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Stress intensity factors and constant stress terms for interface cracks 

Abstract: 
In bi-material joints cracks can propagate along the interface or kink into one of the 
two materials. Whereas the energy release rate can be applied for interface cracks in 
the same way as usual for homogeneous materials, the computation of stresses in the 
vicinity of the crack tip is significantly more complicated. In order to assess crack 
kinking, it is necessary to know the mixed-mode stress intensity factor contributions KI 
and KII as well as the constant stress terms in the two materials.  

Whereas the stress intensity factors are available for a large number of infinite and 
semi-infinite bodies, there is experimental interest in practically used test specimens. 
This especially holds for the constant x-stress terms. 

Finite element computations are performed for the special case of a disappearing sec-
ond Dundurs parameter, i.e. β=0. The fracture mechanics parameters KI, KII, σ0 for the 
interface crack are reported in the form of diagrams and approximate relations. 

Spannungsintensitätsfaktoren und Konstantspannung für Grenzflä-
chenrisse  

Kurzfassung: 
In Materialverbunden können sich Risse entlang der Verbindungsfläche ausbreiten 
oder aber in eines der beiden Materialien abknicken. Während die Ausbreitung in In-
terface-Richtung wie auch bei homogenen Materialien durch die Energiefreisetzungs-
rate beschrieben werden kann, erfordert die Bewertung des Abknickverhaltens die 
Kenntnis der Spannungen vor der Rissspitze. Deren Ermittlung ist relativ kompliziert. 
Die notwendigen bruchmechanischen Belastungsgrößen sind die Mode-I- und Mode-
II-Spannungsintensitätsfaktoren KI und KII sowie die ersten regulären Spannungsterme 
in den beiden Materialien.  
Ziel des Berichts ist die Ermittlung dieser Größen für den Spezialfall verschwindenden 
zweiten Dundurs-Parameters (β=0) mit der Methode der Finiten Elemente.  
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1. Introduction 
The mechanical behaviour of a bi-material joint (consisting of materials “1” and “2”) is 
characterised by the Dundurs parameters α and β which are defined as  
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with Young’s modulus E and Poisson’s ratio ν.  

1.1 Interface crack 
For a crack lying directly on the interface (Fig. 1), the stress field is given by a complex 
interface stress intensity factor K [1] expressed as 
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Fig. 1 Interface crack (geometric data). 

The full stress solution for such cracks was given by Sih and Chen [2]. The tractions on 
the interface ahead of the crack tip (r→x, ϕ=0) are  
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The energy release rate G for an advance of the crack in the interface direction reads 

 
*

2
2

2
1

E
KKG +

=   (6) 



with the effective modulus E* defined as 
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As can be seen from (6) and (7) the energy release rate can be applied for interface cracks 
in the same way as usual for homogeneous materials. If the stresses in the vicinity of the 
crack tip are of interest, the computations are significantly more complicated. Knowledge 
of these stresses is necessary to decide whether a crack will extend in its initial direction 
(i.e. on the interface) or kink into one of the two materials [3]. 
When β=0, and consequently ε=0, the stress intensity factors K1 and K2 can be interpreted 
as conventional stress intensity factors KI and KII (K1→KI, K2→KII). 

1.2 Kink crack 
The conditions of kinking are outlined in detail in the papers of He and Hutchinson [3] 
and He et al.[4]. The stress intensity factors of the kinked crack (Fig. 2) kI and kII are con-
ventional stress intensity factors, because the crack tip is now surrounded by one material 
exclusively. These stress intensity factors are related to the stress intensity factors of the 
unkinked crack as well as to the constant stress term σ0 in the material in which the crack 
will kink  

 lll 0σεε bKdcKikk ii
III ++=+ −   (8) 

where c, d, and b are dimensionless complex parameters depending on the Dundurs pa-
rameters and the kink angle ω. In the case of Fig. 2, the relevant constant stress term is 
σ02. For homogeneous materials the stress σ0 is identical with the so-called T-stress. The 
effects of T on path stability under mixed-mode loading were discussed in detail by Cotte-
rell and Rice [5].  
For the special case of β=0, the stress intensity factors for the kink are  
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The energy release rate Gk for the kink crack then results from  
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The a priori unknown kink angle ω can be determined from eq.(11) taking l→0. The ratio 
of the interface energy release rate Gi and the maximum value of Gk(ω) under kink condi-
tions, Gk,max, have to be determined. The value of Gi/Gk,max obtained can then be compared 
with the ratio of the mode-dependent interface toughness Γi and the toughness of the ma-
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terial in which the crack kinks, Γk, i.e. Γi/Γk. This allows to decide whether the crack is 
able to kink (for details see [4]).  

In order to model the crack growth and kink behaviour of interface cracks, it is necessary 
to determine the stress intensity factors K1, K2 (or KI and KII, for β=0) and the constant 
stress terms for the specimens of interest. Whereas the stress intensity factors are available 
for a large number of infinite and semi-infinite bodies (see e.g.[6]), there is experimental 
interest in practically used test specimens. This especially holds for the constant x-stress 
terms. 

 
Material 1 

Material 2 

ω
σ02 

σ01 

l

kI, kII, G

σ01 

σ02 

 
Fig. 2 Geometry of a kinked crack with constant stress terms of the initial (unkinked) crack. 
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Fig. 3 Poisson’s ratio ν2 required for a disappearing Dundurs parameter β. 

As emphasized by Hutchinson [7], “the clarity in interpretation achieved by taking β to be 
zero is often worth the small sacrifice in accuracy” [2]. Having this in mind, the special 
case of β=0 will be considered in detail below. For a given ratio of Young’s modulus 
E2/E1 and a prescribed Poisson ratio ν1, the second Poisson ratio that fulfils β=0, is given 
as 
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Figure 3 represents this dependency for several values of ν1. 

2. Double Cantilever Beam 
The double-cantilever-beam (DCB) specimen is shown in Fig. 4. A line load P/B (B= 
specimen thickness, often chosen as B=1) is applied at the end of the cantilever normally 
to the crack face.  
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Fig. 4 Double-cantilever-beam specimen made of dissimilar materials. 

Finite element (FE) computations were carried out with ABAQUS Version 6.2 which pro-
vides the stress intensity factors KI as well as the energy release rate in the form of the J-
integral. For the FE computations the geometry was chosen to be W=6000 and d=500-1500. 
In total, about 7400 elements with 23000 nodes were used. The crack tip region was modelled 
with 8-node isoparametric elements collapsed on one side. 

2.1 Computations for a slender DCB specimen (d/W=12) 

2.1.1 Energy release rate and effective stress intensity factor  

The energy release rate was determined as a function of the first Dundurs parameter α. By use 
of eqs.(6) and (7), an effective stress intensity factor Keff can be defined as  

 *GEKeff =  (13) 

with the effective Young’s modulus E* given by eq.(7). The results for a/d=6 are represented 
in this form in Fig. 5. There is no significant dependency on α (this had to be expected). The 
solid and dashed horizontal lines indicate the average value and the span of data, i.e. 
Keff√d/(P/B)=23.08 (±0.3%). Such small deviations are within the range of accuracy of the FE 
method. 
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Fig. 5 Energy release rate G for the advance of an interface crack expressed by the effective stress 

intensity factor according to eq.(13) for a/d=6 and β=0. 

2.1.2 Mixed-mode stress intensity factors  

Mixed-mode stress intensity factors KI and KII are plotted in Fig. 6 as functions of the 
modulus ratio E2/E1. Maximum KI and trivially disappearing KII are found for E2/E1=1. Only a 
slight influence of ν1 is visible. Figure 7 shows similar plots for the dependency on the Dun-
durs parameter α. 
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Fig. 6 Stress intensity factor contributions for a/d=6 (β=0). 
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Fig. 7 Stress intensity factors KI and KII as functions of the first Dundurs parameter α for a/d=6 (β=0). 

2.1.3 Constant stress terms  

In homogeneous materials, only one constant stress term exists, the T-stress. This value can 
be determined easily from the x-stresses at the free crack surfaces, as there is no other stress 
component near the crack tip. Moreover, the ABAQUS Version 6.2 directly provides T. 
In the case of an interface crack, two different values exist for the constant x-stress term, here 
denoted as σ01 for material “1” and σ02 for material “2”. Their determination requires a least-
squares evaluation procedure. Whereas for pure mode-I stress fields the singular stresses van-
ish at ϕ=± π, the mode-II stress intensity factor yields singular x-stresses also at the crack 
surface under mixed-mode conditions. The total stresses caused by the mode-II stress inten-
sity factor and the constant stress terms are  
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The x-stresses at the crack faces (ϕ=±π) reads 
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For the evaluation of σ0, eq.(15) may be rewritten as  
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The constant stress is then determined from the slope of a σx√(-x) versus √(-x) plot, as shown 
in Fig. 8 for a/d=6 and two different ratios of Young’s modulus. The values at √(-x)=0 pro-
vide the mode-II stress intensity factor. 
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Fig. 8 Determination of the constant stress terms from the slope of the straight lines (β=0). 

Figure 9 shows the constant stress terms as functions of the Young’s modulus ratio E2/E1. A 
plot of σ0 versus the Dundurs parameter α is shown in Fig. 10. A straight-line behaviour can 
be concluded. 
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Fig. 9 a) Constant stress terms versus ratio E2/E1, b) average of the two constant stress values σ01 and 

σ02 (a/d=6, β=0). 
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Fig. 10 Constant stress terms σ01 and σ02 as functions of the first Dundurs parameter α for a/d=6, β=0. 

2.2 Influence of the a/d ratio 

2.2.1 Energy release rate 

Figure 11 shows the effective stress intensity factor according to eq.(13) for three different 
a/d ratios. The effective stress intensity factor increases with a/d, but is nearly independent of 
the parameters α and ν1.  
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Fig. 11 Influence of the a/d ratio on the effective stress intensity factor. 
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2.2.2 Mixed-mode stress intensity factors 

The stress intensity factor contributions KI and KII are plotted in Fig. 12 as functions of the 
Dundurs parameter α, the ratio a/d, and the Poisson ratio ν1.  
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Fig. 12 Stress intensity factors KI (a) and KII (b) as functions of the first Dundurs parameter α for dif-

ferent a/d (β=0), c) and d): mode-mixity KII/KI. 

The dependencies on α can be approximated as 
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Fig. 13 a) Stress intensity factor of a homogeneous material versus a/d (curve given by eq.(19a)), b) 

KII/α for several ratios a/d. 

Figure 12c represents the “mode mixity” KII/KI. Also this quantity is found to be linearly de-
pendent on α. The coefficient of proportionality is entered in Fig. 12d.  

For the special case of a homogeneous material (α=β=0), the mode-I stress intensity factor 
can be determined from the weight function which reads [8] 
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with λ=0.68. The stress intensity factor for loading at ξ=0 then results as 
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This solution is introduced in Fig. 13a as the curve. Equation (19a) may be simplified for 
a/d>1 by 
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Together with eq.(17a) the following expression is obtained for the case of dissimilar materi-
als 
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Figure 13b displays the mode-II stress intensity factor as a function of a/d. The straight line 
dependency (solid line) is represented by 
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2.2.3 Constant stress terms 

The constant stress terms σ01 and σ02 are represented in Fig. 14. These results may be ap-
proximated by the straight line relations of 

 5.00,)1(01 ≤≤−= ααλσ T   (22) 

 )8.01(02 ασ += T  (23) 

where T is the constant stress term for α=0, i.e. the T-stress of the homogeneous specimen.  
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Fig. 14 a) Constant stress term of the homogeneous material versus a/d (curve given by eq.(26)), b) 

plot of the constant stress terms normalised to the constant stress of homogeneous material for several 
ratios of a/d (β=0). 
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The T-stress caused by a point force at the distance ξ from the end of the bar is given in [ ] as 
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and for the special case ξ=0, it results  
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Equation (25) is introduced in Fig. 14a as the solid curve.  
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3. The CT specimen 
The standard geometry of the compact tension (CT) specimen is illustrated in Fig. 15. The 
thickness again is B. Computations similar to those given in detail for the DCB specimen 
were performed for the CT specimen. The graphical representations only concentrate on the 
most essential results. 

3.1 Mixed-mode stress intensity factors 

Figure 16 shows the mode-I stress intensity factor solution. The circles correspond to the 
stress intensity factor KI and the squares represent the energy release rate expressed by 
eq.(13) in terms of the effective stress intensity factor Keff. Figure 16b gives the data for 
a/W=0.5 in higher resolution. 
From Fig. 16, it becomes obvious that  

• the dependence on α is negligible and  
• the effective stress intensity factor is nearly identical with the mode-I contribution. 

This behaviour is due to the very small mode-II stress intensity factor contributions which are 
less than 10% of the mode-I stress intensity factors, as can be seen from Fig. 17a. As evident 
from this diagram, the dependency of KII on the Dundurs parameter α is linear.  

Figure 17b represents the mode mixity KII/KI. Also this plot reflects the minor influence of KII 
for the CT specimen, as obvious from comparing with the mode mixity for the DCB pecimen 
(Fig. 12c). Figure 17c, finally, shows the slope of the straight lines in Fig. 17b. 
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Fig. 15 The compact tension test specimen. 

In Fig. 18 the stress intensity factor KI of the homogeneous material (α=β=0) is plotted versus 
the relative crack length a/W as the squares. The well-known stress intensity factor solution 
for the CT specimen made of homogeneous material is [10] 
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This dependency is also represented as the curve in Fig. 18a. Good agreement is obvious.  
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Fig. 16 Stress intensity factor KI and effective stress intensity factor Keff (representing the energy re-

lease rate). 
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Fig. 18 a) Mode-I stress intensity factor KI of the homogeneous material (α=β=0), symbols: FE re-
sults, curve: eq.(27) proposed by Srawley [10], b) slope of the straight lines in Fig. 17a. 

3.2 Constant stress terms 

The two constant x-stress terms σ01 and σ02 are given in Fig. 19a, normalised to the stress 
term for α=0. This stress of the homogeneous specimen is identical with the T-stress and plot-
ted in Fig. 19b versus the relative crack size a/W. For a/W<0.6 and α<0.6 we propose the re-
lations 
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Fig. 19 a) Constant stress terms normalised to the constant stress for homogeneous material at variable 

ratios a/W (β=0), straight lines: eqs.(28) and (29), b) constant stress term (T-stress) of homogeneous 
material versus a/W.  
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4. DCDC test specimen 
The “double cleavage drilled compression” (DCDC) specimen shown in Fig. 20 is used for 
the determination of stable and subcritical crack growth under mixed-mode loading condi-
tions (e.g. [11-13]).  
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a

 
Fig. 20 DCDC specimen with central hole 
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Fig. 21 a) Influence of Dundurs parameter α on KI, b) stress intensity factor KI of homogeneous mate-

rial, circles: this report, dashed curves: eq.(31) [11], solid curves: eq.(32) [14]. 

Figure 21a shows the mode-I stress intensity factor KI normalised to the value of homo-
geneous material (i.e. for α=β=0) versus α. The plots for H/R=3 and 4 may be expressed by 
the common relation of 

  (30) )107.01()0( 2α−×= II KK
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For the case of a homogeneous material (α=β=0), the mode-I stress intensity factor was given 
by He et al. [11] for a/R≥4 as 

 
R
a

R
H

R
H

K
Rp

I




 −+= 259.0235.0

)0(
|| π  (31) 

This solution is introduced as the dashed curves in Fig. 21b. A solution proposed in [14] reads 

 
R
a

R
H

R
H

K
Rp

I




 −+−= 1575.0216.03703.01163.1

)0(
|| π  (32) 

which is represented by the solid curves in Fig. 21b. Equation (30) in combination with (31) 
or (32) allows to compute the mode-I stress intensity factor for the DCDC specimen made of 
dissimilar materials. 
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Fig. 22 Mode-II stress intensity factor (a) and mode mixity KII/KI versus Dunders parameter α.  

The mode-II stress intensity factor KII is plotted in Fig. 22a. Figure 22b represents the mode-
mixity KII/KI=f(α). If α<0.3, mode mixity may be approximated by linear relations as 

 αCKK III =/   (33) 

with the coefficient C compiled in Table 1.  
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H/R a/R=2 4 6 8 
2 0.145 0.141 0.140 0.138 
3 0.0494 0.0630 0.0531 0.0441 
4 0.0842 0.0298 0.0126 0 

Table 1 Coefficients C for mode mixity according to eq.(33), α<0.3. 
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Fig. 23 a) Constant stress terms of the DCDC test specimen, b) normalised to the T-stress. 

In Fig. 23 the constant stress terms are plotted for a/R=2. At H/R>3 and α<0.6, the constant 
stresses may be estimated roughly by 

  (34) 2
01 4987.26678.01/ αασ ++≈T

  (35) 2
02 4008.09329.01/ αασ +−≈T

These dependencies are presented as the solid curves in Fig. 23b. The T-stress T for the 
homogeneous material can be expressed by [14] 

 1
/)283.0/213.0(157.1/11.1

1||/ −
−+−

=
RaRHRH

pT  (36) 
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5. Opposite roller test 

An experimental set up for a fracture mechanics test with completely stable crack propagation 
as developed in [15] for homogeneous materials is shown in Fig. 24. A pre-notched bar is 
loaded via four opposite rollers. The effect of dissimilar materials will be studied below. 
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Fig. 24 Controlled fracture test device with load application via four symmetrical rollers.  
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Fig. 25 a) Influence of Dundurs parameter α on KI, b) normalised representation of a). 

Figure 25 represents the mode-I stress intensity factor KI as a function of the Dundurs pa-
rameter α and the relative crack length a/W. From the plot in Fig. 25b, it is clearly visible that 
the influence of crack length on the normalised stress intensity factor KI(α)/KI(0) is negligi-
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ble. The value of KI(0) is identical with the stress intensity factor solution for homogeneous 
material. The solution obtained by the weight function technique reads [15] 

 )873.34425.1857.3358.3905.0(2 2/92/72/52/32/1 ηηηηη −++−=
WB
PKI  (37) 

with η=a/W. Equation (37) is plotted in Fig. 26 together with the data from the present FE 
analysis. Good agreement is obvious. 
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Fig. 26 Stress intensity factor solution for homogeneous material; curve: eq.(37) [15], squares: FE 

results. 

Figure 27 shows the mode-II stress intensity factor as a function of the Dundurs parameter α 
and the relative crack length a/W. The linear dependencies shown in Fig. 27a can be ex-
pressed as 

 α
WB

PCK IIII =  (38) 

with the coefficient CII plotted in Fig. 27b versus the relative crack length. Finally, Fig. 27c 
illustrates the mixed-mode ratio KII/KI. Since for a/W=0.2 and 0.4 the mode-II stress intensity 
factor is small compared to the mode-I stress intensity factor, it is self-evident that the effec-
tive stress intensity factor Keff, representing the energy release rate cannot differ significantly 
from the mode-I value KI. Due to this fact, a separate plot of the effective stress intensity fac-
tor did not seem to be necessary.  

The constant stress terms are given in Fig. 28a. The straight line behaviour may be expressed 
by the relations  

 )1( 101 ασ CT +=  (39) 
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 )1( 202 ασ CT −=  (40) 

The T-stress data obtained with FE are shown by the symbols in Fig. 29. A solution tabulated 
in [16] and interpolated using cubic splines is entered as the solid curve. Also in this case, 
good agreement is visible. 

 
KIIB√W 
   P 

0 0.1 0.2 0.3 0.4 0.5 0.60 

0.01 

0.02 

0.03 

0.04 

a/W=0.2 

0.4

0.6

α 

a) b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0

0.02

0.04

0.06

0.08

0.1

a/W

KIIB√W
  α P 

(=CII)

 

 

α
0 0.1 0.2 0.3 0.4 0.5 0.60 

0.05 

0.1 

0.15 

0.2 

0.25 

a/W=0.2

0.4

0.6

KII/KI c)

 
Fig. 27 a) Influence of Dundurs parameter α on KII, b) steepness of the curves of a), c) mixed-mode 

ratio KII/KI. 
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Fig. 28 a) Constant stress terms normalised to the T-stress, b) coefficients for eqs.(39) and (40). 
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Fig. 29 T-stress from the FE analysis (symbols) compared with a solution tabulated in [16] and inter-

polated with cubic splines. 
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6. Bending bar 
The bending bar made of dissimilar materials was studied very early. A large number of ref-
erences is given in [17]. In most papers the energy release rate is considered the driving force 
in fracture mechanics tests. Therefore, it is here concentrated on the constant stress terms. 
Figure 30 shows the geometrical data. 
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Fig. 30 4-point bending specimen with a crack at the interface. 

For the homogeneous test specimen the stress intensity factor and the T-stress are well 
known. The stress intensity factor KI is  

 FaK bI πσ=   (41) 
with the bending stress σb 

 2
21

2
)(3

BW
SSP

b
−

=σ   (42) 

and [8] 

 



 −−+−++−

−
= ))1/(1342.6exp(

8
3)1(5

8
1

12
5

8
5

)1(
1215.1 622

2/3 ηηηηηη
η

F  (43) 

with η=a/W. This relation is plotted as the curve in Fig. 31a. The squares represent numerical 
solutions obtained by the finite element computations. Good agreement can be seen. The re-
lated T-stress can be expressed by [16] 

 2

432

)1(
9276.06384.2553.3481.2526.0

η
ηηηη

σ −
−+−+−

=
b

T
 (44) 
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This dependency is plotted as the curve in Fig. 31b. Also in this case, the squares result from 
FE computations. Best agreement with eq.(44) is evident. In Fig. 32a the mode-I stress inten-
sity factor for the specimen made of dissimilar materials is normalised to the stress intensity 
factor according to eqs.(41-43) and plotted versus the Dundurs parameter α. The influence of 
α is negligible for α<0.5. Figure 32b shows the mixed-mode ratio KII/KI for several relative 
crack lengths a/W. In Fig. 32c the steepness of the curves KII/KI vs. α is shown, defining the 
coefficient λ1 in 

 αλ1/ =III KK  . (45) 

In Fig. 32d the ratio of the effective stress intensity factor Keff (representing the energy release 
rate via eq.(6)) and the mode-I contribution KI is plotted. Maximum deviations of less than 
0.4% are visible. From this result, it can be concluded that the solution for homogeneous ma-
terial can be applied for the computation of energy release rates.  

The constant stress terms for three crack lengths are plotted in Fig. 33a.   

 αλσ 201 += T  (46) 

 αλσ 202 −= T  (47) 

with T given by eq.(44). 
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Fig. 31 a) Mode-I stress intensity factor KI of homogeneous material (α=β=0), symbols: FE results, 
curve: eq.(43), b) T-stress solution eq.(44). 
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Fig. 32 a) Mode-I stress intensity factor KI of dissimilar materials, b) mixed-mode ratio, c) slope of the 
curves in (b), defining the coefficient λ1 in eq.(45), d) energy release rate expressed by the effective 
stress intensity factor according to eq.(6).  
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Fig. 33 a) Constant stress terms normalised to the bending stress, b) coefficient λ2 for eqs.(46) and 

(47), representing the slopes in (a). 
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