
Forschungszentrum Karlsruhe 
in der Helmholtz-Gemeinschaft 
Wissenschaftliche Berichte 
FZKA 7065 
 
 
 
 
 
 
 
 
 

Creep of the Austenitic  
Steel AISI 316 L(N) 
Experiments and Models 
 
M. Rieth, A. Falkenstein, P. Graf, S. Heger, 
U. Jäntsch, M. Klimiankou,  
E. Materna-Morris, H. Zimmermann 
Institut für Materialforschung 
Programm Kernfusion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
November 2004 



Forschungszentrum Karlsruhe 

in der Helmholtz-Gemeinschaft 

Wissenschaftliche Berichte 

FZKA 7065 

 

Creep of the austenitic steel  
AISI 316 L(N) 

– Experiments and Models – 

M. Rieth, A. Falkenstein, P. Graf, S. Heger, U. Jäntsch, 
M. Klimiankou, E. Materna-Morris, H. Zimmermann 

 
 

Institut für Materialforschung 

Programm Kernfusion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Forschungszentrum Karlsruhe GmbH, Karlsruhe 

2004  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Impressum der Print-Ausgabe: 
 
 

Als Manuskript gedruckt 
Für diesen Bericht behalten wir uns alle Rechte vor 

 
Forschungszentrum Karlsruhe GmbH 

Postfach 3640, 76021 Karlsruhe 
 

Mitglied der Hermann von Helmholtz-Gemeinschaft 
Deutscher Forschungszentren (HGF) 

 
ISSN 0947-8620 

 
urn:nbn:de:0005-070657 





 

i 

ABSTRACT 

This report provides a general review on deformation mechanisms relevant for metallic mate-
rials. Different mechanisms are described by rate equations which are derived and discussed 
in detail. For the example of an austenitic 17Cr12Ni2Mo steel (AISI 316 L(N) or DIN 1.4909) 
these equations are applied to experimental creep data from own investigations at IMF-I (es-
pecially long-term creep tests with creep times of up to 10 years) and from NRIM, Japan. 
Step-by-step a steady-state creep model is set up that is able to predict creep behaviour in a 
wide temperature and stress range. Due to the small number of adjustable parameters it may 
also be easily adapted to other materials. Since austenitic stainless steels are well known for 
their problematic aging behaviour at elevated temperatures, microstructure and precipitation 
formation as well as their impact on creep are outlined above all. 
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Kriechverhalten des austenitischen Stahls AISI 316 L(N) 

– Experimente und Modelle – 

 

ZUSAMMENFASSUNG 
Der vorliegende Bericht beinhaltet eine allgemeine Übersicht über Verformungsmechanis-
men, die bei metallischen Werkstoffen auftreten können. Dabei werden Gleichungen für die 
unterschiedlichen Mechanismen hergeleitet und ausführlich diskutiert. Am Beispiel eines 
austenitischen 17Cr12Ni2Mo-Stahls (AISI 316 L(N) oder DIN 1.4909) findet dann die An-
wendung dieser Gleichungen auf experimentelle Kriechdaten aus eigenen Untersuchungen 
im IMF-I (insbesondere Langzeitkriechuntersuchungen mit Versuchszeiten von bis zu 10 
Jahren) und von NRIM, Japan statt. Dadurch wird schrittweise ein Modell für das stationäre 
Kriechen aufgestellt, das das Kriechverhalten in einem weiten Temperatur- und Spannungs-
bereich vorhersagen kann. Auf Grund der wenigen anzupassenden Parameter kann es auch 
leicht auf andere Werkstoffe angewandt werden. Da austenitische rostfreie Edelstähle für ihr 
problematisches Alterungsverhalten bei höheren Temperaturen bekannt sind, wird vor allem 
auch die Mikrostruktur, die Bildung von Ausscheidungen und deren Einfluss auf das Krie-
chen dargestellt. 
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1 Introduction 

Among many other applications the austenitic 17/12/2–CrNiMo steel 316 L(N) (DIN 1.4909) 

is used or envisaged for both conventional and nuclear power plant construction as well as in 

the International Nuclear Fusion Project. Worldwide a huge number of experimental investi-

gations have already been carried out to determine the material properties (including creep 

behavior) of this steel type in the conventional stress and temperature range. Our previous 

creep studies, for example, focused on three batches in the temperature range of 500-750 °C 

for periods of up to 85000 h [1-6].  

In the design relevant low-stress range at 550 °C and 600 °C, however, creep data allowing 

statements to be made about the stress dependence of the minimum creep rate or about the 

technically relevant creep strain limits are almost unavailable. This is not only due to reasons 

of time, but to technical reasons, too. In this stress-temperature range, the expected creep or 

strain rates are so small that they can hardly be measured by conventional creep tests. 

Therefore, a special long-term creep testing program at 550 °C and 600 °C, respectively, 

was started in 1991 [7]. After an experimental period of about 10 years the creep tests have 

been aborted and evaluated. 

Now, this low-stress creep data not only allow for a much better long-term prediction of the 

reliability of 316 L(N) applications but also enable deformation modeling for a broader stress 

range.  

The present report focuses mainly on the set-up of a steady-state creep model for the 

316 L(N) steel. Therefore, after an overview of experimental procedures and material proper-

ties, a short review on deformation mechanisms and their description by rate equations is 

given. In the final section these equations are applied to the experimental creep data and the 

resulting model is critically discussed in detail. 
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2 Experimental 

2.1 Material 

A part of the AISI 316 steel family – also known as V4A-Series or as trademark NIROSTA – 

is shown in Fig.1.  

 

Most data used in the current report result from experiments performed with the heat no. 

11477 from Creusot-Marell (CRM). This heat had been delivered as 40 mm hot rolled plate 

with a final heat treatment at 1100 °C followed by water quenching. Quality insurance re-

ported this batch as nearly free of δ-ferrite (< 1 %).  

In addition to that, some single data points have been taken from NRIM data sheets [6, 8-11] 

for comparable alloys (for chemical composition see Table 1). These had been produced as 

50 mm, as 60 mm bars, as tubes (wall thickness 8.8 mm) and as 24 mm plates. Their final 

heat treatment was 1050°C, 1080 °C, 1130 °C, and 1100 °C, also water quenched. 

Fe

17.3%
Cr

12.5%
Ni

2.4% Mo
1.8% Mn
0.02% C
0.08% N
0.32% Si

AISI 316L(N)
NIROSTA® 4429

C
r-

N
i-M

o 
S

te
el

s:
 V

4A
-S

er
ie

s

AISI 316
4401

X5CrNiMo17-12-2

AISI 316L
4404

X2CrNiMo17-12-2

AISI 316LN
4429

X2CrNiMo17-13-3

- C

+ Ni, Mo, N

 
Fig. 1: The AISI 316 austenitic steel family. 
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Table 1: Chemical composition of different AISI 316 L(N) steels in wt. per cent. 

Alloy C Si Mn P S Cr Ni Mo Cu N Al B 

CRM 
11477 0.02 0.32 1.80 0.02 0.006 17.34 12.50 2.40 0.12 0.08 0.018 0.0014 

SUS 
316-B 
ADA 

0.06 0.46 1.49 0.03 0.026 17.43 12.48 2.49 0.15 0.019 0.025 0.0008 

SUS 
316-H 

TB AAL 
0.07 0.61 1.65 0.03 0.007 16.60 13.6 2.33 0.26 0.025 0.017 0.0011 

 

2.2 Equipment, Specimens, Test Procedure, and Evaluation 

All creep specimens were produced out of the centre of the 40 mm plate (CRM 11477) trans-

verse to rolling direction. For the specimens screw heads of 5 mm and 8 mm in diameter with 

30 mm, and 200 mm gauge length were selected. The increased length of 200 mm ensures 

that the measurement of the creep behaviour is much more accurate than for standard 

specimens (Ø8 x 50 mm, see Fig. 2). The test temperature was controlled by means of three 

PtRh-Pt thermocouples and kept constant at ±2 K by means of three PID control units. For 

creep measurement, the specimens were equipped with a double-coil extensometer and the 

creep behaviour was registered continuously. The resolution was about 0.001 mm (1:1250). 

Loading took place in normal atmosphere (air) via lever arms (1:15) using weights. A picture 

of the creep facilities is given in Fig. 2. 

 

Creep Test Facilities Creep Specimens

Low Stress Regime

creep rates of 10-9 to 10-7/h, that is:

gauge length 30 mm 0.3-30 µm/year
gauge length 200 mm 2-200 µm/year  

Fig. 2: Creep test facilities and specimens. To improve resolution and 
sensitivity of creep tests, an increased specimen length has been 
used for long-term tests. 
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The continuously registered strain curves have been digitalized (see Fig. 3, blue dots). Then 

the creep rate has been obtained by numerical differentiation (Fig.3, red dots).  

 

Due to fluctuations it is sometimes rather difficult to determine the range of steady-state 

creep. However, in all cases we defined the steady-state creep rate as minimum value while 

onset and end of the steady-state creep range has been defined by a scatter band of ±20 % 

of the minimum value. 

2.3 Creep Test Results 

A number of different tests have been performed with standard specimens (Ø5 x 30 mm) in 

the usual stress range at temperatures between 550 and 750 °C. To examine long-term 

creep seven experiments were performed at 550°C in the stress range of 100-250 MPa and 

another six tests were run at 600°C in the range of 60-170 MPa. Of course, a certain scatter-

ing occurs at creep rates of ε&  ≤ 10-7 h-1 which corresponds to a strain rate of ≤0.1 mm / 5000 

h even for a gauge length of Lo = 200 mm. This scattering may be due either to measure-

ment technology or to the material used.  

st
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Fig. 3: Determination of characteristic creep data from the registered strain curve. 
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However, the minimum creep rate was reached for the higher stresses. For lower stresses, 

sometimes the value could only be estimated. The results for the steady-state creep rates 

are shown in Fig. 4. 

 

It can be noticed that the dependence of the steady state creep rate at 550 and 600 °C on 

the stress is changed considerably in the low-stress range as compared to the high-stress 

ranges. This means that the creep rates are much higher than the values that would have 

been extrapolated from the usual stress range.  

At first glance, a plausible explanation could be the fact that all experiments performed at 

550 °C and 600 °C with σ >210 MPa are found to be in stress ranges with initial plastic 

strains of more than 5 % at the start of the experiments, which are due to the low yield stress 

at these temperatures. This means that the creep behavior at stresses of less than 210 MPa 

actually refers to the specified solution-treated state, whereas the material is found to be in 

the solution-treated deformed state at stresses of more than 210 MPa (up to 25 % at 380 

MPa).  

Fig. 4: Steady-state creep rates depending on stress for different temperatures interpreted in terms 
of power-law creep. 



Experimental 

6 

It was already demonstrated by several experiments with the Mo-free steel X6CrNi 1811 

(corresponding to AISI 304) that this plastic deformation at the start of the tests acts like a 

preceding cold deformation [12]. Cold deformation of specimens by 12 % prior to the test or 

deformation by 12 % at the test temperature resulted in creep and strength values which 

were similar to those obtained for solution-treated specimens with initial strains of more than 

10% at the start of the experiments. Therefore, it might be assumed that the observed 

change of the steady-state creep rate at lower stresses could result from this experimentally 

build-in cold work. However, in Section 3 another explanation will be favored. 

2.4 Microstructure 

Quite another but also reasonable description could be the change of the microstructure with 

time since austenitic stainless steels are well known for their thermal instability at higher tem-

peratures.  
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Fig. 5: Microstructure of the material as delivered (a, b). This is the usual structure of austenitic 
stainless steel with some twins and a slight texture along the rolling direction. The micro-
structure changes considerably after aging of 85000 h at 600 °C (c, d).  

a b 

c d 
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Figure 5 a, b shows the microstructure of the 316 L(N) steel in the condition as delivered. In 

general there is nothing unusual. Typical twin formations are recognizable as well as a slight 

texture along the rolling direction combined with a few rather small inclusions. Other investi-

gations have also shown small parts of delta ferrite.  

After aging at 600 °C for 85000 h the microstructure has changed considerably (Fig. 5 c, d). 

Precipitations have formed mainly at grain boundaries and along the rolling texture.  

A similar formation can be observed in SEM observations after 2650 h at 750 °C (Fig. 6).  

Sequence and type of precipi-

tations in AISI 316 austenitic 

stainless steels are well 

known and investigated (see, 

for example, [13, 14] and ref-

erences therein, see also 

Sec. 7): 

M23C6 carbides are the first 

phases that form during aging 

where M represents Cr, Fe, 

Mo, and Ni. Initially these 

carbides consist of a higher 

amount of Fe that usually is 

replaced by Cr and/or Mo 

during aging. A typical com-

position for AISI 316 steels is 

(Cr16Fe5Mo2)C6. For the pre-

sent material the carbon con-

tent is 200 ppm at room tem-

perature while at 600 °C the 

carbon solubility in equilibrium 

with the M23C6 carbides is 

about 4 ppm. That is, at 

600 °C almost all of the car-

bon is removed from the matrix by precipitating as M23C6 carbides. The most favorable pre-

cipitation sites are grain boundaries followed by twins and dislocations where cold deforma-

tion enhances precipitation within grains. The presence of nitrogen inhibits or delays forma-

tion of M23C6 carbides. Therefore, at 600 °C with the present material M23C6 precipitations at 

 
 
Fig. 6: a) SEM image of precipitations within and at grain 

boundaries after 2650 h at 750 °C. b) Magnification of 
inner grain precipitations after 15700 h at 750 °C. 

a 

b 
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grain boundaries start after only a few hundred hours and the formation of carbides within 

grains takes even 1000 hours and more.  

Due to the small amount of carbon only a minor part of the precipitations shown in Figs. 5 

and 6 can be explained by M23C6 carbides. Besides carbide precipitation, during long-term 

aging (especially at higher temperatures) AISI 316 steels are prone to formation of intermet-

allic phases. Below 800 °C usually M23C6 precipitation is followed by precipitation of Laves 

phase. 

 

grain boundary

 

grain boundary

 
Fig. 7: TEM image of grain/twin boundaries before (a) and after aging at 600 °C for 85000 h (b). The 

results of the line scans on the left side show the relative change of Fe, Cr, Ni, and Mo con-
centration. The scanning paths are indicated in the TEM images. 

a 

b 
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In the case of the AISI 316 L(N) austenitic steel Laves phase consisting of Fe2Mo starts to 

form after aging at 600 °C for about 10000 h first at grain boundaries and finally within grains. 

An example is given in Fig. 7 where the intensity drop of the Fe signal and the rise of the Mo 

signal lead to a Fe/Mo ratio of about 1:1 after analyzing the TEM signals. 

The last phase to appear is the sigma phase. It has a very slow kinetics when forming from 

austenite and, therefore, takes aging of about 100000 h at 600 °C. But formation from ferrite 

is about 100 times faster. This is another reason why δ-ferrite is undesirable in austenitic 

steels. However, the composition of sigma phase in AISI 316 L(N) steels can be approxi-

mated by (Fe, Ni)3 (Cr, Mo)2 or in wt%: 55Fe-29Cr-11Mo-5Ni. Sigma phase precipitates 

mainly on grain boundaries (especially on triple junctions) and on intragranular inclusions.  

 

Since sigma phase precipitations are enriched in Cr and Mo they are more resistant against 

acids and can be seen quite clearly after etching. An example is given in Fig. 8 where the 

former grain boundaries are still visible after surface etching due to the high amount of sigma 

phase formation. Even walls of sigma phase are sticking out of the surface for a few micro 

meters.  

 
Fig. 8: SEM image of remaining grain boundaries (mainly sigma phase precipitation during aging at 

600 °C for 85000 h) after etching.  
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The large amount of sigma phase precipitation after 85000 hours at 600 °C finally leads to 

dendritic formations at and in some cases even within grains (Fig. 9). Further examples are 

given in Sect. 7. 

A consequence of the forma-

tion of intermetallic phases is 

the depletion of the adjacent 

matrix in chromium and mo-

lybdenum. This in turn in-

creases the solubility of carbon 

in the matrix which leads to at 

least partial dissolution of the 

prior formed carbides. That is, 

after long-term aging carbides 

like M23C6 are nearly vanished. 

For an evaluation of the influ-

ence of the time-dependent 

microstructural composition on 

the creep behavior a precipita-

tion diagram is necessary. At 

NIMS, Japan extensive aging 

experiments have been per-

formed followed by TEM ex-

aminations to generate a time-

temperature-precipitation dia-

gram for a 18Cr-12Ni-Mo steel 

that is comparable to the AISI 

316 L(N) [15]. 

In Fig. 10 this precipitation map is shown together with the results of the 316 L(N) sigma 

phase observations. As can be seen, the results for both materials are in good agreement.  

Now the question is: Can the dependency change of the steady state creep rate on the 

stress in the low-stress range (see Fig. 4) be correlated with the aging (precipitation) behav-

ior?  

For this purpose the creep tests have been divided into low and high stress range. For the 

tests at 550 °C and 600 °C medium stress ranges (i.e., the range where the change in creep 

σ-phase

SEM

σ-phase

SEM

(Fe,Ni)3(Cr,Mo)2

Fig. 9: Dendritic formations of sigma phase precipitations in 
AISI 316 L(N) austenitic stainless steel after aging at 
600 °C for 85000 hours. 

a 

b 
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behavior occurs) have been additionally considered. Then all particular times of the minimum 

creep rates have been determined and illustrated for each temperature as bars in the time-

temperature-precipitation diagram (see Fig. 11). 

 

At a glance, there is no correlation at all. Looking at the high stress range, for example, 

shows only that, depending on temperature, there are none, some or even more carbide pre-

cipitations. But these do not reflect in the creep behavior. In the most interesting medium 

stress range there are either carbides (at 550 °C) or Laves phase precipitations (at 600 °C). 

The same can be observed in the low stress range at 650-750 °C. That is, neither M23C6 nor 

Laves phase precipitations can be the reason for a different creep rate behavior. As we have 

seen in Figs. 8 and 9, only the severe sigma phase formation could have had a significant 

influence on the creep properties. To check whether this is the case here, we have to corre-

late the steady-state periods with the times of sigma phase formation. 

This has been illustrated in Fig. 11. From each curve in Fig.4 the two upper and the lower 

most experiment has been used determine the periods of constant strain rate (steady-state). 

These periods are drawn over the time-temperature precipitation map as bars with lined and 

Fig. 10: Time-temperature-precipitation diagram by NIMS [15] for an austenitic stainless steel compa-
rable to the AISI 316 L(N). The results of the AISI 316 L(N) sigma phase detection are shown as 
red dots to demonstrate the agreement. 
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squared ends (one has to keep in mind that the steady-state times are significantly lower 

than the overall creep rupture time or experimental times). Further, for the case of 550 °C 

and 600 °C the steady-state times have been determined from the experiment directly at and 

around the kink of the stress-creep rate curves (see Fig. 4). Those times have been plotted 

with circle ended line in Fig. 11. As can be clearly seen in, at times when sigma phase pre-

cipitation starts the creep tests are already far away from minimum creep rates – even in the 

lowest stress range. 

 

In summary, during steady-state creep of all tests (550-750 °C) in the medium and low stress 

range only carbides and Laves phase precipitate at the grain boundaries and within the 

grains. But only the creep tests at 550 °C and 600 °C show a change of the steady-state 

creep rate. Therefore, the change of microstructure with time can not be the reason for the 

observed creep behavior shown in Fig.4. 

In fact, as will be demonstrated in the following sections, the steady-state creep rate depends 

strongly on the underlying deformation mechanisms which in turn depend on the applied 

stress. 

Fig. 11: A correlation attempt of the minimum creep rate times with precipitation areas. The observed 
minimum creep times are displayed as bars corresponding to the low (line ended), medium 
(circle ended), and high (square ended) stress range. 
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3 Deformation Mechanisms 

3.1 Overview 

Crystalline solids deform plastically by a number of different and sometimes competing 

mechanisms. Although it is often convenient to describe a polycrystalline solid by a well de-

fined yield strength, below which it doesn’t flow and above which flow is rapid, this is only 

true at zero temperature. But plastic flow is a kinetic process and in general, the strength of 

solids depends on both strain and strain rate, as well as on temperature. It is determined by 

all the atomic processes that occur on the atomic scale like, for example, the glide motion of 

dislocation lines, the combined climb and glide of dislocations, the diffusive flow of individual 

atoms, the relative displacement of grains by grain boundary sliding including diffusion and 

defect motion in the boundaries, mechanical twinning by the motion of twinning dislocations, 

and so on [16].  

But it is more convenient to describe the plasticity of polycrystalline solids in terms of the 

mechanisms to which the atomistic processes contribute. Often the deformation mechanisms 

are divided into five groups [16]: 

• Diffusional Flow (Diffusion Creep) – based on either (a) lattice diffusion (Nabarro-

Herring creep) or (b) grain boundary diffusion (Coble creep). 

• Power-law Creep (Dislocation Creep) – diffusion controlled climb-plus-glide proc-

esses: (a) based on lattice diffusion controlled dislocation climb (high temperature 

creep), (b) based on core diffusion controlled dislocation climb (low temperature 

creep), (c) transition from climb-plus-glide to glide alone (power-law breakdown). 

• Mechanical Twinning – low temperature plasticity by the motion of twinning disloca-

tions. 

• Dislocation Glide – low temperature plasticity based on dislocation glide, limited by 

(a) discrete obstacles or (b) by lattice resistance. 

• Elastic Collapse – flow for stresses above the ideal shear strength. 

Some mechanisms which are not important for the present material (e.g. Harper-Dorn creep 

or creep based on recrystallization) have been left out.  
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Plastic flow of fully dense solids is caused by the shear stress σs (deviatoric part of the stress 

field). In terms of the principal stresses σ1, σ2 and σ3 : 

 ( ) ( ) ( )[ ]2
13

2
32

2
216

1 σσσσσσσ −+−+−=s  . (1) 

It exerts forces on defects (dislocations, vacancies, etc.) in the solid and causes them to 

move. The defects are the carriers of deformation and, therefore, the shear strain rate γ&  

depends on density and velocity of these deformation carriers. In terms of the principal strain 

rates 1ε& , 2ε&  and 3ε&  it is given by: 

 . ( ) ( ) ( )[ ]2
13

2
32

2
212

3 εεεεεεγ &&&&&&& −+−+−=  (2) 

For simple tension, σs and γ&  are related to the tensile stress σ1 and strain rate 1ε&  by: 

 11 3,
3

1 εγσσ && ==s  . (3) 

Macroscopic variables of plastic deformation are stress σs, temperature T, strain rate γ& , 

strain γ and time t. During creep or creep rupture tests the stress and temperature are pre-

scribed. Typically forms of strain and strain rate are shown in Fig. 12. At low temperatures of 

about 0.1 TM (melting point TM) the material undergoes work hardening until the flow strength 

equals the applied stress. During this process its structure changes: the dislocation density 

increases, therefore, further dislocation motion is blocked, the strain rate decreases to zero, 

and the strain tends asymptotically to a fixed value. During tensile tests the strain rate and 

temperature are prescribed. At low temperatures the stress rises as the dislocation density 

rises (Fig. 12). That is, for a given set of state variables Si (dislocation density, dislocation 

arrangement, cell size, grain size, precipitate size, precipitate distribution, and so on) the 

strength is determined by γ&  and T, or the strain rate is determined by σs and T. 

At higher temperatures (about 0.5 TM) polycrystalline materials creep (see Fig. 12). After a 

transient during which the state variables change, a steady state may be reached. During the 

steady state the solid continues to deform with no further (significant) change in Si. Here the 

state variables Si depend on stress, temperature, and strain rate and a relationship between 

these three macroscopic variables may be given.  
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At very high temperatures, or very low stresses, or very low strain rates the state variables 

may oscillate instead of tending to steady values. But often it is possible to define a quasi 

steady state anyway in which stress, temperature and strain rate are related. 

 

As has been shown, either stress or strain rate can be used as independent variable. For the 

current work we will choose the strain rate γ&  as independent variable since most experimen-

tal results are received from creep and creep rupture tests. In this case each deformation 

process can be described by a rate equation which relates γ&  to the stress σs, temperature T, 

and to the structure of the material at that instant: 

 ( )jis PSTf ,,,σγ =&  . (4) 

 

Fig. 12: Typical curves of strain, strain rate, and stress obtained by creep 
and tensile tests on metals or alloys at low and high temperatures. 
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As already mentioned, the set of i quantities Si are the state variables which describe the 

current microstructural state of the solid. The set of j quantities Pj are material properties like 

lattice parameter, atomic volume, bond energies, moduli, diffusion constants, and so on. 

Most often these can be considered as constant. 

But the state variables Si generally change during the deformation processes (except in 

steady state). So a second set of equations is needed to describe their rate of change: 

 ( )jisi
i PSTg

dt
dS

,,,σ=  . (5) 

The coupled set of equations (4) and (5) are the constitutive law for a deformation mecha-

nism. They can be solved with respect to time to give the strain after any loading history. But 

while there are satisfactory models for the rate equation (4), there is still lack of understand-

ing the structural evolution with strain or time. Therefore a sufficient description of the equa-

tion set (5) is not possible at present.  

However, to proceed further, simplifying assumptions about the structure have to be made. 

Here are two possible alternatives. A very simple assumption is that of constant structure: 

 0
ii SS =  . (6) 

Then the rate equation for γ&  completely describes plasticity. The second assumption is that 

of steady state: 

 0=
dt
dSi  . (7) 

In this case the internal variables no longer appear explicitly in the rate equations. They are 

determined by the external variables of stress and temperature. Either simplification reduces 

the constitutive law to a single equation: 

 ( )Tf s ,σγ =&  , (8) 

since, for a given material the properties Pj are constant and the state variables are either 

constant or determined by σs and T.  

In the following sections rate equations in the form of Eq. (8) are assembled for each of the 

deformation mechanisms (i.e., we consider only steady state creep). 
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3.2 Diffusional Flow (Diffusion Creep) 

3.2.1 Nabarro-Herring Creep 

Nabarro and Herring developed a model that describes viscous creep by stress-induced dif-

fusion of vacancies [17, 18]. This mechanism applies to polycrystalline metals at high tem-

peratures where all dislocations are assumed to be pinned and grain boundaries are consid-

ered as distinguished sources or sinks for vacancies. 

By a stress σ normal to a boundary, vacancy formation is promoted, because the work nec-

essary to form a vacancy is reduced by the amount σ Ω, where Ω is the volume of the va-

cancy (Ω ≈ b³) and b is the magni-

tude of Burgers´ vector). The equi-

librium probability of finding a va-

cancy near a grain boundary (e.g. 

surface A and B in Fig. 13) is 

given by [19]: 
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(9) 

Here NV is the number of vacan-

cies for NS lattice sites and Ff is 

the free energy for vacancy forma-

tion. If a grain is loaded by normal 

stresses σ (see Fig. 13), then the 

vicinity of faces A and B show 

vacancy concentrations 

~exp(σ Ω/kT) while the immediate 

surroundings of faces C and D have concentrations ~exp(-σ Ω/kT). Therefore a concentration 

gradient is established which causes a vacancy flow from A and B to C and D [19] as indi-

cated in Fig. 13.  

Simultaneously the vacancy flow is accompanied by a matching flow of atoms in the opposite 

direction (see Fig. 13). The mechanisms for these combined flows are well known (see for 

example [20]): The possibilities for diffusive atomic movements are by direct interchange of 

Fig. 13: Vacancy flow (red) and opposed atom flow (blue) 
in a grain under tensile and compressive stress 
(schematic drawing). 



Deformation Mechanisms 

18 

pairs of adjacent atoms, by ring mechanisms, by movement as interstitial atoms, or by 

crowdion formation. Additionally, in alloys the atomic flow can be considerably enhanced by 

the Kirkendall effect.  

Together this leads to grain elongation or creep in the longitudinal direction and transversal 

contraction. Under the assumption that vacancy generation and annihilation are very rapid 

the concentration difference between neighboring grain faces (like A and C in Fig. 13) be-

comes 
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where α is a constant just less than unity, since the vacancy concentration at the boundaries 

differs slightly from the equilibrium value [19]. Obviously σ is not constant along the grain 

faces, and therefore the diffusion paths are shorter near the grain corners. Due to stress re-

laxation one can assume that σ = β σs at distances d/4 from the boundaries (d is the grain 

size, σs is the macroscopic shear stress. and β is nearly unit). The length of a diffusion path 

through this point is l = π/2 (d/4) and the atomic flux across one atom area is then given by: 
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where Dv is the diffusivity of vacancies. Further, the shear strain for each transferred atom is 

γ = 2b/d and with Eq. (10) the steady-state creep rate becomes: 
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Since the argument of the hyperbolic sine in Eq. (12) is small for low stresses the steady-

state creep rate can be approximated by [19]: 
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32
π

σαβ
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Ω
=&  , (13) 

where Ds is the self-diffusion coefficient. This rate equation is widely known as Nabarro-

Herring creep. The equation (13) agrees well with experimental results at very high tempera-

tures, like for example on Ag [21], on Au [22], on Cu [23] or on δ-Fe [24]. Other analyses of 

this diffusional flow at high temperatures have been shown by [25-27]. The resulting relations 

are similar to Eq. (13) but with different constants. 
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3.2.2 Coble Creep 

Self-diffusion in poly crystals comprises two mechanisms: lattice and grain boundary diffu-

sion. While lattice diffusion dominates at very high temperatures, grain boundary diffusion 

takes over mainly at lower temperatures (see for example [28, 20]). Coble described the dif-

fusional flow at lower temperatures and stresses with the following rate equation (Coble 

creep [29]): 

 B
s

s D
kTd 3

42 Ω
=

σδπ
γ&  . (14) 

Here DB is the boundary diffusion coefficient and δ the effective thickness of the grain bound-

ary.  

3.2.3 Alternative Descriptions 

In most models for diffusion creep both mechanisms (Eqs. (13) and (14)) are combined in 

one rate equation (see, for example, [16]): 

 eff
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γ&  , (15) 

with  
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Here DL is the lattice diffusion coefficient.  

At high temperatures a poly crystal may glide along its grain boundaries. Since faces of 

neighboring grain boundaries are usually randomly distributed, there are stress peaks at the 

grain edges. To get strains larger than about 10-6 cm along a boundary the stress peaks 

have to be reduced by atomic flux, i.e. by diffusion. For this Raj and Ashby developed a rea-

sonable model (see [30] or [31]): The arrangement of grain boundaries is simplified by a two-

dimensional hexagonal network (Fig. 14) and the profile of the displacement face (e.g. for 

mode 1) is developed in a Fourier series. The first component of this series is described by 

its wave length λ and amplitude d/2. Grain displacement by a shear stress σs is then accom-

panied by normal stresses σn as shown in Fig. 15, where the normal stresses are given by: 
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Fig. 14: Ideal poly crystal with a hexagonal network of grain bounda-
ries which enables gliding on two orthogonal modes (blue 
and red). The vacancy flux is indicated with dotted arrows. 

 

Fig. 15: Grain boundary gliding leads to cavities which are compen-
sated by according flows of vacancies from expansion (red) 
to compression (blue) zones (indicated by arrows). 
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These normal stresses produce an additional chemical potential for the vacancy generation 

∆µ = σn Ω   which forces the vacancies to flow from the expansion to the compression zones 

at the boundary (see Fig. 15). 

This process defines the strain rate at the grain boundary [30, 31]: 
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It is a similar result like that from Nabarro, Herring, and Coble (Eqs. (15) and (16)). But here 

the lattice diffusion creep rate depends on λ/d 3 instead of 1/d 2 while the grain boundary 

creep rate depends on δ/d 3 in both descriptions. That is, in Eq. (18) lattice diffusion is de-

scribed not only by grain size but by the grain shape (with a shape factor d/λ). 

3.3 Power-law Creep (Dislocation Creep) 

At high temperatures materials show rate dependent plasticity, or creep. Above 0.3 TM for 

pure metals and about 0.4 TM for alloys this dependence on strain rate becomes rather 

strong. It may be expressed by an equation of the form: 
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where µ is the shear modulus and where n has a value between 3 and 10 in the high tem-

perature regime. Therefore this deformation mechanism is called power-law creep. 

3.3.1 Power-law Creep by Climb (plus Glide) 

At high temperatures dislocations acquire two degrees of freedom: they can climb as well as 

glide. If a gliding dislocation is blocked by discrete obstacles, a little climb may release it, 

and, therefore, enable it to glide to the next obstacles where the whole process is repeated. 

The glide step is responsible for almost all of the strain, while the average dislocation velocity 

is determined by the climb step. Mechanisms which are based on such a climb-plus-glide 

sequence are referred to as climb-controlled creep [32-34].  

There is an important difference between power-law creep and the deformation mecha-

nisms of the following sections like, for example, dislocation glide (low temperature plastic-

ity, see Section 4.5): the rate-controlling process is the diffusive motion of single ions or va-
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cancies to or from the climbing dislocations, rather than the activated glide of the dislocation 

itself. That is, the dominant process takes place at an atomic level.  

A steady-state dislocation theory based on the climb of edge dislocations has been proposed 

by Weertman [35]. In his proposal it was assumed that work hardening occurs when disloca-

tions are arrested and piled up against existing barriers such as grain boundaries or precipi-

tates. The stress field at the tip of the piled-up dislocations induces multiple slip and the for-

mation of Lomer-Cottrell sessile dislocations anywhere along the original piled-up disloca-

tions. At this point dislocations beyond the Lomer-Cottrell barrier may easily escape by climb. 

But climb behind the Lomer-Cottrell barrier would lead to the generation of new dislocation 

loops and to a steady-state creep rate. This model can be applied very well to fcc and bcc 

metals. 

In a further proposal Weertman [36] suggested that edge dislocations of opposite sign gliding 

on parallel slip planes would interact and pile up whenever a critical distance between slip 

planes is not exceeded. Like in the first model, dislocations may escape from the piled-up 

arrays by climb.  

Dislocation pile-ups lead to work hardening while climb is a recovery process. Therefore, a 

steady-state condition is reached when the hardening and recovery rates are equal. The 

creep rate will then be controlled by the rate at which dislocations can climb. On the other 

hand, the climb mechanism requires that vacancies be created or destroyed at dislocations 

with sufficient ease and that in the vicinity of the dislocations an equilibrium concentration of 

vacancies be maintained at a level sufficient to satisfy the climb rate. 

At the tip of a pile-up of dislocations a non-vanishing hydrostatic stress may exist which ex-

erts a force on a dislocation in a direction normal to the slip plane and favors up or down 

climb. Vacancies are absorbed where the stress is compressive and they are created where 

the stress is tensile (compare previous section and Figs. 13-15). This results in a change in 

the vacancy concentration near a dislocation line. Therefore, a vacancy flux is established 

between segments of dislocations which act as sources and segments acting as sinks.  

The vacancy concentration C e in equilibrium with the lead dislocation in a pile-up is given by: 
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where 2L is the length of the dislocation pile-up and C 0 is the equilibrium concentration of 

vacancies in a dislocation free crystal. The vacancy concentration at a distance r from each 

pile-up is assumed to be equal to C 0. Thus the rate of climb X&  is approximated by [19]: 
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where Dv is the coefficient for vacancy diffusion and with 2Lb2σs²/µkT < 1. This relation has 

been obtained under the assumption that vacancies are easily destroyed or created and that 

an equilibrium concentration exists between pile-ups in the vicinity of dislocations. The diffu-

sion problem for the flux of vacancies, however, may be different for specific climbing proc-

esses. Further, if vacancies are only created or destroyed at jogs, the energy of jog formation 

has to be taken into account in the case that they are formed by thermal fluctuations. On the 

other hand, if these are formed mechanically by intersection, then the rate of climb may still 

depend primarily on self-diffusion. This is certainly the case if it is accepted that vacancies 

will diffuse rapidly along a dislocation line toward or away from a jog. 

For the second model by Weertman the rate of dislocation climb is given also by Eq. (21). 

The steady-state creep model in this case becomes: 
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where N is the density of dislocations participating in the climb process or – for this model – 

the density of sources, A is the area swept out by a loop in the pile-up, and 2r is the separa-

tion between pile-ups. The stress necessary to force two groups of dislocation loops to pass 

each other on parallel slip planes has to be greater than µb/4πσs. Thus an estimate of r may 

be used with: 
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Further, the probability p of blocking the dislocation loops generated from one source by 

loops emanating from three other loops is given by: 
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Now the creep rate can be obtained from Eqs. (21)-(24) by setting p=1, A=4πL², and by the 

assumption that self-diffusion occurs by vacancy migration. The creep rate at low stresses 

becomes [19]: 

 
kTbN

Dc ss
s 7

5.42

µ

σπ
γ =&  , (25) 

where c is a numerical constant of about ¼ and Ds is the coefficient for self-diffusion. 

Equation (25) has been proofed experimentally for pure metals at low stresses to a greater 

extent than any other theoretical creep relation [19]. Although exceptions exist to the expo-

nent of 4.5 on the stress, this value is remarkably close to observed values. There is general 

agreement that high temperature creep is diffusion-controlled and that it depends on Ds. It 

was shown for many metals tested at various temperatures [37, 38] that a plot of ln[γ& /Ds] 

against ln[σs/µ] reduces the experimental results into a single band, further substantiating Eq. 

(25). 

On the other hand, there are some points and observations which don’t fit to this theory. It is 

questionable whether pile-ups can result from the interaction between edge dislocations of 

opposite sign gliding on parallel slip planes. Calculations have shown that the interaction 

between such dislocations does not impede their motion. They can cross over each other 

and form dipoles which in turn are mobile (see, for example, [39]). Further, in this theory the 

number of dislocations in a pile-up is given by 2σsL/µb which predicts extensive pile-ups at 

high stresses but not necessarily at low stress levels.  

Another deduction of power-law creep based on climb-plus-glide is given in [16] which is 

briefly outlined in the following: 

Above about 0.6 TM climb is generally lattice-diffusion controlled. The velocity vc at which an 

edge dislocation climbs under a local normal stress σn acting parallel to its Burgers’ vector 

can be approximated by [40]: 
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where DL is the lattice diffusion coefficient and Ω the atomic volume. The basic climb-

controlled creep equation may then be obtained under the assumption that σn is proportional 

to the applied stress σs and that the average velocity of the dislocation is proportional to the 
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rate at which it climbs. With Eq. (26), the Orowan theory [41], and an estimate of the density 

of mobile dislocations [42] the creep equation becomes: 
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with the approximation Ω ≈ b³. All constants are incorporated in c1 which is of order unity.  

Some materials – but they are exceptions – obey this equation with a power of 3 and a con-

stant c1 of about 1 [43]. It appears that the local normal stress is not necessarily proportional 

to σs implying that dislocations may be moving in a cooperative manner which concentrates 

stress. Or the density of mobile dislocations varies in more complicated manner than as-

sumed by [42]. Over a limited range of stress – up to about 10-3 µ – experiments are well 

described by a modification of Eq. (27) [44]: 
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where the exponent n varies between 3 and about 10. However, present theoretical models 

for this behavior are unsatisfactory. None can convincingly explain the observed values of n. 

And further, the very large values of the dimensionless constant c2 strongly suggest that 

some important physical quantity is still missing from the equation (see, for example, [45, 

43]). However, it provides a good description of experimental data and as generalization of 

Eq. (27) it has some basis as a physical model. 

But Eq. (28) cannot describe the increase of the exponent n and the drop of the activation 

energy for creep at lower temperatures which are experimental facts. To incorporate these 

observations one has to assume that the transport of matter via dislocation core diffusion 

contributes significantly to the overall diffusive transport of matter. And under certain condi-

tions this mechanism should become dominant [46]. A possibility to include the contribution 

of core diffusion is the definition of an effective diffusion coefficient (see [47] and [46]): 

 CCLLeff fDfDD +=  , (29) 

where DC is the core diffusion coefficient, and fC and fL are the fractions of atom sites associ-

ated with each type of diffusion. The value of fL is nearly unity while the value of fC is deter-

mined by the dislocation density ρ: 

 ρcC af =  , (30) 
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where ac is the cross-section area of the dislocation core in which fast diffusion is taking 

place. Measurements of the quantity ac DC can be found in [48]: the diffusion enhancement 

depends on the dislocation orientation (it is probably 10 times larger for edge than for screw 

dislocations) and on the degree of dissociation (and therefore on the arrangement of the dis-

locations). Even the activation energy is not constant. But in general, DC is about approxi-

mately equal to the grain boundary diffusion constant DB, if ac is taken to be 2δ ² (δ is the ef-

fective grain boundary thickness). A common experimental observation for the dislocation 

density is (see, for example, [42] or [59] for the case of tungsten in the creep regime): 
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Then the rate equation for power-law creep with an effective diffusion coefficient becomes: 
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Equation (32) is a combination of two rate equations. At high temperatures and low stresses 

lattice diffusion is dominant ( sγ& ~σs
n) while at higher stresses (or low temperatures) core dif-

fusion is the dominant process ( sγ& ~σs
n+2). 

3.3.2 Power-law Breakdown 

At high stresses above about 10-3 µ the simple power-law breaks down. The measured strain 

rates are significantly greater than predicted by Eq. (32). This process is evidently a transi-

tion from climb-controlled to glide-controlled flow, that is, it is a transition from diffusion-

controlled to thermally activated mechanisms. There have been numerous attempts to de-

scribe it empirically and most descriptions lead to the generalized form ([60, 61, 19]): 

 ( )[ ] 
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which reduces to a simple power-law at low stresses (c’σs < 0.8) and which becomes an ex-

ponential at high stresses (c’σs > 1.2). 

Measurements of the activation energy Qcr in the power-law breakdown regime often give 

values which exceed that of self-diffusion. This might indicate that the recovery process dif-
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fers from that of climb-controlled creep. Some of the difference, however, may simply result 

from the temperature dependence of the shear modulus which has a greater effect when the 

stress dependence is in the exponential region. Then a better fit to experiment may be found 

by [16]: 
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The equation may be rewritten for an exact correspondence with the power-law equation 

(32). Then the rate-equation for both power-law creep and power-law breakdown reads as 

follows [16]: 
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3.4 Mechanical Twinning 

Twinning is an important deformation mechanism at low temperatures in hcp and bcc metals 

(and some ceramics). In fcc metals (like the austenitic steel AISI 316 considered in this work) 

it is less important and occurs only at very low temperatures. The tendency of fcc metals to 

twin increases with decreasing stacking fault energy being greatest for silver and completely 

absent in aluminium. Therefore, and because existing descriptions are rather uncertain, it is 

just mentioned briefly in the following. 

Twinning is a variety of dislocation glide involving the motion of partial – instead of complete 

– dislocations. The kinetics of the process, however, often indicates that nucleation – and not 

propagation – determines the rate flow. Anyway, it may still be possible to describe the strain 

rate by a rate equation for twinning by [16]: 
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Here ∆FN is the activation free energy to nucleate a twin without the help of external stress, 

tγ&  is a constant which includes the density of available nucleation sites and the strain pro-

duced for a successful nucleation, and tσ  is the stress required to nucleate twinning in the 
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absence of thermal activation. Further the temperature dependence of ∆FN must be included 

to explain the observation that the twinning stress may decrease with decreasing tempera-

ture (see [49]).  

3.5 Dislocation Glide (Low Temperature Plasticity) 

Below the ideal shear strength flow by the conservative or glide motion of dislocations is 

possible, provided a sufficient number of independent slip systems is available. This motion 

is almost always obstacle-limited, i.e., it is limited by the interaction of potentially mobile dis-

locations with other dislocations, with solute or precipitates, with grain boundaries, or with the 

periodic friction of the lattice. These interactions determine the rate of flow and – at a given 

rate – the yield strength. Dislocation glide is a kinetic process while dislocation climb (plus 

glide) is a diffusion-controlled process, as outlined in Section 4.3. This kinetic process was 

first described by Orowan [41]: Mobile dislocations with a density ρm move through a field of 

obstacles with an average velocity v ; the velocity is almost entirely determined by their wait-

ing time at the obstacles; the strain rate they produce due to their movement is then given 

by: 

 vbmργ =&  , (37) 

where b is the magnitude of the Burgers’ vector of a dislocation. At steady state the density 

of mobile dislocations ρm is a function of stress and temperature only. The simplest function – 

consistent with both theory and experiment – is given by [42]: 
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where α is a constant of order unity. The velocity v  depends on the force F acting on the 

dislocation by: 

 bF sσ=  , (39) 

and on its mobility M: 

 FMv =  . (40) 

Now the problem is to calculate M, and therefore v . In the most interesting range of stress M 

is determined by the rate at which dislocation segments are thermally activated through or 

round obstacles. The next difficulty encounters by the fact that the velocity is always an ex-
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ponential function of stress, but the details of the exponent depend on the shape and nature 

of the obstacles. So at first sight there are as many rate equations as there are types of ob-

stacles. But on closer examinations obstacles can be divided in two broad classes: discrete 

obstacles and extended, diffuse barriers to dislocation motion. 

Examples of the first type are strong dispersoids or precipitates which can be bypassed indi-

vidually by a moving dislocation. Other examples of discrete obstacles are forest dislocations 

or weak precipitates which may be cut by dislocation movements. Obstacles of the second 

class are concentrated solutions or the lattice itself which leads to lattice-friction. 

3.5.1 Plasticity Limited by Discrete Obstacles 

The velocity of dislocations in a polycrystal is frequently determined by the strength and den-

sity of the discrete obstacles it contains. If the free energy of activation for cutting or bypass-

ing an obstacle is ∆G(σs), the mean velocity is given by the kinetic equation (see [50-52, 16]): 
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where β is a dimensionless constant and ν is a frequency.  

The quantity ∆G(σs) depends on the distribution of obstacles and on the pattern of internal 

stress which characterizes one of them. A regular array of box-shaped obstacles – each one 

viewed as a circular patch of constant, adverse, internal stress – leads to the simple result 

[16]: 
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where ∆F is total free energy – the activation energy – required to overcome the obstacle 

without aid from external stresses. The material property τ̂  is the stress which reduces G∆  

to zero, forcing the dislocation through the obstacle without help from thermal energy. It can 

be though of as the flow strength of the solid at 0 K. 

But obstacles are seldom box-shaped and regularly spaced. Therefore, to describe other 

obstacle shapes as well as random distribution, the equation may be rewritten in the follow-

ing way [51]: 
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The values of p, q, and ∆F are bounded, i.e., all models lead to values of [16]: 

 
21
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≤≤
≤≤

q
p

 . (44) 

The importance of p and q depends on the magnitude of ∆F. When ∆F is large, their influ-

ence is small and their choice is unimportant. Therefore, for discrete obstacles p = q = 1 is a 

good choice. But when ∆F is small, the choice becomes more critical. In this case (e.g. for 

diffuse obstacles) p and q have to be fitted to the experimental data (see also Section 4.5.2). 

The strain rate sensitivity of the strength is determined by ∆F (it characterizes the strength of 

a single obstacle). It is helpful to categorize obstacles by their strength as shown in Table 2; 

examples for typical values of ∆F are 2 µb³ for large or strong precipitates, and 0.5 µb³ for 

pure metals in the work-hardened state. 

The quantity τ̂  is the shear strength in the absence of thermal energy. It reflects not only the 

strength but also the density and arrangement of the obstacles. For widely spaced, discrete 

obstacles τ̂  is proportional to µb/l, where l is the obstacle spacing. The actual value of τ̂  

depends on obstacle strength and distribution (see Table 2). For pure metals strengthened 

by work-hardening it can be simply assumed that τ̂  = µb/l. 

At this point a combination of all the above listed equations leads to the rate equation for 

discrete obstacle controlled plasticity: 

 













 −

∆
−








=

τ
σ

µ
σ

αβνγ
ˆ

1exp
2

ss
s kT

F
&  . (45) 

When ∆F is large (as is normally the case), the stress dependence of the exponential is so 

large compared to the pre-exponential 0γ&  that it may be set constant for a reasonable fit to 

experimental data: 
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Table 2: Characteristics of obstacles, where ∆F is the activation energy for a dislocation 
to overcome an obstacle, τ̂  is the shear strength at 0 K, and l is the obstacle 
spacing [16]. 

Obstacle 
Strength ∆F τ̂  Examples 

Strong 32 bµ  
l
bµ

>  dispersions; large or strong precipi-
tates 

Medium 30.12.0 bµ−  
l
bµ

≈  forest dislocations; radiation dam-
age; small or weak precipitates 

Weak 32.0 bµ<  
l
bµ

<<  lattice resistance; solution hardening 

 

3.5.2 Plasticity Limited by Lattice Friction 

The velocity of dislocations in most polycrystalline solids is limited by an additional sort of 

barrier – the interaction with the atomic structure itself. This Peierls force or lattice resistance 

reflects the fact that the energy of the dislocation fluctuates with position. The amplitude and 

wavelength of the fluctuations are determined by the strength and separation of the inter-

atomic bonds. The crystal lattice presents an array of long, straight barriers to the motion of 

the dislocation. It advances by throwing forward kink pairs (with help from the applied stress 

and thermal energy) which subsequently spread apart (see [53, 51, 39]). 

It is usually the nucleation rate of kink pairs which limits the dislocation velocity. The free 

energy of activation for this event depends on the detailed way in which the dislocation en-

ergy fluctuates with distance and on the applied stress as well as on temperature. Like those 

for discrete obstacles, the activation energies for all reasonable shapes of lattice resistance 

form a family which can be described as before (Eq. (43)). Together with a choice of p and q 

adapted to experiments (see [16] or [54]) the final rate equation for plasticity limited by lattice 

resistance reads: 
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where ∆Fp is the free energy of an isolated pair of kinks and pτ̂  is (approximately) the flow 

stress at 0 K. The σs² term in the pre-exponential has to be retained in this case, because 

∆Fp is relatively small. For bcc metals and ceramics pγ&  may be set to 1011/s [16].  
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3.6 Elastic Collapse 

The ideal shear strength defines a stress level above which deformation of a perfect crystal – 

or of one in which all defects are pinned – ceases to be elastic and becomes catastrophic. 

Then the crystal structure becomes mechanically unstable. The instability condition – and 

hence the ideal shear strength at 0 K – can be calculated from the crystal structure and an 

inter-atomic force law by simple statics, provided the inter-atomic potential is known for the 

material of interest (see, for example, [55, 56]). 

But above 0 K the problem becomes a kinetic one: The frequencies at which dislocation 

loops nucleate and expand in an initially defect-free crystal have to be calculated. Since the 

focus in the present work lies on creep behavior, a simple description of the elastic collapse 

seems to be sufficient: 
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Most often it is assumed that the temperature dependence of the ideal shear strength is the 

same as for the shear modulus µ. For fcc metals the constant α takes values of about 0.06, 

for bcc metals it is about 0.1 [16]. 

However, for a creep model this stress range is not of interest and will be neglected in the 

further considerations. 
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3.7 Summary 

The present section provides an overview of the main deformation mechanisms and their 

description that will be used in the following Section for modeling the creep behavior of the 

316L(N) steel.  

With usual creep tests diffusion creep 

becomes detectable only for tempera-

tures well above 0.6 Tm. At the same 

time, the applied tensile stresses have to 

be smaller than the yield limit. In this 

range, boundary diffusion controls the 

strain rate which is also called Coble 

creep. At even higher temperatures 

(about 0.8 Tm for austenitic stainless 

steels), lattice diffusion (Nabarro-Herring 

creep) takes over (see Fig. 16). 

For the combined description of these 

two diffusion mechanisms we use equa-

tions (15) and (16). 

For tensile stresses above the yield limit 

dislocations start to glide and pile up at 

obstacles. They may be released by 

climb motions. Dislocation climbing is a 

rather slow process which is mainly con-

trolled by diffusion. Therefore, climb-

controlled power-law creep has to be 

described by lattice diffusion and core 

diffusion (see Fig. 17) 

Both mechanisms are included in the rate 

equation (32). At high temperatures and 

low stresses lattice diffusion is dominant 

( sγ& ~σs
n) while at higher stresses (or low 

temperatures) core diffusion is the domi-

Fig. 16: Diffusion creep is dominated by two 
processes. At high temperatures lat-
tice diffusion controls the rate (Na-
barro-Herring creep). Grain boundary 
diffusion (Coble creep) takes over at 
lower temperatures. 

Fig. 17: Power-law creep is mainly based on 
diffusion controlled dislocation climb 
processes. Diffusion may occur along 
dislocation cells or through the lattice. 
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nant process ( sγ& ~σs
n+2). 

At stresses higher than about 0.1 % 

of the shear modulus a transition 

takes place. With increasing stress 

the glide-controlled flow dominates 

over the diffusion-controlled disloca-

tion climb (see Fig. 18). 

The generalized form of empirical 

descriptions for this transition range is 

given by Eq. (33). 

At even higher stresses – but below 

the ideal shear strength – pure con-

servative motion of dislocations domi-

nates (plasticity). This kinetic process 

(dislocation glide) is most often ob-

stacle-limited (see Fig. 19) and may 

be described best by the Orowan 

formalism [41]. Depending on the 

type of obstacles this leads to differ-

ent rate equations for the deformation 

description. In the present case a 

restriction to discrete obstacles is 

sufficient. The according description 

is given by Eq. (45).  

A combination of all deformation de-

scriptions combined with experimen-

tal results allow for compiling illustra-

tive so-called deformation maps [57, 

16]. These diagrams summarize de-

formation processes depending on 

stress and temperature.  

The present work, however, is restricted to deformation rates which are typical for creep 

studies. 

 

Fig. 18: For stresses about higher than 10-3 µ the 
power-law breaks down. A transition from 
climb-controlled to glide-controlled flow 
takes place. 

Fig. 19: Below the ideal shear strength flow by the 
conservative or glide motion of disloca-
tions is possible, provided a sufficient 
number of independent slip systems is 
available. This motion is almost always ob-
stacle-limited. 
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4 Steady-State Creep Model 

4.1 Diffusion Creep 

For the description of diffusion creep we use Eqs. (15) and (16), that is 

 





 +Ω= BL

s
sC D

d
D

kTd
πδσ

γ 2

142& ,  (49) 

where DL and DB are lattice and boundary diffusion coefficients, respectively, with 

 RT
Q

LL

L

eDD
−

= 0   and  RT
Q

BB

B

eDD
−

= 0 .  (50) 

In this model most constants are well known, like the atomic volume Ω, grain size d, and 

grain boundary thickness δ (see Appendix 6.1). Values for the lattice diffusion coefficient D0L 

and activation energy QL are taken from [16]. Since boundary diffusion data are not readily 

available for the present 

material the according val-

ues have to be adjusted to 

the experiments and rea-

sonable assumptions. In 

our case the boundary dif-

fusion activation energy QB 

has been chosen to be 200 

kJ/mol which is about 20 % 

higher than the value re-

ported for 316 steels [16]. 

With this, the assumption 

that the contributions of 

lattice and boundary diffu-

sion are equal at about 0.6 

TM leads to a value for D0B 

of 6⋅10-6 m²/s. 

As can be seen in Fig. 20, only the long-term creep tests performed at 600 °C are near the 

range dominated by boundary diffusion creep. According to our model, all other tests have 

not been influenced by diffusion creep. 

 

Fig. 20: Contribution of boundary diffusion creep to the strain 
rate according to the model given by Eq. (49). (Sym-
bols represent experimental results). 
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Figure 21 shows both boundary and lattice diffusion as predicted by the model given by Eq. 

(49). It can be clearly seen 

that lattice diffusion cer-

tainly plays no role for the 

given temperature range. 

Its contribution to the 

strain rate becomes only 

relevant at much higher 

temperatures (> 0.6 TM) 

where it dominates over 

the contribution of grain 

boundary creep.  

 

 

 

 

4.2 Plasticity (Dislocation Glide) 

Low temperature plasticity is a high stress deformation mechanism. Therefore it plays only a 

minor role for creep. However, to cover the whole stress range in our model we use the sim-

plified description for plasticity (Eqs. (45) and (46)) which reads then 
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For the present material τ̂  can be approximated as 

 
l
µb

≈τ̂  , (52) 

where b is the magnitude of Burgers’ vector, l is the obstacle spacing, and µ is the tempera-

ture dependent shear modulus given by 

 
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−==
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Fig. 21: Contribution of boundary diffusion creep (continuous 
lines) and lattice diffusion creep (dashed lines) to the 
strain rate according to the model given by Eq. (49). 
(Symbols represent experimental results). 
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Due to the large amount of precipitates the obstacle spacing takes a relatively small value of 

about 40 nm. The activation energy F∆  has been estimated to be about 0.75 µ0 b3 which 

correspond to QP = 460 kJ/mol (all constants are given in Appendix 6.1). 

As has already been men-

tioned and as can be 

clearly seen from Fig. 22, 

the strain rates of creep 

tests are usually too small 

to approach the regime of 

plasticity. According to the 

model only the test results 

for 550 °C are close to this 

region.  

For verification there is 

added an additional value 

of a creep test at 500 °C to 

the diagram in Fig. 22 

which was deformed only 

plastically and which fits 

nicely to the model. 

 

4.3 Power Law Creep (Dislocation Climb) 

As has already been outlined in connection with Eq. (28) the current description of disloca-

tion creep includes some degrees of freedom. Therefore the model has to be fitted to the 

experimental data. For this we use the experimental results from just three test temperatures 

in the following model setup. Then the resulting model can be verified with help of the data 

from the other two test temperatures.  

Equation (32) describes the whole power-law creep including dislocation climb, activated by 

lattice and core diffusion. But as has been demonstrated with the diffusion creep model (Sec-

tion 4.1, Fig. 21) lattice diffusion can be completely neglected within the present temperature 

range.  

Therefore the expression for power-law creep reduces to 

 

Fig. 22: Contribution of low temperature plasticity to the strain 
rate according to the model given by Eq. (51). The 
black triangle represents an additional creep test re-
sult at 500 °C. The grey dashed line corresponds also 
to 500 °C. (Symbols represent experimental results, 
lines are from model). 
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where DC is the core diffusion coefficient with 

 RT
Q

CC

C

eDD
−

= 0  . (55) 

DC is of the same order of magnitude as the grain boundary diffusion constant DB and has 

therefore been chosen to be 10-5 m²/s. Again, the shear modulus µ depends on temperature 

as given in Eq. (53). 

This leaves three remaining 

parameters – the exponent 

n, the activation energy QC, 

and the constant c3 – which 

have to be fitted to the ex-

perimental data. In log-log-

representation the slope is 

defined by n, the vertically 

distance by Qc, and the 

offset by c3. 

The according result is 

shown in Fig. 23. Here the 

parameters have been 

chosen as follows: QC = 

520 kJ/mol, n = 5, and c3 = 

2⋅1020.  

 

4.4 Transition from Creep by Climb to Creep by Glide 

At stresses above about 10-3 µ the power-law breaks down. That is, starting from this point 

(for the present material the onset is at 86 MPa) the model has to describe a transition from 

creep by climb (power-law) to creep by glide (plasticity).  

Adapting Eq. (35) to the present model leads to 

 

Fig. 23: Contribution of power-law creep to the strain rate ac-
cording to the model given by Eqs. (54) and (55). For 
the adjustment of the three free parameters only re-
sults gained at 600 °C, 650 °C, and /00 °C are consid-
ered. (Symbols represent experimental results, lines 
are from model).
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which leaves only one free 

parameter (α’) to fit to ex-

periment. For this we have 

only used data from the 

600 °C creep tests to verify 

the result later on with the 

other data. Figure 24 

shows the transition curve 

according to α’ = 800. 

 

 

 

 

 

 

4.5 Assessment and Discussion of the Stationary Creep Model 

To obtain the complete model all contributions have to be summed up accordingly: 
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where the single contributions are given by the Eqs. (49), (51), (54), and (56). A comparison 

between the model and the experimental data is given in Fig. 25.  

As can be seen, the transition from power-law creep to plasticity (which has been fitted to the 

600 °C results) fits also nicely to the results gained at 550 °C and 650 °C. At higher tempera-

tures the experiments have been performed at stresses below the transition range. 

 

 

Fig. 24: Transition from power-law creep (long dashed gray 
line) to plasticity (short dashed gray line) according to 
the model given by Eq. (56). For the adjustment of the 
free parameter α’ only results gained at 600 °C are 
considered. (Symbols represent experimental results, 
lines are from model). 
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The power-law creep range which has been fitted to the 600 °C, 650 °C, and 700 °C experi-

mental results, applies also for the 750 °C test results. But the experiments at 550 °C, how-

ever, are well above the predictions from the model. 

 

 

 

As already mentioned, only the creep tests performed at 600 °C reach down to the range of 

diffusion creep. Therefore, it is not possible to verify the model for the other temperatures. 

But at least for 600 °C the model predictions fit perfectly to the experiments. 

With the exception of the low-stress long-term creep test results at 550 °C there is a good 

agreement between experimental data and model prediction. Now the question is why the 

model doesn’t resemble the low-stress 550 °C values, or vice versa. From a physically point 

of view it is rather unlikely that an additional deformation mechanism should occur only at 

lower temperatures. And since this stress range is dominated exclusively by diffusion based 

processes, it is even more questionable, that the strain rate should increase with lower tem-

peratures compared to the applied power-law.  

Fig. 25: The stationary creep model (lines) as defined by Eq. (57) compared to the experi-
mental results (symbols). 
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These considerations have necessitated a closer look on the experimental data (low stress 

results at 550 °C) and their evaluation. It revealed the situation depicted exemplarily in Fig. 

26 and 27. In the case of 550 °C and 180 MPa (Fig. 26) there has been a sudden drop after 

150 MPa
550 °C

Error Analysis

 

Fig. 27: The test was aborted after about 85000 hours because it was thought 
that stationary creep had already been reached. But now it can not be 
excluded that there could have been a drop in strain rate during a further 
continuation of this creep test similar to the observation in Fig. 26. 

180 MPa
550 °C

Error Analysis

 

Fig. 26: After 44000 hours the creep rate suddenly drops from one stationary 
level down to another. If the test had been aborted at 40000 hours, eve-
rybody would have accepted the higher stationary creep rate as absolute 
minimum. Now even a further drop can be imagined. 
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44000 hours from one stationary creep range to another. This creep test was aborted after 

85000 hours with a specified minimum creep rate of about 1.2⋅10-7 1/h. But if this test had 

already been aborted after 40000 hours, nobody would have doubted the resulting value of 

2⋅10-7 1/h. And now it has to be expected that there might have been further drops in strain 

rate, if the test had been continued. 

The other example in Fig. 27 (150 MPa, 550 °C) shows no such drop in the strain rate curve. 

But obviously the given value for the minimum creep rate is now rather doubtful. It is easy to 

imagine that a continuation of the creep test could have led to much lower values.  

The other creep tests at 550 °C in the low-stress range are similar to those of Fig. 26 and 27. 

That is, actually the according data had to be corrected towards lower values. Since quantita-

tive statements are not possible, the only thing known is that the real values are lower than 

the already published results. This is indicated in Fig. 28 and gives even more reason to ac-

knowledge the stationary creep model. 

 

?

Fig. 28: The 550 °C low-stress data have to be corrected towards lower values since the 
according creep tests were aborted too early.  
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5 Conclusion 

The present investigations have been mainly based on results from creep experiments per-

formed at IMF-I, FZK with the austenitic stainless steel AISI 316 L(N) (heat no. 11477 from 

Creusot-Marell). Especially long-term creep tests have shown that there is a considerable 

change in the steady-state creep behavior at low stresses: the creep rates are much higher 

than the values that would have been expected by an extrapolation from the usual (higher) 

stress range. For component design this is a bad situation, because the real life-time would 

be significantly shorter compared to estimates based on the usually available creep data. 

Since AISI 316 type steel is a very common material for all kinds of applications – also for 

ITER components – it would be highly helpful, if it’s seemingly odd steady-state creep behav-

ior could be described by a far reaching model. The setup of such a model was the motiva-

tion of the current paper. 

At first glance, there are three possible reasons for the kink in the creep rate vs. stress curve: 

(I) At very low stresses the initial strain is within the elastic range while at higher 

stresses specimens are deformed plastically at the start of the creep tests. This plas-

tic deformation could act like cold working the material and, therefore, lead to higher 

creep strength. 

(II) Austenitic stainless steels are known for their thermal instability, that is, they are 

prone to aging. Hence, more or less severe formation of precipitations could change 

the microstructure significantly and cause higher creep rates, dependent on creep 

time which in turn is correlated to the applied stresses. 

(III) Creep rates depend on different stress-dependent deformation processes. If the 

stress dependency of these processes differs considerably – let’s assume σ in one 

case and σ 7 in another –, an according change of the steady-state creep rate would 

be obvious.  

Reason (I) can be ruled out, because the decrease in initial strain takes place continuously 

with decreasing stresses. Cold work and accompanied hardening certainly plays a role in 

creep behavior, but this is not an explanation for the current dramatic change in creep rate at 

low stresses. Also precipitation formation can not be the reason for the observed creep be-

havior, since there is no correlation between the different precipitation types, the times of 

formation and the periods of steady-state creep. Of course, precipitations may also influence 

creep properties, but again, not in such a distinctive way as observed. 
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For a reasonable explanation this leaves only the interaction of different deformation mecha-

nisms which have been reviewed in detail: diffusional flow, power-law creep, mechanical 

twinning, dislocation glide, and the elastic collapse.  

It has been demonstrated that for a description of the steady-state creep behavior only grain 

boundary diffusion, power-law creep, and the transition from dislocation climb to dislocation 

glide are relevant, where the latter is just a limit that is barely reached with constant load 

creep tests. This leads to a model consisting of three main deformation mechanisms and two 

transitions: 

• At very low stresses only grain boundary diffusion contributes to the strain rate which 

is proportional to the stress (~ σ). This regime can only be reached by performing ex-

tremely long-term tests. In the present case diffusion creep occurred allusively after 

10 years at 600 °C. 

• Then there is a relatively sharp transition to creep triggered by dislocation climb. In 

the present case dislocation climb depends on core diffusion and leads to creep rates 

proportional to the 7th power of stress (~ σ 7) – thus the name Power-law Creep. 

• Starting from medium stresses there is a continuous transition from creep by disloca-

tion climb to plasticity which depends solely on dislocation glide. The plasticity regime 

is usually not reached with creep tests. Here the strain rate depends exponentially on 

stress (~ eσ). 

To adapt the model to creep experiments with the AISI 316 L(N) steel it needs only a few 

parameters: 

• grain boundary diffusion coefficient and activation energy to describe diffusion creep, 

• a generic constant, the core diffusion coefficient and activation energy, and the power 

exponent to describe power-law creep, 

• and just a generic constant for the description of the transition from power-law creep 

to plasticity. 

For completeness of the model, plasticity may be described by four additional parameters. 

To determine all parameters from experimental data, it needs creep tests at three different 

temperatures in the usual stress range and at least some long-term experiments which reach 

down into the diffusion creep regime. In the present case the latter was not quite fulfilled. 

Therefore, diffusion creep might be described somewhat too conservative. However, all data 

(with the exception of the 550 °C long-term experiments) fit nicely to the model predictions. 
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But it has been shown that these experiments were aborted too soon, that is, it was not pos-

sible to extract reliable minimum creep rates.  

In summary, the presented steady-state creep model for the austenitic stainless steel AISI 

316 L(N) is based on well known deformation mechanisms and can predict creep rates in the 

whole temperature range relevant for application design. Due to the small number of pa-

rameters it should be no problem to apply the rate equations to other materials. 
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7 Appendix/Tables 

7.1 Constants and Parameters 

The basic material constants for the present AISI 316 L(N) stainless steel as well as some 

physical constants are given in Table 3. All parameters used for the creep model are listed in 

Tables 4-6. 

Table 3: Physical and material constants for the AISI 316 L(N) stainless steel. 

Constant Value Ref. 

Boltzmann’s constant, k 1.381 x 10-23 J/K  

Gas constant, R 8.314 J/(mol K)  

Melting temperature, TM 1810 K [16] 

Grain size, d ≈ 100 µm measured 

Thickness of grain boundary, δ ≈ 20 x 10-9 m measured 

Atomic volume, Ω 1.21 x 10-29 m3 [16] 

Lattice constant, L0 2.87 x 10-10 m [16] 

Burger’s vector (magnitude), b 2.58 x 10-10 m [16] 

Shear modulus at 300 K, µ0 81000 MN/m2 [58] 

Temperature dependence of shear 

modulus, 
dT
dTM µ

µ0

 -0.85 [58] 

 

 

Table 4: Diffusion creep parameters used for the AISI 316 L(N) stainless steel. 

Parameter Value 

Lattice diffusion coefficient, D0L 37.5 x 10-6 m²/s 

Latt. diff. activation energy, QL 280 kJ/mol 

Boundary diffusion coefficient, D0B 6 x 10-6 m²/s 

Bound. diff. activation energy, QB 200 kJ/mol 
 

 



 Appendix/Tables 

49 

Table 5: Plasticity parameters used for the AISI 316 L(N) stainless steel. 

Parameter Value 

Activation energy, QP 460 kJ/mol 

Activation energy, ∆F 1.04 x 10-18 J 

Obstacle spacing, l 40 nm 

Pre-exponential, 0γ&  106 1/s 

 

 

Table 6: Power-law and power-law break-down parameters used for the AISI 316 
L(N) stainless steel. 

Parameter Value 

Pre constant, c3 2 x 1020 

Core diffusion coefficient, D0C 10 x 10-6 m²/s 

Core diff. activation energy, QC 520 kJ/mol 

Creep exponent, n 5 

Constant, α′  800 
 

 

 



Appendix/Tables 

50 

7.2 Experimental Data 

Table 7: Creep test results for the AISI 316 L(N) stainless steel. Specimen dimen-
sions have been M5 x 30 mm. Zu: reduction of area, Au: total elongation, εo: 
initial strain, tm: time to rupture. 

Test 
No. 

T 
°C 

σ 
MPa 

tm 
h 

εo 
% 

Au 
% 

Zu 
% 

minε&  
10-6/h 

2986 500 400 5308 16.2 30.3 35.5 4.8 
2982 550 380 24 25.7 45.3 70.8 660 
2981  360 146 21.3 36.0 53.9 20 
3023  340 560 16.0 26.0 35.8 51 
3028  320 410 13.0 33.7 35.5 159 
2984  300 2610 12.7 18.3 29.4 3.2 
3029  260 5785 8.7 19.7 26.3 3.9 
3105  240 15668 7.5 18.0 22.6 1 
2974 600 300 61 11.0 33.7 38.6 1749 
2976  280 83 10.0 41.3 38.9 1525 
2979  260 164 8.8 40.3 38.9 733 
3026  240 584 7.0 44.0 39.2 150 
2977  220 1738 5.3 47.3 45.0 48 
3038  200 5481 3.7 52.7 51.0 19 
3041  180 11605 3.5 48.0 61.4 9.3 
3184  150 50324 1.2 42.3 50.6 1.2 
2980 650 240 23 8.3 45.7 53.6 5333 
2978  200 116 6.0 69.7 61.4 1240 

ZSV1911  160 1089 1.83 85.3 70.7 157 
ZSV1944  140 2700 0.87 88.3 71.0 60 
ZSV1941  120 7629 0.33 49.7 63.9 13.5 
3046  100 16124 0.23 34.0 42.2 3.8 

ZSV1943 700 170 59 2.07 52.3 63.8 3680 
ZSV1917  150 125 1.80 62.0 75.0 1653 
ZSV1925  120 626 0.50 77.3 78.8 293 
ZSV1919  100 1383 0.15 76.3 80.7 102 
ZSV1960  80 4208 0.13 62.7 59.1 19 
ZSV2085  60 aborted 0.03   2.6 
ZSV1939 750 100 152 0.13 97.7 80.6 1760 
ZSV1940  80 440 0.23 79.7 82.8 318 
ZSV1921  60 2650 0.04 77.0 64.0 60 
ZSV1913  40 15692 0.03 29.6 32.9 10 
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Table 8: Low-stress long-term creep test results for the AISI 316 L(N) stainless 
steel. Specimen dimensions have been M8 x 200 mm. 

Test 
No. 

T 
°C 

σ 
MPa 

aborted 
after 

h 
εo 
% 

minε&  

10-6/h 
3495 550 250 6100 7.5 2.1 
3458  210 60000 4.83 0.8 
3433  180 85000 2.85 0.115 
3434  150 85000 1.18 0.073 
3514  135 70006 0.34 0.018 
3442  120 85000 0.16 0.0099 
3443  100 85000 0.09 0.0036 
3478 600 170 7500 3.03 5.0 
3437  120 41015 0.32 0.2 
3438  100 85000 0.07 0.04 
3445  80 85000 0.06 0.01 
3450  70 85000 0.055 0.005 
3451  60 85000 0.04 0.0025 

 

 

Table 9: Creep test results from NRIM (see Ref. 11) of the 18Cr-12Ni-Mo steel AAL. 
Only data from the medium stress range is considered since this material 
somewhat is different from the AISI 316 L(N) as well as the used test equip-
ment. Zu: reduction of area, Au: total elongation, εo: initial strain, tm: time to 
rupture. 

NRIM 
ref.  

code 
T 
°C 

σ 
MPa 

tm 
h 

εo 
% 

Au 
% 

Zu 
% 

minε&  

10-6/h 
AAL 600 216 2444.5 2.35 62 76 50.9 

  177 11007.5 1.04 49 80 3.10 
  157 19646.2 0.38 61 78 1.05 
  137 42079.8 0.13 61 75 0.312 
  127 61463.9 0.12 51 67 0.208 
  108 152758 0.08 26 39 0.068 

AAL 650 157 811.4 0.78 54 83 171 
  108 10477.6 0.13 46 40 7.45 
  98 25771.7 0.05 34 48 2.18 
  88 47073.3 0.06 22 41 0.576 
  83 64516.7 0.07 29 39 0.346 

AAL 700 108 624.4 0.1 66 82 416 
  88 2357.0 0.08 70 72 99.8 
  74 11817.9 0.05 35 51 7.74 

AAL 750 108 62.4 0.15 90 86 4280 
  88 234.0 0.07 72 84 1060 
  53 7413.3 0.05 53 52 17.1 
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Table 10: Low-stress long-term creep test results for the AISI 316 L(N) stainless 
steel at 550 °C (Time-Strain values). Specimen dimensions have been M8 
x 200 mm. 

 ε0 = 
7.50 % 

ε0 = 
4.83 % 

ε0 = 
2.85 % 

ε0 = 
1.18 % 

ε0 = 
0.34 % 

ε0 = 
0.16 % 

ε0 = 
0.09 % 

 σ = 
250 MPa

σ = 
210 MPa 

σ = 
180 MPa

σ = 
150 MPa

σ = 
135 MPa

σ = 
120 MPa 

σ = 
100 MPa

Creep 
Time [h] 

Strain 
[mm] 

Strain 
[mm] 

Strain 
[mm] 

Strain 
[mm] 

Strain 
[mm] 

Strain 
[mm] 

Strain 
[mm] 

 
       250 
       500 
       750 
    1.000 
    1.500 
    2.000 
    2.500 
    3.000 
    3.500 
    4.000 
    4.500 
    5.000 
    5.500 
    6.000 
 

 
  0.75 
  0.95 
  1.12 
  1.30 
  1.55 
  1.80 
  2.00 
  2.20 
  2.41 
  2.64 
  2.90 
  3.19 
  3.505 
  3.885 

 
 0.185 
 0.270 
 0.34 
 0.39 
 0.48 
 0.57 
 0.64 
 0.71 
    - 
 0.875 
    - 
 0.97 
    - 
 1.12    
 

 
 0.155 
 0.19 
 0.23 
 0.27 
 0.34 
 0.405 
 0.465 
 0.512 
    - 
 0.60 
    - 
 0.68 
    - 
 0.75 

 
 0.117 
 0.140 
 0.170 
 0.190 
 0.223 
 0.250 
     - 
 0.310 
     - 
 0.350 
     - 
 0.402 
     - 
 0.470 

 
0.011 
0.0135 
0.0195 
0.021 
0.0255 
0.0296 
0.0331 
0.037 
0.04 
0.0456 
0.0466 
0.0486 
0.0506 
0.054 

 
0.02 
0.029 
0.035 
0.04 
0.046 
0.053 
0.059 
0.063 
    - 
0.067 
    - 
0.07 
    - 
0.074 
  

 
0.021 
0.026 
0.03 
0.0345 
0.04 
0.048 
0.051 
0.054 
    - 
0.057 
    - 
0.059 
    - 
0.06 

    7.000 
    8.000 
    9.000 
10.000 
 

aborted 
 

 1.265 
 1.42 
 1.58 
 1.755 

 0.82 
 0.885 
 0.942 
 1.008 

 0.520 
 0.570 
 0.607 
 0.644 

0.0608 
0.0656 
0.0734 
0.0806 

0.076 
0.078 
0.082 
0.086 

0.064 
0.066 
0.068 
0.071 

  11.000 
  12.000 
  13.000 
  14.000 
  15.000 
  16.000 
  17.000 
  18.000 
  19.000 
  20.000 
 

 
 
 
 
 

 1.92 
 2.075 
 2.25 
 2.435 
 2.617 
 2.813 
 3.012 
 3.174 
 3.34 
 3.51 

 1.062 
 1.127 
 1.172 
 1.218 
 1.272 
 1.322 
 1.364 
 1.417 
 1.455 
 1.51 

     - 
 0.731 
     - 
 0.817 
 0.860   - 
 0.893 
     - 
 0.959 
     - 
 1.024 

0.0868 
0.092 
0.1004 
0.1046 
0.1126 
0.118 
0.1214 
0.1286 
0.1368 
0.1446 

0.091 
0.0944 
0.0964 
0.1016 
0.105 
0.108 
0.1116 
0.115 
0.121 
0.1244 

0.0744 
0.0756 
0.076 
0.078 
0.0796 
0.0812 
0.0824 
0.083 
    - 
0.0854 

  21.000 
  22.000 
  23.000 
  24.000 
  25.000 
  26.000 
  27.000 
  28.000 
  29.000 
  30.000 

  3.69 
 3.885 
 4.09 
 4.297 
 4.492 
 4.694 
 4.884 
 5.07 
 5.277 
 5.426 

 1.548 
 1.597 
 1.641 
 1.684 
 1.724 
 1.768 
 1.808 
 1.853 
 1.892 
 1.934 

     - 
     - 
     - 
     - 
 1.143 
     - 
     - 
     - 
     - 
 1.282 

0.1514 
0.1596 
0.1670 
0.1752 
0.1832 
0.1914 
0.1966 
0.20  
0.2014 
0.204 
 

0.126 
0.127 
0.13 
0.1344 
0.138 
0.14 
0.1448 
0.1472 
0.1522 
0.1548 

    - 
0.0866 
    - 
0.0876 
0.089 
0.09 
    - 
0.0916 
    - 
0.0934 
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  31.000 
  32.000 
  33.000 
  34.000 
  35.000 
  36.000 
  37.000 
  38.000 
  39.000 
  40.000 
   

   
  5.675 
  5.90 
  6.13 
  6.37 
  6.613 
  6.852 
  7.11 
  7.365 
  7.655 
  7.95 
 

  
1.983 
2.023 
2.071 
2.11 
2.153 
2.193 
2.231 
2.265 
2.303 
2.346  

  
     - 
     - 
     - 
     - 
 1.377 
     - 
     - 
     - 
     - 
1.495        

 

 
0.2048 
0.2066 
0.208 
0.2132 
0.2174 
0.2214 
0.224 
0.226 
0.2306 
0.2346 

 
0.16 
0.164 
0.1674 
0.1708 
0.174 
0.1786 
0.182 
0.1848 
0.1874 
0.1906 
 

  
    - 
0.096 
    - 
0.098 
0.10 
0.1014 
    - 
0.1026 
    - 
0.1042 
 

  41.000 
  42.000 
  43.000 
  44.000 
  45.000 
  46.000 
  47.000 
  48.000 
  49.000 
  50.000 

   8.123 
  8.275 
  8.43 
  8.598 
  8.759 
  8.947 
  9.128 
  9.331 
  9.537 
  9.755 
 

2.395 
2.449 
2.49 
2.535 
2.557 
2.583 
2.61 
2.636 
2.661 
2.691 

     - 
     - 
     - 
     - 
 1.585 
     - 
     - 
     - 
     - 
 1.684 

0.239 
0.24 
0.2434 
0.2476 
0.2512 
0.2564 
0.2604 
0.2646 
0.2704 
0.2744 

0.1936 
0.196 
0.1996 
0.2012 
0.202 
0.2032 
0.2048 
0.2072 
0.2096 
0.2114 

    - 
0.106 
    - 
0.1074 
0.1084 
0.1088 
    - 
0.11 
    - 
0.1114 
     

  51.000 
  52.000 
  53.000 
  54.000 
  55.000 
  56.000 
  57.000 
  58.000 
  59.000 
  60.000 
 

   9.977 
10.212 
10.467 
10.721 
10.975 
11.25 
11.525 
11.817 
12.127 
12.47 

2.715 
2.741 
2.766 
2.78 
2.811 
2.836 
2.86 
2.883 
2.907 
2.93 

     - 
     - 
     - 
     - 
 1.762 
     - 
     - 
     - 
     - 
 1.842 

0.2784 
0.2824 
0.2866 
0.2896 
0.2914 
0.2928 
0.2972 
0.3018 
0.3066 
0.3120 
 

0.213 
0.215 
0.2168 
0.2182 
0.2206 
0.222 
0.2242 
0.226 
0.2276 
0.2312 

    - 
0.1128 
    - 
0.115 
0.116 
0.1165 
    - 
0.1178 
    - 
0.1206 

  61.000 
  62.000 
  63.000 
  64.000 
  65.000 
  66.000 
  67.000 
  68.000 
  69.000 
  70.000 

  
after 
60000 h 
aborted 
 

2.953 
2.973 
2.998 
3.023 
3.047 
3.07 
3.09 
3.113 
3.133 
3.155 
 

     - 
     - 
     - 
     - 
 1.919 
     - 
     - 
     - 
     - 
 1.992 

0.3158 
0.3200 
0.3232 
0.3270 
0.3304 
0.3340 
0.3366 
0.3406 
0.3444 
0.3476 

0.2336 
0.2356 
9.237 
0.2392 
0.2412 
0.2432 
0.2448 
0.246 
0.2474 
0.2500 

    - 
0.1224 
    - 
0.1236 
0.1238 
0.1242 
    - 
0.1254 
    - 
0.1282 
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  71.000 
  72.000 
  73.000 
  74.000 
  75.000 
  76.000 
  77.000 
  78.000 
  79.000 
  80.000 
   

    
3.181 
3.208 
3.231 
3.255 
3.282 
3.301 
3.326 
3.350 
3.374 
3.398 
 

 
     - 
     - 
     - 
     - 
2.060 
     - 
     - 
     - 
     -  
 2.139 
 

 
after 
70000 h 
 

 
0.2516 
0.2536 
0.2548 
0.2574 
0.2592 
0.2614 
0.2640 
0.2664 
0.2696 
0.2720 
 

 
    - 
0.1286 
    - 
0.1292 
0.1302 
0.1306 
    - 
0.1322 
    - 
0.1354  
 

  81000 
  82000 
  83000 
  84000 
  85000 
 
 
 
 
 

  3.419 
3.443 
3.466 
3.490 
3.511 
 
 
after 
85000 h 
aborted 

     - 
     - 
     - 
     - 
2.212 
 
 
after 
85000 h 
aborted 

 0.2736 
0.2756 
0.2774 
0.2800 
0.2816 
 
 
after 
85000 h 
aborted 

 
0.1364 
     - 
0.1380 
0.1388 
 
 
after 
85000 h 
aborted 

 

Table 11: Low-stress long-term creep test results for the AISI 316 L(N) stainless 
steel at 600 °C (Time-Strain values). Specimen dimensions have been M8 
x 200 mm. 

 ε0 = 
3.03 % 

ε0 = 
0.32 % 

ε0 = 
0.07 % 

ε0 = 
0.06 % 

ε0 = 
0.055 % 

ε0 = 
0.04 % 

 σ = 
170 MPa 

σ = 
120 MPa 

σ = 
100 MPa 

σ = 
80 MPa 

σ = 
70 MPa 

σ = 
60 MPa 

Creep 
Time [h] 

Strain 
[mm] 

Strain 
[mm] 

Strain 
[mm] 

Strain 
[mm] 

Strain 
[mm] 

Strain 
[mm] 

    
       250 
       500 
       750 
    1.000 
    1.500 
    2.000 
    2.500 
    3.000 
    3.500 
    4.000 
    4.500 
    5.000 
    5.500 
    6.000 
 

 
  0.68 
  1.115 
  1.51 
  1.88 
  2.63 
  3.38 
  4.045 
  4.54 
  5.125 
  5.632 
  6.145 
  6.68 
  7.235 
  7.86 

 
 0.09 
 0.15 
 0.20 
 0.253 
 0.34 
 0.447 
 0.537 
 0.618 
     - 
 0.753 
     - 
 0.852 
     - 
 0.95  

 
  0.06 
  0.087 
  0.108 
  0.128 
  0.16 
  0.183 
  0.205 
  0.223 
      - 
  0.252 
      - 
  0.282 
      - 
  0.302 

 
 0.036 
 0.053 
 0.065 
 0.077 
 0.088 
 0.098 
 0.108 
 0.117 
     - 
 0.138 
     - 
 0.145 
     - 
 0.148 

 
0.024  
0.036           
0.043 
0.046 
0.051 
0.056 
0.057 
0.058 
   - 
0.064 
    - 
0.066 
    - 
0.069 

 
 0.028 
 0.044 
 0.049 
 0.055 
 0.06 
 0.063 
 0.066 
 0.068 
     - 
 0.07 
     - 
 0.071 
     - 
 0.073 
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    7.000 
    8.000 
    9.000 
  10.000 

  9.298 
 
aborted after 

7500 h 

 1.028 
 1.095 
 1.153 
 1.21 

  0.35 
  0.38 
  0.4 
  0.416 

0.152 
0.155 
0.16 
0.164 

0.072 
0.074 
0.075 
0.0768 

 0.074 
 0.076 
 0.0775 
 0.08 
 

  11.000 
  12.000 
  13.000 
  14.000 
  15.000 
  16.000 
  17.000 
  18.000 
  19.000 
  20.000 
 

  1.257 
 1.3 
 1.338 
 1.372 
 1.412 
 1.447 
 1.487 
 1.53 
 1.578 
 1.628 

  0.43 
  0.443 
  0.457 
  0.481 
  0.518 
  0.53 
  0.544 
  0.553 
  0.568 
  0.576 

0.167 
0.172 
0.173 
0.1746 
0.176 
0.1775 
0.18 
0.182 
0.1856 
0.1872 

0.0778 
0.0788 
 
0.0808 
0.082 
0.0828 
     - 
0.0848 
     - 
0.0866 

 0.083 
 0.0852 
  
 0.086 
 0.087 
 0.088 
     - 
 0.0898 
     - 
 0.091 

  21.000 
  22.000 
  23.000 
  24.000 
  25.000 
  26.000 
  27.000 
  28.000 
  29.000 
30.000 
 

  1.683 
 1.743 
 1.803 
 1.862 
 1.922 
 1.988 
 2.063 
 2.146 
 2.236 
 2.35 

  0.584 
  0.593 
  0.604 
  0.612 
  0.623 
  0.633 
  0.642 
  0.652 
  0.662 
  0.67 

0.1888 
0.1896 
0.1914 
    - 
0.1956 
0.1984 
0.2008 
0.2026  
0.2066 
0.2084 

     - 
0.0886 
     - 
0.0906 
0.0916   
0.0926 
     - 
0.0948 
     - 
0.097 

     - 
 0.0928 
     - 
 0.0946 
 0.0952 
 0.0954 
     - 
 0.0964 
     - 
 0.0984   

  31.000 
  32.000 
  33.000 
  34.000 
  35.000 
  36.000 
  37.000 
  38.000 
  39.000 
  40.000 
   

  2.46 
 2.55 
 2.674 
 2.808 
 2.954 
 3.11 
 3.277 
 3.458 
 3.645 
 3.845 

  0.068 
 0.688 
 0.694 
 0.706 
 0.712 
 0.72 
 0.732 
 0.743 
 0.755 
 0.767 

0.2124 
0.2154 
0.2176 
0.2196 
0.2206 
0.2234 
0.2276 
0.23 
0.2336 
0.2366 

     - 
0.0992 
     - 
0.1014 
0.1026 
0.1042 
     - 
0.1074 
     - 
0.1106 

     - 
 0.10 
     - 
 0.1014 
 0.1018 
 0.103 
     - 
 0.104 
     - 
 0.1048 

  41.000 
  42.000 
  43.000 
  44.000 
  45.000 
  46.000 
  47.000 
  48.000 
  49.000 
50.000 
 

  4.06 
     
     
  
aborted after
41015 h 
 

 0.78 
 0.792 
 0.802 
 0.81 
 0.818 
 0.828 
 0.838 
 0.849 
 0.863 
 0.874 

0.24 
0.243 
0.2454 
0.2474 
0.2486 
0.2498 
0.2518 
0.254 
0.2566 
0.259 

     - 
0.1138 
     - 
0.117 
0.1186 
0.1202 
     - 
0.1232 
     - 
0.1262 

     - 
0.106 
     - 
0.107 
0.1076 
0.1084 
     - 
0.109 
     - 
0.1108 
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  51.000 
  52.000 
  53.000 
  54.000 
  55.000 
  56.000 
  57.000 
  58.000 
  59.000 
  60.000 
 

   0.886 
 0.897 
 0.91 
 0.92 
 0.932 
 0.943 
 0.954 
 0.97 
 0.983 
 0.994 

0.26 
0.262 
0.265 
0.2668 
0.2684 
0.2704 
0.2724 
0.2736 
0.2746 
0.277 

     - 
0.1292 
     - 
0.1332 
0.1356   
0.1372 
     - 
0.145 
     - 
0.148 
 

     - 
0.1128 
     - 
0.1148 
0.1164 
0.1172 
     - 
0.1188 
     - 
0.1204 
 

  61.000 
  62.000 
  63.000 
  64.000 
  65.000 
  66.000 
  67.000 
  68.000 
  69.000 
  70.000 

   1.006 
 1.016 
 1.028 
 1.041 
 1.054 
 1.066 
 1.082 
 1.096 
 1.109 
 1.123  

0.28 
0.2826 
0.2844 
0.2874 
0.29 
0.2912 
0.2936 
0.2972 
0.2996 
0.3034 
 

    - 
0.1512 
    - 
0.1566 
0.1596 
0.1632 
    - 
0.1674 
     - 
0.1712 

     - 
0.1228 
     - 
0.1254 
0.1258 
0.1266 
     - 
0.1284 
     - 
0.1306 
 

  71.000 
  72.000 
  73.000 
  74.000 
  75.000 
  76.000 
  77.000 
  78.000 
  79.000 
  80.000 
 

   1.138 
 1.151 
 1.163 
 1.177 
 1.191 
 1.205 
 1.218 
 1.232 
 1.245 
 1.257 
 

0.3060 
0.3080 
0.3108 
0.3134 
0.3166 
0.3180 
0.3208 
0.3246 
0.3276 
0.3306 

     - 
0.1754 
     - 
0.1814 
0.1848 
0.1872 
     - 
0.1922 
     - 
0.1934 

     - 
0.1324 
     - 
0.1346 
0.1352 
0.1360 
     - 
0.1376 
     - 
0.1392 
 

  81000 
  82000 
  83000 
  84000 
  85000 
 
 
 
 
 

  1.273 
1.290 
1.304 
1.318 
1.333 
 
       
aborted 
after 
85000 h 

0.3326 
0.3348 
0.3386 
0.3404 
0.3428 
 
      
aborted 
after 
85000 h  

     - 
0.1976 
     - 
0.2046 
0.2066 
 
      
aborted 
after 
85000 h 

     - 
0.1404 
     - 
0.1418 
0.1432 
 
      
aborted 
after 
85000 h  
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7.3 Metallographic Examinations 

7.3.1 Test No. ZSV1921: 750 °C, 2650 h 
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7.3.2 Test No. ZSV1913: 750 °C, 15692 h 
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7.3.3 AISI 316 L(N) KSW heat (similar to present CRM heat): 750 °C, 1404 h 
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7.3.4 AISI 316 L(N) KSW heat (similar to present CRM heat): 750 °C, 13824 h 
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