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Stress intensity factors and T-stress for volume strains in crack  
surface layers 

Abstract: 
In brittle materials, e.g. ceramics and glass, thin zones at the crack surfaces are af-
fected by volume strains caused by different effects. In zirconia ceramics a transforma-
tion zone with compressive stresses develops around crack tips due to a stress-induced 
tetragonal-to-monoclinic phase transformation. In piezoelectric ceramics domains may 
switch in stress direction and switch back when exposed to a changed stress state near 
the free crack faces during crack growth. In the case of glass, strains may be generated 
in the presence of water by a volume change due to ion exchange effects. For all prob-
lems mentioned above it is sufficient to know the effects behind the crack tip.  

This report provides the fracture mechanics parameters that enable a theoretical treat-
ment of such transformation zones. First, Green’s functions for small zone elements 
are derived. Then, mode-I and mode-II stress intensity factors as well as T-stress solu-
tions are determined for zones of constant height and zones with a square-root-shaped 
profile. 

Spannungsintensitätsfaktoren und T-Spannung für Volumendehnun-
gen in der Nähe von Rissflanken  

Kurzfassung: 
In spröden Materialien wird der Bereich der Rissflanken durch Volumendehnungen 
beeinflusst. Mehrere Effekte sind für diese Dehnungen verantwortlich. In Zirkonkera-
miken entwickelt sich aufgrund der martensitischen Umwandlung im singulären Riss-
spitzen-Spannungsfeld eine Phasentransformationszone. Bei Rissfortschritt gelangt 
diese Zone in den Bereich der Rissflanken. Bei Piezokeramiken verursacht das Riss-
spitzen-Spannungsfeld eine Umschaltung der Domänen in die Hauptspannungsrich-
tung. Im Falle von Gläsern kann es bei Anwesenheit von Wasser im Riss zum Ionen-
austausch und damit einer Volumenabnahme kommen. Alle Effekte führen zu Span-
nungen und damit zu einer Belastung des Risses.  
Ziel des Berichts ist die Ermittlung von Mode-I- und Mode-II-Spannungsintensitäts-
faktoren sowie der T-Spannung unter derartiger Belastung. Neben der Herleitung der 
entsprechenden Greens-Funktionen werden für spezielle Zonenprofile die K-Faktoren 
und T-Spannungen angegeben.  
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1. Introduction 
Weight function techniques for stress intensity factors and T-stresses are widely applied in 
fracture mechanics to tractions distributed along a crack at the distance y=0, i.e. along the 
crack faces (Fig. 1). These tractions may be a real crack-face pressure or fictitious stresses 
occurring in the uncracked component at the location of a crack exposed to a crack face load-
ing by the principle of superposition.  
In many cases, local strains occur near the crack surfaces (in general, for y≠0). An example is 
shown in Fig. 1 where the region behind the crack tip is affected only. 

crack strained zone

x
0

y

 
Fig. 1 Crack with a crack face zone exposed to volumetric strains. 

Some effects responsible for such strains shall be listed here: 

• Stabilized zirconia ceramics may undergo a stress-induced tetragonal-to-monoclinic 
phase transformation. As a result, a transformation zone with compressive stresses de-
velops around the crack tips, leading to an increase in fracture toughness. The increase 
in fracture toughness depends on the size of the transformation zone. Whereas the cor-
dially-shaped initial transformation zone yields a disappearing shielding stress inten-
sity factor (Fig. 2a), a finite shielding stress intensity factor is generated by a growing 
crack [1-3]. These phase transformations that are now located in the wake of the grow-
ing crack are mainly responsible for an increase in the crack resistance curve (R-
curve) factor.  

• In piezoelectric ceramics (PZT) domains located in the neighbourhood of the crack tip 
stress field may switch to the direction of maximum principal stress. In the case of a 
growing crack, part of these reoriented domains may switch back when they “feel” the 
changed stress state near the free crack faces. Although the domain switching effects 
occur under constant volume, computation of shielding stress intensity factors is very 
similar to that of phase transformations, where a volume change is responsible for the 
shielding stress intensity factor [4-7].  

• Strains may also be generated in the crack surface region by a volume reduction or 
expansion due to diffusion effects. In the special case of glass, there is experimental 
evidence [8-11] of a thin hydration layer developing at the crack surfaces during 
selective alkali leaching via ion exchange. Generation of surface tensile stresses has 



been attributed to a volume contraction associated with a repolymerisation of sianol 
groups that are left in the near-surface region of the glass. 

For all problems mentioned above it is sufficient to know the effects behind the crack tip (Fig. 
2b). In order to simplify the geometry, the crack wake zones are chosen to end at a straight 
line through the crack tip. It is the aim of this report to provide mode-I and mode-II stress 
intensity factors as well as T-stress solutions for strains in this region. 

 

∆a K=0 
a)  

 

⇒

b) K≠0 
 

Fig. 2 a) Left: Initial transformation zone of a ceramic undergoing a stress-induced tetragonal-to-
monoclinic phase transformation, right: extension of this zone during crack growth by ∆a, b) left: zone 
part responsible for the generation of a finite shielding stress intensity factor, right: approximation of 

the zone by a straight cut-off at the crack tip. 
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2. Green’s functions for stress intensity factors and T-stress 

2.1 Basic procedure  

The principal treatment of located strain region problems may be explained by a zone of con-
stant thickness b along the crack wake. For this case, the procedure developed by McMeeking 
and Evans [1] is illustrated in Fig. 3. The layer of height 2b is (Fig. 3a) is assumed to be sub-
jected to a volumetric strain εc. Since free contraction is prevented by the bulk material, ten-
sile stresses for contractive strain (εc<0) and compressive stresses for expansive strains (εc>0) 
must occur. These stresses are responsible for a stress intensity factor contribution ∆K that 
can be computed by using an Eshelby technique ([1, 12]), in Fig. 3 applied to positive strains.  
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cut out of the stressed region,
it will expand to an unstressed state 

compress it by distributed pressure, 
fit these parts into the original structure 
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b)
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(1)

(2) 
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Fig. 3 Computation of the stress intensity factor. 
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Let us assume the crack face layer to be removed from the original material (Fig. 3b). Under 
unconstrained conditions, the material exhibits a volumetric strain εc and is assumed return to 
its original shape by applying surface tractions to the contour of the transformation zone (Fig. 
3c). The zone now fits into the body again and an equilibrium can be obtained by nullifying 
the surface tractions with a layer of body forces (Fig. 3d).  
The surface tractions are given by the normal pressure p defined by 

 
)21(3 ν

ε
−

=
Ep

c

, (1) 

where E is Young’s modulus and ν Poisson's ratio.  

2.2 Mode-I stress intensity factor  
The stress intensity factor can be computed similar to the R-curve, as was done first by 
McMeeking and Evans [1]. The mode-I contribution then results as 

 SpK I dhn ⋅=∆ ∫Γ
 (2) 

with the normal vector n on the zone contour. Γ is the contour line of the zone and dS is a line 
length increment. The contour is illustrated in the upper half of Fig. 3e by the straight lines 
(1)-(4) and similar lines in the lower half. The vector h represents the weight function hI = 

(hI,y, hI,x)T with the components hI,y and hI,x  

 )2/cos()]2/3sin()2/sin(12[
)1(8

1
, θθθν

νπ
+−

−
=

r
h xI  (3a) 

 )2/sin()]2/3cos()2/cos(22[
)1(8

1
, θθθν

νπ
−−

−
=

r
h yI . (3b) 

In these relations r and θ are the polar coordinates with the origin at the crack tip. Using the 
theorem of Gauss, eq.(2) can be rewritten as [1] 

   (4) dydxpK
A

II ∫=∆
)(

div h

and 
y

h
x

h yIxI
I ∂

∂
+

∂
∂

= ,,div h   (5) 

where A is the area in the x-y plane (extending above and below the crack plane, Fig. 3e and 
Fig. 4a, but not necessarily symmetrical). For a numerical evaluation of the stress intensity 
factor ∆K it may be of advantage to carry out the integration over y from the crack surface to 
the zone height b. For the case of a zone located symmetrically above and below the crack 
(dA=-2b×dx=2b×ds), 
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with the function gI (subscript I stands for the mode-I stress intensity factor) defined by 
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It should be noted that gI is independent of Poisson’s ratio, since the pre-factor in (7) cancels 
ν out. The function gI(s/b) is shown in Fig. 4a. Its asymptotic behaviour is given by the 
straight lines described by 
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An interpolation of these limit functions for example is given by 

 
2/52/3 )/(10)/(5/4

1
bsbsbs

gI ++
−≈   (9) 

from which for an arbitrarily varying zone b(s) 
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can be derived easily by a single integration.  
The following considerations shall refer to the special case of a zone with constant thickness. 
This special case can be treated simply by the direct evaluation of eq.(2). Numerical evalua-
tion of the integral expression yields 
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c
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with the coefficient CI (subscript I stands for mode-I) represented as circles in Fig. 4b and 
compiled in Table 1 for some values of s/b. In this context, it should be noted that in [1] a 
limit value of 0.37 is given, which is in agreement with the present results.  

If a zone is considered to extend between the locations s0 and s1 (Fig. 5), it holds for s0>3b 
that 
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s/b CI s/b CI 

0.1 0.1490 7 0.3726 
0.3 0.2314 10 0.3740 
1 0.3236 20 0.3754 
2 0.3543 30 0.3757 
3 0.3638 100 0.37606
5 0.3703 ∞ 0.37613

Table 1 Coefficient CI of eq.(11). 
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Fig. 4 a) Green’s function gI as stress intensity factor for a strip-shaped zone width, b) stress intensity 
factor coefficient CI for a zone of constant height b according to eq.(11).  
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Fig. 5 Finite zone of constant height b. 

2.3 Mode-II stress intensity factor  

In the case of a volume strain zone which is not developed symmetrically to the crack plane, 
also a mode-II stress intensity factor must result. The related weight functions hII read 
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r
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as derived in the Appendix. 
The mode-II stress intensity factor ∆KII for a zone segment of length ds lying on one side of 
the crack is plotted in Fig. 6, where now gII is defined by 
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The asymptotes of gII (introduced in Fig. 6 as straight lines) are  
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where the lower solution for s/b>>1 yields sufficiently accurate results for s/b≥2 already. An 
interpolation for the full s/b range is given by 
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2
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The corresponding mode-I stress intensity factor for this non-symmetric zone is given as one 
half of the stress intensity factor computed for the symmetric case (see Fig. 4a). 

x

y 

b(s)

s 

ds 

         
0.01 0.1 1 10 100 

0.0001

0.001

0.01

0.1

1

10

s/b

gII 

 
Fig. 6  Mode-II stress intensity factor contribution for a single zone of width ds located on one side of 

the crack exclusively. 

As an example, let us compute the mode-II stress intensity factor KII for the case of a zone of 
constant height b at the upper side of the crack extending from s = s0 to s = s1 (Fig. 7a). Figure 
7b shows the mode-II stress intensity factor expressed by the coefficient CII  

 bECK
c

IIII ν
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Fig. 7  Mode-II stress intensity factor for a non-symmetric zone. 

For s0=0, the coefficient CII  reads 
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2.4 T-stress 

Two approaches based on the application of the finite element (FE) method were used to de-
termine the T-stress term caused by a contractive surface layer. First, pairs of zone increments 
with height b and width ∆s at distance s from the crack tip were evaluated. Whereas in the 
analytical evaluations of Sections 2.2 and 2.3, infinitesimally small zone widths ds could be 
achieved, the finite element method needs a finite zone width ∆s. The contractive volumetric 
strain was obtained by solving a simple thermoelastic problem, namely, thermal expansion by 
localised temperature change. The temperature inside the zone segment b×∆s was chosen to 
be Θ= -1° whereas in the remaining structure zero temperature was prescribed. Poisson’s ratio 
was chosen as ν=0.2 which is typical of ceramic materials (especially glass). For the material 
with a thermal expansion coefficient of αΘ, the volumetric contractive strain is  

   (18) Θ= Θαε 3c

Computations were carried out with ABAQUS Version 6.2 and provided the stress intensity 
factors KI as well as the T-stress term. The results obtained for different zone heights b could 
be represented by a common geometric function g∆T in the form of 

 sbsg
b

ET T

c

∆
−

−=∆ ∆ )/(1
1 ν
ε  (19) 

where now s is the distance of the zone centre from the crack tip. The function g∆T is plotted 
in Fig. 8. 

For s/b>>1, the asymptotic relation 

 2
6
1 )/( −

∆ = bsg T   (20) 

results. For s/b<<1, g∆T≅1/6 is obtained. An approximate interpolation relation is then given 
by 

 26
1

)/(1
1

bs
g T +

≅∆  (21) 

The result of Fig. 8 may be used as the Green’s function for large s/b at least, where the zone 
width ∆s is sufficiently small compared with the distance s. 
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Fig. 8 T-stress for zones of finite width ∆s. 

A second method results from the use of a monotonously increased zone widths and a con-
stant zone height b. The curve T(s) provides the infinitesimal result ∂T/∂s by differentiating 
with respect to the upper limit, i.e. 

 '
'

1

0
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s
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∫ ∂

∂
=  (22) 

The differential quotient ∂T/∂s then yields the function gT defined by 
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and, finally, 
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Figure 9a shows the T-stress in a normalised form 

 
E

sTT cε
ν−

−=
1)(* 1   (25) 

as a function of s for s0=0.1b and b=1. The numerical results for T* at any s/b in the range of 
0.1<s/b<5 were determined by interpolating the data of Fig. 9b using cubic splines. The first 
derivative with respect to s is plotted in Fig. 9c. From this curve, the same dependency was 
obtained than for single zone sections, namely, 
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Fig. 9 T-stress for a monotonously increasing layer width s at s0=b. 

A layer of constant height b (extending from s0>0) causes the T-stress 
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1 016
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as can be obtained by introducing eq.(26) in (24). For the zone extending from s0=0, it holds 
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3. X-stresses inside the zones 

Stresses in the contractive layer are of interest with respect to the study of diffusion effects. 
The rate of ion exchange depends on the actual stresses in the zone. Tensile stresses will in-
crease and compressive stresses decrease this rate. In the case of domain switching in piezo-
electric ceramics, these stresses may enhance or suppress back switching of domains depend-
ing on the sign of the stress. This would influence the crack resistance curve (R-curve), as 
was outlined in [6,7].  
The maximum stress in a thin layer of constant height on a bulk material of the same elastic 
properties is given by 

 
ν

ε
ν

εσ
−

−=
−

−=
1)1(3max

EE lin
c

  (28) 

The factor 3 in the denominator reflects the fact that εc is the volume strain that is three times 
the linear strain εlin. Equation (28) results from the Bernoulli hypothesis for a layer of large 
lateral dimensions compared to thickness. 
Having in mind that the layer is part of a crack, the σx stresses of the crack, consisting of the 
T-stress and higher-order terms, are superimposed. This gives rise to deviations from eq.(28) 
which therefore has to be considered a rough estimation. 
Figure 10 shows the σx-stress component for two zone lengths s1-s0 and three depths, namely, 
y=0, y=b/2, and y≈b. 
With increasing zone length s1/b, the x-stress component increases for all three depths and 
most significantly for the surface y=0. The maximum x-stress obtained for y=b reaches about 
σx≈0.85(1-ν)σmax for s1/b=5, i.e. σx ≈ 0.7σmax. For zones of larger length (see Fig. 10 for 
s1/b=20), the maximum stresses are reached at a distance of y=0 and y=b/2 from the surface, 
i.e. 
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Fig. 10 Stress component σx in the contractive layer at variable distances y from the free surface and 

different zone lengths s1 and s0=0.1b. 
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4. Practical applications 

In a first computation, the shielding stress intensity factor is determined for a hydration layer 
at the surface of a crack in glass. The basis are data provided by Michalske et al.[8-10]. From 
these papers (Fig. 5 in [8]) it can be concluded that for a 30%Na2O/10%B2O3/60%SiO2 glass 
in 5mol HCl solution at da/dt=10-7m/s, the hydration layer height is 1.6µm at s=60µm crack 
tip distance. Zone height is proportional to the square root of time 

 tb ∝   (29) 

4.1 Layer ending at the crack tip (s0=0) 

If the whole crack is assumed to be filled with water, the zone height under a constant crack 
growth rate (s∝t) becomes [8-10] 

 sb α=  (30) 

(see Fig. 11a) with α=0.21√µm.  

4.1.1 Mode-I stress intensity factor  

The mode-I stress intensity factor resulting from a hydration layer with an arbitrarily varying 
zone thickness b(s) is given by eq.(10). Numerical computations were performed by direct 
application of eq.(7). 

In Fig. 11b the stress intensity factors ∆KI are plotted for this zone profile and different values 
of the proportionality factor α. For small values of s all curves coincide, exhibiting a slope of 
½ in the log-log plot. For large values a saturation is visible. The limit value ∆Klim depends on 
α, as visible from Fig. 11b and Fig. 11c 
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Integration of eq.(10) with the approximate Green’s function of eq.(9), gI, from s=0 to s=s1 
results in 
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From this relation, the limit stress intensity factor is obtained as 
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in good agreement with the numerical evaluation (31). 

As shown in Fig. 11b, the limit value is sufficiently approximated by 
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Fig. 11  a) Square-root-shaped zone profile (symmetrical to the crack plane) reaching to the crack tip, 
b) shielding stress intensity factor ∆KI as a function of zone length s1, c) limit value ∆Klim for varying 

values of α defined by eq.(30), d) normalised representation of a). 
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For a simpler use, the asymptotic solutions may be applied, instead of eq.(33), i.e. 
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The second limit case represents a sufficient approximation for zones in practical 
applications.  

4.1.2 Mode-II stress intensity factor  

For a square-root-shaped zone extending on one crack surface exclusively (Fig. 12a), the 
mode-II stress intensity factor ∆KII was determined by use of eqs.(14a), (14b), and (30). The 
result is shown in Fig. 12b. It becomes obvious that in this loading case no saturation value of 
∆KII appears. An analytical expression for the mode-II stress intensity factor ∆KII is obtained 
by evaluation of eq.(14b) with the approximate Green’s function (16). It results 
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Fig. 12 a) Zone extending on one crack surface, b) mode-II stress intensity factor ∆KII 

4.1.3 T-stress  

The T-stress related to the symmetric zone shape given by eq.(30) results  

 )/arctan(
1 13

1 α
ν

ε sET
c

−
−=  (38) 

by evaluation of eqs.(24), (26), and (30).  
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4.2 Layer ending at distance s0>0 from the crack tip  

For the case that liquid water cannot reach the crack tip due to the very small crack opening in 
this region, a zone profile of   

 0ssb −= α   (39) 

has to be expected (Fig. 13a), which causes the limit stress intensity factor of  
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Fig. 13  a) Square-root-shaped zone profile ending at a distance s0>0 from the crack tip, b) shielding 
stress intensity factor ∆KI as a function of zone length s1, c) limit value ∆Klim for varying values of α 

defined by eq.(30). 
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As can be seen from the intersection of the straight lines in Fig. 13b, the upper solution in 
eq.(40) is applicable for α/√s0<1, the lower one for α/√s0>10. A full interpolation is given by 
the approximation of 
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c

αα
ν

ε  (41) 

The stress component σx at the crack surface (y=0) is shown in Fig. 14 for s0=0.1α2. Maxi-
mum stresses are reached near x= -s0.  
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Fig. 14 Stress σx at the crack surface for a zone shape of Fig. 13a, several zone lengths, and s0=0.1α2. 

4.3 Superposition of solutions 

A crack that has been loaded below the threshold for subcritical crack growth will exhibit a 
nearly constant zone thickness along the crack faces. If the applied stress intensity factor then 
is increased and exceeds the threshold, a square-root-shaped zone develops in the newly 
created crack region. The total zone shape is illustrated by Fig. 15. The stress intensity factor 
KI and T-stress are obtained by superposition of the cases 
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with the stress intensity factor KI resulting from eqs.(9) and (10) and the T-stress given by 
eqs.(24) and (26). 
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Fig. 15 Layer thickness profile of a crack loaded below the threshold for subcritical crack growth and 

additional crack extension after a load increase. 

4.4 Strains varying with crack tip distance 

In the case of a varying volumetric strain εc=f(s), the strain has to be drawn under the integral. 
Then it holds for the mode-I stress intensity factor  
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APPENDIX 

The near-tip displacement field for plane strain conditions reads [13] 
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The weight functions hx and hy can be obtained from the Rice equation [14] which relates the 
weight function to the change of displacement for a virtual crack extension ∂a under load KII, 
i.e. 
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Evaluation of (A4) and (A5) then yields 
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