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Problems in fracture mechanics of indentation cracks 

Abstract: 
Vickers indentation cracks are an appropriate tool to determine the crack-tip toughness 
KI0 of ceramics from the total crack opening displacements. Two different procedures 
were applied to determine the crack opening displacement (COD) field under residual 
and externally applied stress fields. First, a semi-analytical procedure was used to 
compute the COD field from residual stresses introduced in the uncracked body by the 
indentation test. This approach allows a description by analytical relations. In order to 
check the accuracy of these calculations and to outline some problems in detail, also 
finite element (FE) computations were carried out. In an experimental example the 
stress intensity factor of glass is determined. Apart from the crack opening profile, also 
relations for the total stress intensity factor and the T-stress term are provided.  
As a second type of indentation crack, cone cracks were considered as developing un-
der spherical contact load. Mixed-mode stress intensity factors were computed. The 
results obtained by application of the weight function method are used to calculate the 
cone angle under the condition of KII=0 during crack generation. A good agreement 
with measured data from literature is found. 

Probleme in der bruchmechanischen Behandlung von Eindrucksrissen 

Kurzfassung: 
Die beim Vickers-Eindruckversuch in keramischen Materialien auftretenden Risse 
sind geeignet, die Rissspitzenzähigkeit KI0 von Keramiken aus Rissuferverschie-
bungsmessungen zu bestimmen. Es werden zwei verschiedene Methoden verwendet, 
um die Rissuferverschiebung unter Eigenspannungsbelastung durch den Eindruck 
selbst und zusätzlich aufgrund von extern aufgebrachten Belastungen zu berechnen. 
Zuerst wird eine halbanalytische Vorgehensweise dargestellt. Diese ist besonders ge-
eignet, um analytische Beziehungen zwischen Rissuferverschiebung und aktuell herr-
schendem Spannungsintensitätsfaktor zu beschreiben. Zusätzlich wird eine Analyse 
mit der Methode der Finiten Elemente durchgeführt, die es gestattet, Detailprobleme, 
wie z.B. die Ermittlung der T-Spannung, zu behandeln.  
Als zweiter Eindrucksriss-Typ wird der „cone crack“ behandelt. Hierbei wird die Ge-
wichtsfunktion – einschließlich gemischter Terme – ermittelt und mit deren Hilfe der 
Rissausbreitungswinkel aus der Bedingung des verschwindenden mode-II Spannungs-
intensitätsfaktors bestimmt. Eine sehr gute Übereinstimmung mit Messdaten wird ge-
funden.   
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VICKERS INDENTATION CRACKS 

I   SEMI-ANALYTICAL STUDY 

1.  Crack shape 
Vickers indentation cracks are an appropriate tool to determine the crack tip toughness KI0 
from the total crack opening displacements. In a preceding study [1] two contributions to the 
total crack opening displacement field were addressed. First, the residual stresses occurring in 
the uncracked body were considered and then, the contact stresses generated by preventing 
crack-face penetration were computed. Treatment of these displacement fields is sufficient for 
the description of a Vickers indentation crack in the absence of externally applied loads. Very 
often, the behaviour of such cracks is investigated under additionally applied loads. The pre-
sent report is aimed at computing the total crack opening displacement field caused by a su-
perposition of residual stresses in the uncracked material, which result from Vickers indenta-
tion, contact stresses in the inner contact zone, and externally applied stresses.  
For these considerations, the indentation crack is assumed to be semi-circular (Fig. 1). It is 
furthermore assumed that the crack can be described by half of a fully embedded crack, i.e. a 
change of the stress intensity factor along the crack contour is neglected. 

r a 

b 

 
Fig. 1 Vickers indentation crack (geometrical parameters). 

In a fracture mechanics treatment of the crack problem, we first have to decide on which type 
of crack is present. Fractured test specimens with Vickers indentation cracks mostly allow the 
crack tip contour at r=a (Fig. 1) to be observed. The inner boundary of the open crack can be 
derived from the COD profile observable on the specimen surface (Fig. 2). 

Microscopic observations reveal two possible crack types: 

• A semi-circular crack of radius a, which is closed in the inner region r≤d≈b (Fig. 3a). 

• A ring-shaped crack of outer radius a and inner radius d (Fig. 3b). 
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In Fig. 3 the possible cracks are shaded. The type of crack can be determined easily by the use 
of the Irwin relation that relates the crack opening displacement δ to the stress intensity factor 
K. In the case of a ring-shaped crack, two stress singularities and two stress intensity factors 
must occur, namely, one at the inner crack contour (r=d) and one at the outer contour (r=a). 
Directly after crack generation, the stress intensity factor at the outer contour equals fracture 
toughness KIc. The related COD is given as 

 ra
E

KIc
ar −=→ '

8
π

δ   (1) 

with the effective Young's modulus E’ denoting 

  (2) 
⎩
⎨
⎧

−
=

strainplane)1/(
stressplane

' 2νE
E

E

(E=Young’s modulus, ν=Poisson’s ratio).  

2a

2d 

2δ total

 
Fig. 2  Crack opening profile on the specimen surface (schematic representation). 

From microscopic observation, it is well known that at the same distance from the crack tip 
the crack opening displacement at the inner crack contour by far exceeds that at the outer con-
tour 

 daad ,, <<>> −+ εδδ εε   (3) 

In the case of a ring crack, the stress intensity factor at the inner crack tip must be much larger 
than KIc, and this is impossible. Consequently, it may be concluded that the crack observed 
must be a semi-circular crack.  
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Fig. 3 Possible crack types to be concluded from microscopic observation, a) semi-circular surface 
crack, b) half of a ring crack. 
 

 

2. Crack opening in the absence of externally applied loads 

2.1 Residual stresses 

Beneath the contact area of an indenter pressed into the surface of a brittle material, a residual 
stress zone remains after unloading (Fig. 4a). As an approximation of the residual stress field 
in the uncracked body, the model of an internally pressurised cavity in an infinite body [2] 
may be applied [3, 4]. This model yields the tangential component of residual stresses  

 
⎩
⎨
⎧

>
<−

=
brrbp
brp

res for)/(
for

3
02

1
0σ   (4a) 

as plotted in Fig. 4b. Residual stresses caused by a Vickers indentation may be modified due 
to the occurrence of a free surface. Since the stress component normal to the surface must 
vanish, the residual stresses decrease at the surface. This is indicated by the dashed curve in 
Fig. 4c. If the stresses in r<b are considered to be variable with r, i.e. σ=σ(r/b), the principle 
of Saint Venant ensures (at least at a distance comparable to b) that the stresses outside corre-
spond to that resulting from a constant inner stress p≤p0, which is identical with the average 
stress in r<b. This approximation is indicated by the solid curve in Fig. 4c. Consequently, it 
can be written that 

  (4b) 
⎩
⎨
⎧

>
<−

=
brrbpC
brbrfp

res for)/(
for)/(

3σ

with the coefficient C resulting from the equilibrium condition as 

 ∫=
b
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C
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2 )/(1  (5) 
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Fig. 4 a) Residual stresses in the uncracked body for a cavity in an infinite body, b) residual stresses in 

the presence of a free surface (semi-infinite body).  

The residual stresses cause of the crack opening behaviour of Vickers indentation cracks illus-
trated in Fig. 2.  

2.2 Residual stress intensity factor  

The residual stress intensity factor of a crack of radius a is given as 

  ∫
−
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As outlined in [1], it can be shown that the residual stress intensity factor is negative for any 
function f(r/b) and any crack size a. Application of the mean value theorem to the first term of 
eq.(6b) and use of eq.(5) yield 
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with a certain radius 0 ≤ r0 ≤ b.  
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since the bracket is positive for any r0 and b. As a first consequence of the negative residual 
stress intensity factor, penetration of the crack faces has to be expected for the near-tip crack 
opening displacement field at least.  
All further considerations concentrate on the case of f(r/b)=1, i.e. constant pressure distribu-
tion in the uncracked body, as originally proposed by Hill [2]. In this case, the residual stress 
intensity factor is given as 

  ( ) 22
2

222 ba
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a
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a
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π
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−=   (8) 

Figure 5 shows the residual stress intensity factor K’res in the normalisation of 

 
bp

KK ='   (9) 

as the circles. The straight line which excellently fits to the circles in the range of 3<a/b<6 can 
be expressed by 

   (10) 56.3)/(4707.0' abK res −≅
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0.001

0.003

0.01

0.03

0.1

-K'res 

a/b  
Fig. 5 Residual stress intensity factor K’res normalised according to eq.(9); circles: eq.(8), straight line: 

eq.(10). 

2.3 Displacements caused by the residual stresses 
In order to demonstrate the penetration of crack faces in the residual stress field, the crack 
opening displacements δ have to be computed. It holds that 
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with the Young's modulus for plane strain E’. For a simpler representation of results, the 
crack opening displacements are normalised as 

 δπδ
pb
E

4
'' =   (12) 

Figure 6 shows the crack opening displacements δres. The displacements (Figs. 6a and 6b) are 
negative over the whole crack area and crack face penetration occurs at any distance r/a.  

The residual displacements δ1 caused by the stresses at r/b < 1 are [1]  
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with the complete elliptical integrals of the first and second kind K and E and the incomplete 
elliptical integrals E and F. 
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Fig. 6 Residual COD of a crack, a), b) crack opening displacements.  
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2.4  Contact stresses, contact stress intensity factor, and related COD 

In a real structure crack penetration is not possible, of course. Prevented crack face pe-
netration results in a distribution of (positive) contact stresses σcont which cause a positive 
contact COD field δcont
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and a contact stress intensity factor  
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−

σ
π

=
a

cont
cont

ra

drrr
a

K
0

22

)(2  (16) 

This stress intensity factor is positive, since the contact stresses open the crack. The related 
contact stresses are restricted to a contact area of radius d with d ≅ b and must disappear in the 
region of real (positive) crack opening (see Fig. 7). To determine the contact stresses, the 
mixed boundary value problem has to be solved 
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or, explicitly, 
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A numerical solution of eq.(17) was given in [1]. For the numerical treatment, a power series 
expansion (truncated after the term N) of the unknown contact stresses is applied according to 

   (18) 
⎪⎩

⎪
⎨
⎧
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drforrA
N
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n
n

cont

0

''
0

σ

The unknown coefficients An can determined exclusively from the condition of δtotal = 0 for r < 

d. Computations were performed for different values of d. It was found in [1] that for the con-
tact displacement field at r>max(d,b) no significant influence of d was detectable. Therefore, 
further considerations were restricted to  
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Fig. 7 Contact stresses in the centre region of a Vickers crack. 

The numerically determined contact stresses could be adequately expressed by [1] 

   (19a) pbrD q
cont ))/(1( 0

0 −=σ

where the subscript “0” of the parameters D0 and q0 indicates the absence of an externally 
applied load. The parameters D0 and q0 may be approximated by 

 abD /1127.0898.00 +≅   (19b) 

   (19c) 2
0 )/(33.13/69.232.5 ababq ++≅

2.5  Total stress intensity factor and total COD 

The really active total stress intensity factor is then 

 contrestotal KKK +=  (20) 

and the total crack opening displacements are given by 
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with the total stress 

  contrestotal σ+σ=σ   (22) 

The total displacements δtotal were found by the superposition of the two solutions for δres and 
δcont (Figs. 8a, 8b).  
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Fig. 8  a) Fitting of the displacements in 0<r<b, b) total displacements δtotal obtained by superposition 

of residual and contact displacements. 

The small deviations from δtotal = 0 in 0 ≤ r ≤ b indicate the slight differences between the cor-
rect and the approximate contact stress solutions.  
Total displacements are represented in Fig. 9a for several relative crack lengths a/b. The cor-
responding (normalised) total stress intensity factor is plotted in Fig. 9b, exhibiting the well-
established proportionality K ∝ a-3/2 for a/b ≥ 2.5 

 2/3)/(
372.0'
ba

K total ≅   (23) 

Relation (23) allows to estimate the pressure p from the experimentally determined depend-
ency between indentation load P and crack size 

 2/3a
PK χ=   (24) 
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Fig. 9 a) Total crack opening displacement, b) normalised total stress intensity factor c) coefficient λ 

for eq.(25).  

Based on the preceding considerations, an approximate analytical description of the total 
crack opening displacement can be given by [1] 
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 abpp /319.0635.0/* +≅  (27) 

  (28) 00565.0)/(9828.0 ba≅λ

with λ represented in Fig. 9c. The unknown quantity p may be determined from the total 
stress intensity factor  
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in combination with Fig. 9b or eq.(23).  

Expressed by the stress intensity factor, the displacements read 

 ⎥⎦
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This relation is suited for evaluating experimentally determined COD profiles as will be illus-
trated in section 4. 
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3.  Superposition of external stresses 

3.1. Applied stress intensity factor and displacement 
Very often, Vickers indentation cracks are used for fracture mechanics tests under superim-
posed loading. Such additional loads may be caused by residual stresses or externally applied 
loads (tension, bending).  
The crack opening displacement field under a constant externally applied stress σ=σappl, de-
noted by δappl, is given by the well-known elliptical profile 

 22
'

4
ra

E
appl

appl −=
π
σ

δ   (31) 

i.e. by  2)/(1
'

' ar
b
a

p
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appl −=
σ

δ   (32) 

The contact stresses under an external load can now be determined by solving 
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applcontrestotal
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≤=++=

0

0

σ

δδδδ
  (33) 

The computations mentioned in section 2 are now repeated for several stress ratios σ0/p. Fig-
ure 10 shows the contact stresses at various externally applied stresses. It is obvious that the 
contact stresses decrease with increasing applied stress, as has to be expected from the fact 
that the boundary conditions are displacement-controlled and not stress-controlled. 
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Fig. 10 Contact stresses at various externally applied stresses, computed under the assumption d=b. 

Similar to eqs.(19a) and (19b), the contact stresses can be described by 

  (34) pbrD q
cont ))/(1( −=σ

with the parameters D, q shown in Fig. 11 as functions of the applied loading. 
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Fig. 11 Parameters q and D of the contact stresses according to eq.(34). 
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Fig. 12 Fit of numerically determined parameters. 
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Fig. 13 Contact and total stress intensity factors as a function of the applied stress intensity factor at an 

externally applied stress of 0≤σappl/p≤0.05. 
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For σappl/p<0.05 and 2.5<a/b<6 an approximate representation of D and p reads  

 
p

CDD applσ
10 +≅   (35) 

 
b
aC 2.06.01 −−=   (36) 
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p
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b
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with the coefficients C1, C2 plotted in Fig. 12 and D0, q0 given by eqs.(19b) and (19c). 
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Fig. 14 Coefficients for eq.(39) as a function of a/b. 

In Fig. 13 the contact and total stress intensity factors are plotted versus the applied stress 
intensity factor. The curves given in Fig. 13a may be approximated by straight lines 

 applcontcont AKKK ''' 0, +=  (39) 

with  
b
a

p
K appl

appl
σ

π
2' =   (40) 

and K’cont,0, A represented in Fig. 14. A least-squares fit of these data for 3≤a/b≤6 results in 

   (41) 627.1
0, )/(492.0' abK cont =

and 

  (42) 008.1)/(4487.0 abA −=
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Consequently, the total stress intensity factor (Fig. 13b) may be expressed by 

 appltotaltotal KAKK ')1('' 0, ++=   (43) 

with the total stress intensity factor K’total,0 in the absence of an externally applied load being 

 0,0, ''' contrestotal KKK +=   (44) 

K’total,0 can be computed by use of the approximate power law relations (10) and (41). The 
result is plotted as the squares in Fig. 15. A power law fit of these data again yields the expo-
nent –3/2 as given by eq.(23). It is self-evident that the difference of two stress intensity factor 
contributions depending on different powers in a/b can be represented by a common power 
dependency in a narrow band of a/b ratios only (here in 2.5<a/b<6). 
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Fig. 15 Power representation of eq.(43) for K’appl=0. 

3.2 Impacts of variable contact stresses on crack extension under an externally applied 
load 

As found out in section 3.1, the contact stress intensity factor Kcont depends on the applied 
load. In order to illustrate the general effect of a decreasing contact stress intensity factor with 
an increasing externally applied stress intensity factor on crack extension, the case of a mate-
rial without an R-curve behaviour may be considered. A crack of initial size a=3b is assumed 
to be present after a Vickers indentation test. The total stress intensity factor in this state is 
KIc.  
In the normalised representation according to eq.(9) it reads 

 
bp

KK Ic
Ic ='   (45) 

In Fig. 16 the variation of the different stress intensity factors with crack size is illustrated for 
several values of the applied stress σappl. Figure 17a shows the total stress intensity factor for 
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several applied stresses that are necessary to propagate a crack of initial size a/b=3. The circle 
indicates the strength, i.e. the point at which  

 Ictotal KK '' =   (46a) 

 0
)/(

'
=

∂
∂

ba
K total   (46b) 

are fulfilled. The related applied stress intensity factor is given in Fig. 17b.  
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Fig. 16 Total stress intensity factor Ktotal and its components as a function of crack size. 
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Fig. 17 a) Total stress intensity factor for several applied stresses, b) applied stress and stress intensity 

factor necessary to propagate a crack of initial size a/b=3. 
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4. Determination of K from the COD profile 
As an example of application, the crack tip stress intensity factor Ktip may be determined for a 
(70% SiO2, 19% CaO, and 15% Na2O) soda-lime glass (E=71 GPa, ν=0.22) [5]. In Fig. 18 
crack opening displacement measurements are plotted as circles. The results were measured at 
an indentation crack introduced under 50 N load by using a SEM. In order to avoid subcritical 
crack growth during the measuring time span, the specimen was suspended for 1 h in air after 
indentation.  

In Fig. 18b the measured crack opening displacements δmeas are plotted versus the displace-
ments δcomp computed from eqs.(25-30) for an arbitrarily chosen stress intensity factor of K = 

1MPa√m. A least-squares fit of the linear dependency yields K as the slope of the straight 
line, in the present example resulting in K = 0.38 MPa√m. Use of this value then yields the 
solid curve introduced in Fig. 18a. The dashed line shown in Fig. 18a corresponds to the Irwin 
solution for the near-tip displacement field  

 ra
E
K

tipnear −
π

→δ
'

8   (47) 

at the same stress intensity factor of K = 0.38 MPa√m. This value is roughly identical with the 
threshold value Kth in air [6], below which no subcritical crack growth occurs.  
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Fig. 18 Determination of Ktip for a soda-lime glass, a) measured crack opening displacement, b) 

measured COD plotted versus computed COD (K=1 MPa√m). 
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II   FINITE ELEMENT STUDY 

5.  Stress intensity factor and T-stress 
In the first part of this report the problem of a penny-shaped crack was treated with semi-
analytical methods. This approach is of advantage for the derivation of analytical relations 
describing the principal shape of crack opening profiles. For special problems which cannot 
be solved with the weight functions available, we also applied the Finite Element (FE) 
method. For instance, the FE method was used to determine the T-stress under the compli-
cated indentation crack loading. Moreover, the FE computations allow to check the accuracy 
of semi-analytical results. 

5.1 Importance of T-stress 

The fracture behaviour of cracked structures is dominated by the near-tip stress field. In frac-
ture mechanics particular interest is devoted to stress intensity factors which describe the sin-
gular stress field ahead of a crack tip and govern fracture of a specimen when a critical stress 
intensity factor is reached. Nevertheless, there is experimental evidence of fracture mechanics 
properties being also affected by the constant stress contributions acting over a longer dis-
tance from the crack tip.  
Taking into consideration the singular stress term and the first regular term, the near-tip stress 
field can be described by 

 σ
π

ϕ σij
I

ij ij
K

r
f= +

2 0( ) ,  (48) 

with the angular functions for mode I 
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(r and ϕ are polar coordinates with the origin at the crack tip) and 

  (50) σ
σ σ
σ σij

xx xy
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⎜
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⎠
⎟

The term T represents the total constant σx-stress contribution appearing at the crack tip (x = 
a) of a cracked structure, which is called the T-stress. It may be determined by evaluating the 
stresses ahead of a crack tip for y=0 and x→a 
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axyxT

=
−= )( σσ  . (51) 

The biaxiality ratio β proposed by Leevers and Radon [7]   

 
IK
aT πβ =  (52) 

represents the T-stress in a normalised form. This ratio governs path stability of cracks grow-
ing under mixed-mode conditions as shown by Cotterell and Rice [8]. Their most important 
conclusion is illustrated in Fig. 19, namely, increasing deviation from the prescribed kink an-
gle Θ0 for T>0 (β>0) and decreasing deviations for T<0 (β<0).  

Θ0

T>0

T<0

 
Fig. 19 General influence of the T-stress after crack kinking under mixed-mode loading. 

5.2 Penny-shaped crack in an infinite body under remote tension 

In order to check the Finite Element (FE) net, the penny-shaped crack in an infinite body un-
der remote tension was studied. In this case (Fig. 20) the stress intensity factor solution is ana-
lytically known as 

 
π

σ 2, == FaFK   (53) 

The case of an infinite body with a penny-shaped internal crack was realized by a finite ele-
ment net of about 2000 elements with 6300 nodes and a component height of H=100a and 
component width of W=100a under rotational symmetry conditions. The computations were 
carried out with ABAQUS Version 6.2 which provides the stress intensity factors KI as well 
as the T-stress term. The numerically obtained stress intensity factor was 

 1285.1=FEF   (54) 

deviating about 0.01% from the exact solution. The T-stress computed for several Poisson’s 
ratios ν was found to be  

 νσ −−= 51.0/T  (55a) 
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Fig. 20 Circular crack in an infinite body. 

5.3 Penny-shaped crack under crack-face loading  

A loading situation resulting in the same stress intensity factor solution as under constant re-
mote tension is given by a constant normal crack face pressure p. The x-stresses were found 
to be identical with those for remote tension and the T-stress term, Tcf (subscript “cf” standing 
for “crack face” loading), was  

 νσ −=+= 49.01/||/ TpTcf  (55b) 

The difference between eqs.(55a) and (55b) is caused by the different values of σy|r=a in the 
two loading cases. Whereas σy|r=a=0 under remote tension (crack faces are free of normal 
stresses), σy|r=a= –p0 under crack-face pressure conditions. Consequently, the T-stress result-
ing from eq.(61) for the same amount of σx stress is different by –p0. 
In a second example, the normal stresses were prescribed on the crack faces similar to the 
residual stress distribution eq.(4a). The crack opening displacement behaviour under loading 
by these residual stresses was modelled by crack face pressure for r>b that causes positive 
displacements and tensile stresses on the crack faces in the region of 0≤r≤b, which will close 
the crack (Fig. 21), i.e. 

 brbrbr cfcf >−=≤= for)/(,for 3
02

1
0 σσσσ   (56) 

In order to prevent crack penetration, the element-based contact surface option of ABAQUS 
6.2 was chosen. The number of elements and nodes of the FE net was increased by about 
50%. The additional nodes were introduced near the location r=b to obtain the size of the con-
tact zone as accurately as possible. For the further computations it was chosen W=H=100b. 

In Fig. 22 the results for the special case of a/b=4 are presented. In Fig. 22a the displacements 
are plotted as the circles. From these results, the size of the contact zone d is obtained as 
d=0.95b. The curve in this figure represents the semi-analytical result. The agreement is good. 
An increased accuracy is reached for r/b>2 by setting λ=1 in eq.(25) or (30). This can be seen 
from Fig. 22b. Equation (30) is then simplified to 
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Fig. 21 Circular crack in an infinite body a) loaded by the normal component of residual stresses, b) 
realisation in FE computation: crack closure by tensile tractions in r<b, crack face pressure for r>b. 
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Fig. 22 a) COD profile computed by FE (circles) and by applying eq.(30) (curve), b) curve of 

improved accuracy for the region of r/b>2 represented by eq.(57). 

The stresses σy for y=0 occurring under conditions of prevented crack face penetration are 
shown in Fig. 23a for a crack with a/b=4. As expected, they are in agreement with the crack 
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face loading outside r=d (note that the crack face loading has a different sign compared with 
the residual stresses in the uncracked body). Figure 23b shows the influence of the crack size 
a on the size b of the contact zone. The result may be expressed as 

   (58) 0135.0)/(9655.0/ −≅ babd

In the contact region r≤d, the difference of the prescribed surface tractions and the stresses σy 
for y=0 provides the contact stresses σcont as defined in Section 2.4. The result is given in Fig. 
27 by the circles, whereas the curve represents the result of Fig. 10 for σappl/p=0. The differ-
ence between the results is due to the simplifying assumption of d=b used in the semi-
analytical analysis. In principle, the solid curve in Fig. 24 is an effective continuous fitting 
curve over 0<r<b for the FE data distributed over 0<r<0.95b, resulting in the same normal-
ised crack opening displacement profile δ’/K’ at r>b.  
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Fig. 23  a) Normal stresses σy at y=0, b) contact zone radius d as a function of the ratio a/b. 
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Fig. 24 Contact stresses according to eq.(15) resulting from the difference of the stresses in Fig. 23a 

and the presribed crack face tractions. 
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In Fig. 25a the stress intensity factor in the normalisation of eq.(9) is plotted versus the crack 
size. The result can be expressed by 

 2/3)/(
382.0'
ba

K =   (59) 

which is in very good agreement with eq.(23).  
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Fig. 25 a) Stress intensity factor as function of the crack size, b) influence of Poisson’s ratio on T-

stress under crack face loading. 

The T-stress solution for the special crack face loading (Fig. 21b) is shown in Fig. 25b as a 
function of Poisson’s ratio. For a/b≥4 a linear influence of ν is found. From the T-stress rep-
resentation in Fig. 26a, a crack size dependency given by a power law in a/b can be con-
cluded. Therefore, the T-stress term under crack face loading is approximated for a/b>3.5 as 

 5/90 )/(
3581.01702.0/

ba
Tcf

νσ −
≅   (60) 

The T-stress under a residual stress exhibiting a normal stress component σy,res=-σcf only is 
then given as  
 

arcfcfTT
=

+= σ  (61) 

and in the case of a σx-stress component already present in the uncracked body, σx,uncracked, it 
finally holds 

 
aruncrackedxarcfcfTT

==
++= ,σσ   (62) 

From the model of a cavitation under an internal pressure p, the radial stress component is 
obtained as 

 3
,, )/( abp

arresraruncrackedx −==
==

σσ   (63) 

and the T-stress for the residual stress problem reads 
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This dependency is illustrated in Fig. 26b for Poisson’s ratios of ν=0.2 and 0.3 as representa-
tive values of ceramics. 
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Fig. 26 a) Influence of Poisson’s ratio and crack size on the T-stress under crack face loading, b) T-

stress for the residual stress problem. 

5.4 Penny-shaped crack under superimposed internal stresses and remote tension 

The computations made in Section 5.2 were repeated under the condition of a superimposed 
external stress σappl. Whereas in the semi-analytical analysis a constant contact area was as-
sumed (e.g. Section 3.1), the finite element solution automatically provides a more realistic 
solution under a variable and also disappearing contact region. Figure 27a shows the crack 
profiles for a crack with a/b=4 under this combined loading. It becomes obvious that the re-
gion where the surfaces are in contact decreases with increasing applied stress. In Fig. 27b the 
radius of the contact area is plotted as a function of a/b and σappl/σ0. Figure 28 finally repre-
sents the effective stress intensity factor K’total as a function of the externally applied stress 
intensity factor K’appl. All data are beyond the dashed line which illustrates the condition Kto-

tal=Kappl asymptotically valid for large cracks. 
The data of Fig. 28 were fitted in the region in which crack surface contact did not disappear 
totally, the results being 

 appltotal Kba
ba

K '])/(52.01[
)/(

382.0' 4/5
2/3 −+=   (65) 

 
0

5/90 77.0
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σ

σ
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ba
T −≅  for  ν=0.2 (66) 
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Fig. 27 a) Crack opening profiles under superimposed remote tensile load, b) size of the contact zone. 
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Fig. 28 a) Total stress intensity factor K’total as a function of the externally applied stress intensity fac-

tor K’appl for several crack lengths, b) T-stress solution. 
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III   SUMMARY OF RESULTS FOR VICKERS CRACKS 

The semi-analytical study in combination with the FE analysis leads to the following results 
that are again summarised below. 

Loading by a residual stress field 
Computation is based on the residual stress field with stresses normal to the crack face 
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For a sufficient representation of the total COD including the maximum near r/b≈1.3, it may 
be used  
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The crack-opening displacements for r>1.5b can be described by λ=1, i.e. 
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The size of the contact zone, d, is approximately given by 

   (III.7) 0135.0)/(9655.0/ −≅ babd

The total stress intensity factor (superimposed by residual and contact stress intensity factor 
contributions) holds 

 2/30 )/(
382.0
ba

bK σ=   (III.8) 

The related T-stress term for a/b>3.5 results as 
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Loading by superimposed externally applied stresses 

In the presence of an externally applied remote stress σappl, the total stress intensity factor is 
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and the T-stress under crack face loading at ν=0.2 equals according to eq.(56) 
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CONE CRACKS 

6 Cone crack formation 
Under spherical contact loading, cone cracks are initiated in brittle materials (see Fig. 29). 
The crack opening angle ϕ was found to be in the range of 21°≤ϕ≤31°, depending on the ma-
terial tested. An extended overview is given in a paper of Kocer and Collins [9]. Several stud-
ies were performed on soda-lime glass with the result of ϕ∼21.5±1° [6, 9-11]. Several at-
tempts have been made so far to compute these cone angles [12-15]. Very early, the crack 
angle was determined by Frank and Lawn [12] using a simplified weight function procedure 
(see also [14] and [15]). In these papers, the general crack shape is assumed to coincide with 
the stress trajectories in the uncracked body and the cone angle concluded from the condition 
of maximum energy release rate. Frank and Lawn [12] determined the stress intensity factor 
KI for a crack extending along the trajectory of the minimum principal stress 

  (67) drhK
c

nI ∫=
0

σ

with the normal stress σn along the crack present in the uncracked body and the (asymptotic) 
weight function 

 
)(

2
22 rc

ch
−

=
π

 (68) 

The crack angle was obtained from the condition of maximum energy release rate given as 

 2
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IK
E

G ν−
=   (69) 

A numerical analysis was given by Kocer and Collins [9], where step-wise crack extension 
calculations were performed for loading by a flat punch using finite elements. In these 
considerations also the maximum energy release rate criterion was applied for describing the 
local crack direction. 
The agreement of the two methods is quite poor. Whereas the weight function computations 
need an unrealistically high Poisson’s ratio of ν=0.33 for the experimentally found cone crack 
angle of ∼22° of soda-lime glass, the FE study of [9] showed an excellent agreement with the 
experiments for the realistic value of ν=0.21. Therefore, the question arises where the dis-
crepancies between the two procedures may come from. In this context it has to be noted that 
the weight function used in [12, 14, 15] is a very rough approximation only. Higher-order and 
mixed terms are completely missing. 
It is the aim of our study to provide an improved weight function, including higher-order 
terms as well as mixed weight function contributions, and to disclose the errors made by ap-
plication of the rough weight function approximation (68). 
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7 Weight functions 
7.1       Weight function procedure 
Figure 29a shows a sphere in contact with a plane surface. Under increasing load, a cone 
crack develops. In Fig. 29b this crack is shown in more detail. The relatively complicated 
parts near the free surface are ignored in the following considerations and replaced by a pure 
cone. The geometric data are given in Fig. 29c.   

 

a) 

 

c)

2aϕ

b 
c 

 

 

b) P 

P 

Q Q 

d) 

r  
Fig. 29 a) Crack generation by a spherical indenter, b) cone crack, c) simplified geometry, d) couples 

of normal and shear forces for the determination of the weight functions. 

The stress intensity factors K of cracks can be computed by the weight function method as 
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where σn is the stresses in the uncracked body normal to the prospective crack plane and τ the 
shear stresses in this plane. The weight functions h(r,c) are defined by [16] 
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The contributions hij with i≠j are responsible for a mode-I stress intensity factor caused by the 
shear stress and a mode-II stress intensity factor caused by the normal stresses. Only in cases 
of high symmetry (e.g. an edge-cracked plate with the crack located exactly at half height) do 
the mixed terms disappear. The stresses of the Hertzian contact needed in eqs.(70a) and (70b) 
can be taken from the analysis of Huber [17]. To the authors knowledge, a weight function for 
cone cracks is not available. Therefore, this function has to be determined.  

7.2 Weight function from FE computations   
In order to determine the weight function, finite element computations were performed. The 
case of a semi-infinite body with a cone crack was realised by a finite element net of about 
700 elements with 2500 nodes. The computations were carried out with ABAQUS, version 
6.2 which provides the two stress intensity factors KI and KII from the displacement field.  
The finite element computations were performed for couples of point forces P and Q on the 
crack at variable relative distance r/c from the crack tip (Fig. 29d). Since the weight function 
is the Green’s function for stress intensity factors, the FE results for point forces directly pro-
vide the weight functions. 
Figure 30 shows the weight functions obtained from the two point loads P (Fig. 30a) and Q 
(Fig. 30b) as the circles. It is of importance that mixed-mode stress intensity factor terms oc-
cur even under pure normal or shear force. Under load normal to the crack plane (P), also a 
mode-II stress intensity factor contribution and, consequently, a weight function h21 result, as 
obvious from Fig. 30a. Under pure shear load (Q), a mode-I stress intensity factor contribu-
tion is obtained which results in h12 (Fig. 30b). In the case of the weight functions h22 and h21, 
no strong influence of ϕ and b/c was found. Taking into account the cone shape of the crack 
having an increasing circumference with increasing r, the set-up of eq.(71a) was modified 
into 

 2/1

0

)( )/1(2 −
∞

=

−
+
+

= ∑ n

n

ij
nij crD

bc
br

c
h

π
 (73) 

From the FE results, the coefficients  were determined for ν=0.2 and 0.3 by application 
of a fit procedure. They are compiled in Tables 1 to 8.  

)(ij
nD

There is a small influence of Poisson’s ratio ν on the weight function components. This influ-
ence can be neglected in the case of weight functions h11 and h21. A stronger influence was 
found for the contributions h11 and h12, as obvious from Fig. 31 where the weight functions 
are plotted as functions of ν.  
In order to obtain the full weight function solution in the range of 15≤ϕ≤30°, the data of Ta-
bles 1 to 8 may be interpolated with respect to b/c, ν, and ϕ. For a more simplified practical 
use, the coefficients are fitted as 

 
c
bAAAAAAD ij

n )( 2
543

2
210

)( ϕϕϕϕ +++++=  (74) 

with the cofficients A0-A5 compiled in the Appendix in Table 9 for ν=0.2 and Table 10 for 
ν=0.3. For other ν values the weight function coefficients D may be computed from 
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Fig. 30 Weight function from FE computations for b/c=0.1, 0.2, and 0.3 and several cone angles (thick 
curves: asymptotic solution, eq.(72)). a) Results obtained under normal force P, b) under shear force 

Q. 

ϕ b/c )11(
1D  )11(

2D  )11(
3D  

0.1 6.619 9.990 -11.762 
0.2 6.876 9.811 -10.282 

15° 

0.3 7.115 9.642 -8.936 
0.1 3.035 4.196 -5.438 
0.2 3.215 4.175 -4.902 

22.5° 

0.3 3.385 4.138 -4.371 
0.1 1.322 2.024 -2.798 
0.2 1.461 2.073 -2.640 

30° 

0.3 1.595 2.098 -2.445 

Table 1 Coefficients of the weight function h11 (ν=0.2). 

ϕ b/c )12(
1D  )12(

2D  )12(
3D  

0.1 2.8468 -.6314 -.7125 
0.2 2.9530 -.7080 -.5530 

15° 

0.3 3.0349 -.7481 -.4694 
0.1 1.4316 .6574 -1.1476 
0.2 1.5367 .5997 -1.0457 

22.5° 

0.3 1.6204 .5662 -.9887 
0.1 .7130 .9232 -.9420 
0.2 .8127 .9024 -.9204 

30° 

0.3 .8948 .8889 -.9092 

Table 2 Coefficients of the weight function h22 (ν=0.2). 
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ϕ b/c )21(

1D  )21(
2D  )21(

3D  
0.1 -2.684 -18.200 9.410 
0.2 -2.750 -17.680 8.144 

15° 

0.3 -2.798 -17.332 7.280 
0.1 -1.654 -8.686 4.318 
0.2 -1.673 -8.495 3.729 

22.5° 

0.3 -1.690 -8.352 3.293 
0.1 -1.239 -4.841 2.299 
0.2 -1.235 -4.743 1.953 

30° 

0.3 -1.235 -4.664 1.680 

Table 3 Coefficients of the weight function h21 (ν=0.2). 

ϕ b/c )12(
1D  )12(

2D  )12(
3D  

0.1 -2.990 3.952 -2.002 
0.2 -2.973 3.847 -1.891 

15° 

0.3 -2.961 3.770 -1.834 
0.1 -2.052 1.888 -.613 
0.2 -2.042 1.893 -.628 

22.5° 

0.3 -2.034 1.894 -.647 
0.1 -1.583 1.002 -.043 
0.2 -1.563 1.017 -.083 

30° 

0.3 -1.548 1.026 -.117 

Table 4 Coefficients of the weight function h12 (ν=0.2). 

ϕ b/c )11(
1D  )11(

2D  )11(
3D  

0.1 6.558 10.589 -12.776 
0.2 6.843 10.301 -10.971 

15° 

0.3 7.107 10.041 -9.354 
0.1 2.971 4.463 -5.962 
0.2 3.170 4.403 -5.294 

22.5° 

0.3 3.359 4.327 -4.640 
0.1 1.235 2.188 -3.127 
0.2 1.391 2.217 -2.905 

30° 

0.3 1.540 2.221 -2.646 

Table 5 Coefficients of the weight function h11 (ν=0.3). 
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ϕ b/c )12(
1D  )12(

2D  )12(
3D  

0.1 2.9871 -.3460 -.9470 
0.2 3.0857 -.4384 -.7727 

15° 

0.3 3.1606 -.4964 -.6749 
0.1 1.5717 .8672 -1.3347 
0.2 1.6692 .7978 -1.2197 

22.5° 

0.3 1.7460 .7505 -1.1503 
0.1 .8587 1.0914 -1.1098 
0.2 .9503 1.0601 -1.0735 

30° 

0.3 1.0250 1.0358 -1.0503 

Table 6 Coefficients of the weight function h22 (ν=0.3). 

ϕ b/c )21(
1D  )21(

2D  )21(
3D  

0.1 -2.7593 -18.5636 8.8931 
0.2 -2.8254 -17.9514 7.5379 

15° 

0.3 -2.8698 -17.5575 6.6635 
0.1 -1.7606 -8.9094 4.1169 
0.2 -1.7746 -8.6650 3.4623 

22.5° 

0.3 -1.7851 -8.4935 3.0023 
0.1 -1.3693 -4.9709 2.2173 
0.2 -1.3567 -4.8435 1.8217 

30° 

0.3 -1.3480 -4.7482 1.5254 

Table 7 Coefficients of the weight function h21 (ν=0.3). 

ϕ b/c )21(
1D  )21(

2D  )21(
3D  

0.1 -2.9743 3.9767 -1.7737 
0.2 -2.9563 3.8605 -1.6732 

15° 

0.3 -2.9443 3.7756 -1.6281 
0.1 -2.0142 1.9440 -.4819 
0.2 -2.0052 1.9404 -.4994 

22.5° 

0.3 -1.9990 1.9338 -.5242 
0.1 -1.5091 1.0672 .0271 
0.2 -1.4941 1.0764 -.0100 

30° 

0.3 -1.4835 1.0796 -.0447 

Table 8 Coefficients of the weight function h12 (ν=0.3). 
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Fig. 31 Influence of Poisson’s ratio ν on weight functions for b/c=0.2 and ϕ=15°. 

 A1 A2 A3 A4 A5 A6

)11(
1D  18.909 -1.081 .0163 4.970 -.212 .0031 

)11(
2D  33.132 -2.024 .0329 -7.017 .457 -.0070 

)11(
3D  -40.096 2.355 -.0373 47.411 -2.916 .0465 

)22(
1D 7.689 -.422 .0062 .823 .0128 -.0003 

)22(
2D -6.249 .516 -.0092 -.366 -.0354 .0014 

)22(
3D  1.958 -.273 .0059 1.429 .0138 -.0019 

)21(
1D  -6.409 .332 -.0053 -1.922 .115 -.0017 

)21(
2D -55.653 3.249 -.0519 15.347 -.986 .0168 

)21(
3D 31.798 -1.879 .0302 -32.190 1.902 -.0311 

)12(
1D -6.330 .286 -.0043 .660 -.0525 .0012 

)12(
2D 12.113 -.706 .0112 -5.314 .4066 -.0075 

)12(
3D -7.723 .496 -.0079 5.306 -.4064 .0072 

Table 9 Coefficients for eq.(74), ν=0.2. 

 35



 

 A1 A2 A3 A4 A5 A6

)11(
1D  18.739 -1.072 .0161 5.551 -.2404 .0035 

)11(
2D  35.404 -2.165 .0353 -10.505 .6799 -.0108 

)11(
3D  -43.896 2.575 -.0408 57.016 -3.5007 .0560 

)22(
1D  -6.393 .324 -.0052 -2.014 .1242 -.0018 

)22(
2D  -56.571 3.289 -.0524 16.889 -1.0552 .0176 

)22(
3D  30.073 -1.768 .0284 -32.684 1.8973 -.0308 

)21(
1D  7.858 -.424 .0063 .724 .0155 -.0004 

)21(
2D  -5.679 .494 -.0089 -.683 -.0228 .0012 

)21(
3D  1.520 -.257 .0056 1.678 .0036 -.0017 

)12(
1D  -6.322 .284 -.0041 .675 -.0517 .0011 

)12(
2D  12.021 -.695 .0110 -5.439 .4078 -.0075 

)12(
3D  -7.160 .469 -.0076 4.985 -.3894 .0070 

Table 10 Coefficients for eq.(74), ν=0.3. 

8. Application of the weight functions to cone crack problems 

8.1 Hertzian contact stresses 

The cone crack extension can be concluded from the condition of KII=0. Loading of a crack 
by a small mode-II stress intensity factor would result in crack kinking by a small kink angle 
β  

  
I

II

K
K2−≅β   (76) 

The new crack turns into the direction for which a disappearing mode-II stress intensity factor 
exists.  
Using the weight functions, eqs.(71a) and (71b), the mixed-mode stress intensity factors KI 
and KII of a cone crack were determined for the case of c/a=4 (a= radius of the Hertzian con-
tact zone, Fig. 29c) under Hertzian contact stresses. Due the existence of the mixed weight 
function terms h12 and h21, it is a priori impossible that a cone crack can follow the stress tra-
jectories for a given value of ν.  
The resulting mixed-mode ratio KII/KI as a function of the cone angle and the Poisson’s ratio 
is shown in Fig. 32 by the squares (interpolation of Tables 1-8) and the solid curves (use of 
eqs.(73) and (76)). The dashed curves were obtained by using the asymptotic weight functions 
eqs.(68) and (72) exclusively. Whereas the stress intensity factors for the two asymptotic rela-
tions differed slightly, the ratio of the stress intensity factors for the two solutions was found 
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to be identical within the line thicknesses. From the numerical results, it can be concluded that 
the mode-II stress intensity factor contribution disappears at cone angles of ϕ ≈ 18-23°, de-
pending on the special value of ν in the range of 0.15≤ν≤0.25, whereas application of the as-
ymptotic weight function solutions according to eqs.(68) and (72) yields disappearing mode-II 
stress intensity factors at clearly larger cone angles (e.g. 33° for ν=0.25 and 37° for ν=0.2). It 
should be mentioned that the major influence of Poisson’s ratio is reflected by the Hertzian 
stresses which are more strongly influenced by ν than the weight function. 
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Fig. 32 a) and b) Mixed-mode ratio KII/KI of cone cracks, computed for sphere loading and several 

values of ν and c/a. Symbols: application of the full weight function, Tables 1-8, solid curves: eqs.(73) 
and (74), dashed curves: asymptotic weight functions according to (68) and (72). 

8.2 Stresses under a flat stamp 

The same computations as for sphere loading were performed for the case of a cone crack 
introduced by load applied via a flat rigid stamp. The stresses in this case were given by Sned-
don [18].  
The results obtained with the complete weight function (solid curves: from eqs.(73) and (74), 
squares: coefficients D from Tables 1-8) and the asymptotic weight functions (dashed curves) 
are plotted in Fig. 33a. In Fig. 33b the results for sphere and stamp loading are compared. No 
significant differences between the two different loading types are visible. 
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Fig. 33 a) Mixed-mode ratio KII/KI of cone cracks, computed for stamp loading and several values of ν 
and c/a=4. Symbols: use of the full weight function, Tables 1-8, solid curves: equations (73) and (74), 
dashed curves: asymptotic weight functions according to eq.(68) and eq.(72); b) influence of Poisson’s 

ratio on cone crack angles (solid curve: sphere loading, dashed curve: stamp loading). 

8.3 Principal effect of a rising crack growth resistance 

The computations with respect to cone cracks reported above were performed under the as-
sumption that the stress intensity factor at the crack tip Ktip, which governs crack extension 
and crack deflection, is identical with the applied stress intensity factor Kappl, i.e. a material 
without rising crack resistance curve is considered, for instance glass. In the case of a material 
with a rising crack resistance curve (R-curve), the effective stress intensity factor Ktip is given 
by 

 shappltip KKK +=  (77) 

where the shielding stress intensity factor Ksh has the opposite sign of Kappl and may be caused 
by crack face bridging. Such bridging effects will reduce the applied stress intensity factor 
under both mode-I and mode-II conditions. In the latter case, the crack path condition is ob-
tained as 

 0,,, =+= shIIapplIItipII KKK  (78) 

For a material with an R-curve effect, the cone angles must deviate from the value of ϕ=21° 
with increasing “strongness” of the shielding effect. In this context it should be mentioned 
that materials with increasing R-curve behaviour exhibit increasing cone angles. Zeng et 
al.[19, 20] performed measurements on soda-lime glass, fine-grained alumina and an 
Al2O3/SiC whisker composite. The results were: glass ϕ≈22°, fine grained Al2O3 ϕ≈26°, and 
whisker composite ϕ≈28-31°. 
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8.4 T-stresses for line loads 

Apart from the two stress intensity factor contributions KI and KII, also the T-stress for the 
line loads P and Q was determined. It is worth mentioning that under a pure shear load Q also 
a T-stress occurs. The results are plotted in Fig. 34 and compiled in Tables 11 and 12. Tables 
13 and 14 contain the data for ν=0.3. 
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Fig. 34 T-stress for loading by normal (P) and shear (Q) line loads. 
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ϕ x/c b/c=0.1 0.2 0.3 

.0667 3.1037 5.0872 7.1512 

.2000 5.2679 6.9221 8.6446 

.4000 7.0179 8.0884 9.2588 

.5000 7.0762 7.8736 8.7819 

.7000 5.4010 5.7506 6.1992 

.9000 1.9213 2.0022 2.1127 

15° 

.9900 .6050 .6633 .6638 

.0667 .9670 1.6163 2.3132 

.2000 1.6575 2.2053 2.7920 

.4000 2.1977 2.5492 2.9485 

.5000 2.1883 2.4442 2.7514 

.7000 1.5880 1.6834 1.8256 

.9000 .7147 .7066 .7233 

22.5° 

.9900 .4177 .3639 .3119 

.0667 .6755 1.0288 1.5982 

.2000 1.1547 1.4023 1.9281 

.4000 1.5301 1.6178 2.0351 

.5000 1.5274 1.5506 1.9014 

.7000 1.1798 1.1228 1.3314 

.9000 .7211 .6457 .7205 

30° 

.9900 .4784 .4091 .4355 

Table 11 T-stress T/(P/c) caused by line force P (ν=0.2). 
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ϕ x/c b/c=0.1 0.2 0.3 

.0667 -.6697 -1.0176 -1.3688 

.2000 -1.2028 -1.5225 -1.8621 

.4000 -1.9557 -2.2181 -2.5326 

.5000 -2.2830 -2.5136 -2.8146 

.7000 -2.6667 -2.8303 -3.1070 

.9000 -1.7260 -1.8310 -2.1211 

15° 

.9900 -.2234 -.3982 -1.1124 

.0667 -.3081 -.4668 -.6282 

.2000 -.5450 -.6848 -.8376 

.4000 -.8258 -.9292 -1.0666 

.5000 -.9025 -.9877 -1.1187 

.7000 -.7397 -.7920 -.9164 

.9000 .4257 .3853 .2241 

22.5° 

.9900 3.6442 3.5377 3.0720 

.0667 -.3115 -.4300 -.6425 

.2000 -.5644 -.6404 -.8697 

.4000 -.8936 -.8891 -1.1419 

.5000 -1.0037 -.9543 -1.2217 

.7000 -.9931 -.8430 -1.1567 

.9000 -.6343 -.2996 -.7867 

30° 

.9900 -.7778 .3782 -1.1000 

Table 12 T-stress T/(Q/c) caused by line force Q (ν=0.2). 
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ϕ x/c b/c=0.1 0.2 0.3 

.0667 3.1749 5.2366 7.3835 

.2000 5.3618 7.0676 8.8470 

.4000 7.0563 8.1525 9.3552 

.5000 7.0629 7.8800 8.8141 

.7000 5.2794 5.6456 6.1136 

.9000 1.7323 1.8305 1.9574 

15° 

.9900 .4190 .4936 .5077 

.0667 .9693 1.6367 2.3560 

.2000 1.6500 2.2090 2.8110 

.4000 2.1434 2.5014 2.9111 

.5000 2.1026 2.3654 2.6824 

.7000 1.4410 1.5468 1.7002 

.9000 .5291 .5357 .5651 

22.5° 

.9900 .2330 .1947 .1527 

.0667 .6953 1.0589 1.6541 

.2000 1.1752 1.4222 1.9682 

.4000 1.5174 1.5972 2.0300 

.5000 1.4882 1.5036 1.8691 

.7000 1.0807 1.0207 1.2441 

.9000 .5681 .4987 .5887 

30° 

.9900 .3051 .2473 .2879 

Table 13 T-stress T/(P/c) caused by line force P (ν=0.3). 
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ϕ x/c b/c=0.1 0.2 0.3 

.0667 -.6697 -1.0176 -1.3688 

.2000 -1.2028 -1.5225 -1.8621 

.4000 -1.9557 -2.2181 -2.5326 

.5000 -2.2830 -2.5136 -2.8146 

.7000 -2.6667 -2.8303 -3.1070 

.9000 -1.7260 -1.8310 -2.1211 

15° 

.9900 -.2234 -.3982 -1.1124 

.0667 -.3081 -.4668 -.6282 

.2000 -.5450 -.6848 -.8376 

.4000 -.8258 -.9292 -1.0666 

.5000 -.9025 -.9877 -1.1187 

.7000 -.7397 -.7920 -.9164 

.9000 .4257 .3853 .2241 

22.5° 

.9900 3.6442 3.5377 3.0720 

.0667 -.3115 -.4300 -.6425 

.2000 -.5644 -.6404 -.8697 

.4000 -.8936 -.8891 -1.1419 

.5000 -1.0037 -.9543 -1.2217 

.7000 -.9931 -.8430 -1.1567 

.9000 -.6343 -.2996 -.7867 

30° 

.9900 -.7778 .3782 -1.1000 

Table 14 T-stress T/(Q/c) caused by line force Q (ν=0.3). 
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8.5 Stress intensity factors and T-stress under Hertzian contact load 

For a Hertzian contact stress of the form 

  2
0 )/(1 axpp −=  (79) 

with maximum pressure p0 in the centre (Fig. 35) and a=b cosϕ (see Fig. 29), the mixed-mode 
stress intensity factors and the T-stress term were determined with the FE method. The K re-
sults are plotted in Fig. 36 and compiled in Table 15. The stress intensity factors are expressed 
by the geometric functions FI and FII as 

 cFpK IIIIII ,0, =  (80) 

The T-stress is illustrated in Fig. 37 and compiled in Table 16. 
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Fig. 35 Cone crack under Hertzian contact pressure. 
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Fig. 36 Geometric functions for mixed-mode stress intensity factors. 
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Fig. 37 T-stress of the cone crack under Hertzian pressure. 

 

ϕ b/c 1000×FI 1000×FII

0.1 0.6849 0.2559 
0.2 2.300 0.9710 

15° 

0.3 4.411 2.073 
0.1 0.7772 0.0140 
0.2 2.590 0.1721 

22.5° 

0.3 4.951 0.6005 
0.1 0.8230 -0.2922 
0.2 2.718 -0.8889 

30° 

0.3 5.150 -1.460 

Table 15 Geometric functions for stress intensity factors (ν=0.2). 

ϕ ν b/c=0.1 0.2 0.3 
0.2 0.2803 1.3323 3.2393 

0.25 0.0793 0.6473 1.9297 
15° 

0.3 -0.1201 -0.0342 0.6243 
0.2 -0.5219 -1.3724 -1.8542 

0.25 -0.6941 -1.9675 -3.0105 
22.5° 

0.3 -0.8604 -2.5444 -4.1349 
0.2 -1.2249 -3.8657 -6.6901 

0.25 -1.3550 -4.3300 -7.6051 

30° 

0.3 -1.4761 -4.7655 -8.4679 

Table 16 Normalised T-stress as 1000×T/p0. 
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