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Problems in fracture mechanics of indentation cracks

Abstract:

Vickers indentation cracks are an appropriate tool to determine the crack-tip toughness
Ko of ceramics from the total crack opening displacements. Two different procedures
were applied to determine the crack opening displacement (COD) field under residual
and externally applied stress fields. First, a semi-analytical procedure was used to
compute the COD field from residual stresses introduced in the uncracked body by the
indentation test. This approach allows a description by analytical relations. In order to
check the accuracy of these calculations and to outline some problems in detail, also
finite element (FE) computations were carried out. In an experimental example the
stress intensity factor of glassis determined. Apart from the crack opening profile, also
relations for the total stressintensity factor and the T-stress term are provided.

As a second type of indentation crack, cone cracks were considered as developing un-
der spherical contact load. Mixed-mode stress intensity factors were computed. The
results obtained by application of the weight function method are used to calculate the
cone angle under the condition of K;;=0 during crack generation. A good agreement
with measured data from literature is found.

Probleme in der bruchmechanischen Behandlung von Eindrucksrissen

Kurzfassung:

Die beim Vickers-Eindruckversuch in keramischen Materialien auftretenden Risse
sind geeignet, die Rissspitzenzéhigkeit Ko von Keramiken aus Rissuferverschie-
bungsmessungen zu bestimmen. Es werden zwel verschiedene Methoden verwendet,
um die Rissuferverschiebung unter Eigenspannungsbelastung durch den Eindruck
selbst und zusétzlich aufgrund von extern aufgebrachten Belastungen zu berechnen.
Zuerst wird eine halbanalytische Vorgehensweise dargestellt. Diese ist besonders ge-
eignet, um analytische Beziehungen zwischen Rissuferverschiebung und aktuell herr-
schendem Spannungsintensitatsfaktor zu beschreiben. Zusétzlich wird eine Analyse
mit der Methode der Finiten Elemente durchgefiihrt, die es gestattet, Detailprobleme,
wie z.B. die Ermittlung der T-Spannung, zu behandeln.

Als zweiter Eindrucksriss-Typ wird der ,,cone crack® behandelt. Hierbei wird die Ge-
wichtsfunktion — einschliefdlich gemischter Terme — ermittelt und mit deren Hilfe der
Rissausbreitungswinkel aus der Bedingung des verschwindenden mode-11 Spannungs-
intensitatsfaktors bestimmt. Eine sehr gute Ubereinstimmung mit Messdaten wird ge-
funden.
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VICKERS INDENTATION CRACKS

| SEMI-ANALYTICAL STUDY

1. Crack shape

Vickers indentation cracks are an appropriate tool to determine the crack tip toughness Ko
from the total crack opening displacements. In a preceding study [1] two contributions to the
total crack opening displacement field were addressed. First, the residual stresses occurring in
the uncracked body were considered and then, the contact stresses generated by preventing
crack-face penetration were computed. Treatment of these displacement fields is sufficient for
the description of a Vickers indentation crack in the absence of externally applied loads. Very
often, the behaviour of such cracks is investigated under additionally applied loads. The pre-
sent report is aimed at computing the total crack opening displacement field caused by a su-
perposition of residual stresses in the uncracked material, which result from Vickers indenta-
tion, contact stresses in the inner contact zone, and externally applied stresses.

For these considerations, the indentation crack is assumed to be semi-circular (Fig. 1). It is

furthermore assumed that the crack can be described by half of a fully embedded crack, i.e. a
change of the stress intensity factor along the crack contour is neglected.

Fig. 1 Vickersindentation crack (geometrical parameters).

In afracture mechanics treatment of the crack problem, we first have to decide on which type
of crack is present. Fractured test specimens with Vickers indentation cracks mostly alow the
crack tip contour at r=a (Fig. 1) to be observed. The inner boundary of the open crack can be
derived from the COD profile observable on the specimen surface (Fig. 2).

Microscopic observations reveal two possible crack types:
e A semi-circular crack of radius a, which is closed in the inner region r<d~b (Fig. 3a).

e A ring-shaped crack of outer radiusa and inner radiusd (Fig. 3b).



In Fig. 3 the possible cracks are shaded. The type of crack can be determined easily by the use
of the Irwin relation that relates the crack opening displacement & to the stress intensity factor
K. In the case of a ring-shaped crack, two stress singularities and two stress intensity factors
must occur, namely, one at the inner crack contour (r=d) and one at the outer contour (r=a).
Directly after crack generation, the stress intensity factor at the outer contour equals fracture
toughness K. Therelated COD is given as

8 K
Sy ya = ;%\/a—r (1)

with the effective Y oung's modulus E’ denoting

|
" { E plane stress @

E/(1-v?) planestrain

(E=Y oung’s modulus, v=Poisson’ sratio).
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Fig. 2 Crack opening profile on the specimen surface (schematic representation).

From microscopic observation, it is well known that at the same distance from the crack tip
the crack opening displacement at the inner crack contour by far exceeds that at the outer con-
tour

Sy, >0, , » e<<ad (3)

In the case of aring crack, the stress intensity factor at the inner crack tip must be much larger
than K¢, and this is impossible. Consequently, it may be concluded that the crack observed
must be a semi-circular crack.



Fig. 3 Possible crack types to be concluded from microscopic observation, @) semi-circular surface
crack, b) half of aring crack.

2. Crack opening in the absence of externally applied loads

2.1 Residual stresses

Beneath the contact area of an indenter pressed into the surface of a brittle material, aresidua
stress zone remains after unloading (Fig. 4a). As an approximation of the residual stress field
in the uncracked body, the model of an internally pressurised cavity in an infinite body [2]
may be applied [3,4]. This model yields the tangential component of residua stresses

- Po for r<b
Ores = { (48)

1po(b/r)® for r>b

as plotted in Fig. 4b. Residual stresses caused by a Vickers indentation may be modified due
to the occurrence of a free surface. Since the stress component normal to the surface must
vanish, the residual stresses decrease at the surface. This is indicated by the dashed curve in
Fig. 4c. If the stresses in r<b are considered to be variable with r, i.e. 5=c(r/b), the principle
of Saint Venant ensures (at least at a distance comparable to b) that the stresses outside corre-
spond to that resulting from a constant inner stress p<po, which is identical with the average
stress in r<b. This approximation is indicated by the solid curve in Fig. 4c. Consequently, it
can be written that

—pf(r/b) for r<b
Ores = 3 (40)
Cp(b/r)® for r>b
with the coefficient C resulting from the equilibrium condition as
1 b
czﬁiuanr (5)
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Fig. 4 a) Residual stressesin the uncracked body for a cavity in an infinite body, b) residual stressesin
the presence of afree surface (semi-infinite body).

The residual stresses cause of the crack opening behaviour of Vickersindentation cracksillus-
trated in Fig. 2.

2.2 Residual stress intensity factor

Theresidual stressintensity factor of acrack of radiusa is given as

Ko =[50 (6
o brpf(r/b)dr 2Cp(b —
o A =g e 222 e (@)

As outlined in [1], it can be shown that the residual stress intensity factor is negative for any
function f(r/b) and any crack size a. Application of the mean value theorem to the first term of
eg.(6b) and use of eq.(5) yield

rpf(r/b)dr 2p 1

‘ml Jar—rt  maja-no

2Cp b?

Jma fa’ -

jr f(r/b)dr —2 5 — _

with acertain radius0<rg<h.

2C pb?® 1 >
Ko = - ~J1-(b/a)? |<0 7)
a®?Jn | J1- (1, /)’




since the bracket is positive for any ro and b. As a first consequence of the negative residua
stress intensity factor, penetration of the crack faces has to be expected for the near-tip crack
opening displacement field at |east.

All further considerations concentrate on the case of f(r/b)=1, i.e. constant pressure distribu-
tion in the uncracked body, as originally proposed by Hill [2]. In this case, the residual stress
intensity factor isgiven as

2P (o a7 )P[0
K = \/E(a a b)+\/n_a(aJ a“—-b (8)

Figure 5 showsthe residual stressintensity factor K’ e in the normalisation of

K
K'=—_ 9
o/ 9)

asthe circles. The straight line which excellently fitsto the circlesin the range of 3<a/b<6 can
be expressed by

K' s = —0.4707 (b /a)>® (10)

0.1f
-Klres |
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Fig. 5 Residual stressintensity factor K’ s normalised according to eg.(9); circles: eg.(8), straight line:
€9.(10).

2.3 Displacements caused by the residual stresses

In order to demonstrate the penetration of crack faces in the residua stress field, the crack
opening displacements & have to be computed. It holds that

8, (1) = T;, j( [ MO (1) dr'J da (11)

Hovaz-r? - )yaz-r?




with the Young's modulus for plane strain E’. For a simpler representation of results, the
crack opening displacements are normalised as

5':£5 (12
4pb

Figure 6 shows the crack opening displacements &,es. The displacements (Figs. 6a and 6b) are
negative over the whole crack area and crack face penetration occurs at any distance r/a.

Theresidua displacements 6; caused by the stresses at r/lb< 1 are[1]

5:§1+52

_ 4ap[1/ (L) (1-y1-(2)) +2[E((£)*) - E(arcsin(® (6)2)]} r<b (139

- 4a'° | 1 ()2 (01— (2)7) + £ [E(()?) - E(aresin ., (2)?)

(13b)

(- ()(K()) - F (arcsin, (2)?)]],
5, = 2P b[E(arcsm(b (2)2) - Earcsin(,(2)?)], r (143)
5, = 22 O[e((3)7) - Earesin(z, () (14b)

with the complete elliptical integrals of the first and second kind K and E and the incomplete
elliptical integralskE and F.
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Fig. 6 Residual COD of acrack, a), b) crack opening displacements.



2.4 Contact stresses, contact stress intensity factor, and related COD

In a real structure crack penetration is not possible, of course. Prevented crack face pe-
netration results in a distribution of (positive) contact stresses oot Which cause a positive
contact COD field S¢ont

4 ¢(%ro t(r) da'
B o (1) = 15
oo (1) nE.![I e Jﬂ (15)

and a contact stress intensity factor

K = G (1) dr

.[I’
cont — \/E \/ﬁ

This stress intensity factor is positive, since the contact stresses open the crack. The related
contact stresses are restricted to a contact area of radius d with d b and must disappear in the
region of real (positive) crack opening (see Fig. 7). To determine the contact stresses, the
mixed boundary value problem has to be solved

(16)

Ototal = Ores T Ocom =0 for r<d
(173)
Oy =0 for r>d
or, explicitly,
4IJ. J- r[ares(r )+Gcont(r )] dr da :O fOF I’Sd
7t r\ o \/a.z 2 \/a.z_rz
(17b)

=0 for r>d

cont

A numerical solution of eq.(17) was given in [1]. For the numerical treatment, a power series
expansion (truncated after the term N) of the unknown contact stresses is applied according to

N
r"  for r'<d
Ocont = nZOAn (18)

0 else

The unknown coefficients A, can determined exclusively from the condition of &g =0 for r <
d. Computations were performed for different values of d. It was found in [1] that for the con-
tact displacement field at r>max(d,b) no significant influence of d was detectable. Therefore,
further considerations were restricted to
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Fig. 7 Contact stresses in the centre region of a Vickers crack.

The numerically determined contact stresses could be adequately expressed by [1]

Ocont = Do(1—(r/b) fo )p (199)

where the subscript “0” of the parameters Dy and (o indicates the absence of an externally
applied load. The parameters Dy and go may be approximated by

Do = 0.898+0.1127h/a (19b)

Go =5.32+2.69b/a+13.33(b/a)? (19¢)

2.5 Total stress intensity factor and total COD

Thereally active total stressintensity factor isthen

Ktotal = Kres + Kcont (20)

and the total crack opening displacements are given by



a'

5., (r) = lllzl jl(j I'G oal (r dr.j ada' 21)

TC 0 a.|2_r|2 I2_r2

with the total stress

Gtotal = Gres + Gcont (22)

The total displacements 601 Were found by the superposition of the two solutions for &, and
8cont (Fl gS. 8a, 8b).

0
5 i )
L 8, 6Cont
Sres
-0.5 + /’/ 8total
0
8res
1k
-1_
o 1 = 2 = 3 o 1 = 2 = 3
r/b r'b

Fig. 8 a) Fitting of the displacementsin 0<r<b, b) total displacements &,y Obtained by superposition
of residual and contact displacements.

The small deviations from 8yt =0 in 0<r <b indicate the dight differences between the cor-
rect and the approximate contact stress solutions.
Total displacements are represented in Fig. 9a for several relative crack lengths a/b. The cor-
responding (normalised) total stress intensity factor is plotted in Fig. 9b, exhibiting the well-
established proportionality K oc a2 for a/b>2.5

. _ 037

ol = )32 (23)

Relation (23) allows to estimate the pressure p from the experimentally determined depend-
ency between indentation load P and crack size

P
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Fig. 9 a) Total crack opening displacement, b) normalised total stress intensity factor c) coefficient A
for eq.(25).

Based on the preceding considerations, an approximate analytical description of the total
crack opening displacement can be given by [1]

da 2b dap *
S = ——2 g, (a,b,1) + 2 g,(a,b,r) + —0_g,(a,Ab,r) (25)
nE nE nE
with
— _(r\2(1_ _(b)2
0:(a,0.1) =1 (5)° (1= 1- (2)°) + (262)

+£[E(()°) - E@esing, (8)°) - (1= ()*)(K((H)*) - F(aresin £, (2)))]

9.(a,b,r) =2[E(})*) - E(arcsin(%, ()*)] (26b)

10



p*/p=0635+0.319%/a 27)

% = 0.9828(a / b)°% (28)

with A represented in Fig. 9c. The unknown quantity p may be determined from the total
stress intensity factor

. 2
Kmta';—Z(E)/Ep)(a_ a? b2 )+ P LEJ a’ - b’ (29)

in combination with Fig. 9b or eq.(23).
Expressed by the stress intensity factor, the displacements read

4Ka (a\[ b
= M(B) [5 g,(a,b,r)+(0.635+0.3190/a)g,(a,b,r) — g,(a,Ab, r)} (30)

Thisrelation is suited for evaluating experimentally determined COD profiles as will be illus-
trated in section 4.

11



3. Superposition of external stresses

3.1. Applied stress intensity factor and displacement

Very often, Vickers indentation cracks are used for fracture mechanics tests under superim-
posed loading. Such additional loads may be caused by residual stresses or externally applied
loads (tension, bending).

The crack opening displacement field under a constant externally applied stress 6=c i, de-
noted by 8appi, IS given by the well-known elliptical profile

_ appl 2 2
Sappl == a“—r (31)

: . O appl @
i.e. by 8" appl :%Ew/l—(r/a)z (32)

The contact stresses under an external load can now be determined by solving

ppt =0 for r<d
(33)
Ocont =0 for r>d

5total = 5res + 5cont + 5a

The computations mentioned in section 2 are now repeated for severa stress ratios oo/p. Fig-
ure 10 shows the contact stresses at various externally applied stresses. It is obvious that the
contact stresses decrease with increasing applied stress, as has to be expected from the fact
that the boundary conditions are displacement-controlled and not stress-controlled.

1
Geond P |

0.8 0.02

Gappi/p=0

0.04

04r

0.2r a/b=4

O L 1 n 1 L 1 n 1 L
0 02 04 06 08 1
r/b

Fig. 10 Contact stresses at various externally applied stresses, computed under the assumption d=b.

Similar to egs.(19a) and (19b), the contact stresses can be described by
Ocont = D(l_(r/b)q)p (34)

with the parameters D, g shown in Fig. 11 as functions of the applied loading.

12
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Fig. 11 Parameters g and D of the contact stresses according to eg.(34).
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Fig. 12 Fit of numerically determined parameters.
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= total
0.1
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Fig. 13 Contact and total stressintensity factors as a function of the applied stress intensity factor at an
externally applied stress of 0<6,/p<0.05.
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For o4pp/p<0.05 and 2.5<a/b<6 an approximate representation of D and p reads

D=Dy+C; Gasp' (35)
C =06 0.2% (36)
O appl
d=do exp[— C, %} (37)
a
C, =364 ~096 (39)

with the coefficients C;, C, plotted in Fig. 12 and Dy, go given by egs.(19b) and (19c¢).

0.1 0.16
Kcont,o K A
0.08 0.14
0.06 0.12
0.1
0.04
0.08
. I 1 1 1 1 . 6, 1 1 1 1
0.02 3 4 5 6 0.0 3 4 5 6
a/b a/b

Fig. 14 Coefficients for eq.(39) as afunction of a/b.

In Fig. 13 the contact and total stress intensity factors are plotted versus the applied stress
intensity factor. The curves given in Fig. 13amay be approximated by straight lines

K'cont = KIcont,O""A‘K'appl (39)
. , 2 Oappl |@

with K -_= had 40
appl \/; D b ( )

and K’ cont 0, A represented in Fig. 14. A least-squares fit of these data for 3<a/b<6 resultsin
K cont.0 = 0.492 (b / a)+%%7 (41)

and

A=-0.4487 (b/ a)+0% (42)

14



Consequently, the total stressintensity factor (Fig. 13b) may be expressed by

K Itotal =K .total,0+(A + 1) K' (43)

appl
with the total stress intensity factor K’ a0 1N the absence of an externally applied load being

K'total 0= K'res + K'cont,O (44)

K’ wota,0 CaN be computed by use of the approximate power law relations (10) and (41). The
result is plotted as the squaresin Fig. 15. A power law fit of these data again yields the expo-
nent —3/2 as given by eq.(23). It is self-evident that the difference of two stress intensity factor
contributions depending on different powers in a/b can be represented by a common power
dependency in anarrow band of a/b ratios only (here in 2.5<a/b<6).

0.2

1
K total .
01r o

0.05f W 302

0.031

T

0.021

00133 5 10
a/b
Fig. 15 Power representation of eq.(43) for K’ 5,=0.

3.2 Impacts of variable contact stresses on crack extension under an externally applied
load

As found out in section 3.1, the contact stress intensity factor Keon: depends on the applied
load. In order to illustrate the general effect of a decreasing contact stress intensity factor with
an increasing externally applied stress intensity factor on crack extension, the case of a mate-
rial without an R-curve behaviour may be considered. A crack of initial size a=3b is assumed
to be present after a Vickers indentation test. The total stress intensity factor in this state is
Kic.

In the normalised representation according to eq.(9) it reads

— KIC

Ic_p\/B

In Fig. 16 the variation of the different stress intensity factors with crack size isillustrated for
severa values of the applied stress . Figure 17a shows the total stress intensity factor for

Kl

(45)

15



severa applied stresses that are necessary to propagate a crack of initial size a/b=3. The circle
indicates the strength, i.e. the point at which

K'total = K'Ic (46&)
8K total — 0 (46b)
a(alb)

arefulfilled. The related applied stress intensity factor is givenin Fig. 17b.

0.1 0.1
0.08f 0.08

0.06 0.06

0.04 0.04

0.02 0.02

0.1 0.1
0.08 0.08r
Kiotal
Kiotal o
0.06 0.06
0.04 0.04
0.02 0.02

Fig. 16 Tota stressintensity factor K,y and its components as a function of crack size.
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Fig. 17 @) Tota stressintensity factor for several applied stresses, b) applied stress and stress intensity
factor necessary to propagate a crack of initial size a/b=3.
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4. Determination of K from the COD profile

As an example of application, the crack tip stress intensity factor Ky, may be determined for a
(70% SIO,, 19% Ca0, and 15% NaO) sodalime glass (E=71 GPa, v=0.22) [5]. In Fig. 18
crack opening displacement measurements are plotted as circles. The results were measured at
an indentation crack introduced under 50 N load by using a SEM. In order to avoid subcritical
crack growth during the measuring time span, the specimen was suspended for 1 h in air after
indentation.

In Fig. 18b the measured crack opening displacements dmess are plotted versus the displace-
ments dcomp COMputed from egs.(25-30) for an arbitrarily chosen stress intensity factor of K =
AIMPaVm. A least-squares fit of the linear dependency yields K as the slope of the straight
line, in the present example resulting in K = 0.38 MPaym. Use of this value then yields the
solid curve introduced in Fig. 18a. The dashed line shown in Fig. 18a corresponds to the Irwin
solution for the near-tip displacement field

8near tip - §g va—r (47)
T

at the same stress intensity factor of K =0.38 MPayvm. This value is roughly identical with the
threshold value Ky, in air [6], below which no subcritical crack growth occurs.

0.6 0.6
8meas . a ° Smeas | o
0.5 ) °, 05F b)
(Hm) | K=0.38MPaym /\ (um) | K=0.38MPaym
0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

s
>

0 01 02 03 04 05 05 1
a-r  (mm) Ocomp  (MM)

Fig. 18 Determination of K, for asoda-lime glass, a) measured crack opening displacement, b)
measured COD plotted versus computed COD (K=1 MPavVm).
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Il FINITE ELEMENT STUDY

5. Stress intensity factor and T-stress

In the first part of this report the problem of a penny-shaped crack was treated with semi-
analytical methods. This approach is of advantage for the derivation of anaytical relations
describing the principal shape of crack opening profiles. For special problems which cannot
be solved with the weight functions available, we also applied the Finite Element (FE)
method. For instance, the FE method was used to determine the T-stress under the compli-
cated indentation crack loading. Moreover, the FE computations allow to check the accuracy
of semi-analytical results.

5.1 Importance of T-stress

The fracture behaviour of cracked structures is dominated by the near-tip stress field. In frac-
ture mechanics particular interest is devoted to stress intensity factors which describe the sin-
gular stress field ahead of a crack tip and govern fracture of a specimen when a critical stress
intensity factor is reached. Nevertheless, there is experimental evidence of fracture mechanics
properties being also affected by the constant stress contributions acting over a longer dis-
tance from the crack tip.

Taking into consideration the singular stress term and the first regular term, the near-tip stress
field can be described by

K
O_ij = —,—2;”_ fij ((0) + O_ij,O (48)
with the angular functions for mode |
f = co{ﬁ) 1-s n(ﬁj S n(%j (49a)
2/ 2 2/ |
f,, = co{ﬁ) 1+ sin(ﬂ) sin(@j (49b)
2/ 2 2/ |
f, = cos(fj sin(ﬂj co %] (49c)
Y 2 2 2
(r and @ are polar coordinates with the origin at the crack tip) and
Owo Oy T O
Oiio = ( ° y,O] = ( j (50)
' Opwo Opo 0 O

The term T represents the total constant o4-stress contribution appearing at the crack tip (x =
a) of acracked structure, which is called the T-stress. It may be determined by evaluating the
stresses ahead of a crack tip for y=0 and x—a
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T=(o,~-0,) . (51
The biaxiality ratio 8 proposed by Leevers and Radon [7]
TVm
p= . (52)
[

represents the T-stress in a normalised form. This ratio governs path stability of cracks grow-
ing under mixed-mode conditions as shown by Cotterell and Rice [8]. Their most important
conclusion isillustrated in Fig. 19, namely, increasing deviation from the prescribed kink an-
gle ® for T>0 (B>0) and decreasing deviations for T<0 (<0).

T>0

Fig. 19 General influence of the T-stress after crack kinking under mixed-mode loading.

5.2 Penny-shaped crack in an infinite body under remote tension

In order to check the Finite Element (FE) net, the penny-shaped crack in an infinite body un-
der remote tension was studied. In this case (Fig. 20) the stress intensity factor solution is ana-
lytically known as

2
K =Fova, F—ﬁ (53)

The case of an infinite body with a penny-shaped internal crack was realized by a finite ele-
ment net of about 2000 elements with 6300 nodes and a component height of H=100a and
component width of W=100a under rotational symmetry conditions. The computations were
carried out with ABAQUS Version 6.2 which provides the stress intensity factors K; as well
asthe T-stress term. The numerically obtained stress intensity factor was

F. =11285 (54)

deviating about 0.01% from the exact solution. The T-stress computed for several Poisson’s
ratios v was found to be

T/o=-051-v (55a)
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Fig. 20 Circular crack in an infinite body.

5.3 Penny-shaped crack under crack-face loading

A loading situation resulting in the same stress intensity factor solution as under constant re-
mote tension is given by a constant normal crack face pressure p. The x-stresses were found
to be identical with those for remote tension and the T-stress term, T (subscript “cf” standing
for “crack face” loading), was

T, /|pET/oc+1=049-v (55b)

The difference between egs.(55a) and (55b) is caused by the different values of cy|=a in the
two loading cases. Whereas oy|--=0 under remote tension (crack faces are free of normal
stresses), oylr=a= —Po Under crack-face pressure conditions. Consequently, the T-stress result-
ing from eg.(61) for the same amount of oy stressis different by —po.

In a second example, the normal stresses were prescribed on the crack faces similar to the
residual stress distribution eq.(4a). The crack opening displacement behaviour under loading
by these residual stresses was modelled by crack face pressure for r>b that causes positive
displacements and tensile stresses on the crack faces in the region of 0<r<b, which will close
the crack (Fig. 21), i.e.

o4y =0, for r<b , o, =-30,(r/b)® for r>b (56)

cf

In order to prevent crack penetration, the element-based contact surface option of ABAQUS
6.2 was chosen. The number of elements and nodes of the FE net was increased by about
50%. The additional nodes were introduced near the location r=b to obtain the size of the con-
tact zone as accurately as possible. For the further computations it was chosen W=H=100b.

In Fig. 22 the results for the special case of a/b=4 are presented. In Fig. 22a the displacements
are plotted as the circles. From these results, the size of the contact zone d is obtained as
d=0.95b. The curve in this figure represents the semi-analytical result. The agreement is good.
An increased accuracy is reached for r/b>2 by setting A=1 in eq.(25) or (30). This can be seen
from Fig. 22b. Equation (30) isthen simplified to
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a

_ 4Kya

- 0.3827E'\ b

(_j [z_t; g,(a,b,r) — (0.365-0.319b/a)g, (a,b, r)}

b)

tension on crack faces

Gy=—Cy res

(57)

compression on crack faces
Gy=—Cres

ERERRER

T

EEEEREE!
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A
A

.

Gy=Gg=const

Fig. 21 Circular crack in an infinite body a) loaded by the normal component of residual stresses, b)
realisation in FE computation: crack closure by tensile tractionsin r<b, crack face pressure for r>b.

a)

Eq.(30) .

Eq.(30) °

b) ]

a/b=4

2
r/lb

Fig. 22 @) COD profile computed by FE (circles) and by applying eq.(30) (curve), b) curve of
improved accuracy for the region of r/b>2 represented by eq.(57).

The stresses oy for y=0 occurring under conditions of prevented crack face penetration are
shown in Fig. 23afor a crack with a/b=4. As expected, they are in agreement with the crack
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face loading outside r=d (note that the crack face loading has a different sign compared with
the residual stresses in the uncracked body). Figure 23b shows the influence of the crack size
a on the size b of the contact zone. The result may be expressed as

d /b = 0.9655(a / b) % (58)

In the contact region r<d, the difference of the prescribed surface tractions and the stresses oy
for y=0 provides the contact stresses oo as defined in Section 2.4. The result is given in Fig.
27 by the circles, whereas the curve represents the result of Fig. 10 for cau/p=0. The differ-
ence between the results is due to the simplifying assumption of d=b used in the semi-
analytical analysis. In principle, the solid curve in Fig. 24 is an effective continuous fitting
curve over 0<r<b for the FE data distributed over 0<r<0.95b, resulting in the same normal-
ised crack opening displacement profile ' /K’ at r>b.

d/b
1 a) a/b=4
Gylcoi 0.951 \.\l\.\.\
0.5
0.9

Or R J—

. b e 0.85f 2)
/

1 1 L 1 0.8 1 1 L M
0 1 2 3 4 2 3 5 10
r/b a/b

Fig. 23 &) Normal stresses o, at y=0, b) contact zone radius d as afunction of theratio a/b.

1
Geont! Co [ eococonny
0.8

0.6F Q%
0.4F

02F ab=4

0 L 1 L 1 L 1 L 1 ‘o
0 02 04 06 08 1
r/b

Fig. 24 Contact stresses according to eq.(15) resulting from the difference of the stressesin Fig. 23a
and the presribed crack face tractions.
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In Fig. 25a the stress intensity factor in the normalisation of eq.(9) is plotted versus the crack
size. The result can be expressed by

K 0.382

“@in)” >

which isin very good agreement with eq.(23).

0.025
ch /GO L

0.02

0.015

0.03-
0.01

0.02

0.005

0.01 L oF——t——

2 3 5 a/b 10 - v .

Fig. 25 @) Stressintensity factor as function of the crack size, b) influence of Poisson’sratio on T-
stress under crack face loading.

The T-stress solution for the specia crack face loading (Fig. 21b) is shown in Fig. 25b as a
function of Poisson’sratio. For a/b>4 alinear influence of v is found. From the T-stress rep-
resentation in Fig. 26a, a crack size dependency given by a power law in a/b can be con-
cluded. Therefore, the T-stress term under crack face loading is approximated for a/b>3.5 as

_0.1702-0.3581v

T, /o, = (a/b)9’5

(60)

cf

The T-stress under a residual stress exhibiting a normal stress component Gy res=-c¢r ONly is
then given as

T=T,+04 (61)

r=a

and in the case of a ox-stress component already present in the uncracked body, ox uncracked, it
finally holds

T=T,+04 +0 (62)

r=a x,uncracked

r=a

From the model of a cavitation under an internal pressure p, the radial stress component is
obtained as

(o3 O

x,uncracked |_5 rres| _

_=—p(b/a)’ (63)

and the T-stress for the residual stress problem reads
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TIp= 0.1702 - 0.3581v
- (a/b)9/5

~3(b/a)® (64)

This dependency is illustrated in Fig. 26b for Poisson’s ratios of v=0.2 and 0.3 as representa-
tive values of ceramics.
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0.017 -0.01r

0.005

0.002 -0.021

0.0017

L . 1 R | N .
0.0005 3 5 10 0.03 2 6 8 10

a/b a/b

Fig. 26 @) Influence of Poisson’ sratio and crack size on the T-stress under crack face loading, b) T-
stress for the residual stress problem.

5.4 Penny-shaped crack under superimposed internal stresses and remote tension

The computations made in Section 5.2 were repeated under the condition of a superimposed
external stress oqp. Whereas in the semi-analytical analysis a constant contact area was as-
sumed (e.g. Section 3.1), the finite element solution automatically provides a more realistic
solution under a variable and also disappearing contact region. Figure 27a shows the crack
profiles for a crack with a/b=4 under this combined loading. It becomes obvious that the re-
gion where the surfaces are in contact decreases with increasing applied stress. In Fig. 27b the
radius of the contact area is plotted as a function of a/b and cap/co. Figure 28 finally repre-
sents the effective stress intensity factor K'ig as a function of the externally applied stress
intensity factor K’ 501. All data are beyond the dashed line which illustrates the condition K.
a=Kapp @symptotically valid for large cracks.

The data of Fig. 28 were fitted in the region in which crack surface contact did not disappear
totally, the results being

0.382

total — W + [1— 052(3. / b)5/4] Klappl (65)
Tlo, = % ~0.772% for v=02 (66)
a o,
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Fig. 27 &) Crack opening profiles under superimposed remote tensile load, b) size of the contact zone.
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Fig. 28 @) Tota stressintensity factor K’z as afunction of the externally applied stress intensity fac-
tor K’ o for several crack lengths, b) T-stress solution.
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111 SUMMARY OF RESULTS FOR VICKERS CRACKS

The semi-analytical study in combination with the FE analysis leads to the following results
that are again summarised below.

Loading by a residual stress field
Computation is based on the residual stress field with stresses normal to the crack face

- Po for r<b 1
res “11py(b/r)* for r>b (-1

For a sufficient representation of the total COD including the maximum near r/b=1.3, it may
be used

= %fl?(%)z[z—t; g,(a,b,r)+(0.635+0.3190/a)g,(a,b,r) — g,(a,Ab, r)} (1n.2)
with
0,(a,b,1) =1 ()" (-1 (&)*) + 13
+£[E((2)?) - E(aresing, (5)%) = (1~ ()" )(K((%)*) - F(arcsin £, (2)°))]
g.(a,b,r) = 2[E((})*) - E(arcsin(s, (3)*)] (11.4)
A =0.9828(a / b)°%s (111.5)
The crack-opening displacements for r>1.5b can be described by A=1, i.e.
- %ff(%jz[z—z g,(a,b,r) — (0.365— 0.319b/a)g, (a, b, r)} (111.6)
The size of the contact zone, d, is approximately given by
d /b = 0.9655(a / b) *** (111.7)

The total stress intensity factor (superimposed by residual and contact stress intensity factor
contributions) holds

0.382
K:aOJBW (111.8)

Therelated T-stress term for a/b>3.5 results as
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TIp= 0.1702 - 0.3581v
- (a/b)9/5

~3(b/a)® (111.9)

Loading by superimposed externally applied stresses

In the presence of an externally applied remote stress a1, the total stress intensity factor is

0.382

total = (@lb)™® +[1-0.52(a/b)**1K",,, (111.10)
and the T-stress under crack face loading at v=0.2 equals according to eq.(56)
0.0986 o
Tloyz—— - 07722 11.11
O (a/b)gls oy ( )
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CONE CRACKS

6 Cone crack formation

Under spherical contact loading, cone cracks are initiated in brittle materials (see Fig. 29).
The crack opening angle ¢ was found to be in the range of 21°<p<31°, depending on the ma-
terial tested. An extended overview is given in a paper of Kocer and Collins[9]. Severa stud-
ies were performed on soda-lime glass with the result of ¢~21.5+1° [6, 9-11]. Several at-
tempts have been made so far to compute these cone angles [12-15]. Very early, the crack
angle was determined by Frank and Lawn [12] using a simplified weight function procedure
(see dso [14] and [15]). In these papers, the general crack shape is assumed to coincide with
the stress trgjectories in the uncracked body and the cone angle concluded from the condition
of maximum energy release rate. Frank and Lawn [12] determined the stress intensity factor
K, for acrack extending along the trajectory of the minimum principal stress

K, =[o,hdr (67)
0

with the normal stress o, along the crack present in the uncracked body and the (asymptotic)
weight function

2.c

z(c® —r?)

h= (68)

The crack angle was obtained from the condition of maximum energy release rate given as

1-v?
E

G =

K? (69)

A numerical analysis was given by Kocer and Collins [9], where step-wise crack extension
calculations were performed for loading by a flat punch using finite elements. In these
considerations also the maximum energy release rate criterion was applied for describing the
local crack direction.

The agreement of the two methods is quite poor. Whereas the weight function computations
need an unrealistically high Poisson’ s ratio of v=0.33 for the experimentally found cone crack
angle of ~22° of soda-lime glass, the FE study of [9] showed an excellent agreement with the
experiments for the realistic value of v=0.21. Therefore, the question arises where the dis-
crepancies between the two procedures may come from. In this context it has to be noted that
the weight function used in [12, 14, 15] is a very rough approximation only. Higher-order and
mixed terms are completely missing.

It is the aim of our study to provide an improved weight function, including higher-order
terms as well as mixed weight function contributions, and to disclose the errors made by ap-
plication of the rough weight function approximation (68).
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7 Weight functions

7.1 Weight function procedure

Figure 29a shows a sphere in contact with a plane surface. Under increasing load, a cone
crack develops. In Fig. 29b this crack is shown in more detail. The relatively complicated
parts near the free surface are ignored in the following considerations and replaced by a pure
cone. The geometric data are given in Fig. 29c.

a)

Fig. 29 @) Crack generation by a spherical indenter, b) cone crack, ¢) simplified geometry, d) couples
of normal and shear forces for the determination of the weight functions.

The stress intensity factors K of cracks can be computed by the weight function method as

C c

Ky = [ ohyy(r,c) dr+ [ ey, (r,c) dr (70a)
0 0
c c

Ki = [ o ghau(r,c) dr+ [ 7505 (r,c) dr (70b)
0 0

where o, is the stresses in the uncracked body normal to the prospective crack plane and t the
shear stresses in this plane. The weight functions h(r,c) are defined by [16]

2.2
h: =.—> DW@A-r/c)" Y2 71a
i ,/ﬂc; W ) (714)

with D{™ =D =1, D =D{® =0 (71b)

and including the asymptotic solution of

(72)
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The contributions h;; with i) are responsible for a mode-| stress intensity factor caused by the
shear stress and a mode-Il stress intensity factor caused by the normal stresses. Only in cases
of high symmetry (e.g. an edge-cracked plate with the crack located exactly at half height) do
the mixed terms disappear. The stresses of the Hertzian contact needed in egs.(70a) and (70b)
can be taken from the analysis of Huber [17]. To the authors knowledge, a weight function for
cone cracksis not available. Therefore, this function has to be determined.

7.2 Weight function from FE computations
In order to determine the weight function, finite element computations were performed. The
case of a semi-infinite body with a cone crack was realised by a finite element net of about
700 elements with 2500 nodes. The computations were carried out with ABAQUS, version
6.2 which provides the two stress intensity factors K, and K;, from the displacement field.
The finite element computations were performed for couples of point forces P and Q on the
crack at variable relative distance r/c from the crack tip (Fig. 29d). Since the weight function
Is the Green’s function for stress intensity factors, the FE results for point forces directly pro-
vide the weight functions.
Figure 30 shows the weight functions obtained from the two point loads P (Fig. 30a) and Q
(Fig. 30b) as the circles. It is of importance that mixed-mode stress intensity factor terms oc-
cur even under pure normal or shear force. Under load normal to the crack plane (P), also a
mode-I| stress intensity factor contribution and, consequently, a weight function hy; result, as
obvious from Fig. 30a. Under pure shear load (Q), a mode-1 stress intensity factor contribu-
tion is obtained which resultsin hi» (Fig. 30b). In the case of the weight functions hy, and hyy,
no strong influence of ¢ and b/c was found. Taking into account the cone shape of the crack
having an increasing circumference with increasing r, the set-up of eq.(71a) was modified
into

|2 r+b

]

> DW(L-r/c) (73)
7ac C+b 4

From the FE results, the coefficients D,ﬁij) were determined for v=0.2 and 0.3 by application

of afit procedure. They are compiled in Tables 1 to 8.

There is a small influence of Poisson’sratio v on the weight function components. This influ-
ence can be neglected in the case of weight functions hy; and hy.. A stronger influence was
found for the contributions hi; and hi,, as obvious from Fig. 31 where the weight functions
are plotted as functions of v.

In order to obtain the full weight function solution in the range of 15<¢p<30°, the data of Ta-
bles 1 to 8 may be interpolated with respect to b/c, v, and ¢. For a more simplified practical
use, the coefficients arefitted as

i b
DV = Ay + A+ Agpp? + (Ag + Aygp + AS(/’Z)E (74)

with the cofficients Ag-As compiled in the Appendix in Table 9 for v=0.2 and Table 10 for
v=0.3. For other v values the weight function coefficients D may be computed from
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DW =10 (v =0.3)- D (v =0.2)](v -0.2) + DIV (v = 0.2) (75)

10 10

a) hu

hvc| hvc

~0 02 04 06 08 1 ~0 02 04 06 08 1
r/c r/c

Fig. 30 Weight function from FE computations for b/c=0.1, 0.2, and 0.3 and several cone angles (thick
curves: asymptotic solution, eqg.(72)). a) Results obtained under normal force P, b) under shear force

Q.
© blc D {11) D 511) D éu)

15° 0.1 6.619 9.990 -11.762
0.2 6.876 9.811 -10.282

0.3 7.115 9.642 -8.936

22.5° 0.1 3.035 4,196 -5.438
0.2 3.215 4,175 -4.902

0.3 3.385 4,138 -4.371

30° 0.1 1.322 2.024 -2.798
0.2 1.461 2.073 -2.640

0.3 1.595 2.098 -2.445

Table 1 Coefficients of the weight function hy; (v=0.2).

® b/c D l(12) D 512) D 512)
15° |0.1 2.8468 -.6314 -.7125
0.2 2.9530 -.7080 -.5530
0.3 3.0349 -.7481 -.4694
22.5°|0.1 1.4316 .6574 -1.1476
0.2 1.5367 5997 -1.0457
0.3 1.6204 5662 -.9887
30° (0.1 .7130 9232 -.9420
0.2 .8127 .9024 -.9204
0.3 .8948 .8889 -.9092

Table 2 Coefficients of the weight function h,, (v=0.2).
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® b/c D 1(21) D 521) D §21)
15° 0.1 -2.684 -18.200 9.410
0.2 -2.750 -17.680 8.144

0.3 -2.798 -17.332 7.280

22.5° 0.1 -1.654 -8.686 4.318
0.2 -1.673 -8.495 3.729

0.3 -1.690 -8.352 3.293

30° 0.1 -1.239 -4.841 2.299
0.2 -1.235 -4.743 1.953

0.3 -1.235 -4.664 1.680

(P b/C Dl(12) DélZ) DélZ)
15° (0.1 -2.990 3.952 -2.002
0.2 -2.973 3.847 -1.891
0.3 -2.961 3.770 -1.834
225°(0.1 -2.052 1.888 -.613
0.2 -2.042 1.893 -.628
0.3 -2.034 1.894 -.647
30° |0.1 -1.583 1.002 -.043
0.2 -1.563 1.017 -.083
0.3 -1.548 1.026 -.117
Table 4 Coefficients of the weight function h;, (v=0.2).
® b/c D 1(11) D 511) D §11)
15° 0.1 6.558 10.589 -12.776
0.2 6.843 10.301 -10.971
0.3 7.107 10.041 -9.354
22.5° 0.1 2971 4.463 -5.962
0.2 3.170 4.403 -5.294
0.3 3.359 4.327 -4.640
30° 0.1 1.235 2.188 -3.127
0.2 1.391 2.217 -2.905
0.3 1.540 2.221 -2.646

Table 5 Coefficients of the weight function hy; (v=0.3).
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© b/c D l(12) D 512) D 3()12)

15° 0.1 2.9871 -.3460 -.9470
0.2 3.0857 -.4384 - 7727

0.3 3.1606 -.4964 -.6749

22.5° 0.1 1.5717 .8672 -1.3347
0.2 1.6692 7978 -1.2197
0.3 1.7460 .7505 -1.1503
30° 01 .8587 1.0914 -1.1098
0.2 .9503 1.0601 -1.0735
0.3 1.0250 1.0358 -1.0503

Table 6 Coefficients of the weight function hy, (v=0.3).

© b/c D l( 21) D éZl) D é 21)

15° 0.1 -2.7593 | -18.5636 | 8.8931
0.2 -2.8254 | -17.9514 | 7.5379

0.3 -2.8698 | -17.5575 | 6.6635

22.5° 0.1 -1.7606 -8.9094 4.1169
0.2 -1.7746 -8.6650 3.4623

0.3 -1.7851 -8.4935 3.0023

30° 0.1 -1.3693 -4.9709 2.2173
0.2 -1.3567 -4.8435 1.8217

0.3 -1.3480 -4.7482 1.5254

Table 7 Coefficients of the weight function hy; (v=0.3).

(P b/C D{Zl) DéZl) DéZl)
15° 0.1 -2.9743 | 39767 | -1.7737
0.2 -2.9563 | 3.8605 | -1.6732
0.3 -2.9443 | 37756 | -1.6281

225°| 0.1 -2.0142 | 1.9440 -.4819
0.2 -2.0052 | 1.9404 -.4994

0.3 -1.9990 | 1.9338 -.5242

30° 0.1 -1.5091 | 1.0672 0271
0.2 -1.4941 1.0764 -.0100

0.3 -1.4835 | 1.0796 -.0447

Table 8 Coefficients of the weight function h;, (v=0.3).
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Fig. 31 Influence of Poisson’s ratio v on weight functions for b/c=0.2 and ¢=15°.

A1 Ar Az Ay As Ag
D {ll) 18.909 | -1.081 | .0163 | 4.970 | -.212 | .0031
D éll) 33.132 | -2.024 | .0329 | -7.017 | .457 |-.0070
D éll) -40.096 | 2.355 | -.0373 | 47.411 | -2.916 | .0465
D {22) 7.689 | -422 | .0062 | .823 | .0128 |-.0003
D §22) -6.249 | 516 |-.0092| -.366 |-.0354| .0014
D §22) 1958 | -.273 | .0059 | 1.429 | .0138 |-.0019
D {21) -6.409 | .332 |-.0053| -1.922 | .115 |-.0017
D §21) -55.653 | 3.249 | -.0519 | 15.347 | -.986 | .0168
D §21) 31.798 | -1.879 | .0302 | -32.190| 1.902 | -.0311
D 1(12) -6.330 | .286 |-.0043| .660 |-.0525| .0012
D 512) 12.113 | -.706 | .0112 | -5.314 | .4066 | -.0075
D §12) -1.723 | 496 |-.0079| 5.306 |-.4064 | .0072

Table 9 Coefficients for eq.(74), v=0.2.
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AL | A | A | A As | A
p{1) |18.739 (-1.072|.0161 |5.551 |-.2404 |.0035
D{Y |35.404 |-2.165|.0353 |-10.505(.6799 |-.0108
D§M |-43.896|2.575 |-.0408|57.016 |-3.5007|.0560
D{? |-6.393 |.324 |-.0052|-2.014 |.1242 |-.0018
D{?) | -56.571|3.289 |-.0524|16.889 |-1.0552|.0176
D{?? |30.073 |-1.768|.0284 |-32.684|1.8973 |-.0308
D{?Y |7.858 |-.424 |.0063 |.724 |.0155 |-.0004
D{*) |-5.679 |.494 |-.0089|-.683 |-.0228 |.0012
DY |1.520 |-.257 |.0056 |1.678 |.0036 |-.0017
D2 |-6.322 |.284 |-.0041|.675 |[-0517 |.0011
D{!?) |12.021 |-.695 |.0110 |-5.439 |.4078 |-.0075
D{?) |-7.160 |.469 |[-.0076|4.985 |-.3894 |.0070

Table 10 Coefficients for eq.(74), v=0.3.

8. Application of the weight functions to cone crack problems

8.1 Hertzian contact stresses

The cone crack extension can be concluded from the condition of K;=0. Loading of a crack
by a small mode-Il stress intensity factor would result in crack kinking by a small kink angle

B
K

~ 1

p= 2K_| (76)
The new crack turns into the direction for which a disappearing mode-11 stress intensity factor
exists.
Using the weight functions, egs.(71a) and (71b), the mixed-mode stress intensity factors K,
and K, of a cone crack were determined for the case of c/a=4 (a= radius of the Hertzian con-
tact zone, Fig. 29c) under Hertzian contact stresses. Due the existence of the mixed weight
function terms hi, and hyy, it isapriori impossible that a cone crack can follow the stress tra-
jectoriesfor agiven value of v.
The resulting mixed-mode ratio K;,/K, as a function of the cone angle and the Poisson’s ratio
is shown in Fig. 32 by the squares (interpolation of Tables 1-8) and the solid curves (use of
egs.(73) and (76)). The dashed curves were obtained by using the asymptotic weight functions
€gs.(68) and (72) exclusively. Whereas the stress intensity factors for the two asymptotic rela
tions differed dightly, the ratio of the stress intensity factors for the two solutions was found
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to be identical within the line thicknesses. From the numerical results, it can be concluded that
the mode-I1 stress intensity factor contribution disappears at cone angles of ¢ ~ 18-23°, de-
pending on the special value of v in the range of 0.15<v<0.25, whereas application of the as-
ymptotic weight function solutions according to egs.(68) and (72) yields disappearing mode-11
stress intensity factors at clearly larger cone angles (e.g. 33° for v=0.25 and 37° for v=0.2). It
should be mentioned that the maor influence of Poisson’s ratio is reflected by the Hertzian
stresses which are more strongly influenced by v than the weight function.

3F Ia=4 3F
‘\“i\ c/la= _
Ki/K; A K /K, | \ v=0.2
a) \
2k 2+ \ b)
v=0.25 \
)
\ 0.2 I kKN
/ 0.15 K
NN / LN
NN ,
\ AN )
1r X . 1r ‘\ .
RN asymptotic g% asymptotic
\\ \\:/\//Weight function \‘\ weight function
r v=0.15 \\ > 4 0 c/a=3 \\\\
e 0.2 \ \\ \\ \\\\\\\\\
0 AR 0
AN . 5
\ N 4 /\‘:\\\/
‘D\l TE:\ daca N
_l\\\\l\\ I‘HI‘HEHHIH‘\IHHIHH 1 P SR NI ST N EI I 1
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
¢ ¢ O

Fig. 32 @) and b) Mixed-mode ratio K, /K, of cone cracks, computed for sphere loading and severa
values of v and c/a. Symbols: application of the full weight function, Tables 1-8, solid curves: egs.(73)
and (74), dashed curves: asymptotic weight functions according to (68) and (72).

8.2 Stresses under a flat stamp

The same computations as for sphere loading were performed for the case of a cone crack
introduced by load applied viaaflat rigid stamp. The stressesin this case were given by Sned-
don [18].

The results obtained with the complete weight function (solid curves: from egs.(73) and (74),
squares. coefficients D from Tables 1-8) and the asymptotic weight functions (dashed curves)
are plotted in Fig. 33a. In Fig. 33b the results for sphere and stamp loading are compared. No
significant differences between the two different loading types are visible.
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Fig. 33 @) Mixed-mode ratio K, /K, of cone cracks, computed for stamp loading and several values of v
and c/a=4. Symbols: use of the full weight function, Tables 1-8, solid curves: equations (73) and (74),

dashed curves. asymptotic weight functions according to eq.(68) and eg.(72); b) influence of Poisson’s
ratio on cone crack angles (solid curve: sphere loading, dashed curve: stamp loading).

8.3 Principal effect of a rising crack growth resistance

The computations with respect to cone cracks reported above were performed under the as-
sumption that the stress intensity factor at the crack tip Kyp, which governs crack extension
and crack deflection, is identical with the applied stress intensity factor Kapi, i.€. @ material
without rising crack resistance curve is considered, for instance glass. In the case of a material
with arising crack resistance curve (R-curve), the effective stress intensity factor Kyp is given

by

Kip = Koot + K (77)

tip
where the shielding stress intensity factor Kg, has the opposite sign of Kape and may be caused
by crack face bridging. Such bridging effects will reduce the applied stress intensity factor
under both mode-1 and mode-11 conditions. In the latter case, the crack path condition is ob-
tained as

K KIl,appl + KIl,sh = O (78)

Itp —
For a material with an R-curve effect, the cone angles must deviate from the value of ¢=21°
with increasing “strongness’ of the shielding effect. In this context it should be mentioned
that materials with increasing R-curve behaviour exhibit increasing cone angles. Zeng et
al.[19, 20] performed measurements on soda-lime glass, fine-grained alumina and an
Al,0O4/SIC whisker composite. The results were: glass ¢~22°, fine grained Al,O3z ¢~26°, and
whisker composite p~28-31°.
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8.4 T-stresses for line loads

Apart from the two stress intensity factor contributions K, and K;;, also the T-stress for the
line loads P and Q was determined. It is worth mentioning that under a pure shear load Q also
a T-stress occurs. The results are plotted in Fig. 34 and compiled in Tables 11 and 12. Tables
13 and 14 contain the data for v=0.3.

r/c r/’c
Fig. 34 T-stress for loading by normal (P) and shear (Q) line loads.
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¢ xlc b/c=0.1 0.2 0.3

15° .0667 31037 | 50872 | 7.1512
.2000 52679 | 6.9221 | 8.6446
4000 7.0179 | 8.0884 | 9.2588
.5000 7.0762 | 7.8736 | 8.7819
.7000 54010 | 57506 | 6.1992
.9000 19213 | 20022 | 2.1127
.9900 .6050 .6633 .6638

22.5°| .0667 9670 1.6163 | 2.3132
.2000 1.6575 | 22053 | 2.7920
4000 21977 | 2.5492 | 2.9485
.5000 21883 | 24442 | 2.7514
.7000 15880 | 1.6834 | 1.8256
.9000 7147 .7066 7233

.9900 AL77 .3639 3119

30° .0667 6755 1.0288 | 1.5982
.2000 11547 | 14023 | 1.9281
4000 15301 | 16178 | 2.0351
.5000 15274 | 15506 | 1.9014
.7000 11798 | 11228 | 1.3314
.9000 7211 .6457 .7205

.9900 4784 4091 4355

Table 11 T-stress T/(P/c) caused by line force P (v=0.2).
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¢ x/c b/c=0.1 0.2 0.3

15° .0667 -.6697 | -1.0176 | -1.3688
.2000 -1.2028 | -1.5225 | -1.8621
4000 -1.9557 | -2.2181 | -2.5326
.5000 -2.2830 | -2.5136 | -2.8146
.7000 -2.6667 | -2.8303 | -3.1070
.9000 -1.7260 | -1.8310 | -2.1211
.9900 -.2234 -3982 | -1.1124

22.5°| .0667 -.3081 -.4668 -.6282
.2000 -.5450 -.6848 -.8376
4000 -.8258 -.9292 | -1.0666
.5000 -.9025 -.9877 | -1.1187
.7000 - 7397 -.7920 -.9164
.9000 4257 .3853 2241
.9900 3.6442 | 3.5377 | 3.0720

30° .0667 -.3115 -.4300 -.6425
.2000 -.5644 -.6404 -.8697
4000 -.8936 -.8891 | -1.1419
.5000 -1.0037 | -.9543 | -1.2217
.7000 -.9931 -.8430 | -1.1567
.9000 -.6343 -.2996 -.7867
.9900 -7778 3782 -1.1000

Table 12 T-stress T/(Q/c) caused by line force Q (v=0.2).
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¢ x/c b/c=0.1 0.2 0.3

15° .0667 3.1749 | 52366 | 7.3835
.2000 53618 | 7.0676 | 8.8470
4000 7.0563 | 8.1525 | 9.3552
.5000 7.0629 | 7.8800 | 8.8141
.7000 52794 | 56456 | 6.1136
.9000 17323 | 1.8305 | 1.9574
.9900 4190 4936 5077

22.5°| .0667 .9693 1.6367 | 2.3560
.2000 1.6500 | 22090 | 2.8110
4000 21434 | 25014 | 29111
.5000 21026 | 2.3654 | 2.6824
.7000 14410 | 15468 | 1.7002
.9000 5291 .5357 5651

.9900 .2330 1947 1527

30° .0667 .6953 1.0589 | 1.6541
.2000 11752 | 14222 | 1.9682
4000 15174 | 15972 | 2.0300
.5000 14882 | 15036 | 1.8691
.7000 1.0807 | 1.0207 | 1.2441
.9000 .5681 4987 .5887

.9900 3051 2473 .2879

Table 13 T-stress T/(P/c) caused by line force P (v=0.3).
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¢ x/c b/c=0.1 0.2 0.3

15° .0667 -.6697 | -1.0176 | -1.3688
.2000 -1.2028 | -1.5225 | -1.8621
4000 -1.9557 | -2.2181 | -2.5326
.5000 -2.2830 | -2.5136 | -2.8146
.7000 -2.6667 | -2.8303 | -3.1070
.9000 -1.7260 | -1.8310 | -2.1211
.9900 -.2234 -3982 | -1.1124

22.5°| .0667 -.3081 -.4668 -.6282
.2000 -.5450 -.6848 -.8376
4000 -.8258 -.9292 | -1.0666
.5000 -.9025 -.9877 | -1.1187
.7000 - 7397 -.7920 -.9164
.9000 4257 .3853 2241
.9900 3.6442 | 3.5377 | 3.0720

30° .0667 -.3115 -4300 |[-.6425
.2000 -.5644 -.6404 |-.8697
4000 -.8936 -.8891 |-1.1419
.5000 -1.0037 | -.9543 |-1.2217
.7000 -.9931 -.8430 |-1.1567
.9000 -.6343 -.2996 |-.7867
.9900 -7778 3782 |-1.1000

Table 14 T-stress T/(Q/c) caused by line force Q (v=0.3).



8.5 Stress intensity factors and T-stress under Hertzian contact load
For a Hertzian contact stress of the form

P = poy1-(x/a)* (79)

with maximum pressure po in the centre (Fig. 35) and a=b cosp (see Fig. 29), the mixed-mode
stress intensity factors and the T-stress term were determined with the FE method. The K re-
sults are plotted in Fig. 36 and compiled in Table 15. The stress intensity factors are expressed
by the geometric functions F, and F, as

KI,II = poFl,ll\/E (80)

The T-stressisillustrated in Fig. 37 and compiled in Table 16.

¢ 42a>J\

10 15 20 25 30 B0 15 20 25 30 35
¢ ¢
Fig. 36 Geometric functions for mixed-mode stress intensity factors.



Fig. 37 T-stress of the cone crack under Hertzian pressure.

Table 15 Geometric functions for stress intensity factors (v=0.2).

¢

® b/c | 1000xF, | 1000xF;
15° 0.1 06849 | 0.2559
0.2 2300 | 09710
0.3 4.411 2.073
225°| 01 0.7772 | 0.0140
0.2 2500 | 01721
0.3 4951 | 0.6005
30° 0.1 0.8230 | -0.2022
0.2 2.718 | -0.8889
0.3 5150 | -1.460

o) v b/c=0.1 0.2 0.3
15° 0.2 0.2803 | 1.3323 | 3.2393
0.25 0.0793 | 06473 | 1.9297
0.3 -0.1201 | -0.0342 | 0.6243
225°| 02 05219 | -1.3724 | -1.8542
0.25 -0.6941 | -1.9675 | -3.0105
0.3 -0.8604 | -2.5444 | -4.1349
30° 0.2 -1.2249 | -3.8657 | -6.6901
0.25 -1.3550 | -4.3300 | -7.6051
0.3 -1.4761 | -4.7655 | -8.4679

Table 16 Normalised T-stress as 1000xT/po.
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