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Spannungen in oxidierten Hüllrohren und mechanische Stabilität von 
Oxidschichten 
 
Zusammenfassung 
 
In einem Beschleuniger getriebenen System ist die Existenz von Oxidschichten auf 
metallischen Komponenten von großer Bedeutung für deren Standzeit, da sie den 
Lösungsangriff durch das Flüssigmetall verhindern können. Deshalb muss die 
mechanische Langzeit-Stabilität von schützenden Oxidschichten erforscht werden. 
Sowohl Spannungen aufgrund von Temperaturwechseln als auch 
Wachstumsspannungen können eine Gefahr für die Oxidschichten darstellen. 
Folglich wurden Modelle zu deren Berechnung in Duplex-Schichten entwickelt und 
angewendet. Im Falle eines reinen Druckspannungszustandes liefert die elastische 
Spannungsenergie vermutlich ein brauchbares Kriterium für die Vorhersage des 
mechanischen Versagens der Oxidschicht. Im Falle eines gemischten 
Spannungszustands (Zugspannungs- und Druckspannungs-Komponenten) ist ein 
solch einfaches Kriterium möglicherweise nicht ausreichend. 
Experimentelle Beobachtungen zum mechanischen Versagen von Oxidschichten 
werden diskutiert, und zwar sowohl für Oxidschichten, die unter Gasatmosphäre, als 
auch für Oxidschichten, die im Flüssigmetall entstanden sind. Diese liefern uns 
Hinweise zum Schadensmechanismus und zum Spannungszustand. Eine wichtige 
Frage, die gelöst werden muss, betrifft die nach der Ursache des mechanischen 
Versagens, ob es nämlich allein durch Temperaturwechsel hervorgerufen wir oder ob 
es auch bei konstanter Temperatur durch Wachstumsspannungen verursacht werden 
kann. 
 
 
 
Abstract 
 
The presence of oxide scales on metallic components in an accelerator driven 
system is very important for their endurance, as they might prevent dissolution attack 
by the heavy liquid metal. The long-term mechanical stability of protective oxide 
scales must be investigated. Stresses due to temperature changes and also growth 
stresses may pose a significant threat to the integrity of the oxide scales. For this aim 
models for the stresses arising in duplex scales have been developed and applied. In 
case of a compressive stress state the elastic strain energy in the oxide scale may 
suffice to judge on the onset of mechanical failures. But this may not be true in case 
of a mixed stress state (tensile and compressive components). 
Observations on mechanical failures of oxide scales grown under gas atmospheres 
and in heavy liquid environments are discussed. They provide us information on the 
failure mechanisms and hints on the stress state leading to failure. An important 
question, which must be clarified, is whether the mechanical failures are only caused 
by temperature changes or whether some of them have also occurred at steady-state 
due to growth stresses. 
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1. Introduction 
 
The oxide scales growing on metal components exposed to high temperature 
environments like gas atmospheres or heavy liquid metals act as diffusion barriers 
and protect the metal from rapid degradation or dissolutuion. For example, it is known 
that in heavy liquid metal environments dissolution rates of unprotected steel 
components are by order of magnitude higher than the dissolution rates of oxide 
scales. 
 
Optimum resistance to oxidation arises when the protective oxide layer remains 
adherent and mechanically intact so that continued reaction arises through solid-
state diffusion [1]. Iron oxide scales are brittle under the temperatures foreseen for 
heavy liquid metal loops in accelerator driven systems. Therefore stresses may 
impair the mechanical integrity of the oxide scales and are of great importance as 
they can lead to cracking and debonding or spalling of oxide scales. The renewed 
oxidation after spalling may lead to enhanced oxidation rates but to less protective 
scales, as alloying elements like Cr may eventually not be able to contribute to the 
renewed oxidation process due to depletion effects. 
 
There are different sources of stresses in the oxide scales, the most important ones 
are growth stresses (geometrically-induced and intrinsic) and thermal stresses. In a 
first step, we will describe the action of these stresses separately but in a second 
step we have to investigate their combined effect. In a third step we have to find and 
apply criteria for the failure of the oxide scales. 
 
Depending on the temperature, the oxygen partial pressure and the content of minor 
alloying elements like Cr or Al single layer or multi-layer oxide scales may be formed. 
In this report we are mainly considering the behaviour of oxide scales on austenitic 
and martensitic steels. For these steels either a single layer Fe/Cr spinel scale is 
formed or a duplex scale consisting of a magnetite subscale in the outer part and a 
Fe/Cr spinel subscale in the inner part, depending strongly on the temperature, the 
Cr content and the oxygen partial pressure. In this report we are considering the 
duplex layer case, as it encompasses the single spinel layer case. 
 
Our main interest is with oxide scales in a heavy liquid environment, but we will also 
discuss the experience gained for oxide scales grown under gas atmospheres. The 
stress levels should mainly depend on the oxide scale thickness and on the 
temperature changes and temperature gradients. But the environment could 
influence some mechanical properties like fracture toughness and surface energies 
and of course growth of cavities. 
 
2. Theoretical background 
 
This work is meant to investigate the situation for metallic components in the test loop 
CORRIDA. As the maximum temperature in this loop is 550°C, we have no important 
effects of plastic flow or creep relaxation in the oxide scales. For thin oxide scales 
and thick metallic substrates the stresses in the metal phase are at least one order of 
magnitude lower than in the oxide scale and are therefore far below the elastic limit.  
It should be noted that we consider in the following cylindrical test specimens and are 
therefore concerned with elastic stress solutions in a cylindrical coordinate system. 
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The elastic stress solutions are then used to calculate the elastic strain energy for the 
assessment of mechanical stability of the oxide scales. 
 
 
2.1 Stresses due to temperature changes 
 
Stresses develop in both oxide scale and metallic substrate during temperature 
changes as a result of a mismatch between the thermal expansion coefficients of the 
oxide scale αox and the metal substrate αme. Austenitic, ferritic, and martensitic steels 
have different values for the thermal expansion coefficients and it is interesting to 
evaluate their performance under temperature changes. Also, we have to look into 
the problem of duplex scales as magnetite and Fe/Cr spinel differ in their expansion 
coefficients. We consider duplex scale formation as a sort of standard case, although 
it is known that, on martensitic steels [2] and also on austenitic steels [3] single layer 
Fe/Cr spinel scales may be formed depending on the temperature, the Cr content of 
the steel, and the oxygen content in the heavy liquid metal. In this case the stresses, 
which are calculated for the spinel layer, would then be relevant. 
 
In the following we consider only isotropic thermal expansion coefficients. This 
means that the stress state in the specimens will to a first approximation be bi-axial. 
In case of an-isotropic thermal expansion coefficients the axial stress components 
could differ considerably from the hoop stresses. In thin-walled tubes the radial 
stresses are in any case distinctly smaller than the hoop stress and the axial stress. 
This is not true for a solid cylinder, where the hoop stress and the radial stress are 
equal. 
 
For an accelerator driven system we have to expect many temperature cycles of 
different nature during the lifetime of a metallic component, especially if we include 
safety aspects. But for the time being, we restrict our investigation to situations, 
which are of greatest interest to us. Namely, we consider a situation typical for test 
specimens in test loops like CORRIDA with a temperature decrease after a certain 
period of oxidation at a certain temperature. The temperature prior to the temperature 
decrease is noted as Tox. This situation is considered as a sort of standard case. It is 
most relevant for heavy liquid metal test loops like CORRIDA. 
 
Our final goal is to assess the propensity for cracking, scale decohesion or even 
spalling of the oxide scale due to thermal cycling, and for this we must know the 
stress state in the oxide scale during the whole service lifetime of a test component. 
The stress state during a temperature ramp is determined by the stress state at the 
beginning of the ramp and the stress changes arising by the temperature change and 
eventual stress relaxation effects. The stress state at the beginning of the 
temperature ramp is a function of the whole temperature history experienced by the 
metallic component. In a liquid metal loop like CORRIDA one typical situation for a 
test specimen is that it is oxidized at a certain temperature for a certain time and then 
unloaded, that means the temperature interval goes down to room temperature. Such 
a situation is considered as a standard case Thus, in this note we investigate only the 
stresses due to temperature changes without considering any relaxation effects. 
 
Assuming a bi-axial stress state in the oxide scale and in the metallic substrate, 
general plane strain and equality of radial displacements at the interface, one can, in 
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case of isothermal conditions for the test specimen, derive the following expression 
for the mean hoop stress in the oxide scale: 
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In case of thin oxide scales on relatively thick metallic substrates, we can use the 
simplified formula: 
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The eq. (3) can easily be generalized to multi-layered oxide scales. We have simply 
to use in eq. (2) the thermal expansion coefficient relevant for the sublayer. For 
thicker subscales correction factors must be applied which depend on the ratios of 
the interface radii. 
According to our assumption of a bi-axial stress state in the oxide scale we have 
also: 
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We can calculate the radial stress at the interface of the oxide scale and the metallic 
substrate with the help of the following relation generally applicable for thin layers: 
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The hoop stress in the metallic substrate can be determined with the help of the force 
balance: 
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In eq. (6) we have assumed that we have a multi-layered oxide scale. 
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The thermal expansion coefficients are, in general, functions of the temperature T. 
Therefore we have applied in eqs. (1) – (3) integrals over the temperature interval 
between Tox (oxidation temperature) and T. In the literature one often encounters 
formulas which use averaged values of the thermal expansion coefficients. These 
averaged values can only be correct for a certain temperature interval. The averaged 
thermal expansion coefficient in a temperature interval T1, T2 is given by: 
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It depends on the values of T1 and T2. In the literature are often given averaged 
thermal expansion coefficients without noting the values of the temperature interval. It 
is very dangerous to use such averaged values. The thermal expansion coefficient of 
certain materials, for example that of steels, can often be approximated by a linear 
function of the temperature: 
 
 
 Tt ⋅+= 10)( ααα   (8) 
 
 
In this case the averaged thermal expansion coefficient for the temperature interval 
betweenT1 and T2 is given as: 
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In case of non-isothermal conditions we can calculate the mean thermal strains in the 
oxide scale and the metallic substrate by using the respective mean temperatures 
Tav: 
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The state at Tox can to a first approximation be considered as isothermal, but the 
intermediate states during cool-down can be non-isothermal depending on the cool-
down procedure and then the mean temperatures in the oxide subscales and in the 
metallic substrate will all be different. This also means that radial temperature 
gradients are present, which lead to thermal stresses. These thermal stresses must 
be added to the stresses resulting from the change of the mean temperatures. They 
are compressive on the hot side and tensile on the cold side of the sublayer. The 
difference between the hot and the cold side can be estimated for a linear 
temperature distribution with the help of the following formulas: 
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The stress distribution for this simple case of a linear temperature distribution is then 
given as: 
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t = dimensionless distance from the inner radius of the subscale  t= [0,1] 
 
The mean stress in the layer would therefore not be changed by a linear radial 
temperature gradient. 
 
 
2.2 Growth stresses 
 
Another source of stress is provided by the oxidation process itself. The so-called 
growth stresses can, in general, consist of a geometrically induced and an intrinsic 
contribution. The geometrically induced part appears in curved specimens but is zero 
in flat components. It increases with decreasing radius of curvature of the oxidizing 
surface and it is due to the component of the oxidation strain tensor, which acts 
orthogonal to the surface of the component. In case of cylinders this is the radial 
component of the oxidation strain tensor. The lateral components are in any case 
much smaller than the orthogonal one. They are responsible for the intrinsic growth 
stresses. If they are zero we would have, except for end effects, no growth stresses 
in flat components. Although the lateral components are in any case much smaller 
than the orthogonal one they can make a considerable contribution to the growth 
stresses. 
 
The presence of lateral oxidation strain components and their magnitude is still a 
question of debate and research. For oxide scales on austenitic steels we have found 
in the literature, which indicate the existence of lateral components. Noden et al [4] 
have observed axial length increases of thin sections of austenitic steels oxidized in 
carbon and oxygen bearing gases at 900 0C. At least part of the length increase 
could be attributed to the oxidation process itself. If the oxidation strain tensor has no 
axial component, there would be no length increase, except for the effect of the 
carburization of the steel. Noden et al [4] have found complex multi-layered oxide 
scales on the steel specimens.  
 
The axial extensions of thin slabs of austenitic steel 20Cr25Ni oxidized in air at 900 
0C were also measured in ref. [5]. From the known creep properties of the steel the 
values of the growth stresses in the Cr2O3 could be calculated. They ranged between 
-1600 and -300 MPa depending on the scale thickness. As the specimens were flat, 
these are intrinsic growth stresses and therefore caused by the lateral components of 
the oxidation strain tensor.  
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From the results of ref. [5] we could estimate the magnitude of the lateral 
components, but this would not help us for the situation of duplex scales. In view of 
the uncertainty on the magnitude of the lateral oxidation strain components we 
consider in the following only the most simple case that only the orthogonal 
component is non-vanishing. For this situation we can establish simple formulas for 
the growth stresses in duplex scales in the same way as has been done in ref. [6] for 
a single-layered oxide scale. The essential point is the nature of the oxidation 
process, namely at which location the new oxide is formed [7,8]. It is generally 
accepted that the magnetite subscale grows at the outer surface and the Fe/Cr spinel 
subscale at the interface with the metallic substrate.  
 
2.2a Geometrically-induced growth stresses 
 
We assume that the oxidation strain tensor has the following form: 
 
 

   (13) )0,0,( /
/

masp
r

masp

εε =
⇒

 
 
with: 
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The following simple distribution for the geometrically-induced growth stresses in a 
duplex scale by using the principles of Manning [7] in the same way as has been 
done in ref. [6] for a single layer oxide scale growing at the interface with the metallic 
substrate can be derived: 
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Φ = Pilling-Bedworth ratio 
t = dimensionless distance from the inner radius of the subscale, t= [0,1] 
a = rcl

out for a convex surface = - rcl
in for a concave surface 

 
The difference between the magnetite and spinel sublayers arises from the location 
of oxide growth. Whereas magnetite grows outwards at the surface, the spinel 
sublayer grows inwards at the interface with the metallic substrate. 
The mean hoop stresses in both subscales are then given as: 
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The axial growth stresses in both subscales are determined by the condition of plane 
strain ( εz = 0 ): 
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It should be noted that Manning [7] has concluded that the geometrically-induced 
growth stresses in a duplex scale are zero by simply adding the displacement vectors 
of the subscales. But we think that each subscale must be treated separately and 
that his conclusion is therefore not correct. 
 
2.2b Intrinsic growth stresses 
 
If there are lateral components in the oxidation strain tensor, we would have intrinsic 
growth stresses, which would add to the geometrically-induced components. The 
magnitude of the intrinsic growth stresses can be estimated with the help of the 
following expression: 
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There we have assumed that the circumferential and axial components of the 
oxidation strain tensor are equal: 
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2.2c Growth stresses due to internal oxidation 
 
To the knowledge of the author of this report the effect of internal oxidation on the 
growth stresses has not yet been treated in the literature. We are attempting for the 
first time to deal with this problem with the help of simple methods.  
 
The work of ref. [9] on the stresses caused by a spherical inclusion in a metal matrix 
due to temperature changes could be used to describe the growth stress distribution 
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in and around one oxide particle in a metal matrix. The growth stresses in the oxide 
particle are therefore given as: 
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r,ϕ,ϑ = coordinates of the spherical system 
εox = oxidation strain 
In the metallic matrix we have the following stress distribution: 
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Ro.p. = radius of the oxide particle 
The problem is that we have a many-particle problem. That means we have to 
consider the superposition of stresses caused by the presence of many particles. For 
the time being we don’t have the general solution for this problem.  
 
But the topological conditions might be even more complicated, also we do not know 
whether the oxide particles are really of a spherical shape. Therefore we treat the 
problem in a completely different, simpler way. We consider the zone of internal 
oxidation as a mixture of metal and oxide, whose mechanical properties may be 
calculated with the help of simple mixture rules. Let the volume fraction of the oxide 
be fox then the metal fraction fme is 1 – fox and the Young’s modulus in the internal 
oxidation zone and the respective Poisson ratio are given as: 
 
 
  (25) memeoxox

zoi EfEfE ⋅+⋅=...

 
 
  (26) memeoxox

zoi ff ννν ⋅+⋅=...

 
If the oxide has the shape of small spherical particles the oxidation strain in the 
internal oxidation zone should be isotropic and should therefore be given by the 
following expression: 
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>

Φ  = modified Pilling-Bedworth ratio (modification due to vacancy annihilation) 
 
 
The stress state due to this isotropic oxidation strain is, of course, compressive and 
bi-axial: 
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The expressions in eq. (28) are viewed to be volume averaged stresses in the 
internal oxidation zone. The upper limit should be given by the yield stress in the 
metallic matrix. 
For the time being we have no indications for mechanical problems in the internal 
oxidation zone. Also, we have no experimental values for the parameters of the 

model as for fox and 
>

Φ . Therefore we do not continue with this model. 
 
As a general remark for all the oxidation processes it should be noted that upon 
oxidation an annihilation of vacancies could occur, if there are any in the metal 
matrix. This mechanism has been discussed in [7] and [10], it would lead to reduced 
growth stresses. As we have for the time being no idea about the amount of 
vacancies in the steels of interest, we have neglected this effect. In the internal 
oxidation zone we would expect vacancies, as Fe and other metal atoms are 
migrating to the oxide scale. 
 
2.3 Superposition of growth and thermal stresses 
 
The formulas for the growth stresses and that for thermal cycling were derived under 
the premises that the strains in the oxide scale and the metallic substrate are purely 
elastic (no plastic strain formation, no cracking effects). Thus, we can linearly 
superpose in both subscales the growth stresses and the stresses due to a 
temperature change in order to obtain the total stress at a certain temperature T 
during the ramp: 
 
 
 )()( /,

,
/,

,
/

, TT masptherm
z

maspgr
z

masp
z ΘΘΘ Δ+= σσσ  (29) 

 

 9



2.4 Elastic strain energy in the oxide scale 
 
We have now available all the elements for the calculation of the elastic strain energy 
in both subscales, parameters which we need in criteria for cracking and spalling: 
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2.5 Cracking and spalling of oxide scales 
 
The failure mechanisms in oxide scales under tensile or compressive stresses have 
been discussed by Evans in a review paper [10]. It was concluded that tensile 
stresses within the oxide layer can readily produce through-scale cracking but that 
spalling of the oxide is difficult. For compressive stresses there are two routes for 
spalling. Route I , a wedging mechanism, should occur for strong interfaces and 
weak oxide scales, and route II , a buckling mechanism, for weak interfaces and 
strong oxide scales. 
Elasticity theory [11] gives the following expression for the critical buckling stress: 
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R = radius for area of decohesion 
As the stresses in the oxide scale comprise at most only a few per cent of Eox, a 
buckling mechanism is only expected for R much larger than δox , that means for thin 
oxide scales with large pores or other large flaws at the interface. 
The wedging mechanism (route I) can be treated with the elastic strain energy 
criterion described below [10]. 
 
Protective oxide layers display brittle characteristics at temperatures below the brittle-
to-ductile transition temperature. Hence, in the temperature range of interest for 
accelerator driven systems one can apply the theory of Griffith. This theory stipulates 
that a flaw in the scale will continue to grow under a stress σf  in the oxide scale if its 
strain energy release G exceeds the critical energy release rate Gc of the oxide: 
 
 
  (33) cGG ≥
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where 
 G = K2/E (34) 
 
and the stress intensity factor K: 
 
 
  (35) 2/1)( cFK ox ⋅Π⋅⋅= σ
 
c = flaw size 
 
F is a numerical factor, which depends on the shape and position of the flaw. F has a, 
for example, a value of 1.12 for a surface notch of depth c and infinite length. 
The critical energy release rate Gc is related to the surface energy γs : 
 
 
 scG γ=  (36) 
 
γs = surface energy 
 
Hence, we obtain the following criteria for fracture: 
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The flaw size c is normally not very well known, but one can assume that it increases 
with the scale thickness [12]: 
 
 
 oxfc δ⋅=  (38) 
 
 
In ref. [12] a value of 0.2 is proposed for f. With this value we obtain the following 
criteria: 
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For a bi-axial stress state in the oxide scale we obtain the following expression for the 
total elastic strain energy in the scale: 
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This expression is similar to that in the left hand side of () and in view of the 
uncertainties on the shape and position of the flaws we may use the following global 
criteria for spalling: 
 
 
 selG γ≥  (41) 
 
 
The physical meaning of the criteria () implies that spalling occurs when the whole 
elastic strain energy is sufficient for the formation of new surfaces. 
The parameter γs can take different values depending on the location of spalling, 
especially for duplex scales. Spalling can occur at the interface with the metallic 
substrate or at the interface between the two subscales or within one of the two 
subscales. The value of the surface energy γs may, for example, be lowered by the 
presence of pores or other cavities. 
As far as is known to the author of this note, the failure criterion (41) has only been 
applied to pure bi-axial compressive stress states. Whether it is also sufficient for a 
mixed stress state (tensile and compressive stress components) is an open question. 
A different approach for the treatment of cracking in multi-layered materials has been 
adopted in refs. [27] and [28]. Based on elastic stress solutions at the crack tip the 
following expression for the energy release rate was derived in case of a bi-axial 
tensile stress state: 
 
 
 eloxel WZG ⋅⋅+= )1( ν  (42) 
 
 
The non-dimensional parameter Z takes on different values depending on the failure 
mode. A list of values for Z is given in ref. [27]. For debonding the value at initiation is 
1.028 and at steady-state it is 0.5. The failure criterion of eq. (41) was also adopted. 
Thus, this approach would lead to somewhat different results depending on the 
failure mode. 
It should be noted that eq. (41) gives the lower bound for cracking but that the 
incidence of cracking or decohesion is probabilistic in nature depending on the 
cavities in the oxide scale. 
 
 
3. Material data 
 
In Fig. 1 are plotted different thermal expansion coefficients versus the temperature T 
(in 0C) for materials which are of interest to us for the treatment of duplex scales on 
stainless steels. The data on austenitic and ferritic steels are from Petersen [13], the 
data for magnetite from Armit et al [12], and the data on Fe/Cr spinel and on the 
martensitic steel P92 from Osgerby [14]. For the time being we assume that it is 
representative for other martensitic steels as well. But this can only be checked, 
when further data on thermal expansion coefficients could be found in the literature. It 
should also be noted that in ref. [12] the thermal expansion coefficient of AISI 316 is 
given and that this curve is very near to that from ref. [13] for austenitic steels. 
Data on Fe/Cr spinel could only be found in ref. [14], the respective curve is similar to 
that for magnetite. It could be expected that the thermal expansion coefficient of the 
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Fe/Cr spinel depends on the Cr content. In ref. [14] the Cr content of the spinel is not 
noted, also no reference on the data was given. 
In ref. [14] the data are considered as mean values of the thermal expansion 
coefficients (see figure 8 of ref. [14]) and the results of stress calculations indicate 
that the data were used in such a way. But the data given in ref. [14] were partially 
taken from ref. [12] (for example that for magnetite and that for haematite) and the 
authors in ref. [12] were fully aware that the thermal strain must be calculated by 
summing over small temperature intervals (see page 4-2 of ref. [12]. There is also the 
good agreement of the curves for austenitic steels from ref. [13] with that for AISI 316 
from ref. [12]. Therefore we think that in ref. [14] an improper use of the data on 
thermal expansion coefficients has been made leading to erroneous stress values. 
 
 
Table 1 Summary of mechanical properties used for the calculations 
 
 Fe3O4 FeCr2O4
Young’s modulus Eox in MPa 2.1 105 2.33 105

Poisson ratio υ 0.29 0.31 
Surface fracture energy γs in J/m2 4.5 5.0 
Fracture toughness KIc in MPa*m1/2 1.4 1.5 
γs*Eox in MPa2*mm 945. 1165. 
Pilling-Bedworth ratio Φ 2.07 2.07 

 
In Table 1 we have listed the mechanical properties for the two oxide phases, which 
have been used for the calculations. They were taken from ref. [15] and [16]. These 
properties are generally dependent on the temperature. But as the Young’s moduli of 
the oxides, for example, are often only known for room temperature [16], we have to 
use them as average values valid for the whole temperature range. The fracture 
toughness values of many oxides, on the other hand, are known to be fairly constant 
between 0 and 600 0C [16]. 
There are also experimental data on oxide scale failure strains to be found in the 
literature. For example, in ref. [15] data for 9 at% Cr steel and for AISI 316 can be 
found and in ref. [17] data for oxide scales on mild steel. The failure strains depend 
on many parameters, the most important ones seem to be the temperature, the strain 
rate, the mode of loading and above all the oxide scale thickness. We have 
transformed the failure strains εf into values of the failure stress σf assuming a bi-
axial stress state: 
 
 

 f
ox

ox
f

E ε
ν

σ ⋅
−

=
1

 (43) 

 
 
In Fig. 2 we have only plotted the lower bounds of the failure stress for the data of 
[15] and [17]. We can note that there is a clear tendency for the failure stress to 
decrease with increasing oxide scale thickness. 
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Fig.1 Thermal expansion coefficients of different stainless steels and iron oxides 
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Fig. 2 Failure stress of iron oxide scales (lower bound) versus oxide scale thickness 
 
 
4. Results of stress calculations 
 
In the following we are going to discuss the results of stress calculations starting with 
the stresses due to temperature changes. 
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In Fig. 3 are plotted the thermal hoop stresses as a function of the temperature 
change into the ramp for the three types of steels, which are of interest to us 
(martensitic, ferritic and austenitic steels), under isothermal conditions in the 
magnetite and Fe/Cr spinel subscales. For austenitic steels the hoop stresses are 
mainly compressive with the mechanical load in the spinel subscale being higher in 
absolute magnitude by about 30%. The stresses in case of martensitic and ferritic 
steels are tensile in both subscales. The highest tensile stresses are to be found in 
the magnetite subscale on ferritic steels and the lowest stresses in the Fe/Cr spinel 
on martensitic steels. Thus, martensitic steels compare favourably to austenitic and 
ferritic steels under thermal cycling. 
 
In case of non-isothermal conditions the thermal stresses in the oxide scales on 
austenitic steels would be less compressive and for ferritic and martensitic steels 
more tensile, as the drop of the mean temperature in the metallic substrate is 
generally smaller than the drop in the oxide scales on test specimens. 
 
Evans et al [10] have given the mechanical strains due to a temperature drop for 
different oxides on metallic substrates. In most cases the strain in the oxide scale 
increases strictly linearly with the temperature drop. This is a consequence of the 
assumption of temperature independent thermal expansion coefficients taken by 
these authors. For a FeCr2O4 scale on a Fe18Cr8Ni steel the mechanical strain  

amounts to about -0.7 % for a temperature drop of 600 0C corresponding to a 
compressive stress of about 1631 MPa. For a magnetite scale on a Fe9Cr1Mo steel 
a strain of -0.2 % is given for the same temperature drop corresponding to a tensile 
stress of about 420 MPa. It should be noted that in ref. [10] not the normal sign 
convention for stresses is used but a reversed one. 
 
The thermal stresses shown in ref. [14], increase in magnitude only for the first 150 
0C of the temperature ramp. This is evidently a consequence of the peak in the 
thermal expansion coefficients in the magnetite and spinel oxide phases. But for 
higher temperature ramps the thermal stresses decrease and are practically zero at 0 
0C that means after a temperature ramp of 600 0C. This is a very strange behaviour 
and contradicts all that is known from the literature. We think that this is due to a 
misunderstanding on the importance of the thermal expansion coefficients. The 
temperature dependent values have presumably been used as mean thermal 
expansion coefficients, and as the values at 0 0C of the oxides and of the steel are 
near together the calculated thermal stresses of ref. [14] are very small. It should be 
noted that the thermal stresses given in [14] are relatively small for all the subscales 
over the whole temperature range and in the maximum less than 100 MPa. 
 
In Fig. 4 we have plotted the mean growth stresses in both subscales as a function of 
the subscale thickness for two values of the outside radius of the metallic cylinder. In 
the magnetite subscale we have compressive growth stresses, as the oxidation 
occurs at the outside of this subscale, and in the Fe/Cr subscale we have tensile 
growth stresses, as the oxidation occurs at the inside of the subscale. The growth 
stresses increase linearly with the subscale thickness and decrease linearly with 
increasing radius of curvature. For a flat surface the geometrically-induced growth 
stresses would be zero, as the radius of curvature is infinite. For thin wires, on the 
other hand, geometrically-induced growth stresses can become a severe problem. 
For concave surfaces the signs of the growth stresses would be reversed. 
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We are now going to consider the combined effect of growth and thermal stresses for 
our standard case. The thickness of the subscales is taken as a parameter, that 
means the specimens are oxidized up to a certain value for the thickness of the 
duplex scale at a certain oxidation temperature and then a downwards temperature 
ramp is applied. In reality, the thickness values of both subscales are slightly 
different, but for the sake of simplicity we assume in the following that both subscales 
have equal thickness. For the oxidation temperature we have taken a value of 550 
0C. 
In Fig. 5-7 we have plotted for martensitic steels the mean hoop and axial stresses in 
both subscales versus the temperature during the ramp starting with the oxidation 
temperature of 550 0C. The highest stresses are the axial component in the 
magnetite subscale and the circumferential component in the Fe/Cr spinel, which are 
near together in magnitude. These components increase with the subscale thickness. 
The other two components decrease with increasing subscale becoming 
compressive for an ever greater temperature range. 
It is obvious that we have now a relatively complex stress state in both subscales and 
not simply a bi-axial one, the axial and the circumferential component being very 
different in magnitude and depending on the subscale thickness and the 
temperature. Under such circumstances it is very difficult to assess the propensity for 
cracking or spalling of the subscales. One parameter which is certainly of relevance 
in this respect is the elastic strain energy in both subscales and eventually the sum of 
both. The results for these parameters are plotted in Fig. 8-10 together with the 
surface fracture energies of the Fe/Cr spinel and of magnetite. 
 
It could be that there is tensile cracking caused by the tensile stress component. The 
plane of the tensile cracks would be orthogonal to this component. This would then 
mean that it no longer contributes to the elastic strain energy. But the other stress 
component would also be changed, as the premises for the stress calculation, that 
the material is a continuum, is no longer fulfilled. The formation of tensile cracks will 
perturb the in-plane stress distribution and also generate shear stresses [19] 
 
The situation is much clearer for oxide scales on austenitic steels, as can be taken 
from Fig.11- 13. For low temperature differences all the stress components are in a 
compressive state. The temperature, where the stress changes from tensile to 
compressive is a bit different for the four components in the subscales and decreases 
with increasing subscale thickness for the hoop stress in the Fe/Cr spinel and the 
axial component in the magnetite subscale. The other two stress components are for 
all cases in a compressive state. 
 
The tubing of the test loop CORRIDA is made of austenitic steel. For the tubing we 
encounter the situation of oxide scale formation on inner (concave) surfaces. For this 
reason we have done calculations for a radius of curvature of -4 mm. 
 
In Fig. 14-16 the stress situation for such a case is exemplified. By comparison with 
Fig. 11-13 the influence of the radius of curvature can be deduced. . The hoop stress 
in the Fe/Cr spinel subscale is now deep in the compressive region also the axial 
component in the magnetite subscale. 
 
In Fig.17 and 18 we have plotted for austenitic steels the hoop stress and the axial 
stress versus the subscale thickness with the temperature difference as a parameter 
(ΔT = -100K, -200 K, -300 K). Both stress components in the subscales increase 
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linearly in magnitude with the subscale thickness and are shifted downwards with 
higher temperature changes. 
 
The combined effect of thermal and growth stresses has not very often been 
investigated in the literature. For alumina, scales, for example, the growth stresses at 
steady-state have been determined from measured residual stresses and from 
calculated values of thermal stresses (see for example ref. [23]). But for oxide scales 
on steels we do not know of such efforts. Often the investigation of stresses was for 
flat surfaces (see for example [18] and [19]) and in such cases there are no 
geometrically-induced growth stresses, and if one can neglect the intrinsic growth 
stresses the analysis would be correct. 
 
We have plotted in Fig. 19-21 the elastic strain energy in both subscales and also the 
sum of both for three values of the subscale thickness for oxide scales on a convex 
surface on austenitic steels and compared this to the fracture surface energy of the 
Fe/Cr spinel and magnetite. For a subscale thickness of 10 µm the risk of spalling or 
scale detachment appears only for temperature changes of more than 300 K. In this 
regard an observation made in ref. [15] may be of great importance. It was found that 
for 9% Cr steels and for AISI 316 type steels only the magnetite sublayer spalled and 
the Fe/Cr spinel remained attached. These observations were for gas atmospheres, 
but we think that they might also be relevant for heavy liquid metal environments. 
This would then mean that only the release of the elastic strain energy in the 
magnetite subscale is relevant and not the sum for both subscales. In this case there 
is only a slight risk for magnetite spalling for temperature changes of about 500 K. 
 
For subscale thickness values up to about 20 µm the risk for oxide scale spalling 
already at steady-state conditions seems small, whereas it seems high for subscales 
of 30 µm and more. According to our calculations we would expect that with oxide 
scales above about 40 µm mechanical effects should start to occur at steady-state. 
Furthermore, it seems rather improbable that values of 60 µm can be reached 
without severe damage. 
 
It should be noted that our model is purely elastic, that means we have excluded any 
stress relief mechanisms like plastic flow or micro-cracking. For the calculation of the 
growth stresses we have not taken into account any annihilation of vacancies, an 
effect which would reduce the growth stresses. Also, there is a considerable 
uncertainty on the mechanical data for the iron oxides. The release of elastic strain 
energy can not only be achieved by spalling or detachment of the oxide scale but 
also by tensile or shear crack formation. Thus, the condition that the elastic strain 
energy must be above the surface fracture energy is a necessary condition but not in 
any case a sufficient one. 
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Fig. 3 Thermal stresses due to a downward temperature change for duplex scales on 
different stainless steels 
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Fig. 4 Geometrically-induced growth stresses in duplex scales 
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Fig. 5 Combined effect of growth and thermal stresses in the duplex scale on 
martensitic steels (subscale thickness 10 µm) 
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Fig. 6 Combined effect of growth and thermal stresses in the duplex scale on 
martensitic steels (subscale thickness 20 µm) 
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Fig. 7 Combined effect of growth and thermal stresses in the duplex scale on 
martensitic steels (subscale thickness 30 µm) 
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Fig. 8 Elastic strain energy in the duplex scale on martensitic steels (subscale 
thickness 10 µm) 
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Fig. 9 Elastic strain energy in the duplex scale on martensitic steels (subscale 
thickness 20 µm) 
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Fig. 10 Elastic strain energy in the duplex scale on martensitic steels (subscale 
thickness 30 µm) 
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Fig. 11 Combined effect of growth and thermal stresses in the duplex scale on 
austenitic steels (convex surface, subscale thickness 10 µm) 
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Fig. 12 Combined effect of growth and thermal stresses in the duplex scale on 
austenitic steels (convex surface, subscale thickness 20 µm) 
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Fig. 13 Combined effect of growth and thermal stresses in the duplex scale on 
austenitic steels (convex surface, subscale thickness 30 µm) 
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Fig. 14 Combined effect of growth and thermal stresses in the duplex scale on 
austenitic steels (concave surface, subscale thickness 10 µm) 
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Fig. 15 Combined effect of growth and thermal stresses in the duplex scale on 
austenitic steels (concave surface, subscale thickness 20 µm) 
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Fig. 16 Combined effect of growth and thermal stresses in the duplex scale on 
austenitic steels (concave surface, subscale thickness 30 µm) 
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Fig. 17 Hoop stresses in the duplex scale on austenitic steels versus the subscale 
thickness with the temperature ramp as parameter (austenitic steels, convex surface) 
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Fig. 18 Axial stresses in the duplex scale on austenitic steels versus the subscale 
thickness with the temperature ramp as parameter (austenitic steels, convex surface) 
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Fig. 19 Elastic strain energy in the duplex scale on austenitic steels (convex surface, 
subscale thickness 10 µm) 
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Fig. 20Elastic strain energy in the duplex scale on austenitic steels (convex surface, 
subscale thickness 20 µm) 
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Fig. 21Elastic strain energy in the duplex scale on austenitic steels (convex surface, 
subscale thickness 30 µm) 
 
 
5. Experimental observations on failures of iron oxide scales 
 
Experimental observations on failures of iron oxide scales exist for scales grown 
under gas atmospheres and for scales grown in a heavy liquid metal environment. 
Although our prime interest is with the case of liquid metal environments, the 
experience gained from gas atmospheres is also valuable and should therefore not 
be dismissed. 
 
5.1 Oxide scale failure under gas atmospheres 
 
In fig. 4-12 taken from ref. [12] data on spalling of oxide scales on AISI 316 are 
plotted versus the elastic strain energy, which was determined from the cooling 
strains and metallographic observations. These data were from superheater and 
reheater tubes of CEGB coal fired plants. The elastic strain energy was calculated 
based on model assumptions explained in ref. [12]. Geometrically-induced growth 
stresses, for example, were not taken into account. As the tubes had rather large 
diameters, this can be justified. Although the curve in Fig. 4-22 cannot directly be 
applied to a heavy liquid metal environment, it gives us valuable qualitative 
information on spalling behaviour of austenitic steels and on the order of magnitude 
of threshold values for the elastic strain energy. 
 
In ref. [12] a failure map for duplex scales grown on austenitic and ferritic steels was 
also established. According to this map spalling would occur under tensile and 
compressive stress conditions with similar failure strains. In ref. [12] is also 
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mentioned that austenitics spall at the oxide/oxide interface because of the voids 
there and the irregular metal/oxide interface, whilst ferritics can spall at any 
interphase or even within a subscale layer. One interesting experimental observation 
for oxide scales on ferritic steels is also noted in ref. [22], namely that the visually 
observable spallation is much less marked in cyclic oxidation (< 1%) than in 
isothermal oxidation (< 25%). 
 
 
 
 

 
 
 
Some examples of mechanical failures of oxide scales on the martensitic steel P92 
exposed to steam atmospheres up to 650 0C are shown in ref. [14]. Amongst them 
are a buckling type failure of the thin outer haematite sublayer, different examples for 
tensile and shear cracks in the magnetite and spinel sublayers, and decohesion of 
the spinel sublayer by a wedging mechanism. The buckling and wedging 
mechanisms and the shear cracks are most probably caused by compressive 
stresses. This is most clearly shown in fig. 6 of ref. [14] with shear cracks in the 
spinel layer, decohesion at the interface with the internal oxidation zone and also 
continuing decohesion at the interface with the magnetite layer. In our opinion the 
compressive stresses in the spinel layer could only come from intrinsic growth 
stresses. In ref. [14] are also shown examples for the flakes due to spalling. For 
oxidation times longer than 500 h these flakes were a mixture of haematite and 
magnetite. 
 
In ref. [24] it was noted that pitting corrosion followed the loss of the chromic oxide 
layer due to spalling. It is obvious that the spalling of the oxide scale must have 
occurred at steady-state conditions. 
 
The stability of isothermally grown oxide scales on ferritic steel was investigated 
under the conditions of thermal cycling in ref. [25]. It was found that scales formed 
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upon isothermal oxidation showed locations with bulging behaviour. This is most 
probably caused by compressive growth stresses and as the test specimens were 
coupons cut out from strips these must have been intrinsic growth stresses. In 
response to thermal cycling, the bulging oxide showed poor mechanical stability and 
continued to crack and spall during each cycle. 
 
 
5.2 Oxide scale failure in heavy liquid metal environments 
 
Oxide scale failure in heavy liquid metal environments can have more serious 
consequences than the same effect under gas atmospheres, as it may be followed by 
dissolution of the underlying steel substrate. Dissolution attack of the steel surface 
has been reported in the literature (see for example [3] and [20]). . This phenomenon 
is of great technical importance, as it impairs the corrosion resistance of the steel 
components and one should try to find an explanation for it. In these cases the 
oxygen concentration in the liquid lead-bismuth eutectic (LBE) was largely sufficient 
for oxide scale formation, as can be seen by other examples of test specimens One 
possible scenario could be that there occurred debonding of the oxide scale, filling of 
the gap between metallic substrate and oxide scale by LBE and then later on spalling 
of the oxide scale. Why there occurred no renewed oxidation of the steel surface is 
not yet clear. 
 
In ref. [20] results on martensitic steel specimens in stagnant ant flowing LBE are 
reported amongst them are interesting examples for mechanical failures of the oxide 
scales. The martensitic steel Optifer IVc was immersed in stagnant LBE for different 
test durations at 500 and 550 0C. At 500 0C a single layer oxide scale was formed 
(presumably Fe/Cr spinel) and at 550 0C a double layer oxide scale (magnetite + 
Fe/Cr spinel). At 500 0C no oxide scale debonding was observed, whereas at 550 0C 
there was debonding at the oxide/oxide interface. At the longest test duration the 
magnetite sublayer has spalled and the spinel sublayer was dissolved to a large 
extent. This means that the spalling occurred at steady-state most probably due to 
growth stresses. The debonding of the oxide scale for the test specimens with shorter 
test durations occurred most probably at the end of the tests upon unloading 
(downwards temperature ramp). 
 
Debonding at the oxide/oxide interface confirms the experience on duplex scales 
obtained under gas atmospheres (see for example [12] and [15]). These authors 
have explained the effect by a reduction of the surface fracture energy caused by the 
presence of pores at the oxide/oxide interface. 
 
Examples on oxide scale decohesion effects for the martensitic steel T91 exposed to 
flowing LBE at 550 0C can be found in [21] and [26]. In this case the gap appears at 
the interface of the spinel subscale and the internal oxidation zone. The gap can be 
empty or filled with LBE. In the latter case the LBE must have been still liquid, when 
the debonding event occurred.  
 
Debonding is viewed to be caused by the action of compressive stresses in the oxide 
scale. But the thermal stresses in oxide scales on martensitic steels are of tensile 
nature. Therefore it must have been the growth stresses, which induced decohesion 
and we are inclined to conclude that it occurred atsteady-state. The geometrically-
induced growth stresses are compressive in the magnetite subscale and tensile in 
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the Fe/Cr spinel subscale. The intrinsic growth stresses would be compressive in 
both subscales. The geometrically-induced part would presumably not be sufficient in 
view of the low subscale thickness values observed for example in ref. [20] (3 and 6 
µm). We had also found indications for the presence of intrinsic growth stresses in 
the literature (see ref. [4] and [5]). 
The question whether scale decohesion for martensitic steels occurs at steady-state 
or only at the unloading of the test specimens is a very important one, as decohesion 
might evolve into spalling of the scale and the answer to this question could also 
provide insight into fundamental aspects of the growth stresses. Experimental 
evidence can eventually be obtained with the help of microphones installed in the test 
loops. This technique was, for example, applied in ref. [14], but only during the 
temperature ramps and not at steady-state conditions. 
 
 
6. Conclusions 
 
Simple models for the combined effect of thermal and growth stresses in duplex 
scales on austenitic and martensitic stainless steels have been developed and 
applied. Of course, there are still open questions like the importance of intrinsic 
growth stresses, the stresses caused by internal oxidation and the failure criteria for a 
mixed stress state. Nevertheless, we have gained valuable insight into the problem of 
mechanical stability of oxide scales grown in heavy liquid metal environments. 
 
The main parameter characterizing the mechanical load of the oxide scales is viewed 
to be the elastic strain energy. The values of this parameter have been compared to 
values of the surface fracture energy. In this way a simple criterion for the mechanical 
failure of the oxide scale was established. It is not yet clear whether such a criterion 
is fully sufficient, as the hoop stress and the axial stress components can have a 
different signs. Also, it is not clear whether tensile and compressive stresses can be 
dealt with the same criterion. It should be kept in mind that mechanical failure of the 
oxide scale is a stochastic process. A more basic concept of oxide scale failure would 
consider the growth of cavities. But this was outside our capabilities, as this would 
need systematic experimental studies on oxide scales. 
 
Systematic studies on mechanical failures of oxide scales grown in gas atmospheres 
have been done in the past and we can take profit of this work. For oxide scales 
grown in heavy liquid metal environments we have found some examples for 
mechanical failures in the literature, but no systematic study of these effects has 
been done so far. The main question is whether these failures occur predominantly 
during temperature changes or at steady-state. We have found indications for 
mechanical failures in oxide scales on martensitic steels caused by compressive 
stresses. This would then mean that intrinsic growth stresses were active. 
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Notation 
 
E = Young’s modulus 
ν = Poison number 
α = lin. thermal exp. coeff. 
T = temperature 
δ, s = thickness 
σ = stress 
ε = strain 
W = elastic strain energy 
Φ = Pilling-Bedworth ratio 
G = energy release rate 
Γ = fracture toughness 
K = stress intensity factor 
c = flaw size 
γ = surface energy 
G = elastic energy release upon cracking 
 
 
Superscripts and subscripts
 
ox = oxide or oxidation 
me = metal 
therm. = thermal cycling 
r = radial 
Θ = azimuthal 
z = axial 
ma = magnetite 
sp = spinel 
lay = layer 
av = average 
gr = growth 
i.o.z. = internal ox. zone 
f = fracture 
cl = cladding 
o.p. = one particle solution 
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