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Summary 

 
 The local failure strains of essential reactor vessel components are investi-
gated. The size influence of the components is of special interest. Typical severe ac-
cident conditions including elevated temperatures and dynamic loads are considered. 
 The main part of work consists of test families with specimens under uniaxial 
and biaxial static and dynamic loads. Within one test family the specimen geometries 
and the load conditions are similar, the temperature is the same; but the size is var-
ied up to reactor dimensions. Special attention is given to geometries with a hole or a 
notch causing non-uniform stress and strain distributions typical for reactor compo-
nents. There are indications that for such non-uniform distributions size effects may 
be stronger than for uniform distributions. Thus size effects on the failure strains and 
failure processes are determined under realistic conditions. 
 Several tests with nominal identical parameters are performed for small size 
specimens. In this way some information is obtained about the scatter. A reduced 
number of tests is carried out for medium size specimens and only a few tests are 
carried out for large size specimens to reduce the costs to an acceptable level. To 
manufacture all specimens sufficient material was available from the unused reactor 
pressure vessel Biblis C consisting of the material 22NiMoCr37. Thus variations of 
the mechanical material properties, which could impair the interpretation of the test 
results, are quite small. This has been confirmed by an adequate number of addi-
tional quality assurance tests. 
 A key problem was the definition of failure and the determination of the local 
strains at failure for very different specimens under varying load conditions. Here ap-
propriate methods had to be developed including the so-called “vanishing gap 
method” and the “forging die method”. They are based on post test geometrical 
measurements of the fracture surfaces and reconstructions of the related strain fields 
using finite element calculations, for instance. 
 To deepen the understanding of structural degradation and fracture and to allow 
extrapolations, advanced computational methods including damage models have 
been developed and validated. The problems to be treated here are quite difficult. 
Micro-structural effects, for instance, play an important role. Therefore several ap-
proaches were tried in parallel. In some cases so-called non-local concepts, in other 
cases the description of stochastic properties at the grain size level are considered. 
 The experimental results indicate that stresses versus dimensionless deforma-
tions are approximately size independent up to failure for specimens of similar  
geometry under similar load conditions. Also the maximum stress is approximately 
size independent, if failure occurs after the maximum stress is reached. 
 Cracks are initiated, if the local equivalent strain – here expressed as a true or 
logarithmic strain, respectively – reaches a critical value, called the local failure 
strain. It turned out to be more than 50 % for large specimens approaching the di-
mensions of the reactor pressure vessel. 
 The local failure strains are size dependent. They reach values around 150 % 
for small specimens with thicknesses or diameters of a few millimetres. 
 The parameter describing the size effect is the radius of holes or notches  
located in critical specimen regions. It is very remarkable and it simplifies the applica-
tions that the shape of the specimen and the type of load plays a minor role, only. 
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 Some of the above findings about size effects can be understood by theoretical 
investigations considering the stochastic, micro structural character of the material. 
However quantitative predictions based on micro structural models are still beyond 
the current knowledge. 
 As expected, the scatter of the results on structural failure is considerable. 
However statistical evaluations indicate that the failure strains will hardly fall below a 
lower threshold. 
 Thus limit strains, i.e. limit values for true equivalents strains depending on the 
hole or notch radius in the critical specimen region could be proposed. These limit 
strains are valid for temperatures up to 400 °C. Dynamic loads are included. Limit 
strains for higher temperatures up to 850 °C are also discussed but their reliability is 
restricted. If in severe accidents the proposed limit strains will not be exceeded, it can 
be assumed that the structure will not fail. 
 Using the limit strains – or acceptable strains – a more realistic strain based 
evaluation concept can be employed for structural mechanics analyses of severe  
accident consequences. Furthermore the results on size effects will help to examine, 
whether findings from small scale model experiments can be converted to reactor 
conditions. 
 The applicability of the results can be extended to other geometries and load 
conditions by using the recommended theoretical models. However, in any case, 
care must be taken when the stress triaxiality is higher than in the LISSAC speci-
mens. In this case the failure strain may decrease significantly. 
 A remarkable worth mentioning result is, that under excessive load large frag-
ments of structures can be completely torn off to become missiles. This happened in 
a biaxial test under quasi static load provided by (almost incompressible) pressurized 
oil. 
 Application of the proposed limit strains to selected severe accident problems 
shows that the admissible load increases by a factor between 1.25 and about 2.0 in 
comparison to using state-of-the-art rules. 
 There will be two types of benefits. It will now be possible to show that addi-
tional very severe accidents can be carried by the structures; without the LISSAC re-
sults the consequences of these accidents could hardly be assessed. On the other 
hand, certain structural improvements planned to harden the facility against severe 
accidents might now turn out to be not necessary. 
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Dehnungsgrenzen für Materialbeanspruchungen bei schweren  
Unfällen – ausführlicher Abschlussbericht 

 
Zusammenfassung 

 
 Die lokalen Versagensdehnungen wesentlicher Komponenten des Reaktor-
druckbehälters werden untersucht. Der Größeneinfluss der Komponenten ist von be-
sonderem Interesse. Typische Unfallbedingungen wie erhöhte Temperaturen und 
dynamische Beanspruchungen werden berücksichtigt. 
 Hauptteil der Arbeiten sind Testfamilien mit Materialproben unter ein- und mehr-
achsiger statischer und dynamischer Belastung. Innerhalb einer Testfamilie ist die 
Probengeometrie ähnlich und die Temperatur ist gleich; nur die Probengröße wird 
variiert bis hin zu Reaktorabmessungen. Die meisten Proben enthalten ein Loch oder 
eine gerundete Kerbe. Die dadurch hervorgerufenen ungleichmäßigen Spannungs- 
und Dehnungsverteilungen sind typisch für Reaktorkomponenten. Es gibt Hinweise, 
dass für solche ungleichmäßigen Verteilungen der Größeneinfluss besonders aus-
geprägt ist. 
 Bei Proben mit kleinen Abmessungen werden mehrere Tests mit nominell iden-
tischen Parametern durchgeführt. Dadurch ist es möglich auch Informationen über 
die Streuung der Ergebnisse zu gewinnen. Bei Proben mit mittleren Abmessungen 
werden nicht ganz so viele Tests und bei Proben mit großen Abmessungen wird je-
weils nur ein Test durchgeführt. Zur Herstellung der Proben stand Material 
22NiMoCr37 vom nicht benutzten Reaktordruckbehälter Biblis C zur Verfügung. Da-
durch war es möglich, die störenden Variationen der mechanischen Materialeigen-
schaften klein zu halten. Dies wird durch begleitende Materialstichproben bestätigt. 
 Ein Schlüsselproblem war die Definition und Bestimmung der lokalen 
Versagensdehnungen für die sehr unterschiedlichen Geometrien und Testbedingun-
gen. Hierzu mussten spezielle Methoden wie zum Beispiel die „vanishing gap me-
thod“ oder die „forging die method“ entwickelt werden. Sie beinhalten geometrische 
Vermessungen der Bruchoberflächen nach den Tests und erlauben die Rekonstruk-
tion der Dehnungsfelder in den Proben beim Rissbeginn – beispielsweise mit Hilfe 
von Finite-Elemente-Rechnungen. 
 Um das Verständnis der beobachteten Materialschädigungen und der Bruch-
vorgänge zu vertiefen, wurden fortgeschrittene theoretische Modelle entwickelt und – 
wenn möglich – validiert. Dazu gehören unter anderem so genannte „non-local con-
cepts“, aber auch Modelle, die die stochastischen Materialeigenschaften der einzel-
nen Körner berücksichtigen. Derartige Modelle sind bei der Extrapolation zu anderen 
Beanspruchungsbedingungen hilfreich. 
 Die experimentellen Ergebnisse zeigen, dass für ähnliche Probengeometrien 
und Belastungsbedingungen die Spannungen über den dimensionslosen Verformun-
gen nahezu größenunabhängig sind – bis zu den jeweiligen größenabhängigen 
Versagenspunkten. Damit ist auch die Maximalspannung näherungsweise größenu-
nabhängig, vorausgesetzt Versagen erfolgt nachdem die Maximalspannung erreicht 
wurde. 
 Risse werden initiiert, wenn die lokale Vergleichsdehnung – hier formuliert als 
„wahre“ bzw. „logarithmische Dehnung“ – einen kritischen Wert erreicht. Dieser kriti-
sche Wert wird als lokale Versagensdehnung definiert. Für große Proben im Bereich 
der Reaktorabmessungen beträgt sie mehr als 50%. 
 Die lokale Versagensdehnung ist größenabhängig. Für kleine Proben mit Di-
cken oder Durchmessern im Millimeterbereich erreicht sie etwa 150%. 
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 Der die Probengröße beschreibende Parameter ist der Radius der Löcher und 
Kerben in den Proben. Die sonstige Form der Proben und die Art der Belastung hat 
dagegen nur geringen Einfluss. Dies ist bemerkenswert und erleichtert die praktische 
Nutzung der Ergebnisse. 
 Die experimentellen Erkenntnisse können mit Hilfe theoretischer Modelle ver-
standen werden, die die Existenz von Material-Mikrostrukturen berücksichtigen. 
Versagensprognosen mit Modellen die die Material-Mikrostrukturen im Detail abbil-
den sind derzeit jedoch noch nicht möglich. 
 Wie erwartet sind die Streuungen der ermittelten lokalen Versagensdehnungen 
erheblich. Statistische Bewertungen zeigen jedoch, dass die lokalen Versagensdeh-
nungen einen unteren größenabhängigen Grenzwert nicht unterschreiten. 
 Damit war es möglich größenabhängige, d.h. vom Loch- oder Kerbradius ab-
hängige Dehnungsgrenzen vorzuschlagen. Diese gelten für Temperaturvariationen 
zwischen Raumtemperatur und 400 °C sowie auch für dynamische Belastungen. 
Dehnungsgrenzen für höhere Temperaturen bis 850 °C werden diskutiert. Wenn bei 
schweren Unfällen die vorgeschlagenen Dehnungsgrenzen nicht überschritten wer-
den, darf angenommen werden, dass die Bauteile nicht brechen. 
 Mit Hilfe von Dehnungsgrenzen ist es möglich für schwere Unfälle ein wesent-
lich realistischeres, auf Dehnungen basierendes Bewertungskonzept anzuwenden. 
Ferner ist es jetzt möglich zu entscheiden, inwieweit experimentelle Ergebnisse von 
kleineren Reaktormodellen auf reale Rektorabmessungen übertragbar sind. 
 Unter Beachtung der theoretischen Untersuchungen sind auch Anwendungen 
auf andere Geometrien und Beanspruchungsbedingungen möglich. Vorsicht ist je-
doch geboten, wenn die Dreiachsigkeit des Spannungszustandes größer ist als bei 
den hier untersuchten Proben. In diesem Falle können die Versagensdehnungen 
erheblich abnehmen. 
 Es soll auch erwähnt werden, dass bei Überbelastung von Bauteilen Bruchstü-
cke abgetrennt und weggeschleudert werden können. Dies wurde demonstriert beim 
Test einer zweiachsigen Probe unter quasi-statischer Belastung (Druckbelastung 
durch nahezu inkompressibles Öl). 
 Die Anwendung der vorgeschlagnen Dehnungsgrenzen auf ausgewählte struk-
turmechanische Probleme bei schweren Unfällen zeigt, dass im Vergleich zu den 
bisherigen Bewertungsmethoden, die noch hinnehmbare Belastung um einen Faktor 
zwischen 1.25 und etwa 2.0 zunimmt. 
 Die Ergebnisse können auf zweierlei Weise einen Gewinn bedeuten. Es wird 
jetzt möglich sein zu zeigen, dass von den gegenwärtigen Anlagen weitere schwere 
Unfälle beherrscht werden können. Ferner ist es denkbar, dass diskutierte sicher-
heitstechnische Nachbesserung sich jetzt als überflüssig erweisen. 
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1 OBJECTIVES AND SCOPE 
 

1.1 Overview  
 In last years postulated severe reactor accidents with only a very small probabil-
ity to occur have been investigated quite extensively. They are expected to cause 
excessive loads on the reactor pressure vessel. Advanced structural mechanics 
codes considering nonlinear geometry and material effects allow rather detailed pre-
dictions of the resulting plastic strain fields in the walls of the reactor pressure vessel. 
However little information is available about plastic strains causing failure. Conse-
quently, reasonable limit strains which should be acceptable under severe accident 
conditions are lacking, too. 
 Current rules like the ASME code are mainly stress based concepts and allow 
only small plastic strains, which is appropriate for design basis accidents. Application 
of these rules for very unlikely severe accidents, however, would yield over-
conservative results. The predicted consequences would include unrealistic severe 
scenarios. 
 Therefore in the current project the local failure strains of essential reactor ves-
sel components are investigated. The size influence of the components is of special 
interest. Typical severe accident conditions including elevated temperatures are con-
sidered. 
 The main part of work consists of test families with specimens under uniaxial 
and biaxial static and dynamic loads. Within one test family the specimen geometries 
and the load conditions are similar, the temperature is the same; but the size is var-
ied up to reactor dimensions. Special attention is given to geometries with a hole or a 
notch causing non-uniform stress and strain distributions typical for reactor compo-
nents. There are indications that for such non-uniform distributions size effects may 
be stronger than for uniform distributions. Thus size effects on the failure strains and 
failure processes can be determined under realistic conditions. 
 Several tests with nominal identical parameters are planned for small size 
specimens. In this way some information will be obtained about the scatter. A re-
duced number of tests is carried out for medium size specimens and only a few tests 
are carried out for large size specimens to reduce the costs to an acceptable level. 
For all specimens sufficient material is available from the unused reactor pressure 
vessel Biblis C. Thus variations of the mechanical material properties, which could 
impair the interpretation of the test results, can be expected to be quite small. Never-
theless, an adequate number of additional quality assurance tests are planned to 
check the material homogeneity. 
 To deepen the understanding of structural degradation and fracture and to allow 
extrapolations, advanced computational methods including damage models will be 
developed and validated. The problems to be treated here are quite difficult. Micro-
structural effects, for instance, play an important role. Therefore several approaches 
will be tried in parallel. In some cases so-called non-local concepts, in other cases 
the description of stochastic properties at the grain size level are considered. 
 Based on the results from the present research program and considering the 
findings in the literature and the experience collected in industry, limit strains will be 
proposed for severe accident conditions. Using these limit strains – or acceptable 
strains – a more realistic strain based evaluation concept can be employed for struc-
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tural mechanics analysis of severe accident consequences. Furthermore the results 
will help to examine, whether findings from small scale tests can be converted to re-
actor conditions. 
 For demonstration some selected structural mechanics investigations will be 
performed for severe accident conditions. 
 

1.2 State-of-the-art report 
 It is well established experimentally that for some steels the stress for initiation 
of yielding decreases with increasing size of the specimens. Even more importantly 
also the local strains causing failure decrease with increasing specimens, accompa-
nied by scatter. Investigations of such size effects date back to early times of material 
testing. 
 A limited review of scaled experiments at room temperature of geometrically 
similar specimens made of different steels has recently been prepared within the EU-
project REVISA [1]. It refers to the size dependence of the initiation of yielding under 
non-uniform states of deformation and of the plastic deformation and fracture of 
smooth tensile specimens. Here only two outcomes are mentioned. The experimental 
studies related to the first issue frequently showed an increase of the yield stress 
when the size is decreased. Further, the second issue revealed another size effect 
which indicates an increase of the area reduction after fracture with decreasing 
specimen size; this has also been found in corresponding experiments of the 
REVISA project [2] and this latter trend has also been observed recently in tensile 
tests of sub-size specimens where surface layer effects have been eliminated by 
electro-polishing [3]. 
 In the domain of micro-plasticity the micro-hardness indentation size effect (in-
crease of hardness with decreasing indenter size) has recently attracted consider-
able attention [4 – 9]; also the increase of flow stress in plastic deformation with the 
decrease in size was demonstrated for the micro-bending of thin foil specimens [10]. 
 In brittle or quasi-brittle materials, like concrete, the size effect in fracture is 
more evident and has been studied intensively [11]. 
 But also for ductile materials sharp notches or cracks (resulting from fatigue or 
stress corrosion) clearly represent a great danger for fracture and the size depend-
ence of the fracture stress, failure strain, and also the energy dissipation capability of 
geometrically similar specimens has been studied (e.g. [12 – 23]). These studies 
generally demonstrated an increased load carrying capacity and ductility with de-
creasing size. 
 However, an increasing number of engineering problems require the determina-
tion of failure loads and deformations of structures containing design typical strain 
concentrators like bore holes, perforations or blunted notches and no sharp notches 
or cracks. Some testing of geometrically similar specimens of this type but with a 
relatively small range of sizes has been done, e.g. [24 – 26]. One of the recent con-
tributions was part of the EU project REVISA. An overview is given in [27]. The re-
sults obtained so far show increased ductility and scatter for the smaller specimens. 
However, it appears that systematic testing for a variety of specimen shapes and 
especially over a large range of sizes (geometric scale factor larger than 10 and up to 
full size conditions) has not been done yet. 
 It is rather obvious that the various size effects phenomena are related to differ-
ent micro-mechanical processes and thus different theoretical models should apply. 
Accordingly, various theoretical attempts have been made or are in a stage of devel-
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opment to account for the observed size effect in material response. It should be 
mentioned that some of these theoretical concepts originally have been introduced to 
cope with the "non well posedness" of the more classical material models, which 
arises when material softening is taken into account. Generally the advanced theo-
ries implicate terms which are associated with internal length scales characteristic for 
the material microstructure. They account in different ways for interactions or hetero-
geneity over a small but finite material domain on a phenomenological level, still 
treating the material as a continuum. The interaction between the geometric length of 
the specimen and the internal length (associated with the underlying microstructure) 
causes a size-dependent response. 
 For example, for pre-existing sharp cracks or for sharp notches Linear Elastic 
Fracture Mechanics or Elastic-Plastic Fracture Mechanics provide a means to cap-
ture some size effects; these theories introduce the size dependence via the choice 
of the fracture criterion without explicitly using an internal material length (instead, a 
pre-assumed crack length enters into the formulation). To account for size effects in 
purely plastic deformations, the proposed theories involve internal length scales via 
integral or gradient terms in the stress-strain relations and/or yield condition  
(e.g. [1, 28 - 34]). For the treatment of ductile failure and its size dependence a mod-
elling of the damage (a usually scalar variable associated to the void fraction) cou-
pled to the stress-strain relations is necessary. Accordingly, the evolution equation 
for the "damage" internal variable may be enriched by gradient terms accounting for 
diffusion [35] or may involve integral measures of state variables, for example a 
(weighted) integral of the local damage variable over a small but finite size material 
volume (e.g. [26]). Further, some concepts account for the heterogeneity by introduc-
ing an "internal length" via the finite element mesh size which is defined by the aver-
age distance of inclusions (e.g. [24]). Also size dependence and scatter may be 
modelled by the introduction of statistical distributions of some material parameter of 
the constitutive model (e.g. [24]). 
 Although some of the models involving internal length scales have been 
matched successfully to a restricted range of experimental results (e.g. [23, 24, 26, 
28, 30 - 34]), most of them require essential further developments. This may refer to 
different aspects: The motivation from micro-mechanics concepts and the embedding 
in a continuum-thermodynamics framework, the qualitative understanding and trend 
assessment of the effects of the non-classical terms by utilising the solutions of sim-
ple boundary values problems, the numerical solutions with mesh-independent and 
convergent numerical schemes, the identification of the material parameters  - asso-
ciated with the internal length scales -  using suitable experimental results, and test-
ing of their predictive capability by comparison with experimentally observed size ef-
fects in deformation and failure on a family of geometrically similar specimens of the 
same material. 
 
It should be mentioned that this state-of-the-art report provides only a short overview. 
A more detailed overview has been documented by Malmberg in SAM-LISSAC 
D037. It is planned to publish this overview in a further FZKA report. 
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2 RESEARCH PROGRAM 
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2.1 Planned experimental work 
 

2.1.1 Preparation of the specimens 
 
2.1.1.1 Definition of test families 
 As already mentioned, the test families include typical design elements and load 
cases of a reactor pressure vessel under severe accident condition. An overview of 
the test families is given in Fig. 2.1.1-1. It starts with the most important family, the 
flat specimens with a hole at room temperature (RT) under (quasi) static load 
(Fig. 2.1.1-1, upper part, left hand side). The ratio between the hole diameter and the 
wall thickness is about the same as the ratio between the holes for the control rod 
drive mechanisms at the upper vessel head and the wall thickness of this head. 
 

➮

➭

Flat specimen
with hole

static, R.T.
static, 400˚C
static, 850˚C

dynamic, R.T.
dynamic, 400˚C
dynamic, 850˚C

➮

➭

Flat specimen
with slot

static, R.T.

➮

➭

Flat specimen
with increased hole

static, R.T.

➮

➭
Flat specimen
with notches

static, R.T.
static, 400˚C

➭

❍

❍ ❍

Bending specimen
with notch

static, R.T.

➭

❍

❍ ❍

Bending specimen
with slot

static, R.T.

➮

➭

Circular specimen
with notch

static, R.T.
static, 400˚C
static, 850˚C

dynamic, R.T.
dynamic, 400˚C
dynamic, 850˚C

➩

➩

➩
➮ ➮ ➮

➭ ➭ ➭

➪

➪

➪

Flat biaxial specimen
with (and without) hole

dynamic, R.T.

Curved biaxial specimen
without holes

static, R.T.
dynamic, R.T.

Curved biaxial specimen
with holes

static, R.T.
dynamic, R.T.

 
 
Fig. 2.1.1-1: Overview of the test families 
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 One group of neighbouring families are based on the same specimen shape, 
but the temperatures are elevated to 400 °C and 850 °C, and dynamic loading is 
considered, too (the same symbolic drawing). The temperature of 400 °C may be 
reached in the upper part of the vessel during a severe accident. Much higher tem-
peratures may be reached in the lower part of the vessel; the value of 850 °C was 
chosen since it is above the phase change of the material, but on the other hand this 
temperature is still in the region where the experimental effort is acceptable. 
 Other neighbouring families adress variations of the hole in the flat specimens 
(Fig. 2.1.1-1, upper part, center). The variations include an increased hole, a slot, 
and notches. To limit the number of test families, the variation of temperature is re-
stricted and only static load is considered. 
 Neighbouring families are also the bending specimens with a wide notch (half a 
hole) and a narrow notch (half a slot), (Fig. 2.1.1-1, upper part, right hand side). For 
these specimens the peak stresses and strains at the notches are intensified in com-
parison to the tension tests discussed before. Tests are only performed at room tem-
perature under (quasi) static load. 
 A bigger step concerning the geometry are the families of circular specimens 
with notch (Fig. 2.1.1-1, lower part, left hand side). These families are not very typical 
for a reactor pressure vessel, but they provide some kind of bridge to the standard 
tension specimens which have also circular shapes. Elevated temperatures and dy-
namic loading are considered. 
 It should be pointed out, that the geometrical variations introduced above follow 
a certain pattern as indicated in Fig. 2.1.1-2. This is expected to be helpful for the in-
terpretation of the results. For instance, if the findings for circular specimens would 
significantly deviate from the findings for other specimens, one could conclude that 
this is primarily due to the circular character and not due to the notch. 
 Another big step toward real geometry and loading are the families of flat and 
curved biaxial specimens under static and dynamic load (Fig. 2.1.1-1, lower part). 
The performance of these tests is expensive and requires special testing equipment. 
To limit the expenses, tests will be done at room temperature, only. 
 
 For each of the 24 test families discussed above, the specimen shape is the 
same, but the specimen size is varied. For the most important test family, the flat 
specimens with a hole at room temperature under static load, the most extended size 
variation are considered. As indicated in Fig. 2.1.1-3, the smallest specimen has a 
thickness of 4 mm, the largest has a thickness of 200 mm which is about the wall 
thickness of a reactor pressure vessel. For the test families of circular specimens 
with notch very extended size variations are considered, too; the smallest diameter is 
3 mm, the largest 150 mm. 
 A complete list of all the tests including the number of tests with nominal identi-
cal parameters is presented in chapter 2.1.2 and 2.1.3.  
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t
1.25t

r

0.25t t

r

r=0.05t 0.8t

r

r=0.45t

Flat specimens  ( thickness t )

with hole with slot with increased hole

with notches

Bending specimens  ( thickness t )

with notch with narrow notch

Circular specimens  ( diameter 2.5t )

with notch

 
 
 
 
Fig. 2.1.1-2: Variations of the specimen shapes following a certain pattern 
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Fig. 2.1.1-3: Flat specimens with a hole.  
    The smallest specimen has a thickness of 4 mm,  
    the largest a thickness of 200 mm 
 
 
2.1.1.2 Manufacturing of the specimens 
 In order to exclude the interference with other phenomena like variations of the 
mechanical properties of the material, all specimens are manufactured from material 
of the cylindrical section of the unused reactor pressure vessel Biblis C consisting of 
the material 22NiMoCr37. In addition, the mechanical material properties will be care-
fully monitored by a large number of material qualification test. In order to minimize 
the influence of remaining variations of the material properties, the (unshaped) 
specimens belonging to one test family will be taken from the same region of the cy-
lindrical section of the reactor pressure vessel. 
 FZK will deliver the unshaped specimens, the partners doing the tests are re-
sponsible for manufacturing the specimens. There is one exception: VTT performing 
the biaxial tests with curved specimens under static load will receive the machined 
specimens from FZK. 
 Manufacturing tolerances of the specimens are given such that the effects on 
the results can be expected to be in the one-percent region; for the very small speci-
mens this requirement could not always be met. Manufacturing processes for the 
specimens will be chosen such that surface hardening is minimized in sensitive re-
gions (hole and notch surfaces). Therefore the partners agreed to manufacture the 
small specimens in the same shop. Small holes or notches will be produced using ei-
ther new and very sharp cutting tools or by electro erosion. 
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2.1.2 Uniaxial tests  
 In the following tables the partner is mentioned who performs the test. The digit 
below indicates the number of nominal identical tests planned, the digit in parenthe-
sis indicates deviations of the number of tests which have been really carried out. 
 
2.1.2.1 Tension tests under static load 

Flat specimen with hole, static load

temperature
thickness t

 4 mm  20 mm  40 mm  80 mm  200 mm

 R.T.  FZK  FZK/MPA  FZK/MPA  MPA  FZK/MPA
 5  2,2(2,3)  1  1  1

 400˚C  EMPA  EMPA  FZK/MPA  MPA
 5(6)  2  1  1

 850˚C  EMPA  EMPA  MPA
 3  2  1

thickness t

6t

 r=
0.25t

2.5t

Flat specimen with increased hole, static load

 R.T.  FZK  FZK  MPA
 5  2(3)  1

 r=
0.45t

Flat specimen with slot, static load

 R.T.  FZK  FZK  MPA
 5(6)  2(3)  10.5t

 r=
0.05t

Flat specimen with notches, static load

 R.T.  FZK  FZK  MPA
 5(6)  2(3)  1

 400˚C  EMPA  EMPA
 5(6)  2

 r=
0.25t

Circular specimen with notch, static load

temperature
diameter D

 3 mm  9 mm  20 mm  150 mm

 R.T.  FZK/JRC  FZK  MPA  MPA
 5(5,4)  (4)  2  1

 400˚C  EMPA/JRC  EMPA  MPA  MPA
 5(6,4)  (4)  2  1

 850˚C  EMPA/JRC  EMPA  MPA  MPA
 5(6,3)  (4)  2(4)  1

6D

 r=
0.1D

∅ D
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2.1.2.2 Bending tests 
 

Bending specimen with notch, static load

temperature
thickness t

 4 mm  20 mm  40 mm  80 mm  200 mm

 R.T.  EMPA  EMPA  EMPA
 5(3)  2  1

thickness t

(5t,6t)

 r=
0.25t

1.
25

t

Bending specimen with narrow notch, static load

 R.T.  EMPA  EMPA  EMPA
 5(4)  2  1(2)

 r=
0.05t

0.
25

t

 
 
 
 
 
2.1.2.3 Tension tests under dynamic load 
 

Flat specimen with hole, dynamic load

temperature
thickness t

 4 mm  20 mm  40 mm  80 mm  200 mm

 R.T.  JRC  JRC
 3(4)  3(2)

 400˚C  JRC  JRC
 3(2)  3(2)

 850˚C  JRC  JRC
 3  3(2)

thickness t

6t

 r=
0.25t

2.5t

Circular specimen with notch, dynamic load

temperature
diameter D

 3 mm  9 mm  20 mm  150 mm

 R.T.  JRC  JRC
 3(4)  2

 400˚C  JRC  JRC
 3(4)  2

 850˚C  JRC  JRC
 3  (2)

6D

 r=
0.1D

∅ D  
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2.1.3 Biaxial tests  
 
2.1.3.1 Tests with curved biaxial specimens under static load 
 
 

Curved biaxial specimen without hole, static load

temperature
thickness t

 5 mm  25 mm

 R.T.  VTT  VTT
 3  1

Curved biaxial specimen with holes, static load

 R.T.  VTT  VTT
 3  1

h

H

R

 t

∅  D

  ∅  2r
r=0.2t

s

s

[mm] R D H h s
t=5 55.6 90.6 45.2 22 4.6
t=25 278 453 226 110 23  

 
 
 
 
 
 
2.1.3.2 Tests with curved biaxial specimens under dynamic load 
 
 

Curved biaxial specimen without hole, dynamic load

temperature
thickness t

 5 mm  25 mm

 R.T.  FZK  FZK
 3(4)  2

Curved biaxial specimen with holes, dynamic load

 R.T.  FZK  FZK
 3  2

h

H

R

 t

∅  D

  ∅  2r
r=0.2t

s

s

[mm] R D H h s
t=5 55.6 90.6 45.2 22 4.6
t=25 278 453 226 110 23  
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2.1.3.3 Tests with flat biaxial specimens under dynamic load 
 
 

Flat biaxial specimen without hole, dynamic load

temperature
thickness t

 4 mm  8 mm

 R.T.  JRC
 2

 r=
0.25t

❒ 20t

Flat biaxial specimen with holes, dynamic load

 R.T.  JRC  JRC
 2  2(0)

 
 
 
 The strain distributions obtained are not equi-biaxial. Displacements are applied 
only in one direction (in the drawing it is the vertical direction indicated by bigger ar-
rows), while displacements are suppressed by appropriate clamping devices in the 
other direction (smaller arrows). 
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2.2 Planned theoretical work 
 
 Within LISSAC several theoretical models will be developed or available models 
will be examined. The aim is to 

•  predict size effects on failure strains and deformation behaviour. 
•  explain the theoretical background of the size effect. 

 The large number of different approaches is necessary since no established 
models are currently known which are able to describe the experimental observed 
size effects. Of course, it cannot be expected that all examined models will succeed 
in describing the experimental findings. Furthermore some of the theoretical models 
are considered to address only special effects and not to yield general predictions. 
 

2.2.1 Gradient models  
 Gradient enriched plasticity and damage models will be examined whether they 
are able to describe the experimentally observed size effects in deformation and fail-
ure. These theories enhance classical models by integral- or gradient-terms of state 
variables and introduce additional material parameters which can be associated with 
internal length scales characteristic for the material. 
 The objective of this theoretical work is the development, analysis and applica-
tion of such models; this implies an evaluation of their theoretical consistency and an 
assessment of their qualitative and quantitative properties as well as their ability to in-
terpret experimentally observed size effects. 
The following work is planned within LISSAC project: 

•  Employ gradient models for plasticity introduced by Aifantis and co-workers 
and also Fleck and co-workers. Furthermore generalize internal variable mod-
els (damage) with diffusive transport, analyze the relative importance of gradi-
ent terms and calibrate the models in terms of gradient coefficients and asso-
ciated boundary conditions using solutions of simple loading configurations, 
parameter calculations and available experimental data on size effects; as-
sess an available numerical scheme to solve non-classical boundary value 
problems related to the experimental part of the program. Due to the lack of 
time and material parameters the physical origin of the gradient terms could 
not be clarified by using microscopic arguments and macroscopic self-
consistent models. 

•  Characterize computationally with the finite element method the ductile failure 
process using gradient plasticity models and develop a non-local damage 
model (modified Gurson model). Identify the corresponding material parame-
ters and qualify the models using available experiments. 

•  Develop a thermodynamically consistent plasticity and gradient enhanced 
damage model (extension of the energy equivalent hypothesis of Sidoroff et 
al.) for large deformations; identify restrictions on the structure of this gradient 
damage model within a continuum thermo-mechanics setting. 
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2.2.2 Stochastic models 
 Models and methodologies which account for the heterogeneity evolution in 
plastic flow or damage should be improved or developed in this work package. The 
failure strains observed in the experiments including the scatter should be predicted. 
The results should be used to interpret the experimental findings.  
The following work is planned within LISSAC project: 

•  Extend a damage model by evolution equations for higher order statistical 
moments of the void density. These moments should be treated as spatially 
correlated. Instead of the planned Gurson model a modified Lemaitre ap-
proach is used. A stochastic term is added to the flow function to describe the 
material behaviour. During the duration of the project it has be realised that 
this approach was not able to predict the experimental findings and so an in-
terpretation of the experimental results was not possible. 

•  The formulation of a slightly more general stochastic model for void nucleation 
and growth and the comparison with the Gurson model and the gradient ap-
proach to damage could not be realized due to personal problems. 

•  Perform a numerical simulation of the stochastic grain structures using the 
Vornoi tessellation method. Investigate the influence of various stress profiles. 

 

2.2.3 Local approach models  
 Local approach models in the classical sense use also aspects of the discrete 
nature of material (Intrinsic length scales such as distance and/or size of inclusions, 
grain size, etc.) for material characterization. Further, the numerical discretisation 
(e.g. FEM) is coupled to these intrinsic length scales.  
 Also more conventional elasto-plastic damage models which are not related to 
intrinsic length scales (size invariant models) should be utilized to simulate the ex-
periments of the project. 
The following work is planned within LISSAC project: 

•  Determine the material parameters of the elastic-plastic Rousselier damage 
model from test of small standard laboratory specimens; extend the model to 
simulate dynamic tests; assess quality of numerical simulations for differently 
sized specimens by comparison with experimental results of the project. The 
visco-plastic material law for the high temperature cases could not be used 
due to the lack of high temperature material characterisation. 

•  Incorporate a continuum damage model into a general purpose finite element 
program, determine constitutive parameters using small standard laboratory 
specimens and use available software, apply the model to other experiments. 
In the project the Gurson-Tvergaard-Needleman model is used as continuum 
damage model but the achieved results are not satisfactory. Due to this the 
gradient model in cooperation with the Gurson approach developed in WP6 is 
used for this task. 

•  Compare the results of the different models with the experiments. 
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2.3 Planned evaluation and applications 
 
 Where possible, forces (divided by characteristic specimen cross sections) ver-
sus characteristic deformations will be measured for all tests performed. In addition, 
appropriate post test examinations will be performed to determine the failure strains 
which, is a key issue of the current project. 
 However, reliable procedure to measure the failure strains during or after the 
experiments are not available. Therefore the development of such procedures is an 
essential part of the current project. 
 The results are expected to show possible size effects on the maximum stress 
in the specimens. 
 More important are the results for the failure strains. The most interesting ques-
tions are listed below: 
 
 What is the order of magnitude of the failure strains? 
 What is the size effect on the failure strain? 
 What is the effect of the specimen shape on the failure strain? 
 What is the scatter of the results? 
 What are the failure modes to be expected? 
 
 To answer these questions, also findings from theoretical models will be con-
sidered. In addition, suitable statistical analyses will be performed. 
 Based on all these results, it is intended to propose limit strains for severe acci-
dent conditions. 
 To demonstrate the applicability and the benefit of the results, sample calcula-
tions for selected severe accident loads will be presented. It is planned to address 
the support structure as well as the upper head of the reactor pressure vessel. 
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3 RESULTS 
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3.1 Experimental results 
 

3.1.1 Preparation of the specimens 
 
3.1.1.1 Arrangement of the specimens within the given material from the  

  pressure vessel Biblis C 
 The arrangement of the unshaped specimens for the different test families 
within the cylindrical section of the pressure vessel Biblis C is shown in Fig. 3.1.1-1. 
The specimens of each test family are marked by a particular colour as indicated in 
the upper part of the figure. The arrangement shown in the lower part of the figure is 
done in such a way that specimens belonging to the same test family are grouped 
closely together. In this way the inevitable variations, of the material properties of the 
specimens within one test family are minimized. 
 The detailed arrangement of the unshaped specimens within the segment 1 of 
the cylindrical section of the pressure vessel is shown in Fig. 3.1.1-2. The segment 2 
is not used for LISSAC specimens. The arrangement of the unshaped specimens 
within the segments 2 to 6 is shown in Figs. 3.1.1-3 to 3.1.1-6. Note that the un-
shaped specimens are identified by a two letter code, for instance Al, AJ, …, BA, …  . 
 The arrangement of the specimens within the wall thickness of the cylindrical 
section is indicated in the lower part of the figures. As can be seen, the smaller 
specimens are located in a preferred layer within the wall. Its distance from the out-
side surface of the vessel is a quarter of the wall thickness. For this layer the material 
strength is about the same as the mean value of the strength over the wall thickness. 
(At the outer layers the strength is somewhat higher at the middle layer it is some-
what lower – quantitative information in the next subchapter). Thus also the ar-
rangement of the specimens within the wall thickness of the vessel will help to reduce 
the effect of variations of the material properties. 
 By the way, specimens located in the preferred layer are marked by the addi-
tional digit 1, for instance AL1, AJ1, …;  specimens located in other layers are 
marked by other digits. If several small specimens have the same two letter code and 
are located in the same layer, they will be distinguished by a fourth letter, for instance 
Al1A, Al1B, … . A complete list of all specimens as well as information about their 
shapes and test families may be found in chapter 3.1.4.3. 
 In order to control the material homogeneity, a large number of material blocks 
QA, QB, … etc. were reserved as indicate in the previous figures. The blocks were 
cut in slices as shown in Fig. 3.1.1-7. The slices QA1, QB1, etc. belong to the pre-
ferred layer within the wall thickness; the slices QB2, QB3, … QB7 belong to other 
layers. In a last step the slices are cut in pieces A, B, …, P which can be used to 
manufacture specimens for standard tension and Charpy impact tests. They will be 
referred as material qualification tests in contrast to the tests belonging to test fami-
lies introduced before. 
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FFig. 3.1.1-2:  Segment 1 of the cylindrical section

1640

18
00

AI

QA
AJ

AO

QB

AK AM

AL AN

AP AZ

BC

BA

BB

AC

CL

QD

CK GR HF

CM

CN

CO

CP

CQ

HE

CR

CS

AQ

QC

AV

AY

AW AX

AS AU

AR AT

Minimum dimensions of
the unshaped specimens
and the remainders (...).

Dimensions (b,h,t)

AC: 210 x  800 x 250
AI: 140 x (355)x 250
AJ: 140 x  400 x 250
AK:  65 x  200 x 250
AL:  65 x  450 x 250
AM:  65 x  200 x 250
AN:  65 x  450 x 250
AO: 140 x ( 95)x 250
AP: 605 x 1800 x 250
AQ: 140 x ( 95)x 250
AR:  65 x  450 x 250
AS:  65 x  200 x 250
AT:  65 x  450 x 250
AU:  65 x  200 x 250
AV: 140 x  400 x 250
AW:  65 x  450 x 250

AX:  65 x  450 x 250
AY: 140 x ( 25)x 250
AZ:40/80x (485)x 250
BA:40/80x  400 x 250
BB:40/80x  400 x 250
BC:40/80x (485)x 250
CK: 120 x   50 x 250
CL: 210 x  800 x 250
CM: 210 x  800 x 250
CN: 210 x  800 x 250
CO: 165 x  450 x 250
CP: 165 x  190 x 250
CQ: 165 x  280 x 250
CR: 165 x  190 x 250
CS: 165 x  450 x 250
GR:  70 x  180 x 250
HE: 165 x  280 x 250
HF: 220 x  180 x 250
QA: 140 x  120 x 250
QB: 140 x  120 x 250
QC: 140 x  120 x 250
QD: 120 x  120 x 250

790
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FFig. 3.1.1-3:  Segment 3 of the cylindrical section

940

15
50

HB

HA CA CW

CT

CU

CV CX CY

CZ

DC

DB

DA DD

DE

DF

GSDG

QH

DH

GTDI

QI

DJ

GZDK

Minimum dimensions of
the unshaped specimens
and the remainders (...).

Dimensions (b,h,t)

CA: 110 x  560 x 250
CT:  75 x   50 x 250
CU:  75 x (165)x 250
CV:  85 x  225 x 250
CW: 110 x  560 x 250
CX:  85 x  225 x 250
CY:  70 x   50 x 250
CZ:  70 x (165)x 250
DA:  65 x  460 x 250
DB:  65 x  200 x 250
DC:  65 x  460 x 250
DD:  85 x  460 x 250
DE:  85 x  200 x 250
DF:  85 x  460 x 250
DG: 120 x ( 25)x 250
DH: 210 x  810 x 250
DI: 120 x ( 25)x 250
DJ:(220)x 1140 x 250
DK: 715 x  400 x 250
GS:  80 x  155 x 250
GT:  80 x  155 x 250
GZ:(220)x  400 x 250
HA: 105 x  560 x 250
HB: 345 x  335 x 250
QH: 120 x  120 x 250
QI: 120 x  120 x 250
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FFig. 3.1.1-4:  Segment 4 of the cylindrical section

940

15
50

CC

DL
QJ

DM

DN

DO

BX

DP

DQ

DR

DS

DT

DU QK DV

DW

DX

BY

DY

DZ

EA

EB

EC

ED
QL

EE

EF

EG

HC

BZ

HD

EH

EI

EJ

EK

EL

QM

Minimum dimensions of
the unshaped specimens
and the remainders (...).

Dimensions (b,h,t)

BX:  35 x  180 x 250
BY:  35 x  320 x 250
BZ:  35 x   55 x 250
CC: 210 x 1410 x 250
DL:  80 x  130 x 250
DM:  35 x  250 x 250
DN:  35 x   45 x 250
DO:  35 x  250 x 250
DP:  35 x  210 x 250
DQ:  35 x   45 x 250
DR:  35 x  210 x 250
DS:  35 x (290)x 250
DT: 210 x 1410 x 250
DU:  80 x  130 x 250
DV:  35 x  250 x 250
DW:  35 x   45 x 250
DX:  35 x  250 x 250
DY:  35 x  210 x 250
DZ:  35 x   45 x 250
EA:  35 x  210 x 250
EB:  35 x (150)x 250
EC: 210 x 1410 x 250
ED:  80 x  130 x 250
EE:  35 x  250 x 250
EF:  35 x   45 x 250
EG:  35 x  250 x 250
EH:  35 x  210 x 250
EI:  35 x   45 x 250
EJ:  35 x  210 x 250
EK:  35 x (290)x 250
EL:(220)x 1550 x 250
HC:  35 x   55 x 250
HD:  35 x   55 x 250
QJ: 120 x  130 x 250
QK: 120 x  130 x 250
QL: 120 x  130 x 250
QM: 120 x  120 x 250
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FFig. 3.1.1-5:  Segment 5 of the cylindrical section

1650

11
90

CG

QN

EM

QO

EN

EO

EP

EQ

ER

ES

Minimum dimensions of
the unshaped specimens
and the remainders (...).

Dimensions (b,h,t)

CG: 600 x  590 x 250
EM: 600 x  590 x 250
EN: 300 x  290 x 250
EO: 300 x  290 x 250
EP: 300 x  290 x 250
EQ: 300 x  290 x 250
ER:(720)x  590 x 250
ES:(720)x  590 x 250
QN: 120 x  120 x 250
QO: 120 x  120 x 250
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FFig. 3.1.1-6:  Segment 6 of the cylindrical section
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Minimum dimensions of
the unshaped specimens
and the remainders (...).

Dimensions (b,h,t)

CI:  60 x  120 x 250
ET: 120 x  120 x 250
EU: 120 x  120 x 250
EV: 120 x  120 x 250
EW: 580 x  580 x 250
EX:  60 x  120 x 250

EY: 120 x  120 x 250
EZ: 120 x  120 x 250
FA: 120 x  120 x 250
FB: 580 x  580 x 250
FC:  60 x  120 x 250
FD: 120 x  120 x 250
FE: 120 x  120 x 250
FF: 120 x  120 x 250
FG: 580 x  580 x 250
FH:  60 x  120 x 250
FI: 120 x  120 x 250
FJ: 120 x  120 x 250
FK: 120 x  120 x 250

FL: 580 x  580 x 250
FM:  60 x  120 x 250
FN: 120 x  120 x 250
FO: 120 x  120 x 250
FP: 120 x  120 x 250
FQ: 580 x  580 x 250
FR:  60 x  120 x 250
FS: 120 x  120 x 250
FT: 120 x  120 x 250
FU: 120 x  120 x 250
FV: 580 x  580 x 250
FW: 210 x  840 x 250

FX:  65 x  450 x 250
FY:  65 x  450 x 250
FZ:  65 x  450 x 250
GA: (25)x  450 x 250
GB: 120 x  190 x 250
GC: 120 x   50 x 250
GD:  60 x  400 x 250
GE:  60 x  400 x 250
GF:  60 x  400 x 250
GG:  60 x  400 x 250

GH:  60 x  400 x 250
GI:  60 x  400 x 250
GJ: 470 x  110 x 250
GK:  60 x  400 x 250
GL:  60 x  400 x 250
GM:  60 x  400 x 250
GN:  60 x  400 x 250
GO:  60 x  400 x 250
GP:  60 x  400 x 250
GQ: 120 x  230 x 250
GU: 120 x  180 x 250
GV: 340 x  360 x 250
GY: 120 x  190 x 250

QP: 120 x  120 x 250
QQ: 120 x  120 x 250
QR: 120 x  120 x 250
QS: 120 x  120 x 250
QT: 120 x  120 x 250
QU: 120 x  120 x 250
QV: 120 x  120 x 250
QW: 120 x  120 x 250
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FFig. 3.1.1-7:  Material blocks for the material qualification tests
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A-D: 12 x 58 x 12
E-L: 58 x 12 x 12
M-P: 12 x 58 x 12
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3.1.1.2 Material qualification tests 
 To control the material homogeneity, first Charpy impact tests have been car-
ried out which provide integral information about material strength, ductility and dy-
namic effects. In one series of tests specimens were taken from several blocks all 
over the relevant segments of the cylindrical section of the reactor pressure vessel, 
however only from the preferred layer 1. In this way variations of the mechanical ma-
terial properties over the cylindrical surface can be studied. Furthermore it was dis-
tinguished between specimens in circumferential and axial direction. From the results 
shown in Fig. 3.1.1-8 one can conclude that significant variations over the cylindrical 
surface do not occur. Furthermore the direction of the specimens have only small in-
fluence. 
 In another series of tests specimens were taken from only one block, but con-
sidering several layers (slices) all over the wall thickness. Thus profiles of the me-
chanical material behaviour over the wall thickness can be obtained. Again from 
Fig. 3.1.1-9 one can conclude that the profile is almost uniform and that the direction 
of the specimens do not play an essential role. 
 However one can also see that the scatter of the results (the different symbols 
refer to different nominell identical tests) is rather high and impairs precise state-
ments. 
 
 Therefore a large number of standard tensile tests have been carried out for 
many slices of the material blocks. In addition, also many carbon content analyses 
have been carried out in order to provide some kind of control, since the tensile 
strength is known to be related to the carbon content. The results are listed in the at-
tached table. 
 As indicated in Fig. 3.1.1-7, the specimens A, B, C, D are located in circumfer-
ential, the specimens E, F, G, H are located in axial direction. After the results had 
documented the isotropic behaviour of the material, the direction of the specimens 
was no longer of interest and instead of the letters A, B, … the digits 1 and 2 were in-
troduced to identify the specimens. 
 The yield stress, the ultimate stress, the elongation at failure and the reduction 
of area listed in the attached table confirm that the material is quite homogeneous 
and that the scatter of the material strength is smaller than the scatter obtained by 
the Charpy impact tests. 
 In the middle of the wall thickness the yield stress is about 6 %, the more impor-
tant ultimate stress is about 2.5 % lower than at the inner and outer surface. The 
lowest strength occurs for the blocks QH and QJ. There the yield stress is about 
4.5 %, the ultimate stress is about 3 % lower than the mean values. 
 Thus it can be concluded that the variation of the mechanical material proper-
ties is rather low. This is a good basis to investigate the influence of specimen size 
and shape on the material behaviour. 
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Slice 
reference 

Distance 
from the out-

side 
(mm) 

Specimen
reference

Carbon
content

Y.S. 0,2%
(MPa) 

U.T.S 
(MPa) 

E 
(%) 

R. of A.
(%) 

1 0,214 446 593 25,0 75,0 QA4 31 
2 0,214 443 591 26,0 73,0 
1 0,214 433 586 26,0 73,0 QA1 63 2 0,214 435 589 26,0 75,0 
1 0,215 429 584 26,0 75,0 QA5 94 2 0,215 429 584 29,0 75,0 
1 0,220 423 582 26,0 77,0 QA2 125 2 0,220 423 584 24,0 75,0 
1 0,221 422 588 28,0 75,0 QA6 156 2 0,221 429 584 26,0 73,0 
1 0,226 441 597 26,0 75,0 QA3 188 2 0,226 441 598 24,0 73,0 
1 0,247 463 620 22,0 73,0 QA7 219 2 0,247 470 627 24,0 73,0 

31 C 0,213 449 596 26,0 73,0 
31 D 0,222 445 596 25,0 73,0 
31 E 0,216 446 595 27,0 73,0 QB4 

31 F 0,216 444 596 27,0 73,0 
61 A   431 590 27,0 73,0 
61 B   437 591 27,0 73,0 
61 C 0,217 436 592 26,0 73,0 
61 D 0,218 438 592 26,0 73,0 
61 E 0,215 435 590 26,0 75,0 
61 F 0,213 443 593 25,0 73,0 
61 G   429 589 26,0 75,0 

QB1 

61 H   438 589 26,0 75,0 
94 C 0,215 424 583 24,0 71,0 
94 D 0,215 422 583 24,0 71,0 
94 E 0,219 430 587 26,0 73,0 QB5 

94 F 0,219 433 585 24,0 73,0 
125 C 0,215 417 584 24,0 71,0 
125 D 0,221 422 585 28,0 71,0 
125 E 0,217 422 586 23,0 73,0 QB2 

125 F 0,215 422 586 24,0 75,0 
156 C 0,216 428 587 26,0 71,0 
156 D 0,216 424 589 27,0 73,0 
156 E 0,223 429 587 26,0 73,0 QB6 

156 F 0,224 426 586 25,0 75,0 
188 C 0,223 442 598 26,0 73,0 
188 D 0,226 440 601 26,0 73,0 
188 E 0,230 444 599 28,0 73,0 QB3 

188 F 0,227 437 597 26,0 73,0 
219 C 0,228 454 605 23,0 73,0 
219 D 0,237 452 608 26,0 71,0 
219 E 0,228 443 603 24,0 75,0 

QB7 

219 F 0,228 449 604 25,0 75,0 
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Slice 
reference 

Distance 
from the 
outside 

Specimen 
reference 

Car-
bon
con-

Y.S. 
0,2% 
(MPa)

U.T.S
(MPa) 

E 
(%) 

R. of A. 
(%) 

1 0,215 450 599 27,0 73,0 QC4 31 
2 0,215 449 594 26,0 73,0 

63 A   438 591 25,0 71,0 
63 B   441 596 24,0 73,0 
63 C 0,214 435 595 27,0 73,0 
63 D 0,212 440 595 26,0 73,0 
63 E 0,215 438 593 27,0 73,0 
63 F 0,212 438 591 24,0 75,0 
63 G   444 596 25,0 73,0 

QC1 

63 H   438 590 24,0 73,0 
1 0,215 436 589 26,0 73,0 QC5 94 
2 0,215 427 589 26,0 73,0 
1 0,246 465 624 22,0 73,0 

QC7 219 
2 0,246 468 622 23,0 71,0 
1 0,213 437 588 26,0 75,0 QD1 63 
2 0,213 435 588 26,0 73,0 
1 0,218 430 586 26,0 73,0 QD12 110 
2 0,218 426 587 26,0 73,0 
1 0,224 448 602 27,0 75,0 

QD7 219 
2 0,224 428 600 25,0 73,0 
A 0,212 441 592 30,0 73,0 QE1 63 
H 0,212 437 592 29,0 74,0 
A 0,212 432 587 27,0 73,0 QG1 63 
H 0,212 427 588 26,0 73,0 

63 C 0,215 418 575 24,0 71,0 
63 D 0,214 413 575 29,0 75,0 
63 E 0,227 412 571 26,0 73,0 

QH1 

63 F 0,218 415 574 26,0 75,0 
63 C 0,216 410 570 27,0 73,0 
63 D 0,213 411 575 27,0 73,0 
63 E 0,212 413 570 26,0 71,0 

QJ1 

63 F 0,216 415 576 26,0 73,0 
A 0,215 421 583 23,0 73,0 QL1 63 
H 0,215 430 592 26,0 73,0 
A 0,213 419 583 24,0 67,0 

QL2 125 
H 0,213 425 584 27,0 72,0 
1 0,214 442 586 27,0 75,0 QS4 31 
2 0,214 428 585 27,0 77,0 
1 0,214 427 579 28,0 75,0 QS1 63 
2 0,214 430 583 26,0 73,0 
1 0,215 423 582 26,0 75,0 

QS5 94 
2 0,215 418 577 27,0 75,0 
A 0,213 427 584 27,0 71,0 

QV1 63 
H 0,213 428 584 26,0 74,0 

  Mean 0,219 434 590 25,8 73,3 
  Min 0,212 410 570 22,0 67,0 
  Max 0,247 470 627 30,0 77,0 
  Stdv 0,008 13 11 1,5 1,5 

  Number of 
values 82 90 90 90 90 
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3.1.2 Uniaxial tests 
 
3.1.2.1 Tension tests under static load 
 Depending on specimen size and the temperature quite different testing ma-
chines have been used. 
 Figures 3.1.2-1 and 3.1.2-2 show the 100 MN machine and measuring equip-
ment (MPA) for the biggest specimen (Flat specimen, 200 mm thickness). 
 Figure 3.1.2-3 shows a smaller machine (FZK) with an optical measurement 
system which allows the determination of strain fields at the specimen surfaces using 
the object grating method. 
 Fig. 3.1.2-4 shows the measuring devices (EMPA) for tests at elevated tem-
peratures. In order to reduce oxidation, inert atmosphere was used for the smallest 
specimens (circular specimens of 3 mm diameter) at 850 °C. 
 For all tests the cross head speed was prescribed such that the mean strain 
rate related to the gauge lengths of the specimens was about 10-3s-1. 
 More details about the tests and an extensive description of the results may be 
found in SAM-LISSAC-D024, -D031 and -D032. 
 Some of the measured load deformation relations will be presented in 
Figs. 3.1.2-5 to 3.1.2-14. The nominal stress at the ordinate is defined as the tension 
force divided by the smallest initial cross section of the specimen. The hole or notch 
opening at the abscissa is defined as the increase of the hole or notch in tension di-
rection divided by the initial value. Note that the ends of the curves are usually due to 
the special properties of the test- and measurement facility (for instance, the stiffness 
of the tension machine, the measuring range, etc.); the ends do not describe speci-
men failure. Note furthermore that for tests with nominal identical parameters only 
one curve is shown. The deviations of the other curves is usually less than ± 1 %. In 
two cases the deviations were ± 5 %. 
 The maximum nominal stresses for the flat specimens of 20 mm thickness 
tested at 400 °C (Figs. 3.1.2-10 and 3.1.2-11) turned out to be about 10 % higher 
than the maximum nominal stress for other (smaller and larger) specimens of the cor-
responding test families. Detailed inquires about these deviations revealed that the 
heating time for the above mentioned specimens was about 2 hours. The heating 
time for the much smaller specimens of 4 mm thickness was also about 2 hours, but 
the heating time for the larger specimens was at least 8 hours. Therefore the flat 
specimen AW1 of 20 mm thickness with hole was additionally tested at 400 °C, but 
with a heating time of 8 hours. The results show that the maximum nominal stress is 
now less than 4 % higher than the corresponding values from other specimens 
(Fig. 3.1.2-10, dashed line). Thus it can be concluded that the deviations for the 
above mentioned specimens are likely to be caused by micro structural changes, the 
deviations are certainly not a size effect. 
 In the table of chapter 3.1.4.3 it will be indicated that the extension of the heat-
ing time from 2 hours to 8 hours caused also an increase of the failure strain. 
 Furthermore the maximum nominal stresses for all the specimens with holes or 
notches are a little bit higher than the corresponding stresses for smooth specimens. 
This effect is well known. It is due to the higher triaxiality of the stresses in the 
specimens with holes or notches which hinder necking processes. 
 The maximum nominal stresses for 850 °C shown in Figs. 3.1.2-13 and 3.1.2-14 
seem to be size dependent, but in the opposite way as might be expected: The 
maximum stresses increase with increasing specimen size. There is one exception: 
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The tests with the small circular specimens of 3 mm diameter where the maximum 
stress is relatively high. However considering the experience with the sensitivity to 
heating processes just discussed, one might conclude that also in this case such ef-
fects may have influenced the results. For instance, diffusion processes at the 
specimen surfaces could have a degrading effect which increases for decreasing 
specimen size, except the small specimens of 4 mm thickness and 3 mm diameter, 
where the tests were essentially performed in an inert atmosphere. On the other 
hand, however, rather high maximum stresses were only obtained for the specimens 
of 3 mm diameter. 
 During the test of the large specimen with hole the crack could be seen first in-
side the hole in the middle of the wall-thickness. With slightly increasing load the 
crack propagated quickly to the flat surfaces of the specimen. Finally it propagated to 
the outer contour of the specimen. 
 
 Of special interest are the results from the object grating method mentioned 
above. It needs the preparation of the specimens with either a regular (deterministic) 
or a random (stochastic) pattern. For the preparation with a random pattern the 
specimen surface is sprayed by an antireflection white coloured ground paint and in a 
second step by a black coloured paint producing a random speckles pattern. A pre-
pared specimen ready to use is shown in Fig. 3.1.2-15. 
  
 During the test the random speckles pattern on the surface is viewed by two 
CCD cameras with a triangular arrangement. The deformation of this pattern under 
increasing load is recorded by the cameras and after the test the data are evaluated 
by using digital image processing. The main problem of the evaluation is to match 
identical surface points related to different deformation states of the object. This is 
done with a 2D adaptive area based matching algorithm. Using the result the strains 
are calculated in a last step. 
 In Fig. 3.1.2-16 the resulting axial strain fields are shown at the surface for a flat 
specimen with hole having a wall thickness of 4 mm and for a specimen belonging to 
the same family having a wall thickness of 20 mm, respectively, just at the instant 
when a crack can be observed. The hole openings are 75 % and 61 %, respectively, 
at this instant. The maximum axial strains at the specimen surface are 88 % and 
73 %, respectively. These results indicate a certain size effect on the deformation at 
failure. More extensive evaluations and discussions are presented in chapter 3.1.4 
and 3.3. 
 From all the photographs of the broken specimens shown in SAM-LISSAC-
D024, -D031 and -D032 only a few have been selected. 
 Figure 3.1.2-17 shows a typical fracture surface for a flat specimen with hole. 
Note the normal fracture zone close to the hole where the cracking has started and 
the shear fracture zone caused during the later phase of the failure process. Figure 
3.1.2-18 shows the fracture of circular specimens with notches at room temperature, 
400 °C and 850 °C. Note that in parallel to the main crack additional cracks have 
been initiated which, however, did not propagate very far. 
 These additional cracks might be one of the reasons why the measured dis-
placements of markings applied in the notches of the circular specimens of 20 mm 
and 150 mm diameter led to unrealistic local (axial) failure strains up to more than 
200 %. (SAM-LISSAC-D024, Figs. 57 and 58) 
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Fig. 3.1.2-1: Tensile testing machine of 100 MN (MPA) used for the flat specimen of 
    200 mm wall thickness 
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Fig. 3.1.2-2: Measuring equipment (MPA) for the flat specimen of 200 mm wall  
    thickness 
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Fig. 3.1.2-3: Servo-hydraulic testing machine and optical measurement system (FZK) 
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Deformation measurement on flat specimens of 20 mm wall thickness 
 

    
 
Heating facility and measurement on flat specimens of 4 mm wall thickness at 850 °C 
 
 
Fig. 3.1.2-4: Measuring devices (EMPA) for tests at elevated temperatures 
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Fig. 3.1.2-5: Nominal stress vs. hole opening for the test family of flat specimens with hole, static load, RT 
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Fig. 3.1.2-6: Nominal stress vs. hole opening for the test family of flat specimens with increased hole, static load, RT 
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Fig. 3.1.2-7: Nominal stress vs. hole opening for the test family of flat specimens with slot, static load, RT 
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Fig. 3.1.2-8: Nominal stress vs. notch opening for the test family of flat specimens with notches, static load, RT 



 

39

 

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

notch opening  δ [%]

no
m

in
al

 s
tr

es
s 

 [M
Pa

]

diameter 3 mm
DQ1A

diameter 9 mm
DL1A 

diameter 20 mm
DP1 

diameter  150 mm
CC1

RT
strain rate  10-3/s

D

0.2 D

 
 
Fig. 3.1.2-9: Nominal stress vs. notch opening for the test family of circular specimens with circumferential notch, static load, RT 
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Fig. 3.1.2-10: Nominal stress vs. hole opening for the test family of flat specimens with hole, static load, 400 °C 
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Fig. 3.1.2-11: Nominal stress vs. notch opening for the test family of flat specimens with notches, static load, 400 °C 
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Fig. 3.1.2-12:  Nominal stress vs. notch opening for the test family of circular specimens with notch, static load ,400 °C 
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Fig. 3.1.2-13:  Nominal stress vs. hole opening fort he test family of flat specimens with hole, static load, 850 °C 
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Fig. 3.1.2-14: Nominal stress vs. notch opening for the test family of circular specimens with notch, static load, 850 °C 
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Fig. 3.1.2-15: Surface of a flat specimen prepared with a random speckles  
     pattern for applying the object grating method 
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Hole opening 75 %           Hole opening 61 % 
Max. axial strain at the specimen surface 88 %     Max. axial strain at the specimen surface 73 % 
 
Fig. 3.1.2-16: Axial strain fields at the surfaces of a flat specimen of 4 mm and 20 mm wall thickness, respectively,  
     at the instant when a crack can be observed 
 

Thickness = 4 mm Thickness = 20 mm
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Fig. 3.1.2-17: Fracture surface for a flat specimen with hole,  
     80 mm wall thickness, tested at 400 °C 
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RT  
 

 
400 °C        850 °C 
 
 
Fig. 3.1.2-18: Fracture of circular specimens of 150 mm diameter  
     tested at different temperatures 
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3.1.2.2 Bending tests 
 The testing machine (EMPA) with a specimen is shown in Fig. 3.1.2-19. In a 
first set of tests the distance between the support rollers was chosen to be 5 times 
the specimen thickness; but for the largest specimen the maximum bending force ex-
ceeded the capacity of the testing machine. Therefore in a second set of tests the 
distance between the support rollers was increased to 6 times the specimen thick-
ness.  
 The cross head speeds were 0.4 mm/min for the small specimens of 4 mm 
thickness, 1.2 mm/min for the medium size specimens of 20 mm thickness and 2.0 
mm/min for the large specimens of 80 mm thickness. The resulting maximum local 
strain rates turn out to be considerably smaller (factor 5 to 20) than the correspond-
ing strain rates for the tension tests.  
 More details about the tests and an extensive description of the results may be 
found in SAM-LISSAC-D032. 
 Here only some of the measured load-deformation relations for the tests with 
the increased distance between the support rollers will be presented in Figs. 3.1.2-20 
and 3.1.2-21. The nominal stress at the ordinate is defined as the bending force di-
vided by the smallest initial cross section of the specimen. The notch opening is de-
fined as the increase of the notch measured from edge to edge, divided by the initial 
value. Note that for tests with nominal identical parameters only one curve is shown. 
The deviation of the other curves is less than ± 1.5 %. 
 For the specimens with wide notches (Fig. 3.1.2-20) the maximum bending 
which the facility allowed was not sufficient to initiate a visible crack. Only for the 
specimens with narrow notches (Fig. 3.1.2-21) such cracks could be obtained. They 
occurred in the middle of the specimen thickness. At this instant the test was 
stopped. Figure 3.1.2-22 shows a microstructure analysis for the notch of a small 
specimen with two initiating cracks; Figure 3.1.2-23 shows a photograph of the notch 
of a big specimen with initiating cracks. 
 
 

 
 
Fig. 3.1.2-19:  Testing machine (EMPA) with a bending specimen 
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Fig. 3.1.2-20: Nominal stress vs. notch opening for bending specimens with wide notches 
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Fig. 3.1.2-21: Nominal stress vs. notch opening for bending specimens with narrow notches 
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Fig. 3.1.2-22: Microstructure analysis for the notch of a small bending  
     specimen with two initiating cracks 
 
 
 

 
 
Fig. 3.1.2-23: Notch of a big bending specimen with initiating cracks 
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3.1.2.3 Tension tests under dynamic load 
 The dynamic tests are carried out with a modified split Hopkinson bar tech-
nique. The principle of this technique as well as the facility used (JRC) is shown in 
Fig. 3.1.2-24. The strain rates which have been realized are between 100 s-1 and 
400 s-1. A more detailed description as well as complete information about the results 
is documented in SAM-LISSAC-D034. 
 Here only selected information about the results will be presented in  
Figs. 3.1.2-25 to 3.1.2-30. Again, the nominal stress at the ordinate is defined as the 
tension force divided by the smallest initial cross section of the specimen. However, 
in contrast to the static tests, a continual measurement of the hole or notch opening 
was not possible. Instead the elongation of the gauge length of the specimens was 
recorded and this parameter divided by the initial gauge length is used as abscissa. 
 Therefore the figures describing the results of the dynamic tests cannot be 
compared directly with the figures from the static tests presented in chapter 3.1.2.1. 
However in the figures for the dynamic tests the corresponding maximum nominal 
stresses from the static tests were mentioned. It turns out that at room temperature 
the stresses versus elongation obtained under dynamic conditions are somewhat 
higher than under static conditions. This effect is well known. However, for 400 °C 
the tendency is opposite, which is remarkable. Again for 850 °C the dynamic stresses 
are considerably higher than the static stresses. Some curves exhibit rapid and ex-
cessive oscillations at the beginning. These are primarily due to experimental short-
comings (longer time for specimen to attain equilibrium), and secondarily to changes 
in the yielding behaviour of the material under impact loading. 
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Fig. 3.1.2-24:  (a) Principle of functioning and dimensions of the large Hopkinson bar at the Large Dynamic Test Facility (LDTF)  
     of the JRC-Ispra. (b) External view of the LDTF. 
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Fig. 3.1.2-25: Nominal stress vs. normalized elongation for the test family of flat specimens with hole, dynamic load, RT.  
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Fig. 3.1.2-26: Normal stress vs. normalized elongation for the test family of flat specimens with hole, dynamic load, 400 °C.  
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Fig. 3.1.2-27: Normal stress vs. normalized elongation for the test family of flat specimens with hole, dynamic load, 850 °C.  
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Fig. 3.1.2-28: Normal stress vs. normalized elongation for the test family of circular specimens with notch, dynamic load, RT 
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Fig. 3.1.2-29: Normal stress vs. normalized elongation for the test family of circular specimens with notch, dynamic load, 400 °C 
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Fig. 3.1.2-30: Normal stress vs. normalized elongation for the test family of circular specimens with notch, dynamic load, 850 °C 
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3.1.3 Biaxial tests 
 
3.1.3.1 Tests with curved biaxial specimens under static load 
 Special facilities had to be designed and manufactured (VTT) for both, the small 
specimens with a diameter of about 100 mm and the large specimens with a diame-
ter of about 500 mm. A simplified drawing of the facilities is shown in Fig. 3.1.3-1. 
The load is applied by a liquid with slowly increasing pressure up to a value of about 
1200 bar, where failure is expected. During the test the pressure and the resulting 
vertical displacement are measured. 
 To make sure that the facility is able to carry the pressure load without exces-
sive deformations causing leakages, quite detailed finite element calculations were 
performed for the facility for the small specimens as indicated in Fig. 3.1.3-2. The di-
mensions of the facility for the large specimens were simply obtained my multiplica-
tion with the factor five. 
 A special problem occurred for the specimens with holes. In order to seal these 
holes, a sealing liner had to be added. Again, the dimensions of the liner for the large 
specimens are five times the dimensions of the liner for the small specimens. 
 There was only exception. The O-ring for the liner was not scaled up accord-
ingly. Rather the thickness of the O-ring for the liner and consequently the nut in the 
liner for the large specimen (Fig. 3.1.3-3, detail B) was too small in comparison to the 
liner for the small specimen. Thus the stiffness of the nut region of the liner for the 
larger specimen was somewhat higher than the stiffness which would have resulted 
from exact scaling up. During the tests this small deviation from similarity will have a 
rather significant consequence. 
 
 The tests with some essential parameters and results are listed in the following 
tables. More information in SAM-LISSAC-D030. 
 
Tests of specimens without holes: 
 
specimen size liner max. pressure 

[bar] 
max. displ.  
of the dome 

[%] 

max. amount of 
strain in thickness 

direction [%] 
ET1 
EU1 
EV1 

small 
small 
small 

- 
- 

yes 

1150 
1160 
1260 

66.9 
69.1 
34.8 

63.2 
58.0 

- 
EW large - 1150 85.4 58.4 

 
Tests of specimens with holes: 
 
specimen size liner max. pressure 

[bar] 
max. displ.  
of the dome 

[%] 
EY1 
EZ1 
FA1 

small 
small 
small 

yes 
yes 
yes 

1050 
1110 
1090 

28.3 
27.9 
28.4 

FB large yes 1170 17.3 * 
* for this test failure could not be reached 
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 In addition, Fig. 3.1.3-4 shows the vertical displacement of the dome divided by 
the initial height of the dome versus pressure. It is remarkable that for the specimens 
without holes the relative deformations and pressures are almost independent of the 
specimen size. In other words, there is almost no size effect. The results for the test 
EV1 without holes cannot be included in this comparison, since for this test a liner 
was added to estimate its effect on the failure behaviour. It increased the stiffness of 
the dome, but it changed the mechanical behaviour so that the test ended before the 
deformation capacity of the specimen was fully used. 
 For all the specimens with holes a liner was added. However for the small 
specimens the liner was weakened in the nut region. Therefore it could carry only a 
small part of load. For the large specimen the liner was not weakened in the nut re-
gion very much and therefore it was able to carry a larger part of the load. As a re-
sult, in Fig. 3.1.3-4 the curves for the small specimens with holes and the large 
specimen with holes are different. Furthermore the test with the large specimen 
ended at liner failure. 
 The above findings are an interesting lecture in similarity of structural behaviour. 
Sometimes very small deviations of the design may result in quite different re-
sponses. 
 Figures 3.1.3-5 to 3.1.3-7 show different types of failure. Of special interest is 
the failure of the large specimen EW without holes. Although the pressurizing liquid is 
almost incompressible a larger part of the specimen was teared off completely and 
hurled against the ground.  
 

 
 
Fig. 3.1.3-1: Test facility for the curved biaxial specimens under dynamic load 
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Fig. 3.1.3-2: Finite element model for analysis of the test facility 
 
 

 
Fig. 3.1.3-3: Design of the sealing liner for the large specimen 
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Fig. 3.1.3-4: Vertical displacement of the specimen dome divided by the initial height 
    of the dome versus pressure 
 
 
 
 
 

 
 
Fig. 3.1.3-5: Failure of the small specimen EU1 
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Fig. 3.1.3-6: Failure of the large specimen EW.  
    A large part of the specimen was completely teared off. 
 
 
 
 
 
 
 

 
 
Fig. 3.1.3-7: Failure of the small specimen EZ1 and deformation of the liner 
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3.1.3.2  Tests with curved biaxial specimens under dynamic load 
 The impact facility VERDY (FZK) was adapted to perform the tests with the 
small specimens, as shown in Fig. 3.1.3-8. The specimen is located in the lower part 
of the facility with the dome in downward direction. The dynamic load is caused by a 
lead mass accelerated downwards and hitting the specimen. 
 The impact facility IVAN (FZK) was adapted for the tests with the large speci-
mens, Fig. 3.1.3-9. Now the specimen is located in the upper part of the facility and 
the dynamic load is caused by a lead mass accelerated upwards. 
 The problem was to choose the amount, the shape and the impact velocity of 
the lead mass in such a way that, limited cracking occurs in the specimens. As 
shown in the following tables, this could not be achieved for all of the tests. In a few 
cases no cracking occurred. Consequently for these cases in the next chapter in-
stead of the strain causing failure, a lower strain will be determined where the speci-
mens remain intact. More information about the tests and the results is given in SAM-
LISSAC-D028. 
 
Tests of specimens without holes: 
 
specimen size impact 

mass  
[kg] 

impact  
velocity  

[m/s] 

max. displ.  
of the dome 

[%] 

max. amount of 
strain in thickness 

direction [%] 
FD1 
FE1 
FF1 
BO1 

small 
small 
small 
small 

 
1.2 
1.2 

 
161.9 
155.5 

*
 

41.9 

45.7 
57.4 
58.4 
47.6 

FG 
FL 

large 
large 

153 
152.6 

150.4 
152.2 

38.3 
*

55.0 
57.7 

* For these tests failure did not occur. 
 
Test of specimen with holes: 
 
specimen size impact 

mass  
[kg] 

impact  
velocity  

[m/s] 

max. displ.  
of the dome 

[%] 
FN1 
FO1 
FP1 

small 
small 
small 

 
0.96 
0.96 

 
105.2 
96.3 

* 
21.2 
21.2       * 

FQ 
FV 

large 
large 

122.6 
122.6 

108.1 
100.5 

o 

20.6 
* For these tests failure did not occur. 
o In this case failure with excessive deformation occurred. 
 
Figures 3.1.3-10 to 3.1.3-13 show different types of failure. For the specimens with-
out holes usually shear type of fracture occurs with sudden changes of the slope of 
the fracture surface (Fig. 3.1.3-11). For the specimens with holes the deformation of 
the lead mass and its penetration into the holes is very impressive (Fig. 3.1.3-12). 
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Fig. 3.1.3-8: Impact facility VERDY for the tests      Fig. 3.1.3-9: Impact facility IVAN for the tests 
    with the small specimens         with the large specimens 
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Fig. 3.1.3-10: Failure of the small specimen FF1 
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Fig. 3.1.3-11: Failure of the large specimen FG 
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Fig. 3.1.3-12: Failure of the small specimen FO1 and lead mass before and  
    after the impact 
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Fig. 3.1.3-13: Failure of the large specimen FV 

90° 180° 
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3.1.3.3 Tests with flat biaxial specimens under dynamic load 
 Biaxial specimens, as shown in Fig. 3.1.3-14, have been constructed. They are 
of cruciform type, with a finger-like frame holding the central gauge region. Finite 
element pre-calculations have shown that these specimens produce a fairly uniform 
strain field, and have a satisfactory behaviour even after yielding. Tests with speci-
mens without and with hole have been performed. The dynamic tensile load is ap-
plied along the direction of the Hopkinson bars. The deformation along the transverse 
direction is constrained to vanish through a special device attached to the specimen 
and preventing transverse contraction. In the specimen shown, the uniform area is 
80x80 mm2, its thickness is 4mm, and the hole diameter is 2mm. 
 

       
                          (a)                                                                                 (b) 

(c) 
Fig. 3.1.3-14:  (a) Details of gauge area of flat biaxial specimen with hole;  
     (b) Specimen with holding arms and device for preventing trans-
           verse contraction;  
     (c) Specimen mounted between the incident and the transmitter 
           bars of the LDTF. 
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 Figure 3.1.3-15 shows the specimen EP without hole before and after the test. 
The locally reduced thickness of the specimen has been measured after the test. The 
resulting values (in millimetres) are marked in the photograph of the specimen taken 
before the test. With the initial specimen thickness of 4 mm, the maximum amount of 
the (linear) strain in thickness direction is -43.8 %. For the specimen EN, which is of 
the same type, the strain in thickness direction amounts to -52.5%. 
 

 
 

 
 
Fig. 3.1.3-15: Specimen EP without hole before and after the test 
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 Figure 3.1.3-16 shows the specimen EO with hole before and after the test. 
Again, the locally reduced thickness of the specimen has been measured after the 
test and the values are marked in the photograph taken before the test. The initial 
uniform thickness of the gauge area was ~4.0mm 
 The reconstruction of the conditions just before failure showed that the hole had 
an elliptic shape with a large diameter of 4.44 mm and a small diameter of 2.82 mm. 
 The results for the specimen EQ were similar. Before failure the hole had an el-
liptic shape with a large diameter of 3.92 mm and a small diameter of 2.73 mm. 
 However it should be mentioned that for these specimens the accuracy of the 
vanishing gap method described in chapter 3.1.4.2 may hardly be reached. 
 

 
* as seen below, fracture goes through the central hole 
 

 
Fig. 3.1.3-16: Specimen EO with hole before and after the test 
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3.1.4 Determination of the failure strains 
  
3.1.4.1 Definition of the local failure strain 
 Failure is assumed to occur when a crack has reached a size which is detect-
able by the methods described later. The further crack propagation is not of interest 
here, since during this phase the remaining load carrying capacity of structures is not 
very reliable. It is difficult to predict and may rapidly decrease. 
 The local failure strain is defined as the maximum true equivalent strain (maxi-
mum logarithmic equivalent strain) reached at this instant when a crack is just de-
tectable, however  before this crack causes major strain redistributions. Thus in theo-
retical models describing the strain fields, fracture mechanics approaches with singu-
larities at the crack tip must not be considered. 
 Usually the local failure strain occurs at the specimen surface (hole or notch 
surface). It should be mentioned, however, that the crack may be initiated at another 
position in the interior of the specimen usually with a somewhat smaller equivalent 
strain but with a higher triaxiality of the stress tensor. 
 The experiments carried out within the LISSAC project will show that the local 
failure strain defined above as an equivalent strain (second invariant of the strain 
tensor) is almost independent of the shape of the specimen. This means, failure is 
mainly controlled by the equivalent strain. Other quantities characterizing the strain 
and stress field (other invariants of the strain tensor and the invariants of the stress 
tensor, for instance) have not a significant influence.  
 However, it should be pointed out, that for specimens and loads causing other 
strain and stress distributions than investigated here (higher triaxiality of the stress 
tensor) this may not be true. This has to be considered in the later chapters where 
conclusions are made and the applicability of the results is discussed. 
 
3.1.4.2 Methods to determine the local failure strain 
 The direct measurement of the local failure strain, i. e. the maximum equivalent 
strain at the instant when a crack can be just detected, is very difficult. For the 
LISSAC specimens with holes or notches, for instance, the maximum strain has a 
quite local character, it occurs at the curved surface of the hole or notch (inside the 
hole, for instance) and it reaches high values (often more than 100 %). Thus strain 
gauges can be hardly used. The application of markings and post test measurements 
of the increased distances between these markings is only possible for large speci-
mens. Even in this case the interpretation of the result is difficult as discussed in sub-
chapter 3.1.2.1. Also the application of a grid at the plane surface of a flat specimen 
with a hole or notches cannot really yield the maximum strain which occurs at the 
curved surface of the hole or notch. (But for large specimens the grid can be used to 
determine the strain distribution close to maximum). 
 Therefore indirect methods to determine the local failure strain have been de-
veloped within the LISSAC project. They are based on post test geometrical meas-
urements at the broken specimens. The aim is to obtain a characteristic deformation 
δ of the specimen when a crack is just detectable. Then based on this deformation 
the related strain fields in the specimen can be reconstructed using theoretical mod-
els such as finite element models, for instance. The maximum equivalent strain ob-
tained in this way is the local failure strain ε.  
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 In the following sub-chapters the different types of LISSAC specimens will be 
addressed and the appropriate indirect methods to determine the local failure strain 
will be described. 
 
3.1.4.2.1 Tension specimens with a hole or with notches 
 For these specimens used in many LISSAC test families, the so-called “vanish-
ing gap method” will be applied. In Fig. 3.1.4-1 the method is illustrated for a flat 
specimen with a hole. The broken parts of the specimen are (virtually) moved to-
gether such that the gap between the fracture surfaces vanishes. To reach this con-
dition most of the fracture zones of the broken specimen must overlap (Fig. 3.1.4-1c). 
It is assumed that the configuration obtained in this way represents the shape of the 
specimen when the crack has started to develop and is just detectable. The location 
of this starting crack is the position where the fracture surfaces contact each other.  
 It is well known that the starting crack will be always perpendicular to the ten-
sion stress (normal fracture). Therefore during the search for the position of the start-
ing crack only elements of the fracture surfaces must be considered which are ap-
proximately perpendicular to the direction of the tension stress. The relative vertical 
hole increase, the so-called hole opening at this instant, is defined as the characteris-
tic deformation δ.  
 This reconstruction would be correct, if during the process of crack propagation 
the deformed surfaces of the hole did not suffer further shape changes. A detailed 
discussion of this fact may be found in subchapter 3.1.4.4.1. 
 The major problem, however, is that in reality the broken parts of the specimens 
cannot overlap (because two bodies cannot occupy the same space). To overcome 
this problem the following procedures are applied. 
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 For tension specimens of medium size with a wall thickness of 20 mm, for in-
stance, the 
 
 vanishing gap method  
 using a three-dimensional measuring machine      (1a) 
 
is applied. Here the geometry of the fracture surfaces of the broken parts of the 
specimen is scanned by a mechanical probe as illustrated in Fig. 3.1.4-2 and the 
relative hole or notch opening δ is calculated. 
 
 
 For specimens of small size the visual control of the scanning process would 
not allow sufficient accuracy. Thus for flat tension specimens of small size the 
 
 vanishing gap method  
 using optical triangulation         (1b) 
 
is applied. Different fringe pattern are projected and the resulting pictures of the frac-
ture surfaces are taken by a CCD camera and processed to obtain a three-
dimensional image. Using these data the characteristic deformation δ can be calcu-
lated. 
 
 
 For tension specimens of large size transportation and handling at the measur-
ing machine would be expensive. In this case the 
 
 vanishing gap method 
 inserting plastic material into the gap between the fracture surfaces   (1c) 
 
turned out to be appropriate. This technique and suitable plastic material is well 
known in dentistry. The geometry of the resulting mock-up of the gap can be easily 
measured and again the relative hole or notch opening δ can be calculated. 
 
 
 If the broken parts of circular tension specimen are put together as close as 
possible, the remaining gap between the fracture surfaces is relatively small. Thus for 
small circular tension specimens the 
 
 vanishing gap method  
 based on direct measurement of the notch opening     (1d) 
 
is applied. The small width of the gap between the fracture surfaces is assessed and 
subtracted for calculation of the relative notch opening δ. For circular specimens of-
ten additional cracks can be observed which have not propagated through the whole 
cross-section (see Fig. 3.1.2-18, for instance). The widths of the gaps due to these 
cracks are assessed and subtracted, too. 
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Fig. 3.1.4-2: Fracture surfaces of the broken parts of a specimen to be scanned by 
    the mechanical probe of a three dimensional measuring machine. 
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 As indicated above the relative hole or notch opening δ is used to reconstruct 
the complete strain fields in the specimen. For each family of tension tests one 
specimen is selected, the tension force is increased monotonically step by step and 
finite element calculations are carried out for each step. To describe the material 
properties the elastic-plastic stress-strain diagrams determined in section 3.1.1 are 
used. Both, the strain fields and the hole or notch opening versus load are obtained. 
After elimination of the load the strain fields versus the hole or notch opening can be 
obtained. Thus the strain fields and especially the maximum equivalent strain, which 
represents the local failure strain, is known for each hole or notch opening δ deter-
mined above. 
 Figure 3.1.4-3 shows the finite element models and Fig. 3.1.4-4 the stress-strain 
diagrams used for the calculations. Figures 3.1.4-5 to 3.1.4-7 show the maximum 
equivalent strain representing the local failure strain versus the hole or notch open-
ing. In addition, also the strain components contributing to the maximum equivalent 
strain are indicated. More detailed information about the strain fields can be found in 
SAM-LISSAC-D027. 
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Circular specimen
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element type CAX8H

a.) long specimen
number of elements 507
number of nodes 1636
degrees of freedom 3194
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Flat specimen
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element type C3D20H
number of elements 3010
number of nodes 14180
degrees of freedom 40314
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element type C3D20H
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number of nodes 17758
degrees of freedom 50352
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Circular specimen
with notch (r=0.1d)

ABAQUS-5.8
element type CAX8H

b.) short specimen
number of elements 414
number of nodes 1375
degrees of freedom 2640
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Flat specimen
with notches (r=¼t)

ABAQUS-5.8
element type C3D20H
number of elements 3370
number of nodes 15824
degrees of freedom 45132
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2

3

Flat specimen
with slotted hole (r=t/20)

ABAQUS-5.8
element type C3D20H
number of elements 2830
number of nodes 13438
degrees of freedom 37852

➮

➭
12

3

 
 
Fig. 3.1.4-3: Finite element models used to calculate the strain distributions. 
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Fig. 3.1.4-4: Stress-strain diagrams used to calculate the strain distributions. 
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Fig. 3.1.4-5: Maximum equivalent strain and related strain components versus hole 
    opening for the families of flat specimens with hole. 
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Fig. 3.1.4-6: Maximum equivalent strain and related strain components versus hole 
    or notch opening for the families of flat specimens with slots, increased 
    holes and notches. 
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Fig. 3.1.4-7: Maximum equivalent strain and related strain components versus notch 
    opening for the families of circular specimens with notch. 
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3.1.4.2.2 Circular tension specimens without notches 
 These specimens were primarily used to check the material homogeneity and to 
determine the reference stress-strain-diagrams. Thus these specimens do not belong 
to any test family. Nevertheless it was tried to determine their local failure strain, too. 
 For these specimens usually necking before fracture is quite strong, but the 
necking radius is assumed to be relatively large. In this case the strain fields in the 
smallest cross section will be relatively uniform and the 
 
 cross section reduction method        (2) 
 
seems to be suitable to solve the problem. The relative cross section reduction which 
can be easily measured at the broken specimen represents the characteristic defor-
mation δ . 
 The maximum equivalent strain can be calculated by simple formulae derived in 
SAM-LISSAC-D025, chapter 3. The radial strain in the smallest cross section is 
 
  δ11ε  R −+−=  
 
and the maximum equivalent strain which represents the failure strain is 
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3.1.4.2.3 Curved biaxial specimens  
 For curved biaxial specimens without and with holes the so-called 
 
 forging die method          (3) 
 
has been developed within a previous research program]. A three-dimensional finite 
element model of the specimen is used as shown in Fig. 3.1.4-8. To reduce the num-
ber of elements symmetry conditions are considered and therefore only 1/8 of the 
shell has been modelled. The measured displacements for selected points of the de-
formed specimen are used to form the contact surface of a “forging die”. This means, 
not only one characteristic deformation of the specimen, but several values are con-
sidered.  
 In the deformed specimen cracks should have just started. If in the experiment 
cracks have already propagated, the measured displacements have to be corrected 
to describe the earlier state.  
 Finally the finite element model is pressed against the rigid surface of the forg-
ing die, as shown in Fig. 3.1.4-8b. This means, a so-called “contact problem” has to 
be solved to obtain the related strain fields including the maximum equivalent strain 
which is the required failure strain. 
 Sometimes an appropriate correction to describe the state where cracks have 
just started is difficult. For specimens with holes an additional check is possible by 
comparing the hole increases measured after the test with the corresponding value 
obtained from the finite element calculations. 
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AABAQUS - mesh
for the head model

with holes

b
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pressure
100÷400 MPa

contact surface
of the head model rigid surface

    of the forging die

 
 
Fig. 3.1.4-8: Determination of the strain distribution using the forging die method. 
 
 
 The pressure applied to press the finite element model against the forging die 
was between 100 and 400 MPa depending on the prescribed displacements (pre-
scribed curvature of the forging die). A pressure increase beyond this value had only 
negligible influence on the result. 
 
3.1.4.2.4 Flat or curved biaxial specimens without holes under uniform load. 
 For these specimens usually the local necking before fracture is relatively small. 
Therefore the failure strain is about the same as the maximum equivalent strain close 
to the fracture zone and thus the 
 
 thickness reduction method        (4) 
 
can be applied. The minimum strain in thickness direction close to the fracture zone 
which can be easily measured at the broken specimen represents the characteristic 
deformation δ. Note that this strain is negative. The maximum equivalent strain which 
is approximately the local failure strain ε can be calculated by a simple formula de-
rived in SAM-LISSAC-D025, chapter 5. 
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3.1.4.2.5 Bending specimens with notch 
 For these specimens  
 
 visual inspection during testing       (5) 
 
was possible. So the test can be stopped when a crack becomes visible and the rela-
tive notch opening, which is defined as the characteristic deformation δ, can be de-
termined directly. Then using this deformation the related strain fields and the maxi-
mum equivalent strain can be calculated in a similar same way as described in sub-
chapter 3.1.4.2.1. 
 Figure 3.1.4-9 shows the deformed finite element model used for the specimens 
with narrow notch. Furthermore this figure shows the maximum equivalent strain rep-
resenting the failure strain ε versus the notch opening for both, the specimen with 
standard notch and the specimen with narrow notch. Again, more details can be 
found in SAM-LISSAC-D027. 
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Fig. 3.1.4-9: Finite element model as well as the failure strain and the related strain 
    components for the bending specimens 
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3.1.4.3 Results for the local failure strains 
 For most specimens the determination of the characteristic deformation δ and 
the failure strain ε was straight forward. In the following tables the values obtained 
are deeply coloured.  
 For some specimens the determination of δ and ε has been repeated under 
slightly different conditions or using different methods. Here the most appropriate 
values have been selected. In the tables only these values are deeply coloured. 
 For some circular specimens of 3 mm diameter it turned out that the manufac-
turing of the notch was not correct. The depth of the notch varied between 0.300 and 
0.332 mm which covers a range of about 10 %. The correct value would have been 
0.3 mm. There were also doubts about the surface quality of the notch. Perhaps the 
cutting tool was defective causing uncontrolled surface hardening. Thus the results 
should be considered with caution and in the tables the values for δ and ε are lightly 
coloured. 
 For a few specimens failure did not occur. Here δ and ε are related to the 
maximum deformation reached and not to failure. In the tables these values are also 
lightly coloured.  
 For some other specimens which are not members of a test family the values 
for δ and ε have been determined, too. However in the tables these values are not 
coloured.  
 Specimens without values for δ and ε have not been manufactured or the tests 
have not been done or evaluated. However it should be pointed out that in summary 
more tests were done than committed in the annex to the LISSAC contract. This can 
be checked in the attached tables where the number of the committed tests is also 
mentioned. The very few tests which had to be cancelled were replaced by other 
tests introduced to solve unforeseen problems. 
 
 For the flat biaxial specimens without hole under dynamic load one experimen-
tal results became available very late, the other result is still missing. Therefore in the 
following tables the late result is lightly coloured; in the diagram of Fig. 3.3.1-4 it 
could not be included. To determine the failure strain ε,  the method 4 had to be 
modified to account for the fact that the dynamic tensile load is applied only in one di-
rection of the flat specimen while the strain is approximately suppressed in the other 
direction. The resulting failure strain of 53.7 % agrees very well with the failure 
strains between 52.8 % and 56.4 % for the curved biaxial specimens without hole 
under dynamic load. 
 Also for the flat biaxial specimens with hole under dynamic load the results were 
too late in order to be included in the diagram of Fig. 3.3.1-4. For the some reason 
the failure strain could be assessed only roughly. Based on the increased elliptical 
circumference of the hole the mean values of the equivalent strain at failure along 
this circumference could be determined to 71 % and 67 %. The maximum local 
strains at failure are higher than these values. Based on other experiments under 
similar conditions a local failure strain between 100 % and 150 % should be ex-
pected. 
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Flat specimen with hole, static load, R.T.       
          
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
δ [%] ε [%] 

BA1A FZK 4 1   87 145 1b     
BA1B FZK 4 1   87 145 1b 86       * 143     * 
BA1C FZK 4 1             
BA1D FZK 4 1             
BA2A FZK 4 1   85 140 1b     
BA2B FZK 4 1 5 79 130 1b 76       * 125     * 
BA2C FZK 4 1             
BA2D FZK 4 1             
BA3A FZK 4 1   87 145 1b 86       + 143     + 
BA3B FZK 4 1             
BA3C FZK 4 1             
BA3D FZK 4 1             
AL1 FZK 20 5   66,3 105 1a     
AN1 FZK 20 5   62,3 100 1a     
AK1 FZK/MPA 20 5 4 62 100 1a     
AK2 FZK/MPA 20 5   68 108 1a     
AM1 FZK 20 5           
AR1 FZK 20 5   65,3 104 1a     
AJ1 FZK/MPA 40 10 1 60 95 1a     
AC1 MPA 80 20 1 52 85 1c     
AP1 FZK/MPA 200 50 1 44 70 1c     
 +     lateral correlation corrected, 0.12 mm       
 *     lateral correlation corrected, 0.08 mm       
          
Flat specimen with increased hole, static load, R.T.      
          
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
δ [%] ε [%] 

HE1B FZK 4 1,8             
HE1C FZK 4 1,8             
HE1D FZK 4 1,8             
HE1E FZK 4 1,8             
HE1F FZK 4 1,8             
HE2B FZK 4 1,8 5           
HE2C FZK 4 1,8   57 145 1b 58       + 150     + 
HE2D FZK 4 1,8   53 130 1b     
HE2E FZK 4 1,8   54 135 1b     
HE2F FZK 4 1,8   50 121 1b 51       * 124     * 
HE2G FZK 4 1,8   54 135 1b     
AZ1B  FZK 20 9   47,2 114 1a     
CS1B FZK 20 9 2 45,11 105 1a     
CS1C FZK 20 9   45,11 105 1a     
CN1 MPA 80 36 1 40 95 1c  
 +     lateral correlation corrected, 0.08 mm       
 *     lateral correlation corrected, 0.05 mm       
          
Flat specimen with slot, static load, R.T.       
          
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
 

 
CP1B FZK 4 0,2   150 130 1b  
CP1C FZK 4 0,2   160 135 1b  
CP1D FZK 4 0,2   240 185 1b  
CP1E FZK 4 0,2   205 165 1b  
CP1F FZK 4 0,2   190 155 1b  
CP2B FZK 4 0,2 5 220 175 1b  
CP2C FZK 4 0,2           
CP2D FZK 4 0,2           
CP2E FZK 4 0,2           
CP2F FZK 4 0,2           
AZ1A FZK 20 1   136 119 1a  
CO1B FZK 20 1 2 128 115 1a  
CO1C FZK 20 1   138 120 1a  
CM1 MPA 80 4 1 120 107 1c  
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Flat specimen with notches, static load, R.T.      
          
specimen 

code 
partner thickness/ 

diam. [mm]
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
δ [%] ε [%] 

DE1A FZK 4 1             
DE1B FZK 4 1   80 113 1b     
DE1C FZK 4 1   110 155 1b 110      * 155     * 
DE1D FZK 4 1           
DE2A FZK 4 1   105 150 1b 110      + 155     + 
DE2B FZK 4 1   105 150 1b     
DE2C FZK 4 1 5 110 155 1b     
DE2D FZK 4 1   105 150 1b     
DE3A FZK 4 1             
DE3B FZK 4 1             
DE3C FZK 4 1             
DE3D FZK 4 1             
BC1B FZK 20 5   82,1 117 1a     
DD1C FZK 20 5 2 102,3 145 1a     
DF1A FZK 20 5   93,1 133 1a     
DH1 MPA 80 20 1 65 70 1c     
 +     lateral correlation corrected, 0.02 mm       
 *     lateral correlation corrected, 0.05 mm       
          
Bending specimen with notch, static load, R.T.      
          
specimen 

code 
partner thickness/ 

diam. [mm]
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
 

 
CT1A EMPA 4 1           
CT1B EMPA 4 1   89       # 87       # 5   
CT1C EMPA 4 1           
CT1D EMPA 4 1           
CT1E EMPA 4 1           
CT1F EMPA 4 1 5         
Ct1G EMPA 4 1   75       # 78       # 5   
CT1H EMPA 4 1           
CT1I EMPA 4 1           
CT1J EMPA 4 1   77      # 80       # 5   
CV1A EMPA 20 5   56      # 62       # 5   
CV1B EMPA 20 5 2         
CV1C EMPA 20 5   57      # 63       # 5   
CA1 EMPA 80 20 1 38      # 45       # 5   
#    no failure         
          
Bending specimen with narrow notch, static load, R.T.      
          
specimen 

code 
partner thickness/ 

diam. [mm]
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
 

 
CY1A EMPA 4 0,2           
CY1B EMPA 4 0,2           
CY1C EMPA 4 0,2           
CY1D EMPA 4 0,2   250 147 5   
CY1E EMPA 4 0,2   260 151 5   
CY1F EMPA 4 0,2 5 230 140 5   
CY1G EMPA 4 0,2          
CY1H EMPA 4 0,2   245 145 5   
CY1I EMPA 4 0,2          
CY1J EMPA 4 0,2       
CX1A EMPA 20 1   154 106 5   
CX1B EMPA 20 1 2        
CX1C EMPA 20 1   165 111 5   
CW1 EMPA 80 4 1 104 80 5   
CB EMPA 80 4   84       # 67       # 5   
#    no failure         
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Circular specimen with notch, static load, R.T.       
           

specimen 
code 

partner thickness/ 
diam. [mm] 

radius of hole/ 
notch [mm] 

tests commit-
ted 

δ [%]  ε [%] method 
applied 

ε [%] δ [%] ε [%] 

DN1C JRC 3 0,3   72,8 100 1d 113     + 64,1    * 90       * 
DW1H JRC 3 0,3 0 89,3 119 1d 135     + 80,6    * 109     * 
EF1B JRC 3 0,3   87,3 117 1d 133     + 78,7    * 107     * 
EF1H JRC 3 0,3   100,7 134 1d 152     + 92       * 124     * 
DQ1A FZK 3 0,3   124 163 1d   123,3  & 162    & 
DQ1B FZK 3 0,3               
DQ1C FZK 3 0,3               
DQ1D FZK 3 0,3               
DQ1E FZK 3 0,3               
DQ1F FZK 3 0,3               
DQ1G FZK 3 0,3               
DQ1H FZK 3 0,3               
DQ2A FZK 3 0,3   123 162 1d   127,5  & 167     & 
DQ2B FZK 3 0,3   125 164 1d   125     & 164     & 
DQ2C FZK 3 0,3 5 125 164 1d   125,6  & 165     & 
DQ2D FZK 3 0,3               
DQ2E FZK 3 0,3               
DQ2F FZK 3 0,3               
DQ2G FZK 3 0,3               
DQ2H FZK 3 0,3               
DQ3A FZK 3 0,3               
DQ3B FZK 3 0,3               
DQ3C FZK 3 0,3               
DQ3D FZK 3 0,3               
DQ3E FZK 3 0,3               
DQ3F FZK 3 0,3   126 166 1d   120,8  & 159     & 
DQ3G FZK 3 0,3            
DQ3H FZK 3 0,3            
DL1A FZK 9 0,9   109 144  1d    
DL1B FZK 9 0,9   108 142 1d    
DL1C FZK 9 0,9 3 104 137 1d    
DL1D FZK 9 0,9   111 146 1d    
DL1E FZK 9 0,9            
DP1 MPA 20 2 2 86 114 1c    
DR1 MPA 20 2   86 114 1c     
CC1 MPA 150 15 1 65 90,4 1c    
+      for the evaluation the notch depth was increased from 0.3 to 0.325 mm     
*      the specimens were machined to reduce the gap opening      
&     measurement repeated by another person        
           
           
Curved biaxial specimen without holes, statîc load, R.T.      
           

specimen 
code 

partner thickness/ 
diam. [mm] 

radius of hole/ 
notch [mm] 

tests commit-
ted 

δ [%] ε [%] method 
applied 

ε [%] method 
applied  

ET1 VTT 5 ∞ � -63,2 62 4 72 3  
EU1 VTT 5 ∞ 3 -58 56 4      
EV1 VTT 5 ∞ �   &        
EW VTT 25 ∞ 1 -58,4 56,6 4      
&     test difficult to interprete         
           
Curved biaxial specimen with holes, static load, R.T.       
           

specimen 
code 

partner thickness/ 
diam. [mm] 

radius of hole/ 
notch [mm] 

tests commit-
ted 

δ [%] ε [%] method 
applied 

 
  

EY1 VTT 5 1   126 3    
EZ1 VTT 5 1 3 136 3    
FA1 VTT 5 1     &      
FB VTT 25 5 1   32 #      
&     test difficult to interprete         
#      no failure         
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smooth circular specimen, static load, R.T.       
(not member of a test family)      
         
specimen 

code 
partner thickness/ 

diam. 
[mm]+C47 

radius of hole/ 
notch [mm] 

tests com-
mitted 

δ [%] ε [%] method 
applied

 

GR1F EMPA 5 ∞ � 72 112 2  
GR1G EMPA 5 ∞ � 70 106 2  

GR1H EMPA 5 ∞ � 71 109 2  

GR1I EMPA 5 ∞ � 71 109 2  

GR1J EMPA 5 ∞ � 71 109 2  

GR12F EMPA 5 ∞ � 71 109 2  

GR12G EMPA 5 ∞ � 73 115 2  

GR12H EMPA 5 ∞ 0 71 109 2  

GR12I EMPA 5 ∞ � 73 115 2  

GR12J EMPA 5 ∞ � 68 100 2  

GR7F EMPA 5 ∞ � 71 109 2  

GR7G EMPA 5 ∞ � 71 109 2  

GR7H EMPA 5 ∞ � 71 109 2  

GR7I EMPA 5 ∞ � 69 103 2  

GR7J EMPA 5 ∞ � 71 109 2  
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Flat specimen with hole, static load, 400°C     
        
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied

BB1A EMPA 4 1   70 114 1b
BB1B EMPA 4 1   73 119 1b
BB1C EMPA 4 1   72 118 1b
BB1D EMPA 4 1   79 129 1b
BB1E EMPA 4 1   77 126 1b
BB1F EMPA 4 1   93 156 1b
BB1G EMPA 4 1         
BB1H EMPA 4 1 5       
BB1I EMPA 4 1         
BB1J EMPA 4 1         
BB1K EMPA 4 1         
BB1L EMPA 4 1         
BB1M EMPA 4 1         
BB1N EMPA 4 1         
AW1 EMPA 20 5    61,2 *  99 *   
AX1 EMPA 20 5 2 52,7 85 1a
AX3 EMPA 20 5   44,6 75 1a
AV1 MPA 40 10 1 53 86 1c
CL1 MPA 80 20 1 63 99 1c
*   This test has been carried out later. The heating time was about 8 hours. 
    For the tests AX1 and AX3 the heating time was only about 2 hours, which turned  
    out to be not sufficient 
        
Flat specimen with notches, static load, 400°C    
        
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied

DB1A EMPA 4 1         
DB1B EMPA 4 1         
DB1C EMPA 4 1         
DB2A EMPA 4 1         
DB2B EMPA 4 1   120 172 1b
DB2C EMPA 4 1   100 142 1b
DB3A EMPA 4 1 5 112 161 1b
DB3B EMPA 4 1   101 144 1b
DB3C EMPA 4 1   92 133 1b
DB4A EMPA 4 1   118 169 1b
DB4B EMPA 4 1         
DB4C EMPA 4 1         
BC1A EMPA 20 5   77,2 111 1a
DA1 EMPA 20 5 2       
DA3 EMPA 20 5         
DC1 EMPA 20 5   65,1 96 1a
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Circular specimen with notch, static load, 400°C       

           
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of 

hole/ notch 
[mm] 

tests com-
mitted 

δ [%] ε [%] method 
applied

ε [%] δ [%] ε [%] 

DN1K JRC 3 0,3   140,5 185 1d 194     + 140,5   * 185     * 
DW1I JRC 3 0,3 0 106,1 139 1d 146     + 106,1   * 139     * 
DW1D JRC 3 0,3   115,2 150 1d 157     + 115,2   * 150     * 
EF1I JRC 3 0,3   124,3 161 1d 169     + 124,3   * 161     * 
DZ1A EMPA 3 0,3            
DZ1B EMPA 3 0,3            
DZ1C EMPA 3 0,3            
DZ1D EMPA 3 0,3            
DZ1E EMPA 3 0,3            
DZ1F EMPA 3 0,3            
DZ1G EMPA 3 0,3            
DZ1H EMPA 3 0,3            
DZ2A EMPA 3 0,3            
DZ2B EMPA 3 0,3            
DZ2C EMPA 3 0,3            
DZ2D EMPA 3 0,3 5          
DZ2E EMPA 3 0,3   106 138 1d    
DZ2F EMPA 3 0,3   116 151 1d    
DZ2G EMPA 3 0,3   128 166 1d    
DZ2H EMPA 3 0,3         
DZ3A EMPA 3 0,3   127 164 1d    
DZ3B EMPA 3 0,3   117 152 1d    
DZ3C EMPA 3 0,3   133 174 1d    
DZ3D EMPA 3 0,3            
DZ3E EMPA 3 0,3            
DZ3F EMPA 3 0,3            
DZ3G EMPA 3 0,3            
DZ3H EMPA 3 0,3            
DU1A EMPA 9 0,9            
DU1B EMPA 9 0,9   110 144 1d    
DU1C EMPA 9 0,9 3 97 129 1d    
DU1D EMPA 9 0,9   116 151 1d    
DU1E EMPA 9 0,9   106 138 1d    
DY1 MPA 20 2 2 93 123 1c    
EA1 MPA 20 2   88 116 1c    
DT1 MPA 150 15 1 65 90 1c    
+  for the evaluation the notch depth was increased from 0.3 to 0.310 mm    
*  the specimens were machined to reduce the gap opening       
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Flat specimen with hole, static load, 850°C         
            

specimen 
code 

partner thickness/ 
diam. [mm] 

radius of 
hole/ notch 

[mm] 

tests com-
mitted 

δ [%] ε [%] method 
applied

δ [%] ε [%] 

  
GB1A EMPA 4 1               
GB1B EMPA 4 1               
GB1C EMPA 4 1               
GB1D EMPA 4 1               
GB1E EMPA 4 1               
GB1F EMPA 4 1               
GB2A EMPA 4 1 3             
GB2B EMPA 4 1               
GB2C EMPA 4 1   65 73 1b 69       & 75      &   
GB2D EMPA 4 1   64 72 1b 71       & 78      &   
GB2E EMPA 4 1   58 66 1b 65       & 73      &   
GB2F EMPA 4 1             
FX1 EMPA 20 5 2 72,1 79 1a     
FY1 EMPA 20 5   75,8 83 1a     
FW1 MPA 80 20 1 70 75 1c     
&      microscope with higher resolution to define the normal fracture zone    
           
Circular specimen with notch, static load, 850°C       
           

specimen 
code 

partner thickness/ 
diam. [mm] 

radius of 
hole/ notch

[mm] 

tests com-
mitted 

δ [%]  ε [%] method 
applied

ε [%] δ [%] ε [%] 

DN1D JRC 3 0,3   47,4 54 1d 61       + 45,3     * 52       * 
DW1J JRC 3 0,3 0 55,9 62 1d 70       + 53,9     * 60       * 
EF1J JRC 3 0,3   46,8 53 1d 60       + 44,8     * 51       * 
EI1A EMPA 3 0,3            
EI1B EMPA 3 0,3            
EI1C EMPA 3 0,3            
EI1D EMPA 3 0,3          
EI1E EMPA 3 0,3          
EI1F EMPA 3 0,3   106 102 1d    
EI1G EMPA 3 0,3        
EI1H EMPA 3 0,3        
EI2A EMPA 3 0,3        
EI2B EMPA 3 0,3        
EI2C EMPA 3 0,3   95 94 1d    
EI2D EMPA 3 0,3   85 85 1d    
EI2E EMPA 3 0,3 5 83 84 1d    
EI2F EMPA 3 0,3   81 82 1d    
EI2G EMPA 3 0,3   88 88 1d    
EI2H EMPA 3 0,3            
EI3A EMPA 3 0,3            
EI3B EMPA 3 0,3            
EI3C EMPA 3 0,3            
EI3D EMPA 3 0,3            
EI3E EMPA 3 0,3            
Ei3F EMPA 3 0,3            
EI3G EMPA 3 0,3            
EI3H EMPA 3 0,3            
ED1A EMPA 9 0,9            
ED1B EMPA 9 0,9   91 90 1d     
ED1C EMPA 9 0,9 3 95 94 1d     
ED1D EMPA 9 0,9   87 87 1d     
ED1E EMPA 9 0,9   95 94 1d     
EH1 MPA 20 2   76 78 1c    
EH2 MPA 20 2 2 85 85 1c    
EJ1 MPA 20 2   82 83 1c    
EJ2 MPA 20 2   85 85 1c     
EC1 MPA 150 15 1 74 76 1c    
+  for the evaluation the notch depth was increased from 0.3 to 0.325 mm    
*  the specimens were machined to reduce the gap opening       
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Flat specimen with hole, dynamic load, R.T.        
            

specimen 
code 

partner thickness/ 
diam. [mm] 

radius of 
hole/ notch 

[mm] 

tests com-
mitted 

δ [%] ε [%] method 
applied

 

   
GJ1A JRC 4 1              
GJ1E JRC 4 1   83 139 1b      
GJ1G JRC 4 1 3 85 142 1b      
GJ1I JRC 4 1   90 151 1b      
GJ1O JRC 4 1   81 134 1b      
GD1 JRC 20 5           
GE1 JRC 20 5 3          
GM1 JRC 20 5   75 124 1a     
GP1 JRC 20 5   74 122 1a     
            
Circular specimen with notch, dynamic load, R.T.        
            

specimen 
code 

partner thickness/ 
diam. [mm] 

radius of 
hole/ notch 

[mm] 

tests com-
mitted 

δ [%] ε [%] method 
applied

ε [%] δ [%]  ε [%] method 
applied

DN1A JRC 3 0,3   79,1 105 1d 119     + 64,1    * 85       *   
DW1A JRC 3 0,3   74,2 95 1d 107     + 59,2    * 80       *   
EF1A JRC 3 0,3   81,4 105 1d 119     + 66,4    * 90       *   
EF1E JRC 3 0,3 3 91,6 120 1d 136     + 76,6    * 95       *   
DN1B JRC 3 0,3              
DN1E JRC 3 0,3              
DN1F JRC 3 0,3              
DN1H JRC 3 0,3                 
DM1 JRC 20 2 2 103 135 1d 98 129 1a
DO1 JRC 20 2   89 119 1d 92,5 123 1a
+  for the evaluation the notch depth was increased from 0.3 to 0.325 mm      
*  the specimens were machined to reduce the  gap opening        
            
Flat biaxial specimen without hole, dynamic load, R.T.        
 

specimen 
code 

partner thickness/ 
diam. [mm] 

radius of 
hole/ notch 

[mm] 

tests com-
mitted 

δ [%] ε [%] method 
applied

 

   
EP1 JRC 4 ∞ 2  -43.8  53.7  4       *     
EN1 JRC 4 ∞    -52,5  67,4  4       *     
*  the method 4 had to be modified; the results were too late for further consideration.    
    
Flat biaxial specimen with hole, dynamic load, R.T.        
(Tests of 8 mm specimens cancelled) 

specimen 
code 

partner thickness/ 
diam. [mm] 

radius of 
hole/ notch 

[mm] 

tests com-
mitted 

δ [%] ε [%] method 
applied

 

   
EO1 JRC 4 1 2   180 +     
EQ1 JRC 4 1     146 +     
CG1 JRC 8 2 2           
EM1 JRC 8 2             
+  only a rough assessment of ε was possible; the results were too late for further considerations 
 
Curved biaxial specimen without holes, dynamic load, R.T.       
            
specimen co-

de 
partner thickness/ 

diam. [mm] 
radius of hole 
notch [mm] 

tests commit-
ted 

δ [%] ε [%] method 
applied

ε [%] method ap-
plied  

 

FD1 FZK 5 ∞ � -45,7 # 43,5  # 4        
FE1 FZK 5 ∞ 3 -57,4 55,4 4        
FF1 FZK 5 ∞ � -58,4 56,4 4 61,7 3   
BO1 FZK 5 ∞ � -47,6 # 45,2  # 4        
FG FZK 25 ∞ 2 -54,98 52,8 4        
FL FZK 25 ∞ � -57,65 55,6 4       
#  no failure           
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Curved biaxial specimen with holes, dynamic load, R.T.       
            
specimen co-

de 
partner thickness/ 

diam. 
[mm]+C47 

radius of hole/ 
notch [mm] 

tests commit-
ted 

δ [%] ε [%] method 
applied

 

 

 

 
FN1 FZK 5 1     65  # 3    
FO1 FZK 5 1 3   117 3    
FP1 FZK 5 1     54  # 3    
FQ FZK 25 5 2   &       
FV FZK 25 5     115,5 3    
#  no failure        
&  excessive deformation after failure     

 
 
 
         
Flat specimen with hole, dynamic load, 400°C     
         
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
 

GJ1B JRC 4 1   87 144 1b  
GJ1C JRC 4 1          
GJ1F JRC 4 1 3        
GJ1H JRC 4 1          
GJ1N JRC 4 1   92 154 1b  
GG1 JRC 20 5          
GH1 JRC 20 5 3 53 89 1a  
GI1 JRC 20 5   76,5 126 1a  
GO1 JRC 20 5          
         
         
Circular specimen with notch, dynamic load, 400°C     
         
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
ε [%] 

DW1E JRC 3 0,3   114,3 147 1d 154     + 
DW1F JRC 3 0,3   116,9 155 1d 163     + 
EF1F JRC 3 0,3   98,7 123 1d 129     + 
DN1G JRC 3 0,3   113,2 145 1d 152     + 
DW1B JRC 3 0,3 3        
DW1C JRC 3 0,3          
DW1D JRC 3 0,3          
DW1E JRC 3 0,3          
DW1F JRC 3 0,3          
DV1 JRC 20 2 2 103 135 1d  
DX1 JRC 20 2   105 137 1d  
+  for the evaluation the notch depth was increased from 0.3 to 0.310 mm   
         
Circular specimen with notch, dynamic load, 600°C     
(not member of a test family)       
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
 

DW1G JRC 3 0,3 0 172,5 255    # 1d  
#  calculation done for 400° C       
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Circular specimen with notch, dynamic load, 800°C      
(not member of a test family)        
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
 

 

DN1I JRC 3 0,3 0 185,3 163     # 1d   
#  calculation done for 850° C        
          
Flat specimen with hole, dynamic load, 850°C      
          
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
δ [%] ε [%] 

GJ1D JRC 4 1   115 116 1b 132     & 132     & 
GJ1J JRC 4 1   135 134 1b 146     & 146     & 
GJ1K JRC 4 1 3           
GJ1L JRC 4 1             
GJ1M JRC 4 1   117 118 1b 139     & 139     & 
GF1 JRC 20 5   153 150 1a   
GK1 JRC 20 5           
GL1 JRC 20 5 2         
GN1 JRC 20 5   151,7 149 1a   
&      microscope with higher resolution to define the normal fracture zone    
          
Circular specimen with notch, dynamic load, 850°C      
          
specimen 

code 
partner thickness/ 

diam. [mm] 
radius of hole/ 

notch [mm] 
tests com-

mitted 
δ [%] ε [%] method 

applied
ε [%] 

 
DN1L JRC 3 0,3            
DW1K JRC 3 0,3   175,3 155 1d 163     +  
EF1C JRC 3 0,3 3          
EF1D JRC 3 0,3            
EF1G JRC 3 0,3   207,5 180 1d 189     +  
EE1 JRC 20 2 0 180 160 1d   
EG1 JRC 20 2   175 155 1d   
+  for the evaluation the notch depth was increased from 0.3 to 0.310 mm    
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3.1.4.4 Comments on the accuracy of the local failure strains 
 
3.1.4.4.1 Tension specimens with a hole or with notches investigated by the vanish-

ing gap method 
 As already mentioned, the reconstruction of the strain fields at failure assumes 
that during the process of crack propagation the deformed surfaces of the hole or 
notches do not suffer further shape changes. Basic consideration of the stress redis-
tribution caused by a propagating crack (no tension stress normal to the fracture sur-
faces) support this assumption. In addition, observations made during some of the 
tests with the optical measurement system (Fig. 3.1.2-3) indicated that during the 
process of crack propagation the contour of the holes in the middle of the specimens 
remains constant. Small changes of the contour which might not be detectable with 
the optical measurement can be assessed to cause a relative error of the local failure 
strain of less than ± 5 %. 
 Another source of errors are lateral displacements sometimes occurring during 
the crack propagation process as indicated in Fig. 3.1.4-10a. It is assumed that ini-
tially when the crack is still small, these lateral displacements are small, too, and can 
be neglected. Thus, if the broken parts are put together in order to apply the vanish-
ing gap method, lateral displacements are omitted as indicated in Fig. 3.1.4-10b. 
Nevertheless, uncertainties of the lateral correlation of the broken parts have to be 
considered. This was especially a problem for the flat tension specimens with 4 mm 
thickness. Therefore in some cases indicated in the tables of chapter 3.1.4.3 the lat-
eral correlation was varied (corrected) allowing lateral displacements up to 3 % of the 
specimen thickness. The resulting relative errors of the failure strain were up to about 
± 4 %. For tension specimens of larger thicknesses or different shapes this error is 
assumed to be the same (although one should expect that it is smaller). 

 
 
Fig. 3.1.4-10: Lateral displacements of tension specimens 
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 Measuring errors of axial displacements using the three-dimensional measuring 
machine have been assessed to ± 0.1 mm. The resulting relative error of the local 
failure strain is about ± 1 %. Corresponding measuring errors using optical triangula-
tion (small flat tension specimens) or inserting plastic material into the gap between 
the fracture surfaces (big tension specimens) are assumed to have the same effect 
on the local failure strain. 
 However, measuring errors of the axial displacements, using the vanishing gap 
method with direct measurement of the notch opening, which was applied for the cir-
cular tension specimens of 3 mm diameter, have a larger effect on the local failure 
strain. Here the most difficult problem was to assess the maximum width of the gap 
between the fracture surfaces and the widths of the possible gaps of other cracks 
which did not propagate through the hole cross section of the specimens. These 
gaps had to be subtracted from the measured notch opening. Even with the micro-
scope the resulting error of the notch opening is about ± 0.1 mm. Considering that 
the initial notch width is only 0.6 mm, which during the test increases to about 
1.5 mm, the resulting relative error of the local failure strain is about ± 10 %.  
 To check this error, some of the measurements have been repeated by another 
person. This resulted in relative deviations for the local failure strain of about + 3 % 
and − 5 %. Thus the above assessment of the accuracy seems to be reasonable (or 
slightly conservative). 
 A final source of errors is the reconstruction of the strain fields at failure by finite 
element calculations. The finite element discretizations used (Fig. 3.1.4-3) should al-
low suitable spatial resolutions and therefore the resulting error is assumed to be 
negligible. Uncertainties of the description of the constitutive equations by the stress-
strain diagrams (Fig. 3.1.4-4) may have more influence. Considering the difference 
between the stress strain diagrams at room temperature and at 400 °C and consider-
ing the related, quite moderate differences of the plastic strains versus the hole or 
notch opening (Figs. 3.1.4-5 to 3.1.4-7), it can be concluded that the resulting relative 
error of the failure strain could be up to ± 5 %. 
 In order to summarize the particular errors discussed above one has to consider 
the quadratic error propagation rule. For all the tension specimens – except the circu-
lar specimens of 3 mm diameter – the application of the vanishing gap method 
causes a relative error of the failure strain of about ± 8 %. For the circular specimens 
of 3 mm diameter the relative error is about ± 13 %.  
 
 
 A more integral check of the accuracy of the vanishing gap method is possible 
by using the results from the object grating method presented in Fig. 3.1.2-16. 
 For a flat specimen of 4 mm thickness the object grating method yielded a hole 
opening at failure of 75 % and a maximum axial strain at the specimen surface of 
88 %. Based on this hole opening finite element calculations yield a corresponding 
axial strain of 92.5 % and a failure strain (maximum equivalent strain in the middle of 
the specimen thickness) of 124 %. In comparison to this the results of the vanishing 
gap method presented in chapter 3.1.4.3 quote hole openings between 79 % and 
87 % resulting in failure strains between 130 % and 145 %. 
 For a flat specimen of 20 mm thickness the object grating method yielded a hole 
opening of 61 % and an axial strain of 73 %; finite element calculations yield an axial 
strain of 72.5 % and a failure strain of 98 %. In comparison the results of the vanish-
ing gap method quote hole openings between 62 % and 68 % resulting in failure 
strains between 100 % and 108 %. 
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 Based on these comparisons one can conclude, that the error assessments de-
scribed before seem to be reasonable. In general, the values from the object grating 
method are somewhat smaller than the values from the vanishing gap method. This 
systematic deviation can be explained by the somewhat different definition of failure. 
With the object grating method very small cracks are detectable and these cracks de-
fine failure. With the vanishing gap method the cracks must be a little bit larger to be 
detected and consequently the related failure strains are somewhat larger, too.  
 
3.1.4.4.2 Curved biaxial specimens investigated by the forging die method 
 An assessment of the accuracy of this method was done within another re-
search project [34]. The strains determined with this method deviated from the strains 
determined by the displacements of marking points applied at the specimens only 
moderately up to ± 10 %. 
 As an additional control within the LISSAC project, the evaluations for the 
specimens FO1 and FV tested under dynamic load were extended. The application 
of the forging die method yielded maximum equivalent strains of 117 % and 115.5 %, 
respectively. The measurement of increased hole circumferences yielded corre-
sponding mean values of the equivalent strain around the most critical holes of 
100 % and 97 %, respectively. Thus the maximum values obtained by the forging die 
method seem to be reasonable. 
 
3.1.4.4.3 Flat or curved biaxial specimens without holes investigated by the thick-

ness reduction method 
 One source of uncertainty is the measurement of the minimum strain in thick-
ness direction close to the fracture surface. If one approaches the fracture surface, 
the strain in thickness direction decreases (the amount increases). However very 
close to the fracture surface the measurement is impaired by the shear type of frac-
ture resulting in very local asymmetric necking effects. The resulting relative error for 
the local failure strain can be assessed to ± 5 %. 
 Another error is due to the assumptions in the theoretical model described in 
SAM-LISSAC-D025, chapter 5. An assessment of this error is hardly possible; 
guesses may also yield ± 5 %. 
 Finally it should be considered that the thickness reduction method yields the 
maximum mean value across the wall thickness. The maximum peak value, probably 
at the outer or inner surface of the specimen, will be somewhat higher. This has been 
confirmed by the evaluation of the specimen FF1 tested under dynamic load. The 
thickness reduction method leads to a maximum equivalent strain of 56.4 %, the forg-
ing die method able to determine the peak value across the wall thickness yields a 
peak value of 61.7 %. 
 In summary the relative error for the failure strain is suggested to vary between 
-5 % and +10 %. 
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3.1.4.4.4 Bending specimens investigated by visual inspection during testing 
 With this method the process to detect the initial crack is quite simple. Never-
theless the recognition of the initial crack is connected with some uncertainty. The 
resulting relative error for the local failure strain can be assessed to ± 5 %. 
 Furthermore the size of the initial crack defining specimen failure can be ex-
pected to be smaller than for the other methods, where a visual inspection of the 
crack during the test was not possible. (The same was true for the object grating 
method mentioned in subchapter 3.1.4.4.2 in comparison to the other methods). 
Thus the failure strains determined with the current method will be probably some-
what smaller than the failure strains obtained with the other methods. This systematic 
deviation will be addressed again in chapter 3.3.1. The relative value could be as 
much as -10 %. 
 The error due to the reconstruction of the strain fields at failure by finite element 
calculations should be similar to the corresponding error discussed in subchapter 
3.1.4.4.1. There the resulting relative effect on the failure strain was assessed to 
± 5 %. 
 If the systematic deviation is suppressed in order to obtain results comparable 
with the other assessments, in summary the relative error for the failure strain could 
be +10 %.  
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3.2 Theoretical results 
 

3.2.1 Gradient models 
 
3.2.1.1 Damage enhanced flow theory of gradient plasticity 
3.2.1.1.1 Theory 
 Higher-order strain gradient theories are able to model phenomena that cannot 
be captured by standard elasticity and plasticity theories, which do not involve an in-
ternal length scale in their constitutive equations. Size effects, strain localization and 
patterning are representative examples of such phenomena. This advantage of gra-
dient theories is due to the involvement of an internal length scale in the constitutive 
material description through the gradient coefficients. 
 The present work documented in [1] uses the flow theory of gradient plasticity 
proposed by Aifantis and co-workers [2-6]. It is implemented within an element-free 
Galerkin (EFG) framework in order to solve 2D and 3D boundary-value problems 
considering finite deformations. In this gradient theory the usual constitutive relations 
of classical plasticity are modified by including the Laplacian of the hardening pa-
rameter into the standard expression for the yield condition. To account for void nu-
cleation, void growth and crack initiation, the above framework has been extended to 
include also a damage mechanics model proposed by Lämmer and Tsakmakis [7] as 
a generalization of Dhar et al. [8] damage approach. Material failure (microcrack ini-
tiation) can be determined by employing the most common engineering criteria: (a) a 
local failure strain criterion, (b) a local failure stress criterion, and (c) a local failure 
damage criterion. 
 The most common damage variable D is identified as the effective area reduc-
tion caused by discontinuities in the form of microcracks and microvoids. In the pre-
sent work, however, we employ another scalar damage variable X related to D as 

 11
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where X is monotonically increasing with D and takes values within the range 0 (un-
damaged material, i.e. D = 0) and +∞ (completely damaged material, i.e. D = 1). 
Thus, X is not bounded which avoids numerical integration problems [9]. 
 Damage evolution is assumed to obey the following law 
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where 1 2, , , ,oa a a n q  are non-negative material parameters and (−Y) is the elastic 
damage energy release rate. This law was studied by Lämmer and Tsakmakis [7] as 
a generalization of the damage model of Dhar et al. [8] where n = 1 and q = 0. The 
first term, which is independent of (−Y), accounts for damage evolution due to void 
nucleation, while the second term, which depends on (−Y), represents the damage 
evolution due to void growth. 
 One of the simplest forms of flow theory of gradient plasticity is based on the 
gradient modification of the standard expression for the flow stress ˆ ˆ( )eqτ κ γ=  to in-
clude the Laplacian of the hardening parameter in Eulerian coordinates 2 ˆxγ∇ . The 
corresponding form of the gradient-dependent yield condition reads 
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 2ˆ ˆ ˆ ˆ( ) ( )eq xf cτ κ γ γ γ = − + ∇   = 0.  
 Then, by including also damage effects, i.e. 
 2ˆ ˆ ˆ ˆ(1 ) ( ) ( )eq xf X cτ κ γ γ γ = + − + ∇   = 0, 
a more generalized theory can be developed, where ˆ( )c γ  is the phenomenological 
gradient coefficient, which, in general, depends on the hardening parameter γ̂ . Fur-
thermore, the equivalent stress êqτ  is the usual von Mises measure defined as 

ˆ ˆ ˆ3 / 2eqτ ′ ′= ⋅τ τ , where ˆ′τ  denotes the deviatoric part of the Kirchhoff stress tensor τ̂  
in the corotational configuration.  
 Instead of using a finite element formulation, the element-free Galerkin (EFG) 
method is employed herein. It is a meshless method that bases on a moving least 
squares principle for the formulation of the shape functions [10, 11].  
 
3.2.1.1.2 Determination of material depending parameters 
 For the homogeneous part of the flow stress ˆ( )κ γ  one may use the experimen-
tally true stress – strain curve. In contrast to other methods a modified elongation of 
the true stress strain curve is used which fits well the tensile engineering stress – 
strain curve, in combination with the gradient model as shown in the next section.  
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where the parameters used to accomplish the fitting (using the least square method) 
are yσ = 441 MPa (initial yield stress), 1A  = 175.682 MPa, 2A  = 2.365⋅10-3, 

3A  = 5.932, 4A  = 497.808 MPa, m = − 1.65, p = 0.896, ko = 1010.8 MPa, N = 0.3025, 
ˆuγ  = 0.138 and ku = 677.8 MPa. The used true stress strain curve (marked as “ used 

by AUT”) is shown in Fig. 3.2.1.1-1 in comparison to the curve used by the other 
partners (marked as “ given by MPA”).  
 Concerning the elastic material parameters, the values E = 231000 MPa and 
ν = 0.2 are used. Moreover, the value c = −110.25 N is employed for the Laplacian 
coefficient unless otherwise stated. This value corresponds to a phenomenological 
internal length l = / uc k−  = 0.403 mm. 
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Fig. 3.2.1.1-1: Comparison of the true stress – strain curve used by the partners 

(MPA curve) with that used by AUT. 
 
3.2.1.1.3 Results 
Cylindrical tensile specimens 
 Consider a cylindrical specimen of diameter Do and length L = 5Do which is sub-
jected to tensile loading, as shown in Fig. 3.2.1.1-2. 
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Fig. 3.2.1.1-2: Cylindrical tensile specimen. 
 
 Axisymmetric loading conditions are assumed. Because of symmetry, only one 
quarter of the cylinder is considered. A geometric imperfection is introduced at the 
symmetry cross-section. In particular, the specimen radius within a distance of 
0.08Do from the symmetry section is 5 % smaller than the overall radius. 
The nodal distribution of the EFG discretization employed is depicted in  
Fig. 3.2.1.1-3.  
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Fig. 3.2.1.1-3: EFG nodal distribution in a quarter of the tensile specimen. 
 
 Then, the validity of the used homogeneous equivalent stress – strain re-
sponses given is investigated with standard plasticity (c ≡ 0) without damage  
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1 2( 0, 0, 0, 0, 0)oa a a n q≡ ≡ ≡ ≡ ≡ . The computed engineering stress – strain graph is 
compared with the experimental results, Fig. 3.2.1.1-4. As shown, the prediction cor-
responds well with the experimental results. 
 In order to study size effects, three geometrically similar specimens with Do = 5, 
15 and 50 mm (see Fig. 3.2.1.1-2) were considered. Gradient plasticity (c = −110.25 
N) without damage 1 2( 0, 0, 0, 0, 0)oa a a n q≡ ≡ ≡ ≡ ≡  is assumed. The obtained 
engineering stress vs. engineering strain and engineering stress vs. diameter 
reduction graphs are depicted in Fig. 3.2.1.1-4. 
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Fig. 3.2.1.1-4: Size effect on the engineering stress at the symmetry cross-section 

for geometrically similar tensile specimens without damage. 
 
 As was expected, the pre-necking behaviour is not influenced by the specimen 
size due to the absence of strain gradients. On the other hand, at any engineering 
strain in the post-necking regime, the engineering stress decreases with specimen 
size. However, the relation between engineering stress and diameter reduction at the 
symmetry cross-section (which is a measure of the maximum strain) exhibits a negli-
gible size effect. Furthermore, in the present case, the relation between the maxi-
mum principal Almansi-Hamel strain 1( ) / 2− −= − T

%
e I F F , and the maximum equivalent 

plastic strain maxˆ( )p
eqε , displays no size influence. Then it follows that the engineering 

stress at fracture is not size-dependent if a local failure strain criterion is adopted. 
The respective engineering strain, however, decreases with specimen size. 
 If we assume a local failure stress criterion instead of a strain criterion, then 
plastic strain at fracture can decrease or increase with specimen size depending on 
the critical stress cτ  value used for the maximum principal Kirchhoff stress. 
 Repeating the above computations using the non-zero damage parameters 
n = 1, 410oa −= , 4 1

1 10 MPaa − −=  and 1
2 1MPaa −= , the results depicted in Fig. 3.2.1.1-5 

are obtained. Concerning the size influence the aforementioned remarks are also 
evident in the present example. Moreover, a local failure damage criterion Dc is con-
sidered. According to literature [8,12] a value of Dc = 0.05 is chosen. 
 As shown in Fig. 3.2.1.1-6, increasing the specimen size results in smaller 
engineering stresses at failure, while the respective engineering strains and 
maximum plastic strains increase. This trend is qualitatively opposite to that 
experimentally observed within the LISSAC project for various non-uniform 
geometries.  
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Fig. 3.2.1.1-5: Size effect on the engineering stress for geometrically similar tensile 

specimens with a critical damage failure criterion Dc = 0.05. 
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Fig. 3.2.1.1.6: Size effect on the maximum damage value for geometrically similar 
tensile specimens with a critical damage failure criterion Dc = 0.05. 

 
 
Cylindrical tensile specimens with a notch 
 Consider a cylindrical specimen of diameter Do and length L = 6Do, which has a 
central semicircular notch and is subjected to tensile loading, as shown in 
Fig. 3.2.1.1-7. 
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Fig. 3.2.1.1-7:  Cylindrical tensile specimen with a notch. 
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 Axisymmetric loading conditions are again assumed and thus, the 3D problem 
is reduced to 2D.  
 Analyses with and without damage inclusion are performed also for the present 
problem using the same values for the material parameters. Among the specimens 
tested experimentally in LISSAC, three geometrically similar specimens with Do = 9, 
20 and 150 mm are considered herein to study size effects. The computed results for 
the no damage inclusion case are depicted in Fig. 3.2.1.1-8, where the engineering 
stress is defined as the load over the net section area and the engineering strain 
equals the elongation over the specimen length. As shown, the pre-necking behav-
iour is hardly influenced by the specimen size due to the relatively small internal 
length (l/0.8Do = 0.056 for the smallest specimen) combined with the small strain 
gradients (compared to those arisen in the post-necking regime). As in the case of 
the unnotched tensile specimens, at any engineering strain in the post-necking re-
gime, the engineering stress decreases with specimen size. Comparison of the com-
puted engineering stress – strain predictions with the respective experimental data 
reveals an overestimation of the engineering stress mainly in the post-necking re-
gime, as illustrated in Fig. 3.2.1.1-8. 
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Fig. 3.2.1.1-8: Size effect on the engineering stress for geometrically similar 

notched specimens and comparison of the experimental results with 
the theoretical predictions without damage. 

 
 A local failure stress criterion or a local failure strain criterion can be adopted to 
account for fracture (nucleation of a crack) in the present non-damage case. The two 
criteria lead to qualitatively contrary size effects. In particular, plastic strain at fracture 
increases with specimen size when a local failure stress criterion is used, while it de-
creases when a local failure strain criterion is employed. The latter is in agreement 
with the experimental data obtained within LISSAC. 
 The foregoing computations are repeated for the case of damage inclusion us-
ing the same damage parameters as before. The corresponding results are depicted 
in Fig. 3.2.1.1-9. As observed, the aforementioned remarks concerning the non-
damage case are still valid. Moreover, larger specimens have lower values of engi-
neering stress at fracture, while all the corresponding strain measures (i.e. engineer-
ing strain, diameter reduction, notch opening increase and maximum plastic strain) 
increase with specimen size. As already mentioned, the latter trend is opposite to 
that observed experimentally in the LISSAC project. 
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Fig. 3.2.1.1-9: Size effect on the engineering stress for geometrically similar 

notched specimens with a critical damage failure criterion Dc = 0.05. 
 
Flat specimens with a central hole 
Consider a flat specimen with a central hole, which is subjected in uniaxial tension as 
shown in Fig. 3.2.1.1-10. 
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u  
Fig. 3.2.1.1-10:  Flat specimen with a central hole. 
 
 
 In the present case, 3D rather than 2D analysis is performed. Because of sym-
metry, only one eighth of the specimen is considered. 
 Among the specimens tested experimentally in LISSAC, three geometrically 
similar specimens with Do = 2, 20 and 100 mm are considered to study size effects 
herein. The computed results for the case of damage inclusion are depicted in 
Figs. 3.2.1.1-11, where material parameters are assumed identical to those used for 
the round bars. Also, the engineering stress is defined as the load over the net sec-
tion area, the engineering strain equals the elongation over the specimen length, and 
the hole opening is normalized with the initial hole radius.  
 As in the notched specimens, the pre-necking behaviour is hardly influenced by 
the specimen size due to the relatively small internal length (l/2Do = 0.1 for the small-
est specimen) combined with the small strain gradients (compared to those arisen in 
the post-necking regime). Moreover, the results for the two larger specimens are 
identical, i.e. the size influence vanishes. This also stems from the small internal 
length compared to the specimens dimensions (l/2Do = 0.01 for Do =20 mm and 
l/2Do = 0.002 for Do =100 mm). Nevertheless, there is a relatively evident size effect 
in the response of the smallest specimen in the post-necking regime. As before, at 
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fore, at any engineering strain in the post-necking regime, the engineering stress de-
creases with specimen size.  
 As in the case of notched tensile specimens, the assumptions of a local failure 
stress criterion or a local failure strain criterion lead to qualitatively contrary size ef-
fects, i.e. plastic strain at fracture increases with specimen size when a local failure 
stress criterion is used, while it decreases when a local failure strain is employed. As 
mentioned, the latter is in agreement with the experimental data obtained within 
LISSAC. On the other hand, when the local failure damage criterion Dc = 0.05, is 
adopted, smaller specimens have smaller maximum equivalent plastic strain at frac-
ture. However, the respective engineering strain and hole opening increase with 
specimen size. The latter size influences are in agreement with the LISSAC experi-
mental results. 
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Fig. 3.2.1.1-11: Size effect on the engineering stress for geometrically similar flat 

specimens with a central hole using a critical damage failure crite-
rion Dc = 0.05. 

 
3.2.1.1.4 Conclusions 
 A flow theory of gradient plasticity enhanced with a damage mechanics model 
was proposed and its formulation for the solution of boundary value problems in finite 
deformations was developed. The element-free Galerkin method was used for the 
numerical implementation of this formulation. 
 Concerning the deformation behaviour of the simulated cylindrical unnotched 
specimens, the cylindrical notched specimens and the flat specimens with a central 
hole, the following conclusions can be drawn from these numerical investigations: 

• The pre-necking behaviour is not influenced by the specimen size for un-
notched tensile specimens due to the absence of strain gradients. 

• The pre-necking behaviour is hardly influenced by the specimen size for 
notched and perforated specimens due to the relatively small internal length 
assumed in conjunction with the small strain gradients (compared to those 
arisen in the post-necking regime). 

 The above theoretical predictions are in qualitative agreement with the experi-
mental results obtained in LISSAC. However, concerning the relations between  
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engineering stress and local strain quantities (symmetry cross-section area reduction 
or notch/hole opening increase), a more pronounced size effect was observed ex-
perimentally. The relatively small internal length used in the theoretical analysis could 
be a possible explanation for this difference. Nevertheless, the pronounced 
experimental size effect concerns mainly the deformation behaviour of an already 
cracked material, which is beyond the subject of the present work. 
 Concerning the failure behaviour, the following conclusions can be drawn from 
the aforementioned numerical investigations: 

• When a local failure strain criterion is adopted, then the maximum plastic strain at 
fracture is not size-dependent for the unnotched specimens, while it decreases 
with the specimen size for notched or perforated specimens. This size effect is in 
agreement with the experimental trend. 

• When a local failure stress criterion is adopted, then the maximum plastic strain at 
fracture increases with the specimen size for notched or perforated specimens, 
which is opposite to the experimental trend. For the unnotched specimens, the 
maximum plastic strain at fracture can decrease or increase with specimen size 
depending on the critical stress value used. 

• When a local failure damage criterion Dc = 0.05, is adopted smaller specimens 
have smaller maximum equivalent plastic strains at fracture, which is contrary to 
the experimental trends observed in LISSAC. This difference is probably due to 
faster damage evolution in the smaller specimens. In particular, gradient plasticity 
implies that smaller specimens can sustain higher stress values, which, in collabo-
ration with the stress-controlled damage evolution law [9], give higher damage 
rates. 

 In view of the above remarks, it is concluded that the present gradient plasticity 
theory can be used to interpret size effects in the deformation behaviour of the mate-
rial tested in LISSAC. However, concerning size effects in failure, only a local failure 
strain criterion seems to give convincing predictions. A local failure damage criterion 
could perhaps give acceptable results if the above framework is modified by adding a 
plastic potential associated with damage in the yield condition, similarly to the models 
of Rousselier [12] or Tvergaard and Needleman. Also the inclusion of a damage or 
strain gradient term in the damage evolution law could possibly solve the problem. 
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3.2.1.2 A nonlocal damage model for elastoplastic materials based on gradient 
plasticity theory 

 Experimental and theoretical studies have shown that size effects in structure 
deformations and failure become significant as soon as strain gradients are high in 
relation to the microstructure. To give an accurate prediction for the failure of struc-
tures with high strain gradients these gradients are introduced in the constitutive 
equations. A detailed description is given in [1]. 
 
3.2.1.2.1 Theory 
 Classical continuum models suffer from pathological mesh dependence in 
strain-softening materials. The reason is that in this case the critical condition for lo-
calization coincides with the condition for loss of ellipticity of the governing differential 
equations. The difficulty of mathematical model reflects the absence of internal length 
scales in the governing equations. 
 Aifantis [2] suggested a simple form of plasticity depending on plastic strain 
gradients which is termed gradient plasticity theory. In this theory, the scalar variable, 
i.e. the Laplacian of the equivalent plastic strain is included into the usual yield condi-
tion and constitutive equation. So the difficulties exhibited by the classical plasticity 
can be eliminated when the material enters the softening regime. Using the gradient 
terms, it is possible to determine the shear band width and to perform mesh inde-
pendent finite element calculations. 
 The simplest form of gradient plasticity is based on the gradient modification of 
the expression for the flow stress )( pεσ=σ  to include the Laplacian of the equivalent 

plastic strain, i.e. 
p2 ε∇ . 

 
p2p

y
p2p

y g)(),( ε∇−εσ=ε∇εσ  
 
 The corresponding form of the yield equation can be written as 
 

p2p
y

p2p
y g))(()),(( ε∇−εσΦ=ε∇εσΦ  

 
where ))(( p

y εσΦ  is the classical J2 yield stress measure, pε  is the equivalent plastic 
strain and g is a positive coefficient with the dimension of force.  
 If the gradient plasticity theory is used in pure bending to explain size effects 
and only the Laplacien of plastic strain is introduced into the flow stress, no size ef-
fect can be achieved due to 0

p2 =ε∇ . For this reason, in the work of size effects 
analysis by Aifantis, the first-order derivate , pε∇ , is included. Then flow stress and 
constitutive equation can be written as: 
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y gg))(()),,(( ε∇−ε∇+εσΦ=ε∇ε∇εσΦ  
 
 In the Gurson Tveergard Needleman (GTN) model one only considers that the 
material failure process is modelled by nucleation, growth and coalescence of the  
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micro voids. The conventional constitutive relation, which is originally suitable for the 
macroscopic analysis, is assumed to be valid for the matrix material in microscopic 
scale. It is an obvious shortcoming in the model.  
 Nonlocal forms of the GTN model in which the delocalization is related to the 
damage parameter were developed by Leblond [3], Tvergaard and Needleman [4] et 
al. In their work the porosity is treated nonlocally by averaging the actual porosity 
value in an assumed neighboring region. Ramaswamy and Aravas [5] suggested a 
gradient treatment of the porosity of the GTN model. In their study, effects of void dif-
fusion, interaction and coalescence have been considered. The first and second de-
rivatives of the porosity enter the evolution equation. Variations of the porosity are 
controlled by a diffusion equation. All these efforts are assuming that the material 
length is only related to damage development which may be certainly contradictory to 
the known experimental observation of size effects in plasticity.  
 Due to existence of voids, the strain field of the porous material is inhomogene-
ous. In the microscopic level the strain concentrates around the voids. According to 
recent knowledge, the matrix at microscopic level may have significantly different fea-
tures from that at the macroscopic cases. Discussions about intrinsic material length 
make it necessary to introduce a material length into constitutive equation of the ma-
trix. From the view point of gradient plasticity the strain variations may significantly 
change the matrix strength. In this work, we postulate the matrix strength depending 
on the strain field. The gradient plasticity is introduced into the matrix material to 
consider the micromechanisms by voids.  
 In the frame of gradient plasticity, the yield condition is expressed as  
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In the equation above the actual stress of matrix, 




 ε∇εσ

p2p
y , , is a function of gradi-

ents of plastic strains, represented by 
p2 ε∇ . The first order strain gradient 

p
ε∇ is 

omitted, it cannot avoid the mesh dependence during damage evolution. If material 
failure is accompanied with high plastic strain gradients, e.g. near a crack tip, the ma-
trix will be strengthened locally to prevent strain localization. 
 

3.2.1.2.2 Results 
 Due to a rearrangement of partners no results for LISSAC are presented in this 
chapter. However the model is used by another partner and the results are presented 
in chapter 3.2.3.2. 
 
3.2.1.2.3 Conclusions 
 In this work, a new algorithm of computational gradient plasticity on finite strain 
assumptions was formulated. Based on the new algorithm of gradient plasticity, the 
formulation and finite element implementation of a micro mechanical damage model 
by implementing gradient plasticity theory into GTN damage model was presented. 
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3.2.1.3 Micromorphic deformation and damage model 
 Constitutive equations for a micromorphic model describing size effects in elas-
ticity are derived [1]. Also a micromorphic plasticity theory is used to model size phe-
nomena [2, 3] in the plasticity region. The models were programmed and imple-
mented in the finite element code ABAQUS. For plasticity only isotropic hardening is 
incorporated, while softening in the material response is modelled by using a scalar 
valued internal variable. 
 
3.2.1.3.1 Theory 
Elasticity 
 For describing size effects in elasticity constitutive equations for a micromorphic 
continua are derived: 
 

pqrijkpqrijk

pqpqijpqijpqij

pqijpqpqijpqij

KCM
BA
BE

=

ε+β=τ

β+ε=σ

 

 
 In these equations, σ  is the classical stress tensor, τ is an additional stress 
tensor depending on the microstructure and M represents the couple stress tensor. 
ε , β and K are the linearized strain and curvature tensors.  
 In case of isotropy the theory depends on eighteen independent coefficients.  
λ  and µ  are the classical Lamé-constants, α measures the non-symmetry of the 
elasticity tensor E. The elasticity tensors A, B of order 4 depend on 2 and the elastic-
ity tensor C of order 6 depends on 11 material parameters: 
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Plasticity 
 For describing size effects in plasticity a micromorphic model with scalar-valued 
damage is developed. The plasticity theory will be restricted to J2-flow. Accordingly, 
the yield function can be written as 
 

( )
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where k denotes the yield stress and d is the variable describing damage effects.  

Dσ  and Dτ are the deviatoric stress tensors, M is the couple stress tensor and 
721 r,q,p,p  are material parameters. We set 
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to obtain comparable results with the classical theory. The parameter 7r  is governing 
the nonlocality in the constitutive behaviour. 
 The yield stress k is defined by: 
 

( ) 00 krrck ++=  
 
c and k0 are material parameters, while r0 represents an initial internal strain. 
 A general evolution equation describing ductile damage is given by [4]: 
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with α0, α1, α2, n, q being nonnegative material parameters. For the special case  
 
 α1 = α2 =  q  =  0  and n =  1 
 
we obtain [5]: 
 

sd 1 && Ωα−=  
 
 Here, the influence of the triaxiality ratio on the damage evolution is taken into 
account by Ω [4]: 
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3.2.1.3.2 Determination of material depending parameters 
 The theory includes 26 material parameters. Parameter studies by using FE 
calculations suggest that only 8 parameters suffice to model general size-effects 
(Tab. 3.2.1.3.1). 
 

 parameter dimension  
elasticity λ 

µ 
α 
c7 

[N/mm²] 
[N/mm²] 
[N/mm²] 
[N] 

classical elasticity constants 
(Lamé constants) 
non-symmetry of the elasticity tensor E 
nonlocal elasticity parameter 

b 
c 

[-] 
[N/mm²] 

isotropic hardening 
(b = 17 N/mm², c = 4100 N/mm²) 

plasticity 

r7 [1/mm²] additional parameter of yield function 
damage α1 [-] scalar-valued damage (α1= 0.1) 

 
Tab. 3.2.1.3.1: Material parameters 
 
 Due to the lack of methods for determining the non classical material parame-
ters the needed constants can not be adapted to LISSAC material. The influence of 
the parameters will be discussed in the following sections. 
 
3.2.1.3.3 Results 
 The LISSAC specimen (Fig. 3.2.1.3-1) has been modelled in two dimensions 
assuming plane strain. 
 

 
Fig. 3.2.1.3-1: Flat specimen with round hole 
 

 parameter n 
[-] 

length l 
[mm] 

diameter d 
[mm] 

width b 
[mm] 

specimen 1 1 6 0,5 2,5
specimen 4 4 24 2 10
specimen 20 20 120 10 50
specimen 
200 

200 1200 100 500
b

l
d

u

y

x

(1)
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Size effects in elasticity 
 The non classical material parameters of the theory α and c7 are unknown and 
their identification is by no means straightforward from experiment. Therefore, at the 
present stage parameter studies are carried out in order to study the influence of 
α and c7 .The first material constant (α )  measures the antisymmetric part of  the 
coupling between shear stress and strain. Therefore a small value compared to the 
Lamé-constant µ is reasonable. 
 The second material constant (c7 ) associates the curvatures K (unit: 1 per 
length) with couple stresses M (unit: force per length). Therefore, c7 has the dimen-
sion of a force. The ratio of this parameter to e. g. µ could be interpreted as the 
square of an intrinsic length lc:  
 

µ
= 7

c
c:l  

 
 This length is a material property on which the influence of couple stresses de-
pends strongly. If the ratio of the smallest dimension of a body to cl  is large, the the-
ory shows that the effect of couple stresses is negligible. If there are strain gradients 
and a dimension of a body approaches cl , couple stresses may produce effects of 
appreciable magnitude. 
 The tension test specimen was analysed for a series of parameter variations 
and with different dimensions shown in Tab. 3.2.1.3.1. A measure for the size effect 
is the stress concentration, which is defined as maximum stress at the notch yσ  
compared to the stress 0σ  of a smooth specimen. 
 Both parameters (α and c7) influence the stress concentration around the circu-
lar hole of a tension-test specimen (Fig. 3.2.1.3-1). 

 The classical solution of our example is 
0

y

σ
σ

=3.14  (Fig. 3.2.1.3-2). In this case, 

yσ  represents the stress at point (1) (Fig. 3.2.1.3-1) in y-direction of the specimen 

with hole and 0σ  is the stress of a smooth specimen. As 
µ
α  becomes large, the 

stress concentration factor approaches a lower limit of 
0

y

σ
σ

=1.9.  
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Fig. 3.2.1.3-2: Stress concentration factor versus notch distance a (c7= 0.1·µ mm²). 
 
 A parameter study is carried out to illustrate the influence of α and c7 on the 

stress concentration factor 
0

y

σ
σ

 of  the tension test specimen. Parameter 

α  parametrically was chosen as µ/100, µ/10, µ  and µ·10. Parameter c7 , which has a 
dimension of area compared to µ  was varied within the range of  8 decades. The re-
sults show that the stress concentration factor decreases strongly with increasing 

α (depending on 
µ

7c ).  No size effects are measured if α  is very small. 

 In a second study the specimen was analysed for a series of parameter varia-
tions and with four different dimensions, which differ by factors 4, 20 and 200 with re-
spect to the first specimen (Fig. 3.2.1.3-1). It can be demonstrated that increasing the 
overall dimensions by a factor n results in the same change in stress concentration 
as changing the material parameter c7  by a factor n². This proves that the theory is 
able to predict size-effects in the elastic range.  
 In a final example the physical dimensions of the specimen are varied by a fac-
tor n=0.0001, 0.01, …, 400, 10000. A characteristical dimension lm of the specimen is 
introduced as: 
 

b4.0d2:lm ==  
 
 The internal length is chosen as: 
 

mm31623.0:lc = ) 
 
 It can be observed that the internal length is a material property on which the in-
fluence of couple stresses depends strongly. If the ratio of the characteristic dimen-
sion of  a specimen lm is large compared to lc the nonlocal effects are negligible. If  
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the dimension of the specimen approaches the internal length,  couple stresses pro-
duce effects of appreciable magnitude. 
These parameter studies indicate that the results approach asymptotically the classi-
cal limit for small values of  α  and c7. If  c7 is very large, the results tend asymptoti-
cally to a second limit. 
 A major influence of the parameter α  on the stress concentration factor is ob-
served. If α  is very small compared to µ , the size effect is limited to a few percent. In 
case of α/µ = 10 the size effect is up to 35%.  
 
Size-effect in plasticity with scalar-valued damage 
 The parameter is 7r  governing nonlocality in the constitutive behaviour. The ef-
fect of parameter r7 in the yield function is illustrated in Fig. 3.2.1.3-3, while 
Fig. 3.2.1.3-4 displays the distribution of stress σy at point (1) (see Fig. 3.2.1.3-1) as a 
function of the global strain ∆l/l. 

 
Fig. 3.2.1.3-3: σy at point (1) versus global strain - variation of r7 (plasticity with sca-

lar-valued damage) 
 
 The maximum stress of all specimen is nearly identical but the failure strain de-
creases by increasing the specimen’s size. 
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Fig. 3.2.1.3-4: σy at point (1) versus global strain - variation of the specimen’s size 

(plasticity with scalar-valued damage) 
 
3.2.1.3.4 Conclusions 
 The problem of size-effect has been analysed in this contribution with a micro-
morphic theory which includes scalar-valued damage and a material related length lc. 
Concerning the theoretical derivations and the results from the elastic and plastic 
simulations the following conclusions can be drawn: 

• The non classical material parameters of the theory are unknown and their 
identification is by no means straightforward from experiment. Due to this 
problem the parameters cannot be determined for the LISSAC material and 
only qualitatively results can be achieved. 

• The micromorphic theories for elasticity are able to predict size effects in de-
pendence of the choosen material parameters. The parameter studies indicate 
that the results approach asymptotically the classical solution for small values 
of  α  and c7. If c7 is very large, the results tend asymptotically to a second 
limit. 

• The simulations with the micromorphic elastic plastic theory with scalar valued 
damage predict also size effects. Again the size effect depends on the selec-
tion of the material parameters. Due to the lack of the LISSAC material pa-
rameters a reliable statement if the theory is able to predict the experimentally 
observed size effect can not be made. 

   In this contribution some promising theories are developed and implemented 
in a finit element program. Future works must show if the model is able to predict 
quantitatively the experimental findings. 
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3.2.2 Stochastic models  
 In general the deformation and failure behaviour of specimens and components 
is not of a deterministic nature. To describe the observed experimental behaviour the 
statistical scatter should be taken into account. Therefore one objective of LISSAC is 
to analyse stochastic models for their capability to describe size and scatter effects in 
deformation and failure. 
 
3.2.2.1 Stochastic material damage model 
 Here a modified Lemaitre continuum damage model (CDM) is applied and 
evaluated [1]. More information about stochastic material modelling may be found in 
[2, 3]. 
 
3.2.2.1.1 Theory 
 A Lemaitre damage model was modified in a way that the deterministic flow 
function and consistency condition were replaced by so-called Brownian processes 
[4]. The expectation values for the flow function and consistency condition remain so 
invariably compared with their deterministic counterparts. Due to the non-linearity of 
the material law however, the expectation values for the plastic strains and for the 
damage deviate from the deterministic sizes.  
 The used flow function Φ including damage and a stochastic term is defined as 
follows: 
 

∫ =γ−σ−−
−

σ
=Φ

t

0
'tyield

eq 0dB)'t(r
f1

 

 
 Here σyield gives the yield stress and r represents the isotropic hardening of the 
material. The integral (Ito integral) defines the stochastic disturbance. 
 The constitutive equation for the evolution of the damage parameter f is given 
by the following equation: 
 

••

ε= pl
eqcf  

 
were c is a material constant. 
 In order to avoid a second spatial integration, the background field is simulated 
by a weighted averaging of a spatially uncorrelated field Zlokal (correlation length = 0) 
and a spatially completely correlated field Zglobal (correlation length = ∞ ). The weight-
ing parameter is calculated from the constant factor γ and from Lelement/LC were  
Lelement is the characteristic lengths of the current finite element and LC the internal 
material length. The actual damage is represented by the parameter f. Thus the Ito 
integral for the stochastic addition is computed as follows: 
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 This stochastically extended Lemaitre model has been directly implemented as 
a material model in a standard finite element program. Thus the practical capabilities 
of stochastic CDMs for predicting size effects in failure and scatter has been evalu-
ated. 
 
3.2.2.1.2 Determination of material depending parameters 
 The five material parameters, the yield limit, the hardening/softening parameter, 
the stochastic weight and the internal material length, have been roughly tuned to the 
reference material curve, by an empirical procedure. The stochastic weight is a 
stress, which may be derived from the scatter observed for the initial yield stress. It 
amounts to about 2 %. The internal material length is simply set to the dominating 
microscopic length, the distance of inclusions in the virgin material. It is assumed to 
be about 0.1 mm. The other parameters are set by a manual try and correct proce-
dure. 
 
3.2.2.1.3 Results 
 The size effect evaluations have had to be performed for specimen geometries 
with rather non-homogeneous stress/strain fields. The specimen family of flat speci-
mens with a hole has been chosen for this purpose. However, accounting for the ex-
pensive computational efforts a reduced special grid has been developed (as shown 
in Fig. 3.2.2.1-1. 
 

     
Fig. 3.2.2.1-1:  Special finite element grid for the flat specimen with hole to apply 
     the stochastic model 
 
 The results for three different specimen sizes are depicted in Fig. 3.2.2.1-2. For 
simplicity the different sizes are modelled by changing the internal length instead of 
adapting the mesh size. To have a pronounced size effect, the stochastic weight has 
been set to a relatively high value. However, the results do not show a systematic 
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size dependency. Rather the scatter dominates. Adapting the stochastic weight to a 
more realistic value will even decrease the systematic influence. This will result in a 
situation, where the large numerical errors induced by the weakening of the conver-
gence criteria will deteriorate the results. 

 
 
Fig. 3.2.2.1-2:  Results for different sizes of flat specimens with holes; 
     black: deterministic 
     blue: 0.2 mm thickness of the specimen 
     red: 20 mm thickness of the specimen 
     green: 200 mm thickness of the specimen 
 
 To evaluate the influence of the intentionally introduced stochastic scatter, re-
peated calculations were done for the middle size (20 mm thickness). The results are 
summarized in the force/displacement diagram, Fig. 3.2.2.1-3. 



 

124

 

 
Fig. 3.2.2.1-3:  Comparison of repeated calculations for the flat specimen with 
     hole, 20 mm thickness 
 
 The comparison of these results with the results for the different specimen sizes 
demonstrates the dominating influence of the scatter hiding possible small systematic 
size effect. However one can conclude that large size effects can hardly be expected 
from this stochastic model. The comparison also indicates, that the equivalence of in-
tegration in time and space does not allow to derive expectation values from a rea-
sonable small number of repeated calculations. 
 
3.2.2.1.4 Conclusions 
 The stochastically extended Lemaitre model has been directly implemented as 
a material model in a standard finite element program. Thus the practical capabilities 
of stochastic CDM for predicting size effects in failure and scatter have been evalu-
ated. The simulations done within this task lead to the following conclusions: 
 

• The model is able to predict a scattering effect. 
 
• The proposed model is not suitable for predicting size effects because of the 

dominating influence of the scatter hiding any systematic size effect. This is 
partly due to some restrictions of the straightforward implementation:  

- The simple weights had to be replaced by a more non-linear influ-
ence function for the stochastic background field. 

- Commercially available finite element codes do not allow tuning the 
integration scheme to improve the implementation deficiencies. 
Proper functioning would require an expensive specific finite element 
code development. 

 
• However, the essential of the stochastic approach is that the physical mecha-

nism behind the size effect in failure obtained in the experimental programme 
can hardly be explained by stochastic phenomena. It seems to be of a differ-
ent nature. 
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3.2.2.2 Elastic-plastic behaviour of polycrystalline aggregates with stochastic 
arrangement of grains 

 The elastic-plastic behaviour of polycrystalline aggregates with stochastic ar-
rangement of grains was simulated using a computational approach, which combines 
the most important mesoscale features and compatibility with conventional contin-
uum mechanics. A detailed description is given in [1]. 
 
3.2.2.2.1 Theory 
 The main idea of the used approach to model elastic plastic behaviour of poly-
crystalline aggregates was to divide the continuum (e.g., polycrystalline aggregate) 
into a set of sub-continua – grains. Each grain was simulated as a randomly oriented 
anisotropic monocrystal. The overall behaviour of the aggregate is then sought 
through the combined response of the randomly shaped and oriented grains.  
 The model covers the following main phases of the deformation: (1) elastic de-
formation; (2) rate-independent plastic deformation (at low temperatures); and (3) po-
tential for generalization towards rate-dependent plasticity (creep) and initialization of 
microcracks at the inclusions/voids. The analysis was limited to 2D models.  
 An overview of the constitutive model [2,3] used to obtain results is described in 
this section. The basic idea of the constitutive model is as follows: 

• The random grain structure (in a plane) is modeled with Voronoi tessellation.  
• Each grain is assumed to be anisotropically elastic with random orientation of 

crystal lattice.  
• Plasticity model assumes plastic deformation by simple shear on the specified 

set of slip planes. The slip planes are essentially defined by the random orien-
tations of crystal lattice, which differ among the grains.  

 
Voronoi Tessellation 
 The concept of Voronoi tessellation has recently been extensively used in mate-
rials science, especially to model random microstructures like aggregates of grains in 
polycrystals, patterns of intergranular cracks and composites. A Voronoi tessellation 
represents a cell structure constructed from a Poisson point process by introducing 
planar cell walls perpendicular to lines connecting neighboring points.  
 
Elasticity 
 The LISSAC material shows a body-centered cubic crystal (α-Fe) with rather 
pronounced orthotropic elasticity. Each monocrystal (grain) is assumed to behave as 
continuum. Constitutive relations in linear elasticity are given by the generalized 
Hooke law: 
 
 klijklij C ε⋅=σ . 
 
σij represents the second rank stress tensor, Cijkl  the fourth rank stiffness tensor and 
εij the strain tensor. The inverse of the stiffness tensor is called compliance tensor 
Dijkl and is defined as:  
 
 klijklij D σ⋅=ε . 
 
 The elastic properties (e.g., stiffness and compliance tensor) of the polycrystal-
line aggregate are completely defined by the properties of the monocrystals and the 
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interaction between the monocrystals. The standard procedure for the estimation of 
the overall macroscopic behaviour of interacting monocrystals is to average the 
stress and strain tensors over all material directions and over the volume [4].  
 Macroscopic stress <σij> and strain tensors <εkl> may be used to estimate the 
macroscopic stiffness C*

ijkl or macroscopic compliance tensor D*
ijkl: 

 
 klijkl

*
ij C ε=σ , ijijkl

*
kl D σ=ε .  

 
Crystal plasticity 
 Assumption of crystal plasticity is that plastic deformation is a result of crystal-
line slip only. It is assumed that crystalline slip is driven by resolved shear stress τ(α) 
[5] : 
 
 ( ) ( ) ( )ααα ⋅σ⋅=τ jiji sm , 
 
where the α-th slip system is defined by a combination of slip plane (determined by 
normal mi

(α)) and slip direction (sj
(α)) of the crystal lattice. Body-centered cubic crystal 

lattice has three families of slip planes: {110}, {112}, and {123} and one family of slip 
directions: <111>. This leads to 48 possible slip systems. Stress rate can be defined 
as:  
 

 ( ) ( ) ( ) ( ) ( ) ( )( )



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p
klklijklij &&&&& . 

 
 Rate-independent plasticity may be treated as the limit of the rate-dependent 
visco-plasticity [5]. The slipping rate ( )αγ&  of the α-th slip system is determined by the 
corresponding resolved shear stress τ(α) as: 
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where ( )αa&  is reference strain rate, n the strain rate sensitivity parameter and g(α) the 
current strain hardened state of the crystal. In the limit as n approaches infinity this 
power law approaches that of a rate-independent material. The current strain hard-
ened state g(α) can be derived from: 
 
 ( ) ( )β

β
αβ

α γ= ∑ && hg , 

 
where hαβ are the slip hardening moduli. More authors dealt with hardening moduli 
(e.g., [5,6]), with all of them basing their work on empirical models. Pierce et al. and 
Asaro [6] hardening law is used in our research. Self- (index αα) and latent-hardening 
moduli (αβ) are defined as:  
 

 ( )
0S

02
0

hsechhhh
τ−τ
γ

=γ=αα  and ( ) ( )β≠αγ=αβ ,qhh , 
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where h0 is the initial hardening modulus, τ0 the yield stress, which equals the initial 
value of current strength g(α)(0), τS the break-through stress where large plastic flow 
initiates, γ the cumulative slip and q is the hardening factor. 
 
Approximation of representative volume element (RVE) size 
 Geometrical similar specimens, which are larger than RVE, will all have the 
same macroscopic response, regardless their size. The size effect on macroscopic 
level therefore cannot be observed [7]. On the other hand, specimens smaller than 
RVE will show size effect. For a polycrystalline aggregate smaller then RVE the in-
verse macroscopic compliance tensor is not necessarily equal to the macroscopic 
stiffness tensor: 
 
 ( ) 1

ijkl
*

ijkl
* DC −

≠ . 
 
A condition when RVE size is achieved can be defined as [4]: 
 
 ( ) 1

ijkl
*

ijkl
* DC −

≅ . or 
deqseq σ≅σ . (3.2.2.2.1) 

 
where indexes s and d denote stress and displacement driven boundary conditions, 
respectively. A relation between macroscopic equivalent stresses for both boundary 
conditions for a polycrystalline aggregate smaller than RVE can be written as [8]: 
 

 ( )RVE

deq

seq iiO1+=
σ

σ
,  (3.2.2.2.2) 

 
where iRVE represents the number of grains in RVE and i is the number of grains in 
polycrystalline aggregate smaller than the RVE. A RVE for this research is assumed 
to be achieved, when residuum O is smaller than 1% [9]. 
 
Correlation length 
 The required numerical effort could in principle be reduced if the essential in-
homogenities are identified and appropriately transferred to the macroscopic models. 
A frequently used and promising method is to calculate the domain of influence of 
crystal grains [10]. The correlation length is one of the criteria for estimating statistical 
dependency of stress field in certain direction and enables one to estimate the do-
main of influence of the individual crystal grain. 
 The correlation length in our research is calculated from the equivalent stress 
field, which is determined for every Gaussian integration point of the finite element. 
Since stress is a 2-D variable, the vector of data for the correlation length calculation 
has to be extracted. The correlation length is calculated for the selected direction at 
the calculating point, with the length of the vector determined by the search radius. 
 By limiting the length of the vector of data, the information contained in the vec-
tor is limited to the search radius. Consequently the autocorrelation, covariance func-
tion and the correlation length calculated from this vector all give information on the 
local search radius. If the search radius is very small, the amount of information con-
tained in the data vector could be too small for a meaningful estimation of the auto-
correlation (covariance) function. On the other hand, if the search radius is large, the 
local nature of the calculated autocorrelation function is lost. The search radius is  
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therefore a compromise between these two aspects. In the presented work two dif-
ferent search radiuses were used, corresponding to twice the average crystal grain 
size (case a) and average crystal grain size (case b). 
 
Current limitations 
 Currently available computational capabilities suggest limitation to 2-D analysis. 
The size of polycrystalline aggregates used in analysis is quite small compared to the 
thickness of specimen used in tensile tests. Plane strain assumption was therefore 
used in analyses.  
 The main idea followed in this report is essentially fitting a discontinuous ran-
dom media into the framework of a continuum-based numerical analysis. The main 
assumptions are:  

• the domain of the grain is adequately described as continuum and  
• the discontinuous behaviour is completely assigned to the grain boundaries.  

 Nevertheless, the inherent conflict of continuum assumptions applied to a dis-
continuous random media may become very important at the boundaries of computa-
tional domain. The solutions built in the finite element software would, assuming the 
continuum, tend to describe either repeatable structures (e.g., symmetry, prescribed 
displacements in stress analysis) or free surfaces (e.g., traction in stress analysis).  
 It is however to be noted that the difference is levelling out with increased num-
ber of analyzed grains. Therefore, the continuum-based boundary conditions can be 
safely applied to a computational domain, which is isotropic at least in a statistical 
sense [11]. 
 
3.2.2.2.2 Determination of material depending parameters 
 The microstructure of the investigated pressure vessel steel (22NiMoCr3-7) is, 
at least in the broad sense, characterized as follows: 

• Bainitic microstructure, based on α-Fe with body centered cubic (b.c.c.) crys-
tals. α-Fe crystal cell is about 2.48 10-10 m long. Its volume is about  
1.53 10-29 m3 [12]. 

• Average grain size is in the order of 23 µm (0.023 mm). It therefore contains in 
the order of 1017 crystal cells and in the order of 104 dislocations (assuming no 
work hardening and average distance between dislocations in the order of  
10-7 m [13,14])  

• Average sizes of inclusions are between 5 and 10 µm with average distance 
between them of approximately 500 µm [14]. 

 Material parameters for elasticity are obtained from the literature for α-Fe for 
body-centered cubic crystal lattice. It is assumed that small amounts of alloying ele-
ments do not change the elastic stiffness/compliance of a crystal grain significantly. 
The nonzero components of the stiffness tensor are ciiii = 230 GPa, ciijj = 135 GPa 
and cijij = 117 GPa.  
 Material parameters for plasticity also are obtained from literature for rate-
independent crystal plasticity (e.g., [7]) and from results of simple tensile tests of 
pressure vessel steel 22NiMoCr37 [15]. The following values were used: the strain 
rate sensitivity parameter n = 50, the reference strain rate a& (α) = 0.001 s–1, the initial 
hardening modulus h0 = 70 MPa, the break-through stress τS = 15.5 MPa, yield 
stress τ0 = 155 MPa and hardening factor q = 1. 
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3.2.2.2.3 Results 
Macroscopic strain/stress curves 
 Strain/stress curves were obtained for polycrystalline aggregates with 14, 23, 
53, 110, and 212 grains with sizes varying from 0.10 mm × 0.07 mm to 0.40 mm × 
0.28 mm. All polycrystalline aggregates used in analyses have an average grain size 
of 0.023 mm, which is in accordance with metalografic research of the selected mate-
rial [14]. 30 different random orientations of crystal lattices and 2 boundary conditions 
(stress and displacement boundary conditions) were analyzed for each polycrystal-
line aggregate. The polycrystalline aggregate was loaded with biaxial loads p1 and p2 
(= ½ p1). Macroscopic equivalent stress <σeq> and macroscopic equivalent strain 
<εeq> are calculated as [4]: 
 

 ∫ σ=σ
V eqeq dV

V
1  and ∫ ε=ε

V eqeq dV
V
1 , 

 
where σeq stands for equivalent stress, εeq for equivalent strain and V for volume of 
polycrystalline aggregate [3].  
 Hill’s anisotropic plasticity was calibrated with results of crystal plasticity and 
then used to model plastic material behaviour of grains.  
 Examples of macroscopic strain/stress curves are available in [2]. Relationships 
between macroscopic equivalent (Von Mises) stress and macroscopic equivalent 
strain clearly show scatter of strain-stress curves due to orientations of crystal lattice. 
General conclusions are [3]: 
• The scatter of macroscopic strain/stress curves is of comparable magnitude for 

both boundary conditions. 
• Curves nearly coincide in elasticity. 
• The scatter in plasticity is mainly due to the different yielding points of macro-

scopic strain/stress curves. 
• The scatter (i.e., macroscopic equivalent stresses) is decreasing as the size of 

the polycrystalline aggregate (number of grains) increases. The scatter in plastic-
ity for 14-grains aggregates is around ±50 MPa (around ±10%). The scatter for 
53-grains aggregates is around ±25 MPa (~±5%) and for 212- grains aggregate is 
around ±15 MPa (~±3%). 

 
Strain/stress fields 
 A crystal plasticity material model was used to more accurately show relevant 
mesoscopic features. One 212-grain polycrystalline aggregate with displacement 
boundary conditions was analyzed in full detail.  
 Examples of strain/stress fields are available in [2]. From evolution of equivalent 
stress, equivalent strain, resolved shear stress and cumulative slip one can observe 
[3]:  
 
• Distinctive heterogeneity on the mesoscopic level could be observed. Very no-

ticeable shear banding occurs in plasticity. This represents the main direction of 
material flow in the polycrystalline aggregate. Due to the local concentrations of 
material flow in shear bands, the equivalent strain within shear bands is up to 
500% higher than macroscopic (i.e., average) equivalent strain. Similar concen-
tration appears also in equivalent stress field. The differences are up to 60% 
compared to macroscopic equivalent stress. Local strain and stress concentra-
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tions due to a grain structure might therefore contribute significantly to localized 
failure of material and consequently to initialization and growth of microcracks.  

• Shear banding typically develops at grain boundaries (shear bands are less rec-
ognizable when passing through the grains). Shear banding appears in directions 
of about 50° from x-axis. The typical distance between shear bands is in the order 
of 1 grain size (around 0.04 mm).  

 
Estimation of RVE size 
 RVE size was estimated for elasticity and plasticity. Analyses were carried out 
on polycrystalline aggregates with 14, 23, 53, 110 and 212 grains with sizes from  
0.1 mm × 0.07 mm to 0.4 mm × 0.28 mm. 30 different random orientations of crystal 
lattices and 2 boundary conditions (stress and displacement boundary conditions) 
were analyzed for each polycrystalline aggregate. Analyses were carried out at biax-
ial loads p1 = 200 MPa and p2 = 100 MPa for elasticity and p1 = 1000 MPa and p2 = 
500 MPa for plasticity. 
 Equivalent macroscopic strains and stresses are shown in Fig. 3.2.2.2-1 and 
3.2.2.2-2 where d in the legend refers to displacement boundary condition, s refers to 
stress boundary condition and ave refers to average values (averaged over 30 differ-
ent randomly orientated crystal lattices with displacement or stress boundary condi-
tions). The number following abbreviation denotes number of grains of polycrystalline 
aggregates with separate values for each boundary condition. Analytical solution for 
elasticity for macroscopically homogenous material (<εeq> = 0.0515% and <σeq> = 
96.2 MPa) is also shown in Fig. 3.2.2.2-1 obtained by continuum elasticity with mate-
rial parameters: E = 210 GPa and ν = 0.29 [16]. 
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Fig. 3.2.2.2-1: Scatter of macroscopic equivalent strain/stress in elasticity 
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Fig. 3.2.2.2-2: Scatter of macroscopic equivalent strain/stress in plasticity 
 
 A tendency towards decrease of scatter as number of grains in the aggregates 
increases can be observed. Average values of macroscopic strains and stresses (for 
both boundary conditions) show a clear trend towards analytical solution with in-
creasing number of grains in the aggregate.  
 RVE size was estimated according to eq. (3.2.2.2.2). Macroscopic equivalent 
stresses were taken at macroscopic equivalent strain <εeq> of 0.0515 % (in elasticity) 
and 1% (in plasticity). Fig. 3.2.2.2-3 and 3.2.2.2-4 shows macroscopic equivalent 
stresses and scatter depending on number of grains in polycrystalline aggregate for 
displacement (denoted as d) and stress (denoted as s) driven boundary conditions. 
Extrapolation lines are drawn in accordance with eq. (3.2.2.2.1). 
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Fig. 3.2.2.2-3: Convergence of macroscopic equivalent stresses in elasticity 
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Fig. 3.2.2.2-4: Convergence of macroscopic equivalent stresses in plasticity 
 
 With residuum O for 212-grain aggregate over 2% for elasticity and 5% for plas-
ticity, one can conclude that RVE has not been achieved. However, trend toward 
analytical solution and decrease of scatter with increasing number of grains is clearly 
visible. The RVE size in elasticity is estimated to 372 grains, which corresponds to a 
polycrystalline aggregate of 0.53 mm × 0.38 mm in size. This is comparable with re-
sults from literature for aluminum oxide [17]. The RVE size in plasticity is estimated to 
803 grains, which corresponds to a polycrystalline aggregate of 0.78 mm × 0.55 mm 
in size. We considered that use of optimized material parameters would not signifi-
cantly change estimates of RVE size in elasticity and plasticity. 
 Ductile damage may occur simultaneously with plastic strain at larger levels. It 
results from the nucleation of cavities due to decohesion between voids/inclusions 
and the matrix followed by their growth and their coalescence [18,19]. Shortest con-
nections among voids are obvious candidates for possible void coalescence paths. 
Those paths, which can be described with Delaunay tessellation, can be used to de-
scribe void coalescence paths [20,21]. Since the Delaunay tessellation is the geo-
metric dual of the Voronoi tessellation, one can imply their similar behaviour.  
 Average distance between voids (modelled with Delaunay tessellation) is 500 
µm [14]. If we extrapolate estimates of RVE size of plasticity to damage, we can ex-
pect that RVE size for damage would demand a polycrystalline aggregate with at 
least 800 voids (Poisson points in the Delaunay tessellation). This would represent a 
window the size of 15.1 mm × 10.7 mm [3]. Coupled model (Voronoi and Delaunay 
tessellation) with random grains and random inclusions would therefore lead to a 
polycrystalline aggregate with more than 300,000 grains, which is well beyond com-
putational capabilities at this moment.  
 
Correlation lengths 
 Correlation lengths for a 212-grain polycrystalline aggregate were calculated for 
six calculation points on the strain-stress curve [10]. Fig. 3.2.2.2-5 and 3.2.2.2-6 
show histograms of model area with regard to the correlation length for  case (a) 
(search radius of two average grain size ) and case (b) (search radius of one average 
grain), respectively. 
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Fig. 3.2.2.2-5: Histogram of model area with regard to correlation length – case (a) 
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Fig. 3.2.2.2-6: Histogram of model area with regard to correlation length – case (b) 
 
 Large search radius of the case (a) enables us to observe the influence of a 
certain grain on a wider area of the model. On the other hand the wider the search 
area is, more averaging is performed when calculating correlation function and the 
desired local nature of the correlation function is lost. Because of that a second, 
smaller search radius has been introduced-case (b). Due to the smaller search radius 
local statistics of the stress field is obtained, however the resulting correlation lengths 
are therefore smaller. This will become evident in the following section. 
 The areas of higher correlation length values for both cases are mostly inside 
the grain boundaries, sometimes spreading over several grains. In a few cases the 
areas of higher correlation length values seem to concentrate on the grain bounda-
ries. For the case (a) the regions of high correlation values can be seen at the model 
boundaries. This is due to the 2D interpolation of the Mises stresses in the border re-
gion where is a lack of data on the Mises stresses outside the model boundaries. 
 The average correlation length in elasticity for case (a) is 0.027 mm, which is 
18 % larger than the average crystal grain size. For the case (b) the average correla-
tion length is 0.017 mm, which is lower than the average crystal grain size. The mac-
roscopic equivalent stresses in plasticity (calculation points 3 and above) are larger 
than the yield strength σY. Calculation lengths for these calculation points tend to de- 
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crease with a higher macroscopic equivalent stress. For the calculation point 6, the 
average correlation length is 0.021 mm for case (a) and 0.015 mm for case (b). Both 
values are below the average grain size. This suggests that the equivalent stress 
fields in the search areas become increasingly more random as the load and the 
macroscopic equivalent stress increase. Thus the influence area of the finite ele-
ments and crystal grains reduces as the macroscopic equivalent stress increases.  
 One must point out however, that the area for which the correlation length is 
calculated for is limited to the search area with the radius equal to twice the average 
grain size (2×0.023 mm) and the average grain size (0.023 mm).  
 
3.2.2.2.4 Conclusions 
 The elastic-plastic behaviour of planar polycrystalline aggregates with stochas-
tic arrangement of grains was simulated using the computational approach, which 
combines the most important mesoscale features and compatibility with conventional 
continuum mechanics. Each grain was simulated as a randomly oriented anisotropic 
monocrystal (anisotropic elasticity and crystal plasticity). An averaged (macroscopic) 
response of the polycrystalline aggregate was then sought through the appropriate 
averaging procedures. Polycrystalline aggregates with different number of randomly 
orientated grains and different boundary conditions were loaded with biaxial loads. 
From the presented simulations it can be concluded: 

• Obtained macroscopic strain/stress curves show large scatter, which is de-
creasing as the number of grains in polycrystalline aggregate increases. Dis-
tinctive heterogeneity in plasticity on the mesoscopic (grain size) level can be 
observed in the stress and strain fields. Local stresses were found to be up to 
60% higher than macroscopic stresses. The effect is even more pronounced 
when dealing with strains, with local strains reaching up to 500% of macro-
scopic strains. Local stress/strain concentrations due to a grain structure might 
therefore contribute significantly to localized failure of material and conse-
quently to initiation and growth of microcracks. 

• Random grain structure might be one of the causes for size effects in poly-
crystalline aggregates smaller than representative volume element (RVE) size. 
In this report, the RVE size in elasticity is estimated to be at least 370 grains, 
which corresponds to a polycrystalline aggregate size of about 0.5 mm × 
0.4 mm. The estimated RVE size in plasticity is at least 800 grains, which cor-
responds to a polycrystalline aggregate size of about 0.8 mm × 0.55 mm. The-
se results are in accordance with the literature. Prediction is that RVE size for 
damage would be 15 mm × 11 mm in size. 

• The range of sizes of LISSAC specimens suggests negligible influence of size 
effects in elasticity and plasticity, which is in accordance with the experimental 
part of the project. The estimated RVE size for damage however suggests that 
size effects could be observed within LISSAC experiments. Again, this is in 
accordance with results of LISSAC tests.  

• The correlation length is taken as a measure of the grain domain of influence. 
As long as the macroscopic equivalent stresses are lower than the yield 
strength, the average grain domain of influence is somewhat larger than the 
average grain size. With the increase of the load, the average grain domain of 
influence decreases to about 93% of the average grain size. The correlation 
length depends on the observed area. Larger search radius is associated with 
higher correlation length values.  
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3.2.3 Local approach models  
 
3.2.3.1 Rousselier damage model 
 The main goals of these investigations are to predict the failure strains in de-
pendence of the different boundary conditions and to help to define reasonable limit 
strains[1]. For reaching these aims a damage model formulated by Rousselier was 
used in combination with the finite element program ADINA [2]. Selected specimens 
were modelled and calculated to examine the capability of the Rousselier model to 
describe geometry and size effects on the deformation and failure behaviour. For de-
scribing dynamic effects the Cowper and Symonds model is implemented into 
ADINA. 
 
3.2.3.1.1 Theory 
 Common material laws for describing ductile deformation like von Mises law can 
not predict the limits of elasto-plastic deformation. However, in reality, deformation is 
generally limited by fracture processes. 
 In most metals and alloys second phase particles and inclusions can be ob-
served. If ductile fracture is observed the fracture process can be divided into three 
phases [3,4]: 

• void nucleation at particles and grain boundaries 
• void growth with increasing plastic deformation 
• void coalescence ⇒ micro crack 

 The models for describing ductile fracture are often called damage models or 
due to their local formulation local approach models. Depending on the damage 
model one or several of the three phases of ductile fracture will be simulated numeri-
cally. 
 
Models for describing void initiation 
 Void initiation during material deformation occurs by debonding of matrix and 
particles or by fracture of particles. In general plastic deformation is required for the 
initiation of the voids. 
 For pressure vessel steels it is found that the larger voids which are mainly re-
sponsible for ductile fracture principally initiate on manganese sulphide particles. 
Most of the voids initiate directly at the onset of plastic deformation. A very success-
ful criterion for void initiation in these steels is: 
 

e
vM R≥σ  

 
If this criterion is fulfilled the void volume is set to the so called initial void volume f0. 
 
Void growth models 
 In the calculations which are done within LISSAC project the Rousselier model 
is used [5]. With this approach a flow function for porous materials that means for 
materials containing voids is derived. For the computations the model was used in 
the following form: 
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Models for describing void coalescence 
 The numerous mathematical approaches reflect the complexity of this process. 
The most common criteria however is the critical void volume. This criteria is also 
used in this project. 
 
Introduction of an internal length for describing size effects 
 In the theoretical framework of the damage models it is assumed that in ductile 
fracture the crack jumps from void to void. In finite element calculations this can be 
simulated by finite crack jumps from node to node or from integration point to integra-
tion point respectively. Due to this, the absolute size of the finite elements used in the 
damage calculation must be related very closely to the mean distance of the voids or 
to the mean distance of the inclusions leading to voids. 
 
Dynamic material model 
 In most cases for metallic materials it can be stated that the stress strain curve 
is shifted to higher stresses with increasing strain rates [6,7]. For the simulation of 
this phenomena a material law have to be found which describes the material hard-
ening in dependence of the strain and the strain rate.  
 

( )T,,εεσ=σ &   
 
 In the LISSAC project only stress strain curves with two different strain rates are 
available. Due to this, only a relatively simple strain rate dependent material model 
with few parameters can be chosen. 
A relatively good approximation for ferritic steels is given by Cowper and Symonds 
[8]. 
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 Within LISSAC project the Cowper and Symonds law is included in the Rous-
selier material subroutine to take the dynamic material hardening into account.  
 
3.2.3.1.2 Determination of material depending parameters 
 The material models presented are implemented as user defined material 
model in a commercial finite element code. For describing the mechanical behaviour 
the models need material depending parameters. The determination of these pa-
rameters is discussed in this chapter. 
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Material dependent model parameters at room temperature 
 For the determination of the stress strain law for the LISSAC material, 15 tensile 
specimens have been tested at room temperature at EMPA [9]. The results of the 
tests are used to extract a mean stress strain curve. The detailed procedure is pre-
sented in a special LISSAC report [10]. For the calculations the stress strain curve 
from experiment GR1H is chosen because this curve gives the best approximation of 
all experiments. 
 For getting the true stress strain curve up to the failure point of LISSAC material 
the curve was fitted numerically. For the numerical fitting the geometry of the tensile 
specimens is modelled with finite elements. Due to symmetry only a quarter of the 
specimen is modelled with axis symmetric 8 nodes elements. The specimen has a 
small neck with a reduction of the radius of 0.01 mm in the mid plane, which is in 
conformity with the standards. The determinated true stress strain curve is presented 
in Fig. 3.2.3.1-1. 
Due to the lack of metallographic data for the LISSAC material the used parameters 
for the Rousselier damage model the following results and assumptions are taken 
from literature: 

• Void initiation should take place at the beginning of plastic deformation. 
• The Rousselier stress σk is set to 445 MPa. 
• The critical void volume fc is set to 0.05. 
• The characteristically length lc is set to 0.2 mm. 

 The initial void volume f0 is calibrated numerically with the help of the deforma-
tion behaviour of the standard tensile specimen. For f0 = 0.0003 the finite element re-
sults represent a good approximation of the experiment. 
 
Material dependent model parameters at 400°C 
 For the determination of the true stress strain curve at 400°C five experiments 
have been performed at ENSA. During the tests only the load and the cross head 
displacement have been measured. Since the elongation of the proportional section 
necessary for the strain calculation cannot be determined from the crosshead dis-
placement directly, the following procedure has been used:  

• From the five stress ’over all strain’ (cross head displacement / proportional 
measurement length) curves an artificial mean curve is calculated.  

• With the data from ENSA (proportional measurement length = 25 mm and 
proportional cross section area = 19.53 mm²) the mean load crosshead dis-
placement curve is determined. 

• The cross head displacement can be separated into the elongation of the ma-
chine (crosshead deformation and grips) and into the elongation of the whole 
specimen (including thread heads). 

• With an iterative finite element procedure the true stress strain curve can be 
calculated from the total specimen elongation with a special developed nu-
merical procedure. 

 The true stress strain curve achieved with this procedure is presented in 
Fig. 3.2.3.1-2.  
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Fig. 3.2.3.1-1: elongation of the true stress 
strain curve, roomtemp. 
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Fig. 3.2.3.1-2: technical and true stress 
strain curves, 400°C 

 
 For checking the computed true stress strain curve the results are compared 
with the curves determined at JRC/ELSA [11]. The agreement, particularly toward 
smaller stretches is well, Fig. 3.2.3.1-3. 
 Nevertheless it must be noted that the computed curve is only an approxima-
tion. 
 
Material dependent model parameters for dynamic tests 
 Within LISSAC project the Cowper Symonds model is included in the Rous-
selier material subroutine to take the dynamic material hardening into account.  
 For the LISSAC material only two different strain rates are available: A quasi 
static curve and a curve with a strain rate of 250 s-1 [11]. These two curves are used 
to calibrate the Cowper Symonds variables p and D. The calibration gives p=6 and 
D=57*106. The approximated and the experimental curves for the strain rates of 1s-1 
up to 250s-1 can be seen in Fig. 3.2.3.1.4.  
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Fig. 3.2.3.1-3: experimental and numeri-
cal true stress strain curves, 400°C 
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3.2.3.1.3 Results 
 Within the LISSAC project tests have been performed for different specimen 
types with various sizes and loading conditions. In this chapter calculations have 
been done for the following cases: 
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Size variation:  flat specimens with hole; different sizes 
 
Geometry variation:  flat specimen with hole; flat specimen with notches; 

flat specimen with increased hole, curved biaxial 
specimen without holes 

 
Variation of stress triaxiality: circular specimen with notch, circular specimen with 

ESIS geometry, circular specimen with increased 
notch depth 

 
 For simulating crack initiation and crack growth Rousselier’s damage model is 
used. Consequently for all the calculations the same stress strain curve and the 
same set of damage parameters have been used. 
 
Size variation 
 For the size variation the flat specimens with hole have been used. The exact 
geometry of the different specimens can be taken from Fig. 3.2.3.1.5. Due to symme-
try only 1/8 of the specimens is modelled with 20nodes three dimensional 
isoparametric elements.  
 

thickness T
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D

thickness T
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WR=D/2

T

R

 
 
specimentype T W D L0 R 

with hole 4 mm 10 mm 2 mm 24 mm  

with hole 20 mm 50 mm 10 mm 120 mm  

with hole 40 mm 100 mm 20 mm 240 mm  

with notch 20 mm 50 mm 10 mm 120 mm  

 Curved biaxial 5 mm    55.6 mm 
 
Fig. 3.2.3.1-5: Geometry of the simulated specimens 
 
 For a better comparison between the different sizes the load is normalized with 
the gross section and the displacement is normalized with the measurement lengths. 
In Fig. 3.2.3.1-6 - 3.2.3.1-8 the stress versus the normalized hole opening is shown. 
When comparing the numerical results with the experimental ones it can be seen that 
the deformation behaviour can be described very well with the Rousselier model.  
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Also the loss of the load bearing capacity at the end of the experiments due to crack 
initiation and crack growth can be predicted well. When comparing the simulations of 
the different sizes with each other a clear size effect can be seen Fig. 3.2.3.1-9. 
 

0

100

200

300

400

500

600

700

st
re

ss
   

/  
M

Pa

0 10 20 30 40 50 60 70 80 90 100

hole opening strain /  %

experiment BA1A
experiment BA1C
simulation

Fig. 3.2.3.1-6: experimental and simu-
lated stress – hole opening strain of the 
flat specimens with the hole diameter of 2 
mm 
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Fig. 3.2.3.1-7: experimental and simu-
lated stress – hole opening strain of the 
flat specimens with the hole diameter of 
10 mm 
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Fig. 3.2.3.1-8: experimental and simulated 
stress – hole opening strain of the flat 
specimens with the hole diameter of 20 mm 
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Fig. 3.2.3.1-9: simulated stress – hole 
opening strain behaviour of the flat speci-
mens with different sizes 

 
Geometry variation 
 For the geometry variation a flat specimen with hole (already discussed), a flat 
specimen with notches, a flat specimen with an increased hole and a curved biaxial 
loaded specimen without holes is selected. The geometries of the different specimen 
types can be taken from Fig. 3.2.3.1-5. 
 The normalized load deformation behaviour of the specimen with the notches 
can be predicted well until maximum load. Behind maximum load the experimental 
loads are slightly overestimated, Fig. 3.2.3.1-10. Nevertheless the failure point can 
be predicted with high accuracy.  
 The normalized hole opening of the specimen with the increased hole is simu-
lated well with the model, Fig. 3.2.3.1-11. 
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Fig. 3.2.3.1-10: experimental and simu-
lated stress – hole opening strain of the 
flat specimens with the notch of 10 mm 
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Fig. 3.2.3.1-11: experimental and simu-
lated stress – hole opening strain of the 
flat specimens with the increased hole of 
18 mm 

 
 The curved biaxial loaded specimen without holes represents a model of the 
head of a reactor pressure vessel. The head is loaded with internal pressure. In con-
trast to the specimens discussed above, the head has no geometrical imperfections 
like notches or holes. Also the head is loaded biaxial. Due to the geometry the head 
can be modelled with axis symmetric elements. Despite the totally different geometry 
and loading conditions the deformation behaviour can be predicted well with the nu-
merical simulation, Fig. 3.2.3.1-12.  
 
Variation of stress triaxiality 
 To examine the influence of the stress triaxiality different round notched tensile 
bars have been calculated and compared with experiments. The different geometries 
can be taken from Fig. 3.2.3.1-13. The elongation behaviour (deformation and frac-
ture) of the specimen with 20mm gross diameter is predicted well with the Rousselier 
model, Fig. 3.2.3.1-14. Also a specimen with a slightly changed geometry suggested 
by the ESIS [12] for determining parameters for damage models like the Rousselier 
model is simulated. This specimen type is not tested within LISSAC project but in an 
German research project. The confermity between experiment and simulation is 
good, Fig. 3.2.3.1-15. Nevertheless there is an important difference between the two 
specimens. In all the specimens tested in LISSAC the crack initiates at the notch root 
or close behind it. In contrast to this observation the fracture of the ESIS specimen 
initiates in the centre of the specimen. These experimental findings are also ob-
served in the simulations.  
 
Calculated failure strains 
 The main task in LISSAC is to determine the failure strains. In LISSAC the fail-
ure strains are defined as follows: 

• The failure strain is defined as the maximum equivalent plastic strain at crack 
initiation. 

• The failure strain is a local parameter. 
• The failure strain is always determined on the surface of the notch or hole 

ground, although with some samples the failure begins under the specimen 
surface. 
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Fig. 3.2.3.1-12: experimental and simulated 
pressure - displacement behaviour of the 
curved biaxial loaded specimen 
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Fig. 3.2.3.1-13: geometries of the different 
round notched tensile bars with a notch 
root radius of 2mm 
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Fig. 3.2.3.1-14: experimental and simu-
lated stress - elongation strain of the 
round notched tensile bar (LISSAC ge-
ometry) with 2 mm notch root radius 
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Fig. 3.2.3.1-15: experimental and simu-
lated stress - elongation strain of the 
round notched tensile bar (ESIS geome-
try) with 2 mm notch root radius 

 
Due to these definitions also the numerical failure strains are determined.  
 In Fig. 3.2.3.1-16 the experimental failure strains [13] are plotted versus the ra-
dius of the hole or notch. All the experimental results are lying in a narrow scatter 
band. When plotting the numerical results into the experimental scatter band it can 
be seen that the calculated fracture strains of the LISSAC specimens fit well in the 
experimental scatter band, Fig. 3.2.3.1-16. In contrast to this, the failure strain of the 
ESIS specimen is remarkably below the scatter band. These deviations may results 
from the following facts: 

• The fracture in the ESIS specimen initiates in the center of the specimen; the 
failure strain is determined on the specimen surface in the notch ground. 

• The stress triaxiality at the point of initiation is different.  
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Fig. 3.2.3.1-16: Numerical (coloured full symbols) and experimental (small symbols) 

maximum local equivalent plastic strain at fracture initiation in 
dependence of the hole or notch radius 

 
3.2.3.1.4 Conclusions 
From the calculations presented the following conclusions can be drawn: 

• With the Rousselier model it is possible to simulate the experimental observed 
load deformation and failure behaviour of the specimen tested in LISSAC. The 
model is able to calculate the initiation and growth of cracks. For all the calcu-
lations the same set of material parameters (stress strain curve and Rous-
selier parameters) is used.  

• The model is able to calculate also the location of crack initiation (in the notch 
ground or close behind for the LISSAC specimens or in the specimen center 
as observed with the ESIS specimen.  

• In the deformation behaviour until maximum load the Rousselier model pre-
dicts no size effect. A size effect is only predicted near the point of failure. This 
is in accordance to the experimental observations. 

• The Rousselier model can predict the influence of the different geometries on 
the deformation and failure behaviour. The behaviour of the two dimensional 
loaded head without any holes or notches can also be predicted as for the dif-
ferent specimens with holes and notches.  

• The fracture strains calculated with the Rousselier model are in good agree-
ment with the experimental ones. The model also shows, that if the geometry 
is slightly changed (ESIS geometry) the so called fracture strain differs ex-
tremely from the results obtained from the LISSAC specimens. This behaviour 
is probably a result from the fact that the point of fracture initiation is at the one 
hand side at or near the surface (LISSAC geometries) or on the other hand in 
the centre of the specimen (ESIS geometry). 
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3.2.3.2 Gradient plasticity theory in combination with a non local damage 
model 

 Because the Gurson-Tvergaard damage model [1] initially applied by NRG did 
not give satisfactory results [2] the non local damage model based on gradient plas-
ticity developed by PSI [3] has been applied. A detailed description of the work is 
documented in [4]. 
 

3.2.3.2.1 Theory 
 The theory of the used gradient plasticity model with damage is presented in 
chapter 3.2.1.2. The model has been implemented in the finite element program 
MARC [5]. 
 
3.2.3.2.2 Determination of material depending parameters 
 With the non-local damage model based on gradient plasticity developed by PSI 
a finite element calculation of a smooth standard tensile specimen beyond the point 
of ultimate strength in the stress-strain curve is made. 
 Special attention has been paid to the determination of the model parameters. 
EMPA performed a number of experiments with smooth tensile specimens at ambi-
ent temperature for the LISSAC material. The result of experiment GR1H has been 
used to determine the parameters for the PSI model. The parameters have been 
chosen in such a way that there is a good agreement between the experimental and 
numerical result for experiment GR1H (Fig. 3.2.3.2-1). 
 

 
Fig. 3.2.3.2-1: Experimental and calculated result for experiment GR1H 
 
The material parameters for the Gurson-Tvergaard damage model and the gradient 
plasticity model are summarized below: 
q1 = 1.50 q2 = 2.00 q3 = 2.25 f0 = 0.001 fn = 0 
fc = 0.01 ff = 0.15 fu = 0.65 
εn = 0.3 (not relevant because no nucleation included) 
σn = 0.1 (not relevant because no nucleation included) 
l = 0.24 (internal length parameter) 
 



 

145

 

3.2.3.2.3 Results 
Circular (round) specimen with notch 
 The PSI model has been used to perform a finite element calculation for the 
tensile experiments at ambient temperature with the various sizes of a round speci-
men with a notch (3, 9, 20, and 150 mm diameter). All test specimen have identical 
geometrical proportions and differ only in size. JRC/ELSA performed also a tensile 
experiment with 3 mm round specimen with a notch. The specimen JRC/ELSA used 
has a different geometry compared to the standard geometry used by FZK and MPA. 
The main difference is the shorter gauge length (1⅔·d0 in stead of 6·d0). 
 Fig. 3.2.3.2-2 and 3.2.3.2-3 show the axisymmetric finite element models of the 
JRC/ELSA and standard specimen used for the calculations. The symmetry in both 
specimens enables only half of the measurement section to be incorporated in the 
models.  
 The highest plastic strains (> 100%) occur at the root of the notch. Small differ-
ences can be observed in the deformation around the notch. The small specimens  
(3 mm) deform more than the larger specimens. 
 In the Fig. 3.2.3.2-4 to 3.2.3.2-11 the measured and calculated deformation be-
haviour of the test specimens are compared. For the 20 and 150 mm specimens the 
nominal stress is shown as a function of the normalized notch opening and elonga-
tion. The nominal stress, the normalized hole opening, and the elongation are de-
fined as: 
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where: 
 F : the axial force acting on the specimen 
 d0 : the initial diameter of the specimen 
 l : the actual length of the measurement section 
 l0 : the initial length of the measurement section 
 r : the actual notch radius (measured in axial direction) 
 r0 : the initial notch radius 
 
 For the 3 and 9 mm specimens FZK measured not the notch opening, but the 
specimen diameter at the bottom of the notch. From this measurement the strain is 
calculated as shown in Fig. 3.2.3.2-7 and 3.2.3.2-10. 
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 The experiments showed a size effect with respect to the failure strain 
(Fig. 3.2.3.2-4, 3.2.3.2-7, and 3.2.3.2-8). The calculations predicted a size effect with 
respect to the failure strain only for 3 mm specimens (Fig. 3.2.3.2-5 and 3.2.3.2-9). 
However, the PSI model predicted the deformation behaviour of the round specimens 
with a notch reasonably (Fig. 3.2.3.2-6, 3.2.3.2-10, and 3.2.3.2-11). The nominal 
stress and failure have been slightly overpredicted. For the small specimens  
(Fig. 3.2.3.2-10) this overprediction is higher than for the larger specimens 
(Fig. 3.2.3.2-6 and 3.2.3.2-11). Despite the fact that the JRC/ELSA and the standard 
3 mm specimens have a different deformation behaviour, this deformation behaviour 
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has been well predicted by the PSI model with the material parameters derived from 
the uniaxial experiment performed by EMPA. 
 

 
Fig. 3.2.3.2-2: Mesh 3 mm specimen 
(JRC/ELSA) 
 
 
 

 
Fig. 3.2.3.2-3: Mesh standard specimen 

Fig. 3.2.3.2-4: Measured normalized  
notch opening 
 
 
 

Fig. 3.2.3.2-5: Calculated normalized  
notch opening 

Fig. 3.2.3.2-6: Comparison normalized 
notch opening for 20 mm specimen 

Fig. 3.2.3.2-7: Measured strain 3 and 9 
mm FZK specimen  
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Fig. 3.2.3.2-8: Measured elongation 
 

Fig. 3.2.3.2-9: Calculated elongation 
 

Fig. 3.2.3.2-10: Comparison strain for 
3 mm standard specimen 

Fig. 3.2.3.2-11: Comparison elongation for 
20 mm standard specimen 

 
 
Flat specimen with central hole 
 The PSI model has been used to perform a finite element calculation for the 
tensile experiments at ambient temperature with the various sizes of a flat specimen 
with a central hole (4, 20, 40, 80, and 200 mm thickness). All test specimen have 
identical geometrical proportions and differ only in size. The hole diameter is half the 
thickness, the width is 2.5 times the thickness, and the gauge length is 6 times the 
thickness. 
 Fig. 3.2.3.2-12 shows the plane strain finite element model of the flat specimen 
with a central hole used for the calculations. The symmetry in the specimen enables 
only half of the measurement section to be incorporated in the model. 
 The specimens are “waisting” in the cross section through the hole centre and 
the hole becomes oval in axial direction. The highest plastic strains (> 100%) occur at 
the inside of the hole. Small differences can be observed in the deformation around 
the hole. Because the calculation for the small specimen (4 mm) became numerically 
instable earlier than the calculations for the larger specimen the larger specimen de-
forms stronger around the hole. The initiation of failure can be seen in the deforma-
tions. 
 In the Fig. 3.2.3.2-13 to 3.2.3.2-20 the measured and calculated deformation 
behaviour of the test specimens are compared. For the specimens the nominal stress 
is shown as a function of the normalized hole opening and elongation. The nominal 
stress, the normalized hole opening, and the elongation are defined as: 
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where: 
 F : the axial force acting on the specimen 
 b0 : the initial width of the specimen 
 d : the actual hole diameter (measured in axial direction) 
 d0 : the initial hole diameter 
 l : the actual length of the measurement section 
 l0 : the initial length of the measurement section 
 t0 : the initial thickness of the specimen 
 
 The experiments show a size effect with respect to the failure strains, but no 
size effect with repect to the ultimate strength. The calculations predict also a size ef-
fect only with respect to the failure strain (Fig. 3.2.3.2-14 and 3.2.3.2-17). However, 
this size effect is only apparant for the 4 mm specimen (Fig. 3.2.3.2-14 and  
3.2.3.2-18). For the 4 and 40 mm specimens a comparison between the measured 
and calculated deformation behaviour is shown in the Fig. 3.2.3.2-15, 3.2.3.2-16, 
3.2.3.2-19, and 3.2.3.2-20. For these specimens there is a reasonable agreement be-
tween the measured and calculated deformation behaviour. The experiments predict 
a lower yield point and a lower failure strain. The lower yield point can be explained 
by the scatter in the yield stress within the Biblis C vessel. The specimen used for 
EMPA experiment GR1H, on which the PSI model is based, is taken from a different 
location than the flat specimens with a central hole. The difference between the 
measured and predicted failure strain is less than 15%. The shape of the stress-
strain curvers is reasonably predicted, especially for the 40 mm specimen. 
 

 
Fig. 3.2.3.2.-12: Mesh standard flat speci-
men with central hole 

 

Fig. 3.2.3.2-13: Measured normalized  
hole opening 

Fig. 3.2.3.2-14: Calculated normalized  
hole opening 
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Fig. 3.2.3.2-15: Comparison normalized 
hole opening for 4 mm specimen 
 

Fig. 3.2.3.2-16: Comparison normalized 
hole opening for 40 mm specimen 

Fig. 3.2.3.2-17: Measured elongation 
 
 

Fig. 3.2.3.2-18: Calculated elongation 
 

Fig. 3.2.3.2-19: Comparison elongation  
for 4 mm specimen 

Fig. 3.2.3.2-20: Comparison elongation  
for 40 mm specimen 

 
 
Flat specimen with double edge notch 
 The PSI model has been used to perform a finite element calculation for the 
tensile experiments at ambient temperature with the various sizes of a flat specimen 
with a double edge notch (4, 20, and 80 mm thickness). All test specimen have iden-
tical geometrical proportions and differ only in size. The notch diameter is half the 
thickness, the width is 2.5 times the thickness, and the gauge length is 6 times the 
thickness. 
 Fig. 3.2.3.2-21 shows the plane strain finite element model of the flat specimen 
with a double edge notch used for the calculations. The symmetry in the specimen 
enables it that only half the measurement section is incorporated in the model. 
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 The specimens are “waisting” in the cross section between the notches. The 
highest plastic strains (> 100%) occur at the root of the notch. Small differences can 
be observed in the deformation around the notch. Because the calculation for the 
small specimen (4 mm) became numerically instable earlier than the calculations for 
the larger specimen the larger specimen deforms stronger around the notch. The 
initiation of failure can be seen in the load - deformation graph. 
 

 
Fig. 3.2.3.2-21: Mesh standard flat speci-
men with double edge notch 
 
 

 

Fig. 3.2.3.2-22: Measured normalized 
notch opening 
 
 

Fig. 3.2.3.2-23: Calculated normalized 
notch opening 
 

Fig. 3.2.3.2-24: Comparison normalized 
notch opening for 4 mm specimen 

Fig. 3.2.3.2-25: Comparison normalized 
notch opening for 20 mm specimen 
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Fig. 3.2.3.2-26: Measured elongation 
 
 

Fig. 3.2.3.2-27: Calculated elongation 

Fig. 3.2.3.2-28: Comparison elongation  
for 4 mm specimen 
 

Fig. 3.2.3.2-29: Comparison elongation  
for 20 mm specimen 

 
 In the Fig. 3.2.3.2-22 to 3.2.3.2-29 the measured and calculated deformation 
behaviour of the flat test specimens with a double edge notch are compared. For the 
specimens the nominal stress is shown as a function of the normalized notch open-
ing and elongation. The nominal stress, the normalized notch opening, and the elon-
gation are defined as: 
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where: 
 F : the axial force acting on the specimen 
 b0 : the initial width of the specimen 
 d : the actual notch diameter (measured in axial direction) 
 d0 : the initial notch diameter 
 l : the actual length of the measurement section 
 l0 : the initial length of the measurement section 
 t0 : the initial thickness of the specimen 
 
 The experiments show a size effect with respect to the failure strains, but no 
size effect with respect to the ultimate strength (Fig. 3.2.3.2-22 and 3.2.3.2-26). The 
calculations predict also a size effect, only with respect to the failure strain 
(Fig. 3.2.3.2-23 and 3.2.3.2-27). However, this size effect is only apparent for the 
4 mm specimen (Fig. 3.2.3.2-23 and 3.2.3.2-27). For the 4 and 20 mm specimens a  
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comparison between the measured and calculated deformation behaviour is shown 
in the Fig. 3.2.3.2-24, 3.2.3.2-25, 3.2.3.2-28, and 3.2.3.2-29. The notch opening dis-
placement predicted by the calculations is smaller than the measured notch opening 
displacement (Fig. 3.2.3.2-24 and 3.2.3.2-25). This is slightly more true for the 4 mm 
specimen than for the larger specimen. The elongation of the test specimen pre-
dicted by the calculations is larger than the measured elongation (Fig. 3.2.3.2-28 and 
3.2.3.2-29). Based on the elongation the moment of failure is overestimated for the 
small specimen and reasonably predicted for the larger specimen. The shape of the 
stress-strain curves is reasonably predicted until the point of ultimate strength. Be-
yond that point the experimentally observed decrease of the nominal stress is not 
well predicted. 
 Compared to the round specimen with notch and the flat specimen with central 
hole the deformations in the flat specimen with double edge notch are much larger. 
Also a larger area of the specimen shows substantial deformations. The deviating 
calculation results beyond the point of ultimate strength can probably be explained 
by: 
the fact that the finite element model of only the gauge length is too much simplified; 
the “waisting” in the smallest cross section requires a 3-dimensional modelling. 
 
3.2.3.2.4 Conclusions 
 A reasonable agreement is observed between measured and calculated defor-
mation behaviour (notch opening displacement and elongation) for the circular 
specimen with a notch. The geometry of the test specimen has no influence on the 
results. 
 The deformation behaviour of the flat specimen with a central hole is also rea-
sonably predicted. However, the agreement between the measured and calculated 
results is negatively affected by the fact that the material parameters for the PSI 
model have not been based on the average result of a number of tensile tests. 
 For the flat specimen with a double edge notch the calculations agree reasona-
bly with the measurements up to the point of ultimate strength. Beyond that point the 
calculated results do not agree well with the measured result. This is probably due by 
the chosen finite element model or plain strain modelling. 
 The calculations only predict a remarkable size effect for the smallest speci-
mens. This is in contradiction to the experimental observations. 
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3.2.4 Comparison of the theoretical models 
 Three different gradient plasticity approaches coupled with damage models 
(chapter 3.2.1)were examined and implemented in finite element codes or in an ele-
ment free Galerkin method. The research works have shown that in principle the gra-
dient plasticity models are able to predict size effects in elasticity, plasticity and dam-
age. However the experimental results show, that a remarkable size effect is only 
observed in the damage phase that means in the load – deformation behaviour be-
yond crack initiation. 

• The gradient plasticity model based on the theories of Aifantis and co-workers 
is able to describe the load – deformation behaviour of the experiments inde-
pendent of the used mesh size. However the used damage models are not 
able to predict the failure strains quantitatively. 

• The Gurson model extended with a gradient plasticity theory is also able to 
predict the experimentally observed load deformation behaviour. The model is 
also independent of the used mesh size. The predicted size effect in failure 
strains is underestimated especially for the larger specimens. 

• The model using a micromorphic elasticity or plasticity theory is able to predict 
size effects in elasticity, plasticity and damage. However a quantitative state-
ment could not be made due to the unknown material parameters could not be 
determined for the LISSAC material. 

 In conclusion it can be said that these types of models may yield a promising 
way for the element size independent description of size effects. However further in-
vestigations would be necessary to show, whether the models are really able to pre-
dict the experimental findings correctly. 
 
 The stochastic models (chapter 3.2.2) take into account the statistic nature of 
deformation and failure processes. Two different approaches were used within the 
LISSAC project. 

• The stochastically extended Lemaitre model is not suitable for predicting size 
effects because the dominating influence of the scatter is hiding any system-
atic size effect. This is partly due to some restrictions of the straightforward 
way of the numerical implementation. However, the essential deficiency of the 
stochastic approach is that the physical mechanism behind the size effect in 
failure seems to be of a different nature. 

• The second approach in this work package models the mesoscopic processes 
in material deformation. The randomly orientated grains with different shapes 
were modelled. Now numerical simulations can predict the influence of the in-
homogeneous and anisotropic microstructure on the macroscopic load – de-
formation and failure behaviour of the material. It turns out that to some extend 
the microstructure is responsible for the experimentally observed size effect. 
Currently the predictions of the model are only of a qualitatively nature. To 
make quantitative predictions further considerable effort is required. The 
model has to be extended and verified and the model parameters have to be 
refined. 

 
 Finally local approach models in the classical sense (chapter 3.2.3) were used. 
The aspects of the discrete nature of the material (intrinsic length scales such as dis-
tance and/or size of inclusions, grain size, etc.) is taken into account by coupling the 
element size to the microstructure.  
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• The studied Rousselier damage model, included in a commercial finite ele-
ment code, was able to predict the experimentally observed load – deforma-
tion and failure behaviour. The model predicts size and geometry influence on 
the failure strains quantitatively correct. The numerical results are in good 
agreement with the experimental findings. A minor disadvantage of this ap-
proach is that the mesh size is coupled to the microstructure. Due to this nu-
merical limitations make it difficult to predict the behaviour of very small or very 
large specimens.  

• The predictions of the Gurson Tvergaard model did not give satisfactory re-
sults. Therefore the Gurson Tvergaard model including gradient terms was 
used. Some of the results were promising, but more detailed verification work 
would be required for more definitive statements. 

 
 In conclusion it can be stated that only the Rousselier model was able to predict 
the size and geometry effect on the failure strains in a correct way. However the ap-
plication of this model is numerically restricted due to problems resulting from the di-
rect coupling of the element size to the microstructure of the material. A promising 
way to overcome this limitations could be the coupling of the Rousselier model with 
gradient models. 
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3.3 Evaluation of the results 
 

3.3.1 Size effects 
 The experimental results presented in chapter 3.1.2 and 3.1.3 show that for 
each test family the load deformation curves are approximately size independent up 
to the point of failure (which, however, may be size dependent). Here the load is de-
fined either as the force acting at the specimen divided by the relevant cross section 
of the specimen, or as the pressure applied at the specimen. If the maxima of the 
load deformation curves are reached before failure which is true in most of the cases, 
also the maximum loads will be approximately size independent.  
 These findings agree with theoretical studies in chapter 3.2.2.2, considering  
microstructural phenomena of the material with stochastic arrangements of grains. 
Considering the long term experience in material testing, the above results are not a 
big surprise.  
 
 The results for the failure strains presented in chapter 3.1.4.3 are more impor-
tant. Some of them were not expected at the beginning of the LISSAC project. The 
findings can be described as follows: 
 

•   The local failure strains (logarithmic strains) are always higher than 50 %, 
which is much more than assumed in many analyses, so far. 

 
•   The local failure strains decrease moderately with increasing specimens, i.e. 

there is a moderate size effect. For the smallest specimens with thicknesses 
or diameters of only a few millimetres and hole or notch radii of less than 1mm 
the local failure strains reach about 150 %, for very large tension specimens 
typical for a reactor pressure vessel the local failure strains decrease to about 
70 %, for large biaxial specimens they decrease to 50 to 60 %. 
    This tendency is in line with the state-of-the art knowledge described in 
chapter 1.2. 

 
•   The parameter which describes the size effect is the radius of holes or 

notches located in the smallest cross section of the specimens where the 
stresses reach the highest values. The other dimensions of the specimens 
play a minor role. 
    The strong influence of the radius of holes or notches on the local stress 
and strain is well known since many year. However the influence on the local 
failure strain was not very clear, so far. 

 
•   The type of specimens and load has only small influence on the failure strain. 

Tests carried out with tension and bending specimens under uniaxal load, as 
well as tests with plate or shell type of specimens under biaxial load yield 
about the same failure strains – provided the hole or notch radius is the same. 
This finding was not really expected when the project has been started. 

  
• These experimental results can be confirmed by the Rousselier damage 

model. It was able to predict the experimentally observed size and geometry 
influence on the failure strains quantitatively correct. The numerical results are 
in good agreement with the experimental findings. 
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•   The obtained scatter is considerable. Nevertheless the essential trends can be 

clearly seen and – as discussed later – reliable limits can be defined. 
 Some of these experimental findings about the size effects of failure strains can 
also be explained qualitatively by the microstructural character of the material with 
stochastic arrangements of grains, as discussed in chapter 3.2.2.2. 
 
 A very interesting experimental result is also obtained concerning the mode of 
failure. For a test with a curved biaxial specimen under static load provided by an al-
most incompressible liquid a rather big fragment of the specimen was completely 
teared off and hurled away. 
 
 The above statements concerning the failure strains can be verified, if the failure 
strains listed in chapter 3.1.4.3 are presented in diagrams as shown in Figs. 3.3.1-1 
to 3.3.1-6. 
 The first diagram includes all failure strains obtained at room temperature under 
static load. The different types of specimens and loading are indicated by different 
symbols. Fat black symbols describe regular results. Red symbols mean, that the 
tests are impaired by poor manufacturing of the specimens; green symbols indicate 
that failure did not occur. Dotted, dashed or grey symbols indicate that other evalua-
tions of the tests were performed leading to results which are less reliable, or that the 
results are questionable for other reseasons. For more details refer to chapter 
3.1.4.3. In some cases the symbols have been shifted in horizontal direction a little 
bit, to allow the identification of single tests. 
 
 From Fig. 3.3.1-1 it turns out that the failure strains are indeed governed by the 
radius of the holes or notches, while the type of specimen and load has minor influ-
ence only. This is illustrated in Fig. 3.3.1-7 for specimens under uniaxial loading. The 
failure strains for all these specimens are about the same, since the hole or notch ra-
dii are the same. The large variations of the other dimensions of the specimens and 
whether tension or bending forces are applied is of minor influence. A corresponding 
illustration including also specimens under biaxial loading would be even more im-
pressive! 
 The somewhat smaller failure strains obtained for bending specimens might be 
caused by the visual inspection of these specimens during testing. So the crack 
could possibly be detected at an earlier state than with the vanishing gap methods. 
This seems to be especially true for the biggest bending specimen where the size of 
the detectable crack was very small in comparison to the notch radius. 
 Specimens containing no holes or notches were interpreted as specimens with 
infinite holes or notches, i.e. r→ ∞. In the diagram the radius r → ∞ is placed at that 
position of the abscissa where r would be 100 mm. With this assumption the failure 
strains for biaxial specimens without holes fit very well with the general trend of the 
other failure strains. 
 Note that for the biaxial specimens without holes the failure strain does not de-
pend on the specimen size. This is in line with the finding that the size effect on the 
failure strain is governed by the radius of holes or notches. 
 The results obtained from the standard tension tests with smooth specimens 
(which do not belong to any test family) yield higher failure strains which do not fit 
with the general trend of the results. Perhaps here the radius should not be assumed 
to be infinite, rather the radius of the necking before failure or even the radius of the 
cross section should be taken as the governing parameter. 
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 The diagram 3.3.1-2 shows the failure strains obtained for 400 °C under static 
load. The diagrams 3.3.1-4 and 3.3.1-5 show the failure strains obtained at room 
temperature and for 400 °C under dynamic load. The symbols are defined according 
to the same rules as used for diagram 3.3.1-1. Of special interest are the results ob-
tained for biaxial specimens without holes under dynamic load shown in Fig. 3.3.1-4. 
Again it turns out that the failure strain does not depend on the specimen size, which 
supports the finding that the size effect is only govern by the hole or notch radius. 
This finding is also supported by a late experiment which could not be included in 
diagram 3.3.1-4, but which is mentioned in the introduction of chapter 3.1.4.3. 
 Comparison of the diagrams discussed above shows that a temperature in-
crease to 400 °C and a change to dynamic load has no significant effect on the fail-
ure strain. Thus in the diagrams 3.3.1-1 and 3.3.1-2 as well as in 3.3.1-4 and 3.3.1-5 
the failure strain versus the hole or notch radius can be approximated by the same 
straight line (straight curve). It has been determined in such a way that the sum of the 
squares of the deviations from the values obtained for the particular tests is mini-
mized. Here only the reliable values for finite hole or notch radii (not the values 
marked by red, green, dashed or dotted symbols and not the values for r → ∞) were 
considered. 
 
 Of course, the results obtained at 850 °C under static load shown in Fig. 3.3.1-3 
and under dynamic load shown in Fig. 3.3.1-6 can hardly be described by the straight 
line applicable for the specimens at room temperature and at 400 °C. Rather particu-
lar straight lines representing the findings in each of the diagrams separately have 
been introduced. The rules are the same as explained above. However, to improve 
the poor data basis, for determination of the straight line representing the results at 
850 °C under dynamic load, the (somewhat questionable) failure strains for r = 0.3 
mm described by red circles have been included. 
 For 850 °C and static load the failure strain seems to be about the same as for 
room temperature and 400 °C, if only large notch or hole radii are considered. How-
ever the increase of the local failure strain with decreasing radius is much lower than 
in the cases of room temperature and 400 °C. In other words, for 850 °C and static 
load there is almost no size effect on the failure strain. 
 For 850 °C and dynamic load the failure strains are generally higher than dis-
cussed before; but again, there is almost no size effect. In fact at 850 °C it has been 
found that the material under dynamic loading exhibits improved behaviour both in 
terms of strength and deformation with respect to the static case. As mentioned al-
ready, here the data basis is rather poor and therefore conclusions should be made 
with caution. 
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Fig. 3.3.1-1: Main results of LISSAC for RPV material at room temperature, static tests
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Fig. 3.3.1-2: Main results of LISSAC for RPV material at  400°C,  static load
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Fig. 3.3.1-3: Main results of LISSAC for RPV material at  850° C,  static tests
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 Fig. 3.3.1-4: Main results of LISSAC for RPV material at room temperature, dynamic tests  
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Fig. 3.3.1-5: dynamic testsMain results of LISSAC for RPV material at  400° C, 
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Comparison of specimens
having the same hole or notch radius

 
 
 
Fig. 3.3.1-7: Comparison of specimens under uniaxial loading having the same hole or notch radius, but very different size. 
     The failure strains of all these different specimens turn out to be about the same.
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3.3.2 Statistical evaluation 
 
3.3.2.1 Prediction confidence curves for the results at room temperature and 

400 °C 
 The results in Figs. 3.3.1-1 to 3.3.1-6 reveal significant scatter. It reflects mainly 
the intrinsic character of the material. As discussed in chapter 3.1.4.4, measuring er-
rors may contribute only partly to these deviations. 
 By using of statistical methods, prediction confidence curves have been deter-
mined. Since a temperature increase to 400 °C and a change to dynamic load has no 
significant effect, all the results shown in the diagrams 3.3.1-1 and 3.3.1-2 as well as 
in 3.3.1-4 and 3.3.1-5 were considered, except the values for r → ∞ and the values 
which are questionable or not applicable for other reasons (values marked by red, 
green, dashed or dotted symbols). The probability concept used assumes a so-called 
Student distribution [1, 2] for the failure strain and delivers confidence limits for arbi-
trary radii as shown in the Fig. 3.3.2-1. The dots describe all the failure strains con-
sidered. The straight line represents the mean values of the failure strains as intro-
duced above. The prediction confidence curves below this straight line describe the 
strains where 2.5 % of the specimens are expected to fail, or 0.5 % are expected to 
fail, respectively. 
 From a safety point of view prediction confidence curves would be of interest 
showing the strains where much less specimens, for instance only 10-4 or even 10-6 
of the specimens are expected to fail. However to obtain such curves just on the ba-
sis of statistical evaluations, a huge number of tests would be required – much more 
than performed within the current LISSAC project. 
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Fig. 3.3.2-1: Prediction confidence curves for the obtained failure strains 



 

167

 

3.3.2.2 Derivation of a threshold strain 
 The distributions of the probability of failure based on the concept of Student, 
but also the distributions based on other widely used concepts, consider small prob-
abilities of failure even for strains far away from the mean strains of failure described 
by the straight lines (curves) in the previous diagrams. However in many cases this 
assumption might not really reflect the actual physical facts. 
 Therefore it is interesting to determine the distribution of the frequency of failure 
directly from the experimental results of LISSAC. This distribution is shown in  
Fig. 3.3.2-2. It can be interpreted as an approximation of the distribution of the prob-
ability of failure for the relevant LISSAC specimens. 
 Note that these distributions are quite resistant against possible outliers. The 
character of these distributions may hardly be changed by one or two additional ex-
perimental results deviating significantly from the general trend. 
 Figure 3.3.2-2 shows clearly that the distribution approaches vanishing probabil-
ity of failure more rapidly than the distributions based on the concept of Student, for 
instance. This has physical reasons. Failure strains much lower than the mean val-
ues may only be caused by large material defects like large inclusions, voids, cracks, 
etc, or by inadequate heat treatment. However most material defects are excluded by 
non-destructive material tests performed for the reactor pressure vessel. Conse-
quently the probability of failure for strains much lower than the threshold εs marked 
in Fig. 3.3.2-2 is identical with the probability that large material defects have been 
overlooked during the non-destructive material testing or that the heat treatment was 
inadequate. However this probability is rather low, perhaps on the order of 10-4 or 
less. 
 For the further investigations it is conservatively assumed that the threshold εs 
is 40 % below the mean values of the failure strain. The resulting curve (straight line) 
is also introduced in Fig. 3.3.2-1. For strains below the threshold the probability of 
failure is govern by the reliability of the non-destructive material tests the heat treat-
ment, etc., as explained above. 
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Fig. 3.3.2-2: Distribution of the probability of failure 
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3.3.3 Proposal of Limit Strains for Severe Accident Conditions 
 
3.3.3.1 Proposal for the specimen shapes and load conditions investigated in 

the LISSAC project at room temperature and 400 °C. 
 Based on the experimental results evaluated above the limit strain versus the 
hole or notch radius is proposed as shown in Fig. 3.3.3-1. The curve consisting of 
two straight lines is below the 0.5%-confidence curve and somewhat below the 
threshold of failure εs. For a hole or notch radius r ≥ 100 mm the proposed limit strain 
is 20 %. For a hole or notch radius r < 100 mm the proposed limit strain increases 
linearly until for r = 1 mm it reaches 80 %. For a hole or notch radius r < 1 mm a fur-
ther increase of the limit strain should be considered with caution, since in this region 
manufacturing problems gain significant influence. 
 Special attention should be given to the limit strain of 20 % for specimens with-
out holes or notches. In the prediction confidence curves the measured failure strains 
for these conditions were not included. However a closer view reveals that the failure 
strains for the smooth specimens varied between 53 % and 62 % (see Figs. 3.3.1-1 
and 3.3.1-4) which is much higher than the proposed limit strain. Furthermore it 
should be considered that all the specimens under discussion here where tested un-
der biaxial load which is rather realistic for the reactor pressure vessel. 
 If the limit strain is not exceeded, it is suggested that failure should not be con-
sidered under severe accident conditions. 
 
3.3.3.2 Proposal for the specimen shapes and load conditions at 850 ° C 
 It may be expected that the scatter is about the same as for room temperature 
and 400 °C. Thus the limit strains for 850 °C should have the same distance from the 
mean values of the failure strains (described by the straight lines in Figs. 3.3.1-3 and 
3.3.1-6) as in the case of room temperature and 400 °C just discussed. Note, how-
ever, that for 850 °C the data basis is much smaller and consequently also the reli-
ability of the limit strains is smaller than for room temperature and 400 °C. 
 



 

 

170

 

10010 810.1

150

0

100

50

no hole
or notch)(radius r of a hole or notch [mm]

pr
op

os
ed

 li
m

it 
st

ra
in

 [%
]

 
 
Fig. 3.3.3-1: Proposed limit strains for static and dynamic loading at room temperature and 400 °C 
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3.3.3.3 Extrapolation of the results to other specimen shapes and load condi-

tion 
 As already mentioned in chapter 3.1.4.1, the failure strains obtained and conse-
quently the limit strains proposed are applicable for geometries and load conditions 
similar to those investigated in the current project. An extrapolation to other condi-
tions should be made with caution. 
 Theoretical considerations show clearly that for stress distributions approaching 
uniform triaxiality (the same principle stress in three directions) the failure strains 
must reduce to very low values given by the volume expansion of the material. By the 
way, in many theoretical models, including models developed within this project, the 
volume expansion is restricted to the elastic regime or even neglected. 
 As a matter of fact, many severe accident conditions of the reactor pressure 
vessel are addressed by the current research work. But there are exceptions. At the 
intersection zone between reactor pressure vessel wall and nozzle, for instance, 
higher triaxiality of the stress conditions may occur than in the tested specimens. 
 
 Here two tension tests should be mentioned, recently carried out by MPA within 
another project (in chapter 3.2.3.1 referred as ESIS), but using specimens made from 
LISSAC material. The specimens had circular shape, diameter 18 mm, with a circum-
ferential notch like the corresponding LISSAC specimens, notch width 4 mm, notch 
radius 2 mm, smallest specimen diameter 10 mm. Thus the ratio between the small-
est cross section and the cylindrical cross section was 0.31, while for the correspond-
ing LISSAC specimens this ratio was only 0.64. The broken specimens were evalu-
ated in the same way as the LISSAC specimens (vanishing gap method using a 
three-dimensional measuring machine). The relative notch opening was determined 
to 24 % and 32 %, respectively; the failure strain was determined to 43 % and 58 %, 
respectively. 
 For comparison, the failure strain for the corresponding LISSAC specimens was 
114 %. The strong deviation is assumed to be caused by the different triaxiality of the 
stress conditions. 
 
 Extrapolation to conditions not too far from the LISSAC test conditions are pos-
sible by using theoretical models also developed within the current project. Using the 
Rousselier model the failure strains for the specimens discussed above were pre-
dicted with a high accuracy for room temperature. For higher temperatures no reli-
able predictions can be made. 
 However, to get a satisfying basis for such extrapolations and to assess the lim-
its which should not be exceeded, some additional tests with larger variations of the 
specimen geometry and accompanying analyses with the above models would be 
helpful. 
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3.4 Applications 
 

3.4.1 Model experiments considering large strains 
 
 Example: Integrity of the reactor vessel head during a postulated in-
     vessel steam explosion 
 
 It is assumed that a steam explosion occurs in the lower plenum of the reactor 
pressure vessel accelerating a molten core material slug against the upper vessel 
head. The kinetic energy of the slug which the vessel head can safely carry has to be 
determined. This complex liquid structure impact problem has been solved by model 
experiments in scale 1:10 [1]. 
 Figure 3.4.1-1 shows the maximum local strains in mock-ups of the vessel 
head, obtained for slug impact tests with different impact velocities. In scale 1:10 the 
impact mass was assumed to be 80 kg. Using this mass the related impact energy 
can be calculated. It is introduced at the abscissa, too. The different symbols address 
different test conditions including case A without upper internal structures, case B 
with only the upper grid available and case C with all the upper internal structures 
available. The results are linearly interpolated and extrapolated (in case B the very 
extended extrapolation is questionable). 
 According to the state-of-the-art knowledge the acceptable strain is not more 
than 5 %. Then the admissible liquid slug energy for case A is 0.15 MJ, for case B it 
is 0.43 MJ and for case C it is 1.04 MJ, as shown in the figure. (In [1] further facts 
had to be considered and consequently the values mentioned there are a little bit dif-
ferent).  
 As a result of the current project the acceptable strain is much higher. Using the 
diagram 3.3.3-1 and considering that the radius of the holes in the (real) head is 50 
mm, the acceptable strain is about 28 %. Thus the admissible liquid slug energy in-
creases to 0.3 MJ, 1.07 MJ and 1.33 MJ, respectively.  
 In other words, using the results of the current project, the admissible energy for 
case A increases by a factor 2.0, for case B it increases by a factor 2.5 and in case C 
it increases by a factor of about 1.3. (As a consequence of the extended extrapola-
tion, the result for case B is questionable). 
 
 Note that simply using the impact energies where in the model experiments the 
heads fail, would be wrong (too optimistic) for two reasons. In the model experiments 
the holes in the head are smaller and consequently the failure strain is larger than for 
the real size head (in diagram 3.3.3-1 compare the failure strains for r=5 mm and 
r=50mm). Furthermore the scatter of failure would not be considered. 
 The conversion of the admissible impact energies determined in the model ex-
periments into admissible energies for the real size pressure vessel is througly dis-
cussed in [1]. 
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Fig. 3.4.1-1: Maximum local strain versus impact velocity or impact energy,  
    respectively.  
    For different acceptable strains (state-of-the-art: 5 %; LISSAC: 28 %), 
    different admissible energies are obtained. 
 
 

3.4.2 Structural mechanics calculations allowing large strains. 
 
Example: Analysis of the reactor vessel head 
 
 The pressure bearing capacity of the upper vessel head  has been also investi-
gated using finite element analyses applying both the code ASME III, Division 1, Ap-
pendix F ‘Rules for evaluation of service loading with level D service limits’ [1], as 
well as the admissible strains determined in the current project. The holes in the up-
per head have been neglected. 
 The ASME evaluation has been based on the results of an elastic and an 
elasto-plastic finite element calculation. For the later case the options for large strains 
and large displacements have been invoked. The results of the elasto-plastic analy-
sis compared very well with the experimental results obtained by VTT (SAM-LISSAC-
D030). 
 The maximum pressure load according to the ASME evaluation of the elastic 
calculations is 61.56 MPa. Figure 3.4.2-1 shows the distribution of the equivalent 
stress in the deformed upper head at this pressure. The code evaluation is performed 
for the two locations shown in the figure. The maximum pressure load is determined 
by the limit on the membrane stress in the centre of the shell (location B). 
 The maximum pressure load according to the ASME evaluation based on the 
elasto-plastic finite element calculation is 90.85 MPa. The distribution of the equiva-
lent stress at this pressure is shown in figure 3.4.2-2. The maximum plastic strain at 
this pressure is approximately 3.5%. Again the maximum pressure load is deter-
mined by the stress level at the centre of the shell. 
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Fig. 3.4.2-1: The Von Mises stress at the pressure load according to the ASME 
    evaluation based on an elastic FE calculation 
 

 
 
Fig. 3.4.2-2: The Von Mises stress at the pressure load according to the ASME 
    evaluation based on an elasto-plastic FE calculation 
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Fig. 3.4.2-3: The Von Mises stress at the pressure load according to the LISSAC 
    admissible strains 
 

 
 
Fig. 3.4.2-4: The equivalent plastic strain at the pressure load according to the  
    LISSAC admissible strains 
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 In the current project a limit strain of 20% is proposed at surfaces with a curva-
ture radius r > 100 mm. Application of this limit strain results in a maximum pressure 
load of 116.40 MPa. Figure 3.4.2-3 shows the distribution of the equivalent stress on 
the deformed geometry. Figure 3.4.2-4 shows the distribution of the equivalent plastic 
strain on the same geometry. It should be noted that the ASME evaluations are 
based on engineering stresses, while the finite element results are given as true 
stresses and strains. So the limit strain of 20 % from the current project is also inter-
preted to be an engineering strain which corresponds with a true strain of approxi-
mately 18% as shown in figure 3.4.2-4. 
 Thus using the admissible strains determined in the current project to calculate 
the maximum pressure load for the upper head results in an increase by factor 1.28 
to 1.89 in comparison to the pressure load according to the ASME evaluations.  
 
 
Example: Analysis of the reactor vessel support structure 
 
 Investigations were performed for a so-called support pad of a reactor pressure 
vessel of a four loop pressurized water reactor. The finite element discretization of 
the support pad with a certain section of the pressure vessel wall is shown in 
Fig. 3.4.2-5. Two cases were considered: Static pressure load at the top of the sup-
port pad and at the bottom of the support pad. Elastic, plastic and limit analyses 
were performed using a finite element code and assuming elastic plastic material be-
haviour at room temperature as shown in Fig. 3.1.4-4. For more details see SAM-
LISSAC-DXX. 
 First the results were evaluated according to the ASME code [1], Subsection 
NB.  
The maximum admissible pressure load at the top is 
  260 ÷ 266 MPa based on elastic-plastic analysis, 
   280 MPa  based on limit analysis. 
The maximum admissible pressure load at the bottom is 
  240 ÷ 256 MPa based on elastic-plastic analysis, 
   234 MPa  based on limit analysis. 
To get an impression of the results, the stress distributions from the elastic-plastic 
analyses are shown in Fig. 3.4.2-6. 
 Then the results were evaluated using a limit strain of 20 % proposed in the cur-
rent project at surfaces with a curvature radius r ≥ 100 mm. Using the diagrams 
Fig. 3.4.2-7 showing the calculated maximum equivalent strain versus the applied 
pressure, one obtains  
a maximum admissible pressure load at the top of 
  350 MPa 
and a maximum admissible pressure load at the bottom of 
  333 MPa. 
 Thus using the results of the current project the admissible pressure loads in-
crease by factor of 1.25 ÷ 1.42 in comparison to the admissible loads by applying the 
ASME code. This benefit is moderate. If dynamic pressure loads were considered, 
larger increases could be expected. 
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Fig. 3.4.2-5: Finite element model of the support pad with an adjacent section of the 
    pressure vessel 
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Fig. 3.4.4-6: Stress distributions in the support from elastic-plastic calculations 
    Left: Pressure load at the top; Right: Pressure load at the bottom 
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Fig. 3.4.4-7: Maximum local equivalent strain versus applied pressure load from elastic-plastic calculations  
    Left: Pressure load at the top; Right: Pressure load at the bottom  
    (epp1v: equivalent strain; epp1x, epp1y, epp1z: strain components) 
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4 CONCLUSIONS 
 
 Stresses versus dimensionless deformations are approximately size independ-
ent up to failure for specimens of similar geometry under similar load conditions. Also 
the maximum stress is approximately size independent, if failure occurs after the 
maximum stress is reached. 
 Feasible methods could be developed to determine the local failure strains – 
here expressed as true or logarithmic strains, respectively – for very different speci-
mens under varying load conditions. The methods are based on post test geometrical 
measurements of the fracture surfaces allowing a reconstruction of the strain fields 
using theoretical models. The accuracy of the failure strains obtained in this way 
could be assessed. 
 The local failure strains turned out to be more than 50 % for large specimens 
approaching the dimensions of the reactor pressure vessel. 
 The local failure strains are size dependent. They reach values around 150 % 
for small specimens with thicknesses or diameters of a few millimetres. Refer to the 
diagrams Fig. 3.3.1-1 to 3.3.1-6. 
 The parameter describing the size effect is the radius of holes or notches lo-
cated in mostly stressed specimen regions. The shape of the specimen and the type 
of load plays a minor role for the tests performed within the current project. 
 Some essential findings about size effects can be understood by theoretical 
studies considering the stochastic microstructural character of the material. 
 The scatter of the experimental results on structural failure is considerable. 
However there are indications that the failure strains will hardly fall below a lower 
threshold. 
 Thus limit strains depending on the hole or notch radius in the mostly stressed 
specimen region could be proposed. They are valid for temperatures up to 400 °C. 
Dynamic loads are included. Refer to the diagram Fig. 3.3.3-1. Limit strains for higher 
temperatures up to 850 °C may also be proposed, but the reliability is restricted. 
 The results are also applicable for geometries and load conditions somewhat 
different from those investigated in the current project. The applicability can be ex-
tended by using the recommended theoretical models developed within the current 
project. However care must be taken when the stress triaxiality increases. In this 
case the failure strain may decrease significantly. 
 If in severe accidents the proposed limit strains will not be exceeded, it can be 
assumed that the structure will not fail. 
 A remarkable worthmentioning result is, that under excessive load large frag-
ments of structures can be completely torn off to become missiles. This happened 
during a biaxial test under quasi static load which was provided by (almost incom-
pressible) pressurized oil. 
 Application of the proposed limit strains to selected severe accident problems 
showed that the admissible load increases by a factor between 1.25 and about 2.0 in 
comparison to using state-of-the-art rules. 
 Severe accident problems causing higher triaxialities of the stress distributions 
in the reactor pressure vessel seem not to play an essential role. Nevertheless the 
applicability of the proposed limit strains to such problems is a very interesting ques-
tion. To answer it, some supplementary tests with specially chosen (and perhaps 
more sophisticated) specimens leading to higher triaxial stress distributions as well 
as accompanying calculations are recommended for a future research project. 
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