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Inertialess magnetohydrodynamic flows in

expansions and contractions

Abstract

Inductionless, incompressible MHD flows in expansions of rectangular ducts are in-
vestigated by asymptotic techniques for strong, uniform, externally applied magnetic
fields. The geometries considered are closely related to applications in nuclear fusion
reactors, where liquid alloys are used as breeding materials. The liquid metal velocities
are very small so that inertia is negligible in comparison with the electromagnetic forces.
The major balance of forces establishes in the core between pressure and Lorentz forces
while viscous forces are confined to very thin boundary layers along the duct walls.
Near the expansion one can observe an intense exchange of flow between the upstream
and downstream cores with the corresponding side layers. This effect becomes more
pronounced with decreasing length of the expansion region. For the limiting case of
infinitesimally expansion length, i.e. for a sudden expansion an internal layer develops
along magnetic field lines. This expansion layer matches the solutions in both rectangu-
lar ducts. Depending on the electric conductivity of the duct walls this layer is able to
carry a significant amount of the total flow. The three-dimensional flow near the expan-
sion drives additional electric currents which are responsible for higher pressure drop
compared with fully developed conditions. As an example, the detailed flow structure
in the expansion layer is analyzed and discussed for an expansion ratio of 4 : 1.



Trägheitsfreie magnetohydrodynamische

Strömungen in Expansionen und Kontraktionen

Zusammenfassung

Mittels asymptotischer Verfahren werden induktionsfreie, inkompressible magneto-
hydrodynamische Strömungen in Rechteckkanälen mit Querschnittserweiterungen unter-
sucht, unter dem Einfluss starker, externer Magnetfelder. Ähnliche Geometrien findet
man in Blankets von Fusionsreaktoren, in denen Flüssigmetalle als Brutmaterial ver-
wendet werden. Die Geschwindigkeiten der flüssigen Metalle sind dabei sehr klein, so
dass Trägheitskräfte im Vergleich zu den elektromagnetischen Kräften vernachlässigt
werden. Im Kernbereich der Strömung stellt sich ein Gleichgewicht zwischen Druck-
kräften und Lorentzkräften ein. Viskose Kräfte beeinflussen die Strömung lediglich in
dünnen Grenzschichten entlang der Kanalwände. Im Bereich der Expansion kommt
es zu einem intensiven Austausch von Fluid zwischen den Kernströmungsgebieten und
den Seitengrenzschichten. Mit abnehmender Länge der Expansion verstärken sich diese
Effekte. Für den Grenzfall einer plötzlichen Querschnittserweiterung findet man schließ-
lich eine interne Scherschicht, die sich entlang von magnetischen Feldlinien ausrichtet.
Über diese Schicht werden die Lösungen in den beiden Rechteckkanälen kontinuierlich
miteinander verbunden. Je nach elektrischer Leitfähigkeit der Kanalwände kann diese
Schicht einen beachtlichen Teil des Volumenstroms aufnehmen. Im Bereich der Expan-
sion treibt die dreidimensionale Strömung zusätzliche elektrische Ströme, die zu einem
erhöhten Druckverlust führen. An einem Beispiel, für ein Expansionsverhältnis von 4 : 1,
wird die Struktur der Grenzschichtströmungen detailliert untersucht und diskutiert.
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1 Introduction
In future nuclear fusion reactor blankets liquid metals such as Li or PbLi alloys serve
as breeding material for generation of tritium which is one fuel component that does
not occur naturally. A significant amount of the fusion power is released within the
liquid metal and within the blanket structure. Any design concept which uses liquid
metals additionally as coolant requires electrically insulating walls in order to minimize
induced electric currents in the fluid when it moves at high speed through the strong
magnetic field that is needed to confine the fusion plasma. Electrically insulating walls
fabricated from silicon carbide composite materials are indeed considered in conceptional
studies of highly advanced reactor models (Giancarli, Golfier, Nishio, Raffray, Wong and
Yamada (2002)), but up to the present day, the technological feasibility of such designs
remains to be proven. Near-term blanket research focusses therefore on more or less
standard technologies where walls are fabricated from steel and no insulation on the
wall is foreseen.
Liquid metal flows confined in conducting containers exert much stronger magne-

tohydrodynamic (MHD) interaction since currents and Lorentz forces are higher than
in insulating ducts. For that reason the liquid metal can not be used as a coolant
any more and a separate cooling system is required. The currently proposed designs
consider walls which have internal cooling channels through which the electrically non-
conducting coolant (helium at high pressure) removes the fusion heat at high speed.
The liquid metal, however, is almost stagnant, but it circulates at very low velocity
required for tritium extraction. Since the velocities are very small, inertia forces give
only a minor fraction to the momentum balance.
The liquid metal is filled in gaps between cooling plates and the aspect ratio of the

fluid regions, say the length measured along magnetic field lines / length perpendicular
to the field is typically high. The fluid is distributed and collected to the breeding
zone through a piping system which has much smaller dimensions. This means that at
the entrance and at the exit the geometry expands and contracts preferentially in the
direction of the magnetic field.
Expansions and contractions are important elements of actual fusion blankets but

they are also basic geometric components of any liquid metal device. They received
attention in the past by a number of authors and one should recall as examples the
experiments reported by Branover, Vasil’ev and Gel’fgat (1967), Gel’fgat and Kit (1971)
who consider inertial MHD flows in insulating sudden expansions, or Walker, Ludford
and Hunt (1972), who studyMHD flows through smoothly expanding insulating channels
using an inertialess approximation. Smooth expansions with thin conducting walls had
been considered by Walker (1981) or by Picologlou, Reed, Hua, Barleon, Kreuzinger and
Walker (1989). The latter authors studied expansions and contractions of the type as
shown in Fig. 1, where expansion and contraction regions are located periodically along
the axis.
The present analysis considers MHD flows in a single expansion or contraction as

shown in Fig. 1. The problem studied here corresponds in general to that treated by
Walker (1981). While Walker introduces multiple layer techniques and calculates the
flow in the inner (the viscous) and in the outer (inviscid) side layers, the numerical
technique used here resolves the outer layers as a part of the core flow and treats the
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inner layers in an integral manner. The length of the expansion section is chosen as a
parameter. For various expansion lengths, fluid properties like pressure drop, flow rates
in side layers, wall potentials, and core streamfunctions are calculated and compared.
For the case of a sudden expansion an internal layer develops which is able to carry a
considerable fraction of the total flow rate. The detailed structure of the flow in the
internal layer is investigated.
In the analysis inertia effects are neglected. With this assumption the flow problem

becomes linear so that the results obtained for an expansion flow apply as well for a flow
in a contraction if the velocity is reversed. This assumption is fairly valid for smooth
expansions in strong magnetic fields, when Lorentz forces are much stronger than inertia
forces. But we should be aware of the fact that neglecting inertia at sudden expansions
requires that the velocities are sufficiently small. Any engineering application in which
a fluid is moving, however, has finite values of velocity and if inertia forces even if they
may be very small. An experiment which is under current investigation in the MEKKA
laboratory at the Forschungszentrum Karlsruhe will show at which values of velocity
the inertialess approximation starts to be valid.
The present work deals with geometries which expand along magnetic field lines

since this type of geometry is most closely related to application in fusion blankets. On
the other hand the present geometry creates the strongest MHD interaction. Another
possibility for plane expansions could be the expansion in the plane perpendicular to
the field. Geometries of this kind have been investigated in the past and it was found
that the additional pressure drop due to 3D flows near the expansions is negligible for
large Hartmann numbers (see e.g. Molokov (1994)).
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2 Formulation

2.1 Governing equations

Consider the magnetohydrodynamic flow, governed by the balance of momentum

1

N
[∂tv + (v ·∇)v] =−∇p+ 1

Ha2
∇2v + j×B (1)

and mass conservation
∇ · v = 0, (2)

and by Ohm’s law
j = −∇φ+ v ×B (3)

with
∇ · j = 0. (4)

In the equations shown above v, B, j, p, φ stand for velocity, magnetic induction,
current density, pressure and electric potential, scaled by the reference quantities v0, B0,
j0 = σv0B0, σv0B20L and v0B0L, respectively. The scale of velocity v0 may be chosen as
the average velocity in a particular cross section of the duct where L is a typical length
scale. The quantity B0 is the magnitude of the applied magnetic induction. The fluid
properties like the electric conductivity σ, the kinematic viscosity ν, and the density ρ,
are assumed to be constant.
The flow is governed by two nondimensional parameters, the Hartmann number Ha

and the interaction parameter N

Ha = B0L

r
σ

ρν
, N =

σLB20
ρv0

. (5)

The square of the Hartmann number characterizes the ratio of electromagnetic forces
to viscous forces while the interaction parameter represents the ratio of electromagnetic
forces to inertia forces.
At the fluid wall interface the flow satisfies the no-slip condition

v = 0, (6)

and continuity of electric potential (no contact resistance)

φ = φw. (7)

The walls of the duct are thin and electrically conducting so that the thin wall condition
(compare Walker (1981)) applies for the determination of the wall potential φw as

j · n =∇ · (c∇tφ w) . (8)

Here ∇t denotes the components of the gradient operator in directions tangential to the
wall and c stands for the wall conductance ratio

c =
σwtw
σL

. (9)

It describes the conductivity of the wall with thickness tw compared with the conduc-
tivity of the fluid.
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2.2 Core solution

For many applications in fusion the interaction parameter is very high so that iner-
tia terms are negligible. In the following analysis we suppose that the magnetic field is
uniform, and we chose the coordinate system in such a way that B = ẑ. The electromag-
netic force or Lorentz force then becomes j×B =jyx̂−jxŷ and the induced electric field
is v × B =vx̂−uŷ. In this frame of reference the three components of the momentum
equation read in the inertialess limit for N →∞ as

∂xp −jy = 1
Ha2
∇2u,

∂yp +jx = 1
Ha2
∇2v,

∂zp = 1
Ha2
∇2w,

(10)

and Ohm’s law becomes

−∂xφ +v = jx,

−∂yφ −u = jy,

−∂zφ = jz.

(11)

Conservation of mass and charge read as

∂xu+ ∂yv + ∂zw = 0, (12)

∂xjx + ∂yjy + ∂zjz = 0. (13)

The kinematic and electric boundary conditions remain as shown in equations (6) - (??).

It is possible to reduce the number of unknowns in the basic equations (10)-(13)
by eliminating currents and velocity and to derive decoupled equations for potential
and for pressure. To proceed in this direction we take the x and y component of the
momentum equation (10) and eliminate pressure by differentiation with respect to y and
x, respectively. This yields

−∂yjy − ∂xjx = ∂zjz =
1

Ha2
∇2 (∂yu− ∂xv) . (14)

Application of charge conservation (13) in Ohm’s law (11) leads to

∂yu− ∂xv = −∇2φ, (15)

so that we find from (14) with ∂zjz = −∂zzφ the equation governing potential as
1

Ha2
∇4φ = ∂zzφ. (16)

As for potential it is possible to derive an equation governing the pressure distribu-
tion. By applying the divergence operator on (10) using mass conservation we find
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∇2p = ∂zw. (17)

After applying the operator ∇2 we recover
∇4p = ∂z∇2w (18)

and using the z− component of (10) we find
1

Ha2
∇4p = ∂zzp. (19)

We may also derive an equation governing the component of velocity w. Differentiation
of (17) with respect to z and use of the z component of (10) yields

1

Ha2
∇4w = ∂zzw. (20)

Equations (16), (19), and (20) are exact in the inertialess limit. These equations are
later used to reconstruct viscous solutions in thin boundary layers.

For high Hartmann numbers the flow is mainly governed by a balance between pres-
sure forces and Lorentz forces while viscous forces are negligible compared with Lorentz
forces in the so-called cores. Viscous forces are important only in thin boundary lay-
ers along walls or within viscous internal layers which spread along magnetic field lines
into the fluid from discontinuities at the wall. Layers in which the magnetic field has a
normal component are known as the Hartmann layers and layers which are aligned with
the magnetic field are called the parallel layers.
The coordinate system introduced above applies well for the description of the flow

in all layers which occur in the present expansion problem, since in each layer always
one pair of coordinates is oriented tangential to the layer while the other coordinate is
perpendicular to the layer. For that reason the equations derived above may serve as
a basis for the boundary layer analysis which forms a main part of the present report.
The flow outside the layers is calculated using a numerical code based on asymptotic
techniques that is able to solve the MHD equations in an almost arbitrary domain. The
code uses a coordinate system that differs from the one introduced above. In the numer-
ical code two coordinates are boundary-fitted while the third direction coincides with
the direction of the applied magnetic field, i.e. with ẑ. A brief description of the code
and a number of application examples has been published by Bühler (1995). The special
coordinate system used in the numerical calculation becomes singular in the sense that
the unit volume vanishes if one wall is perfectly aligned with the magnetic field. For
that reason the code is not able to deal directly with walls which are perfectly aligned
with the magnetic field. Such walls are for example the side walls of the rectangular
channels. Bühler (1995) already showed that slight ”elliptical” deformations of the side
walls remove this mathematical difficulty and yield in the limit (for vanishing devia-
tion from a straight line) the exact solution for rectangular duct flow in case of well
conducting walls.
Although we shall not describe all mathematical details of the numerical procedure

in detail here, we outline some specific properties of the flow which are required later
for a reconstruction of the solution in the viscous layers. Let us consider the equations
(10) in the inviscid limit as Ha→∞. It follows then immediately that
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• the core pressure (subscript c indicates values in the core) is uniform along mag-
netic field lines, i.e.

∂zpc = 0. (21)

We find from (16) in the inviscid limit as Ha → ∞ that ∂zzφ = 0. The potential
varies linearly along magnetic field lines. For any z−symmetric problem (as the present
one) symmetry requires that φ (z) = φ (−z) so that

• the core potential is uniform along magnetic field lines,

φc 6= φ (z) . (22)

It can be shown that the conditions (21) and (22) are even valid with sufficient
accuracy within the viscous Hartmann layers. The error in p and φ introduced by the
approximation within the viscous layer is of the order O (Ha−2) if the magnetic field
is perpendicular to the wall (Moreau (1990)) or O (Ha−1) if the magnetic field has a
normal and a tangential component to the wall.
Since pc and φc do not vary along field lines it follows directly from Ohm’s law (11)

that

• the core velocity transverse to the field is uniform along magnetic field lines,

uc 6= u (z) , vc 6= v (z) . (23)

In the following we consider geometries which expand in the direction of the magnetic
field along a finite expansion length Lexp. A sketch of such a geometry is shown in Fig.
1. The geometry is built by two semi-infinite rectangular ducts. Both extend in the
direction transverse to the magnetic field from −1 < y < 1. Along field lines the
geometry extends from −Z < z < Z, where Z = Z (x). The walls at y = ±1 are
called the side walls and the walls at z = ±Z are called the Hartmann walls. The large
duct has a square cross section with Hartmann walls at z = ±ZC = ±1, while the
Hartmann walls of the smaller duct are at z = ±Zc. The quantity ZC/Zc may be called
the expansion ratio.
In a parametric study we reduce Lexp gradually. By this procedure we obtain data

for a whole family of expansions and find in the limit of infinitesimal Lexp the result for
a sudden expansion. A similar approach had been used successfully to model the flow
in a U−bend by Molokov and Bühler (1994) in order to circumvent the singularity that
would arise in case of walls exactly aligned with the magnetic field.
A geometry with sharp corners at x = ±1

2
Lexp as shown in Fig. 1 leads to the

formation of three cores. One is located in the small duct for x < −1
2
Lexp, one is within

the expansion for −1
2
L < x < 1

2
Lexp, and the third one forms in the large duct for

x > 1
2
Lexp. The cores are separated from each other by two internal layers called the

Ludford layers. These layers spread from the corners at x = ±1
2
Lexp into the fluid along

magnetic field lines. The existence of such layers and their characteristic features for
2D expansions has been shown by Hunt and Leibovich (1967). The z- components of
velocity varies within the Ludford layers in such a way that the values of both cores are

6



B

Figure 1: Sketch of an expansion

approached asymptotically towards both sides of the layer. A typical thickness of the
Ludford layers is for inertialess flows δL ∼ Ha−1/2. For very short expansions, say for
Lexp on the order of δL both Ludford layers merge with the intermediate core and form
a single expansion layer of thickness δe ∼ Ha−1/2.
If the corners at x = ±1

2
Lexp are made smooth we do not find any Ludford layer

and the solution exhibits only one single core. Nevertheless, the solution for velocity
varies on a typical geometric scale Lexp and we recover the expansion layer again as
Lexp < Ha

−1/2.
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3 Results for high Hartmann numbers
We discuss in the following results for flows at high Hartmann numbers, i.e. for HaÀ
c−1/2. For these conditions the flow in the core but also the mass fluxes carried by
parallel layers become independent of the Hartmann number and the fluid flows in the
core as being inviscid. With this assumption the currents carried by the viscous layers
tangential to the walls become negligible in comparison with the currents carried inside
the wall, so that the solution of the problem in the cores becomes independent of the
viscous details in the layers. This allows us to determine a core solution a priory without
knowing details of the viscous flow in the layers. In a separate section below we shall
reconstruct details of the viscous flow in the boundary and internal layers. The wall
conductance ratio used in the present calculations is c = 0.05.
Let us consider flows through an expansion located between two semi-infinite rectan-

gular ducts. In the expansion region the upper Hartmann wall is placed at Z (x) = Zc+
1
2
(ZC − Zc)

³
1 + sin πx

Lexp

´
and we chose an expansion ratio of 4 with ZC = 1, Zc = 0.25.

The family of expansions depends on the length of the expansion section Lexp. Several
contours for different Lexp are shown in Fig. 2.

-6 -4 -2 0 2 4 6

x

0

0.25

0.5

0.75

1

Z
Lexp = 4.000

Lexp = 2.000

Lexp = 1.000

Lexp = 0.500

Lexp = 0.250

Lexp = 0.025

Figure 2: Contours of expansions for different Lexp

The variation of pressure along the axis of the pipe is shown in Fig. 3. We observe
the fully established MHD flow with uniform pressure gradients in both the large and
the small duct at some distance from the expansion region. Fully developed conditions
in ducts with c À Ha−1/2 establish flow rates qc and qs, in the core and in the side
layers, according to Tillack and McCarthy (1989). In the present notation these flow
rates read as

qc = −
¡
1 + c−1Z

¢
Z ∂xp, qs = − 1

3c
Z3∂xp. (24)

In accordance with the velocity scale introduced at the beginning, where v0 was the
average velocity in the reference cross section, the total flow carried in a quarter of the
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Figure 3: Pressure along the axis for different Lexp and c = 0.05, Ha =∞

duct is
q = qc + qs = 1. (25)

Therefore, the fully developed flow in a rectangular duct with vertical extension Z has
a pressure gradient according to

∂xp= − 1
Z

c
Z

1 + c
Z
+ 1

3
Z
. (26)

Both fully developed pressure gradients in the small and the large duct are indicated
in Fig. 3. It can be seen that the computational domain is sufficiently long that the
flow can reach fully established conditions at the entrance and at the exit (see also Fig.
4). The parametric study for the influence of different Lexp shows, as expected, the
smallest pressure drop in case of long expansions. The total pressure drop increases
as the expansion length decreases, say when we approach the geometry of a sudden
expansion.
The pressure gradients along the axis are shown in Fig. 4. The analytically known

fully established conditions are approached perfectly after some distance (three charac-
teristic lengths) upstream and downstream from the expansion region. The solutions
exhibit a stronger pressure gradient when approaching the expansion. Within the ex-
pansion the magnitude of pressure gradient increases and we observe near the end of
the expansion and in the square duct a partial pressure recovery.
The parametric study shows further that the solution for pressure gradient develops

a singularity near x = 0 if Lexp becomes very small. The pressure gradient becomes
discontinuous with a finite jump at x = 0 for infinitesimally small Lexp. Figure 5
summarizes these results and shows clearly the different values of pressure gradient at
x = −0 and x = +0 for a sudden expansion. Associated with a discontinuous pressure
gradient is a discontinuity in transverse current density and velocity. Such non-physical
discontinuities are a direct consequence of neglecting viscosity within the expansion
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Figure 4: Axial component of pressure gradient along the axis for different Lexp and
c = 0.05, Ha =∞

layer. The viscous expansion layer becomes important for short expansion lengths, i.e.
for Lexp . O

¡
Ha−1/2

¢
. A viscous solution within the expansion layer will smoothly

match the solutions in both cores near x = 0. This point is discussed later in more
detail. An explanation for the phenomena observed above, especially for the pressure
recovery in inertialess flows, may be obtained by considering Fig. 6. In the small duct
for x < 0 the average velocity is higher than the velocity in the large duct for x > 1
due to the difference in cross sections. As a result the induced potential v ×B in fully
established flow is higher for the small duct, indicated in the figure as ⊕⊕⊕ and ªªª
in comparison with the smaller values in the large duct indicated by ⊕ and ª. As a
consequence there exists an axial potential difference that drives electric currents along
the walls (inside the wall, but also in the fluid). Axial currents are present only for 3D
flows and these currents are therefore called the 3D currents. 3D currents require closure
of the circuit through the fluid at x < 0 and x > 0 as shown in the sketch. In these
regions the 3D currents have a y component and thus cause additional Lorentz forces
which oppose the flow for x < 0 but accelerate the flow for x > 0. In the small duct
part of the mechanical energy is converted into electric energy. This energy extraction
from the flow results in higher pressure drop in front of the expansion. A significant
part of the electric energy is irreversibly dissipated by Ohmic heating but a considerable
fraction is reconverted into mechanical energy for x > 0 as can be observed from reversed
pressure gradients in Fig. 4. For very long expansions the current circuit is long and
the corresponding electric resistance is high. For such conditions the additional currents
and associated effects on pressure drop and flow distribution remain small. The highest
3D currents are possible for a sudden expansion for which the Ohmic heating and total
pressure drop reaches maximum values.
As a consequence of the strong braking of the flow by 3D currents for x < 0 the

fluid tries to bypass the core. For that reason there occurs an exchange of mass between
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region for different Lexpand c = 0.05, Ha =∞
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Figure 6: Sketch for explaining 3D effects in expanding MHD flows
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the core and the side layers. These observations may be clarified by projecting the core
mass flux in form of isolines of a 2D streamfunction onto a plane which is perpendicular
to the applied magnetic field. The streamfunction is defined as

ψ (x, y) = −
Z y

0

Z Z

0

u dz dy (27)

and core streamlines (isolines of ψ) are shown in Fig. 7 for the whole family of expansions
investigated. The horizontal components of core velocity are related with ψ as

uc = − 1
Z
∂yψ, vc =

1

Z
∂xψ. (28)

The fluid which leaves or enters the core at the sides is collected and redistributed in
the side layers at y = ±1. The exchange of mass is favoured in addition by the Lorentz
forces near the sides created by the 3D currents (compare Fig 6). These forces push the
fluid towards the side walls and support actively the exchange of mass between core and
side layers. The regions over which the ducts expand are indicated in Fig 7. We observe
how the exchange of mass with the sides becomes intensified as Lexp decreases. For very
short expansions, as Lexp → 0, the singular behavior becomes visible in the sense that a
thin expansion layer forms at x = 0 which is fed by the core flow at the upstream side
at x < 0. Only a small fraction of the flow crosses the expansion layer. The major part
is carried within the layer towards the sides where it creates a discontinuity in the side
layer mass flux.
Figure 8 shows the fraction of flow which is carried by the side layers. Far upstream

and downstream we recover the side layer flow rate of a fully established MHD flow in
conducting ducts. The fraction of flow carried by the side layers for fully developed
conditions becomes with (24) and (26)

qs =
1
3
Z

1 + c
Z
+ 1

3
Z
. (29)

A comparison of the numerically obtained values with the latter formula shows errors
which are smaller than 2×10−4 for the discretization used. Approaching the expansion,
the side layer flux increases continuously due to the braking of the core flow in front
of the expansion. Within the expansion region the side layer flux increases further to
reach a maximum value before is decreases downstream in order to approach the fully
established condition. As discussed already above, 3D effects become more significant
for shorter expansion lengths Lexp. In the limit of a sudden expansion, when Lexp → 0,
the side layer flow rate becomes discontinuous at x = 0. The discontinuity is caused
by the flow that is supplied to the side layer by the expansion layer located at x = 0.
Immediately behind the expansion nearly 80% of the flow is carried by the side layer.
This flow rate is later on monotonically reduced to about 24.5% which is the known value
corresponding to a fully developed flow in electrically conducting square ducts according
to (29). The side layer flow rates immediately in front and behind the expansion are
shown in Fig. 9 to demonstrate the singular behavior as Lexp → 0.

The flow quantities discussed above, especially the flow rates carried by the side
layers are difficult to determine experimentally. However, since flow rates are directly
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Figure 7: Streamlines for different lengths Lexp of the expanding section
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Figure 10: Isolines of wall potential on the side wall and on the top or the bottom wall.
The potential difference between two isolines is 0.175

related to wall potentials it is useful to display this information in Fig.10. The figure
shows isolines of wall potential on the side wall and on the top or the bottom wall.
A comparison with the core streamfunction plotted in Fig. 7 shows that the potential
on the Hartmann wall may serve, after appropriate scaling (different scales in small
and large duct), as an approximate streamfunction for visualizing the core flow. This
means that potential measurements which are taken at the Hartmann wall measure
directly flow properties like streamfunction or velocity. The reason becomes obvious
if we consider Ohm’s law (11). Both variables, velocity and potential are of the order
unity while currents are as small as the order of c in fully developed flows or of the order
c1/2 in 3D flows (Walker (1986)). Neglecting the currents yields

u ≈ −∂yφ, v ≈ ∂xφ (30)

and we see by comparison with (28) that ψ ≈ Zφ in the large and in the small duct.
So far we considered integral properties of the flow. Details such as velocity profiles

in the side layers or velocity profiles in the expansion layer will be addressed in the next
sections in which asymptotic techniques are used to reconstruct the flow in those layers.
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4 Viscous layers
We derived above inviscid solutions which are valid almost everywhere in the fluid region
but require modification in viscous boundary and internal layers. These layers are the
Hartmann layers, the side layers and the internal layers if present. We start the analysis
here for the simplest case of a Hartmann layer. In a second step we consider the side
layers and finally for the example of a sudden expansion we investigate flow properties
in the expansion layer.

4.1 Hartmann layers

Hartmann layers occur at walls at which the magnetic field has a normal component. As
already mentioned, p and φ are constant across the Hartmann layers up to the the order
O (Ha−2) if the magnetic field is perpendicular to the wall (Moreau (1990)) or O (Ha−1)
if the magnetic field has a normal and a tangential component to the wall. It is further
known that the velocity components tangential to the wall exhibit an exponential decay
towards the wall in order to satisfy the no-slip condition at the wall. The velocity in
the layer is

v = vc (1− exp (−n)) , (31)

where vc is the inviscid or core solution. The variable n is the local wall normal coor-
dinate along the inward unit normal n, scaled by the local thickness of the Hartmann
layer which is δh = (Ha ẑ · n)−1. All these properties are already implemented in the
numerical method used here and need not to be discussed in more detail. For further
information about the treatment of Hartmann layers in the code see Bühler (1995).

4.2 Side layers

At walls which are exactly aligned with the magnetic field we find a second type of
boundary layers. The numerical code used here takes this layer into account in the
sense that its integral properties are preserved. Especially the high mass flux carried
by the layer and the electric potential at the side wall is calculated precisely if the
conductivity of the side wall is much higher than the conductivity of the parallel layer,
when c À Ha−1/2. The velocity in the layer, however, has to be reconstructed in a
subsequent step from the integral quantities via a boundary layer analysis.
Let us suppose that an inviscid solution to the problem is known. We know core

potentials and velocities close to the side walls. Then we are able to derive asymptotic
equations which govern the viscous flow in the side layer. For this purpose we introduce
a stretched coordinate in (16) say in the layer at y = −1 such that

y + 1 = δsη, (32)

where δs stands for the thickness of the side layer (see Fig. 11). A reasonable balance
of viscous and Lorentz forces requires that δs = Ha−1/2 and we find at leading order of
the analysis the equation governing the potential in the side layer,

∂4ηφ = ∂zzφ. (33)

16



�

z

z=Z

y

y= -1

Figure 11: Stretched coordinates in the side layer at y = −1

The velocity in the layer is related at this order of approximation to the potential as

u = −Ha1/2∂ηφ. (34)

It has been shown by Walker (1981) that the thin wall condition (??) at Hart-
mann walls, formulated in stretched coordinates results in a uniform potential along the
stretched direction, i.e. the wall acts as a perfect conductor in this direction if cHaÀ 1,
if the wall is better conducting than the Hartmann layer. For that reason the potential
equals the core potential at the Hartmann wall and the viscous correction vanishes at
z = ±Z. As η →∞ the solution must match the core solution which is equivalent with
the requirement that viscous corrections to the core potential and velocity vanish. In
addition the velocity must vanish along the side wall and the potential equals that of
the side wall at η = 0.
We decompose the potential as φ = φc+φs, into an inviscid core solution φc and into

a viscous side layer correction φs. Similarly we decompose the velocity as u = uc + us,
where uc and us stand for the core velocity and the viscous correction in the side layer.
Equation (33) has the z- symmetric solution that does not grow indefinitely as η →

∞:
φs =

∞X
k=0

(ak cosαkη + bk sinαkη) expαkη cosβkz, (35)

where

βk =
2k + 1

2

π

Z
, αk = −

p
βk/2. (36)

The velocity evaluates as

us = −Ha1/2∂ηφs = (37)

−
X

Ha1/2αk [(bk + ak) cosαkη + (bk − ak) sinαkη] expαkη cosβkz.
Matching conditions at η = 0 are used to determine the unknown coefficients ak and bk
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from
φw = φc + φs = φc +

P
ak cosβKz

0 = uc + us = uc −
P
Ha1/2αk (bk + ak)| {z }

uk

cosβkz

 at η = 0. (38)

The coefficients ak and uk correspond to the Fourier coefficients of viscous potential and
velocity taken at the position y = 1 (at η = 0). While the core values are independent
of the field aligned coordinate according to (22) and (23), the value φw, known from the
numerical solution depends on z.
We find by using orthogonality of trigonometric functions the equations determining

the ak and uk as

ak =
2

Z

Z Z

0

(φw − φc) cosβkz dz, (39)

uk =
2

Z

Z Z

0

uc cosβkz dz, (40)

which determine the last coefficient

bk = −ak + 1

αkHa1/2
uk

for the side layer velocity in (37). The analysis follows the ideas of Walker (1981) who
calculated the coefficients up to the leading order in Ha.
We have seen in (23) that the core velocity uc is uniform along magnetic field lines.

This simplifies the calculation for uk and we obtain

uk = 2uc
sinZβk
Zβk

. (41)

The core potential φc is constant along field lines but the potential difference (φw − φc)
depends on z. The values (φw − φc) are known at discrete locations as a result from
the numerical calculations. For evaluating the expression (39) we assume that for the
simplest case the potential varies like a piecewise linear function between the numerically
known values at the ends of a line element l. This yields

ak =
2

Zβ2k

nX
l=1

[φw − φc]l
[cosβkz]l
[z]l

, (42)

where [ ]l stands for the difference of a quantity taken between the two nodes of the line
element l. The summation over all n line elements gives the value of the integral (39).
Results for velocity profiles at different axial positions for the case of a sudden

expansion are shown in Figs. 12-15 for Ha = 103. Far downstream and upstream of the
expansion we observe the typical velocity profiles of fully established rectangular duct
flows with a flat uniform core and high-velocity jets along the side walls. Approaching the
expansion the core becomes deformed and we observe the inviscid (outer) layers which
are much thicker than the viscous sub layers. Within the inviscid layers the velocity is
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Figure 12: Fully developed velocity profile far upstream of the expansion

Figure 13: Velocity profile immediately in front of the expansion at x = −0.1
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Figure 14: Velocity profile immediately behind the expansion at x = 0.1

already increased. In addition the flux carried by the viscous side layer increases also
due to the exchange of flow with the core. This leads to the high velocities in the side
layers which can be observed near the expansion in Fig. 13. Immediately behind
the expansion, as shown in Fig. 14, the major fraction of the flow is carried by the
side layers, which have received from the flow upstream the expansion and from the
expansion layer about 80% of the total flux. The velocity profile along field lines is
no longer parabolic as known for fully established flows. There exists even a reversed
flow closer to the corners of the duct. The back flow disappears downstream after some
length and the fluid finally approaches fully developed conditions at the exit of the
computational domain as shown in Fig. 15
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Figure 15: Fully developed velocity profile far downstream of the expansion
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4.3 Expansion layer

Expansion layers occur if Lexp . Ha−1/2 as it is the case for a sudden expansion. In the
analysis we use the same ideas as for the solution of the side layer problem. Let us sup-
pose that an inviscid solution to the problem is known, i.e. we know core potentials and
velocities at both sides of a sudden expansion and the wall potential at the expansion.

4.3.1 Potential and transverse flow

We introduce a stretched coordinate in (16) for the expansion layer such that

x = δeξ, (43)

where δe stands for the thickness of the expansion layer. A reasonable balance of viscous
and Lorentz forces requires that δe = Ha−1/2 and we find at leading order of our analysis
the equation governing the potential in the expansion layer,

∂4ξφ = ∂zzφ. (44)

The transverse velocity in the plane of the layer is related at this order of approximation
to the potential as

v = Ha1/2∂ξφ. (45)

The separable partial differential equation (44) is solved on the domain shown in Fig.
16, assuming symmetry with respect to z = 0. As already discussed for the side layers,
the thin wall condition (??) formulated in stretched coordinates results in a uniform
potential along the stretched direction, i.e. the Hartmann walls act here as a perfect
conductors along the axial direction if cHaÀ 1. For that reason the potential equals the
core potential at the Hartmann wall and the viscous corrections vanish at the Hartmann
walls. As ξ → ±∞ the solution must match the core solution which is equivalent with
the requirement that viscous corrections to the core potential and velocity vanish as
ξ → ±∞. In addition the potential along the vertical wall must equal the wall potential
and the velocity must vanish along this wall at ξ = 0. For the solution we split the
domain into two parts, one for ξ < 0, in which the duct has a dimension along magnetic
field lines up to Z = Zc and a second part for ξ ≥ 0 where Z = ZC = 1.
Let us start the analysis for ξ ≥ 0. We decompose the potential as φ = φC+φE, into

an inviscid core solution φC and into a viscous correction φE. Similarly we decompose
the velocity as v = vC+ vE, where vC and vE stand for the core velocity and the viscous
correction in the expansion layer.
Equation (44) has the z- symmetric solution that does not grow indefinitely as

ξ →∞ :
φE =

∞X
K=0

(AK cosαKξ +BK sinαKξ) expαKξ cosβKz, (46)

where
βK =

2K + 1

2

π

ZC
, αK = −

p
βK/2. (47)
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Figure 16: Coordinates and geometry in the upper half expansion layer

The velocity evaluates as

vE = Ha
1/2∂ξφE

=
P
Ha1/2αK [(BK +AK) cosαKξ + (BK − AK) sinαKξ] expαKξ cosβKz. (48)

Matching conditions at ξ = 0 are later used to determine the unknown coefficients AK
and BK from

φ = φC + φE = φC +
P
AK cosβKz

v = vC + vE = vC +
P
Ha1/2αK (BK +AK)| {z }

VK

cosβKz

 at ξ = 0 (49)

The coefficients AK and VK correspond to the Fourier coefficients of viscous potential
and velocity taken at the position ξ = 0. While the core values are independent of the
field aligned coordinate according to (22) and (23), the values φ and v at ξ = 0 do
depend on z.
For ξ < 0 we perform a similar analysis and decompose the electric potential as

φ = φc+φe, into an inviscid core solution φc and into a viscous correction φe. Similarly
we decompose the velocity as v = vc + ve, where vc and ve stand for the core velocity
and the viscous correction in the expansion layer for ξ < 0. In this part of the geometry
the extension of the duct along field lines is between −Zc < z < Zc.
Equation (44) has the solution that does not grow indefinitely as ξ → −∞, i.e.

φe =
∞X
k=0

(ak cosαkξ + bk sinαkξ) expαkξ cosβkz, (50)

where

βk =
2k + 1

2

π

Zc
, αk = +

p
βk/2. (51)

The velocity here is given by

ve = Ha
1/2∂ξφe

=
P
Ha1/2αk [(ak + bk) cosαkξ + (bk − ak) sinαkξ] expαkξ cosβkz. (52)
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Matching conditions at ξ = 0 couple the coefficients ak and bk with the values of potential
and velocity as

φ = φc + φe = φc +
P
ak cosβkz

v = vc + ve = vc +
P
Ha1/2αk (ak + bk)| {z }

vk

cosβkz

 at ξ = 0 . (53)

Elimination of φ and v at ξ = 0 from (49) and (53) yields

φC +
X
K

AK cosβKz =

½
φw

φc +
P

k ak cosβkz
for

Zc < z < ZC
0 < z ≤ Zc , (54)

vC +
X
K

VK cosβKz =

½
0

vc +
P

k vk cosβkz
for

Zc < z < ZC
0 < z ≤ Zc . (55)

The potential and the velocity at ξ = 0 are given by the expressions shown in (53)
for 0 < z ≤ Zc. For Zc < z < ZC, however, the potential φ (ξ = 0) equals the wall
potential φw and the velocity at the solid wall vanishes. We find by using orthogonality
of trigonometric functions and with the abbreviations

∆φ =

½
φw − φC
φc − φC

and ∆v =

½
0− vC
vc − vC for

Zc < z < ZC
0 < z ≤ Zc (56)

the equations determining the AK and BK as

1

2
AK =

1

ZC

ÃX
k

ak

Z Zc

0

cosβkz cos βKz dz +

Z ZC

0

∆φ cosβKz dz

!
, (57)

1

2
VK =

1

ZC

ÃX
k

vk

Z Zc

0

cosβkz cosβKz dz +

Z ZC

0

∆v cosβKz dz

!
. (58)

So far the coefficients AK and VK (BK) satisfy continuity of potential and velocity at
ξ = 0 for any given expansion of the solution in terms of ak and vk (bk).
Continuity of shear stress (vorticity) at ξ = 0 is used now to derive equations for ak

and bk, i.e.
∂ξξφe (ξ = −0) = ∂ξξφE (ξ = +0) . (59)

We obtain now X
k

α2kbk cosβkz =
X
K

α2KBK cosβKz, (60)

and after using orthogonality we find

1

2
Zcα

2
kbk =

X
K

BKα
2
K

Z Zc

0

cos βKz cosβkz dz. (61)
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If we further assume that the vorticity field is smooth at ξ = 0,

∂3ξφe (ξ = −0) = ∂3ξφE (ξ = +0) , (62)

we find the equationX
k

α3k (bk − ak) cosβkz =
X
K

α3K (BK − AK) cosβKz, (63)

from which we determine

1

2
Zcα

3
k (bk − ak) =

X
K

(BK −AK)α3K
Z Zc

0

cosβKz cosβkz dz. (64)

In the next step we substitute the integrals as

CkK = 2

Z Zc

0

cosβKz cosβkz dz = 2
βk cosZcβK sinZcβk

β2k − β2K
, (65)

∆φK =
2

ZC

Z ZC

0

∆φ cos βKz dz, ∆vK =
2

ZC

Z ZC

0

∆v cosβKz dz. (66)

Note, there is a possibility that the denominator in (65) vanishes if βK → βk. For such
a case it can be shown, however, that CkK remains finite:

lim
βK→βk

CkK = Zc. (67)

The core velocities are uniform along field lines so that ∆v becomes a piecewise constant
function along z. The Fourier coefficients evaluate analytically as

∆vK =
2

ZC

µZ Zc

0

(vc − vC) cosβKz dz +
Z ZC

Zc

(−vC) cosβKz dz
¶

=
2

ZCβK
(vc sin βKZc − vC sin βKZC) . (68)

The values vc and vC have to be taken from the numerical solution. The function
∆φ (z) is not known analytically but may be approximated in the simplest case as a
continuous piecewise linear function that connects the numerically obtained potential
data. Analytic integration of the piecewise function yields

∆φK =
2

β2KZC

nX
l=1

[∆φ]l
[cosβKZ]l
[Z]l

, (69)

where [ ]l stands for the difference of a quantity taken between two nodes of the com-
putational grid. This procedure ensures convergence as K → ∞ in contrast to an
approximation that would take ∆φ at a finite number of collocation points.
The final system of equations that determines the solution of the flow in the expansion

layer reads as
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AK =
1

ZC

X
k

akCkK +∆φK, (70)

VK =
1

ZC

X
k

vkCkK +∆vK . (71)

With vk = Ha1/2αk (ak + bk) and and BK = −AK + VK
αKHa1/2

the latter equation deter-
mines BK as

BK = −AK + 1

ZC

1

αK

X
k

αk (ak + bk)CkK +
1

αKHa1/2
∆vK.

The system of equations is finally closed by the determination of the coefficients ak and
bk. We summarize the governing equations as follows:

AK =
1

ZC

X
k

akCkK +∆φK (72)

BK = −AK + 1

ZCαK

X
k

αk (ak + bk)CkK +
1

αKHa1/2
∆vK (73)

bk =
1

Zcα2k

X
K

α2KBKCkK, (74)

ak = bk − 1

Zcα3k

X
K

α3K (BK − AK)CkK . (75)

We see already that the problem is mainly governed by core potentials and that the cor-
rections due to core velocity become unimportant as Ha→∞. For a numerical solution
of the problem the series are truncated at a finite number of modes and the solution is
obtained by an iterative process. Initially ak = bk = 0 is assumed and first estimates of
AK and BK are calculated. Then bk and ak are updated and a better approximation for
AK and BK is obtained. This procedure is repeated (with underrelaxation if necessary)
until AK , BK and ak, bk approach their final constant values.
As a result, isolines of transverse velocity are plotted in Fig. 2 for the expansion layer

at a position close to the side wall near y = 1. The Hartmann number is Ha = 1000 for
the present case. Far upstream the transverse velocity is equal to vc. The Hartmann
layers are so thin that they are not visible in the graph. Approaching the expansion
we observe a weak local minimum of the transverse velocity near ξ ≈ −1.5. Then, the
velocity increases strongly along the axis and the maximum is reached near ξ ≈ 0.7.
Later the velocity decays and approaches via a local minimum, not visible in the figure,
the core value vC. The profile of transverse velocity plotted along the duct axis is shown
in Fig. 18.
The most interesting thing is that the maximum of the e− layer velocity is not located

on the axis at z = 0, as one could have expected. Instead we observe two maxima close
to the positions z ≈ ±Zc which are obviously a result of the corner singularities at the
expansion. While the major fraction of the flow in the layer is carried towards the sides,
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Figure 17: Contour plot of transverse velocity v in the e-layer close to the side wall
y . 1 for Ha = 1000.

the solution exhibits also regions closer to the outer corners, in which the direction of
velocity is reversed. In these regions fluid is sucked from the side layer and transferred
towards the center of the duct. The two maxima and the reversed flow are visible in Fig.
19. These findings are consistent with the axial velocity profile behind the expansion as
shown in Fig. 14, where near the corners zones of reversed flow are also present.
To continue the analysis we consider integral quantities of the layer and compare

them with the solutions in the cores. Since in general the inviscid axial mass flux
is discontinuous across the expansion layer, the layer must carry an O (1) flow rate
transverse to the axis towards the sides. If we are interested in the amount of flow
carried by the layer at position y we may integrate the velocity profile and find the local
flow rate

qy (y, z) = Ha
−1/2

µZ 0

−∞
ve dξ +

Z ∞

0

vE dξ

¶
= −∆φ .

The amount of fluid carried through an entire cross section of the e- layer at position y
evaluates from the latter quantity as

Qe (y) =

Z ZC

0

qy dz = −
Z ZC

0

∆φ dz. (76)

This means that the flow rate is determined by the difference between the core potential
in the large duct and the potential along the vertical wall and in the small core. It is
possible to compare the potential-driven transverse flow rate with the fluxes calculated
by the numerical code, i.e. Qe = ψC − ψc. A comparison shows that the difference
between both quantities is

ψC − ψc +

Z ZC

0

∆φ dz = 0 + εnum, (77)
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Figure 18: Transverse velocity v along the axis of the duct for z = 0, y . 1
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Figure 19: Transverse velocity v along magnetic field lines for ξ = 0.4, y . 1
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which is as small as the numerical error of the current approximation, εnum . 10−2.

4.3.2 Vertical flow

For deriving an equation for vertical velocity in the expansion layer we use (20) in
stretched coordinates as

∂4ξw = ∂zzw. (78)

At large distance from the expansion the solution for w requires that

w = ∂ξw = 0 as ξ → ±∞. (79)

The boundary conditions at Hartmann walls are

w = 0 at z = Zc,C (80)

and symmetry implies that
w = 0 at z = 0. (81)

At the vertical wall of the expansion, for Zc < z < ZC , we have no-slip and zero normal
component of velocity,

w = 0 and u = 0 at ξ = 0. (82)

In general, the axial component u of velocity evaluates at leading order from Ohm’s law
as

u = −∂xp− ∂yφ. (83)

The variables and expressions for u, ∂xp, and ∂yφ are used for continuous matching at
ξ = 0 for 0 < z < Zc.
As before we split the expansion domain in two regions and define the vertical velocity

as

w =

 Ha1/2we ξ < 0
for

Ha1/2wE ξ > 0 .
(84)

By separation of variables we find viscous solutions for w, which vanish at large distance
from the expansion in the form

wE =
∞X
K=1

(AK cosαKξ +BK sinαKξ) expαKξ sin βKz, (85)

we =
∞X
k=1

(ak cosαkξ + bk sinαkξ) expαkξ sinβkz, (86)

where
βK =

1
ZC
Kπ, αK = −

p
βK/2,

βk =
1
Zc
kπ, αk =

p
βk/2.

(87)

At ξ = 0 we smoothly match both solutions up to the second derivatives:X
K

AK sinβKz =

½
0P

k ak sinβkz
for

Zc < z < ZC
0 < z < Zc

, (88)
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X
K

αK (BK +AK) sinβKz =
X
k

αk (bk + ak) sinβkz for 0 < z < Zc, (89)

X
K

αK
2BK sin βKz =

X
k

α2k bk sin βkz for 0 < z < Zc . (90)

The fourth condition for matching is obtained by consideration of vertical fluxes as
described below. The vertical component of velocity is related to pressure according to
(17) at leading order as

∂xxp = ∂zw (91)

Integration along x yields the variation with z of the flow rate carried by the layer in
the vertical direction, i.e.

∂xpC − ∂xp0+ =

Z ∞

0

∂zwEdξ, (92)

∂xp0− − ∂xpc =

Z 0

−∞
∂zwedξ, (93)

where ∂xp0± = ∂xp (ξ = 0±) are the left and right sided limits of pressure gradient.
Matching of pressure gradients (potential and velocity) at ξ = 0 leads us to

Z ∞

0

∂zwEdξ = G (z)−


0 Zc < z < ZC
forR 0

−∞ ∂zwedξ 0 < z < Zc

, (94)

where

G (z) =

 ∂xpC − ∂xp0+ Zc < z < ZC
for

∂xpC − ∂xpc 0 < z < Zc

. (95)

Integration of (94) along z yieldsZ ∞

0

wEdξ =

Z z

0

G (z) dz −
(

0R 0
−∞wedξ

for
Zc < z < ZC

0 < z < Zc
. (96)

Inserting the ansatz for wE and we gives

1

2

X
K

BK − AK
αK

sin βKz =

Z z

0

G (z) dz+

(
0

1
2

P
k
bk−ak
αk

sin βkz
for

Zc < z < ZC

0 < z < Zc
(97)

and orthogonality determines the coefficients as

BK − AK
αK

=
4

ZC

Z ZC

0

µZ z

0

G (z0) dz0 sin βKz
¶
dz +

1

ZC

X
k

bk − ak
αk

SkK , (98)

with the abbreviation

SkK = 2

Z Zc

0

sin βkz sin βKz dz =
2βk

β2K − β2k
cosZcβk sinβKZc. (99)
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The integral

GK =

Z ZC

0

µZ z

0

G (z0) dz0 sin βKz
¶
dz (100)

can be evaluated using integration by parts as

GK =
1

βK

µZ ZC

0

G (z) cosβKzdz − cosβKZC
Z ZC

0

G (z) dz

¶
. (101)

We shall show now that the second integral vanishes identically, i.e.
R ZC
0
G (z) dz = 0 at

the present order of approximation. This is immediately shown by integration of (94)
along z. In order to demonstrate the consistency of the current models we show the
same fact once more. For this purpose let us consider (95), in which we substitute the
pressure gradient according to ∂xp = − (u+ ∂yφ) , i.e.

G (z) =

 0− uC +∂y (φw − φC) Zc < z < ZC
for

uc − uC +∂y (φc − φC) 0 < z < Zc

. (102)

We integrate this quantity along z and obtainZ ZC

0

G (z) dz = − (uCZC − ucZc + ∂yQe) , (103)

where Qe = −
R ZC
0

∆φ dz according to (76) has been used. This equation states that
the difference in axial fluxes through a volume element of transverse size dy changes the
fluxes Qe in the transverse direction. Therefore, conservation of mass requires thatZ ZC

0

G (z) dz = 0. (104)

For efficient computations we evaluate the velocity in G by the use of the 2D stream-
function as uc,C = − 1

Zc,C
∂yψc,C and find

G (z) = ∂y


1
ZC

ψC +φw − φC Zc < z < ZC
for

1
ZC

ψC − 1
Zc
ψc +φc − φC 0 < z < Zc

. (105)

In terms of the streamfunction the integral shown above reads as (compare with (77))Z ZC

0

G (z) dz = ∂y

µ
ψC − ψc +

Z ZC

0

∆φ dz

¶
= 0 + ∂yεnum (106)

For this reason we can calculate GK only from the first integral in (101). With orthog-
onality used through (88)-(90) we arrive at the final set of equations determining the
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Figure 20: Contour plots of vertical velocity w in the e-layer at y = 0 and close to the
side wall

vertical component w of velocity as

AK =
1

ZC

X
k

akSkK , (107)

BK − AK =
αK
ZC

X
k

bk − ak
αk

SkK +
4αK
ZC

GK , (108)

bk =
1

α2k Zc

X
K

αK
2BKSkK, (109)

bk + ak =
1

αkZc

X
K

αK (BK +AK)SkK . (110)

Results are shown in Figs. 20, 21. At all walls w = 0 is satisfied. At y = 0 the highest
vertical velocities occur near ξ ≈ 0.62, z ≈ 0.45. Approaching the side wall the vertical
velocity increases in magnitude. This is a result of the fact that the flow coming from the
small duct has to be distributed both to the internal layer (in the transverse direction)
and to the large core. The flow rate supplied to the expansion layer by the small core
increases towards the sides as was shown already in Fig. 13 and therefore the magnitude
of vertical velocity increases also. In addition the flow rate carried by the layer increases
also towards the sides which leads additionally to higher velocities in the layer. We
observe also that the location of maximum vertical velocity shifts to positions closer to
the expansion, i.e. to ξ ≈ 0.45, z ≈ 0.3.
Profiles of vertical velocity at ξ = 0.4 (indicated by the dashed line in the previous

figure) are displayed in Fig. 21 for different transverse positions in the duct. The vertical
component of velocity scales as Ha1/2 and takes maximum values of magnitude as w ∼
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0.14Ha1/2 for y = 0 up to values such as w ∼ 0.5Ha1/2 at a position close to the side
wall.
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Figure 21: Vertical velocity w plotted along z for ξ = 0.4

From the results obtained above we may evaluate the local vertical flow rate as

qz (y, z) =

Z ∞

−∞
wdξ =

Z z

0

G (z) dz. (111)

4.3.3 Mass flux along the layer

In order to get an overview how the flux carried by the e- layer is distributed we plot
the two-dimensional vector field qy, qz in the plane of the expansion layer. It can be
seen that all the net flow which is collected by the layer is distributes towards the sides
of the duct. the highest fluxes appear near z = ±1

2
. Regions of reversed flux (flux from

the side towards the center) are not present. This means that the reversed velocities
observed in Fig. 19 are at least compensated by flows towards the sides so that there
exists no reversed net flux carried by the layer.

4.3.4 Flow paths

In this section we describe the topology of the flow pattern in the e-layer. For simplicity
we restrict the discussion to one quarter of the symmetric expansion as shown in Fig. 23.
We have seen already in Fig. 7 that there is an intense exchange of flow between cores,
side layers and the internal layer. Before reaching the internal layer the mass flux in
the side layer increases because of an exchange between upstream core and upstream
side layer. So when we approach the expansion the side layer carries already 13% of the
total flow. This flow is transferred to the downstream side layer. Possible flow paths for
this fraction of flow are shown as red lines in Fig. 23.

33



-1 -0.5 0 0.5 1
y

-1

-0.5

0

0.5

1

z
B
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The streamlines shown in Fig. 7 indicate also that there exists a minor fraction of
fluid (less than 20%) that is able to cross the internal layer from upstream to downstream
core. One such path is indicated in Fig. 23 by the green line. The one shown here lies
just in the symmetry plane. All other lines of this type (not shown here explicitly) are
shifted upwards but also towards the sides during their path across the e-layer before
they reach the downstream core.
A third type of streamline is shown in blue. Blue color indicates streamlines which

start in the upstream core, enter the e- layer, and stay there until they meet the side
layer. This part of flow continues its path though the downstream side layer. It has
been shown above that behind the expansion region the downstream side layer carries
about 80% of the flow.
The axial velocity profile just behind the e- layer, shown in Fig. 14, exhibits regions

of reversed flow in the side layer close to the corners. The transverse velocity plotted
in Fig. 17 shows also regions of locally reversed flow. A flow path consistent with these
results is shown in magenta. For several reasons this seems to be the only possibility for
a consistent flow pattern. One reason is that there is no reversed flux when integrated
across the thickness of both the side layer and the e- layer. This means that the reversed
velocity is at least compensated by an opposite flow in the same layer in horizontal
planes. One could also think about a closure of streamlines in the layers in vertical
planes. This, however, can be excluded because there is no downward vertical velocity
component in the e- layer (compare Figs. 20 and 21). Moreover, closed streamlines in
planes perpendicular to the magnetic field are often preferred in MHD flows because
such flows minimize Joule damping. It should be noted that the magenta loop operates
close to the walls and it is very likely that streamlines of the blue and green type exist
just behind it.
Further downstream the side layer is rearranged. The downstream core sucks monoton-

ically fluid from this layer until fully developed conditions establish.

5 Conclusions
MHD flows in geometries which expand along field lines have been investigated using
asymptotic techniques valid for creeping flows in strong magnetic fields. For the analysis
of such flows, inertia forces are neglected in comparison with Lorentz or pressure forces
for N → ∞. Viscous forces are confined to thin boundary layers or to thin internal
parallel layers and they do not affect pressure drop or flow rates at leading order of the
analysis for well conducting walls. The analysis shows that 3D effects disappear for very
long expansions, when Lexp À 1. With decreasing expansion length, 3D effects become
gradually more important and the inviscid inertialess solution develops discontinuities in
pressure gradient and side layer flow rates near the expansion as Lexp → 0. Approaching
the expansion, the flow rate carried by the side layer increases. At the expansion, the
side layers are fed additionally by the flow rate supplied from the expanding core. As
Lexp → 0 there exists no expanding core any more and the geometry forms a sudden
expansion. At the sudden expansion a viscous expansion layer appears transverse to the
axis, which collects almost all flow from the upstream core and distributes it towards
both sides. For the present case, about 80% of the total flow is now confined to the side
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Figure 23: Flow paths in the e-layer. Red lines: flow stays within side layer; blue lines:
flow from upstream core enters the e-layer and is transferred into the downstream side
layer; green lines: flow from upstream core crosses the e-layer and enters downstream
core; magenta lines: recirculation region involving downstream side layer and e-layer
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layers from where it is redistributed downstream to the core.
Let us discuss finally some arguments about the validity of the inertialess approx-

imation. It has been shown that the thickness of side layers scale as Ha−1/2 and the
expanding core has a length of Lexp. Since both the side layers and the expanding
core may carry an order one flow rate, the velocity may reach values up to the order
u ∼ Ha1/2 and v ∼ L−1exp. Across the expanding core the axial velocity drop is of the or-
der one on a length scale Lexp and we may estimate u∂xu = O

¡
L−1exp

¢
. In the expanding

core the fluid is accelerated transverse to the duct axis up to a velocity v = O
¡
L−1exp

¢
towards the sides, along a distance of order one. This yields transverse inertial forces
v∂yv = O

¡
L−2exp

¢
, which are even stronger than the axial components in the core. At

the expansion, where most of the flow is collected in the side layer, the flow must be
accelerated from velocities u = O

¡
Ha1/2

¢
to 3−4 times this value along a distance Lexp.

This leads to inertia forces in the side layers of magnitude u∂xu = O
¡
L−1expHa

¢
. It is

expected that increasing inertia effects will firstly affect the flow in the side layers near
the expansion, for high Hartmann numbers, i.e. for LexpHa > 1. A further increase of
inertia will then affect the flow in the expanding core and only very strong inertia forces
may enter the axial momentum balance in the cores. As a result inertia is negligible if
N À L−1expHa. This relation should hold as long as the expansion length is large enough.
For applications with sudden expansions the relevant length scale for axial changes has
to be replaced by the thickness of the viscous internal layer δe ∼ Ha−1/2. For such cases
inertia becomes negligible only if N À Ha3/2.
These simple considerations show already that the requirements on the interaction

parameter are fairly strong in order that inertia effects remain negligible, i.e. N À Ha3/2.
Inertial flows in expansions, which are out of the scope of the present paper are cur-
rently investigated experimentally in the MEKKA laboratory of the Forschungszentrum
Karlsruhe.
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