.2 Relations between internal variables and macro-
scopic quantities

From the above discussion it can be seen that the irreversible deformation S
should be chosen as a function of 3, while the state of relative polarization
of these domains will have no influence on the remanent distortion of the
lattice. Thus,

St = SYp) (5.11)

is assumed to link the macroscopic irreversible strain to the microstructural
state variables. For convenience the unpoled state is defined as the reference
state with a vanishing value of the irreversible strain, i.e., S'(8") = 0. If
all c-axes are switched into the 45°-cones about the xj-axis, u.e., = 1,
the irreversible strain reaches a saturation value: S'(1) = S%. Here, the
saturation strain S is the maximum value of the macroscopic irreversible
strain of the ceramic which is assumed for a domain state of highest order
with respect to a certain axis.
For the sake of simplicity the linear relation
ref

9@2%ﬁ%ﬁ“ (5.12)
may be considered. Since ™' represents the thermally depoled reference
state, its value is given by the intersection of our 45°-cones with the spherical
surface, or in other words by the cutoff of the spherical surface by these cones.
This value is slightly below one third, because of which

1

ref _ —
=3

may be taken for simplicity. From (5.13) we get S'(0) = —35% for the state
B =0, where all c-axes are oriented out of the 45°-cones, as will result from
strong compressive stresses acting in x3-direction. In a ferroelectric mate-
rial with a tetragonal microstructure one may expect some difference in the
maximum magnitudes of the irreversible strain for compressive and tensile
loadings. Therefore, the linear relation (5.12), which reflects the situation of
an ideally oriented single crystal, can be used as a first approximation.

As discussed in section 2.2, the ratio between maximum tensile and com-
pressive irreversible strains is 1.37 : 1, much smaller than the 2 : 1 expected
from the single crystal consideration. In order to take this deformation asym-
metry into account, a quadratic relation between the alignment of c-axes and
the resultatnt irreversible strain of the kind

SU(B) = a(B = ") + b(5 — ) (5.14)

(5.13)
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can be used, in which

1 1

a = ﬁref(l _ ﬁref) StS:IES - ﬁref (Stsgrﬁs - Sggﬁnp)a
1 — ﬂref 1— Qﬂref ot

(Ssat _ Ssat )_

tens comp

In this formulation the maximum strain in tension (Sf2) and in compression

(S&amp) are two independent parameters, thus the strain asymmetry can be

described. Independent of the value of 3™, from (5.14) we get S'(0) = Sgat |
and Si(1) = S5 If we take S — g gt _gsa/g and grel —

1/3, this quadratic formulation becomes the linear relation (5.12). Another,
admittedly somewhat remote motivation for a quadratic Si(/3)-formulation
may be taken from the quadratic dependence of electrostrictive strains on
polarization. This thought is questionable in the first place with repect to
the relation between polarization and /.
A simplified alternative to (5.14) is the piece-wise linear relation
(1_ B)Ssat ’ Oéﬂgﬁref

Qret comp

SY(B) = f : (5.15)
B=pBre Gsat ’ ﬂref <B<1

1—p3ref ~tens

From the defintion of the second internal variable 7 as relative irreversible
polarization in equation (5.6) we get

Pl =y Pt (5.16)

As discussed at the end of section 5.2.1, the two internal variables 3 and -~y
are not totally independent of each other. The second internal variable vy
represents the state of relative polarization and it is limited by the degree
of aligment of c-axes given by (3. The relationship between them and their
admissible values will be discussed in section 5.2.4 in detail.

It remains to specify the dependence of the coefficients in the piezoelec-
tricity relations (5.3) and (5.4) on the microstructural parameters 3 and
v. In order to keep the model as simple as possible, the susceptibility co-
efficient x and Young’s modulus Y are assumed to be independent of the
microstructural parameters and therefore constant. In the unpoled state the
phenomenon of piezoelectricity is totally absent: d = 0 if P! = 0. In the fully
poled state (P! = +P%*)  the piezoelectric coefficient reaches its maximum
value: d = £d%*. For simplicity, we fit by the linear function

d(y) = yd* . (5.17)
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5.2.3 Evolution equations for internal variables

The starting point for the construction of the evolution equations (4.79) for
the microstructural parameters is the Gibbs energy (4.71) from which the
driving forces ¢* (o = 1,2,...,n) are derived. For simplicity, we assume a
quadratic dependence of the “irreversible” part of the Gibbs energy function
on the internal variables of the kind

2 1

S = F9(B,7) . (5.18)

i_ lﬂ ref
pg = —5¢(B=07)" = 5

F%(83,7) is an energy barrier function which has to ensure that $ and y take
values within the region G introduced by equation (5.10). The mathematical
formulation of F'“ will be discussed below in section 5.2.4.

From the definition (4.75) the driving forces corresponding to the internal
variables 3 and vy are

ds! OF¢“
¢ﬂ — 13 o — Cﬂ(ﬂ _ ﬂref) _ TR (5.19)
G
¢7 = P™E + d®oE — Ty — 86% : (5.20)

If the linear S'(3)-relation (5.12) is used, we find

sat FG

¢’ = lfiﬁrefa — (B p) - aa—ﬁ : (5.21)
The primary contribution to the driving forces stems from the mechanical
stress and from the electric field. If ¢® und ¢ are assumed to be non-negative
constants, it can be seen that the corresponding terms reduce the magnitude
of the driving forces as the values of the microstructural parameters increase.
In this way the fact is reflected that the unpoled state is most preferred and
departing from the unpoled state experiences an increasing resistance caused
by constraint from neighbouring domains and grains. In this context it can be
seen that the quadratic terms in g' lead to simple linear hardening properties.
According to the thermodynamic considerations in section 4.2.2, a convex
switching function containing the origin in the space of driving forces needs
to be introduced. The most simple way to satisfying these requirements is a

quadratic dependence on the driving forces of the kind

8\ 2 v\ 2
f#(%) e 52
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where additionally the square root is taken for reasons of normalization in
the tradition of incremental plasticity. Here, the parameters

dst
ﬂ’o — C
o) 43 o (5.23)

¢*y,0 — PsatEc (524)

characterize the critical state of the driving forces for the onset of irreversible
changes. ¢¢ and E°® are the coercive stress and the coercive field, respec-
tively, characterizing the onset of mechanically and electrically induced do-
main switching. Note that in general, #° will be a function of 3. However,
in the case of the linear Si(3)-relation (5.12), we find

sat ~C
Sstg

= G (5.25)

o

If f > 0, domain switching occurs in the sense that internal variables

will change according to their evolution equations. Otherwise, the internal

variables remain constant and the model responds linearly to the loading.

By the normality rule (4.79), the increment pair of the internal veriables is
in the direction of the normal to the convex switching surface:

: of A 1)\?
. Ao(f>aqi; -2 if; (¢ﬂ,0> o (5.26)

of A 1)?
g =% () @ 20

5.2.4 Admissible values for the internal variables and
energy barrier function

At the end of section 5.2.1 it was discussed that the microstructural param-
eters v and [ are not completely independent of each other. Rather, there
exists a set G of admissible internal states defined by (5.10). As the simplest
choice satisfying the requirements (5.7) through (5.9), we may take

Himit(g) = g (5.28)
in which case A!imitmin — (4 e,
o<hl<p<1 (5.29)
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Bref

Figure 5.2: The set G of admissible (/,7) states according to (5.30). The
value 8" corresponds to the unpoled reference state, see section 5.2.2.

and, thus,

a={@y|ocn<as1} . (5.30)

As shown in the (-v-plane in Figure 5.2, GG is a triangle with its corners at
(0,0), (1,0), and (1,1).

This shape of G can be interpreted as follows: Values of (3, ) out of the
region GG are not permited. By its definition § may take values between 0
and 1. Furthermore, v may assume values between -3 and 3, i.e., v indicates
the degree of orientation of the microdipoles of the cells whose c-axes are
located within the 45°-cones. In the case v = [, all domains within the
45°-cones about the x3-axis are polarized in the positive x3-direction, while
v = —[ means the opposite. If v = 0, the fractions of domains in the
45°-cones oriented in positive and negative x3-direction are equal, leading
to a cancelation of the resultant macroscopic irreversible polarization. In
particular, in the unpoled reference state v = 0. All together, the above
microscopic interpretation of the simple triangular shape of the set of possible
values for the internal variables is not completely reasonable.

We now discuss the possible energy barrier functions (3, ) correspond-
ing to the region G. Following FREMOND [1989], the indicator function of
set G may be chosen as F%(3,v) in order to enforce that the pair of internal
variables (3, 7) assumes only admissible values from this set. The indicator
function is defined by

0, (8,7) € G\oG
FE(B,7) =1°(8,7) = : (5.31)

oo, else
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where OG is the boundary of set G. As a rough physical interpretation, we
may state that the indicator function surrounds the set of the admissible
values of (3,7) by an infinitely steep and infinitely high energy barrier. As
long as (3, ) takes values in the interior of G, there is no contribution from
the indicator function to the driving forces. However, as soon as (f,7) is
situated on OG, the contribution from the indicator function to the driving
forces will be such that no values outside of G can be reached. We consider
this step-like behavior to be induced by using the indicator function as an
idealized way to enforce the constraints for physically admissible values of
the internal variables.

Here, we adopt the representation of the indicator function found in SAvi1
et al. [1998]. Introducing the functions

hO(By) = y=8 (5.32)

hO(By) = 7=, (5.33)

W) = -1, (5.34)
the set G may be represented equivalently by

G={) | n@B) <0, 1=123} . (5.35)

The indicator function may then be written as

19(8,7) = =AXAD(B,7) = AORE(B,7) = XOnD(B,9) . (5.36)

If we use the approximate ' = 1/3 and the linear S'(/3)-function (5.12),
then the evolution equations are

2
(LY (et ras) o

A 1)
7= if} ( ¢%°> (PE + d™0oE — "y + AP —A®) . (5.38)

Here, the multipliers A (I = 1,2, 3) satisfy the Kuhn-Tucker conditions
A <0, XD >0, XDpM) <0, 1=1,2,3 (nosumon I) . (5.39)

Now we study the role of the A!) terms in the driving forces. For values of
the internal variables from the interior of G, h!) < 0, (I = 1,2, 3). According
to the Kuhn-Tucker conditions (5.39), the driving forces are then given by
the "regular” parts

PP = pfres = ggsata — (B - %) (5.40)
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¢ = @78 = P'E + d**0E — ¢y (5.41)

If (3,7) is on the G, for example on h") = 0, A() has to be chosen such
that (5,) is not be able to get out of G. From the consistancy condition

dh (3, 7)

dt ‘(gbﬂ = ¢ﬂ,reg — )\(1)’ P = pTreE 4 )\(1)) =0 (5.42)
we find
2
1y _ (¢5,0¢%0) < ¢ﬂ,reg B P8 >
AV = ($5:0)2 4 (¢70)2 \ (650)2 (702 (5.43)
Consequently, the evolution equations are given by
5 A0<f> 1 2 B.re (1)
ﬂ_1+f<W> (¢7rs — AW) (5.44)
A© 1 \?2
1=127 () e o

in this case. Substitution of (5.43) into ( 5.44) and (5.45) yields

G AU 9Pt g
T T ()

(5.46)

3/% =1 means that the term A\(!) corrects the driving forces such that (8, )
moves along the boundary A = 0 of G but cannot get outside. Similarly,
we will find

BP0 2 e PR
\@ (¢ﬁ(’°)2 g ((;5)%0)2 ( + > , (5.47)

7 T (5P
if (8,7) is on h®) =0 and

A®) = _ gfires (5.48)

if (3,7) is on h® = 0.

Before, we used the indicator function to constrain the evolution of the
internal variables such that (3, ) takes admissible values. However, experi-
mental results show that saturation of the irreversible polarization, i.e., Pt
can not be achieved even if the applied electric field is very high. Likewise,
even under a compressive stress of -400 MPa, domain switching is not fully
completed. These facts suggest that (3, ) may approach 0G, but infinitely
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large loading is needed for (3,7) to reach the boundary of G. Therefore,
F%(3,7) should be formulated in such a way that it takes a finite value in
the interior of G and approachs infinity, if (5, v) approaches the boundary of
(. For this purpose, the simple formula

FEO=AEY+0-p)""+B-)™") (5.49)

can be used, where A and N are two positive parameters. With this formu-
lation and the linear Si(3)-relation (5.12), we get the driving forces for 3 and
v (for v > 0)

3 1
o7 = 555“0 —(f~ g)
HAN (BN = (1 =)+ (B =) (5.50)

¢? = PME+d™0E -y + AN (—=(B—]y))™") (5.51)

For the (3, v)-states in the interior of G and far away from the boundary, the
value of F'“(/3,7) is finite. If A is chosen very small and N very large, the
FY value is very small and induces small influence on the evolution of 3 and
v (through the 0F% /03 and OF¢/dy terms in the driving forces). If (3,7)
approaches the boundary, F¢, 0F%/03 and 0FY /0y increase rapidly and
approach infinity. This means that the energy barrier resists the approaching
of (3,7) to the boundary. In other words, infinitely large external loading
is needed to overcome the resistance from the energy barrier so that (3,~)
can reach the boundary. Thus, qualitatively the behavior is similar to what
is induced by the indicator function. As a matter of fact, if N is very large,
F% in (5.49) behaves like an indicator function.

Note, besides the additive formulation of F¢ in (5.49), functions with
similar properties can also be used. For example, the multiplicative formu-
lation

FC=ABL-p) B~ (5.52)

has also been used in this study.

Above we discussed the model formulation based on the triangular set
(5.30) for admissible values of the internal variables. On the boundaries
hY =0 and R® = 0, the relation between 8 and 7 is linear, and, as a result
the relation between S' and P! is linear as well, if the linear S'(3)-function
(5.12) is employed.

Piezoelectric behavior can be understood as a result of electrostriction,
where the electrically induced deformation behavior is a quadratic function
of the kind

S =qP? . (5.53)
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Here q is the electrostrictive constant. For a piezoelectric material, a lin-
earization of the quadratic dependence in the neighborhood of the sponta-
neous polarization will yield the linear relation of piezoelectricity (FELDTKELLER
[1973], vol. II, pp. 30, 53-54). This effect may be represented by a parabolic
(B-v-relation for the boundary. Thereby, we have

0<+y*<p<1 (5.54)
and

c={@yn|o<r<p<t) (5.55)

for the set for admissible values of (3,v). Formally, this corresponds to the
choice

"}/limit(ﬂ) — \/B . (556)

G is shown in Figure 5.3. If a quadratic boundary for G really can be moti-
vated with reference to electrostriction is certainly questionable and depends
on the physical relation between the two internal variables. For the quadrat-
ically bounded set of admissible (3,7)-values the additive energy barrier
function can be formulated as

FO=ABN+0-""+B-")") . (5.57)

The corresponding driving forces can be found by the substitution of (5.57)
into equations (5.19) and (5.20).

The experimental results of ZHOU [2003] show that poled material can-
not be completely depoled by a compressive stress of up to -400 MPa. This
material property suggests two possible microscopic reasons: (1) The do-
mains in the 45°-cones are not completely switched out of the cones, and (2)
the orientations of the microdipoles of the domains outside of the 45°-cones
is not random. The first mechanism can be modelled by a continuous en-
ergy barrier function, as we have done. For the second mechanism we have
to consider the contribution of the domains out of the 45°-cones to the po-
larization. According to the microscopic considerations given in Chapter 7,
if no domains are left with their c-axes within the 45°-cones about the x;3-
axis being the axis of loading, i.e., # = 0, the maximum relative irreversible
polarization is

[e]
limit,min __ __ €08 45

=" 5.58
1 + cos45° ( )
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Figure 5.3: The set G of admissible (3, ) states corresponding to (5.55).

For (3-values between 0 and 1, the maximum relative irreversible polarization
follows the linear relation

limit ,8 + cos 45°
=0 5.59
7B) 1+ cos45° ( )
Thus, admissible 4 and v belong to the set
B + cos 45°
G:{ , ‘ < T o <1} . 5.60
(B |l <0< < (5.60)

As shown in Figure 5.4, this set is a trapezoid in [-y-plane. According to
(5.60) and Figure 5.4, if 3 = 0, ~ varies in the interval

cos 45° cos 45°
1 4+ cos4b° — 7= 1 + cos 45°

The corresponding energy barrier functions can be formulated in the same
way as for the other sets of admissible values of internal variables:

PO = (57 =0 () - i) ) (5:62)

(5.61)

5.3 Discussion of the hysteresis response of
the model

In order to verify the ability of the model in describing the material response
to electromechanical loading, some typical loading paths are simulated in this
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Figure 5.4: The set G of admissible (3, ) states corresponding to (5.60).

section. In particular, the large signal hysteresis properties are discussed,
which occur for stress and electric field magnitudes beyond their correspond-
ing coercive values. The material parameters used in the numerical calcula-
tion are given in Table 5.1. They were chosen to represent approximately a
typical soft material.

Table 5.1: Values of the ferroelectric material constants chosen for the nu-
merical calculations.

k | 25x1078 C/Vm ds3 | 4.5x 1071 m/V
ds; | 2.0 x 107 m/V dis | 5.8x 1071 m/V
E°¢ | 1.0 x 10° V/m psat | 0.3 C/m?
Y |6.0x10% Pa Ssat 1.2 %

# 1 1.0x10° Pa ¢ [3.0x10* C/m?
A° | 2.0 x 102 sec™' Pa=2 | 0¢ | 3.0 x 107 Pa

A 5.0x1072 N/m? N 20 -

v 0.3 -

Both Runge-Kutta method and Euler-backward method are used to solve
the evolution equations (5.26) and (5.27), if the switching condition (5.22)
is satisfied. The solution of these equations gives the values of the internal
variables at each time instant. From (5.16) and (5.12) we will get the related
histories of remanent polarization and strain. The total polarization and
strain will be obtained from the equations (5.1) through (5.4).

Below we mainly present the model responses in some typical loading
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cases with linear S*(()-relation, the triangle G (5.30) and the additive en-
ergy barrier function (5.49) as reference formulation of the model. Model
responses with other S*(3), G-shapes and energy barrier functions are also
discussed and compared. In the simulation we used 1/3 as 3",

5.3.1 Poling and electric field cycling

—T | / 0.2.5 \\\ -~ ~
02 ] \ I~

ISy
f A /R
Nya ] o0s | \

——T J \

-0.4 T T T T T T T T 0.0 T T T T

20 -15 -10 -05 00 0.5 1.0 15 20 20 -15 -10 -05 00 0.5 1.0 15 20
E [kV/mm] E [kV/mm]

/
\

Figure 5.5: Poling and electric field cycling. Left: Dielectric hysteresis.
Right: Butterfly hysteresis.

1.0 /
0.5 | //

-1.0

0.0 0.2 0.4 0.6 0.8 1.0

Bl
Figure 5.6: Plot of the path of the internal variables 3 and 7 corresponding
to the loading history in Figure 5.5.
The model response to electric cycling at an amplitude of twice the co-

ercive field, i.e., £2.0 kV/mm, is shown in Figure 5.5 (in relation to the
loading rate, A° is chosen large enough so that no rate effects occur, see the
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discussion of figure 5.7). The left panel shows the calculated dielectric hys-
teresis of initially unpoled material. For electric fields above the coercive field
strength, we observe during each loading cycle of the polarization hysteresis
a step which is an intermediate period of linear dielectric behavior, before the
saturated state is reached by a second period of poling. This intermediate
period corresponds to the point where the 3-v-path hits the boundary of the
triangular region G of admissible values for (3, 7). At such a point, addi-
tional evolution of the internal variables is possible only after the load has
been increased further. The microscopic interpretation of this phenomenon
is the change from pure 180° switching to combined 90° and 180° switching,
for which a higher energy level is needed. The butterfly hysteresis during this
electric field cycling is shown in the right panel of Figure 5.5, from which we
recognize the inverse piezoelectric effect induced by poling. Figure 5.6 shows
the evolution of the internal variables during this electric field cycling. If
the electric field exceeds E¢, 180° switching is initiated at first, therefore the
dipoles of domains located in the 45°-cones take the direction of the elec-
tric field. During this process ( remains unchanged and 7 increases. This
is reflected by the vertical line in the §-y-diagram. If (/3,v) approaches the
boundary, the resistance induced by the energy barrier becomes very large to
ensure that ((3,) is not able to go out of the set G. If (/3,7) is very near 0G,
the terms from OF% /98 and OFY /0y in (5.50) and (5.51) take effect. For
further loading, 90° switching is also initiated and [ and v increase together
nearly along the boundary towards the point (1,1). Near the point (1,1) the
resistance from the boundary line § = 1 increases rapidly and prevents (3, 7)
from moving across this line. Upon unloading and loading in the opposite
direction, (/3,~) remains unchanged before the switching condition is fulfilled
again. After this stage, because of the term ¢ (3 — ™) in the driving force of
(5.50), 8 reduces partially until (/3,y) approaches the boundary line v = —f.
In this process 7 decreases continuously and takes a negative value, 7.e., the
remanent polarization has changed its direction. Upon further loading in the
oppsite direction, (3, ) moves towards (1, —1) nearly along the the boundary
line v = —f3.

In the above calculation a very large A = 2.0 x 10'?/(s - Pa?) is used,
which corresponds to a rate-independent case. Figure 5.7 shows the dielectric
and butterfly hystereses during the same electric field cycling, but a smaller
A% =2.0x10%/(s - Pa?) is used in the calculation. It can be seen that because
of the influence of viscosity the calculated dielectric and butterfly hystereses
become smoother and the intermediate period disappears. Furthermore, the
width of the hystereses is widened.

Figure 5.8 shows the calculated dielectric and butterfly hystereses by using
the indicator function (5.36) as F'“. Because of the property of the indicator
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Figure 5.7: Poling and electric field cycling, A° = 2 x 10%. Left: Dielectric
hysteresis. Right: Butterfly hysteresis.

function we see abrupt changes of polarization and strain in these hystereses.
The intermediate period becomes very clear.
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Figure 5.8: Poling and electric field cycling, where the indicator function is
used as F'¢. Left: Dielectric hysteresis. Right: Butterfly hysteresis.

5.3.2 Mechanical compressive-tensile stress cycling

The left panel of Figure 5.9 shows the ferroelastic hysteresis occuring in re-
sponse to purely mechanical compression-tension loading. Due to the choice
(5.12) of S, there is a strong asymmetry in the saturation behavior under
tension and compression, just as is expected at least qualitatively from mi-
cromechanical considerations.

As we discussed before, the ratio between maximum strain in tension and
in compression is near 1.37 : 1. In order to take this property into account
in the calculation, we also used the piece-wise linear S'(3)-relation (5.15).
In this calculation, we defined Siir; = S** and Sgy,, = —0.735%" to match
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Figure 5.9: Model response to pure mechanical compression-tension load-
ing: Ferroelastic hysteresis for two diferent types of S'(3)-dependence. Left:
Linear, equation (5.12). Right: Piece-wise linear, equation (5.15).
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Figure 5.10: Model response to pure mechanical compression-tension loading:
Ferroelastic hysteresis with quadratic S'(3)-relation (5.63) .

the result of FROHLICH [2001]. The calculated model response is shown in

the right panel of Figure 5.9. It can be seen that the piece-wise linear S'(/3)-

relation reflects deformation asymmetry more realistically than the linear

one. Because of the piece-wise linearity in Si(/3), the ferroelastic hysteresis

in right panel shows a slight kink as compared to left panel of Figure 5.9.
The quadratic Si(/3)-relation

Si(B) = —0.695% (5 — )2 +1.958% (3 — ) (5.63)

is also used to match the deformation asymmetry. (Note that in this case the
driving force is not of the simple form (5.19) and ¢*° has to be computed from
(5.23).) Figure 5.10 shows the calculated ferroelastic hysteresis. It can be
seen that the Si(f)-relation (5.63) reflects the deformation asymmetry fairly
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well. Compared with the left panel of Figure 5.9, the ferroelastic hysteresis
in Figure 5.10 is smoother but shows a stronger hardening effect. These
characteristics are induced by the quadratic S'(3)-relation (5.63).

5.3.3 Mechanical depolarization
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-0.1 0.0 0.1 02 03 04 0.0 02 04 06 08 10
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Figure 5.11: Mechanical depolarization following full polarization. Left: Po-
larization vs. stress. Right: -y plane.

To the left of Figure 5.11, we see mechanical depolarization by mechan-
ical stresses of sufficient magnitude following a full poling process. In the
calculation, an electric field of 2 kV/mm in amplitude is applied. After un-
loading the electric field, a compressive stress is applied. The right panel
of Figure 5.11 shows the corresponding (3-v-path, from which we recognize
that complete depolarization (7 — 0) was enforced by driving the internal
variable 3 to zero.
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Figure 5.12: Mechanical depolarization following full polarization, indicator
function is used as F'¢. Left: Polarization vs. stress. Right: 3-v plane.
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Figure 5.13: Mechanical depolarization following full polarization, the trape-
zoidal G (Figure 5.4) is used as the set of admissible values of (5, 7). Left:
Polarization vs. stress. Right: (3-y plane.

For the same loading history as in Figure 5.11, we used indicator function
(5.36) as F“ to study the model response. Figure 5.12 shows the depoling
process (left) and the evolution of the internal variables by the corresponding
[-v-path (right). Again the abrupt change of the simulated material behavior
appears as the boundary of G is reached. These examples confirm that
the additive F'¢ (5.49) gives more realistic results. For this loading history,
we also used the trapezoidal G (Figure 5.4) as the set of admissible values
for (3,7) to calculate the poling and mechanical depoling process. In this
calculation A™itmin — (.42 The exact value of 3" = 1 — cos45° is used.
Figure 5.13 shows the calculated depoling process (left) and the evolution
of the internal variables by the corresponding [(-y-path (right). Because of
the trapezoidal set G, a fully mechanical depolarization cannot be reached.
Even under a compressive stress of up to -120 MPa, a polarization of about

0.1C/m? remains (left). The corresponding minimum = is 0.42 according to
limit,min
A

5.3.4 Combined electromechanical loading

We now consider the model response to combined electromechanical loading.
Figure 5.14 shows the calculated dielectric and butterfly hystereses during a
electric field cycling with a tensile stress preload. The applied tensile stress
is 0.30¢ smaller than the coercive stress so that it is not be able to induce
domain switching alone. In comparison with the response to pure electric
field cycling shown in Figure 5.5, the material reaches the saturation state at
a lower electric field and the intermediate period vanishes. Oppositely, Fig-
ure 5.15 shows the calculated dielectric and butterfly hystereses during an
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Figure 5.14: Poling and electric field cycling with a tensile stress of 0.30°
applied. Left: Dielectric hysteresis. Right: Butterfly hysteresis.
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Figure 5.15: Poling and electric field cycling with a compressive stress of
—0.60¢ applied. Left: Dielectric hysteresis. Right: Butterfly hysteresis.

electric field cycling with a compressive stress of —0.60¢ preloaded. Because
the applied compressive stress hinders the domain switching in the electric
field direction, we can see from the results in Figure 5.15 that the interme-
diate period becomes longer and that a higher electric field is needed for the
material to reach the saturation state.

Now, the material response to compressive mechanical loading with a
constant bias electric field applied in the poling direction is calculated. This
loading path is similar to the loading history described in section 5.3.3, with
the exception that a constant bias electric field is applied in the poling direc-
tion. The results of the calculations are shown in Figure 5.16. The applied
constant electric filed during this mechanical depoling process are 0.2 kV/mm
(left) and 0.4 kV/mm (right), respectively. Compared to the mechanical de-
poling process shown in the left panel of Figure 5.11 (without bias electric
field), higher compressive stress is needed to initiate the domain switching
if an electric field is applied in the poling direction. Under pure mechanical
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Figure 5.16: Mechanical depolarization with a constant bias electric field
applied in the poling direction. Left: 0.2 kV/mm. Right: 0.4 kV/mm.

loading a fully depoled state is reached if the applied stress is about -120
MPa (left panel of Figure 5.11). If a bias electric field of 0.4 kV/mm (right
panel of Figure 5.16) is applied, a fully depoled state cannot not be achieved
even though the compressive stress reaches a level of -150 MPa. This model
behavior is in agreement with the material properties outlined in section
2.3, that an electric field acting in the direction of previous poling tends to
support the existing domain state and, thus, higher stresses are needed to
initiate and continue mechanically induced domain switching processes.

Finally, proportional electromechanical loading is simulated, ¢.e., the ratio
between the electric field and the stress ramains constant. Figure 5.17 shows
the dielectric and butterfly hystereses, by which E(t)/o(t) = 2E¢/0.80¢. The
loading path related to Figure 5.18 is a 180° out of phase proportional elec-
tromechanical loading, i.e., E(t)/o(t) = 2E¢/(—1.20°).
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Figure 5.17: Proportional electromechanical loading, E(t)/o(t) = 2E¢/0.80¢.
Left: Dielectric hysteresis. Right: Butterfly hysteresis.
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Figure 5.18:  Proportional electromechanical loading, E(t)/o(t) =
2E¢/(—1.20°). Left: Dielectric hysteresis. Right: Butterfly hysteresis.

For the loading path related to Figure 5.17, electric field and tensile stress
increase simultaneously. Therefore, the intermediate period vanishes in the
positive side of electric field and the material reaches a saturation state at
a lower electric field. After unloading, as the electric field increases in the
opposite direction, the stress becomes compressive. Similar to the case in
Figure 5.15, the intermediate period becomes longer and material reaches a
saturation state at a higher electric feld. The dielectric and butterfly hys-
tereses become asymmetric. In the case shown in Figure 5.18, electric field
and compressive stress increase simultaneously in the first quarter period of
the loading cycle. Because of the compressive stress a higher electric field is
needed for material to reach the fully poled state. After unloading, the stress
becomes tensile and a saturation state is reached at a lower electric field in
the opposite direction. The dielectric and butterfly hystereses become very
asymmetric.
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Chapter 6

Multiaxial formulation of the
model

The model formulated in the previous sections will be extended to the mul-
tiaxial case so that it is able to describe the material responses to general
electromechanical loadings. In general, switching processes in a ferroelectric
and ferroelastic polycrystal will lead to a state of orthotropic anisotropy on
the macroscopic level. However, at the present state of our work, we simplify
things by restricting ourselves to a transversally isotropic state in the sense
to be explained below.

6.1 Internal variables in the multiaxial load-
ing case

The uniaxial formulation of the model is based on two scalar valued internal
variables. [ represents the fraction of domains with their c-axis situated in
the 45°-cones about a preferred direction, and v is the relative irreversible
macroscopic polarization. For uniaxial loadings, cones-axis and direction of
polarization are both identical with the axis of loading chosen to be the x3-
axis in the previous section. For multiaxial loadings, both axes can no longer
be considered to be constants. Rather, they will depend on the loading his-
tory and must not coincide. For instance, an electric field perpendicular
to the poling direction will lead to polarization rotation, while the magni-
tude of the relative irreversible macroscopic polarization will basically stay
unchanged. Similarly, it can be expected that nonproportional mechanical
loading paths will induce reorientation of the axis of transverse anisotropy.
Thus, two additional vectorial internal variabels are introduced. @’ is the
history dependent azis of our 45°-cones, while 7 is the history dependent
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direction of the relative irreversible macroscopic polarization.

Thus, the model is still based on the idea that domains switch into or
out of 45°-cones, if the electromechanical loading reaches a critical value.
However, now the direction &° of the axis of the 45°-cones is dependent on
the loading history. Furthermore, as before, the domains whose c-axes are
located in the 45°-cones are assumed to contribute to the polarization, i.e.,
the domains whose c-axes are located out of the 45°-cones are taken to be
randomly distributed. But now, in the multiaxial loading case, especially
under nonproportional electromechanical loadings, 7 needs not be parallel
to ¢, in the general. Thus we have two additional internal variables given
by unit vectors:

& =ef® + e +esd, () + () + () =1, a=py (6.1)

Here, €;, : = 1,2, 3 are the unit base-vectors of Cartesian coordinates.

As phenomenological internal variables, 8 and é° represent a macroscopic
or average effect of domain switching. The vectorial variable ¢’ stands for
a history dependent preferred direction in which the c-axes switch to, while
the scalar variable § is the fraction of domains switched in this direction.
Furthermore, we assume that the c-axes outside the cones are distributed
randomly in the sense that there exist no preferred directions perpendicu-
lar to the cone axis. This means a restriction with respect to the general
case, in which as mentioned before, domain switching will lead to a state of
orthotropic anisotropy on the macroscopic level. In the consequence of our
simplified picture, we confine ourselves to a transversely isotropic irreversible
strain state in the form

i 3 satﬁ B ﬁref B B 1
SZJ = 5 S 71 — ﬁref ei ej — g(sm , (62)
where
_ 1, 7 :j
5ij - { 0, 27&] (63)

is the Kronecker delta. In its macroscopic interpretation, this is a uniaxial
and volume preserving strain state in the direction of &*. In particular, for
uniaxial loadings in x3 direction, & = &, and we recover the linear relation
(5.12) for the strain component Si;.

As mentioned before, the direction & of the cones and the direction of
the relative irreversible polarization €” need not coincide, in general. Rather,
depending on the loading history, they may deviate from each other. There-
fore, we have introduced the second vectorial internal variable €7. As in

75



the uniaxial formulation, v denotes the relative net polarization state of the
domains. According to this definition, we have the relation

Pl = Pty @ (6.4)

for the dependence of the vector of irreversible macroscopic polarization on
internal variables. For the sake of convenience, we may introduce the vector

T =787 = 1€ + 1262 + 7365 . (6.5)

In a Cartesian coordinate system, the internal variables (v,8”) can equiva-
lently represented by the components v; = ve] (i = 1, 2, 3).

Since & and & may enclose an angle, i.e., [8° - 87| < 1, the set G of
admissible values for the internal variables has to be reformulated. Here, we
concentrate on a generalization of the triangular region (5.30). We recall that
in this case, only the domains with their c-axes in the 45°-cones contribute to
the net relative irreversible polarization. Therefore, it is now the projection
of the relative irreversible polarization v€” in the direction of the cone axis
given by &, which must not be larger than the fraction 8 of domains aligned
with this latter direction, i.e.,

<G -e] (6.6)

This is visualized on the left panel of Fig. 6.1. In the uniaxial case, &’ = &,
and we recover |y| < /3, which has been the requirement for admissible in-
ternal states in case of the triangular region (5.30). On the other hand, if &
approaches a direction perpendicular to the cones axis &°, the net relative ir-
reversible polarization has to vanish, since we neglect any preferred directions
perpendicular to . Mathematically, if @ - @ — 0, then, as a consequence
of inequality (6.6), |y| — 0. Consequently, the set G is now given by

GZ{(ﬁ,%éﬁ,é") 0§|7|§ﬁ|6ﬁ-67|§1} : (6.7)

This three dimensional region is graphically presented on the right panel of
Fig. 6.1 Due its geometry, full polarization (7 — +1) will cause a complete
alignment of the two vectorial internal variables (|&° -&| — 1) and all c-
axes to switch into the 45°-cones (f — 1). On the other hand, mechanical
compression in the direction of the cones-axis (5 — 0) will lead to a complete
depolarization (v — 0) irrespective of the relative orientation of 8 and @7 .

From (6.7), the continuous additive energy barrier function (5.49) is gen-
eralized as

FO=A(B + (1= 9™ + (B & - b)) (6.8)
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Figure 6.1: Admissible (f3,~) states. Left: Projection of 3 on the direc-
tion of €7 according to relation (6.6) yields the maximum possible relative
irreversible polarization. Right: The three dimensional set G according to
(6.7).

6.2 Transversely isotropic material tensors

In accordance with the general thermodynamical framework for constitutive
models introduced in section 4.2, our model consists of a “reversible” and
an “irreversible” part. The reversible part, i.e., equations (4.69) and (4.70),
is determined by the reversible part (4.72) of the Gibbs free energy function
(4.71). In this context, we need to state the dependence (4.61) through (4.63)
of the material tensors on the internal variables, i.e., the history dependent
anisotropy properties of these tensors. In consistency with our assumptions
in the previous section, we here restrict ourselves to transverse isotropy at
the present state of our study.

The dielectric properties of a material are described by a second order
tensor, i.e., by a tensor of even rank. Furthermore, we expect that besides
electric loadings also pure mechanical loadings may change the anisotropy
properties of the dielectric behavior, which will depend on the orientation
state of the c-axes of the domains in the first place. All together, the above
considerations motivate us to assume that the axis of transverse isotropy
of the tensor of susceptibilities is given by the axis of our 45°-cones. For
simplicity, the magnitude of anisotropy is taken to be proportional to the
deviation of the degree of alignment of the c-axes with the cones-axis from
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the unpoled reference state.
Based on the vectorial internal variable &’ representing the cones-axis, we
introduce the second order structural tensor

m’fj = efe? , (6.9)

for convenience. Thus, we propose the form
Hij(ﬂ,_éﬂ) — Kdij + (ﬂ _ ﬂFEf) (Amggmfj + AHH (5ZJ — mfj) ) (610)

for the dependence of the tensor of susceptibilities. Here, k is the suscep-
tibility constant in the thermally depoled and isotropic reference state, and
Akss and Akyy describe the deviation herefrom in the direction of é° and
perpendicular to it, respectively. If Axz3 = 0 and Aky;; = 0, we obtain a
purely isotropic represenation, which does not depend an the loading history.
In particular, for uniaxial loadings we recover the constant susceptibility co-
efficient used in equation (5.3) of the uniaxial formulation.

The situation is quite different for the piezoelectricity tensor. First of all,
the history dependence of the anisotropy cannot be neglected here, since the
piezoelectric properties are not just modified like it is the case with suscepti-
bility, for instance. Instead, the phenomenon of macroscopic piezoelectricity
is absent with vanishing macroscopic irreversible polarization. Furthermore,
in the fully poled state, we have transversely isotropic piezoelectricity where
the axis of anisotropy coincides with the direction €” of poling. Therefore,
we assume the representation

o) = o ((amlde + anels, i)+

1
5 dis (eZ((Sjk —ejey) +ej (0 — eZeZ)) ., (6.11)

which is transversally isotropic with respect to the poling direction. By this
choice, magnitude and direction of the piezoelectric effect are given by mag-
nitude v and direction €” of the relative irreversible polarization, respectively.
dss, d3; and di5 are the piezoelectric moduli of the fully poled state in Voigt’s
matrix notation. For uniaxial loadings in x3-direction, we recover the uni-
axial form (5.17) for the dependence of the piezoelectric coefficient, if we
identify ds3 with d.

Just as susceptibilty, elasticity is a property represented by a tensor of
even rank, and the history dependent anisotropy properties may be changed
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by pure mechanical loading paths (see FETT et al. [2002]). Therefore, we
assume likewise that the axis of transverse isotropy of the elasticity tensor
conicides with our cones-axis, by taking this tensor to be an even function
of €% in the form of mfj With reference to BETTEN [1987], pp. 163, for
a transversely isotropic material with a preferred direction €, the elastic
potential energy can be expressed by the invariants of stress tensor 7;; and
the structural tensor mfj and their joint invariants. From the elastic potential

energy we get the elastic compliance tensor
sij(8,8°) = Cya(B,&) = 20160
+2a®) (6,61 + 1)
—i—a(s)(éijmfk + 5klmi’3j)

+CY(5) ((sksz] + 5ljmiﬁk)

+2a(7)mfjmfl , (6.12)
in which
1
@ = = —
«Q 4(«‘311 S12)
1 1
a® = 1344 - 1(811 —s12)
1
© — =
o 2812 ’
o = 1(812 + 833 — 5814 — 2513)
2 2 ’
a® = 513 — S12

Here, s11, S33, Saa, S12 and sq3 are the elastic compliances of the transversely
isotropic material in Voigt’s matrix notation (FRANGOIS et al. [1998], pp.
73-77, equation (2.48)). The coefficients ol!), I = 3,5,6,7,8 are some func-
tion of 3, such that in the thermally depoled reference state (3 = 3") the
isotropic representation

_ v 1+v
Cijlil = —?5@5“ + W((Sik(sjl + 040jk), (6.13)

is obtained, in which v is Poison’s ratio of the material measured at constant
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electric field. Of course, a linear dependence on 3 — 3" of the kind
1+v

(3) — _ pref (3)

o = (- F)A®

v
o = -S4+ (8- 40,

o = (- F)Aa"
CY(S) — (ﬁ . ﬁref)Aa(S)

for the deviation from the isotropic form will be the simplest choice, as in the
case of the tensor of susceptibilties. Here, Aa), I = 3,5,6,7, 8 are constants.
The assumption of Young’s modulus being a constant in equation (5.4) of
the uniaxial formulation is consistent with neglecting any dependence of the
elastic properties on the loading history, i.e., Aa) =0, I =3,5,6,7,8. For
simplicity, one may employ the assumption of independence of the internal
variables for the tensors of susceptibilites and elasticity by using equation
(6.13) instead of equation (6.12) and the isotropic form of equation (6.10).
In closing this section we want to emphasize that while each material tensor
is transversely isotropic, it is difficult to speak of a transversely isotropic
material, since the respective axes of anisotropy of the tensors need not
coincide.

6.3 Multiaxial formulation of evolution equa-
tions

We now turn to the “irreversible” part of our model. As multiaxial gener-
alization of the irreversible part of the Gibbs free energy function (4.71) we
take

i 1 re — —
pg = —5¢"(B=B") = 5y = FO(B,7,@,@) (6.14)

where ¢” and ¢” are the two material parameters introduced in the context
of the uniaxial formulation. The functional form of (6.14) means that no
hardening properties are associated with the vectorial internal variables with
the exeption via the energy barrier function F“ given in equation (6.8)
From the definition (4.75) the general form of the driving forces corre-
sponding the internal variables 3, v, ¢’ and & is expressed as
oS! op! 89

¢a:frlj aZJ+Ea aOé ) a:/Bera_éﬂae’y

(6.15)
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The driving forces corresponding to the vectorial internal variables ¢’ and
€7 are vectors themselves. From the above prescription, we obtain with the
help of (6.2)

3 Ssat 1 8FG
5 _ 8.8 N B refy _ =
¥ = o (- 30) T - - o0
Od i OF¢

A PsatEi 9 ZJE T’Z P 6.17
d) eZ + 87 kL c'y 87 ) ( )
- dSL. 10C;; 1 9k OF¢

B ij ijkl %

- ij ¥ == Lijlp + z = BB — —= 1

¢ des 11 Ty Tges kT 5 g it T (6:18)
¢e’Y _ ane k]EkT%j _ (619)

ger "t g8y 08
As straight forward extrapolation of the uniaxial switching criterion (5.22),
we may use

N\ e\ (10 (1

in which @70, ¢, ¢¥"0 and ¢¥'0 are parameters indicating critical states
for the onset of switching. Equation (6.20) represents a convex surface in
the driving force-space. The formulation of the multiaxial switching criterion
needs further consideration, especially with repsect to a reasonable choice for
the parameter qﬁéﬁ’o. In particular, it might be worth considering to formulate
the theory using the structural tensor mfj instead of the unit vector €%, since
the latter enters the equations only via m;; = e’fe?. In this context, the
multiaxial experimental data by LYNCH et al. [2000], HUBER AND FLECK
[2001] and CHEN AND LyNCH [2001] discussed in section 2.5, as well as
FETT et al. [2003] will be helpful.

If f <0, the internal variables remain constant and the model responds
to the loading linearly. Otherwise, domain switching occurs and the internal
variables will change as determined by their evolution equations. Accord-
ing to the prescription (4.79), the evolution equations are derived by the
normality rule with respect to the switching criterion. As in the uniaxial
formulation, we employ a rate dependent theory by adopting for the factor
of proportionality in the flow rule the defintion (4.81). In summary, we have

of _Af) ¢
0p* 1+ (¢20)"

& = A°(f) a=0,778 8 . (6.21)
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(The principle of the construction a corresponding rate independent theory
has given in section 4.2.3.)

The solution of the evolution equations (6.21) gives the histories of the
internal variables. The irreversible polarization and strain can be calculated
by substituting the internal variables into equations (6.2) and (6.4). The
tensor of piezoelectricity dy;; is determined by (6.10). (Susceptibility and
elasticity are assumed to be constant, i.e., isotropic, see the remark at the
end of section 6.2) The reversible polarization and strain can be calculated
with equations (4.59) and (4.60). Furthermore, the total polarization and
strain will be obtained by using equations (4.55) and (4.56).

In section 2.5 we outlined multiaxial test results from HUBER et al.
[2002]. To the left of Figure 6.2 the polarization rotation test results are
reprinted. The constitutive model developed in this section is used to repro-
duce these test results. The parameters in Table 5.1 are used in the calcu-
lation. It can be seen at the right panel of Figure 6.2 that the simulation is
qualitatively in good agreement with the test results.
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Figure 6.2: Measured and calculated dielectric response of PZT to the ap-
plication of electric field at angles in the range 0 — 180° to the initial poling
direction. Left: test results from HUBER et al. [2002]. Right: Calculated
model response.
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Chapter 7

Microscopic considerations

The microscopic motivation of the phenomenlogical constitutive model devel-
oped in the foregoing sections is based on the assumption that the domains
switch into or out of 45°-cones, if the switching condition is satisfied. This
assumption is most suitable for a tetragonal crystal structure, but, of course,
the validity of the model is expected to apply to a broader range of mate-
rials. In this section, we want to investigate the microscopic foundation of
our model by some supporting analysis based on an orientation distribution
function or domain distribution density. The analysis is restricted to uniaxial
loadings in x3-direction.

7.1 Domain distribution density

Instead of the 45°-cones, we now introduce cones of arbitrary angle 6° with
the x3-axis being the cones-axis, see Figure 7.1. Similar to the discussions in
section (5.2), the fraction of domains with their c-axes situated within the
two cones is chosen as the first internal variable, denoted by 8 = ¢'. 6° = ¢*
is also taken as a loading history-dependent variable. We assume that on a
sphere of unit radius the domains are uniformly distributed inside and outside
of the cones with the densities (/(47(1 — cos#°)) and (1 — [3)/(4m cos 6°),
respectively. The domain distribution density

g
—  f <0<
47 (1 — cos 6°) or 0=8=

p(0) = (7.1)

1-4
= f pe <<z
A7 cos f¢ or - =2

is graphically shown in Figure 7.2. It can be seen that the two internal
variables have a definite physical meaning in the sense that they determine
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Figure 7.1: Two cones of #° about x3-axis, being the axis of loading.

a step-function approximation to the true domain distribution density. A
more sophisticated approximation would be obtained by more parameters,
i.e., by more steps.

P(0)
5 = -
4mt(1-cos0°) S o
S IN
1-B N
4ncosO° T ~
~
~
f
O
48° <0° < 63° % 0

Figure 7.2: Density function p(f) of the domain distribution. Dashed line:
Real distribution. Continuous line: Approximate distribution.

7.2 Irreversible strain

If the spontaneous strain of a unit cell is S%°", then we get the macroscopic
irreversible strain of the material corresponding to the approximate domain
distribution shown in Figure 7.2 by integration over the domain distribution
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density as
- 1
38 — 5(6 + [ cos B° — sin® §°) SO (7.2)

If all domains switch into the #°-cones, 3 = 1 and the corresponding irre-
versible strain is

. 1
Siy = 5 cos 6°(1 + cos 0°)S®Po" . (7.3)

In general, 6¢ will vary between some minimum value ™" > 0 and some
maximum value ™2 < /2 where ™ and #*™2* are treated as material
constants. If (3,6°) = (1, 0>™1), the irreversible strain reaches the saturation
strain

1 i i
Ssat — 5 coS ge,mm(l + cos He,mln)sspon . (74)

If 9>min = 48° we get S = 0.5585°P°" from equation (7.4). This means if
the minimum cone-angle is chosen as 48°, the maximum irreversible strain,
i.e., the saturation strain, is 0.5585°P°" which is the value determined by
FROHLICH [2001] and confirmed by LANDIS [2003]. Comparison of equa-
tions (7.2) and (7.4) yields
e 1q2 pe
Si(8,0°) = [+ Bcosf® —sin* 6 goat (7.5)

"~ cos@emin(] 4 cos femin
(

If a piezoceramic sample is under high compression, all domains switch out
of the #°-cones. In this case # = 0, and the corresponding axial irreversible
strain reads as

, 1
Si, = -3 sin? 9o S (7.6)

If now 6° = 64°, we get Si; = —0.4045%P°" which is the value found by
FROHLICH [2001] for the minimum irreversible strain under compression
(cf. LANDIS [2003]). This finding suggests to choose #™* = 64°, i.e., in
summary

ee,min — 48° S pe S pemax — gp0 (77)
According to equation (7.2), the irreversible strain Si; is a function of 3
and 6°. A uniform distribution of domains on the whole sphere corresponds

to the thermally depoled reference state. For this reference state, we find by
equating the two parts in equation (7.1) (see Figure 7.2)

gt =1 —cosf°® . (7.8)
From equation (7.5) we get independent of 6°
:i))?’(ﬁref’ He) =0 7 ee,min S 9° S pe-max (79)
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7.3 Irreversible polarization

Each unit cell of a ferroelectric material forms a microdipole with its axis
parallel to the c-axis of the tetragonal unit cell. Within a grain, there are six
possible orientations for the microdipole of a unit cell. In particular, there are
two orientations for each lattice direction. As a consequence, different states
of macroscopic polarization can result from the microdipoles belonging to
the same degree of alignment of the c-axes with respect to the x3-axis, .e.,
for the same value of 3. If for a given orientation state of the c-axes the
spontaneous dipoles align in the positive x3-axis direction, integration over
the domain distribution density yields the maximum macroscopic irreversible
polarization for given 3 and 6° as

. 1 1
Pgmax — iﬂ(l + CoS ee)PSpon + 5(1 _ ﬂ) CoS QEPSPOH . (710)

The first term on the right side of this equation indicates the contribution of
domains in the cones to the polarization, and the second term belongs to the
contributions from the domains outside of the cones. Equation (7.10) can be
written in a compact form as

. 1
P = 5(ﬁ + cos 6°)pPen | (7.11)
If (5, 6°) = (1,6%™"), Py™ approaches the saturation polarization P, thus
sat 1 e,min\ pspon
Pt = 5(14—(5059 mimypspon (7.12)

If gemin = 48°, Psat = (0.835PP°", This value is in agreement with FROHLICH
[2001] and many other authors. With comparison of equations (7.11) and
(7.12) we get:

e
i,max _ /8 + COos 0 Psat

=7 " 1
3 1 + cos femin (7.13)

In view of these considerations, we need an additional information in
order to determine the macroscopic state of polarization associated with the
microscopic domain state. In this sense, our third internal variable v = ¢3
represents the state of relative macroscopic polarization in the x3-direction
resulting from the distribution of the spontaneous microdipoles:

Py

Y= Poat (7.14)
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7.4 Range of admissible values for internal
variables

From the above discussion it can be seen that for given 5 and 6° the maximum
possible value of |v| is

(3 + cos 6°
1 + cos femin
In summary, the microstructural parameters 3 , v and 6° are not completely

independent of each other and admissible internal states are represented by
the set

[y < At = (7.15)

B ‘) B + cos 0°
G = {000 | 1 < T
0< B <1, 6omin < g §097ma’<} . (7.16)

As shown in the [-v-plane in Figure 7.3, for given 6° GG is a trapezoid with
its 4 corners at

cos 0¢
Nl
1 + cos femin

0 (0, 0)
B (1, 0)
¢ (1 1 :—tocsoﬁsegim )

7.5 Evolution equations

We now want to derive evoltion equations for the microstuctural parameters
by the very same procedure as we have used before for the uniaxial formula-
tion of our constitutive model. Therefore, we adopt (5.5) for the reversible
part of the Gibbs energy function with constant susceptibility coefficient and
Young’s modulus and the piezoelectric coefficient according to (5.17). Note
that these properties of the coefficients are assumed and not derived. As
irreversible part of the Gibbs energy function we introduce similar to (5.18)

. 1 1, "
pgl — _icﬁ(ﬁ_ﬁrEf)Z__Ca (He_ge, f)2
1
_50772 — F9(3,0°,7) | (7.17)
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Figure 7.3: The set G of admissible (3, ) states for given 6° corresponding
to (7.16).

where 0% is some reference value for #°. A possible choice for the corre-
sponding energy barrier function is again of the form

(B + cos 6° | |) -N
1 + cos fe:min 7

F¢ = A(ﬂN+(1—ﬂ)N+(

+(09 _ ge,min)—N 4 (ee,max _ 9e)—N> ) (718)

From equations (4.75), (7.5), and (7.14) we get the driving forces correspond-
ing to the internal variables 3, 6°, and ~:

1+ cost® OF¢

3 _ : i Ssat B _ oprefy Y4 7.19
d) COs Heymlﬂ(l + cos ge,mm) g C (ﬂ ﬂ ) 8ﬂ ) ( )
o (3 sin 6° + 2 sin 6° cat 0 e nenets  OFC

= — . — S — 0° —0°) — —— , (7.20

¢ cos He,mln(l + cos ge,mm) o ¢ ( ) 89e ) ( )
G

¢ = P*E + d®™Eo — ¢y — 3ai : (7.21)
Y

The equation

¢ﬁ 2 ¢0e 2 ¢'y 2 ¢5¢9e
@) (E) () S
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may be used as a possible switching condition. f describes an ellipse and,
thus, a convex surface in driving force space containing the origin. In this
switching function, the critical driving forces are taken as

1+ cos6®

Ao = : Gt ¢ 7.23

d) CcoS ge,mm(l + cos ge,mln) o ) ( )
0 0 Bsin 6° 4 2 sin 6° sat c

= = - —S 7.24

¢ coSs ee,mm(l + cos ge,mln) o ’ ( )

¢0 = PSR (7.25)

The mixed ¢?-¢ -term in f makes sure that the critical stress magnitude in
case of purely mechanical loadings is 0¢. The evolution equations

LN (260 "
P=a1g (((bﬂ’o)? ) ¢ﬁ7°¢06’°> |

. 1A 24" 8
oo LA (207 ") (7.27)
2 1 + f (¢9570) ¢ﬂ,0¢)9 ,0
LN e
LS (gm0)
of the internal variables (3, #° and v are derived from the switching condition
(7.22) by means of the normality rule (4.79).

(7.26)

(7.28)

7.6 Consequences

The above evolution equations have been used to compute many of the typ-
ical electromechanical loading paths. The results were quite encouraging,
however, in order not to enlarge this report unduely, we will not present
them here. What is more important for the development of our constitutive
model, the above analysis gives several hints, how the model can be improved
further.

A look at equation (7.10) shows that the use of a triangular region for
admissible values of the internal variables corresponds to neglecting the sec-
ond term in the maximum irreversible polarization. This term represents
the contribution to the maximum irreversible polarization, which stems from
domains situated outside our #°-cones. If we also take into account this term,
this results in a trapezodial region for admissible of the internal variables.
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The relation (7.5) for the irreversible strain supports a linear dependence
on . Additionally, the introduction of #° as additional internal variable in-
stead of taking it to be a constant equal to 45° might be helpful. By prescrib-
ing certain bounds for ¢, the saturation values for minimum and maximum
irreversible strain as well as maximum irrversible polarization for tetragonal
polycrystals can easily be captured by the theory. As an approximation, 6°
might be chosen to be a constant, however the value of this constant may be
different from 45°.
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Chapter 8

Concluding remarks

8.1 Summary of the report

This progress report presents the work during the first phase of a research
project on constitutive modeling for piezoceramics. It starts with a brief
motivation of our topic and an overview over the plan of the report in Chap-
ter 1: In short, it is our final objective to provide a finite element tool for
the analysis of poling processes in piezoceramic devices. In Chapter 2, the
macroscopic hysteresis phenomena to be modeled are dicussed in relation to
the underlying microscopic switching mechanisms. In this way, the physical
basis for the construction of a sound constitutive model is provided. Chap-
ter 3 contains a thorough discussion of the state of the arts in the recent
scientific literature. It turns out that a generally accepted thermodynamical
framework for constitutive modeling of piezoceramics has been established.
Furthermore, in most papers, irreversible polarization and strain are intro-
duced as internal variables.

Macroscopic continuums theories provide very powerful tools for the math-
ematical description of problems in engineering science. Such a theory con-
sists, first, of partial differential equations derived from “universal” balance
laws, which are, second, supplemented by equations representing the specific
material behavior. The main part of our report starts in Chapter 4 with a
summary of the thermo-electromechanical balance laws. By stating step by
step physical assumptions, the general, highly complex theory consisting of
Maxwell’s Equations and nonlinear thermomechanics is simplified to yield
the most elementary form commonly used. In this way, it becomes transpar-
ent, which physical problem requires which level of complexity of the theory.
The second part of Chapter 4 presents the thermodynamical framework men-
tioned in the previous paragraph. This framework makes use of the concept
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of internal variables representing the irreversible behavior on the macroscopic
level of consideration. A normality rule with respect to a convex switching
criterion is employed to satisfy the Clausius-Duhem inequality in a sufficient
manner.

Chapter 5 is devoted to motivating a constitutive model for piezoceram-
ics for uniaxial loadings. The main difference to other recent models in the
literature is the choice of the internal variables used in the model. Instead
of irreversible polarization and strain, we introduce so-called microstructural
parameters as internal variables, which represent the microscopic domain
state of a ferroelelectric and ferroelastic material. One variable, denoted by
(3, indicates the degree of domains situated with their c-axes inside cones of
45° opening angle about the preferred axis of loading, The other variable,
denoted by ~y, represents the net orientation of microdipoles in this direc-
tion. Irreversible polarization and strain, as well as the material tensors are
taken as functions of these parameters. Besides other features, the defor-
mation asymmetry in tension versus compression is represented. An energy
barrier function enforces the constraint that, as an intrinsic feature of this
model, only consistent irreversible strain and polarization states are possi-
ble. Physical soundness on the one hand and mathematical simplicity on
the other were the guidelines of our progress during which the original ideas
of KAMLAH AND JIANG [1999] have been significantly developed further.
Various variants of the model formulation are considered and discussed in
detail by means of simulated loading paths. Even though only few material
constants are involved in the present formulation of the model, the behavior
of piezoceramics under electromechanical loadings can be represented well.
All observations made at the macroscopic curves of the model response can
be associated to microscopic interpretations of ferroelectric behavior. While
the overall behavior of the model is satisfying, there remain open questions
concerning the switching criterion in the context of the critical stress for
mechanical depolarization.

For a three dimensional generalization of the model, the two scalar valued
internal variables 8 and 7 are supplemented by two vectorial internal vari-
ables. One indicates the history dependent cones-axis of alignment of the c-
axes, while the other describes the history dependent axis of the irreversible
polarization. This model formulation can represent the material behavior
in a transversely isotropic approximation to the general orthotropic case. In
particular, the irreversible strain is formulated as volume preserving, uniaxial
strain state in the preferred direction of c-axis switching. Furthermore, for
the susceptibility, piezoelectricity, and elasticity tensors transversely isotropic
representations with respect to their corresponding symmetry axes are given.
A tentative, simple form of the multiaxial switching criterion is given, but
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this needs further consideration. Nevertheless, polarization rotation test re-
sults can be represented.

In developing the model, much emphasis has been placed on its micro-
scopic motivation. Its sound microscopic foundation gives us a lot of confi-
dence in model. Moreover, it turned out that microscopic basis of the model
allowed to either support many of our assumptions by explicit microscopic
analysis or to suggest improvements to them. If the 45° opening angle of our
cones is replaced by an additional variable, denoted by #°, it is found that g
and 6° constitute a simple step function approximation to the domain distri-
bution density (orientation distribution function). If we take §° as a constant
of 45° and neglect contributions to the irreversible polarization from domains
outside our cones, we recover the model formulation of Chapter 5.

8.2 Outlook on the work to be done in the
coming time

For the further development of the model we will work on the following topics
in the sequence they are listed.

1. modification and improvement of the one dimensional formulation of
the switching condition (onset of mechanical depolarization)

2. improvement of the model in view of the microscopic analysis, as far
as it significantly improves its description ability without sacrificing its
simplicity

3. modification and improvement of the three dimensional formulation of
the model, examination of the switching condition in the three dimen-
sional case

4. study of the model response to electromechanical loading at different
rates and and the creep-like behavior

5. determination of the parameters contained in the model using the ex-
perimental results from ZHOU [2003]

6. full orthotropic formulation of the three dimensional model
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